Nothing Special   »   [go: up one dir, main page]

WO2019093789A1 - Homopolypropylene resin for non-woven fabric and manufacturing method therefor - Google Patents

Homopolypropylene resin for non-woven fabric and manufacturing method therefor Download PDF

Info

Publication number
WO2019093789A1
WO2019093789A1 PCT/KR2018/013548 KR2018013548W WO2019093789A1 WO 2019093789 A1 WO2019093789 A1 WO 2019093789A1 KR 2018013548 W KR2018013548 W KR 2018013548W WO 2019093789 A1 WO2019093789 A1 WO 2019093789A1
Authority
WO
WIPO (PCT)
Prior art keywords
substituted
unsubstituted
nonwoven fabric
group
homopolypropylene resin
Prior art date
Application number
PCT/KR2018/013548
Other languages
French (fr)
Korean (ko)
Inventor
박희광
김병석
노경섭
전상진
채성민
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020180136198A external-priority patent/KR102317015B1/en
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201880052625.9A priority Critical patent/CN111032703B/en
Priority to EP18876898.0A priority patent/EP3650473A4/en
Priority to JP2020501829A priority patent/JP7089015B2/en
Priority to US16/636,719 priority patent/US11111323B2/en
Publication of WO2019093789A1 publication Critical patent/WO2019093789A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F10/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/02Polymerisation in bulk
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/6592Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4282Addition polymers
    • D04H1/4291Olefin series

Definitions

  • the present invention relates to a homopolypropylene resin for a nonwoven fabric and a method for producing the same.
  • a nonwoven fabric is a fabric made by bonding or tangling a fibrous aggregate by a machine or a chemical treatment such as a machine operation or thermal bonding without going through a process of weaving, weaving or knitting.
  • Such a nonwoven fabric may be produced by various methods. A needle bonding method, a thermal bonding method, a melt blowing method, a spigot lace method, a stitch bond method, and a spun bond method are known.
  • a spunbond nonwoven fabric made of a polyolefin resin is widely used as a filter, a packaging material, a bedding, a garment, a medical product, a sanitary article, an automobile interior material, a building material and the like because of excellent touch, flexibility, air permeability, have.
  • polypropylene staple fibers are processed into a thermal bond nonwoven fabric through calendaring or air through bonding due to their unique low melting point and excellent chemical resistance, and they are mainly used as surface materials for sanitary articles such as diapers and sanitary napkins.
  • a polypropylene heat-sealable nonwoven fabric is prepared by introducing a salicylic acid metal salt as a crystallization inhibitor into a master batch pellet in order to impart soft touch and high tensile strength to a nonwoven fabric,
  • a salicylic acid metal salt as a crystallization inhibitor
  • the test for spunbond nonwoven fabric differs from that of thermal bond nonwoven fabric through short fibers.
  • the spunbond nonwoven fabric has a higher tensile strength than a single-fiber thermal bond nonwoven fabric, but it is a conventional belief that the soft feel is deteriorated.
  • the homopolypropylene resin produced by the metallocene catalyst has a narrow molecular weight distribution, so that it is possible to produce a fiber having a small thickness and a uniform thickness, There is an advantage of manufacturing a low basis weight nonwoven fabric.
  • the metallocene homopolypropylene resin has a disadvantage in giving a rough texture to the surface of the nonwoven fabric because of low low molecular weight content due to low xylene solubles or a narrow molecular weight distribution.
  • the present invention optimizes the modulus by minimizing both tacticity and molecular weight distribution (MWD), melt index (MI), melting point (Tm) and residual force ratio, A homopolypropylene resin for a nonwoven fabric which can provide both a soft feel to a conventional product and an excellent toughness that is not easily torn by a high strength.
  • the tacticity is 80% to 90%
  • the molecular weight distribution (MTO) is 2.4 or less
  • the melt index Ml is 20 to 30 g / min
  • the melting point Tm is 145 ° C or less
  • a residual force ratio of about 0.05% or less.
  • the homopolypropylene homopolymer for nonwoven fabric may have a molecular weight distribution (MWD) of 2.1 to 2.4, a melting point (Tm) of 133 ° C to 143 ° C, and a tacticity of 82% to 87%
  • a melt index (Ml) of from 23 g / min to 26 g / min.
  • a process for producing a homopolypropylene resin for a nonwoven fabric which comprises polymerizing propylene in the presence of a catalyst containing only a transition metal compound represented by the following formula / RTI >
  • A is carbon, silicon or germanium
  • M is a Group 4 transition metal
  • X 1 and X 2 are the same or different and are each independently a halogen, substituted or unsubstituted d- 20 alkyl, substituted or unsubstituted C 2 - 20 alkenyl, substituted or unsubstituted C 6 - 20 aryl, nitro, amido, substituted or unsubstituted d- 20 alkyl, substituted or unsubstituted C 6 - 20 arylamino, a substituted or unsubstituted d-20 alkyl silyl group, a substituted or unsubstituted d-20 alkoxy, or A substituted or unsubstituted sulfonate;
  • R 1 and R 6 are the same or different from each other, and each independently hydrogen or substituted or unsubstituted d- 20 alkyl;
  • R 2 and R 3 , and R 7 and R 8 are each connected to each other to form a substituted or unsubstituted C 6 -
  • R 4 , R 5 , R 9 and R 10 are the same or different and each independently represents hydrogen, halogen, substituted or unsubstituted d- 20 alkyl, substituted or unsubstituted C 2 -C 20 alkenyl, Unsubstituted d-20 alkylsilyl, substituted or unsubstituted silylalkyl, substituted or unsubstituted alkoxysilyl, substituted or unsubstituted d- 20 ether, substituted or unsubstituted d-20 silyl ether, The Alkoxy, substituted or unsubstituted C 6 - 20 aryl, substituted or unsubstituted C 7 - 20 alkylaryl, or substituted or unsubstituted C 7 - 20 aryl-alkyl;
  • R 11 and R 12 are the same each other, C 2 - 20 is alkyl.
  • the transition metal compound in the formula (1) related to R 2 and R 3 and R 7 and R 8 are respectively connected to each other C 6 - 20 may be to form an aryl group.
  • the transition metal compound may be represented by the following general formula (1-1).
  • the transition metal compound A may be a silicon
  • M is zirconium or hafnium may be a
  • X 1 and X 2 may each be a halogen
  • R 1 and R 6 are each hydrogen or a straight-chain alkyl d- 5 one can
  • R 4, R 5, R 9, and R 10 may be hydrogen
  • R 11 are the same and R 12, C 2 - 4 may be a straight chain alkyl group.
  • the transition metal compound may be one represented by one of the following structural formulas:
  • the homopolypropylene may be produced by a continuous bulk-slurry polymerization process.
  • a metallocene homopolypropylene resin produced under a single catalyst comprising a specific transition metal compound, wherein the tacticity and the molecular weight distribution (MTO), the melt index (Ml), the melting point ) And the residual force ratio as well as the narrow molecular weight distribution, it is possible to optimize the modulus to give a soft touch to the existing product, and to have an excellent toughness that is not torn easily at high strength A nonwoven fabric can be provided.
  • the tacticity is 80% to 90%
  • the molecular weight distribution (MffD) is 2.4 or less
  • the melt index (Ml) is 20 g / min to 30 g / min
  • a melting point (Tm) of 145 ° C or less
  • a residual force ratio of 0.05% or less.
  • the inventors of the present invention found that the metallocene homopolypropylene resin known in the art for the polypropylene resin used for nonwoven fabrics has a low content of low molecular weight due to low xylene solubles or a narrow molecular weight distribution, It is confirmed that there is a disadvantage in giving rough feel to the surface during the production of the nonwoven fabric.
  • the present inventors have found that, in the course of repeated studies for improving the above problems, the tacticity of the metallocene homopolypropylene resin is optimized to 80% to 90% and the melt index (Ml) g / min, optimizing the melting point (Tm) to below 145 V, optimizing the residual force ratio and the molecular weight distribution to 0.05% or less and 2.4 or less, respectively, to optimize the modulus It was confirmed that a nonwoven fabric having excellent toughness can be produced while exhibiting a soft touch. In particular, when soft nonwoven fabric is manufactured by lowering tacticity by the conventional method, soft properties can be realized, but there is a disadvantage in that the strength of the nonwoven fabric tends to be lowered, It is difficult to stretch one.
  • the present invention includes a homopolypropylene resin obtained by a polymerization process using a single catalyst containing a specific metallocene catalyst, which is not a Ziegler-Natta catalyst, as an active component, thereby lowering tacticity
  • a specific metallocene catalyst which is not a Ziegler-Natta catalyst
  • the present invention includes a homopolypropylene resin produced through a reactor-made process using a single catalyst with softness and high strength, which are physical properties in a trade-off relationship. .
  • the homopolypropylene resin according to the present invention can be used for producing a nonwoven fabric and is characterized in that the tacticity of the metallocene homopolypropylene resin is about 80% to about 90%.
  • the tacticity of the homopolypropylene resin can be measured by nuclear magnetic resonance (NMR) analysis, which is about 80% to about 90%, or about 80% to about 80% About 87%, and black can be about 82% to about 87%.
  • NMR nuclear magnetic resonance
  • the tacticity may be a value measured using nuclear magnetic resonance (NMR).
  • the measurement method of tacticity can be further specified in a test example to be described later.
  • the tacticity of the resin should be about 80% or more from the viewpoint of ensuring excellent toughness in manufacturing the nonwoven fabric, and about 90% or less from the viewpoint of realizing a nonwoven fabric having soft touch .
  • the homopolypropylene resin of the present invention is characterized by having a narrow molecular weight distribution (MWD) of about 2.4 or less with an optimized tacticity range as described above.
  • the homopolypropylene resin may have a molecular weight distribution of about 2.4 or less and black of about 2.0 to about 2.4, or about 2.05 to about 2.4, or about 2.1 to about 2.4.
  • the homopolypropylene resin should have a narrow molecular weight distribution (D) of about 2.4 or less in view of ensuring excellent toughness in the production of nonwoven fabric.
