信息处理的方法、装置和通信设备Information processing method, device and communication device
技术领域Technical field
本发明实施例涉及通信领域,尤其涉及信息处理的方法、和通信装置。Embodiments of the present invention relate to the field of communications, and in particular, to a method for information processing and a communication device.
背景技术Background technique
低密度奇偶校验(low density parity check,LDPC)码是一类具有稀疏校验矩阵的线性分组编码,具有结构灵活,译码复杂度低的特点。由于它采用部分并行的迭代译码算法,从而比传统的Turbo码具有更高的吞吐率。LDPC码可用于通信系统的纠错码,从而提高信道传输的可靠性和功率利用率。LDPC码还可以广泛应用于空间通信、光纤通信、个人通信系统、ADSL和磁记录设备等。目前在第五代移动通信中已考虑采用LDPC码作为信道编码方式之一。Low density parity check (LDPC) code is a kind of linear block coding with sparse check matrix, which has the characteristics of flexible structure and low decoding complexity. Because it uses a partially parallel iterative decoding algorithm, it has a higher throughput than the traditional Turbo code. The LDPC code can be used for the error correction code of the communication system, thereby improving the reliability and power utilization of the channel transmission. LDPC codes can also be widely used in space communication, optical fiber communication, personal communication systems, ADSL, and magnetic recording devices. At present, LDPC codes have been considered as one of channel coding methods in the fifth generation mobile communication.
实际使用过程中,可以采用具有特殊结构化特征的LDPC矩阵。该具有特殊结构化特征的LDPC矩阵H可以由准循环(quasi cycle,QC)结构的LDPC基矩阵扩展得到。QC-LDPC适合并行度高的硬件,提供的吞吐率更高。可以通过对LDPC矩阵进行设计使之应用于信道编码。In actual use, an LDPC matrix with special structured features can be used. The LDPC matrix H with special structuring features can be obtained by extending the LDPC basis matrix of a quasi-cycle (QC) structure. QC-LDPC is suitable for hardware with high parallelism and provides higher throughput. The LDPC matrix can be designed to be applied to channel coding.
QC-LDPC适合并行度高的硬件,提供的吞吐率更高。可以通过对LDPC矩阵进行设计使之应用于信道编码。QC-LDPC is suitable for hardware with high parallelism and provides higher throughput. The LDPC matrix can be designed to be applied to channel coding.
发明内容Summary of the invention
本发明实施例提供了一种信息处理的方法、通信装置和系统,可以支持多种长度的信息比特序列的编码和译码。Embodiments of the present invention provide a method, a communication device, and a system for information processing, which can support encoding and decoding of information bit sequences of various lengths.
第一方面,提供了一种编码方法及编码器,所述编码器使用低密度奇偶校验LDPC矩阵对输入序列进行编码。In a first aspect, an encoding method and an encoder are provided that encode an input sequence using a low density parity check LDPC matrix.
第二方面,提供了一种译码方法及译码器,所述译码器使用低密度奇偶校验LDPC矩阵对输入序列进行译码。In a second aspect, a decoding method and decoder are provided that decode an input sequence using a low density parity check LDPC matrix.
在上述第一方面或第二方面的第一种实现方式中:所述LDPC矩阵是基于扩展因子Z和基矩阵得到的。In the first aspect or the first implementation of the second aspect, the LDPC matrix is obtained based on the spreading factor Z and the base matrix.
基于上述实现方式,基图30a的基矩阵可以包括:图3b-1至图3b-8所示矩阵中之一矩阵的第0至6行以及第0至16列,或者,所述基矩阵包括图3b-1至图3b-8所示矩阵中之一矩阵的第0至6行以及第0至16列中的部分列。或者,基图30a的基矩阵可以是图3b-1至图3b-8所示矩阵中之一矩阵的第0至6行以及第0至16列的行/列变换后的矩阵,或,基矩阵可以图3b-1至图3b-8所示矩阵中之一矩阵的第0至6行以及第0至16列中的部分列的行/列变换后的矩阵。Based on the above implementation manner, the base matrix of the base map 30a may include: 0th to 6th rows and 0th to 16th columns of one of the matrices in the matrix shown in FIG. 3b-1 to FIG. 3b-8, or the base matrix includes The 0th to 6th rows of one of the matrices in the matrix shown in FIGS. 3b-1 to 3b-8 and the partial columns in the 0th to 16th columns. Alternatively, the base matrix of the base map 30a may be the matrix of the 0th to 6th rows of the matrix in the matrix shown in FIG. 3b-1 to FIG. 3b-8 and the row/column transformed matrix of the 0th to 16th columns, or The matrix may be a row/column transformed matrix of the 0th to 6th rows of one of the matrices in the matrix shown in FIGS. 3b-1 to 3b-8 and the partial columns in the 0th to 16th columns.
为了支持不同块长,LDPC码需要不同的扩展因子Z,基于前述实现方式,在一种可能的实现方式中,基于不同的扩展因子Z采用与之对应的基矩阵。例如,Z=a×2
j,0≤j<7, a∈{2,3,5,7,9,11,13,15}。
In order to support different block lengths, the LDPC code requires different spreading factors Z. Based on the foregoing implementation manner, in a possible implementation manner, a base matrix corresponding thereto is adopted based on different spreading factors Z. For example, Z = a × 2 j , 0 ≤ j < 7, a ∈ {2, 3, 5, 7, 9, 11, 13, 15}.
进一步地,可选地,基于上述实现方式,LDPC矩阵可以基于扩展因子Z和对前述各基矩阵进行补偿后的矩阵Hs得到,或者是基于扩展因子Z和对前述各基矩阵进行补偿后的矩阵Hs的行/列变换后的矩阵得到。对前述各基矩阵补偿,可以是对其中一列或多列中大于或等于0的偏移值增加或减少补偿值。Further, optionally, based on the foregoing implementation manner, the LDPC matrix may be obtained based on the spreading factor Z and the matrix Hs compensated for each of the foregoing base matrices, or based on the spreading factor Z and the matrix after compensating the foregoing base matrices. The matrix after the row/column transformation of Hs is obtained. For the foregoing base matrix compensation, the offset value may be increased or decreased for an offset value greater than or equal to 0 in one or more of the columns.
上述各实现方式中的LDPC矩阵的基图和基矩阵可以满足多种块长的码块的性能需求。The base map and the base matrix of the LDPC matrix in each of the foregoing implementation manners can satisfy the performance requirements of the code blocks of various block lengths.
其中,扩展因子Z可以由编码器或译码器根据输入序列的长度K来确定,也可以是由其他器件确定后作为输入参数提供给编码器或译码器。可选地,可以根据获取到的扩展因子Z和该扩展因子Z对应的基矩阵得到LDPC矩阵。Wherein, the spreading factor Z may be determined by the encoder or the decoder according to the length K of the input sequence, or may be determined by other devices and provided as an input parameter to the encoder or the decoder. Optionally, the LDPC matrix may be obtained according to the obtained spreading factor Z and the base matrix corresponding to the spreading factor Z.
在上述第一方面或第二方面的第二种实现方式中:所述LDPC矩阵是基于扩展因子Z和LDPC矩阵的参数得到的。In the above first aspect or the second implementation of the second aspect, the LDPC matrix is obtained based on parameters of the spreading factor Z and the LDPC matrix.
LDPC矩阵的参数可以包括:行号、非零元素所在的列,非零元素偏移值,如表表2、表3b-1至表3b-8所示之一表的第0至6行的方式保存。还可以包括行重。其中非零元素所在的列中各位置和非零元素偏移值中各偏移值是一一对应的。The parameters of the LDPC matrix may include: a row number, a column in which the non-zero element is located, and a non-zero element offset value, as in rows 0 to 6 of the table shown in Table 2, Table 3b-1 to Table 3b-8. Way to save. It can also include line weights. The offset values in the positions of the non-zero elements and the non-zero element offset values are one-to-one correspondence.
对于发送端的通信设备,使用LDPC矩阵对所述输入序列进行编码可以包括:使用扩展因子Z对应的LDPC矩阵对所述输入序列进行编码;或者扩展因子Z对应的LDPC矩阵经过了行/列变换,使用行/列变换后的矩阵对输入序列进行编码后的矩阵对所述输入序列进行编码。本申请中行/列变换是指行变换、列变换、或者行变换和列变换。For the communication device at the transmitting end, encoding the input sequence by using the LDPC matrix may include: encoding the input sequence by using an LDPC matrix corresponding to the spreading factor Z; or the LDPC matrix corresponding to the spreading factor Z undergoes row/column conversion, The input sequence is encoded using a matrix whose row/column transformed matrix encodes the input sequence. The row/column transformation in this application refers to a row transformation, a column transformation, or a row transformation and a column transformation.
对于接收端的通信设备,使用LDPC矩阵对输入序列进行译码包括:使用扩展因子Z对应的LDPC矩阵对输入序列进行译码;或者扩展因子Z对应的LDPC矩阵经过了行/列变换,使用行/列变换后的矩阵对输入序列进行编码后的矩阵对所述输入序列进行编码。本申请中行/列变换是指行变换、列变换、或者行变换和列变换。For the communication device at the receiving end, decoding the input sequence using the LDPC matrix includes: decoding the input sequence using the LDPC matrix corresponding to the spreading factor Z; or the LDPC matrix corresponding to the spreading factor Z undergoes row/column conversion, using the row/ The matrix after the column transformation encodes the input sequence to encode the input sequence. The row/column transformation in this application refers to a row transformation, a column transformation, or a row transformation and a column transformation.
在一种可能的实现方式中,可以保存LDPC矩阵,使用该LDPC矩阵对输入序列进行编码,或者基于该LDPC矩阵进行变换(行/列变换)或扩展获得可用于编码的LDPC矩阵。In a possible implementation, the LDPC matrix may be saved, the input sequence is encoded using the LDPC matrix, or transformed (row/column transform) or extended based on the LDPC matrix to obtain an LDPC matrix usable for encoding.
在另一种可能的实现方式中,可以保存参数,依据所述参数可以获得用于编码或者译码的LDPC矩阵,从而可以基于LDPC矩阵对输入序列进行编码或者译码。所述参数包括以下至少之一:基图、基矩阵、基于基图或基矩阵行/列变换后的变换矩阵、基于基图或基矩阵的扩展矩阵、基矩阵中非零元素的偏移值、或者与获得LDPC矩阵相关的任何参数。In another possible implementation, parameters may be saved, and an LDPC matrix for encoding or decoding may be obtained according to the parameters, so that the input sequence may be encoded or decoded based on the LDPC matrix. The parameter includes at least one of: a base map, a base matrix, a transform matrix based on a base/column transformation of a base map or a base matrix, an extended matrix based on a base map or a base matrix, and an offset value of a non-zero element in the base matrix; Or any parameter related to obtaining an LDPC matrix.
在又一种可能的实现方式中,LDPC矩阵的基矩阵可以保存在存储器中。In yet another possible implementation, the base matrix of the LDPC matrix can be stored in a memory.
在又一种可能的实现方式中,LDPC矩阵的基图保存在存储器中,LDPC矩阵的基矩阵中非零元素的偏移值可以保存在存储器中。In yet another possible implementation, the base map of the LDPC matrix is stored in a memory, and offset values of non-zero elements in the base matrix of the LDPC matrix may be stored in the memory.
在又一种可能的实现方式中,LDPC矩阵的参数按照表2、或表3b-1至表3b-8所示表所示的方式保存在存储器中,也可以保存其中的部分元素组。In another possible implementation manner, the parameters of the LDPC matrix are stored in the memory in the manner shown in Table 2 or Table 3b-1 to Table 3b-8, and some of the element groups may also be saved.
基于上述各可能的实现方式,在一种可能的设计中,用于LDPC编码或者译码的基图和基矩阵中至少一个是上述LDPC矩阵的基图和基矩阵中至少一个经过行交换、或者列交换、或者行交换和列交换后得到的。Based on the foregoing possible implementation manners, in a possible design, at least one of the base map and the base matrix used for LDPC encoding or decoding is at least one of a base map and a base matrix of the foregoing LDPC matrix, or Column exchange, or row exchange and column exchange.
第三方面,提供一种通信装置可以包含用于执行上述方法设计中相对应的模块。所述模块可以是软件和/或是硬件。In a third aspect, a communication device is provided that can include corresponding modules for performing the above method design. The module can be software and/or hardware.
在一个可能的设计中,第三方面提供的通信装置,包括处理器和收发组件,该处理器和收发组件可用于实现上述编码或者译码方法中各部分的功能。在该设计中,如果该通信装置是终端、基站或者其他网络设备,其收发组件可以是收发机,如果该通信装置是基带芯片或基带单板,其收发组件可以是基带芯片或基带单板的输入/输出电路,用于实现输入/输出信号的接收/发送。所述通信装置可选的还可以包括存储器,用于存储数据和/或指令。In one possible design, a communication device provided by the third aspect includes a processor and a transceiver component that can be used to implement the functions of various portions of the encoding or decoding method described above. In this design, if the communication device is a terminal, a base station or other network device, the transceiver component thereof may be a transceiver. If the communication device is a baseband chip or a baseband single board, the transceiver component may be a baseband chip or a baseband single board. Input/output circuits for receiving/transmitting input/output signals. The communication device can optionally also include a memory for storing data and/or instructions.
在一种实现方式中,所述处理器可以包括如上述第一方面所述的编码器以及确定单元。所述确定单元用于确定对输入序列编码所需的扩展因子Z。所述编码器用于使用所述扩展因子Z对应的LDPC矩阵对所述输入序列进行编码。In one implementation, the processor may include the encoder and the determining unit as described in the first aspect above. The determining unit is operative to determine a spreading factor Z required to encode the input sequence. The encoder is configured to encode the input sequence using an LDPC matrix corresponding to the spreading factor Z.
在另一种实现方式中,所述处理器可以包括如上述第二方面所述的译码器以及获取单元。所述获取单元用于获取LDPC码的软值和扩展因子Z。所述译码器用于基于扩展因子Z对应的基矩阵H
B对LDPC码的软值译码得到信息比特序列。
In another implementation, the processor may include the decoder and the obtaining unit as described in the second aspect above. The obtaining unit is configured to acquire a soft value and an expansion factor Z of the LDPC code. The decoder is configured to decode the soft value of the LDPC code based on the base matrix H B corresponding to the spreading factor Z to obtain an information bit sequence.
第四方面,提供了一种通信装置,包括一个或多个处理器。在一种可能的设计中,一个或多个所述处理器可实现第一方面所述编码器的功能,在另一种可能的设计中,第一方面所述编码器可以是所述处理器的一部分,处理器除了实现第一方面所述编码器的功能,还可以实现其他功能。在一种可能的设计中,一个或多个所述处理器可实现第二方面所述译码器的功能,在另一种可能的设计中,第二方面所述译码器可以是所述处理器的一部分。In a fourth aspect, a communication device is provided that includes one or more processors. In one possible design, one or more of the processors may implement the functions of the encoder of the first aspect, and in another possible design, the encoder of the first aspect may be the processor In part, the processor can implement other functions in addition to the functions of the encoder described in the first aspect. In one possible design, one or more of the processors may implement the functions of the decoder of the second aspect, and in another possible design, the decoder of the second aspect may be Part of the processor.
可选地,所述通信装置还可以包括收发器以及天线。Optionally, the communication device may further include a transceiver and an antenna.
可选的,所述通信装置还可以包括用于产生传输块CRC的器件、用于码块分割和CRC校验的器件、用于交织的交织器、或者用于调制处理的调制器等。在一种可能的设计中,可以通过一个或多个处理器实现这些器件的功能。Optionally, the communication device may further include a device for generating a transport block CRC, a device for code block splitting and CRC check, an interleaver for interleaving, a modulator for modulation processing, and the like. In one possible design, the functionality of these devices can be implemented by one or more processors.
可选的,所述通信装置还可以包括,用于解调操作的解调器、用于解交织的解交织器、或者用于解速率匹配的器件等等。可以通过一个或多个处理器实现这些器件的功能。Optionally, the communication device may further include a demodulator for demodulation operation, a deinterleaver for deinterleaving, a device for de-rate matching, and the like. The functionality of these devices can be implemented by one or more processors.
第五方面,本发明实施例提供了一种通信系统,该系统包括上述第三方面所述的通信装置。In a fifth aspect, an embodiment of the present invention provides a communication system, where the system includes the communication device described in the foregoing third aspect.
第六方面,本发明实施例提供了一种通信系统,该系统包括一个或多个第四方面所述的通信装置。In a sixth aspect, an embodiment of the present invention provides a communication system, where the system includes one or more communication devices according to the fourth aspect.
再一方面,本发明实施例提供了一种计算机存储介质,其上存储有程序,当其运行时,使得计算机执行上述方面所述的方法。In still another aspect, an embodiment of the present invention provides a computer storage medium having stored thereon a program, and when executed, causes a computer to perform the method described in the above aspect.
本申请的又一方面提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述各方面所述的方法。Yet another aspect of the present application provides a computer program product comprising instructions which, when run on a computer, cause the computer to perform the methods described in the various aspects above.
本发明实施例的信息处理的方法、装置、通信设备和通信系统,在编码性能和错误平层上能够适应系统灵活多变的码长码率需要。The method, device, communication device and communication system of the information processing according to the embodiments of the present invention can adapt to the flexible code length code rate requirement of the system in coding performance and error leveling.
附图说明DRAWINGS
图1为一LDPC码的基图、基矩阵及其循环置换矩阵的示意图;1 is a schematic diagram of a base map, a base matrix, and a cyclic permutation matrix of an LDPC code;
图2为一LDPC码的基图的结构示意图;2 is a schematic structural diagram of a base diagram of an LDPC code;
图3a为本发明一实施例提供的LDPC码的基图的示意图;3a is a schematic diagram of a base diagram of an LDPC code according to an embodiment of the present invention;
图3b-1为本发明实施例提供的一基矩阵的示意图;FIG. 3b-1 is a schematic diagram of a base matrix according to an embodiment of the present invention; FIG.
图3b-2为本发明实施例提供的另一基矩阵的示意图;3b-2 is a schematic diagram of another base matrix according to an embodiment of the present invention;
图3b-3为本发明实施例提供的另一基矩阵的示意图;3b-3 is a schematic diagram of another base matrix according to an embodiment of the present invention;
图3b-4为本发明实施例提供的另一基矩阵的示意图;3b-4 is a schematic diagram of another base matrix according to an embodiment of the present invention;
图3b-5为本发明实施例提供的另一基矩阵的示意图;FIG. 3b is a schematic diagram of another base matrix according to an embodiment of the present disclosure;
图3b-6为本发明实施例提供的另一基矩阵的示意图;3b-6 is a schematic diagram of another base matrix according to an embodiment of the present invention;
图3b-7为本发明实施例提供的另一基矩阵的示意图;3b-7 is a schematic diagram of another base matrix according to an embodiment of the present invention;
图3b-8为本发明实施例提供的另一基矩阵的示意图;3b-8 is a schematic diagram of another base matrix according to an embodiment of the present invention;
图4为本发明实施例提供的性能示意图;4 is a schematic diagram of performance provided by an embodiment of the present invention;
图5为本发明实施例提供的的信息处理流程示意图;FIG. 5 is a schematic flowchart of information processing according to an embodiment of the present disclosure;
图6为本发明实施例提供的的信息处理流程示意图;FIG. 6 is a schematic flowchart of information processing according to an embodiment of the present disclosure;
图7为本发明实施例提供通信装置结构示意图;FIG. 7 is a schematic structural diagram of a communication apparatus according to an embodiment of the present invention;
图8为本发明实施例提供的系统结构示意图。FIG. 8 is a schematic structural diagram of a system according to an embodiment of the present invention.
具体实施方式Detailed ways
为便于理解下面对本申请中涉及到的一些名词做些说明。To facilitate understanding, some of the terms related to this application are described below.
本申请中,名词“网络”和“系统”经常交替使用,“装置”和“设备”也经常交替使用,“信息”和“数据”也经常交替使用,但本领域的技术人员可以理解其含义。“通信装置”可以是芯片(如基带芯片,或者数据信号处理芯片,或者通用芯片等等),终端,基站,或者其他网络设备。终端是一种具有通信功能的设备,可以包括具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备等。在不同的网络中终端可以叫做不同的名称,例如:用户设备,移动台,用户单元,站台,蜂窝电话,个人数字助理,无线调制解调器,无线通信设备,手持设备,膝上型电脑,无绳电话,无线本地环路台等。为描述方便,本申请中简称为终端。基站(base station,BS),也可称为基站设备,是一种部署在无线接入网用以提供无线通信功能的设备。在不同的无线接入系统中基站的叫法可能有所不同,例如在而在通用移动通讯系统(Universal Mobile Telecommunications System,UMTS)网络中基站称为节点B(NodeB),而在LTE网络中的基站称为演进的节点B(evolved NodeB,eNB或者eNodeB),在新空口(new radio,NR)网络中的基站称为收发点(transmission reception point,TRP)或者下一代节点B(generation nodeB,gNB),或者其他各种演进网络中的基站也可能采用其他叫法。本发明并不限于此。In the present application, the terms "network" and "system" are often used interchangeably, and "device" and "device" are often used interchangeably, and "information" and "data" are often used interchangeably, but those skilled in the art can understand the meaning. . The "communication device" may be a chip (such as a baseband chip, or a data signal processing chip, or a general purpose chip, etc.), a terminal, a base station, or other network device. A terminal is a device having a communication function, and may include a handheld device having a wireless communication function, an in-vehicle device, a wearable device, a computing device, or other processing device connected to a wireless modem. Terminals can be called different names in different networks, such as: user equipment, mobile stations, subscriber units, stations, cellular phones, personal digital assistants, wireless modems, wireless communication devices, handheld devices, laptops, cordless phones, Wireless local loop station, etc. For convenience of description, the present application is simply referred to as a terminal. A base station (BS), also referred to as a base station device, is a device deployed in a radio access network to provide wireless communication functions. The name of a base station may be different in different wireless access systems, for example, in a Universal Mobile Telecommunications System (UMTS) network, a base station is called a Node B, but in an LTE network. A base station is called an evolved Node B (eNB or eNodeB). A base station in a new radio (NR) network is called a transmission reception point (TRP) or a next generation node B (generation node B, gNB). Base stations in other various evolved networks may also adopt other names. The invention is not limited to this.
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行描述。The technical solutions in the embodiments of the present invention will be described below with reference to the accompanying drawings in the embodiments of the present invention.