  • the weight average molecular weight (Mw) and the number average molecular weight (Mn) of the homopolypropylene resin are measured by gel permeation chromatography (GPC), and the weight average molecular weight The ratio of molecular weight (Mw / Mn) was calculated.
  • GPC gel permeation chromatography
  • a gel permeation chromatography (GPC) apparatus can be measured using a Waters PL-GPC220 instrument and a Polymer Laboratories PLgel MIX-B 300 image length column.
  • the measurement temperature is 160 ° C, 1,2,4-trichlorobenzene is used as a solvent, and the flow rate is 1 mL / min.
  • Samples of the homopolypropylene resin were each prepared at a concentration of 10 mg / 10 mL, and then supplied in an amount of 200 iiL. Values of Mw and Mn can be derived using a calibration curve formed using a polystyrene standard specimen.
  • the weight average molecular weight of the polystyrene standard specimen is 2000 g / mol, 10000 g / mol, 30000 g / mol, 70000 g / mol, 200000 g / mol, 700000 g / mol, 2000000 g / mol, 10000000 g / mol can be used.
  • the homopolypropylene resin of the present invention has a melt index (Ml) and a melting point (Tm) of 20 to 30 g / min and 145, respectively, together with the optimized tacticity range and narrow molecular weight distribution as described above. C or less.
  • the melt index (MI) of the homopolypropylene resin was measured at 230 ° C under a load of 2.16 kg according to ASTM D 1238 of the American Society for Testing and Materials (ASTM) 20 to about 30 g / 10 min, or about 20 to about 26 g / 10 min, or about 23 to about 26 g / 10 min.
  • the melt index (MI) should be maintained within the above-mentioned range in terms of securing both the radioactive property and the strength of the nonwoven fabric to an excellent degree.
  • the melt index (Ml) is less than about 20 g / 10 min in processing a nonwoven fabric using a resin, there is a problem that the processing pressure is increased and the workability is lowered.
  • the melt index (MI) exceeds about 30 g / 10 m in, the pressure can be secured during processing, but the strength of the product can not achieve the desired high strength.
  • the melting point (Tm) of the homo-polypropylene resin is about 145 ° C or less, or about 130 ° C to about 145 ° C, or from about 144 ° C or less, or about 132 ° C to about 144 ° C, or from about 143 ° C or from about 133 ° C to about 143 ° C.
  • the melting point (Tm) of the homopolypropylene resin should be 145 V or less in terms of preventing degradation of the resin due to the rise. Also, when the melting point (Tm) of the homopolypropylene resin exceeds 145 ° C, there arises a problem in radioactivity, so that single yarns of the fibers are generated and the percentage of defects can be increased. However, if the melting point (Tm) of the homopolypropylene resin is lowered to 130 ° C or lower, it may be difficult or the productivity may be lowered.
  • the melting point of the homopolypropylene resin is determined by increasing the temperature of the homopolypropylene resin to 220 ° C, keeping it at that temperature for 5 minutes, then lowering it to 20 ° C, To measure the DSC (Di fferent i al Scanning Calorimeter, manufactured by TA Corporation) curve at the top of the curve as the melting point. At this time, the temperature rise and fall rates are respectively 10 ° C / min, and the melting points are the results measured at the second rise of the temperature.
  • DSC Densonic i al Scanning Calorimeter
  • the homopolypropylene resin has a tacticity as described above, a molecular weight distribution, a melt index, a melting point (Tm) and the like, and has a narrow residual stress ratio of about 0.05%.
  • the residual force ratio may be about 0.05% or less, or about 0.005% to 0.05%, the black is about 0.04% or less, or about 0.006% to 0.04%, the black is about 0.03% or less or about 0.006% to 0.03%.
  • the residual force ratio can be confirmed by a rheological property test in an environment similar to the nonwoven fabric manufacturing process, and a large strain is applied to the homopolypropylene resin to perform a stress relaxation test ), Which is a value measured according to the following equation (1).
  • Residual force ratio (RS ! / RSo) 100
  • RSo is a residue ungryeok in said homopolypropylene any time point (to) of less than 0.05 seconds after adding the deformation of 2003 ⁇ 4 on resin) in the 235 ° C
  • R3 ⁇ 4 is the homopolypropylene under 235 ° C Is the residual force at any point () between 0.05 seconds and 1.50 seconds after applying 200% strain to the resin. . That is, according to an embodiment of the present invention, when the ratio of the residual force according to Equation 1 exceeds 0.05%, the possibility of single yarn is high when performing melt blowing using the polypropylene resin as a raw material, There may arise an increase in the number of users.
  • the residual force ratio should be maintained at 0.05% or less, or 0.04% or less, or 0.03% or less to minimize the single yarns of the fibers in processing the nonwoven fabric.
  • the fiber is radiated in the molten state and is drawn in a semi-molten state through cooling.
  • the residual force is high, the property of shrinkage is increased, .
  • RSo is homo 'poly immediately added to the 200% strain in the propylene resin, for under 235 ° C: shows the remaining stress at any one time contains less than 0.05 seconds (to). In the above equation (1), 1?
  • represents the residual force at about 1.5 seconds or less (for example, any point in time between 0.05 seconds and 2.00 seconds) after the to under the same condition as RSo.
  • t 0 can be selected from 0. for seconds, black for 0.015 seconds, black for 0.02 seconds, or 0.025 seconds, 0.03 seconds, or 0.035 seconds, or 0.04 seconds or 0.045 seconds.
  • Black is 0.90 seconds, or 1.00 seconds, or 1.10 seconds, or 1.20 seconds, or 1.30 seconds, black is 1.40 seconds, or 1.50 seconds, or 1.60 seconds, or 1.70 seconds, black is 1.80 seconds, Black can be selected in 2.00 seconds.
  • the residual force ratio of the homopolypropylene resin is measured under an environment (for example, 235 ° C) similar to the process conditions for performing melt-blowing in producing the nonwoven fabric.
  • the temperature of 235 ° C corresponds to a temperature suitable for completely melting the homopolypropyl resin to perform melt blowing.
  • the molecular weight distribution (MWD) also does not rise as described above and maintains a low range so that the residual force ratio in the homopolypropylene resin of the present invention can be maintained in the optimum range as described above and excellent fiber processability can be ensured Do.
  • the homopolypropylene resin according to an embodiment of the present invention optimizes both the tacticity and the molecular weight distribution (D), the melt index (Ml), the melting point (Tm), and the residual force ratio
  • D the molecular weight distribution
  • Ml melt index
  • Tm melting point
  • residual force ratio the residual force ratio
  • the homopolypropylene resin for a nonwoven fabric according to an embodiment of the present invention having the above physical properties and constitutional characteristics is characterized in that propylene is polymerized in the presence of a single catalyst containing only a transition metal compound represented by the following formula
  • the method comprising the steps of: Accordingly, according to another embodiment of the present invention, there is provided a method for producing a homopolypropylene resin for a nonwoven fabric as described above. [Chemical Formula 1]
  • A is carbon (C), silicon (Si) or germanium (Ge)
  • M is a Group 4 transition metal
  • X 1 and X 2 are the same or different and are each independently a halogen, substituted or unsubstituted d-20 alkyl, substituted or unsubstituted C 2 - 20 alkenyl, substituted or unsubstituted C 6 - 20 aryl, nitro, amido, substituted or unsubstituted alkylamino, substituted or unsubstituted C 6 unsubstituted-20 arylamino, a substituted or unsubstituted d- 20 alkyl silyl, substituted or unsubstituted 20-alkoxy, or a substituted or unsubstituted ring d-20 sulfonate;
  • R 1 and R 6 are the same or different from each other, and each independently hydrogen or substituted or unsubstituted d- 20 alkyl;
  • R 2 and R 3 , and R 7 and R 8 are each connected to each other to form a substituted or unsubstituted C 6 -
  • R 4, R 5, R 9, and R 10 are each other the same or different, and are each independently hydrogen, halogen, substituted or unsubstituted d-20 alkyl, substituted or unsubstituted C 2 ring-alkenyl 20 alkenyl, substituted or unsubstituted (20 alkylsilyl group, a substituted or unsubstituted d-20 silyl alkyl, substituted or unsubstituted (20 alkoxysilyl group, a substituted or unsubstituted d-20 ether, a substituted or unsubstituted silyl ether, a substituted or unsubstituted Transformed Alkoxy, substituted or unsubstituted C 6 - 20 aryl, substituted or unsubstituted C 7 - 20 alkylaryl, or substituted or unsubstituted C 7 - 20 aryl-alkyl;
  • R 11 and R 12 are the same each other, C 2 - 20 is alkyl. Unless defined otherwise herein, the following terms may be defined as follows.
  • the halogen may be fluorine (F), chlorine (Cl), bromine (Br) or iodine (I).
  • the d-20 alkyl that is, the alkyl group having 1 to 20 carbon atoms, may be a straight chain, branched chain or cyclic alkyl group.
  • the alkyl group having 1 to 20 carbon atoms is preferably a straight chain alkyl group having 1 to 20 carbon atoms; A straight chain alkyl group having 1 to 10 carbon atoms; A straight chain alkyl group having 1 to 5 carbon atoms; Branched or cyclic alkyl group of 3 to 20 carbon atoms; Branched or cyclic alkyl group having 3 to 15 carbon atoms; Or a branched or cyclic alkyl group having 3 to 10 carbon atoms.
  • the alkyl group having 1 to 20 carbon atoms is preferably a methyl group, an ethyl group, an n-propyl group, an i-propyl group, an i-butyl group, A neopentyl group, a pentyl group, a neo_pentyl group or a cyclic nucleus group and the like.
  • Ci-20 alkoxy that is, an alkoxy group having 1 to 20 carbon atoms means a straight-chain or branched alkyl group (-0 R) having 1 to 20 carbon atoms bonded with oxygen.
  • the alkyl group preferably has 1 to 20 carbon atoms, more specifically 1 to 6 carbon atoms. 6 < / RTI > alkoxy groups.
  • Specific examples of the alkoxy group include a methoxy group, an eroxy group, a propoxy group, an enriched group, and a t-enoxy group.
  • C 2 -2o alkoxyalkyl that is, an alkoxyalkyl group having 2 to 20 carbon atoms means a functional group in which an alkoxy group as described above is substituted for a carbon of a linear or branched alkyl group in place of hydrogen.
  • the alkoxyalkyl group preferably has 2 to 7 carbon atoms, 20, more specifically an alkoxyalkyl group having 2 to 12 carbon atoms.
  • Specific examples of the alkoxyalkyl group include a methoxymethyl group, a tert-butylmethyl group, a tert-butoxyundecenyl group, a 1-ethoxyethyl group and a 1-methyl-1 -methylcyclohexyl group.
  • C 2 -2o alkenyl that is, an alkenyl group having 2 to 20 carbon atoms
  • the alkenyl group having 2 to 20 carbon atoms is preferably a straight chain alkenyl group having 2 to 20 carbon atoms, a straight chain alkenyl group having 2 to 10 carbon atoms, a straight chain alkenyl group having 2 to 5 carbon atoms, a branched alkenyl group having 3 to 20 carbon atoms, A branched alkenyl group having 3 to 10 carbon atoms, a cyclic alkenyl group having 5 to 20 carbon atoms, or a cyclic alkenyl group having 5 to 10 carbon atoms.
  • the alkenyl group having 2 to 20 carbon atoms may be an ethenyl group, a propenyl group, a butenyl group, a pentenyl group, or a cyclohexenyl group.
  • C 3 -2 o cycloalkyl that is, a cycloalkyl group having 3 to 20 carbon atoms,
  • Cyclic saturated hydrocarbon groups of 3 to 20 of means includes a cycloalkyl group having 3 to 6 carbon atoms.
  • Specific examples of the cycloalkyl group include a cyclopropyl group, a cyclobutyl group, and a cyclic nucleus group.
  • aryl having 6 to 20 carbon atoms may mean monocyclic, bicyclic or tricyclic aromatic hydrocarbon. Specifically, aryl having 6 to 20 carbon atoms may be a phenyl group, a naphthyl group, or an anthracenyl group. .
  • C 7 -2o alkyl aryl i.e., an alkylaryl having 7 to 30 may have at least one hydrogen of the aryl mean a substituent substituted by alkyl.
  • the alkylaryl having 7 to 20 carbon atoms is preferably methylphenyl, ethylphenyl, n-propylphenyl, iso-propylphenyl, n-butylphenyl, iso-butylphenyl, tert-butylphenyl or cyclohexylphenyl, and the like.
  • arylalkyl having 7 to 20 may have at least one hydrogen of the alkyl means a substituent substituted by an aryl group.
  • the arylalkyl group having 7 to 20 carbon atoms may be a benzyl group, a phenylpropyl group, a phenyl nucleyl group, or the like.
  • C 6 -2 O aryloxy that is, an aryloxy group having 6 to 20 carbon atoms means an aryl group (0 Ar) bonded with oxygen, wherein the aryl group is as defined above.
  • the aryloxy group includes an aryloxy group having 6 to 20 carbon atoms, more specifically 6 to 12 carbon atoms.
  • Specific examples of the aryloxy group include phenoxy and the like.
  • the silyl group refers to a -Si 3 radical induced by a silane, and at least one of the hydrogen atoms in the silyl group may be substituted with various organic groups such as an alkyl group, an alkoxy group and a halogen group. Wherein the alkyl, alkoxy, and halogen groups are as previously defined.
  • a nitro group refers to a -NO 2 radical having one nitrogen atom and two oxygen atoms bonded together.
  • Ci-20 sulfonate that is, a sul fonate group having 1 to 20 carbon atoms means a functional group in which a hydrogen is substituted with an alkyl group in a sulfonic acid group (SO 3 H), wherein the alkyl group is as defined above.
  • the sulfonate group may be - SO 3 R (wherein R is a straight chain or branched alkyl group having 1 to 20 carbon atoms).
  • Ci-20 alkylamino i.e.
  • an alkylamino group having from 1 to 20 carbon atoms means a functional group in which at least one hydrogen in the amino group (-thymine 2 ) is substituted with an alkyl group, in which the alkyl group is as defined above.
  • the alkylamino group may be -NR 2 (wherein each R may be a hydrogen atom, or a straight chain or branched alkyl group having 1 to 20 carbon atoms, but not both of R's may be a hydrogen atom).
  • C 6 -C 20 arylamino ie, an arylamino group having 6 to 20 carbon atoms means a functional group in which at least one hydrogen in the amino group (-N ⁇ ) is substituted with an aryl group, wherein the aryl group is as defined above.
  • C 6 -2o aliphatic or aromatic ring i.e. an aliphatic or aromatic ring of 6 to 20 carbon atoms, means a cycloalkyl or aryl group, wherein the cycloalkyl and aryl groups are as defined above.
  • Ci-20 silylalkyl that is, a silylalkyl group having 1 to 20 carbon atoms means a functional group in which at least one hydrogen in the alkyl group is substituted with a silyl group, in which the alkyl group and the silyl group are as defined above.
  • Ci-2o ether that is, an ether having 1 to 20 carbon atoms means a hydrocarbyl group containing a -O-radical, and at least one of the hydrogen atoms in the ether group may be substituted with various organic groups such as a silyl group.
  • the silyl group is as defined above.
  • An alkyl idene group is an alkyl group having from the same carbon atom of an alkyl group
  • the alkylidene group includes an alkylidene group having 1 to 20 carbon atoms, more specifically 1 to 12 carbon atoms.
  • the alkylidene group include a propane-2-yl idene group and the like.
  • the arylidene group means a bivalent aromatic hydrocarbon group in which two hydrogen atoms have been removed from the same carbon atom of the aryl group.
  • the arylidene group includes an allylidene group having 6 to 20 carbon atoms, more specifically 6 to 12 carbon atoms.
  • Specific examples of the arylidene group include phenylidene and the like.
  • the hydrocarbyl group means a monovalent hydrocarbon group of 1 to 60 carbon atoms consisting solely of carbon and hydrogen, regardless of its structure, such as an alkyl group, an aryl group, an alkenyl group, an alkylaryl group, and an arylalkyl group.
  • a combination thereof means that two or more functional groups are bonded to each other through a single bond, a double bond (ethylene group), a triple bond (acetylene group), or an alkylene group having 1 to 20 carbon atoms , A methylene group (-c3 ⁇ 4-) or an ethylene group (- (3 ⁇ 4 (3 ⁇ 4-), etc.), or two or more functional groups are condensed and connected.
  • a single catalyst containing a transition metal compound of the above formula (1) as a single component which is not a common catalyst used for applications suitable for workability such as injection
  • a nonwoven fabric may be produced by mixing two kinds of resins having different characteristics, In there is a resin of one kinds of manufactured in the manufacturing process (reactor-made) half unggi difference that meets the soft and the strength at the same time.
  • the homopolypropylene can be produced through a polymerization process in which propylene is contacted with a catalyst containing a transition metal compound represented by the general formula (1).
  • the single polymerization of propylene can be carried out under hydrogen gas.
  • the hydrogen gas may be fed at a level of about 2000 ppm or less, or about 10 ppm to about 2000 ppm, or about 50 ppm to about 1500 ppm, based on the total weight of the propylene. It is possible to control the molecular weight distribution and fluidity of the homopolypropylene resin which is produced while controlling the amount of the hydrogen gas to be used while exhibiting the catalytic activity of the stratified catalyst, and accordingly, a propylene-butene copolymer Can be manufactured.
  • transition metal compound used as a catalyst for preparing the homopolypropylene resin one or more transition metal compound compounds represented by the general formula (1) may be used.
  • R 2 and R 3 and R 7 and R 8 is C 6 are coupled to each other - may be to form a 20 aryl.
  • A may be silicon (Si).
  • M may be zirconium (Zr) or hafnium (Hf).
  • X 1 and X 2 may each be halogen.
  • X 1 and X 2 may each be chloro.
  • R 1 and R 6 may each be hydrogen or d- 5 straight chain alkyl, or may be hydrogen or methyl.
  • R 11 and R 12 are the same and may be a C 2 -4 straight chain alkyl group.
  • R 12 may be ethyl or 6- (t-butoxy) -nucleic acid.
  • a in the formula (1) is silicon; M is Zr or Hf; X 1 and X 2 are each halogen; R 1 and R 6 are each hydrogen or methyl; R 2 and R 3 and R 7 and R 8 are respectively connected to each other C 6 - to form a 20 aryl; R 4 , R 5 , R 9 , and R 10 are hydrogen; R 11 and R 12 are the same,
  • the transition metal compound may be represented by the following general formula (1-1).
  • A, M, X 1 , X 2 , R 1 , R 4 , R 5 , R 6 , R 9 , R 10 , R 11 and R 12 are as defined in Formula 1.
  • the transition metal compound having such a structure can cause a proper steric hindrance to more effectively secure the above-mentioned effect.
  • C 2 - may be a 10-alkyl group, more particularly May be a C 2 -4 straight chain alkyl group, more particularly each ethyl.
  • the transition metal compound may be represented by one of the following structural formulas:
  • the electrophile metal compound represented by Formula 1 may be synthesized by using known reactions. For a more detailed synthesis method, Reference Examples 1 and 2 described below may be referred to. Meanwhile, the catalyst containing the transition metal compound having the structure of Formula 1 may further include various promoters in terms of improving the activity and the process stability. Such a promoter compound may include at least one compound represented by the following general formula (2) or (3).
  • R 7 , R 8 and R 9 are each independently any one of hydrogen, halogen, hydrocarbyl group having 1 to 20 carbon atoms and hydrocarbyl group having 1 to 20 carbon atoms substituted with halogen,
  • n is an integer of 2 or more
  • L is a neutral or cationic Lewis base
  • W is a Group 13 element
  • J is independently a hydrocarbyl group having 1 to 20 carbon atoms
  • substituents in which at least one hydrogen atom of these substituents is substituted with at least one substituent selected from halogen, a hydrocarbyloxy group having 1 to 20 carbon atoms and a hydrocarbyl (oxy) silyl group having 1 to 20 carbon atoms may be used.