LDPC码通常可以用奇偶校验矩阵H来表示。在一种实现方式中,所述LDPC码的校验矩阵可以采用基图(base graph)进行简化描述,基图中每个元素代表一个Z*Z的扩展矩阵。Z为正整数,也可以称之为扩展(lifting)因子,有时也可称为lifting size或者lifting factor等。可以通过基图来指示零元素以及非零元素的位置。基图中的非零元素与偏移值相对应。LDPC码的奇偶校验矩阵H可以通过基图(base graph)和偏移(shift)值得到。基图通常可以包括m*n个矩阵元素(entry),可以用m行n列的矩阵形式表示,矩阵元素的值为0或1,其中值为0的元素,有时候也称之为零元素,表示该元素可以被Z*Z的全零矩阵(zero matrix)替换,值为1的元素,有时候也称之为非零元素,表示该元素可以被Z*Z的循环置换矩阵(circulant permutation matrix)替换。也就是说,每个矩阵元素代表的是一个全零矩阵或者一 个循环置换矩阵。如图1中10a所示为一个示例性的m=7,n=17具有QC结构的LDPC码的基图中的各元素。需要说明的是,在本文中,基图和矩阵的行号和列号均是从0开始编号的,仅仅是为了方便说明,例如第0列表示为基图和矩阵的第一列,第1列表示为基图和矩阵的第二列、第0行表示基图和矩阵的第一行,第1行表示为基图和矩阵的第二行,以此类推。The LDPC code can usually be represented by a parity check matrix H. In an implementation manner, the check matrix of the LDPC code may be simplified by using a base graph, where each element represents a Z*Z extension matrix. Z is a positive integer, which can also be called a lifting factor, and sometimes called lifting size or lifting factor. The position of the zero element and the non-zero element can be indicated by the base map. The non-zero elements in the base map correspond to the offset values. The parity check matrix H of the LDPC code can be obtained by a base graph and a shift value. The base map can usually include m*n matrix elements, which can be represented by a matrix of m rows and n columns. The value of the matrix element is 0 or 1, and the element with a value of 0 is sometimes called a zero element. , indicating that the element can be replaced by Z*Z's zero matrix. An element with a value of 1, sometimes referred to as a non-zero element, indicates that the element can be a cyclic permutation matrix of Z*Z (circulant permutation) Matrix) replacement. That is, each matrix element represents an all-zero matrix or a cyclic permutation matrix. As shown by 10a in Fig. 1, an exemplary m=7, n=17 elements in the base map of the LDPC code having the QC structure. It should be noted that, in this paper, the row number and column number of the base map and the matrix are numbered from 0, for convenience of explanation, for example, the 0th column is represented as the base map and the first column of the matrix, the first The columns are represented as the base and the second column of the matrix, the 0th row represents the base map and the first row of the matrix, the first row is represented as the base map and the second row of the matrix, and so on.
可以理解的是,行号和列号也可以从1开始编号,则相应的行号和列号在本文所示的行号和列号基础上加1,例如,如果行号或者列号从1开始编号,则第1列表示基图和矩阵的第一列,第2列表示基图和矩阵的第二列,第1行表示表示基图和矩阵的第一行,第2行表示基图和矩阵的第二行,以此类推。It can be understood that the line number and column number can also be numbered from 1, and the corresponding line number and column number are incremented by 1 on the basis of the line number and column number shown in this article, for example, if the line number or column number is from 1 Starting with the number, the first column represents the base column and the first column of the matrix, the second column represents the base map and the second column of the matrix, the first row represents the first row representing the base map and the matrix, and the second row represents the base map. And the second line of the matrix, and so on.
在另一种实现方式中,可以定义一个m行n列的基矩阵(base matrix),有时候也称之为PCM(parity check matrix)。例如定义如图3b-1至图3b-8给出的任一矩阵、或者如图3b-1至图3b-8中矩阵中的部分行和列所构成的矩阵。在基矩阵中每个元素和基图中每个元素的位置一一对应,基图中的零元素在基矩阵中位置不变。在基矩阵中可以采用-1或者空值“null”表示零元素,基图中第i行第j列值为1的非零元素在基矩阵中位置不变,表示为V
i,j。可以通过系统定义或者预先定义基矩阵中V
i,j的值,也可以通过基图中非零元素的偏移值P
i,j和扩展因子Z计算获得V
i,j。P
i,j可以是相对于一个预定或者特定的扩展因子Z定义的偏移值。P
i,j可以基于Z以及V
i,j获得,在一种实现方式中P
i,j和V
i,j满足以下关系:P
i,j=mod(V
i,j,Z)。i和j表示元素的行索引(行号)和列索引(列号),以指示元素在矩阵中的位置。
In another implementation, a base matrix of m rows and n columns, sometimes referred to as a PCM (parity check matrix), may be defined. For example, a matrix defined by any of the matrices as shown in FIGS. 3b-1 to 3b-8, or a partial row and column in the matrix as shown in FIGS. 3b-1 to 3b-8 is defined. In the base matrix, each element corresponds to the position of each element in the base map, and the zero elements in the base map are unchanged in the base matrix. In the base matrix, -1 or a null value "null" may be used to represent a zero element, and a non-zero element having a value of the i-th row and the j-th column in the base map is unchanged in the base matrix, and is represented as V i,j . Or a value defined by the system based matrix V i, j predefined, non-zero elements may be offset by the group values in FIG P i, j obtained by calculation, and spreading factor Z V i, j. P i,j may be an offset value defined relative to a predetermined or specific spreading factor Z. P i,j can be obtained based on Z and V i,j , and in one implementation P i,j and V i,j satisfy the following relationship: P i,j =mod(V i,j ,Z). i and j represent the row index (row number) and column index (column number) of the element to indicate the position of the element in the matrix.
在本申请实施例中,有时也将基矩阵称为基图的偏移矩阵。可以通过基图和偏移值获得基矩阵。若基图中第i行第j列的元素值为1,其偏移值为P
i,j,P
i,j为大于或者等于0的整数,则表示第i行第j列的值为1的元素可以被P
i,j对应的Z*Z的循环置换矩阵替换。所述循环置换矩阵有时也可以称为移位矩阵。该循环置换矩阵可通过将Z*Z的单位矩阵进行P
i,j次向右或者向左循环移位得到。在一种实现方式中,P
i,j=mod(V
i,j,Z)。V
i,j是基矩阵中对应于基图中非零元素的取值。有时也可以称为偏移值,或者循环偏移值,或者偏移系数。例如,V
i,j可以是最大扩展因子Z
max对应的偏移值。Z
max对是Z的取值集合中的最大值。若基图中第i行第j列的元素值为0,则值为0的元素可以用Z*Z的全零矩阵替换。将基图中值为0的元素用Z*Z的全零矩阵替换,值为1的元素用其偏移值P
i,j对应的Z*Z的循环置换矩阵进行替换,则可以得到LDPC码的奇偶校验矩阵。Z为正整数,也可以称之为扩展(lifting)因子,有时也可称为lifting size或者lifting factor等。可以根据系统支持的码块大小和信息数据的大小确定的。可见奇偶校验矩阵H的大小为(m*Z)*(n*Z)。例如,扩展因子Z=4,则每个零元素被一个4*4大小的全0矩阵11a替换,若P
2,3=2,则第2行第3列的非0元素被4*4的循环置换矩阵11d替换,该矩阵是由4*4的单位矩阵11b经过2次向右循环移位得到的,若P
2,4=0,则第2行第4列的非0元素被单位矩阵11b替换。需要说明的是,此处仅仅只是举例说明,并不以此为限制。
In the embodiment of the present application, the base matrix is sometimes referred to as an offset matrix of the base map. The base matrix can be obtained from the base map and the offset values. If the element value of the i-th row and the j-th column in the base map is 1, and the offset value is P i,j , P i,j is an integer greater than or equal to 0, the value of the j-th column of the i-th row is 1 The elements of the element can be replaced by a cyclic permutation matrix of Z*Z corresponding to P i,j . The cyclic permutation matrix may also sometimes be referred to as a shift matrix. The cyclic permutation matrix can be obtained by cyclically shifting the unit matrix of Z*Z by P i, j times to the right or left. In one implementation, P i,j = mod(V i,j ,Z). V i,j is the value of the base matrix corresponding to the non-zero element in the base map. Sometimes it can also be called an offset value, or a cyclic offset value, or an offset coefficient. For example, V i,j may be an offset value corresponding to the maximum spreading factor Z max . The Z max pair is the maximum value in the set of values of Z. If the element value of the i-th row and the j-th column in the base map is 0, the element with a value of 0 can be replaced with the all-zero matrix of Z*Z. An element with a value of 0 in the base map is replaced by an all-zero matrix of Z*Z, and an element having a value of 1 is replaced with a cyclic permutation matrix of Z*Z corresponding to the offset value P i,j , and an LDPC code can be obtained. The parity check matrix. Z is a positive integer, which can also be called a lifting factor, and sometimes called lifting size or lifting factor. It can be determined according to the code block size supported by the system and the size of the information data. It can be seen that the size of the parity check matrix H is (m*Z)*(n*Z). For example, if the spreading factor Z=4, then each zero element is replaced by a 4*4 size all-zero matrix 11a. If P 2,3 = 2, the non-zero elements of the second row and third column are 4*4. The cyclic permutation matrix 11d is replaced by a quadrature cyclic shift of the 4*4 unit matrix 11b. If P 2,4 =0, the non-zero elements of the second row and the fourth column are replaced by the unit matrix. 11b replacement. It should be noted that the description herein is merely illustrative and not limiting.
由于P
i,j可以是基于扩展因子Z得到的,对于同一个位置上值为1的元素,采用不同 的扩展因子Z可能存在不同的P
i,j。如图1中10b所示为基图10a对应的一个基矩阵。例如,基图10a中第1行第3列值为1,其对应于基矩阵10b中,第1行第3列的偏移值V
i,j为27。利用公式P
i,j=mod(V
i,j,Z)则可以获知P
i,j的值。从而可以将第1行第3列的元素被Z*Z的的单位矩阵进行P
i,j次向右或者向左循环移位得到的循环置换矩阵替代。
Since P i,j can be obtained based on the spreading factor Z, for elements with a value of 1 at the same position, different spreading factors Z may have different P i,j . As shown by 10b in Fig. 1, a base matrix corresponding to the base map 10a is shown. For example, the value of the first row and the third column in the base map 10a is 1, which corresponds to the offset value V i,j of the first row and the third column in the base matrix 10b. The value of P i,j can be known using the formula P i,j = mod(V i,j ,Z). Therefore, the elements of the first row and the third column can be replaced by a cyclic permutation matrix obtained by cyclically shifting the unit matrix of Z*Z by P i, j times to the right or left.
通常LDPC码的基图或基矩阵中还可以包括p列内置打孔(built-in puncture)比特列,p可以为0~2的整数,这些列参与编码,但是其编码对应的系统比特不被发送,则LDPC码基矩阵的码率满足R=(n-m)/(n-p)。以基图10a为例,如果有2列内置打孔比特列,则码率为(17-7)/(17-2)=0.667,近似于2/3。Generally, the base map or the base matrix of the LDPC code may further include a p-column built-in puncture bit string, and p may be an integer of 0 to 2. These columns participate in encoding, but the system bits corresponding to the encoding are not When transmitted, the code rate of the LDPC code base matrix satisfies R=(nm)/(np). Taking the base map 10a as an example, if there are 2 columns of built-in punch bit columns, the code rate is (17-7) / (17-2) = 0.667, which is approximately 2/3.
无线通信系统中采用的LDPC码为QC-LDPC码,其校验位部分具有双对角结构或者raptor-like结构,可以简化编码,支持增量冗余混合重传。QC-LDPC码的译码器中中通常采用QC-LDPC移位网络(QC-LDPC shift network,QSN),Banyan网络或者Benes网络实现信息的循环移位。The LDPC code used in the wireless communication system is a QC-LDPC code, and the check bit portion has a double diagonal structure or a raptor-like structure, which can simplify coding and support incremental redundant hybrid retransmission. In the decoder of the QC-LDPC code, a QC-LDPC shift network (QSN), a Banyan network or a Benes network is generally used to implement cyclic shift of information.
具有raptor-like结构的QC-LDPC码的,其基图的矩阵大小为m行n列,可以包括5个子矩阵A、B、C、D和E,其中,矩阵的权重是由非零元素的个数决定的,行的权重(行重)是指一行中包括的非零元素的个数,列的权重(列重)是指一列中包括的非零元素的个数。如图2中200所示,其中:For a QC-LDPC code having a raptor-like structure, the matrix size of the base map is m rows and n columns, and may include five sub-matrices A, B, C, D, and E, wherein the weight of the matrix is determined by a non-zero element The number of rows (row weight) refers to the number of non-zero elements included in a row, and the weight of the column (column weight) refers to the number of non-zero elements included in a column. As shown in 200 in Figure 2, where:
子矩阵A为m
A行n
A列的矩阵,其大小可以为m
A*n
A,其中每列对应LDPC码中的Z个系统比特,系统比特有时候也称为信息比特。
Submatrix A is a matrix of m A rows and n A columns, which may be of size M A *n A , where each column corresponds to Z systematic bits in the LDPC code, and system bits are sometimes referred to as information bits.
子矩阵B为为m
A行m
A列的方阵,其大小可以为m
A*m
A,每列对应于LDPC码中的Z个校验比特。子矩阵B包括双对角结构的子矩阵B’和一列权重为3的矩阵列(简称为3列重列),其中列重为3的矩阵列可以位于子矩阵B’之前,如图2中20a所示;子矩阵B还可以包括一列或多列列重为1的矩阵列(简称为单列重列),例如,一种可能的实现方式如图2中20b或20c所示。
The sub-matrix B is a square matrix of m A rows and m A columns, and its size may be m A *m A , and each column corresponds to Z parity bits in the LDPC code. The sub-matrix B includes a sub-matrix B' with a double-diagonal structure and a matrix column with a weight of 3 (referred to as a 3-column re-column), wherein the matrix column with a column weight of 3 may be located before the sub-matrix B', as shown in FIG. 20a; the sub-matrix B may further include one or more columns of columns having a column weight of 1 (referred to as a single column of re-columns). For example, one possible implementation is as shown by 20b or 20c in FIG.
通常基于子矩阵A和B生成的矩阵可以称为核心矩阵,可以用来支持高码率的编码。A matrix that is typically generated based on sub-matrices A and B can be referred to as a core matrix and can be used to support high code rate encoding.
子矩阵C为全零矩阵,其大小为m
A×m
D。
Submatrix C is an all-zero matrix with a size of m A × m D .
子矩阵E为单位矩阵,其大小为m
D×m
D。
The sub-matrix E is an identity matrix having a size of m D × m D .
子矩阵D大小为m
D×(n
A+m
A),通常可用来生成低码率的校验位。
The submatrix D has a size of m D × (n A + m A ) and can generally be used to generate a low bit rate check bit.
由于子矩阵C和E的结构相对确定,子矩阵A、B和D两部分的结构是LDPC码的编译码性能的影响因素之一。Since the structures of the sub-matrices C and E are relatively determined, the structure of the two sub-matrices A, B and D is one of the factors influencing the coding performance of the LDPC code.
可以理解的是,上述从原理的角度对基图/基矩阵的结构进行描述。可以理解的是对于子矩阵A,B,C,D,E的划分仅仅是为了帮助从原理性角度理解。对于子矩阵A,B,C,D,E的划分也可以并不局限于上述划分方式。在一种实现方式中,由于C为全零矩阵,E为单位矩阵为已知结构,因此,可以简化的来表示LDPC矩阵,而不必使用完整的A,B,C,D,E来表示LDPC矩阵。例如,可以使用子矩阵A、B和D来简化的表示LDPC矩阵、或者使用子矩阵A,B,C,D来表示LDPC矩阵、或者使用子矩阵A,B,D,E来表示LDPC矩阵。在另一种实现方式中,由于子矩阵B包括一列或者多列单列重的列,对于子矩阵B的一列或者单列重的列 部分,结构也相对固定,因此所述一列或者单列重列可以不用来表示LDPC矩阵。例如用来表示LDPC矩阵时,可以使用子矩阵A,子矩阵B中的部分列,以及子矩阵D中的相应列。采用raptor-like结构的LDPC矩阵进行编码时,一种可能的实现方式为,可以先对子矩阵A和B部分的矩阵,也就是对核心矩阵进行编码,得到子矩阵B对应的校验比特,再对整个矩阵进行编码,得到子矩阵E部分对应的校验比特。由于子矩阵B可以包括双对角结构的子矩阵B’和一单列重列,在编码中可以先获得双对角结构对应的校验比特,再获得单列重列对应的校验比特。It can be understood that the above description of the structure of the base/base matrix is described from the principle. It can be understood that the division of the sub-matrices A, B, C, D, E is only to help understand from a principle perspective. The division of the sub-matrices A, B, C, D, E may not be limited to the above division manner. In an implementation manner, since C is an all-zero matrix and E is a unit matrix, the LDPC matrix can be simplified, and it is not necessary to use the complete A, B, C, D, E to represent the LDPC. matrix. For example, the sub-matrices A, B, and D may be used to simplify the representation of the LDPC matrix, or the sub-matrices A, B, C, and D may be used to represent the LDPC matrix, or the sub-matrices A, B, D, and E may be used to represent the LDPC matrix. In another implementation manner, since the sub-matrix B includes one or more columns of single column weights, the structure is also relatively fixed for one column of the sub-matrix B or the column portion of the single column, so the column or single column re-column may not be used. To represent the LDPC matrix. For example, when used to represent an LDPC matrix, a sub-matrix A, a partial column in the sub-matrix B, and a corresponding column in the sub-matrix D may be used. When encoding by using the LDPC matrix of the raptor-like structure, a possible implementation manner is that the matrix of the sub-matrices A and B, that is, the core matrix, can be encoded to obtain the parity bits corresponding to the sub-matrix B. The entire matrix is then encoded to obtain parity bits corresponding to the E portion of the sub-matrix. Since the sub-matrix B can include the sub-matrix B' of the double-diagonal structure and a single-column re-column, the parity bits corresponding to the double-diagonal structure can be obtained first in the encoding, and the parity bits corresponding to the single-column re-column can be obtained.
下面给出一种编码的示例方式。假设子矩阵A和B构成的核心矩阵部分为H
core,H
core中去掉最后一行和最后一列,也就是去掉单列重列以及该列非零元素所在的行,得到的矩阵部分为H
core-dual,H
core-dual中的校验位部分表示为H
e=[H
e1H
e2],H
e1为3列重列,H
e2为双对角结构。根据LDPC码矩阵定义,H
core-dual·[S P
e]
T=0,其中,S为输入序列,由信息比特构成的向量表示,P
e为校验比特构成的向量,[S P
e]
T表示由输入序列S和P
e构成的矩阵转置。因此可以先根据输入序列S和H
core-dual计算出H
core-dual对应的校验比特,输入序列S中包括所有信息比特;再根据得到H
core-dual对应的校验比特和输入序列S计算得到子矩阵B中单列重列对应的校验比特,此时可以得到子矩阵B对应的所有校验比特;再根据输入序列S以及子矩阵B对应的校验比特,利用子矩阵D部分编码得到子矩阵E对应的校验比特,从而得到所有信息比特和所有校验比特,这些比特构成编码后的序列,也就是一个LDPC码序列。
An example way of encoding is given below. Suppose that the core matrix part composed of sub-matrices A and B is H core , and the last row and the last column are removed from the H core , that is, the single-column re-column and the row where the non-zero elements of the column are located are obtained, and the obtained matrix portion is H core-dual , parity part H core-dual expressed as H e = [H e1 H e2 ], H e1 is 3 restated, H e2 dual diagonal structure. According to the LDPC code matrix definition, H core-dual ·[S P e ] T =0, where S is an input sequence, represented by a vector of information bits, P e is a vector of check bits, and [S P e ] T represents The matrix consists of input sequences S and P e transposed. Can be calculated according to the input sequence S and the H core-dual H core-dual check bit corresponding to the input sequence S includes all information bits; then according to obtain H core-dual check bit corresponding to an input sequence and calculates S Obtaining the parity bits corresponding to the single column re-column in the sub-matrix B, in this case, all the parity bits corresponding to the sub-matrix B can be obtained; and then according to the input sequence S and the parity bits corresponding to the sub-matrix B, the sub-matrix D is partially encoded. The check bits corresponding to the sub-matrix E, thus obtaining all information bits and all check bits, these bits constitute the encoded sequence, that is, an LDPC code sequence.
可选地,LDPC码编码还可能包含截短(shortening)和打孔(puncturing)操作。被截短的比特和被打孔的比特均不发送。Alternatively, the LDPC code encoding may also include shortening and puncturing operations. Both truncated bits and punctured bits are not transmitted.
其中,截短一般是从信息比特的最后一位开始向前截短,可以采用不同的方式进行截短。例如,被截短的比特数s
0,可以将输入序列S中最后s
0个比特设置为已知比特得到输入序列S’,如设置为0或者null,或者其他一些值,然后通过LDPC矩阵对输入序列S’进行编码,又例如,也可以可以将输入序列S中最后(s
0mod Z)个比特设置为已知比特得到输入序列S’,如设置为0或者null,或者其他一些值,将子矩阵A中最后
列删除得到LDPC矩阵H’,使用LDPC矩阵H‘对输入序列S’进行编码,或者子矩阵A中最后
列不参与对输入序列S’的编码。在完成编码后,被截短的比特不发送。
Among them, the truncation is generally truncated from the last bit of the information bit, and can be truncated in different ways. For example, the truncated number of bits s 0 can be set to the last s 0 bits in the input sequence S to obtain the input sequence S', such as set to 0 or null, or some other value, and then through the LDPC matrix pair The input sequence S' is encoded. For example, the last (s 0 mod Z) bits in the input sequence S may be set to the known bits to obtain the input sequence S', if set to 0 or null, or some other value. Put the last in submatrix A The column deletion results in the LDPC matrix H', the input sequence S' is encoded using the LDPC matrix H', or the last in the submatrix A The column does not participate in the encoding of the input sequence S'. After the encoding is completed, the truncated bits are not sent.