  • methyl aluminoxane, ethyl aluminoxane, isobutyl aluminoxane, tert-butyl aluminoxane, or a mixture thereof may be used as the cocatalyst of formula (2).
  • the content of the co-catalyst can be appropriately controlled depending on the physical properties and effects of the desired catalyst and homopolypropylene resin.
  • the catalyst comprising the transition metal compound having the structure of Formula 1 may be used in the form of a supported catalyst in which the transition metal compound of Formula 1 and the promoter of Formula 2 or Formula 3 are supported on the support .
  • a carrier containing a hydroxyl group or a siloxane group on its surface can be used.
  • a carrier containing a hydroxyl group or a siloxane group having a large semi-maleic group may be used by drying at a high temperature to remove moisture on the surface.
  • the carrier may be one which has been dried in high silver, which are typically Na 2 O, K 2 CO 3 l BaSO 4 and Mg (NO 3 ) 2 , carbonate, sulfate, and nitrate components.
  • the supported catalyst may be a support formed by sequentially supporting the co-catalyst of Formula 2, the transition metal compound of Formula 1, and the co-catalyst of Formula 3 on the support. The supported catalyst having a structure determined in accordance with such a carrying order can realize high activity and excellent process stability in the production process of homopolypropylene resin.
  • the supported catalyst may be a single supported catalyst containing only the transition metal compound represented by Formula 1 as the catalytically active component.
  • the homopolypropylene resin can be produced by a continuous polymerization process, and can be produced, for example, by a continuous solution polymerization process, a continuous bulk polymerization process, a continuous suspension polymerization process, a continuous slurry polymerization process or a continuous emulsion polymerization process Various polymerization processes known as polymerization reactions can be employed. However, a continuous bulk-slurry polymerization process is preferable in order to obtain a homogeneous molecular weight distribution as described above and to produce a homopolypropylene resin suitable for nonwoven fabrics.
  • the polymerization reaction may be conducted at a temperature of about 40 to 110 ° C, or about 50 to 100 ° C, or about 60 to 90 ° C.
  • the pressure of the polymerization process can be performed within a range known in the art of polypropylene resin production, and can be performed, for example, at a pressure of about 1 to 100 kgf / cm 2 .
  • the propylene feed may be from about 10 kg to about 80 kg, or from about 20 kg to about 65 kg, or from about 30 kg to about 50 kg per hour, Can be performed.
  • the catalyst in the polymerization reaction, may be used in a state in which the catalyst is dissolved or diluted in a solvent such as pentane, nucleic acid, heptane, nonane, decane, toluene, benzene, dichloromethane, chlorobenzene and the like.
  • a solvent such as pentane, nucleic acid, heptane, nonane, decane, toluene, benzene, dichloromethane, chlorobenzene and the like.
  • a solvent such as pentane, nucleic acid, heptane, nonane, decane, toluene, benzene, dichloromethane, chlorobenzene and the like.
  • the catalyst may be used in the form of a mud catalyst mixed with oil and grease, and the content of the catalyst may be from about 10% to about 25%, or from about 12% to about 20% , Or from about 14% to about 18%.
  • the method for producing a homopolypropylene resin uses a single catalyst containing only a transition metal compound represented by the following formula (1) as a catalytically active component, It has the characteristics of narrow molecular weight distribution while optimizing both tactic and molecular weight distribution (MTO), melt index (Ml), melting point (Tm) and residual force ratio. soft tactile feel as well as excellent toughness which is not torn easily at high strength can be realized at the same time.
  • a resin composition for a nonwoven fabric comprising the above homopolypropylene resin, and a nonwoven fabric product prepared using the same.
  • the resin composition for a nonwoven fabric may include an additive for master batch such as a liquid solid 0P950 together with the homopolypropylene resin as described above, and extruding the homopolypropylene resin by commonly mixing the additive for master batch ≪ / RTI >
  • the extrusion process for producing the resin composition may be carried out according to a conventional method.
  • an extruder such as a 25-MW-screw extruder, From about 150 ° C to about 250 ° C, from about 100 rpm to about 1000 rpm.
  • the resin composition contains both the homopolypropylene resin as described above to optimize both the tacticity and the molecular weight distribution (D), the melt index (Ml), the melting point (Tm) and the residual force ratio, , It can be useful as a resin composition for a nonwoven fabric which can simultaneously realize softness of softness and high strength which are physical properties in trade-of-f relationship in the production of nonwoven fabric.
  • the nonwoven fabric may be a spunbond nonwoven fabric produced by a melt blowing process.
  • the nonwoven fabric is produced by feeding a molten resin composition to a melt pump (65 rpm) using a Brabender conical twin screw extruder and then feeding the molten resin composition to a meltblowing die provided with a discharge port. .
  • the melting temperature is 235 ° C
  • the screw speed is 120 rpm
  • the die is maintained at 235 ° C
  • the primary air temperature and pressure are 300 ° C and 60 ° C, respectively.
  • the polymer processing rate is 5.44 kg / hr
  • the collector / die distance is 15.2 cm. Best Mode for Carrying Out the Invention
  • preferred embodiments are described to facilitate understanding of the present invention. However, the following examples are intended to illustrate the present invention, but the present invention is not limited thereto.
  • Hafnium chloride 17.6 g was diluted in toluene (20 mL) at -78 ° C and stirred at room temperature for one day.
  • Step 3 Preparation of the supported catalyst 100 g of silica and 10% of methylaluminoxane (670 g) were added to the 3L Liquor, and the mixture was stirred at 90 ° C for 24 hours. After precipitation, the upper layer was removed and washed twice with LU.
  • Zirconium chloride (12.8 g) was added to the solution in vacuo, and the mixture was slowly added dropwise at -78 ° C and stirred at room temperature for one day.
  • the solvent of the NaOH solution was removed under reduced pressure, dichloromethane was added and the mixture was filtered, and the filtrate was distilled off under reduced pressure.
  • transition metal compound represented by the formula A [(6-t_-butoxycarbonyl haeksil methylsilane-diyl) -bis (2-methyl-4-tert-butylphenyl inde carbonyl)]
  • a silica-supported metallocene catalyst in the form of solid particles was prepared.
  • 3 ⁇ 4 ⁇ represents tertiary butyl. Comparative Preparation Example 2: Preparation of transition metal compound and supported catalyst
  • Silane-diyl) -bis (2-methyl-4,5-benzoindenyl)] zirconium dichloride which is a transition metal compound represented by the following formula (B)
  • a supported catalyst was prepared in the same manner as in step 3) of Preparation Example 2 above.
  • Comparative Preparation Example 3 Preparation of wrought supported catalyst (Methyl) silane-diyl) -bis (2-methyl-4,5-dihydroxyphenyl) propionate prepared according to steps 1) and 2) of Comparative Preparation Example 2,
  • (2-methyl-4-tert-butylphenylindenyl) zirconium dichloride represented by the formula (A) of Comparative Preparation Example 1 and [(6-t- ] Zirconium dichloride was used to prepare a wrought supported catalyst.
  • 3 g of silica was pre-weighed in a shinkle flask, pre-weighed, and 13 osmol of methylaluminoxane (MAO) was added to the mixture at 95 ° C for 24 hours. The precipitate was removed and the solution was washed once with diluted hydrochloric acid.
  • MAO methylaluminoxane
  • Example 1 Specific reaction conditions for the polymerization processes of Examples 1 and 2 are shown in Table 1 below. Homopolypropylene (homo mPP) resin of Example 1 was obtained through such polymerization process. Comparative Example 1: Continuous bulk-slurry homopolymerization of propylene
  • Comparative Example 2 Homo polypropylene resin prepared by using a Ziegler-Natta catalyst
  • a homopolypropylene resin (Z / N homo PP manufactured by LG Chemical Co., Ltd., H7700) prepared using a Ziegler-Tana catalyst was prepared.
  • Comparative Example 3 Continuous bulk-slurry homopolymerization of propylene
  • a homopolypropylene resin of Comparative Example 3 was obtained by carrying out a polymerization process in the same manner as in Example 1, except that the stationary supported catalyst prepared in Comparative Preparation Example 2 was used in place of the supported catalyst of Production Example 1.
  • Comparative Example 4 Continuous Bulk-Sulfur homopolymerization of propylene
  • a polymerization process was carried out in the same manner as in Example 1 except that the metallocene single supported catalyst prepared in Comparative Preparation Example 3 was used instead of the supported catalyst of Production Example 1 to obtain a homopolypropylene resin of Comparative Example 4 .
  • homo mPP 1 refers to a homopolypropylene resin
  • Z / N homo PP 1 refers to a homopolypropylene resin (commercial product) manufactured using a Ziegler-Tana catalyst.
  • the catalyst activity in the above Table 1 was calculated as the ratio of the weight of the produced polymer (kg PP) per supported catalyst mass (g) used as a criterion based on the unit time (h).
  • the catalytic polymerization activity is significantly lowered to 8 kg / g ⁇ cat, it may be difficult to apply the catalyst to commercial use or cause a problem of process failure.
  • Comparative Example 5 Placement type of propylene Homopolymerization
  • a batch type homopolymerization process was carried out under the conditions shown in Table 2 below to obtain homopolypropylene resins of Comparative Examples 5 to 7.
  • a 2 L stainless steel barn was vacuum dried at 65 ° C, agitated, 3 mL of triethylaluminum was added at room temperature, and 770 g of propylene was added.
  • 45 mg of the supported catalyst prepared in Comparative Preparation Example 2 was dispersed in 20 mL of nucleic acid to prepare a slurry, which was introduced into the reactor using nitrogen pressure. At this time, about 100 ppm of hydrogen gas was added together with the catalyst. Then, the temperature was raised gradually to 70 ° C and then polymerized for 1 hour. At the end of the reaction, the unreacted propylene was vented.
  • Comparative Example 6 Placement type of propylene Homopolymerization
  • 'Homo mPP' refers to a homopolypropylene resin
  • 1 random mPP ' refers to a polypropylene homo / random blend resin in which propylene and ethylene are randomly copolymerized.
  • the tacticity (mol%) of the polymer was measured through nuclear magnetic resonance (NMR) analysis. Specifically, the NMR spectrum was measured using a nuclear chlorobutadiene solution (based on tetramethylsilane) and the peak area at 21.0 to 21.9 ppm relative to the overall area (100%) of the peak at 19.5 to 21.9 ppm The ratio (%) was obtained as tacticity (mol%).
  • NMR nuclear magnetic resonance
  • DSC 2920 manufacturer: TA instrument
  • Tm melting point and melting point
  • the temperature of the polymer is heated up to 220 ° C, held at that temperature for 5 minutes, then lowered to 20 ° C, and the temperature is again increased to the top of the curve of DSC (Differential Scanning Calorimeter, TA) Respectively.
  • the temperature rise and fall rates were 10 ° C / min, and the melting points were measured at the second temperature rise.
  • MWD polydispersity index
  • Samples of the polymers according to Examples and Comparative Examples were respectively dissolved in trichlorobenzene (1,2,4-Trichlorobenzene) containing 0.0125% of BHT at 160 ° C for 10 hours using a GPC analyzer (PL-GP220) Pretreated, prepared at a concentration of 10 mg / 10 mL, and then fed in an amount of 200 iiL. Values of Mw and Mn were derived using a calibration curve formed using a polystyrene standard specimen.
  • the weight average molecular weight of the polystyrene standard specimen is 2000 g / mol, 10000 g / mol, 30000 g / mol, 70000 g / mol, 200000 g / mol, 70000 g / mol, 2000000 g / mol, / mol. < / RTI >
  • Residual force ratio (Y) (Si / RSo) 100
  • RSo is the residual force at 0.02 sec (t 0 ) after applying 20 deformation to the polypropylene resin sample at 235 ° C, It is the residual force at 1.00 sec () after 200% strain applied to the polypropylene resin sample at 235 ° C.
  • the homopolypropylene resins of Examples 1 and 2 were optimized to a melt index (Ml) of 23 to 26 g / 10 min and a tacticity of 85% to 87%, and a narrow It has a molecular weight distribution (MWD), a low melting point (Tm) of 141 t or less, and a low residual force ratio of 0.03% or less.
  • Ml melt index
  • Tm melting point
  • Tm residual force ratio
  • a spunbonded nonwoven fabric was prepared by performing the melt blowing process using the propylene polymer raw materials according to the above Examples and Comparative Examples. Specifically, a propylene polymer according to Examples 1 to 2 and Comparative Examples 1 to 8 and a propylene polymer (trade name) 0P950 A master batch of additive (2.5 wt%) was prepared and then pelletized.
  • the molten masterbatch resin composition was fed to a melt pump (65 rpm) using a 31 ° Br Braider cone twin screw extruder, and then extruded at a discharge port (10 discharge ports / cm) and a 25 cm width Except for the fact that it was supplied to the meltblowing die, 4364 of the Naval Research Laboratories, published May 25, 1954 entitled “ Manufacture of Superfine Organic Fibers " by Went e, Van.
  • the master batch pellets were extruded into a microfiber web by a process similar to that described in A. Boone, CD, and Fluharty EL.
  • the melt temperature was 235 ° C
  • the screw speed was 120 rpm
  • the die was maintained at 235 ° C
  • the primary air temperature and pressure were 300 ° C and 60 kPa (8.7 psi)
  • the polymer throughput rate was 5.44 kg / hr and the collector / die distance was 15.2 cm.
  • the properties of the spunbonded nonwoven fabric prepared using the polypropylene resin according to the above Examples and Comparative Examples were evaluated by the following methods, and the results are shown in Table 4 below.
  • the weight of the nonwoven fabric produced by extruding into a superfine fiber web according to Test Example 2 was measured and the weight of the nonwoven fabric per unit area was measured.
  • the processability of the nonwoven fabric was evaluated according to whether the single yarn was generated during the production of the nonwoven fabric according to Test Example 2. When the single yarn occurrence of the fibers was 10% or less, the result was shown as "good"Quot; bad ". . (3) Strength of nonwoven fabric The strength of the nonwoven fabric was measured by a 5 cm wide cut strip method according to the American Society for Testing and Materials (ASTM D 5035: 2011 (2015) method)
  • the coefficient of friction of the nonwoven fabric was measured using a coefficient of friction meter (manufacturer: Thwing-Albert, product name: FP-2260).
  • the sensibility of the nonwoven fabric was measured by ten blind panel evaluations, and when it was judged that the nonwoven fabric had a soft feel of more than 7, it was judged as being good, and when it was 4 to 6, , And when the number is 3 or less, it is judged to be defective and "X" is indicated.
  • Homopolypolyethylene resin can be used to produce a nonwoven fabric that is softer than conventional products by reducing the modulus while allowing the continuous process to be carried out because no single yarn is generated in the melt blowing process using the same. .
  • the polypropylene resins of Comparative Examples 1 to 8 in which the tacticity or molecular weight distribution (MTO), the melt index (Ml), the melting point (Tm) It is impossible to carry out the continuous process due to the occurrence of single yarn in a melt blowing process and a disadvantage that the strength is lowered due to a broad molecular weight distribution appears or the coefficient of friction and the feel of the nonwoven fabric produced due to high tacticity It was confirmed that there was a falling problem. In particular, in Comparative Example 1, it was confirmed that there was a problem that the melting point was increased and the coefficient of friction and the feeling of touch of the produced nonwoven fabric were inferior.
  • MTO tacticity or molecular weight distribution
  • Ml melt index
  • Tm melting point
  • Comparative Examples 2 and 3 it was confirmed that the nonwoven fabric had poor processability in production of the nonwoven fabric due to a wide molecular weight distribution of 3 or more, and the overall uniformity of the nonwoven fabric (partially or densely crowded portions) fell, resulting in poor strength, .
  • Comparative Example 4 since the resin had a high melt index (Ml), it was impossible to produce a nonwoven fabric (not yet manufactured), and thus the physical properties of the nonwoven fabric could not be measured.
  • the comparative example 5 shows that the overall uniformity of the nonwoven fabric (due to the presence of a partly or densely crowded portion) deteriorates in strength, friction coefficient and feelability due to a large workability due to a broad molecular weight distribution (> 2.4) have.
  • Comparative Example 6 shows that even if the same catalyst is used, the production conditions of the resin are lower than the temperature range (70 ° C) generally available in a commercial or laboratory environment at 50 ° C It has been found that there is a problem that the friction coefficient and the feelability of the nonwoven fabric produced are low because the tacticity is increased. In Comparative Example 7, it was confirmed that the physical properties of the random resin, particularly the type of the resin, were not significantly degraded. In the case of Comparative Example 8, since the resin has a high fluidity such as a high hydrogen input amount and a melt index (Ml) of 50 g / 10 min, there is a problem of not only strength but also breakage in nonwoven fabrication, .
  • Ml melt index

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Textile Engineering (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

The present invention relates to a homopolypropylene resin for a non-woven fabric, and can produce a high-strength non-woven fabric, which is softer than an existing product and does not tear easily due to high toughness, by optimizing tacticity to 80-90%, having a narrow molecular weight distribution of 2.4 or less, and optimizing a modulus through satisfaction of all of a melting index (MI) of 20-30 g/min, a melting point (Tm) of 145°C or lower, and a residual stress rate of 0.05% or less.

Description

[발명의 명칭】  [Title of the invention]
부직포용 호모 폴리프로필렌 수지 및 그의 제조 방법  Homopolypropylene resin for nonwoven fabric and method for producing the same
【기술분야】 TECHNICAL FIELD
관련 출원들과의 상호 인용  Mutual citation with related applications
본 출원은 2017 년 11 월 8 일자 한국 특허 출원 제 10-2017- 0148291 호 및 2018 년 11 월 7 일자 한국 특허 출원 제 10-2018-0136198 호 에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원들의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다. 본 발명은 부직포용 호모 폴리프로필렌 수지 및 그의 제조 방법에 관한 것이다.  This application claims the benefit of priority based on Korean Patent Application No. 10-2017- 0148291, dated November 8, 2017, and Korean Patent Application No. 10-2018-0136198, dated November 7, 2018, The entire contents of which are incorporated herein by reference. The present invention relates to a homopolypropylene resin for a nonwoven fabric and a method for producing the same.