其中,打孔可以是对输入序列中内置打孔比特,或者校验比特进行打孔。对校验比特打孔时通常也是从校验比特的最后一位进行打孔的,当然,也可以按照系统预设的打孔顺序进行打孔。一种可能的实现方式为,先对输入序列进行编码,然后根据需要被打孔的比特数p,选择校验比特中最后p个比特或者根据系统预设的打孔顺序选择p个比特,这p个比特不发送。又一种可能的实现方式中,也可以确定出被打孔比特对应的矩阵的p列以及这些列中非零元素所在的p行,这些行、列不参与编码,也就不产生相应的校验比特。The punching may be a punching bit built in the input sequence or a punching bit. When puncturing the parity bit, the last bit of the parity bit is usually punctured. Of course, the puncturing may be performed according to the preset puncturing order of the system. A possible implementation manner is that the input sequence is first encoded, and then the last p bits in the parity bit are selected according to the number of bits p to be punctured, or p bits are selected according to the system's preset puncturing order. p bits are not sent. In another possible implementation manner, the p columns of the matrix corresponding to the punctured bits and the p rows of the non-zero elements in the columns may also be determined, and the rows and columns do not participate in the coding, and the corresponding school is not generated. Check the bit.
需要说明的是,这里对编码方式只是举例,基于本申请提供基图和/或基矩阵还可以采用本领域技术人员所知的其他编码方式,本申请并不限定。本申请中涉及的译码,可以是采用多种译码方式,例如可以采用,min-sum(MS)译码方式,也可以采用belief propagation译码方式。MS译码方法有时也称为Flood MS译码方法。例如,对输入序列初始化,并进行迭代处理,在迭代后进行硬判决检测,并对硬判决结果进行校验,如果译码结果符合校验方 程,则译码成功,终止迭代,并输出判决结果。如果不符合校验方程,则在最大迭代次数内再次进行迭代处理,若达到最大迭代次数,仍校验失败,则译码失败。可以理解的是,本领域的技术人员可以理解MS译码的原理,在此不再详述。It should be noted that the coding mode is only an example here, and other coding methods known to those skilled in the art may be used based on the present disclosure to provide a base map and/or a base matrix, which is not limited in this application. The decoding involved in the present application may be a plurality of decoding methods, for example, a min-sum (MS) decoding method or a belief propagation decoding method. The MS decoding method is sometimes also referred to as a Flood MS decoding method. For example, the input sequence is initialized and iteratively processed, the hard decision detection is performed after the iteration, and the hard decision result is verified. If the decoding result conforms to the check equation, the decoding is successful, the iteration is terminated, and the decision result is output. . If the check equation is not met, iterative processing is performed again within the maximum number of iterations. If the maximum number of iterations is reached and the verification fails, the decoding fails. It will be understood that those skilled in the art can understand the principle of MS decoding and will not be described in detail herein.
需要说明的是,对于译码方式只是举例说明,对于基于本申请提供基图和/或基矩阵还可以采用本领域技术人员所知的其他译码方式,本申请对译码方式并不限定。It should be noted that the decoding mode is only an example. For the base map and/or the base matrix provided by the present application, other decoding methods known to those skilled in the art may be used. The decoding method is not limited in this application.
通常可以通过对基图或者基矩阵的设计来获得LDPC码。例如,可以对基图或者基矩阵采用密度进化的方法可以确定出LDPC码的性能上限,并且根据基矩阵中的偏移值确定出LDPC码的错误平层。通过对基图或者基矩阵的设计,可以改善编码或者译码性能,以及降低错误平层。无线通信系统中码长灵活多变,例如,可以是2560比特,38400比特等,图3a为一个LDPC码的基图示例,图3b-1至图3b-8是图3a基图的各基矩阵示例,可满足多种块长的性能需求。为方便说明及理解,附图中3a和3b-1至3b-8中在最上侧以及最左侧,分别示出了列号和行号。The LDPC code can usually be obtained by designing a base map or a base matrix. For example, a density evolution method may be applied to the base map or the base matrix to determine an upper performance limit of the LDPC code, and an error leveling layer of the LDPC code is determined according to the offset value in the base matrix. By designing the base or base matrix, coding or decoding performance can be improved, and error leveling can be reduced. The code length in the wireless communication system is flexible, for example, it can be 2560 bits, 38400 bits, etc., FIG. 3a is an example of a base diagram of an LDPC code, and FIG. 3b-1 to FIG. 3b-8 are base matrixes of the base diagram of FIG. 3a. An example that meets the performance needs of multiple block lengths. For convenience of explanation and understanding, column numbers and line numbers are respectively shown on the uppermost side and the leftmost side in 3a and 3b-1 to 3b-8 in the drawing.
图4给出了3a所示的LDPC码的性能示意图,在图4所示的性能图中,基于图3b-1至图3b-8所示矩阵编码的性能曲线,横坐标表示信息比特序列的长度,单位为比特,纵坐标是达到对应BLER需要的符号信噪比(Es/N0),每个码率两条线分别对应BLER是0.01和0.0001两种情况。同一码率下,0.01对应在上的曲线,0.0001对应在下的曲线。各曲线平滑,说明矩阵在不同块长上都具有较优的性能Figure 4 shows the performance of the LDPC code shown in Figure 3a. In the performance diagram shown in Figure 4, based on the performance curve of the matrix coding shown in Figure 3b-1 to Figure 3b-8, the abscissa represents the information bit sequence. The length is in bits, and the ordinate is the symbol-to-noise ratio (Es/N0) required to reach the corresponding BLER. The two lines of each code rate correspond to the BLER of 0.01 and 0.0001, respectively. At the same code rate, 0.01 corresponds to the upper curve and 0.0001 corresponds to the lower curve. Smooth curves, indicating that the matrix has superior performance over different block lengths
图3a所示为一个LDPC码的基图示例,其中,图中最上面一行0~51(即0至51列)表示列编号,最左面一列0~41(即0至41行)表示行编号,也就是基图的大小为42行52列。Fig. 3a shows an example of a base map of an LDPC code, in which the uppermost row 0 to 51 (i.e., columns 0 to 51) represents the column number, and the leftmost column 0 to 41 (i.e., rows 0 to 41) represents the row number. That is, the size of the base map is 42 rows and 52 columns.
在一种实现方式中,子矩阵A和子矩阵B的部分可以看做LDPC码的基图的核心矩阵部分,可用于高码率编码。构成了一个7行17列的矩阵,如图3a所示基图的左上角的7行17列的矩阵可以看作基图的核心矩阵部分。核心矩阵部分可以包括子矩阵A和子矩阵B。子矩阵A为图3a中第0行至第6行,以及第0列至第9列构成的7行10列的矩阵。子矩阵B为图3a中第0行至第6行,以及第10列至第16列构成的7行7列的矩阵。In one implementation, portions of sub-matrix A and sub-matrix B can be viewed as the core matrix portion of the base map of the LDPC code, which can be used for high bit rate encoding. A matrix of 7 rows and 17 columns is constructed, and a matrix of 7 rows and 17 columns in the upper left corner of the base diagram shown in FIG. 3a can be regarded as a core matrix portion of the base map. The core matrix portion may include a sub-matrix A and a sub-matrix B. The sub-matrix A is a matrix of 7 rows and 10 columns composed of the 0th row to the 6th row in Fig. 3a, and the 0th column to the 9th column. The sub-matrix B is a matrix of 7 rows and 7 columns composed of the 0th row to the 6th row in Fig. 3a, and the 10th column to the 16th column.
在另一种实现方式中,可以将图3a所示基图的左上角的7行14列、或者7行15列,或者7行16列构成的矩阵看做核心部分,即图3a所示基图的第0至6行,第0列至第13列构成的矩阵、或者第0至6行,第0列至第14列构成的矩阵,或者第0至6行,第0列至第15列构成的矩阵。相应的,也可以将图3b-1至图3b-8所示矩阵中与基图的相应位置部分看做核心部分。In another implementation, a matrix consisting of 7 rows and 14 columns, or 7 rows and 15 columns, or 7 rows and 16 columns in the upper left corner of the base map shown in FIG. 3a can be regarded as a core portion, that is, the base shown in FIG. 3a. The 0th to 6th rows of the figure, the matrix of the 0th column to the 13th column, or the matrix of the 0th to 6th rows, the 0th column to the 14th column, or the 0th to 6th rows, the 0th column to the 15th A matrix of columns. Correspondingly, the corresponding position portion of the matrix shown in FIG. 3b-1 to FIG. 3b-8 and the base map can also be regarded as a core portion.
在一种实现方式中,子矩阵A中可以包括一列或多列内置打孔比特列,例如:可以包括2列内置打孔比特列,则打孔后,核心矩阵可以支持的码率为2/3。其中,子矩阵B中可以包括1列3列重列,即子矩阵B的第一列(核心矩阵的第10列)列重为3,子矩阵B的第二列(核心矩阵的11列)的列重为5,子矩阵B的第二至四列(核心矩阵的12至13列),第0至3行为双对角结构,其中第三和第四列(核心矩阵的12至13列)的列重为2,子矩阵B还包括3列单列重的列(核心矩阵的14至16列)。In an implementation manner, the sub-matrix A may include one or more columns of built-in punctured bit columns. For example, it may include two columns of built-in punctured bit columns. After puncturing, the core matrix can support a code rate of 2/. 3. The sub-matrix B may include one column and three columns of re-columns, that is, the first column of the sub-matrix B (the 10th column of the core matrix) has a column weight of 3, and the second column of the sub-matrix B (11 columns of the core matrix) The column weight is 5, the second to fourth columns of the sub-matrix B (12 to 13 columns of the core matrix), the 0th to 3rd behaviors are double-diagonal structures, and the third and fourth columns (12 to 13 columns of the core matrix) The column weight is 2, and the sub-matrix B also includes 3 columns of single column weights (14 to 16 columns of the core matrix).
在一种实现方式中,子矩阵A可以对应系统比特,有时也称为信息比特,其大小为m
A行10列,其中,m
A=5,在基图30a中由第0行至第4行以及第0列至第9列的元素构成;
In one implementation, the sub-matrix A may correspond to systematic bits, sometimes referred to as information bits, having a size of m A rows and 10 columns, where m A = 5, from the 0th row to the 4th in the base map 30a The elements of the rows and columns 0 through 9;
在一种实现方式中,子矩阵B可以对应校验比特,其大小为m
A行m
A列,在基图30a 中由第0行至第6行以及第10列至第16列的元素构成。
In one implementation, the sub-matrix B may correspond to a parity bit, which is m A rows and m A columns, and is composed of elements of the 0th row to the 6th row and the 10th column to the 16th column in the base map 30a. .
为了获得灵活的码率,可以基于核心矩阵添加相应大小的子矩阵C、子矩阵D和子矩阵E,来获得不同的码率。由于子矩阵C为全零矩阵,子矩阵为单位矩阵,其大小主要是根据码率来确定,结构相对固定。影响到编译码性能的主要在于核心矩阵和子矩阵D部分。在核心矩阵的基础上添加行列,形成相应的C、D和E部分可以得到不同码率。In order to obtain a flexible code rate, sub-matrices C, sub-matrices D, and sub-matrices E of corresponding sizes may be added based on the core matrix to obtain different code rates. Since the sub-matrix C is an all-zero matrix, the sub-matrix is an identity matrix, and its size is mainly determined according to the code rate, and the structure is relatively fixed. The main factors affecting the performance of the compiled code are the core matrix and the sub-matrix D part. Adding rows and columns on the basis of the core matrix to form corresponding C, D and E parts can obtain different code rates.
子矩阵D的列数m
D为子矩阵A和B的列数之和,其行数主要与码率相关。以基图30a为例,子矩阵D的列数为17列。若LDPC码支持的码率为R
m,则其基图或者基矩阵的大小为m行n列,其中,n=n
A/R
m+p,m=n-n
A=n
A/R
m+p-n
A。其中P为内置打孔列。依据该公式可以获知LDPC码支持的码率。若最低码率R
m=1/3,内置打孔列数p=2,以基图30a为例,则n=52,m=42,子矩阵D的行数m
D最大可以为m-m
A=42-7=35,从而0≤m
D≤35。
The number of columns m D of the sub-matrix D is the sum of the number of columns of the sub-matrices A and B, and the number of rows thereof is mainly related to the code rate. Taking the base map 30a as an example, the number of columns of the sub-matrix D is 17 columns. If the code rate supported by the LDPC code is R m , the size of the base or base matrix is m rows and n columns, where n=n A /R m +p,m=nn A =n A /R m +pn A. Where P is the built-in punch column. According to the formula, the code rate supported by the LDPC code can be known. If the lowest code rate R m = 1/3, the number of built-in punch columns is p=2, taking the base map 30a as an example, then n=52, m=42, and the number of rows m D of the sub-matrix D may be mm A = 42-7=35, so 0≤m D ≤35.
以基图30a为例,其中子矩阵D可以包括基图30a中第7行至第41行中的m
D行。
Taking the base map 30a as an example, the sub-matrix D may include the m D rows in the 7th to 41st lines of the base map 30a.
在本申请中,若基图中相邻两行的同一列最多只有1个非零元素,则这两行彼此正交。若基图中相邻两行除了部分列以外的其他列中,同一列最多只有1个非零元素,则该相邻两行是准正交的。例如,对于相邻两行,除了内置打孔比特列以外的其他列只有一个非零元素,则可以认为该相邻两行是准正交的。In the present application, if there are at most one non-zero element in the same column of two adjacent rows in the base map, the two rows are orthogonal to each other. If there are only one non-zero element in the same column except for a partial column in the adjacent two rows in the base map, the adjacent two rows are quasi-orthogonal. For example, for two adjacent rows, except for the column other than the built-in punctured bit column, which has only one non-zero element, the adjacent two rows can be considered to be quasi-orthogonal.
基图30a中第7行至第41行可以包括多行准正交结构和至少两行正交结构。例如,基图30a中第32行与第33行正交,第34行与第35行正交,第36,37,38行正交。对于任意相邻2行中除了内置打孔比特列以外的其余列中,同一列中最多只有一个非零元素,则符合准正交。如果包括内置打孔比特列,任一一列最多只有一个非零元素,则符合正交结构。 Lines 7 to 41 of the base map 30a may include a plurality of rows of quasi-orthogonal structures and at least two rows of orthogonal structures. For example, the 32rd line and the 33rd line in the base map 30a are orthogonal, the 34th line is orthogonal to the 35th line, and the 36th, 37th, and 38th lines are orthogonal. For any of the adjacent columns except for the built-in punctured bit column, there is at most one non-zero element in the same column, which is quasi-orthogonal. If the built-in punctured bit column is included, and any one column has at most one non-zero element, it conforms to the orthogonal structure.
若m
D=15,LDPC码基图中子矩阵D大小为15行17列,可以是由基图30a的第7行至第21行,第0列至第16列的矩阵构成,对应LDPC码支持的码率可以参照上述计算公式获得。
If m D =15, the sub-matrix D in the LDPC code base map has a size of 15 rows and 17 columns, and may be composed of a matrix of the 7th to 21st rows and the 0th column to the 16th column of the base map 30a, corresponding to the LDPC code. The supported code rate can be obtained by referring to the above calculation formula.
子矩阵E为15行15列的单位矩阵,子矩阵C为7行15列的全0矩阵;The sub-matrix E is an element matrix of 15 rows and 15 columns, and the sub-matrix C is an all-zero matrix of 7 rows and 15 columns;
若m
D=19,LDPC码基图中子矩阵D大小为19行17列,可以是由基图30a的第7行至第25行,第0列至第16列的矩阵构成,对应LDPC码支持的码率可以参照上述计算公式获得。在该码率下,LDPC码的基图对应于基图30a的第0行至第25行,第0列至第16列构成的矩阵部分,其中子矩阵E为16行16列的单位矩阵,子矩阵C为7行16列的全0矩阵。以此类推,不一一阐述。
If m D =19, the sub-matrix D in the LDPC code base map has a size of 19 rows and 17 columns, and may be composed of a matrix of the 7th to 25th rows and the 0th column to the 16th column of the base map 30a, corresponding to the LDPC code. The supported code rate can be obtained by referring to the above calculation formula. At this code rate, the base map of the LDPC code corresponds to the matrix portion of the 0th row to the 25th row, the 0th column to the 16th column of the base map 30a, wherein the sub-matrix E is an element matrix of 16 rows and 16 columns, Submatrix C is an all-zero matrix of 7 rows and 16 columns. And so on, not elaborated one by one.
在一种设计中,可以对基图和/或基矩阵做行/列交换,也就是说,进行行交换,或者列交换,或者行交换和列交换。所述行/列交换操作,并不改变行重和列重,非零元素的个数也没有发生改变。因此,行/列交换后的基图和/或基矩阵对系统性能影响有限。也就是说从整体讲,对系统性能的影响可接受,在容忍范围内,例如,可能对某些场景或者在某些范围内,性能在允许范围内下降,但是在某些场景或者某些范围内,性能有所改善,整体上看对性能影响不大。In one design, row/column swapping may be performed on the base map and/or base matrix, that is, row swapping, or column swapping, or row swapping and column swapping. The row/column swap operation does not change the row weight and the column weight, and the number of non-zero elements does not change. Therefore, the base and/or base matrix after row/column swap has limited impact on system performance. That is to say, as a whole, the impact on system performance is acceptable, within tolerance, for example, performance may fall within the allowable range for certain scenarios or within certain ranges, but in some scenarios or certain ranges Within the performance, the performance has improved, and overall it has little effect on performance.
例如,可将基图30a的第34行和第36行进行交换,并且将第44列和第45列进行交换。又例如,子矩阵D包括矩阵F中m
D行,这m
D行可以不进行行交换,也可以将其中一行或多行之间进行行交换,子矩阵E仍为对角结构,不做行、列交换,例如,将矩阵F的第27行和第29行进行行交换,子矩阵D包括矩阵F中m
D行,子矩阵E仍为对角结构。可以理解 的是,若基图或基矩阵包括子矩阵D,那么对核心矩阵的列进行交换时,相应的子矩阵D中列也需要进行交换。
For example, the 34th row and the 36th row of the base map 30a can be exchanged, and the 44th column and the 45th column can be exchanged. For another example, the sub-matrix D includes m D rows in the matrix F. The m D rows may not be exchanged in rows, or one or more rows may be exchanged between rows, and the sub-matrix E is still a diagonal structure, and no row is performed. The column swap, for example, performs row swapping of the 27th and 29th rows of the matrix F, the submatrix D includes the m D rows in the matrix F, and the submatrix E is still a diagonal structure. It can be understood that if the base map or the base matrix includes the sub-matrix D, when the columns of the core matrix are exchanged, the columns in the corresponding sub-matrix D also need to be exchanged.
如图3b-1至图3b-8所示矩阵分别为基图30a的多个基矩阵的设计示例。其中,基图30a中第i行第j列的非零元素在图3b-1至3b-8中示出的矩阵中的位置不变,值为偏移值V
i,j,零元素在偏移矩阵中以-1或者null表示。其中,子矩阵D在基矩阵中相应的部分可以包括其中任一基矩阵的第7行至第41行中的m
D行,可以根据码率的不同选择m
D的值。可以理解的是,如果基图是相对于基图30a进行过行/列变换后的矩阵,则基矩阵也是相应任一个经过行/列变换后的矩阵。
The matrix shown in Fig. 3b-1 to Fig. 3b-8 is a design example of a plurality of base matrices of the base map 30a, respectively. Wherein, the non-zero elements of the i-th row and the j-th column in the base map 30a are invariant in the matrix shown in FIGS. 3b-1 to 3b-8, and the value is the offset value V i,j , and the zero element is biased The shift matrix is represented by -1 or null. Wherein the sub-matrix D in the base portion corresponding matrix line 7 may include any of which to the matrix D m in the row lines 41 may be different from the value selected in accordance with bit rate D m. It can be understood that if the base map is a matrix after row/column transformation with respect to the base map 30a, the base matrix is also a matrix corresponding to any one of the row/column transforms.
在一种可能的设计中,由于子矩阵C,E的结构相对固定,可以使用子矩阵A,B,D部分来表示LDPC的基图/基矩阵,即图3a或者图3b-1至图3b-8所示矩阵的0至41行,0至16列。In a possible design, since the structure of the sub-matrices C and E is relatively fixed, the sub-matrices A, B, and D can be used to represent the base/base matrix of the LDPC, that is, FIG. 3a or FIG. 3b-1 to FIG. 3b. The matrix of -8 shows 0 to 41 rows, 0 to 16 columns.
在一种可能的设计中,由于14列至51列的结构相对固定,可以使用图3a或者图3b-1至图3b-8所示矩阵中的0至41行,0至13列的矩阵来简化表示LDPC的基图/基矩阵。In one possible design, since the structures of columns 14 to 51 are relatively fixed, a matrix of 0 to 41 rows and 0 to 13 columns in the matrix shown in FIG. 3a or FIG. 3b-1 to FIG. 3b-8 may be used. Simplify the base/base matrix representing LDPC.
在一种可能的设计中,可以使用图3a或者图3b-1至图3b-8所示矩阵中的0至41行,0至13列加上14至51列中的部分列,来表示LDPC的基图/基矩阵。例如,可以使用图3a或者图3b-1至图3b-8所示矩阵中0至41行,0至15列来表示LDPC的基图/基矩阵,或者可以使用0至41行,0至14列来表示LDPC的基图/基矩阵。In one possible design, 0 to 41 rows, 0 to 13 columns, and partial columns of columns 14 to 51 in the matrix shown in FIG. 3a or FIG. 3b-1 to FIG. 3b-8 may be used to represent LDPC. Basemap/base matrix. For example, 0 to 41 rows, 0 to 15 columns in the matrix shown in FIG. 3a or FIG. 3b-1 to FIG. 3b-8 may be used to represent the base/base matrix of the LDPC, or 0 to 41 rows, 0 to 14 may be used. Columns represent the base/base matrix of the LDPC.
在一种可能的设计中,LDPC码的基矩阵可以包括图3b-1至图3b-8所示的任一矩阵的第0至6行以及第0至16列,此时,图3b-1至图3b-8所示矩阵的第0至6行以及第0至16列构成的矩阵可以作为基矩阵的核心部分。在本设计中,对于LDPC码的基矩阵的其他部分,例如矩阵C,D,E部分的结构并不限定,例如可以采用图3b-1至图3b-8所示的任一种结构,也可以采用其他的矩阵设计。In a possible design, the base matrix of the LDPC code may include the 0th to 6th rows and the 0th to 16th columns of any of the matrixes shown in FIG. 3b-1 to FIG. 3b-8. In this case, FIG. 3b-1 A matrix composed of the 0th to 6th rows and the 0th to 16th columns of the matrix shown in FIGS. 3b-8 can be used as a core portion of the base matrix. In this design, the structure of the other part of the base matrix of the LDPC code, for example, the matrix C, D, E is not limited, for example, any of the structures shown in FIG. 3b-1 to FIG. 3b-8 may be used. Other matrix designs can be used.