【배경기술】 BACKGROUND ART [0002]
일반적으로 부직포는 방직, 제직이나 편성과정을 거치지 않고 기계조작이나 열접착 등 기계, 화학처리로 섬유 집합체를 접착하거나 엉키게하여 만든 직물. ¾트, 수지접착시킨 부직포, 니들 편치, 스펀 본드, 스펀 레이스, 엠보스 필름 습식 부직포 등이 이에 속한다. 협의로는 랜덤 (random)에 겹친 웹 (web)과 섬유의 접점을 수지로 접착하여 심지등으로 사용하는 것을 의미한다. 접착포라고도 하며 본드 패브릭 (bonded fabr ic)이라고도 한다. 이러한 부직포는 다양한 방법으로 제조될. 수 있는데 니들펀칭법, 케미칼본딩법, 서멀본딩법, 멜트브로운법, 스편레이스법, 스테치본드법, 스편본드법이 알려져 있다. 한편, 폴리올레핀계 수지를 원료로 한 스편본드 (spunbond) 부직포는 촉감, 유연성, 통기성, 단열성 등이 우수하여 필터, 포장재, 침구, 의류, 의료용품, 위생용품, 자동차 내장재, 건축 자재 등으로 널리 사용되고 있다. 특히, 폴리프로필렌 단섬유는특유의 낮은 용융점, 및 우수한 내화학성으로 인해 캘린더 본딩공법 또는 에어스루 본딩공법을 통해 서멀본드 부직포로 가공되며, 기저귀, 생리대 등의 위생용품 표면재로 주로 사용되고 있다. 일본국 공개특허 제 2002-235237 호에서는 폴리프로필렌 열융착성 부직포는 부직포에 소프트한 촉감과 높은 인장강도를 부여하기 위해서 결정화 저해제로 살리실산 금속염을 마스터배치 펠릿으로 투입하여 세섬도를 통해 소프트성과 고 인장강도를 추구하였으나, 스펀본드 부직포에 대한 실험으로 단섬유를 통한 서멀본드 부직포와는 제법에서 차이가 있다. 스펀본드 부직포는 단섬유 서멀본드 부직포에 비해 높은 인장강도를 보이나, 소프트한 촉감은 떨어진다는 통념이다. 또한, 기존 지글러 -나타 촉매로 제조되는 호모 폴리프로필렌 수지와 달리 메탈로센 촉매로 제조된 호모 플리프로필렌 수지는 분자량 분포가 좁기 때문에 굵기가 가늘면서 균일한 섬유가 제조 가능하고, 이에 따라 강도가 우수한 저평량의 부직포를 제조하는 장점이 있다. 하지만, 메탈로센 호모 폴리프로필렌 수지는 낮은 자일렌 용해도 (xylene solubles)나 좁은 분자량 분포에 따른 저분자량의 함량이 적기 때문에, 부직포 제조시 표면적으로 거친 감촉 ( feel )을 주는 단점이 있다. 이에 따라, 최근에는 폴리프로필렌과 폴리에틸렌을 수지로 사용하며, Bi-Co 방사 기술로 섬유 ( f iber) 내부와 외부를 각각 다른 수지로 부직포를 제조하여 소프트한 촉감 (softness)을 향상시킬 수는 있었으나, 이 경우에 강도 저하가 워낙 크기 때문에 고강도 부직포용으로는 적합하지 않는 단점이 있다. 또한, 폴리프로필렌 수지에 엘라스틱 폴리머 (Elast ic polymer ) , 예컨대, C3 엘라스토머 등의 제품을 블랜드하여 사용하는 시도가 있었으나, 이 경우에도 소프트한 촉감 (softness)은 개선할 수는 있지만 고가의 수지이기에 제조 비용이 높아지며 경제적인 문제가 있어, 산업 공정에 적용하기 어려운 단점이 있다. Generally, a nonwoven fabric is a fabric made by bonding or tangling a fibrous aggregate by a machine or a chemical treatment such as a machine operation or thermal bonding without going through a process of weaving, weaving or knitting. A spun bond, a spun lace, an embossed film wet nonwoven fabric, and the like. In the discussion, it means that the contacts of the web overlapping with the random are bonded to the resin by the resin and used as the wick. Also known as bonded fabrics and bonded fabrics. Such a nonwoven fabric may be produced by various methods. A needle bonding method, a thermal bonding method, a melt blowing method, a spigot lace method, a stitch bond method, and a spun bond method are known. On the other hand, a spunbond nonwoven fabric made of a polyolefin resin is widely used as a filter, a packaging material, a bedding, a garment, a medical product, a sanitary article, an automobile interior material, a building material and the like because of excellent touch, flexibility, air permeability, have. In particular, polypropylene staple fibers are processed into a thermal bond nonwoven fabric through calendaring or air through bonding due to their unique low melting point and excellent chemical resistance, and they are mainly used as surface materials for sanitary articles such as diapers and sanitary napkins. In Japanese Patent Application Laid-Open No. 2002-235237, a polypropylene heat-sealable nonwoven fabric is prepared by introducing a salicylic acid metal salt as a crystallization inhibitor into a master batch pellet in order to impart soft touch and high tensile strength to a nonwoven fabric, However, the test for spunbond nonwoven fabric differs from that of thermal bond nonwoven fabric through short fibers. The spunbond nonwoven fabric has a higher tensile strength than a single-fiber thermal bond nonwoven fabric, but it is a conventional belief that the soft feel is deteriorated. Further, unlike the homopolypropylene resin produced by the conventional Ziegler-Natta catalyst, the homopolypropylene resin produced by the metallocene catalyst has a narrow molecular weight distribution, so that it is possible to produce a fiber having a small thickness and a uniform thickness, There is an advantage of manufacturing a low basis weight nonwoven fabric. However, the metallocene homopolypropylene resin has a disadvantage in giving a rough texture to the surface of the nonwoven fabric because of low low molecular weight content due to low xylene solubles or a narrow molecular weight distribution. Recently, it has been possible to improve the softness of the fabric by using nonwoven fabrics made of different resins inside and outside of the fibers by using Bi-Co spinning technology using polypropylene and polyethylene as resins, In this case, since the strength is so high that it is not suitable for high-strength nonwoven fabrics, Further, there has been an attempt to blend a polypropylene resin with an elastomeric polymer such as C3 elastomer. In this case, however, softness can be improved, but since it is an expensive resin, There is a disadvantage that it is difficult to apply to an industrial process due to an increase in cost and an economical problem.
【발명의 상세한설명】 DETAILED DESCRIPTION OF THE INVENTION
【기술적 과제】 본 발명은 택티서티 (tacticity) 및 분자량분포 (MWD), 용융지수 (MI), 용융점 (Tm), 잔류웅력비율을 모두 최작화함과 동시에 .좁은 분자량 분포를 가짐으로써, 모듈러스 (modulus)를 최적화하여 부직포에 사용하면 기존 제품보다 소프트 (soft)한 촉감을 부여할 뿐만 아니라 높은 강도로 쉽게 찢어지지 않는 우수한 강인성을 동시에 구현할 수 있는 부직포용 호모 폴리프로필렌 수지를 제공하고자 한다. [Technical Problem] The present invention optimizes the modulus by minimizing both tacticity and molecular weight distribution (MWD), melt index (MI), melting point (Tm) and residual force ratio, A homopolypropylene resin for a nonwoven fabric which can provide both a soft feel to a conventional product and an excellent toughness that is not easily torn by a high strength.
【기술적 해결방법】 [Technical Solution]
발명의 일 구현예에 따르면, 택티서티 (tacticity)가 80% 내지90%이고, 분자량 분포 (MTO) 2.4 이하이며, 용융지수 (Ml)가 20 내지 30 g/min 이고, 용융점 (Tm)이 145 °C 이하이며, 잔류웅력비율이 약 0.05% 이하인, 부직포용 호모 폴리프로필렌 수지가 제공된다. 상기 부직포용 호모 폴리프로필렌 수자는, 분자량분포 (MWD)가 2.1 내지 2.4 일 수 있고, 용융점 (Tm)이 133 °C 내지 143 °C일 수 있고, 택티서티 (tacticity)가 82% 내지 87%일 수 있고, 용융지수 (Ml)가 23 g/min 내지 26 g/min일 수 있다. 또, 발명의 다른 일 구현예에 따르면, 촉매 활성 성분으로 하기 화학식 1 로 표시되는 전이금속 화합물만을 포함하는 촉매 존재 하에서, 프로필렌을 중합시키는 단계를 포함하는, 부직포용 호모 폴리프로필렌 수지의 제조방법이 제공된다. According to an embodiment of the present invention, the tacticity is 80% to 90%, the molecular weight distribution (MTO) is 2.4 or less, the melt index Ml is 20 to 30 g / min, the melting point Tm is 145 ° C or less and a residual force ratio of about 0.05% or less. The homopolypropylene homopolymer for nonwoven fabric may have a molecular weight distribution (MWD) of 2.1 to 2.4, a melting point (Tm) of 133 ° C to 143 ° C, and a tacticity of 82% to 87% And a melt index (Ml) of from 23 g / min to 26 g / min. According to another embodiment of the present invention, there is provided a process for producing a homopolypropylene resin for a nonwoven fabric, which comprises polymerizing propylene in the presence of a catalyst containing only a transition metal compound represented by the following formula / RTI >
[화학식 1] [Chemical Formula 1]
Figure imgf000005_0001
상기 화학식 1에서,
Figure imgf000005_0001
In Formula 1,
A는 탄소, 실리콘 또는 게르마늄이고,  A is carbon, silicon or germanium,
M은 4족 전이금속이며;  M is a Group 4 transition metal;
X1 및 X2 는 서로 동일하거나 상이하고, 각각 독립적으로 할로겐, 치환 또는 비치환된 d-20 알킬, 치환 또는 비치환된 C220 알케닐, 치환 또는 비치환된 C6-20 아릴, 니트로, 아미도, 치환 또는 비치환된 d— 20 알킬아미노, 치환 또는 비치환된 C6-20 아릴아미노, 치환 또는 비치환된 d-20 알킬실릴, 치환 또는 비치환된 d-20 알콕시, 또는 치환 또는 비치환된 술포네이트이고; X 1 and X 2 are the same or different and are each independently a halogen, substituted or unsubstituted d- 20 alkyl, substituted or unsubstituted C 2 - 20 alkenyl, substituted or unsubstituted C 6 - 20 aryl, nitro, amido, substituted or unsubstituted d- 20 alkyl, substituted or unsubstituted C 6 - 20 arylamino, a substituted or unsubstituted d-20 alkyl silyl group, a substituted or unsubstituted d-20 alkoxy, or A substituted or unsubstituted sulfonate;
R1 및 R6은 서로 동일하거나 상이하고, 각각 독립적으로 수소, 또는 치환또는 비치환된 d-20 알킬이고; R 1 and R 6 are the same or different from each other, and each independently hydrogen or substituted or unsubstituted d- 20 alkyl;
R2 와 R3 , 및 R7 와 R8은 각각 서로 연결되어 치환 또는 비치환된 C6-R 2 and R 3 , and R 7 and R 8 are each connected to each other to form a substituted or unsubstituted C 6 -
20 지방족 또는 방향족 고리를 형성하며 ; 20 form an aliphatic or aromatic ring;
R4, R5, R9 , 및 R10은 서로 동일하거나 상이하고, 각각 독립적으로 수소, 할로겐, 치환 또는 비치환된 d-20 알킬, 치환 또는 비치환된 C2-20 알케닐, 치환 또는 비치환된 d-20 알킬실릴, 치환 또는 비치환된 실릴알킬, 치환 또는 비치환된 알콕시실릴, 치환 또는 비치환된 d-20 에테르, 치환 또는 비치환된 d-20 실릴에테르, 치환 또는 비치환된 알콕시, 치환 또는 비치환된 C6-20 아릴, 치환 또는 비치환된 C7-20 알킬아릴, 또는 치환또는 비치환된 C7-20 아릴알킬이고; R 4 , R 5 , R 9 and R 10 are the same or different and each independently represents hydrogen, halogen, substituted or unsubstituted d- 20 alkyl, substituted or unsubstituted C 2 -C 20 alkenyl, Unsubstituted d-20 alkylsilyl, substituted or unsubstituted silylalkyl, substituted or unsubstituted alkoxysilyl, substituted or unsubstituted d- 20 ether, substituted or unsubstituted d-20 silyl ether, The Alkoxy, substituted or unsubstituted C 6 - 20 aryl, substituted or unsubstituted C 7 - 20 alkylaryl, or substituted or unsubstituted C 7 - 20 aryl-alkyl;
R11 및 R12는 서로 동일하며, C2-20 알킬이다. 일 예로, 상기 전이금속 화합물 관련 화학식 1 에서 R2 와 R3 및 R7 와 R8은 각각서로 연결되어 C6-20 아릴을 형성하는 것일 수 있다. 상기 전이금속 화합물은 하기 화학식 1-1로 표시되는 것일 수 있다. R 11 and R 12 are the same each other, C 2 - 20 is alkyl. In one embodiment, the transition metal compound in the formula (1) related to R 2 and R 3 and R 7 and R 8 are respectively connected to each other C 6 - 20 may be to form an aryl group. The transition metal compound may be represented by the following general formula (1-1).