在另一种可能的设计中,LDPC码的基矩阵可以包括:图3b-1至图3b-8所示的任一矩阵中的第0至(m-1)行以及第0至(n-1)列构成的矩阵,其中7≤m≤42,m为整数,18≤n≤52,n为整数。In another possible design, the base matrix of the LDPC code may include the 0th to (m-1)th rows and the 0th to the (n-) in any of the matrixes shown in FIG. 3b-1 to FIG. 3b-8. 1) A matrix composed of columns, where 7 ≤ m ≤ 42, m is an integer, 18 ≤ n ≤ 52, and n is an integer.
在本设计中,对于LDPC码的基矩阵的其他部分的结构并不限定,例如可以采用图3b-1至图3b-8所示的任一种结构,也可以采用其他的矩阵设计。In the present design, the structure of other parts of the base matrix of the LDPC code is not limited. For example, any of the structures shown in FIG. 3b-1 to FIG. 3b-8 may be employed, and other matrix designs may be employed.
在又一种可能的设计中,LDPC码的基矩阵可以包括:图3b-1至图3b-8所示的任一矩阵3b-1至3b-8的第0至6行以及第0至16列中的部分列。例如,可以对图3b-1至图3b-8所示矩阵的核心部分(第0至6行以及第0至16列)截短(shortening)和/或打孔(puncturing)。在一种实现方式中,LDPC码的基矩阵可以不包括被截短和/或打孔的比特对应的列。In yet another possible design, the base matrix of the LDPC code may include the 0th to 6th rows and the 0th to 16th of any of the matrices 3b-1 to 3b-8 shown in FIGS. 3b-1 to 3b-8. A partial column in the column. For example, the core portions (lines 0 to 6 and columns 0 to 16) of the matrix shown in Figures 3b-1 through 3b-8 can be shortened and/or punctured. In one implementation, the base matrix of the LDPC code may not include columns corresponding to truncated and/or punctured bits.
在本设计中,对于LDPC码的基矩阵的其他部分并不限定,例如可以参照图3b-1至图3b-8所示的结构,也可以采用其他的结构。In the present design, the other portions of the base matrix of the LDPC code are not limited. For example, the structure shown in FIG. 3b-1 to FIG. 3b-8 may be referred to, and other configurations may be employed.
在又一种可能的设计中,LDPC码的基矩阵可以包括:图3b-1至图3b-8所示的任一矩阵中的第0至(m-1)行以及第0至(n-1)列中的部分列构成的矩阵,其中7≤m≤42,m为整数,18≤n≤52,n为整数。例如,可以对图3b-1至图3b-8所示的任一矩阵中的第0至(m-1)行以及第0至(n-1)列截短(shortening)和/或打孔(puncturing)。在一种实现方式中,LDPC码的基矩阵可以不包括被截短和/或打孔的比特对应的列。在本设计中,对于LDPC码的基矩阵的其他部分并不限定,例如可以参照图3b-1至图3b-8所示的结构,也可以采用其他的结构。In yet another possible design, the base matrix of the LDPC code may include the 0th to (m-1)th rows and the 0th to (n-) of any of the matrixes shown in FIG. 3b-1 to FIG. 3b-8. 1) A matrix composed of partial columns in a column, where 7 ≤ m ≤ 42, m is an integer, 18 ≤ n ≤ 52, and n is an integer. For example, the 0th to (m-1)th rows and the 0th to (n-1)th columns in any of the matrices shown in FIGS. 3b-1 to 3b-8 may be shortened and/or punctured. (puncturing). In one implementation, the base matrix of the LDPC code may not include columns corresponding to truncated and/or punctured bits. In the present design, the other portions of the base matrix of the LDPC code are not limited. For example, the structure shown in FIG. 3b-1 to FIG. 3b-8 may be referred to, and other configurations may be employed.
在一种实现方式中,所述截短操作,可以是对信息比特截短。例如,以图3b-1至图3b-8所示的任一矩阵为例,对0至9列中的1列或者多列截短,那么LDPC码的基矩阵可以不包括图3b-1至图3b-8所示矩阵中被截短的1列或者多列。比如,若第9列被截短,那么LDPC码的基矩阵可以包括:图3b-1至3b-8中任一矩阵的第0至8列和第10至16列。对于第0至6行,以及第0至8列和第10至16列来讲。In one implementation, the truncating operation may be truncating the information bits. For example, taking any matrix shown in FIG. 3b-1 to FIG. 3b-8 as an example, for one or more columns of 0 to 9 columns, the base matrix of the LDPC code may not include FIG. 3b-1. One or more columns truncated in the matrix shown in Figures 3b-8. For example, if the ninth column is truncated, the base matrix of the LDPC code may include columns 0 to 8 and columns 10 to 16 of any of the matrixes of FIGS. 3b-1 to 3b-8. For lines 0 to 6, and columns 0 to 8 and columns 10 to 16.
在另一种实现方式中,所述打孔可以是对校验比特打孔。例如,以图3b-1至图3b-8所示的任一矩阵为例,对第10至第16列中的1列或者多列打孔。那么LDPC码的基矩阵可以不包括图3b-1至图3b-8所示矩阵中被打孔的1列或者多列。比如,若第16列被打孔,那么LDPC码的基矩阵可以包括:3b-1至图3b-8中任一矩阵的第0至15列。In another implementation, the puncturing may be puncturing the parity bit. For example, one or more columns in the 10th to 16th columns are punched by taking any of the matrices shown in FIG. 3b-1 to FIG. 3b-8 as an example. Then, the base matrix of the LDPC code may not include one or more columns that are perforated in the matrix shown in FIGS. 3b-1 to 3b-8. For example, if the 16th column is punctured, the base matrix of the LDPC code may include columns 0 to 15 of any of the matrixes 3b-1 to 3b-8.
为LDPC码设计了不同的扩展因子Z,可以支持不同的长度的信息比特序列。在一种可能的设计中,可以对不同扩展因子使用不同的基矩阵取得较好的性能。例如,扩展因子Z=a×2
j,0≤j<7,a∈{2,3,5,7,9,11,13,15}。表1为一种可能支持的扩展因子集合{2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,18,20,22,24,26,28,30,32,36,40,44,48,52,56,60,64,72,80,88,96,104,112,120,128,144,160,176,192,208,224,240,256,288,320,352,384},其中除了最上面一行和最左面一列以外,每一格表示相应地a和j的取值对应的Z的值,例如,a=2这一列,且j=1这一行,Z=4,又例如,a=11且j=3,Z=88。以此类推,不再赘述。
Different spreading factors Z are designed for the LDPC code, which can support information bit sequences of different lengths. In one possible design, different base factors can be used for different spreading factors to achieve better performance. For example, the expansion factor Z = a × 2 j , 0 ≤ j < 7, a ∈ {2, 3, 5, 7, 9, 11, 13, 15}. Table 1 shows a set of extension factors that may be supported {2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,18,20,22,24, 26, 28, 30, 32, 36, 40, 44, 48, 52, 56, 60, 64, 72, 80, 88, 96, 104, 112, 120, 128, 144, 160, 176, 192, 208, 224, 240, 256, 288, 320, 352, 384}, wherein each cell represents, in addition to the top row and the leftmost column, respectively The values of a and j correspond to the value of Z, for example, a column of a=2, and the row of j=1, Z=4, and for example, a=11 and j=3, Z=88. And so on, no longer repeat them.
表1Table 1
ZZ
|
a=2a=2
|
a=3a=3
|
a=5a=5
|
a=7a=7
|
a=9a=9
|
a=11a=11
|
a=13a=13
|
a=15a=15
|
j=0j=0
|
22
|
33
|
55
|
77
|
99
|
1111
|
1313
|
1515
|
j=1j=1
|
44
|
66
|
1010
|
1414
|
1818
|
22twenty two
|
2626
|
3030
|
j=2j=2
|
88
|
1212
|
2020
|
2828
|
3636
|
4444
|
5252
|
6060
|
j=3j=3
|
1616
|
24twenty four
|
4040
|
5656
|
7272
|
8888
|
104104
|
120120
|
j=4j=4
|
3232
|
4848
|
8080
|
112112
|
144144
|
176176
|
208208
|
240240
|
j=5j=5
|
6464
|
9696
|
160160
|
224224
|
288288
|
352352
|
|
|
j=6j=6
|
128128
|
192192
|
320320
|
|
|
|
|
|
j=7j=7
|
256256
|
384384
|
|
|
|
|
|
|
可以理解,表1仅仅是一种表述扩展因子的形式,实际产品实现时,并不限于表1的形式,可以通过其他的表现形式。It can be understood that Table 1 is only a form of expressing the expansion factor. When the actual product is implemented, it is not limited to the form of Table 1, and can be expressed by other forms.
例如,对于由于每个a的取值,对应于一组扩展因子。可以通过组索引来标识扩展因子组,例如,表1’给出了扩展因子的另一种表现形式。For example, for a value of each a, it corresponds to a set of expansion factors. The set of spreading factors can be identified by a group index, for example, Table 1' gives another representation of the spreading factor.
表1’Table 1'
由于基图支持的扩展因子集合可以是表1或表1’中的所有扩展因子,也可以是一部分扩展因子。例如,可以为{24,26,28,30,32,36,40,44,48,52,56,60,64,72,80,88,96,104,112,120,128,144,160,176,192,208,224,240,256,288,320,352,384},也就是Z大于或者等于24。又例如,可以为{2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,18,20,22}中的一个或多个与{24,26,28,30,32,36,40,44,48,52,56,60,64,72,80,88,96,104,112,120,128,144,160,176,192,208,224,240,256,288,320,352,384}的并集。需要说明的是此处仅为举例。可以根据a的取值将基图支持的扩展因子集合划分成不同的子集。例如,a=2,扩展因子Z的子集可以包括{2,4,8,16,32,64,128,256}中的一个或多个,又例如,a=3,扩展因子Z的子集可以包括{3,6,12,24,48,96,192,384}中的一个或多个,以此类推。Since the set of spreading factors supported by the base map can be all of the spreading factors in Table 1 or Table 1', it can also be a part of the spreading factor. For example, it can be {24, 26, 28, 30, 32, 36, 40, 44, 48, 52, 56, 60, 64, 72, 80, 88, 96, 104, 112, 120, 128, 144, 160, 176, 192, 208, 224, 240, 256, 288, 320, 352, 384}, that is, Z is greater than or equal to 24. For another example, one or more of {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18, 20, 22} The union of 24,26,28,30,32,36,40,44,48,52,56,60,64,72,80,88,96,104,112,120,128,144,160,176,192,208,224,240,256,288,320,352,384}. It should be noted that this is only an example. The set of spreading factors supported by the base map can be divided into different subsets according to the value of a. For example, a=2, the subset of the spreading factor Z may include one or more of {2, 4, 8, 16, 32, 64, 128, 256}, and for example, a=3, the subset of the spreading factor Z may include { One or more of 3, 6, 12, 24, 48, 96, 192, 384}, and so on.
可以对基图支持的扩展因子集合根据a的不同取值划分,从而确定出相应的基矩阵:The set of spreading factors supported by the base map can be divided according to different values of a to determine the corresponding base matrix:
若a=2,或者扩展因子Z取值为{2,4,8,16,32,64,128,256}中的一个时,基矩阵可以包括图3b-1至图3b-8中所示矩阵中的第0至6行以及第0至16列,或者,基矩阵包括图3b-1所示矩阵中的第0至(m-1)行以及第0至(n-1)列,其中7≤m≤42,m为整数,17≤n≤52,n为整数;或者,基矩阵包括图3b-1所示矩阵的第0至(m-1)行以及第0至(n-1)列中的部分列,其中7≤m≤42,m为整数,17≤n≤52,n为整数。。If a=2, or the spreading factor Z takes one of {2, 4, 8, 16, 32, 64, 128, 256}, the base matrix may include the number in the matrix shown in FIG. 3b-1 to FIG. 0 to 6 rows and 0 to 16 columns, or the base matrix includes the 0th to (m-1)th rows and the 0th to (n-1)th columns in the matrix shown in FIG. 3b-1, where 7≤m≤ 42, m is an integer, 17 ≤ n ≤ 52, n is an integer; or, the base matrix includes the 0th to (m-1)th rows of the matrix shown in FIG. 3b-1 and the 0th to (n-1)th columns Part of the column, where 7 ≤ m ≤ 42, m is an integer, 17 ≤ n ≤ 52, and n is an integer. .
若a=3,或者扩展因子Z取值为{3,6,12,24,48,96,192,384}中的一个时,基矩阵可以包括矩阵3b-2中的第0至6行以及第0至16列,或者,基矩阵包括图3b-2所示矩阵中的第0至(m-1)行以及第0至(n-1)列,其中7≤m≤42,m为整数,17≤n≤52,n为整数;或者,基矩阵包括图3b-2所示矩阵的第0至(m-1)行以及第0至(n-1)列中的部分列,其中7≤m≤42,m为整数,17≤n≤52,且n为整数。If a=3, or the spreading factor Z takes one of {3, 6, 12, 24, 48, 96, 192, 384}, the base matrix may include the 0th to 6th rows and the 0th to 16th of the matrix 3b-2. Column, or, the base matrix includes the 0th to (m-1)th rows and the 0th to (n-1)th columns in the matrix shown in FIG. 3b-2, where 7≤m≤42, m is an integer, 17≤n ≤ 52, n is an integer; or, the base matrix includes the 0th to (m-1)th rows of the matrix shown in FIG. 3b-2 and the partial columns in the 0th to (n-1)th columns, where 7≤m≤42 m is an integer, 17≤n≤52, and n is an integer.
例如,基矩阵PCM包括图3b-2中的第0至41行,以及0至13列、或者0至14列,或者0至15列。For example, the base matrix PCM includes lines 0 to 41 in FIG. 3b-2, and columns 0 to 13, or columns 0 to 14, or columns 0 to 15.
若a=5,或者扩展因子Z取值为{5,10,20,40,80,160,320}中的一个时,基矩阵可以包括矩阵3b-3中的第0至6行以及第0至16列,或者,基矩阵包括图3b-3所示矩阵中的第0至(m-1)行以及第0至(n-1)列,其中7≤m≤42,m为整数,17≤n≤52,n为整数;或者,基矩阵包括图3b-1所示矩阵的第0至(m-1)行以及第0至(n-1)列中的部分列,其中7≤m≤42,m为整数,17≤n≤52,n为整数。If a=5, or the spreading factor Z takes one of {5, 10, 20, 40, 80, 160, 320}, the base matrix may include the 0th to 6th rows and the 0th to 16th columns in the matrix 3b-3, Alternatively, the base matrix includes the 0th to (m-1)th rows and the 0th to (n-1)th columns in the matrix shown in FIG. 3b-3, where 7≤m≤42, m is an integer, 17≤n≤52 , n is an integer; or, the base matrix includes the 0th to (m-1)th rows of the matrix shown in FIG. 3b-1 and the partial columns in the 0th to (n-1)th columns, where 7≤m≤42,m Is an integer, 17 ≤ n ≤ 52, and n is an integer.
若a=7,或者扩展因子Z取值为{7,14,28,56,112,224}中的一个时,基矩阵可以包括矩阵3b-4中的第0至6行以及第0至16列,或者,基矩阵包括图3b-4所示矩阵中的第0至(m-1)行以及第0至(n-1)列,其中7≤m≤42,m为整数,17≤n≤52,n为整数;或者,基矩阵包括图3b-4所示矩阵的第0至(m-1)行以及第0至(n-1)列中的部分列,其中7≤m≤42,m为整数,17≤n≤52,n为整数。If a=7, or the spreading factor Z takes one of {7, 14, 28, 56, 112, 224}, the base matrix may include the 0th to 6th rows and the 0th to 16th columns in the matrix 3b-4, or The base matrix includes the 0th to (m-1)th rows and the 0th to (n-1)th columns in the matrix shown in FIG. 3b-4, where 7≤m≤42, m is an integer, 17≤n≤52,n Is an integer; or, the base matrix includes the 0th to (m-1)th rows of the matrix shown in FIG. 3b-4 and the partial columns in the 0th to (n-1)th columns, where 7≤m≤42, m is an integer , 17 ≤ n ≤ 52, and n is an integer.
若a=9,或者扩展因子Z取值为{9,18,36,72,144,288}中的一个时,基矩阵可以包括矩阵3b-5中的第0至6行以及第0至16列,或者,基矩阵包括图3b-5所示矩阵中的第0至(m-1)行以及第0至(n-1)列,其中7≤m≤42,m为整数,17≤n≤52,n为整数;或者,基矩阵包括图3b-5所示矩阵的第0至(m-1)行以及第0至(n-1)列中的部分列,其中7≤m≤42,m为整数,17≤n≤52,n为整数。If a=9, or the spreading factor Z takes one of {9, 18, 36, 72, 144, 288}, the base matrix may include the 0th to 6th rows and the 0th to 16th columns in the matrix 3b-5, or The base matrix includes the 0th to (m-1)th rows and the 0th to (n-1)th columns in the matrix shown in FIG. 3b-5, where 7≤m≤42, m is an integer, 17≤n≤52,n An integer; or, the base matrix includes the 0th to (m-1)th rows of the matrix shown in FIG. 3b-5 and the partial columns in the 0th to (n-1)th columns, where 7≤m≤42, m is an integer , 17 ≤ n ≤ 52, and n is an integer.
若a=11,或者扩展因子Z取值为{11,22,44,88,176,352}中的一个时,基矩阵可以包括矩阵3b-6中的第0至6行以及第0至16列,或者,基矩阵包括图3b-6所示矩阵中的第0至(m-1)行以及第0至(n-1)列,其中7≤m≤42,m为整数,17≤n≤52,n为整数;或者,基矩阵包括图3b-6所示矩阵的第0至(m-1)行以及第0至(n-1)列中的部分列,其中7≤m≤42,m为整数,17≤n≤52,n为整数。If a=11, or the spreading factor Z takes one of {11, 22, 44, 88, 176, 352}, the base matrix may include the 0th to 6th rows and the 0th to 16th columns in the matrix 3b-6, or The base matrix includes the 0th to (m-1)th rows and the 0th to (n-1)th columns in the matrix shown in FIG. 3b-6, where 7≤m≤42, m is an integer, 17≤n≤52,n Is an integer; or, the base matrix includes the 0th to (m-1)th rows of the matrix shown in FIG. 3b-6 and the partial columns in the 0th to (n-1)th columns, where 7≤m≤42, m is an integer , 17 ≤ n ≤ 52, and n is an integer.
若a=13,或者扩展因子Z取值为{13,26,52,104,208}中的一个时,基矩阵可以包括矩阵3b-7中的第0至6行以及第0至16列,或者,基矩阵包括图3b-7所示矩阵中的第0至(m-1)行以及第0至(n-1)列,其中7≤m≤42,m为整数,17≤n≤52,n为整数;或者,基矩阵包括图3b-7所示矩阵的第0至(m-1)行以及第0至(n-1)列中的部分列,其中7≤m≤42,m为整数,17≤n≤52,n为整数。If a=13, or the spreading factor Z takes one of {13, 26, 52, 104, 208}, the base matrix may include the 0th to 6th rows and the 0th to 16th columns in the matrix 3b-7, or the base matrix Including the 0th to (m-1)th rows and the 0th to (n-1)th columns in the matrix shown in FIG. 3b-7, where 7≤m≤42, m is an integer, 17≤n≤52, n is an integer Or, the base matrix includes the 0th to (m-1)th rows of the matrix shown in FIG. 3b-7 and the partial columns in the 0th to (n-1)th columns, where 7≤m≤42, m is an integer, 17 ≤ n ≤ 52, where n is an integer.
若a=15,或者扩展因子Z取值为{15,30,60,120,240}中的一个时,基矩阵可以包括矩阵3b-8中的第0至6行以及第0至16列,或者,基矩阵包括图3b-8所示矩阵中的第0至(m-1)行以及第0至(n-1)列,其中7≤m≤42,m为整数,17≤n≤52,n为整数;或者,基矩阵包括图3b-8所示矩阵的第0至(m-1)行以及第0至(n-1)列中的部分列,其中7≤m≤42,m为整数,17≤n≤52,n为整数。If a=15, or the spreading factor Z takes one of {15, 30, 60, 120, 240}, the base matrix may include the 0th to 6th rows and the 0th to 16th columns in the matrix 3b-8, or the base matrix Including the 0th to (m-1)th rows and the 0th to (n-1)th columns in the matrix shown in Fig. 3b-8, where 7≤m≤42, m is an integer, 17≤n≤52, n is an integer Or, the base matrix includes the 0th to (m-1)th rows of the matrix shown in FIG. 3b-8 and the partial columns in the 0th to (n-1)th columns, where 7≤m≤42, m is an integer, 17 ≤ n ≤ 52, where n is an integer.
可选地,对于一个LDPC码给定的基矩阵而言,可以对矩阵中一列或者多列非零元素的偏移值增加或减少补偿值Offset
s,而对系统性能影响不大。不同列中非零元素的补偿值可以相同也可以不同,例如,对矩阵的一列或多列进行补偿,不同列的补偿值可以相同,也可以不同,本申请并不限定。
Optionally, for a given base matrix of an LDPC code, the offset value Offset s may be increased or decreased for the offset value of one or more columns of non-zero elements in the matrix, and the system performance is not greatly affected. The compensation values of the non-zero elements in different columns may be the same or different. For example, one or more columns of the matrix may be compensated. The compensation values of different columns may be the same or different, and the application is not limited.
对系统性能影响不大是指对系统性能的影响可接受,在容忍范围内。例如,可能对某些场景或者在某些范围内,性能在允许范围内下降,但是在某些场景或者某些范围内,性能有所改善,整体上看对性能影响不大。A small impact on system performance means that the impact on system performance is acceptable and within tolerance. For example, performance may be degraded within certain limits for certain scenarios or within certain ranges, but performance may improve over certain scenarios or within certain ranges, and overall has little impact on performance.
例如对矩阵3b-1至3b-8中任一矩阵中第s列中大于或等于0的各偏移值分别增加或减少补偿值Offset
s可以得到该矩阵的补偿矩阵Hs,其中Offset
s为大于或等于0的整数,其中S为大于等于0,且小于11的整数。。一列或多列的补偿值Offsets可以相同,也可以不同。。
For example, increasing or decreasing the compensation value Offset s for each offset value greater than or equal to 0 in the sth column of any of the matrices 3b-1 to 3b-8 can obtain the compensation matrix Hs of the matrix, where Offset s is greater than Or an integer equal to 0, where S is an integer greater than or equal to 0 and less than 11. . The offset values Offsets of one or more columns may be the same or different. .