Figure imgf000006_0001
상기 화학식 1-1에서,
Figure imgf000006_0001
In Formula 1-1,
A, M, X1, X2, R1, R4, R5, R6, R9, R10, R11, 및 R12은 상기 화학식 1에서 정의한 바와 같다. 상기 전이금속 화합물 관련 화학식 1 에서 A 는 실리콘일 수 있고, M 은 지르코늄 또는 하프늄일 수 있고, X1 및 X2는 각각 할로겐일 수 있고, R1 및 R6는 각각 수소 또는 d-5 직쇄 알킬일 수 있고, R4, R5, R9, 및 R10는 수소일 수 있고, R11 및 R12는 동일하며, C2-4 직쇄 알킬기일 수 있다. 상기 전이금속 화합물은 하기 구조식 중 하나로 표시되는 것일 수 있다: A, M, X 1 , X 2 , R 1 , R 4 , R 5 , R 6 , R 9 , R 10 , R 11 and R 12 are as defined in Formula 1. In the relevant formula (I) the transition metal compound A may be a silicon, M is zirconium or hafnium may be a, X 1 and X 2 may each be a halogen, R 1 and R 6 are each hydrogen or a straight-chain alkyl d- 5 one can, R 4, R 5, R 9, and R 10 may be hydrogen, and R 11 are the same and R 12, C 2 - 4 may be a straight chain alkyl group. The transition metal compound may be one represented by one of the following structural formulas:
Figure imgf000007_0001
또한, 상기 호모 폴리프로필렌은 연속식 벌크-슬러리 중합 공정으로 제조되는 것일 수 있다. 【발명의 효과】
Figure imgf000007_0001
In addition, the homopolypropylene may be produced by a continuous bulk-slurry polymerization process. 【Effects of the Invention】
본 발명에 따르면, 특정의 전이금속화합물을 포함하는 단일 촉매 하에서 제조되는 메탈로센 호모 폴리프로필렌 수지로서, 택티서티 (tact i ci ty) 및 분자량분포 (MTO) , 용융지수 (Ml ) , 용융점 ( ), 잔류웅력비율을 모두 최적화함과 동시에 좁은 분자량 분포를 가짐으로써, 모듈러스 (modulus)를 최적화하여 기존 제품보다 소프트 (soft )한 촉감을 부여할 뿐만 아니라 높은 강도로 쉽게 찢어지지 않는 우수한 강인성을 갖는 부직포를 제공할 수 있다.  According to the present invention there is provided a metallocene homopolypropylene resin produced under a single catalyst comprising a specific transition metal compound, wherein the tacticity and the molecular weight distribution (MTO), the melt index (Ml), the melting point ) And the residual force ratio as well as the narrow molecular weight distribution, it is possible to optimize the modulus to give a soft touch to the existing product, and to have an excellent toughness that is not torn easily at high strength A nonwoven fabric can be provided.
【발명의 실시를 위한 형태】 DETAILED DESCRIPTION OF THE INVENTION
이하, 발명의 구체적인 구현예들에 따른 부직포용 호모 폴리프로필렌 수지 및 그의 제조 방법에 대하여 설명하기로 한다 . 그에 앞서, 본 명세서에 사용되는 전문 용어는 단지 특정 구현예를 언급하기 위한 것이며, 본 발명을 한정하는 것을 의도하지 않는다. 그리고, 여기서 사용되는 단수 형태들은 문구들이 이와 명백히 반대의 의미를 나타내지 않는 한 복수 형태들도 포함한다. 또한, 본 명세서에서 사용되는 '포함' 또는 '함유 '의 의미는 특정 특성, 영역, 정수, 단계, 동작, 요소 또는 성분을 구체화하며, 다른 특정 특성, 영역, 정수, 단계, 동작, 요소, 또는 성분의 부가를 제외시키는 것은 아니다. 본 발명에서, 제 1, 제 2 등의 용어는 다양한 구성요소들을 설명하는 데 사용되며, 상기 용어들은 하나의 구성 요소를 다른 구성 요소로부터 구별하는 목적으로만사용된다. 또한, 본 명세서에서 사용되는 용어는 단지 예시적인 실시예들을 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도는 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다 ", "구비하다" 또는 "가지다 " 등의 용어는 실시된 특징, 숫자, 단계, 구성 요소 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 구성 요소, 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다. 본 발명은 다양한 .변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시예들을 예시하고 하기에서 상세하게 설명하고자 한다. 그러나 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 이하, 본 발명을 더욱 상세하게 설명한다. ᅳ 발명의 일 구현예에 따르면, 택티서티 (tact ici ty)가 80% 내지 90%이고, 분자량 분포 (MffD) 2.4 이하이며, 용융지수 (Ml )가 20 g/min내지 30 g/min 이고, 용융점 (Tm)이 145 °C 이하이며, 잔류웅력비율이 0.05% 이하인, 부직포용 호모 폴리프로필렌 수지가 제공된다. 본 발명자들은 부직포용으로 사용되는 폴리프로필렌 수지에 대한 연구 과정에서, 기존에 알려진 메탈로센 호모 폴리프로필렌 수지는 낮은 자일렌 용해도 (xylene solubles)나 좁은 분자량 분포에 따른 저분자량의 함량이 적기 때문에, 부직포 제조시 표면적으로 거친 촉감 (feel)을 주는 단점이 있음을 확인하였다. 이에, 본 발명자들은 상기 문제점을 개선하기 위한 연구를 거듭하는 과정에서, 메탈로센 호모 폴리프로필렌 수지의 택티서티 (tacticity)를 80% 내지 90%로 최적화하며, 용융지수 (Ml)를 20 내지 30 g/min으로 최적화하고, 용융점 (Tm)올 145 V 이하로 최적화함과 동시에, 잔류웅력비율 및 분자량 분포 또한 각각 0.05% 이하 및 2.4 이하로 모두 최적화함으로써 모들러스 (modulus)를 최적화하여 기존 제품보다 소프트 (soft)한 촉감을 나타내면서도 우수한 강인성을 갖는 부직포를 제조할 수 있음을 확인하였다. 특히, 기존의 방식으로 택티서티 (tacticity)를 낮춤으로써 소프트한 부직포를 제조하면 소프트한 특성은 구현할 수 있으나, 부직포 강도가 떨어져 잘 찢어지는 단점이 있는데, 이는 수지의 분자량 분포가 넓어 가공 과정에서 층분한 연신을 하기 어렵기 때문이다. 이에 따라, 본 발명에서는 지글러 -나타 촉매가 아닌 특정의 메탈로센 촉매를 활성 성분으로 포함하는 단일 촉매를 사용한 중합 공정을 통해 얻어진 호모 폴리프로필렌 수지를 포함함으로써 , 택티서티 (tacticity)를 낮춤과 동시에 약 2.4 이하의 낮은 분자량 분포를 구현함으로써 소프트한 촉감과 함께 높은 강도를 동시에 구현할 수 있다. 본 발명에서는 트레이드 -오프 (trade-off) 관계에 있는 물성인 소프트한 감촉성 (softness)와 높은 강도를 단일 촉매로 반웅기 내 제조 공정 (reactor-made)을 통해 제조한 호모 폴리프로필렌 수지를 포함하여 구현할 수 있다. 본 발명에 따른 호모 폴리프로필렌 수지는 부직포를 제조하기 위한 용도로 사용할 수 있으며, 메탈로센 호모 폴리프로필렌 수지의 택티서티 (tact ici ty)를 약 80% 내지 약 90%가 되는 것을 특징으로 한다. 상기 호모 폴리프로필렌 수지의 택티서티 (tact i city)는 핵자기공명 (NMR, nuclear magnet i c resonance) 분석을 통해 측정할 수 있으며, 이러한 택티서티는 약 80% 내지 약 90%, 혹은 약 80% 내지 약 87%, 흑은 약 82% 내지 약 87%가 될 수 있다. 여기서, 택티서티 (tact ici ty)는 핵자기공명 기기 (NMR, nuclear magnet ic resonance)를 이용하여 측정한 값일 수 있다. 택티서티의 측정 방법은 후술할 시험예에서 보다 구체화될 수 있다. 상기 수지의 택티서티 (tact i ci ty)는 부직포 제조시 우수한 강인성을 확보하는 측면에서 약 80% 이상이 되어야 하고, 소프트한 촉감을 갖는 부직포를 구현할 수 있도록 하는 측면에서 약 90% 이하가 되어야 한다. 본 발명의 호모 폴리프로필렌 수지는 상술한 바 같이 최적화된 택티서티 (tact ici ty) 범위와 함께, 약 2.4 이하의 좁은 분자량 분포 (MWD)를 가지는 것을 특징으로 한다. 상기 호모 플리프로필렌 수지의 분자량 분포는 약 2.4 이하 흑은 약 2.0 내지 약 2.4, 혹은 약 2.05 내지 약 2.4, 혹은 약 2. 1 내지 약 2.4 일 수 있다. 여기서, 상기 호모 폴리프로필렌 수지는 부직포 제조시 우수한 강인성을 확보하는 측면에서 약 2.4 이하의 좁은 분자량 분포 (丽 D)를 갖는 것이어야 한다. 본 발명에 있어서 분자량 분포는 겔 투과 크로마토그래피 (GPC)를 이용하여 호모 폴리프로필렌 수지의 중량평균 분자량 (Mw) 및 수평균 분자량 (Mn)을 각각 측정하고, 분자량 분포로서 수평균 분자량에 대한 중량평균 분자량의 비 (Mw/Mn)를 계산하였다. 구체적으로, 겔투과 크로마토그래피 (GPC) 장치로는 Waters PL-GPC220 기기를 이용하고, Polymer Laborator ies PLgel MIX-B 300画 길이 칼럼을 사용하여 측정할 수 있다. 이때 측정 온도는 160 °C이며, 1,2,4-트리클로로벤젠을 용매로서 사용하였으며, 유속은 1 mL/min 로 한다. 또 호모 폴리프로필렌 수지의 샘플은 각각 lOmg/lOmL 의 농도로 조제한 다음, 200 iiL의 양으로 공급한다. 폴리스티렌 표준 시편을 이용하여 형성된 검정 곡선을 이용하여 Mw 및 Mn의 값을 유도할 수 있다. 이때 폴리스티렌 표준 시편으로는 중량평균 분자량은 2000 g/mol, 10000 g/mol, 30000 g/mol, 70000 g/mol, 200000 g/mol, 700000 g/mol, 2000000 g/mol, 4000000 g/mol, 10000000 g/mol 의 9 종을 사용할 수 있다. 또한, 본 발명의 호모 폴리프로필렌 수지는 상술한 바 같이 최적화된 택티서티 (tacticity) 범위 및 좁은 분자량 분포와 함께, 용융지수 (Ml) 및 용융점 (Tm)을 각각 20 내지 30 g/min 및 145 ; C 이하로 최적화하는 것을 특징으로 한다. 상기 호모 폴리프로필렌 수지의 용융지수 (MI, melt index)는 口 1국재료시험학회 (ASTM, American society for testing and materials) 규격 ASTM D 1238 에 따라 230 °C에서 2.16 kg 하중 하에서 측정하였을 때 , 약 20 내지 약 30 g/lOmin, 혹은 약 20 내지 약 26 g/10min, 혹은 약 23 내지 약 26 g/ 10m in 가 될 수 있다. 여기서, 상기 용융지수 (MI, melt index)는 방사성과 부직포의 강도를 동시에 우수한 정도로 확보하는 측면에서 상술한 범위를 유지해야 한다. 특히, 수지를 이용한 부직포를 가공함에 있어서 용융지수 (Ml) 가 약 20 g/10min 미만이면, 가공 압력이 상승하여 가공성이 떨어지는 문제가 있다. 