图4所示的性能图中,为基于图3b-1至3b-2所示矩阵编码的性能曲线,横坐标表示信息比特序列的长度,单位为比特,纵坐标是达到对应BLER需要的符号信噪比(Es/N0),每个码率两条线分别对应BLER是0.01和0.0001两种情况。同一码率下,0.01对应在上的曲线,0.0001对应在下的曲线。各曲线平滑,说明矩阵在不同块长上都具有较优的性能In the performance graph shown in FIG. 4, which is a performance curve based on the matrix coding shown in FIGS. 3b-1 to 3b-2, the abscissa indicates the length of the information bit sequence in units of bits, and the ordinate is a symbol letter required to reach the corresponding BLER. The noise ratio (Es/N0), the two lines of each code rate correspond to the BLER of 0.01 and 0.0001 respectively. At the same code rate, 0.01 corresponds to the upper curve and 0.0001 corresponds to the lower curve. Smooth curves, indicating that the matrix has superior performance over different block lengths
附图1至图3a、图3b-1至3b-8对LDPC码涉及的基图以及基矩阵的结构进行了展示。为了充分说明本发明实施方式中对于基图和/或基矩阵的设计。对于基矩阵的结构,可以通过系统可识别的其他方式来表达。例如可以通过表格的方式,或者其他的方式。Figures 1 to 3a and Figures 3b-1 to 3b-8 show the base diagrams involved in the LDPC code and the structure of the base matrix. In order to fully illustrate the design of the base map and/or the base matrix in the embodiments of the present invention. The structure of the base matrix can be expressed in other ways that the system can recognize. For example, it can be done in the form of a table, or in other ways.
在一种设计中,图1中的10a所述基图为7行10列的矩阵,其涉及的参数可以用表2来表示。In one design, the base map of 10a in FIG. 1 is a matrix of 7 rows and 10 columns, and the parameters involved can be represented by Table 2.
表2Table 2
可以理解的是,由于基图10a中第14至16列为单列重的列,其位置相对固定或者容易确定,也可以不在表2中记录,而通过其他的方式记录14至16列的非零元素的位置。It can be understood that since the 14th to 16th columns in the base map 10a are columns of single column weight, the positions thereof are relatively fixed or easy to determine, and may not be recorded in Table 2, and the non-zero columns of 14 to 16 columns are recorded by other means. The location of the element.
在一种设计中,以图3b-1至图3b-8所示基矩阵为例,其涉及的参数可以分别用表3b-1至表3b-8来表示。In one design, taking the base matrix shown in FIG. 3b-1 to FIG. 3b-8 as an example, the parameters involved can be represented by Table 3b-1 to Table 3b-8, respectively.
表3b-1Table 3b-1
表3b-2Table 3b-2
表3b-3Table 3b-3
表3b-4Table 3b-4
表3b-5Table 3b-5
表3b-6Table 3b-6
表3b-7Table 3b-7
表3b-8Table 3b-8
可以理解,上述图3a,图3b-1至3b-8以及表2,表3b-1至表3b-8是为了帮助理解对于基图和矩阵的设计,其表现形式并不仅仅局限于这种表现形式。还可以包括其他可能的变形。例如表3b-1,3b-3至3b-8也可以参照3b-2’的形式变形。对于结构相对固定的列,且偏移值为0,例如第14至51列元素的信息可以选择性的包括或者不包括在表中,以节省存储空间。It can be understood that the above FIG. 3a, FIG. 3b-1 to 3b-8 and Table 2, Table 3b-1 to Table 3b-8 are for the purpose of helping to understand the design of the base map and the matrix, and the expression thereof is not limited to this. Manifestations. Other possible variations may also be included. For example, Tables 3b-1, 3b-3 to 3b-8 can also be modified with reference to the form of 3b-2'. For columns with relatively fixed structures and offset values of 0, for example, information for elements of columns 14 through 51 may optionally be included or not included in the table to save storage space.
在一种设计中,对于基图或基矩阵中结构相对固定的部分,其非零元素的位置可以根据行列位置计算得到,可以不保存这些非零元素的位置。以图3b-2以及表3b-2为例,图3b-2所示的矩阵中第14列至51列,其位置相对固定,偏移值V
i,j取值均为0,通过已知的非零元素可计算出其非零元素的位置。在上述表3b-2中,可以不包括第14列至第51列的信息。或者不包括第14至第51中的部分列的信息。例如不包括第16至第至第51列中的非零元素以及其相应偏移值。例如图3b-2所示的矩阵也可表示成如下表3b-2’。
In one design, for a portion of the base or base matrix where the structure is relatively fixed, the position of the non-zero element can be calculated from the position of the row and column, and the positions of these non-zero elements may not be saved. Taking Figure 3b-2 and Table 3b-2 as an example, the 14th column to the 51st column in the matrix shown in Figure 3b-2 are relatively fixed in position, and the offset values V i, j are all 0. The non-zero element calculates the position of its non-zero element. In the above Table 3b-2, the information of the 14th column to the 51st column may not be included. Or the information of the partial columns in the 14th to the 51st is not included. For example, non-zero elements in columns 16 through through 51 and their corresponding offset values are not included. For example, the matrix shown in Figure 3b-2 can also be represented as shown in Table 3b-2' below.
表3b-2’Table 3b-2’
再例如,以图3b-2为例,对于第0行的偏移值V
i,j也为0,也可以不保存第0行的信息,而通过计算获得。
For example, taking FIG. 3b-2 as an example, the offset value V i,j of the 0th line is also 0, and may be obtained by calculation without saving the information of the 0th line.
在一种实现方式中,上述表2,表3b-1至表3b-8以及表3b-2’中的“行重”这一参数也可以省略。可以通过一行非零元素所在的列,获知这一行有多少个非零元素,因此行重也就获知了。In one implementation, the parameter "row weight" in Table 2, Table 3b-1 through Table 3b-8, and Table 3b-2' may also be omitted. You can know how many non-zero elements are in the row through a column with a non-zero element, so the row weight is known.
在一种实现方式中,对于上述表2,表3b-1至表3b-8以及表3b-2’中的“非零元素所在的列”中的参数值,也可以不按照由小到大的顺序排列,只要参数值索引到非零元素所在的列就行。此外,对于表2,表3b-1至表3b-8的“非零元素偏移值”中的参数值,也不一定按照列的顺序排列,只要“非零元素偏移值”中的参数值,与“非零元素所在的列”中的参数值一一对应就可以。In an implementation manner, for the above Table 2, the parameter values in the column of "non-zero elements in Table 3b-1 to Table 3b-8 and Table 3b-2' may also not be from small to large. The order is as long as the parameter value is indexed to the column in which the non-zero element is located. In addition, for Table 2, the parameter values in the "non-zero element offset value" of Table 3b-1 to Table 3b-8 are not necessarily arranged in the order of the columns, as long as the parameters in the "non-zero element offset value" The value corresponds to the parameter value in the column of "non-zero element".
在一种实现方式中,可以将上述不同基矩阵合并在一个或多个表格中来表示。例如不同基矩阵对应的非零元素的位置相同,行号相同,只是偏移值V
i,j不同。因此可将行号,非零元素所在的列,以及多组非零元素的偏移值列上即可同时使用一张表表示多个基矩阵。例如,可以将两组非零元素偏移值分别列在不同的列,通过索引来指示。
In one implementation, the different base matrices described above may be combined in one or more tables for representation. For example, the non-zero elements corresponding to different base matrices have the same position, and the row numbers are the same, except that the offset values V i, j are different. Therefore, you can use a table to represent multiple base matrices by using the row number, the column where the non-zero element is located, and the offset values of multiple sets of non-zero elements. For example, two sets of non-zero element offset values can be listed in separate columns, indicated by an index.
在一种实现方式中,可以通过基图来指示非零元素的位置,上述表格中“非零元素所在的列”这一参数也可以为可选。In one implementation, the location of the non-zero element can be indicated by the base map, and the parameter "column where the non-zero element is located" in the above table can also be optional.
在一种实现方式中,也可以通过列号(列索引)、非零元素所在的行,非零元素的偏移值这些参数来表示图3a,图3b-1至3b-8所示出的矩阵。可选的可以包括列重。In one implementation, the parameters shown in FIG. 3a and FIGS. 3b-1 to 3b-8 may also be represented by a column number (column index), a row where the non-zero element is located, and an offset value of the non-zero element. matrix. Optional can include column weights.
在又一种实现方式中,可以对于基图或者基矩阵按照每一行或每一列的1和0视为2进制数,采用10进制或者16进制数保存可以节省存储空间。以前述任一基图或基矩阵为例,可以用16进制数保存前14列或者前17列非零元素的位置,例如,第0行前14列为11110010011100,则可以记为第0行非零元素的位置为0xF2,0x70,也就是每8列组成一个16进制数,对于其中最后2列,可以通过填充0达到8位的整数倍得到相应的16进制数,当然,也可以在其前面填充0达到8位的整数倍得到相应的16进制数,其他行以此类推,此处不再赘述。In another implementation, the base or base matrix can be regarded as a binary number according to 1 and 0 of each row or column, and saving in a decimal or hexadecimal number can save storage space. For example, in any of the above base maps or base matrices, the positions of the first 14 columns or the first 17 columns of non-zero elements can be stored in hexadecimal numbers. For example, the first 14 columns of the 0th row are 11110010011100, and can be recorded as the 0th row. The position of the non-zero element is 0xF2, 0x70, that is, every 8 columns constitute a hexadecimal number. For the last 2 columns, the corresponding hexadecimal number can be obtained by padding 0 to an integer multiple of 8 bits. Of course, Filling 0 in front of it to reach an integer multiple of 8 bits to get the corresponding hexadecimal number, and so on, and so on.
图5给出了处理数据过程的设计。处理数据的过程可以通信装置来实现,所述通信装置可以是基站、终端或者其他实体等,例如通信芯片,编码器/译码器等等。Figure 5 shows the design of the process of processing data. The process of processing the data may be implemented by a communication device, which may be a base station, terminal or other entity, such as a communication chip, an encoder/decoder, and the like.
501部分,获取输入序列。在一种实现方式中,编码的输入序列可以是信息比特序列,也可以是经过填充后的信息比特序列,或者添加CRC后的序列。信息比特序列有时也称为码块(code block),例如,可以是对传输块进行码块划分后的输出序列。在一种实现方式中,译码的输入序列可以是LDPC码的软值序列。In Section 501, the input sequence is obtained. In one implementation, the encoded input sequence may be an information bit sequence, or a padded information bit sequence, or a CRC-added sequence. The information bit sequence is sometimes also referred to as a code block, and may be, for example, an output sequence after code block division of the transport block. In one implementation, the decoded input sequence may be a soft sequence of LDPC codes.
502部分,基于LDPC矩阵对所述输入序列进行编码/译码;该LDPC矩阵的基矩阵可以为前述示例中的任一基矩阵。In Section 502, the input sequence is encoded/decoded based on an LDPC matrix; the base matrix of the LDPC matrix may be any of the base matrices in the foregoing examples.
在一种实现方式中,LDPC矩阵可以是基于扩展因子Z和基矩阵得到的。In one implementation, the LDPC matrix can be derived based on the spreading factor Z and the base matrix.
在一种实现方式中,可以保存LDPC矩阵的相关参数,这些参数包括以下一个或多个:In an implementation manner, related parameters of the LDPC matrix may be saved, and the parameters include one or more of the following:
a)用于获得上述各实现方式中列举的任一基矩阵中的参数,基于所述参数可以获得所述基矩阵;例如,所述参数可以包括以下一个或多个:行号、行重、列号、列重、非零元素的位置(如非零元素所在的行、或者非零元素所在的列)、基矩阵中的偏移值,非零元素偏移值及对应的位置,补偿值,扩展因子Z,基图,码率等。a) for obtaining parameters in any of the base matrices enumerated in the above implementation manners, the base matrix may be obtained based on the parameters; for example, the parameters may include one or more of the following: row number, row weight, The column number, column weight, position of the non-zero element (such as the row where the non-zero element is located, or the column where the non-zero element is located), the offset value in the base matrix, the non-zero element offset value and the corresponding position, the compensation value , expansion factor Z, base map, code rate, etc.
b)上述各实现方式中列举的任一基矩阵;b) any of the base matrices listed in each of the above implementations;
c)上述各实现方式中列举的任一基矩阵经过至少一列补偿后的补偿矩阵Hs;c) any of the base matrix enumerated in each of the above implementation modes passes through at least one column of compensated compensation matrix Hs;
d)基于所述基矩阵或其补偿矩阵Hs扩展后的矩阵;d) a matrix based on the base matrix or its compensation matrix Hs;
e)基于上述各实现方式中列举的任一基矩阵或者补偿矩阵Hs经过行/列变换后的基 矩阵。e) A base matrix obtained by row/column transformation based on any of the base matrix or the compensation matrix Hs enumerated in each of the above embodiments.
f)基于所述行/列变换后的基矩阵或者补偿矩阵Hs扩展后的矩阵。f) a matrix based on the base matrix after the row/column transformation or the matrix after the compensation matrix Hs.
g)基于上述各实现方式中列举的任一基矩阵或者补偿矩阵Hs的进行截短或者打孔后的矩阵。g) A truncated or punctured matrix based on any of the base matrices or compensation matrices Hs listed in each of the above implementations.
在一种可能的实现方式中,基于低密度奇偶校验LDPC矩阵对输入序列进行编码/译码,可以是在编码/译码过程中,按照以下方式的一种或者多种进行:In a possible implementation manner, the input sequence is encoded/decoded based on the low density parity check LDPC matrix, which may be performed in one or more of the following manners in the encoding/decoding process:
i.基于上述a)获得基矩阵,基于获得的基矩阵编码/译码;或者基于获得的基矩阵进行行/列交换,基于行/列变换后的基矩阵编码/译码,或者基于获得的基矩阵的补偿矩阵进行编码/译码,或者基于获得的基矩阵的补偿矩阵Hs进性行/列变换后的矩阵进行编码/译码。这里基于基矩阵或者补偿矩阵Hs编码/译码,可选的,还可以包括基于基矩阵的扩展矩阵或者补偿矩阵Hs的扩展矩阵编码/译码,或者基于基矩阵或者补偿矩阵进行截短或者打孔后的矩阵编码/译码;i. obtaining a basis matrix based on the above a), based on the obtained base matrix encoding/decoding; or performing row/column exchange based on the obtained base matrix, base matrix encoding/decoding based on row/column transformation, or based on obtained The compensation matrix of the base matrix is encoded/decoded, or encoded/decoded based on the matrix of the matrix matrix obtained by the compensation matrix Hs. Here, based on the base matrix or the compensation matrix Hs encoding/decoding, optionally, it may further include an extended matrix encoding/decoding based on an extension matrix of the base matrix or the compensation matrix Hs, or truncating or playing based on a base matrix or a compensation matrix. Matrix coding/decoding after aperture;
ii.基于b)、c)d)或者e)保存的基矩阵(保存基矩阵H或者Hs、或者保存的基于基矩阵H或者Hs行/列变换后的基矩阵)编码/译码,或者基于所述保存的基矩阵进行行/列变换,基于行/列变换后的基矩阵编码/译码。这里,基于基矩阵或者补偿矩阵Hs编码/译码,可选的,还可以包括基于基矩阵的扩展矩阵或者补偿矩阵Hs的扩展矩阵编码/译码,或者基于基矩阵或者补偿矩阵进行截短或者打孔后的矩阵编码/译码;Ii. Encoding/decoding based on b), c) d) or e) preserved basis matrix (save base matrix H or Hs, or saved base matrix H or Hs row/column transformed base matrix), or based on The saved base matrix performs row/column transform, based on base/column transform base matrix encoding/decoding. Here, based on the base matrix or the compensation matrix Hs encoding/decoding, optionally, it may further include an extended matrix encoding/decoding based on an extension matrix of the base matrix or the compensation matrix Hs, or truncating based on a base matrix or a compensation matrix or Matrix coding/decoding after puncturing;
iii.基于d),f)或者g)进行编码/译码。Iii. Encoding/decoding based on d), f) or g).
503部分,输出编码/译码后的比特序列。在一种设计中,可以是对输入序列c={c
0,c
1,c
2,...,c
K-1}进行编码得到输出序列d={d
0,d
1,d
2,...,d
N-1},其中K和N为大于0的整数;所述输出序列d包括所述输入序列c中K
0个比特和校验序列w中的校验比特,K
0为整数,且0<K
0≤K;所述校验序列w和所述输入序列c满足公式
其中,c
T=[c
0,c
1,c
2,...,c
K-1]
T,为所述输入序列c中各比特组成的向量的转置向量,
为所述校验序列w中各比特组成的向量的转置向量,0
T为列向量,其所有元素的值为0;H为低密度奇偶校验LDPC矩阵,所述H的基图包括H
BG和H
BG,EXT,其中
表示m
c×n
c大小的全零矩阵,
表示n
c×n
c大小的单位矩阵,H
BG包括H
BG2中Kb列信息比特对应的列,以及H
BG2中第10至10+m
A-1列,H
BG2列数为10+m
A列,4≤m
A≤7,其中Kb∈{6,8,9,10};其中m
c=7,0≤n
c≤35,H
BG2的列数等于17,或者,m
c=6,0≤n
c≤36,H
BG2的列数等于16,或者,m
c=5,0≤n
c≤37,H
BG2的列数等于15,或者,m
c=4,0≤n
c≤38,H
BG2的列数等于14。
In Section 503, the encoded/decoded bit sequence is output. In one design, the input sequence c={c 0 , c 1 , c 2 , . . . , c K-1 } may be encoded to obtain an output sequence d={d 0 , d 1 , d 2 ,. .., d N-1 }, where K and N are integers greater than 0; the output sequence d includes K 0 bits in the input sequence c and parity bits in the check sequence w, K 0 is an integer and 0 <K 0 ≤K; the check sequence and the input sequence w satisfies the equation c Where c T =[c 0 , c 1 , c 2 , . . . , c K-1 ] T , is a transpose vector of a vector composed of bits in the input sequence c, a transpose vector of a vector composed of bits in the check sequence w, 0 T is a column vector, and all elements have a value of 0; H is a low density parity check LDPC matrix, and the base map of the H includes H BG and H BG, EXT , where An all-zero matrix representing the size of m c ×n c , N c × n c represents the size of the matrix, H BG comprising H BG2 Kb columns corresponding to information bits in a column, and the H BG2 to 10 + m A -1 column 10, H BG2 number of columns is 10 + m A column , 4 ≤ m A ≤ 7, where Kb ∈ {6, 8, 9, 10}; where m c = 7, 0 ≤ n c ≤ 35, the number of columns of H BG2 is equal to 17, or, m c = 6, 0 ≤n c ≤36, the number of columns 16 is equal to H BG2, or, m c = 5,0≤n c ≤37, the number of columns 15 is equal to H BG2, or, m c = 4,0≤n c ≤38, The number of columns of H BG2 is equal to 14.
图6给出了获得处理数据过程的一种设计,其可用于附图5中的502部分。Figure 6 shows a design for the process of obtaining processed data, which can be used in section 502 of Figure 5.
601部分,获取扩展因子Z。在一种可能的设计中,可以对信息比特序列进行填充获得输入序列,是的输入序列的长度K=K
b·Z,Z=K/K
b。在另一种可能的设计中,可以对信息比特序列中需要被打孔或者截短的比特进行填充,也就是用填充比特替代这些需要被打孔或者截短的比特,使得经过编码后,这些填充比特能被识别出来不被发送。例如可以用Null, 或者取值为0,或者系统约定的值、或者预定的值作为填充比特的值。一种设计中,需要打孔的比特不需要填充,直接打掉即可。填充是在信息比特序列后面进行填充。
In Section 601, the expansion factor Z is obtained. In one possible design, the information bit sequence can be padded to obtain an input sequence, the length of the input sequence is K = K b · Z, Z = K / K b . In another possible design, the bits of the information bit sequence that need to be punctured or truncated can be padded, that is, the bits that need to be punctured or truncated are replaced with padding bits, so that after encoding, these are encoded. The padding bits can be identified and not sent. For example, Null can be used, or a value of 0, or a value agreed by the system, or a predetermined value can be used as the value of the padding bit. In a design, the bits that need to be punched do not need to be filled, and can be directly destroyed. The padding is done after the information bit sequence.
一种实现方式中,扩展因子Z可以根据输入序列的长度K确定。例如,可以是在支持的扩展因子集合中,找到最小的Z
0作为扩展因子Z的大小,且满足Kb·Z
0≥K。一种可能的设计中,Kb可以为LDPC码的基矩阵中信息比特的列数。对于基图30a,其中信息比特的列数Kb
max=10,假设基图30a支持的扩展因子集合为{24,26,28,30,32,36,40,44,48,52,56,60,64,72,80,88,96,104,112,120,128,144,160,176,192,208,224,240,256,288,320,352,384}。若输入序列的长度K=529比特,则Z为26,若输入序列的长度K=5000比特,则Z为240。需要说明的是,此处仅为举例,并不以此为限制。
In one implementation, the spreading factor Z can be determined based on the length K of the input sequence. For example, it may be that in the set of supported extension factors, the smallest Z 0 is found as the size of the expansion factor Z, and Kb·Z 0 ≥K is satisfied. In one possible design, Kb can be the number of columns of information bits in the base matrix of the LDPC code. For the base map 30a, where the number of columns of information bits Kb max = 10, it is assumed that the set of spreading factors supported by the base map 30a is {24, 26, 28, 30, 32, 36, 40, 44, 48, 52, 56, 60 , 64, 72, 80, 88, 96, 104, 112, 120, 128, 144, 160, 176, 192, 208, 224, 240, 256, 288, 320, 352, 384}. If the length of the input sequence is K = 529 bits, Z is 26, and if the length of the input sequence is K = 5000 bits, Z is 240. It should be noted that the examples are merely examples and are not limited thereto.
又例如,Kb的取值也可以根据K的取值变化,但不超过LDPC码的基矩阵中信息比特列数。例如可以为Kb设置不同的门限。For another example, the value of Kb may also vary according to the value of K, but does not exceed the number of information bit columns in the base matrix of the LDPC code. For example, different thresholds can be set for Kb.
在一个设计如下:需要说明的是,这里的门限值640,560,192仅仅为举例。也可以根据系统设计需求设计为其他值。In a design as follows: It should be noted that the thresholds 640, 560, 192 here are merely examples. It can also be designed to other values based on system design requirements.
if(K>640),Kb=10;If(K>640), Kb=10;
elseif(K>560),Kb=9;Elseif (K>560), Kb=9;
elseif(K>192),Kb=8;Elseif (K>192), Kb=8;
else Kb=6;endElse Kb=6;end
扩展因子Z可以由通信装置根据输入序列的长度K来确定,也可以是由通信装置从其他实体(如处理器)获得。The spreading factor Z may be determined by the communication device based on the length K of the input sequence or may be obtained by the communication device from other entities such as a processor.
602部分,基于扩展因子和基矩阵获得LDPC矩阵。基矩阵是前述各实施方式中例举的任一基矩阵,或者,相对于前述例举的任一基矩阵中至少一列进行补偿得到的补偿矩阵,或者相对于前述例举的任一基矩阵或补偿矩阵而言行顺序发生变换、或者列顺序发生变换,或者行顺序和列顺序均发生变换的基矩阵,其基图至少包括子矩阵A和子矩阵B。可选的还可以包括子矩阵C、子矩阵D和子矩阵E,各部分可以参考前述各实施例中的描述,此处不再赘述。基矩阵可以是基于基图和偏移值获得,也可以是存储前述各实施方式中例举的任一基矩阵,或者是对前述实施方式中列举的任一基矩阵进行变形获得。In Section 602, an LDPC matrix is obtained based on the spreading factor and the base matrix. The base matrix is any of the base matrices exemplified in the foregoing embodiments, or a compensation matrix obtained by compensating at least one of any of the base matrices exemplified above, or with respect to any of the base matrices exemplified above or In the compensation matrix, the row order is transformed, or the column order is transformed, or the base matrix in which the row order and the column order are transformed, and the base map includes at least the sub-matrix A and the sub-matrix B. Optionally, the sub-matrix C, the sub-matrix D, and the sub-matrix E are further included in the descriptions of the foregoing embodiments, and details are not described herein again. The base matrix may be obtained based on the base map and the offset value, or may be any one of the base matrices exemplified in the foregoing embodiments, or may be obtained by modifying any of the base matrices enumerated in the foregoing embodiments.
在一种可能的实现方式中,根据扩展因子Z确定对应的基矩阵,并且根据扩展因子Z对该基矩阵进行置换得到LDPC矩阵。In a possible implementation manner, the corresponding base matrix is determined according to the spreading factor Z, and the base matrix is replaced according to the spreading factor Z to obtain an LDPC matrix.
在一种实现方式中,可以基于扩展因子与基矩阵的对应关系获得LDPC矩阵H。例如基于601部分获得的扩展因子Z,确定对应的基矩阵。In one implementation, the LDPC matrix H can be obtained based on the correspondence between the spreading factor and the base matrix. For example, based on the expansion factor Z obtained in Section 601, the corresponding base matrix is determined.
例如,Z为26,a=13,基矩阵可以包括图3b-7所示的矩阵中的第0至6行以及第0至16列,或者,基矩阵包括图3b-7所示的矩阵中的第0至6行以及第0至16列中的部分列;进一步地,或者基矩阵还包括矩阵0至m-1行以及第0至n-1列,其中7≤m≤42,m为整数,17≤n≤52,n为整数,或者,基矩阵包括图3b-7所示的矩阵的第0至m-1行以及第0至n-1列,其中7≤m≤42,m为整数,17≤n≤52,n为整数,图3b-7所示的矩阵第7行至第41行中的行,以及第17列至第61列中的列。根据扩展因子Z对该基矩阵进行置换得到LDPC矩阵。需要说明的是,这里仅仅是以Z=26,a=13,图3b-7所示的矩阵为例说明。此处仅为举例,本发明不限于此。可以理解,扩展因子不同,则基矩阵也有所不同。For example, Z is 26, a=13, and the base matrix may include the 0th to 6th rows and the 0th to 16th columns in the matrix shown in FIG. 3b-7, or the base matrix may include the matrix shown in FIG. 3b-7. The 0th to 6th rows and the partial columns in the 0th to 16th columns; further, the base matrix further includes the matrix 0 to m-1 rows and the 0th to n-1th columns, where 7≤m≤42, m is An integer, 17 ≤ n ≤ 52, n is an integer, or the base matrix includes the 0th to m-1th rows and the 0th to the n-1th columns of the matrix shown in FIG. 3b-7, where 7≤m≤42,m In the integer, 17 ≤ n ≤ 52, n is an integer, the rows in the 7th to 41st rows of the matrix shown in Fig. 3b-7, and the columns in the 17th column to the 61st column. The base matrix is replaced according to the spreading factor Z to obtain an LDPC matrix. It should be noted that, here, only the matrix shown by Z=26, a=13, and FIG. 3b-7 is taken as an example. This is merely an example, and the invention is not limited thereto. It can be understood that the base matrix is different when the expansion factors are different.
一种可能的实现方式中,扩展因子与基矩阵的对应关系可以如表4所示,根据表4确 定扩展因子对应的基矩阵索引。一种可能的设计,PCM1可以是如图3b-1所示的矩阵;PCM2可以是如图3b-2所示的矩阵;PCM3可以是如图3b-3所示的矩阵;PCM4可以是如图3b-4所示的矩阵;PCM5可以是如图3b-5所示的矩阵;PCM6可以是如图3b-6所示的矩阵;PCM7可以是如图3b-7所示的矩阵;PCM8可以是如图3b-8所示的矩阵。此处仅为举例,并不以此为限制。In a possible implementation manner, the correspondence between the spreading factor and the base matrix can be as shown in Table 4, and the base matrix index corresponding to the spreading factor is determined according to Table 4. A possible design, PCM1 may be a matrix as shown in Figure 3b-1; PCM2 may be a matrix as shown in Figure 3b-2; PCM3 may be a matrix as shown in Figure 3b-3; PCM4 may be as shown 3b-4 matrix; PCM5 may be a matrix as shown in Figure 3b-5; PCM6 may be a matrix as shown in Figure 3b-6; PCM7 may be a matrix as shown in Figure 3b-7; PCM8 may be The matrix shown in Figure 3b-8. This is for the sake of example only and is not intended to be limiting.
表4Table 4
在另一种设计中,也可以采用如下的方式:In another design, the following can also be used:
进一步地,在一种可能的设计中,对于扩展因子Z,其基矩阵中第i行第j列元素P
i,j可以满足下述关系:
Further, in a possible design, for the spreading factor Z, the i-th row and the j-th column element P i,j in the base matrix can satisfy the following relationship:
其中,V
i,j可以是扩展因子Z所在集合的基矩阵中第i行第j列的元素的偏移值,或者是扩展因子Z所在集合中最大扩展因子的基矩阵的第i行第j列的非零元素的偏移值。
Wherein, V i,j may be an offset value of an element of the i-th row and the j-th column in the base matrix of the set of the expansion factor Z, or an i-th row of the base matrix of the largest spreading factor in the set of the expansion factor Z The offset value of the non-zero element of the column.
例如,以Z为13为例,其基矩阵中第i行第j列的元素P
i,j满足
For example, taking Z as an example, the element P i,j of the i-th row and the j-th column in the base matrix is satisfied.
其中,V
i,j是PCM7,矩阵3b-7中第i行第j列的非零元素的偏移值。对于Z=13而言,需要将矩阵3b-7中第i行第j列的非零元素的偏移值V
i,j对Z=13取模。需要说明的是,此处仅为举例,本发明不限于此。
Where V i,j is the offset value of the non-zero element of the ith row j column in PCM7, matrix 3b-7. For Z=13, the offset value V i,j of the non-zero element of the i-th row and the j-th column in the matrix 3b-7 needs to be modulo Z=13. It should be noted that the present invention is merely an example, and the present invention is not limited thereto.
603部分,基于LDPC矩阵对输入序列进行编码/译码。In Section 603, the input sequence is encoded/decoded based on the LDPC matrix.
在一种实现方式中,编码的输入序列可以是信息比特序列。在又一种实现方式中,译码的输入序列可以是LDPC码的软值序列,可以参照图5中的相关描述。对输入序列进行编码/译码时,可以根据Z对基矩阵进行扩展得到的LDPC矩阵H。对基矩阵中每一非零元素P
i,j,确定Z*Z大小的循环置换矩阵h
i,j,其中h
i,j为单位矩阵经过P
i,j次循环移位得到的循环置换矩阵,将h
i,j替换非零元素P
i,j,将Z*Z大小的全零矩阵替换基矩阵H
B中的零元素,从而得到奇偶校验矩阵H;
In one implementation, the encoded input sequence can be a sequence of information bits. In yet another implementation, the decoded input sequence may be a soft value sequence of the LDPC code, as described in the related description in FIG. When encoding/decoding an input sequence, the LDPC matrix H obtained by extending the Z-base matrix can be used. For each non-zero element P i,j in the basis matrix, a cyclic permutation matrix h i,j of Z*Z size is determined, where h i,j is a cyclic permutation matrix obtained by cyclically shifting the unit matrix by P i,j times Substituting h i,j for the non-zero element P i,j , replacing the zero-element in the base matrix H B with the all-zero matrix of the Z*Z size, thereby obtaining the parity check matrix H;
在一种可能的实现方式中,LDPC码的基矩阵可以是保存在存储器中,通信装置获取扩展因子Z对应的LDPC矩阵,从而对输入序列进行编码/译码。In a possible implementation manner, the base matrix of the LDPC code may be stored in a memory, and the communication device acquires an LDPC matrix corresponding to the spreading factor Z, thereby encoding/decoding the input sequence.
在一种可能的实现方式中,由于LDPC码的基矩阵有多个,按照矩阵结构保存会占用较大的存储空间,也可以将LDPC码的基图保存在存储器中,分别逐行或者逐列保存各基矩阵中非零元素的偏移值,然后根据基图和扩展因子Z对应的基矩阵的偏移值得到LDPC矩阵。In a possible implementation manner, since there are multiple base matrices of the LDPC code, the storage according to the matrix structure may occupy a large storage space, and the base map of the LDPC code may be stored in the memory, respectively, row by row or column by column. The offset values of the non-zero elements in each base matrix are saved, and then the LDPC matrix is obtained according to the offset values of the base matrix corresponding to the base map and the spreading factor Z.
在一种可能的实现方式中,也可以按照表2,表3b-1至表3b-8的方式保存各基矩阵中非零元素的偏移值,作为LDPC矩阵的参数,“行重”一列可选,也就是“行重”这列可以可选的保存或者不保存。通过一行非零元素所在的列,获知这一行有多少个非零元素,因此行重也就获知了。在一种可能的实现方式中,对于上述表2,表3b-1至表3b-8中的“非零元素所在的列”中的参数值,也可以不按照由小到大的顺序排列,只要参数值索引到非零元素所在的列就行。此外,对于表2,表3b-1至表3b-8中的“非零元素偏移值”中的参数值,也不一定按照列的顺序排列,只要“非零元素偏移值”中的参数值,与“非零元素所在的列”中的参数值一一对应,通信装置可获知非零元素偏移值是对应哪行哪一列的非零元素就行。例如:在一种实现方式中,可以通过,列号,列重非零元素所在的行,或者零元素所在的行。类似于表2,表3b-1至表3b-8的形式,在此不再一一列出。In a possible implementation manner, the offset values of non-zero elements in each base matrix may also be saved according to Table 2, Table 3b-1 to Table 3b-8, as a parameter of the LDPC matrix, and the row weight is one column. Optional, that is, the "row weight" column can be optionally saved or not saved. By knowing the number of non-zero elements in a row, it is known how many non-zero elements are in the row. In a possible implementation manner, for the above Table 2, the parameter values in the “column of non-zero elements” in Table 3b-1 to Table 3b-8 may not be arranged in a small to large order. As long as the parameter value is indexed to the column where the non-zero element is located. In addition, for Table 2, the parameter values in the "non-zero element offset value" in Table 3b-1 to Table 3b-8 are not necessarily arranged in the order of the columns, as long as the "non-zero element offset value" The parameter value corresponds to the parameter value in the "column where the non-zero element is located", and the communication device can know that the non-zero element offset value is a non-zero element corresponding to which column. For example, in one implementation, you can pass the column number, the row where the non-zero element is located, or the row where the zero element is located. Similar to Table 2, the forms of Table 3b-1 to Table 3b-8 are not listed here.
在一种可能的实现方式中,可以参照图5中的相关描述,对LDPC矩阵的相关参数保存。In a possible implementation manner, relevant parameters of the LDPC matrix may be saved by referring to the related description in FIG. 5.
在一种可能的实现方式中,保存LDPC矩阵的相关的参数时,也可以不保存图3a,3b-1至3b-8的矩阵的所有行,或者表2,表3b-1至表3b-8所示矩阵的所有行,可以根据基矩阵中包括的行保存表格中相应的行所指示的参数。例如,可以保存上述实施例中所描述的LDPC矩阵的基矩阵所包括的行和列所构成的矩阵,或者所述行和列所构成的矩阵所涉及的相关参数。In a possible implementation manner, when the relevant parameters of the LDPC matrix are saved, all the rows of the matrix of FIG. 3a, 3b-1 to 3b-8 may not be saved, or Table 2, Table 3b-1 to Table 3b- All the rows of the matrix shown in Figure 8 can hold the parameters indicated by the corresponding rows in the table according to the rows included in the base matrix. For example, a matrix composed of rows and columns included in the base matrix of the LDPC matrix described in the above embodiments, or related parameters involved in the matrix formed by the rows and columns may be saved.
例如,如果图3b-1至图3b-8的矩阵中的第0至6行以及第0至16列,则,可以保存所述第0至6行以及第0至16列所构成的矩阵,和/或保存第0至6行以及第0至16列所构成的矩阵的相关参数,可以参照表3b-1至3b-8中所示的参数,以及上述部分描述。For example, if the 0th to 6th rows and the 0th to 16th columns in the matrix of FIG. 3b-1 to FIG. 3b-8, the matrix of the 0th to 6th rows and the 0th to 16th columns can be saved. And/or the related parameters of the matrix formed by the 0th to 6th rows and the 0th to 16th columns can be referred to the parameters shown in Tables 3b-1 to 3b-8, and the above description.
如果图3b-1至图3b-8的任一矩阵中第0至(m-1)行以及第0至(n-1)列,其中7≤m≤42,m为整数,17≤n≤52,n为整数,则,可以保存所述第0至(m-1)行以及第0至 (n-1)列所构成的矩阵,和/或者保存所述第0至(m-1)行以及第0至(n-1)列所构成的矩阵的相关参数,可以参照表3b-1至3b-8中所示的参数以及上述部分的描述。If the 0th to (m-1)th rows and the 0th to (n-1)th columns in any of the matrixes of FIG. 3b-1 to FIG. 3b-8, where 7≤m≤42, m is an integer, 17≤n≤ 52, where n is an integer, the matrix of the 0th to (m-1)th rows and the 0th to (n-1)th columns may be saved, and/or the 0th to (m-1)th may be saved. For the relevant parameters of the matrix and the matrix of the 0th to (n-1)th columns, reference may be made to the parameters shown in Tables 3b-1 to 3b-8 and the descriptions of the above sections.
在一种可能的实现方式中,可以对表2,表3b-1至表3b-8中任一表中至少一个“非零元素所在的列”中位置s指示的大于或等于0的各偏移值增加或减少补偿值Offset
s。需要说明的是,此处均只是举例,并不以此为限制。
In a possible implementation manner, each of the tables in Table 2, Table 3b-1 to Table 3b-8 may indicate a position greater than or equal to 0 indicated by a position s in at least one column of "non-zero elements" The shift value increases or decreases the offset value Offset s . It should be noted that the examples herein are merely examples and are not intended to be limiting.
以图1为例,在一种实现方式中,确定出基矩阵H
B后,可以先通过输入序列和基矩阵的第0至3行以及第0至第9列,也就是H
core-dual部分得到第10至15列对应的校验比特;再根据输入序列和H
core-dual对应的校验比特得到第16列,也就是单列重列对应的校验比特;然后根据输入序列以及第10至16列对应的校验比特和子矩阵D对应的部分编码得到子矩阵E部分对应的校验比特,从而完成编码。LDPC码的编码过程可以参考前述实现方式描述,此处不再赘述。
Taking FIG. 1 as an example, in an implementation manner, after determining the base matrix H B , the input sequence and the 0th to 3th rows and the 0th to 9th columns of the base matrix, that is, the H core-dual portion, may be first passed. Obtaining the check bits corresponding to the 10th to 15th columns; and obtaining the 16th column according to the input sequence and the check bit corresponding to the H core-dual , that is, the parity bit corresponding to the single column re-column; then according to the input sequence and the 10th to The 16-column corresponding check bits and the partial code corresponding to the sub-matrix D obtain the parity bits corresponding to the E-matrix E portion, thereby completing the encoding. For the encoding process of the LDPC code, refer to the foregoing implementation manner, and details are not described herein again.
在一种设计中,上述502部分、603部分,基于LDPC矩阵对所述输入序列进行编码/译码,可以是使用扩展因子Z对应的LDPC矩阵H对输入序列进行编码。In one design, the above 502 parts and 603 parts encode/decode the input sequence based on the LDPC matrix, and the input sequence may be encoded using the LDPC matrix H corresponding to the spreading factor Z.
在一种可能的实现方式中,可以通过以下方式实现LDPC的编码。In a possible implementation, the encoding of the LDPC can be implemented in the following manner.
1)待编码的输入序列表示为c={c
0,c
1,c
2,...,c
K-1},输入序列c长度为K,输入序列c经过编码器编码后得到的输出序列,表示为d={d
0,d
1,d
2,...,d
N-1},K为大于0的整数,K可以是扩展因子Z的整数倍,输入序列c的扩展因子可以表示为Z或者Z
c,下标c用于表示针对输入序列c。可选的,本实现方式中的其他参数也可以加上或者不加下标索引。其并不影响参数的实质含义。本领域的技术人员可以理解其含义。其中N=50Z、或者N=(40+K
b)·Z。输入序列c的长度为K,输出序列d长度为N,输出序列N中可以包括输入序列c中K
0个比特和校验序列w中N-K
0个校验比特。K
0为整数,且0<K
0≤K。校验序列w可表示为{W
0,W
1,W
2,…,W
N-K0-1},长度为N-K
0,。在一种设计中,若LDPC矩阵H中包括p列内置打孔列,p为大于或者等于0的整数,p列内置打孔列不参与编码,例如,p=2,则校验序列w的长度为N+2Z
c-K,校验序列w可表示为{W
0,W
1,W
2,…,W
N+2Zc-K-1}。若p列内置打孔列参与编码,则校验序列w的长度为N-K,校验序列w可表示为{W
0,W
1,W
2,…,W
N-K-1}。
1) The input sequence to be encoded is represented as c={c 0 , c 1 , c 2 ,..., c K-1 }, the length of the input sequence c is K, and the output sequence obtained by the encoder c is encoded by the input sequence c , denoted as d={d 0 , d 1 , d 2 , . . . , d N-1 }, K is an integer greater than 0, K may be an integer multiple of the expansion factor Z, and the expansion factor of the input sequence c may represent For Z or Z c , the subscript c is used to indicate for the input sequence c. Optionally, other parameters in this implementation manner may or may not be subscripted. It does not affect the substance of the parameters. Those skilled in the art can understand the meaning thereof. Where N=50Z, or N=(40+K b )·Z. The length of the input sequence c is K, and the length of the output sequence d is N. The output sequence N may include K 0 bits in the input sequence c and NK 0 check bits in the check sequence w. K 0 is an integer and 0 < K 0 ≤ K. The check sequence w can be expressed as {W 0 , W 1 , W 2 , . . . , W N-K0-1 }, and has a length of NK 0 . In one design, if the LDPC matrix H includes a p-column built-in punctured column, p is an integer greater than or equal to 0, and the p-column built-in punctured column does not participate in encoding, for example, p=2, then the check sequence w The length is N+2Z c -K, and the check sequence w can be expressed as {W 0 , W 1 , W 2 , . . . , W N+2Zc-K-1 }. If the p-column built-in puncturing column participates in the encoding, the length of the check sequence w is NK, and the check sequence w can be expressed as {W 0 , W 1 , W 2 , . . . , W NK-1 }.
对于Kb的取值可以参照上述设计。例如:For the value of Kb, refer to the above design. E.g:
if(K>640),Kb=10;If(K>640), Kb=10;
elseif(K>560),Kb=9;Elseif (K>560), Kb=9;
elseif(K>192),Kb=8;Elseif (K>192), Kb=8;
else Kb=6;Else Kb=6;
endEnd
2)根据Z
c=K/K
b,确定比特端长度K对应的PCM索引,或者扩展因子组索引,例如,可以参照表1和表2,确定扩展因子Z
c。
2) According to Z c = K / K b , the PCM index corresponding to the bit length K, or the expansion factor group index is determined. For example, the expansion factor Z c can be determined by referring to Table 1 and Table 2.
3)给编码后比特序列d={d
0,d
1,d
2,...,d
N-1}中前K-2Z
c个比特赋值。这里,需要跳过待编码比特段前2Z
c个填充比特,而且需要考虑待编码的比特段中可能会包含填充比特。
3) Assign the first K-2Z c bits in the encoded bit sequence d={d 0 , d 1 , d 2 , . . . , d N-1 }. Here, it is necessary to skip 2Z c padding bits before the bit segment to be encoded, and it is necessary to consider that padding bits may be included in the bit segment to be encoded.
一种实现方式中,可采用如下方式进行赋值:In one implementation, the assignment can be made as follows:
for k=2Z
c to K-1,
For k=2Z c to K-1,
if c
k≠<NULL>
If c k ≠<NULL>
elseElse
c
k=0;
c k =0;
end ifEnd if
end forEnd for
其中,k为索引值,且k为整数,<NULL>表示填充比特,其取值可以为0,或者是其他预定的值。可选的,填充比特可以不被发送。Where k is an index value, and k is an integer, <NULL> represents a padding bit, which may take a value of 0, or other predetermined value. Alternatively, padding bits may not be sent.
4)生成校验比特w,使校验比特满足如下公式:4) Generate a check bit w so that the check bit satisfies the following formula:
公式(1)中的c=[c
0,c
1,c
2,...,c
K-1]
T,0表示列向量,其中所有元素的值为0。矩阵H表示LDPC校验矩阵,其可以分成H
1和H
2两个部分进行表示,如H=[H
1 H
2]。其中,c=[c
0,c
1,c
2,...,c
K-1]
T为输入序列中各比特组成的向量的转置向量。公式(1)中的校验比特w为校验序列w中各比特组成的向量的转置向量。例如,N+2Z
c-K个校验比特w=[W
0,W
1,W
2,…,W
N+2Zc-K-1]
T为校验序列{W
0,W
1,W
2,…,W
N+2Zc-K-1}中各比特组成的向量的转置向量。又例如,N-K-1个校验比特w=[w
0,w
1,w
2,...,w
N-K-1]
T为校验序列{W
0,W
1,W
2,…,W
N-K-1}中各比特组成的向量的转置向量。公式(1)中的H为基于前述各实施例中例举的任一LDPC矩阵。
In the formula (1), c = [c 0 , c 1 , c 2 , ..., c K-1 ] T , 0 represents a column vector in which the values of all the elements are 0. The matrix H represents an LDPC check matrix, which can be represented by two parts, H 1 and H 2 , such as H=[H 1 H 2 ]. Where c=[c 0 , c 1 , c 2 , . . . , c K-1 ] T is a transpose vector of a vector composed of bits in the input sequence. The check bit w in the formula (1) is a transposition vector of a vector composed of bits in the check sequence w. For example, N+2Z c - K check bits w=[W 0 , W 1 , W 2 , . . . , W N+2Zc-K-1 ] T is a check sequence {W 0 , W 1 , W 2 , ..., W N+2Zc-K-1 } The transpose vector of the vector composed of bits. For another example, NK-1 check bits w=[w 0 , w 1 , w 2 , . . . , w NK-1 ] T are check sequences {W 0 , W 1 , W 2 , . . . , W NK A transpose vector of vectors consisting of bits in -1 }. H in the formula (1) is based on any of the LDPC matrices exemplified in the foregoing embodiments.
在一种实现方式中,H可以是基于上述实施例中列举的任一基图以及Zc*Zc的扩展矩阵得到。基图中的每个0元素用Zc*Zc的全零矩阵替换,基图中值为1的元素用其偏移值P
i,j对应的Z*Z的循环置换矩阵I(P
i,j)进行替换,其中i,j表示元素的行索引和列索引。所述循环置换矩阵I(P
i,j)通过将Zc*Zc的矩阵向右或者向左进行P
i,j次循环移位得到。其中P
i,j=mod(V
i,j,Z
c),V
i,j是基矩阵中对应于基图中非零元素的偏移值。
In one implementation, H may be derived based on any of the base maps listed in the above embodiments and an extended matrix of Zc*Zc. Each 0 element in the base map is replaced by the all-zero matrix of Zc*Zc. The element with a value of 1 in the base map uses the Z*Z cyclic permutation matrix I corresponding to its offset value P i,j (P i,j Replace, where i, j represents the row index and column index of the element. The cyclic permutation matrix I(P i,j ) is obtained by performing a P i,j cyclic shift of the matrix of Zc*Zc to the right or left. Where P i,j = mod(V i,j ,Z c ), V i,j are offset values in the base matrix corresponding to non-zero elements in the base map.
在一种实现方式中,H
1部分可以是上述实施例中所列举的基图或者基矩阵的A,B,D部分,即图3a,3b-1至3b-8中的0至41行,0-16列。
In one implementation, the H 1 portion may be the A, B, and D portions of the base map or base matrix enumerated in the above embodiments, that is, lines 0 to 41 in FIGS. 3a, 3b-1 to 3b-8, 0-16 columns.
在一种实现方式中,H
1部分可以是上述实施例中所列举的基图或者基矩阵的A,B,D部分中的部分行部分列。例如,第0至41行,0至13列,或者0至41行0至14列,或者0至41行0至15列,或者,1至41行,0至13列等等。
In one implementation, the H 1 portion may be a partial row portion column in the A, B, D portions of the base map or base matrix enumerated in the above embodiments. For example, lines 0 to 41, 0 to 13 columns, or 0 to 41 rows 0 to 14 columns, or 0 to 41 rows 0 to 15 columns, or 1 to 41 rows, 0 to 13 columns, and the like.
在一种实现方式中,H
1部分可以是上述实施例中所列举的基图或者基矩阵的m行n列,例如,m=7,n=35;或者m=4,n=38;或者m=5,n=37;或者m=6,n=36。
In one implementation, the H 1 portion may be m rows and n columns of the base map or base matrix enumerated in the above embodiments, for example, m=7, n=35; or m=4, n=38; m=5, n=37; or m=6, n=36.
在一种实现方式中,根据Kb取值,编码器的输入长度为Kb*Z,若Kb<9,删除矩阵H
1中的第{K
b,K
b+1,...,9}列,然后进行编码。
In an implementation manner, according to the value of Kb, the input length of the encoder is Kb*Z, and if Kb<9, the {K b , K b+1 , . . . , 9} column in the matrix H 1 is deleted. And then encode.
在一种实现方式中,H可以为M行(N+p·Z)列或者M行N列,其基矩阵的大小m=M/Z,
或n=N/Z。
In an implementation manner, H may be an M row (N+p·Z) column or an M row N column, and the size of the base matrix is m=M/Z. Or n=N/Z.
一种实现方式中,H
2部分可以表示为
其中0
m×n表示一个m×n的全0矩阵(m行,n列),例如,可以为7行35列,或者4行38列,或者5行37列,或者6行36列等。I
n×n表示一个n×n(n行,n列)的矩阵,例如可以为35行35列,或者36行36列,或者37行37列,或者38行38列等等。
In one implementation, the H 2 portion can be expressed as Where 0 m × n represents an all-zero matrix of m × n (m rows, n columns), for example, may be 7 rows and 35 columns, or 4 rows and 38 columns, or 5 rows and 37 columns, or 6 rows and 36 columns, and the like. I n × n represents a matrix of n × n (n rows, n columns), for example, 35 rows and 35 columns, or 36 rows and 36 columns, or 37 rows and 37 columns, or 38 rows and 38 columns, and the like.
在一种实现方式中,使用H矩阵进行编码时,可以是基于前述任一描述的基图或基矩阵进行编码。例如,可以是基于图3a,或图3b-1至3b-8中任一矩阵中的第0至41行,0至16列的矩阵,也可以是基于图3a,或图3b-1至3b-8中任一矩阵中的第0至41行,0至13列的矩阵等。In one implementation, when encoding using an H matrix, encoding may be based on a base or base matrix as described above. For example, it may be based on the matrix of the 0th to 41st rows, 0 to 16 columns in any of the matrix of FIG. 3a, or FIGS. 3b-1 to 3b-8, or may be based on FIG. 3a, or FIG. 3b-1 to 3b. Lines 0 to 41 in any of -8, a matrix of 0 to 13 columns, and the like.
在一种设计中,对于K
b∈{6,8,9},H矩阵可以为前述任一基图或者基矩阵中打掉(removing){K
b,K
b+1,...,9}列后的矩阵,对于K
b=10,可以为前述任一基图或者基矩阵。
In one design, for K b ∈{6,8,9}, the H matrix can be removed from any of the aforementioned base or base matrices {K b , K b +1,...,9 The matrix after the column, for K b = 10, can be any of the aforementioned base or base matrices.
校验矩阵H中的偏移值V
i,j可以通过上述图3b-1至3b-8,或者表3b-1至表3b-8以及3b-2’,或者上述任一描述的方式获得。基于校验矩阵的索引,有时也可以认为是扩展因子的组索引可以获知是对应于哪个校验矩阵,从而获知相应的偏移值V
i,j。
The offset value V i,j in the check matrix H can be obtained by the above-described Figures 3b-1 to 3b-8, or Tables 3b-1 to 3b-8 and 3b-2', or any of the above. Based on the check matrix index, it is sometimes considered that the group index of the spreading factor can know which check matrix corresponds to, so as to know the corresponding offset value V i,j .
在一种设计中,H中包括p列内置打孔列,p为大于或者等于0的整数,p列内置打孔列不参与编码,例如,p=2,则校验序列w的长度为N+2Z
c-K。若p列内置打孔列参与编码,则校验序列w的长度为N-K。
In one design, H includes a p-column built-in punctured column, p is an integer greater than or equal to 0, and the p-column built-in punctured column does not participate in encoding. For example, if p=2, the length of the check sequence w is N. +2Z c -K. If the p-column built-in punch column participates in the encoding, the length of the check sequence w is NK.
在一种设计中,0
m×n可以为前述各实施例中的子矩阵C部分,或者是子矩阵C部分加上子矩阵B的最后一列、或者子矩阵C部分加上子矩阵B的最后二列、或者子矩阵C部分加上子矩阵B的最后三列。
In one design, 0 m×n may be the submatrix C part in the foregoing embodiments, or the submatrix C part plus the last column of the submatrix B, or the submatrix C part plus the last of the submatrix B The second column, or the submatrix C portion, adds the last three columns of the submatrix B.
I
n×n可以为前述各实施例中子矩阵E,或者是子矩阵E加上子矩阵B和D的最后一列,或者是子矩阵E加上子矩阵B和D的最后二列、或者是是子矩阵E加上子矩阵B和D的最后三列。
I n×n may be the sub-matrix E in the foregoing embodiments, or the sub-matrix E plus the last column of the sub-matrices B and D, or the sub-matrix E plus the last two columns of the sub-matrices B and D, or Is the sub-matrix E plus the last three columns of the sub-matrices B and D.
5)可选的,对于k=K to N+2Z
c-1,
5) Optional, for k=K to N+2Z c -1,
在上述各种实现方式中,编码器可以采用多种方式进行编码并输出,下面以前述实施例中例举的图3a、图3b-1至3b-8所示的基图或基矩阵任一为例进行说明,其中基图行数最大为42行,列数最大为52列,包括2列内置打孔列,为了方便描述,在本发明中有时将行数最大且列数也最大的基图/基矩阵称为完整基图或基矩阵,将从完整基图/基矩阵中删除2列内置打孔列的基图/基矩阵称为不包含内置打孔列的完整基图/基矩阵。In the above various implementation manners, the encoder can be encoded and output in various manners, and any of the base map or the base matrix shown in FIG. 3a, FIG. 3b-1 to FIG. For example, the number of base map rows is up to 42 rows, and the number of columns is up to 52 columns, including two columns of built-in punched columns. For convenience of description, in the present invention, the number of rows is the largest and the number of columns is also the largest. The graph/base matrix is called the complete base or base matrix. The base/base matrix that removes the two columns of built-in punctured columns from the complete base/base matrix is called the complete base/base matrix without the built-in punctured columns. .
方式一:method one:
基于完整基图/基矩阵或者不包括内置打孔列的完整基图/基矩阵编码,从而获取到尽可能多的校验比特。此时,m=42,如果内置打孔列参与编码,则n=52,也就是上述图3a、图3b-1至3b-8中任一矩阵的第0至第41行以及第0至第51列;如果内置打孔列不参与编码,则n=51,也就第0至第41行以及第2至第51列。相应地,对于LDPC矩阵H,M=41Z,N=52Z或者N=51Z。可以在后续处理环节中从编码器产生的输出序列中确定需要发送的信息比特和校验比特。Get as many check bits as possible based on the complete base/base matrix or complete base/base matrix encoding that does not include built-in punctured columns. At this time, m=42, if the built-in punched column participates in the encoding, then n=52, that is, the 0th to 41st rows and the 0th to the first of the matrix of any of the above-mentioned FIG. 3a, FIG. 3b-1 to FIG. 51 columns; if the built-in punch column does not participate in the encoding, then n=51, that is, rows 0 to 41 and columns 2 to 51. Accordingly, for the LDPC matrix H, M = 41Z, N = 52Z or N = 51Z. The information bits and check bits that need to be transmitted can be determined from the output sequence generated by the encoder in a subsequent processing step.
方式二:Method 2:
基于完整基图的部分行、列编码。可以根据需要发送的码率,或者,信息比特和校验比特数等从完整基图或者不包括内置打孔列的完整基图中选择行、列编码。例如,码率为2/3,m=7, 如果内置打孔列参与编码,则n=17,也就是基于上述图3a、图3b-1至3b-8中任一矩阵的第0至6行以及第0至16列的部分编码;如果内置打孔列不参与编码,则n=15,也就是图3a、图3b-1至3b-8中任一矩阵的第0至第6行以及第2至第16列。Partial row and column encoding based on the complete base map. The row and column encodings may be selected from a complete base map or a complete base map that does not include a built-in punctured column, depending on the code rate to be transmitted, or the number of information bits and check bits. For example, the code rate is 2/3, m=7, if the built-in puncturing column participates in the encoding, then n=17, that is, based on the 0th to 6th of any of the above-mentioned matrixes of FIG. 3a, FIG. 3b-1 to FIG. Line and partial encoding of columns 0 to 16; if the built-in puncturing column does not participate in encoding, then n=15, that is, lines 0 to 6 of any of the matrices of Figures 3a, 3b-1 to 3b-8, and Columns 2 to 16.
一种可能的设计中,上述例举图3a、图3b-1至3b-8中任一矩阵的第14至第51列为单列重列,可以对核心矩阵中单列重列进行一列或多列进行打孔,使得核心矩阵相应1列或多列,例如m为6,如果内置打孔列参与编码,n=16,可以基于上述图3a、图3b-1至3b-8中任一矩阵矩阵中第0至6行以及第0至15列的部分编码。在一种实现方式中,内置打孔列也可以不参与编码,从而可以获取到更高的码率。In a possible design, the 14th to 51st columns of the matrix of any of the above-mentioned examples of FIG. 3a and 3b-1 to 3b-8 are single-column re-columns, and one or more columns of single-column re-columns in the core matrix may be performed. Perform puncturing so that the core matrix corresponds to one or more columns, for example, m is 6. If the built-in punctured column participates in encoding, n=16, it may be based on any matrix matrix of FIG. 3a, FIG. 3b-1 to 3b-8 above. Partial coding in columns 0 to 6 and columns 0 to 15. In one implementation, the built-in punctured column may also not participate in the encoding, so that a higher code rate can be obtained.
需要说明的是,以上对H矩阵的原理进行了说明。在采用本发明实施例提供的方案时,也可以对H矩阵进行多种变换来实现,只要使得生成的校验比特满足式公式(1)It should be noted that the principle of the H matrix has been described above. When the solution provided by the embodiment of the present invention is adopted, multiple transformations may be performed on the H matrix, as long as the generated check bits satisfy the formula (1).
一种可能的实现方式在于,H矩阵在使用前进行Quasi-Cycle(QC)展开。另一种可能的实现方式在于,H矩阵在使用过程中对当前待处理元素对应的部分进行Quasi-Cycle(QC)展开。One possible implementation is that the H matrix performs a Quasi-Cycle (QC) expansion before use. Another possible implementation manner is that the H matrix performs a Quasi-Cycle (QC) expansion on the portion corresponding to the current element to be processed during use.
一种可能的实现方式在于(直接计算偏移值),H矩阵在使用过程中不直接展开,而采用可展开等价的公式方法,计算矩阵行列间的连接关系。One possible implementation method is to (directly calculate the offset value), the H matrix is not directly expanded during use, and the expandable equivalent formula method is used to calculate the connection relationship between the matrix rows and columns.
一种可能的实现方式在于,可以不对H矩阵展开,在编码过程中,对每个待处理元素,根据该元素的偏移值,将与其对应的待编码比特段做移位操作;之后,对所有做过移位操作后的比特段直接进行编码运算。A possible implementation manner is that the H matrix may not be expanded. In the encoding process, for each element to be processed, according to the offset value of the element, the corresponding bit segment to be encoded is shifted; afterwards, All bit segments after the shift operation are directly subjected to encoding operations.
一种可能的实现方式,可以通过预先定义或者系统定义基矩阵PCM,而无需依据基图来获得基矩阵。例如可以基于图3b-1至3b-8提供的基矩阵获得LDPC的矩阵,或者基于相应的表3b-1至3b-8来获得LDPC的矩阵。As a possible implementation, the base matrix PCM can be defined by a predefined or system without obtaining a base matrix according to the base map. For example, a matrix of LDPCs may be obtained based on the basis matrix provided in FIGS. 3b-1 to 3b-8, or a matrix of LDPCs may be obtained based on the corresponding tables 3b-1 to 3b-8.
在实现过程中,发送端或接收端可以存储完整的矩阵,即ABCDE的所有部分。也可以不存储完整的矩阵而节省存储空间。例如,只需要存储其中的一部分或者其相应的参数,即可实现编译码。相比存储完整矩阵的方法,只存储矩阵的一部分可以减少编译码器中存储设备的开销。具体的参见上述实施例中的描述。In the implementation process, the sender or receiver can store the complete matrix, that is, all parts of ABCDE. It is also possible to save storage space without storing a complete matrix. For example, you only need to store a part of it or its corresponding parameters to implement the compiled code. Compared to the method of storing the complete matrix, storing only a part of the matrix can reduce the overhead of the storage device in the codec. See the description in the above embodiments for details.
例如一种实现方式中,存储矩阵中ABD部分,或者ABD中不包括单列重部分。在实际编译码过程中,通过公式计算得到C和E部分的取值或者单列重部分的取值。即,只保存原完整矩阵中前17列,或者前14列。由于C部分为全零矩阵,可以直接得到,E部分为单位矩阵,其非0元素的位置可根据当前处理的行号计算得到相应的列号,例如,当前处理行为第18行时,E部分对应非0元素位于28列,当前处理行为第19行时,E部分对应非0元素位于29列,依次类推。在通过计算得到E部分所有非零元素位置时,可以将计算结果保存下来,也可以不保存,在编码或译码过程中计算到对应行列时,再计算。For example, in one implementation, the ABD portion of the matrix is stored, or the single column weight portion is not included in the ABD. In the actual compilation code process, the value of the C and E parts or the value of the single column weight part is calculated by the formula. That is, only the first 17 columns, or the first 14 columns, of the original complete matrix are saved. Since the C part is an all-zero matrix, it can be directly obtained. The E part is an identity matrix. The position of the non-zero element can be calculated according to the currently processed line number. For example, when the current processing behavior is on the 18th line, the E part Corresponding non-zero elements are located in 28 columns. When the current processing behavior is on the 19th line, the E-part corresponds to non-zero elements in the 29th column, and so on. When all the non-zero element positions of the E part are obtained by calculation, the calculation result may be saved, or may not be saved, and is calculated when the corresponding row and column are calculated in the encoding or decoding process.
另一种实施方式中,存储原完整矩阵中前14列。矩阵右侧未存储的部分中,可以通过计算直接得到未存储的部分中,非0元素的位置。例如,当前处理行为第4行时,存储部分对应非0元素位于14列,当前处理行为第5行时,存储部分对应非0元素位于15列,依次类推。在通过计算得到矩阵未存储部分所有非零元素位置时,可以将计算结果保存下来,也可以不保存,在编码或译码过程中计算到对应行列时,再计算。In another embodiment, the first 14 columns of the original complete matrix are stored. In the unstored part of the right side of the matrix, the position of the non-zero element in the unstored part can be directly obtained by calculation. For example, when the current processing behavior is on the fourth line, the storage portion corresponds to a non-zero element located in 14 columns, and when the current processing behavior is on the fifth line, the storage portion corresponds to a non-zero element located in 15 columns, and so on. When all non-zero element positions in the unstored portion of the matrix are obtained by calculation, the calculation result may be saved or not, and may be calculated when the corresponding row and column are calculated in the encoding or decoding process.
另一种实现方式中,存储原完整矩阵中前14+x列。矩阵右侧未存储的部分中,前4行为一全0矩阵,其余部分为一单位矩阵,可以通过计算直接得到未存储的部分中非0元素 的位置。例如,当前处理行为第(3+x)行时,位存储部分对应非0元素位于(14+x)z列,当前处理行为第(3+x)+1行时,E部分对应非0元素位于(14+x)z+1列,依次类推。在通过计算得到矩阵未存储部分所有非零元素位置时,可以将计算结果保存下来,也可以不保存,在编码或译码过程中计算到对应行列时,再计算。In another implementation, the first 14+x columns in the original complete matrix are stored. In the unstored part of the right side of the matrix, the first 4 acts as a full 0 matrix, and the rest is a unit matrix. The position of the non-zero element in the unstored part can be directly obtained by calculation. For example, when the current processing behavior is (3+x), the bit storage portion corresponds to a non-zero element located in the (14+x)z column. When the current processing behavior is (3+x)+1 rows, the E portion corresponds to a non-zero element. Located in the (14+x)z+1 column, and so on. When all non-zero element positions in the unstored portion of the matrix are obtained by calculation, the calculation result may be saved or not, and may be calculated when the corresponding row and column are calculated in the encoding or decoding process.
在又一种实现方式中,存储偏移值矩阵时,既可以直接存储偏移值矩阵中记录的值,也可以存储由本申请中所述的偏移值矩阵值进行简单数学变换后得到的值。In another implementation manner, when the offset value matrix is stored, the value recorded in the offset value matrix may be directly stored, or the value obtained by performing simple mathematical transformation on the offset value matrix value described in the present application may be stored. .
在一种实现方式中,对所述偏移值矩阵的值进行变换后再存储。变换时,从当前偏移值矩阵中的第一行开始,逐行进行变换。若遇到的为代表全零矩阵的元素(如-1),则不做变换直接存储;若遇到的为代表非全零矩阵的元素(非负元素),且该元素为所在列中第一个代表非全零矩阵的元素(非负元素),则不做变换,直接存储;若遇到的为代表非全零矩阵的元素(非负元素),且该元素不是所在列中第一个代表非全零矩阵的元素(非负元素),则保存该非负元素和同一列中前一个代表非全零矩阵元素的差值,该差值为正表示右移,若差值为负则表示左移。In one implementation, the value of the offset value matrix is transformed and stored. When transforming, starting from the first line in the current offset value matrix, the transform is performed row by row. If an element (such as -1) that represents an all-zero matrix is encountered, it is stored directly without transformation; if it is an element representing a non-zero matrix (non-negative element), and the element is in the column An element (non-negative element) representing a non-zero matrix is stored without direct transformation; if it is an element representing a non-zero matrix (non-negative element), and the element is not the first in the column An element representing a non-zero matrix (non-negative element) holds the difference between the non-negative element and the previous one of the same column representing the non-zero matrix element. The difference is positive for right shift, if the difference is negative Then it means to move left.
需要说明的是,类似的变换可以不从偏移值矩阵中的第一行开始,可以从任意一行开始,类似变换进行到矩阵最后一行后,则返回循环返回到第一行并继续向下进行变换。并且这种存储差值的方式对不同的扩展因子Z有可能不同,需要经过P
i,j=mod(V
i,j,Z
c)计算出实际偏移值再计算差值。
It should be noted that a similar transformation may not start from the first row in the offset value matrix, and may start from any row. After the similar transformation proceeds to the last row of the matrix, the return loop returns to the first row and continues downward. Transform. And this way of storing the difference may be different for different spreading factors Z, and it is necessary to calculate the actual offset value and calculate the difference by P i,j = mod(V i,j , Z c ).
在编译码过程中,可以根据同列中之前元素的值递归计算,恢复出变换前的偏移值;也可以直接使用相对偏移值进行编码和译码。In the process of encoding and decoding, the value of the previous element in the same column can be recursively calculated to recover the offset value before the transformation; or the relative offset value can be directly used for encoding and decoding.
在一种实现方式中,也可以偏移值矩阵的值V
i,j进行变换后再存储。进行变换操作过程中,保持矩阵中所有代表全零矩阵的元素(如-1)的位置和取值不变,对于代表非全零矩阵的元素(非负元素),假设其原取值为Vij,则变换后的取值为(z-Vij)mod z。实际编译码过程中,基于变换后的偏移值对单位矩阵做左移操作(原先为右移),即可实现正常编码和译码。
In one implementation, the values V i,j of the offset matrix may be transformed and stored. During the transform operation, the positions and values of all the elements (such as -1) representing the all-zero matrix in the matrix are kept unchanged. For the elements representing non-all-zero matrices (non-negative elements), the original value is assumed to be Vij. , the transformed value is (z-Vij) mod z. In the actual encoding and decoding process, the normal encoding and decoding can be realized by performing a left shift operation (originally right shift) on the unit matrix based on the transformed offset value.
在一种实现方式中,对所述偏移值矩阵的值V
i,j进行变换后再存储。进行变换操作过程中,将原十进制偏移值变换为其他进制的形式,如2进制,8进制,16进制等。编译码过程中,可以选择将变换后的偏移值矩阵恢复,再进行编译码;也可以直接采用变换后的偏移值矩阵进行编译码。
In one implementation, the value V i,j of the offset value matrix is transformed and stored. During the transform operation, the original decimal offset value is converted to other binary forms, such as binary, octal, hexadecimal, and so on. During the process of encoding and decoding, you can choose to restore the transformed offset matrix and then compile the code. You can also directly use the transformed offset matrix to compile the code.
在一种实现方式中,编码端不保存校验矩阵,而保存可能需要的生成矩阵进行编码。假设待编码比特段为c=c
0,c
1,c
2,c
3,...,c
K-1,编码后比特段为d=d
0,d
1,d
2,...,d
N-1,则生成矩阵G满足:d=c·G
In one implementation, the encoding end does not save the check matrix, but saves the generator matrix that may be needed for encoding. Suppose that the bit segment to be encoded is c=c 0 , c 1 , c 2 , c 3 ,..., c K-1 , and the bit segment after encoding is d=d 0 , d 1 , d 2 ,...,d N-1 , the generator matrix G satisfies: d=c·G
其中,生成矩阵可以由校验矩阵H变换得到,对于校验矩阵H,通过行列变换,可将其右侧变为对角阵形式,表示为:The generation matrix can be obtained by transforming the check matrix H. For the check matrix H, by the row and column transformation, the right side can be changed into a diagonal matrix form, which is expressed as:
H=[P I] (2)H=[P I] (2)
则,其对应生成矩阵G满足:Then, its corresponding generation matrix G satisfies:
G=[I P
T] (3)
G=[I P T ] (3)
其中校验矩阵H可以是上述实施例中所述的任一校验矩阵或者基矩阵,或LDPC矩阵。编码时,可利用存储的生成矩阵G,由待编码比特段为c=c
0,c
1,c
2,c
3,...,c
K-1 直接计算编码后比特段d=d
0,d
1,d
2,...,d
N-1。
The check matrix H may be any one of the check matrix or the base matrix described in the above embodiments, or an LDPC matrix. When encoding, the stored generation matrix G can be used to directly calculate the encoded bit segment d=d 0 from the bit segment to be encoded c=c 0 , c 1 , c 2 , c 3 , . . . , c K-1 . d 1 , d 2 ,...,d N-1 .
一种实现方式中,编码时,对于矩阵双对角部分,可以采用上述任一方式进行编码,也可以采用存储一个多行叠加矩阵的的方法进行编码。In an implementation manner, when encoding, for the double diagonal portion of the matrix, the encoding may be performed by any of the above methods, or may be performed by a method of storing a multi-row superposition matrix.
在一种实现方式中,可以对每一个扩展因子Z,根据P
i,j=mod(V
i,j,Z
c)计算出其对应的偏移值矩阵,然后将51个扩展因子对应的矩阵均存储下来用于编译码。
In an implementation manner, for each expansion factor Z, the corresponding offset value matrix can be calculated according to P i,j = mod(V i,j , Z c ), and then 51 matrices corresponding to the expansion factor are used. Both are stored for compilation.
可选地,在通信系统中,可采用上述方法编码后得到LDPC码。获得LDPC码后,通信装置,还可以进行以下一个或多个操作:对LDPC码进行速率匹配;根据交织方案对速率匹配后的LDPC码进行交织;根据调制方案对交织后的LDPC码进行调制得到比特序列X;发送比特序列X。Optionally, in the communication system, the LDPC code is obtained by using the above method. After obtaining the LDPC code, the communication device may perform one or more operations of performing rate matching on the LDPC code, interleaving the rate matched LDPC code according to the interleaving scheme, and modulating the interleaved LDPC code according to the modulation scheme. Bit sequence X; transmit bit sequence X.
译码是编码的逆过程,译码过程使用的基矩阵与编码过程使用的的基矩阵具有相同的特征。LDPC码的编码过程可以参考前述实现方式描述,此处不再赘述。在一种实现方式中,在译码之前,通信装置还可以进行以下一个或多个操作:接收包含基于LDPC编码的信号,对信号进行解调,解交织以及解速率匹配得到LDPC码的软值序列,对LDPC码的软值序列进行译码。在进行译码时也可以基于完整基图或者不包括内置打孔列的完整基图进行译码,或者,基于完整基图的部分行、列译码。Decoding is the inverse of encoding. The base matrix used in the decoding process has the same characteristics as the base matrix used in the encoding process. For the encoding process of the LDPC code, refer to the foregoing implementation manner, and details are not described herein again. In an implementation, before decoding, the communication device may perform one or more operations of: receiving a signal including LDPC-based coding, demodulating, deinterleaving, and de-rate matching the signal to obtain a soft value of the LDPC code. The sequence decodes the soft value sequence of the LDPC code. It is also possible to perform decoding based on a complete base map or a complete base map that does not include a built-in punctured column, or a partial row and column decoding based on a complete base map.
本申请中涉及的保存,可以是指的保存在一个或者多个存储器中。所述一个或者多个存储器,可以是单独的设置,也可以是集成在编码器或者译码器,处理器、芯片、通信装置、或者终端。所述一个或者多个存储器,也可以是一部分单独设置,一部分集成在译码器、处理器、芯片、通信装置、或者终端中,存储器的类型可以是任意形式的存储介质,本申请并不对此限定。The preservation referred to in this application may be stored in one or more memories. The one or more memories may be separate settings, or may be integrated in an encoder or decoder, a processor, a chip, a communication device, or a terminal. The one or more memories may be separately provided in a part, and the part may be integrated in a decoder, a processor, a chip, a communication device, or a terminal. The type of the memory may be any form of storage medium, and the present application does not limited.
相应于图5,图6的给出的数据处理过程的设计,本发明实施例还提供了相应的通信装置,所述通信装置包括用于执行图5或图6中每个部分相应的模块。所述模块可以是软件,也可以是硬件,或者是软件和硬件结合。例如模块可以包括存储器,电子设备,电子部件,逻辑电路等,或上述任一组合。图7给出了一种通信装置700的结构示意图,装置700可用于实现上述方法实施例中描述的方法,可以参见上述方法实施例中的说明。所述通信装置700可以是芯片,基站,终端或者其他网络设备。Corresponding to the design of the data processing procedure given in FIG. 5 and FIG. 6, the embodiment of the present invention further provides a corresponding communication device, and the communication device includes a module for executing each part of FIG. 5 or FIG. The module can be software, hardware, or a combination of software and hardware. For example, a module can include a memory, an electronic device, an electronic component, a logic circuit, etc., or any combination of the above. FIG. 7 is a schematic structural diagram of a communication device 700. The device 700 can be used to implement the method described in the foregoing method embodiments. For details, refer to the description in the foregoing method embodiments. The communication device 700 can be a chip, a base station, a terminal, or other network device.
所述通信装置700包括一个或多个处理器701。所述处理器701可以是通用处理器或者专用处理器等。例如可以是基带处理器、或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对通信装置(如,基站、终端、或芯片等)进行控制,执行软件程序,处理软件程序的数据。The communication device 700 includes one or more processors 701. The processor 701 can be a general purpose processor or a dedicated processor or the like. For example, it can be a baseband processor, or a central processing unit. The baseband processor can be used to process communication protocols and communication data, and the central processor can be used to control communication devices (eg, base stations, terminals, or chips, etc.), execute software programs, and process data of the software programs.
在一种可能的涉及中,如5,图6中的一个或者多个模块可能由一个或者多个处理器来实现,或者一个或者多个处理器和存储器来实现。In one possible involvement, such as 5, one or more of the modules of FIG. 6 may be implemented by one or more processors, or by one or more processors and memories.
在一种可能的设计中,所述通信装置700包括一个或多个所述处理器701,所述一个或多个处理器701可实现上述编码/译码的功能,例如通信装置可以是编码器或者译码器。在另一种可能的设计中,处理器701除了实现编码/译码功能,还可以实现其他功能。In one possible design, the communication device 700 includes one or more of the processors 701, and the one or more processors 701 can implement the above-described encoding/decoding functions, for example, the communication device can be an encoder. Or decoder. In another possible design, the processor 701 can implement other functions in addition to the encoding/decoding functions.
所述通信装置700基于LDPC矩阵对输入序列进行编码/译码;该LDPC矩阵的基矩阵可以为前述示例中的任一基矩阵或者相对于前述例举的任一基矩阵而言行顺序发生变换、或者列顺序发生变换,或者行顺序和列顺序均发生变换的基矩阵,或者是基于前述例举的任一基矩阵截短或者打孔的基矩阵,或者是基于前述例举任一基矩阵扩展后的矩阵。关于编码 或者/译码的处理可以参见图5和图6相关部分的描述,在此不再赘述。The communication device 700 encodes/decodes an input sequence based on an LDPC matrix; the base matrix of the LDPC matrix may be any of the base matrix in the foregoing example or may be changed in a row order with respect to any of the base matrices exemplified above, Or a column matrix in which the column order is transformed, or a matrix matrix in which both the row order and the column order are transformed, or a base matrix based on the truncation or puncturing of any of the base matrix exemplified above, or based on any of the foregoing basic matrix extensions After the matrix. For the processing of encoding or / decoding, reference may be made to the description of the relevant parts of FIG. 5 and FIG. 6, and details are not described herein again.
可选的,在一种设计中,处理器701可以包括指令703(有时也可以称为代码或程序),所述指令可以在所述处理器上被运行,使得所述通信装置700执行上述实施例中描述的方法。在又一种可能的设计中,通信装置700也可以包括电路,所述电路可以实现前述实施例中的编码/译码功能。Alternatively, in one design, the processor 701 can include instructions 703 (sometimes referred to as code or programs) that can be executed on the processor such that the communication device 700 performs the above-described implementation The method described in the example. In yet another possible design, communication device 700 can also include circuitry that can implement the encoding/decoding functions of the previous embodiments.
可选的,在一种设计中,所述通信装置700中可以包括一个或多个存储器702,其上存有指令704,所述指令可在所述处理器上被运行,使得所述通信装置700执行上述方法实施例中描述的方法。Optionally, in one design, the communication device 700 may include one or more memories 702 on which instructions 704 are stored, the instructions being executable on the processor such that the communication device 700 performs the method described in the above method embodiments.
可选的,所述存储器中还可以存储有数据。可选的处理器中也可以存储指令和/或数据。所述处理器和存储器可以单独设置,也可以集成在一起。Optionally, data may also be stored in the memory. Instructions and/or data can also be stored in the optional processor. The processor and the memory may be provided separately or integrated.
可选的,上述实施例中所述的“保存”可以是保存存储器702中,也可以是保存在其他的外设的存储器或者存储设备中。Optionally, the “storage” described in the above embodiments may be in the storage memory 702, or may be stored in a memory or a storage device of other peripherals.
例如,一个或多个存储702可以存储与上述列举的LDPC矩阵相关的参数,例如,基矩阵相关的参数,例如偏移值,基图,基于基图扩展到矩阵、基矩阵中的各行,扩展因子,基矩阵或者基于基矩阵扩展到矩阵等等。具体可以参见上述图5部分的相关描述。For example, one or more of the stores 702 may store parameters related to the LDPC matrix enumerated above, eg, base matrix related parameters, such as offset values, base maps, extensions based on the base map to the matrix, rows in the base matrix, extensions The factor, the base matrix or the base matrix is extended to the matrix and so on. For details, refer to the related description in the above part of FIG. 5.
可选的,所述通信装置700还可以包括收发器705以及天线706。所述处理器701可以称为处理单元,对通信装置(终端或者基站)进行控制。所述收发器505可以称为收发单元、收发机、收发电路、或者收发器等,用于通过天线506实现通信装置的收发功能.Optionally, the communication device 700 may further include a transceiver 705 and an antenna 706. The processor 701 may be referred to as a processing unit that controls a communication device (terminal or base station). The transceiver 505 can be referred to as a transceiver unit, a transceiver, a transceiver circuit, or a transceiver, etc., for implementing the transceiver function of the communication device through the antenna 506.
可选的,所述通信装置700还可以包括用于产生传输块CRC的器件、用于码块分割和CRC校验的器件、用于交织的交织器、用于速率匹配的器件、或者用于调制处理的调制器等。可以通过一个或多个处理器701实现这些器件的功能。Optionally, the communication device 700 may further comprise a device for generating a transport block CRC, a device for code block splitting and CRC check, an interleaver for interleaving, a device for rate matching, or for Modulation of the modulator, etc. The functionality of these devices can be implemented by one or more processors 701.
可选的,所述通信装置700还可以包括,用于解调操作的解调器、用于解交织的解交织器、用于解速率匹配的器件、或者用于码块级联和CRC校验的器件等等。可以通过一个或多个处理器701实现这些器件的功能。Optionally, the communication device 700 may further include a demodulator for demodulation operation, a deinterleaver for deinterleaving, a device for de-rate matching, or a code block cascading and CRC calibration. Tested devices and so on. The functionality of these devices can be implemented by one or more processors 701.
图8给出了一种通信系统800的示意图,通信系统800中包括通信设备80和通信设备81,其中,信息数据在通信设备80和通信设备81之间接收和发送。通信设备80和81可以是所述通信装装置700,或者通信设备备80和81分别包括通信装置700,对信息数据进行接收和/或发送。在一个例子中,通信设备80可以为终端,相应的通信设备81可以为基站;在另一个例子中,通信设备80为基站,相应的通信设备81可以为终端。8 shows a schematic diagram of a communication system 800 that includes a communication device 80 and a communication device 81, wherein the information data is received and transmitted between the communication device 80 and the communication device 81. The communication devices 80 and 81 may be the communication device 700, or the communication devices 80 and 81 respectively include a communication device 700 for receiving and/or transmitting information data. In one example, communication device 80 can be a terminal, and corresponding communication device 81 can be a base station; in another example, communication device 80 is a base station and corresponding communication device 81 can be a terminal.
本领域技术任何还可以了解到本发明实施例列出的各种说明性逻辑块(illustrative logical block)和步骤(step)可以通过电子硬件、电脑软件,或两者的结合进行实现。这样的功能是通过硬件还是软件来实现取决于特定的应用和整个系统的设计要求。本领域技术人员可以对于每种特定的应用,可以使用各种方法实现所述的功能,但这种实现不应被理解为超出本发明实施例保护的范围。It is also understood by those skilled in the art that the various illustrative logical blocks and steps listed in the embodiments of the present invention can be implemented by electronic hardware, computer software, or a combination of both. Whether such functionality is implemented by hardware or software depends on the design requirements of the particular application and the overall system. A person skilled in the art can implement the described functions using various methods for each specific application, but such implementation should not be construed as being beyond the scope of the embodiments of the present invention.
本申请所描述的技术可通过各种方式来实现。例如,这些技术可以用硬件、软件或者硬件结合的方式来实现。对于硬件实现,用于在通信装置(例如,基站,终端、网络实体、或芯片)处执行这些技术的处理单元,可以实现在一个或多个通用处理器、数字信号处理器(DSP)、数字信号处理器件(DSPD)、专用集成电路(ASIC)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、或其它可编程逻辑装置,离散门或晶体管逻辑,离散硬件部件, 或上述任何组合中。通用处理器可以为微处理器,可选地,该通用处理器也可以为任何传统的处理器、控制器、微控制器或状态机。处理器也可以通过计算装置的组合来实现,例如数字信号处理器和微处理器,多个微处理器,一个或多个微处理器联合一个数字信号处理器核,或任何其它类似的配置来实现。The techniques described herein can be implemented in a variety of ways. For example, these techniques can be implemented in a combination of hardware, software, or hardware. For hardware implementations, processing units for performing these techniques at a communication device (eg, a base station, terminal, network entity, or chip) may be implemented in one or more general purpose processors, digital signal processors (DSPs), digital Signal processing device (DSPD), application specific integrated circuit (ASIC), programmable logic device (PLD), field programmable gate array (FPGA), or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or In any combination. A general purpose processor may be a microprocessor. Alternatively, the general purpose processor may be any conventional processor, controller, microcontroller, or state machine. The processor may also be implemented by a combination of computing devices, such as a digital signal processor and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a digital signal processor core, or any other similar configuration. achieve.
本发明实施例中所描述的方法或算法的步骤可以直接嵌入硬件、处理器执行的指令、或者这两者的结合。存储器可以是RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、可移动磁盘、CD-ROM或本领域中其它任意形式的存储媒介。例如,存储器可以与处理器连接,以使得处理器可以从存储器中读取信息,并可以向存储器存写信息。可选地,存储器还可以集成到处理器中。处理器和存储器可以设置于ASIC中,ASIC可以设置于UE中。可选地,处理器和存储器也可以设置于UE中的不同的部件中。The steps of the method or algorithm described in the embodiments of the present invention may be directly embedded in hardware, instructions executed by a processor, or a combination of the two. The memory can be RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, removable disk, CD-ROM, or any other form of storage medium in the art. For example, the memory can be coupled to the processor such that the processor can read information from the memory and can write information to the memory. Alternatively, the memory can also be integrated into the processor. The processor and the memory may be disposed in an ASIC, and the ASIC may be disposed in the UE. Alternatively, the processor and memory may also be located in different components in the UE.
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到本发明可以用硬件实现,或固件实现,或它们的组合方式来实现。当使用软件程序实现时,可以全部或部分地以计算机程序产品的形式实现,所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机指令时,全部或部分地产生按照本发明实施例所述的流程或功能。当使用软件程序实现时,也可以将上述功能存储在计算机可读介质中或作为计算机可读介质上的一个或多个指令或代码进行传输。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一计算机可读存储介质传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是计算机能够存取的任何可用介质。以此为例但不限于:计算机可读介质可以包括RAM、ROM、EEPROM、CD-ROM或其他光盘存储、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质。此外。任何连接可以适当的成为计算机可读介质。例如,如果软件是使用同轴电缆、光纤光缆、双绞线、数字用户线(DSL)或者诸如红外线、无线电和微波之类的无线技术从网站、服务器或者其他远程源传输的,那么同轴电缆、光纤光缆、双绞线、DSL或者诸如红外线、无线和微波之类的无线技术包括在所属介质的定义中。如本发明所使用的,盘(Disk)和碟(disc)包括压缩光碟(CD)、激光碟、光碟、数字通用光碟(DVD)、软盘和蓝光光碟,其中盘通常磁性的复制数据,而碟则用激光来光学的复制数据。上面的组合也应当包括在计算机可读介质的保护范围之内。Through the description of the above embodiments, those skilled in the art can clearly understand that the present invention can be implemented in hardware, firmware implementation, or a combination thereof. When implemented using a software program, it may be implemented in whole or in part in the form of a computer program product comprising one or more computer instructions. When the computer instructions are loaded and executed on a computer, the processes or functions described in accordance with embodiments of the present invention are generated in whole or in part. When implemented using a software program, the functions described above may also be stored in or transmitted as one or more instructions or code on a computer readable medium. The computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device. The computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium. Computer readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one location to another. A storage medium may be any available media that can be accessed by a computer. By way of example and not limitation, computer readable media may comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, disk storage media or other magnetic storage device, or can be used for carrying or storing in the form of an instruction or data structure. The desired program code and any other medium that can be accessed by the computer. Also. Any connection may suitably be a computer readable medium. For example, if the software is transmitted from a website, server, or other remote source using coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), or wireless technologies such as infrared, radio, and microwave, then the coaxial cable , fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, wireless, and microwave are included in the definition of the medium to which they belong. As used in the present invention, a disk and a disc include a compact disc (CD), a laser disc, a compact disc, a digital versatile disc (DVD), a floppy disk, and a Blu-ray disc, wherein the disc is usually magnetically copied, and the disc is The laser is used to optically replicate the data. Combinations of the above should also be included within the scope of the computer readable media.
需要说明的是,本申请中的“/”表示和/或,例如“编码/译码(编码和/或译码),是指的编码、或者译码、或者编码和译码。It should be noted that “/” in the present application means and/or, for example, “encoding/decoding (encoding and/or decoding), refers to encoding, or decoding, or encoding and decoding.
总之,以上所述仅为本发明技术方案的较佳实施例而已,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。In summary, the above description is only a preferred embodiment of the technical solution of the present invention, and is not intended to limit the scope of the present invention. Any modifications, equivalent substitutions, improvements, etc. made within the spirit and scope of the present invention are intended to be included within the scope of the present invention.