또한, 상기 용융지수 (MI, melt index)가 약 30 g/ 10m in 를 초과하면 가공시 압력은 확보할 수 있으나 제품의 강도가원하는 고강도를 구현할 수 없는 문제가 있다. 또한, 상기 호모 폴리프로필렌 수지의 용융점 (Tm)은 약 145 °C 이하 또는 약 130 °C 내지 약 145 °C, 혹은 약 144 °C 이하 또는 약 132 °C 내지 약 144 °C, 혹은 약 143 °C 이하 또는 약 133 °C 내지 약 143 °C가 될 수 있다. 특히, 부직포용 섬유로 가공시 소프트한 촉감을 확보하고 가공 온도 상승으로 인한 수지의 분해 (degradat ion)를 방지하는 측면에서 상기 호모 폴리프로필렌 수지의 용융점 (Tm)은 145 V 이하가 되어야 한다. 또한, 상기 호모 폴리프로필렌 수지의 용융점 (Tm)이 145 °C를 초과하는 경우 방사성에 문제를 일으켜 섬유의 단사를 발생시켜 불량율이 증가될 수 있다. 다만, 상기 호모 폴리프로필렌 수지의 용융점 (Tm)이 130 °C 이하로 낮게 되면 수지를 생산하는 데 있어서 어려움이 있거나 생산성이 떨어질 수 있다. 한편, 본 발명에 있어서 호모 폴리프로필렌 수지의 용융점은, 상기 호모 폴리프로필렌 수지의 온도를 220 °C까지 증가시킨 후, 5분 동안 그 온도에서 유지하고, 그 다음 20 °C까지 내린 후, 다시 온도를 증가시켜 DSC(Di fferent i al Scanning Calor imeter , TA사 제조) 곡선의 꼭대기를 용융점으로 하여 측정할 수 있다. 이 때, 온도의 상승과 내림의 속도는 각각 10 °C /min이고, 용융점은 두 번째 온도가 상승하는 구간에서 측정한 결과이다. 이와 함께, 상기 호모 폴리프로필렌 수지는 상술한 바와 같은 택티서티 (tact i c i ty)와 분자량 분포, 용융지수, 용융점 (Tm) 등과 함께, 약 0.05% 좁은 잔류응력비율을 가지는 것을 특징으로 한다. 상기 잔류웅력비율은 약 0.05% 이하 또는 약 0.005% 내지 0.05%, 흑은 약 0.04% 이하 또는 약 0.006% 내지 0.04%, 흑은 약 0.03% 이하 또는 약 0.006% 내지 0.03%일 수 있다. 특히, 상기 잔류웅력비율은 부직포 제조 공정과 유사한 환경 하쎄서 유변학적 물성 테스트를 통해 섬유 가공성을 확인할 수 있은 것으로, 상기 호모 폴리프로필렌 수지에 큰 변형 (strain)을 가하여 웅력 완화 테스트 (stress relaxat ion test )를 수행하여 하기 계산식 1 에 따라 측정한 값이 된다. BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, homopolypropylene resins for nonwoven fabrics according to specific embodiments of the present invention and methods for producing the same will be described. Prior to that, the terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. And, The singular forms as used herein include plural forms as long as the phrases do not expressly express the opposite meaning thereto. Also, as used herein, the meaning of "comprising" or "containing" embodies certain features, areas, integers, steps, acts, elements or components, But does not exclude the addition of components. In the present invention, the terms first, second, etc. are used to describe various components, and the terms are used only for the purpose of distinguishing one component from another. Moreover, the terminology used herein is for the purpose of describing exemplary embodiments only and is not intended to be limiting of the present invention. The singular expressions include plural expressions unless the context clearly dictates otherwise. In this specification, the terms " comprising, "" comprising, " or " having ", and the like are intended to specify the presence of stated features, But do not preclude the presence or addition of one or more other features, integers, steps, components, or combinations thereof. The present invention is different. Modifications may be made and may take various forms, and specific embodiments will be illustrated and described in detail below. It is to be understood, however, that the invention is not intended to be limited to the particular forms disclosed, but on the contrary, is intended to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention. Hereinafter, the present invention will be described in more detail. According to an embodiment of the present invention, the tacticity is 80% to 90%, the molecular weight distribution (MffD) is 2.4 or less, the melt index (Ml) is 20 g / min to 30 g / min, a melting point (Tm) of 145 ° C or less, and a residual force ratio of 0.05% or less. The inventors of the present invention found that the metallocene homopolypropylene resin known in the art for the polypropylene resin used for nonwoven fabrics has a low content of low molecular weight due to low xylene solubles or a narrow molecular weight distribution, It is confirmed that there is a disadvantage in giving rough feel to the surface during the production of the nonwoven fabric. Accordingly, the present inventors have found that, in the course of repeated studies for improving the above problems, the tacticity of the metallocene homopolypropylene resin is optimized to 80% to 90% and the melt index (Ml) g / min, optimizing the melting point (Tm) to below 145 V, optimizing the residual force ratio and the molecular weight distribution to 0.05% or less and 2.4 or less, respectively, to optimize the modulus It was confirmed that a nonwoven fabric having excellent toughness can be produced while exhibiting a soft touch. In particular, when soft nonwoven fabric is manufactured by lowering tacticity by the conventional method, soft properties can be realized, but there is a disadvantage in that the strength of the nonwoven fabric tends to be lowered, It is difficult to stretch one. Accordingly, the present invention includes a homopolypropylene resin obtained by a polymerization process using a single catalyst containing a specific metallocene catalyst, which is not a Ziegler-Natta catalyst, as an active component, thereby lowering tacticity By implementing a low molecular weight distribution of about 2.4 or less, high strength can be achieved at the same time as soft touch. The present invention includes a homopolypropylene resin produced through a reactor-made process using a single catalyst with softness and high strength, which are physical properties in a trade-off relationship. . The homopolypropylene resin according to the present invention can be used for producing a nonwoven fabric and is characterized in that the tacticity of the metallocene homopolypropylene resin is about 80% to about 90%. The tacticity of the homopolypropylene resin can be measured by nuclear magnetic resonance (NMR) analysis, which is about 80% to about 90%, or about 80% to about 80% About 87%, and black can be about 82% to about 87%. Here, the tacticity may be a value measured using nuclear magnetic resonance (NMR). The measurement method of tacticity can be further specified in a test example to be described later. The tacticity of the resin should be about 80% or more from the viewpoint of ensuring excellent toughness in manufacturing the nonwoven fabric, and about 90% or less from the viewpoint of realizing a nonwoven fabric having soft touch . The homopolypropylene resin of the present invention is characterized by having a narrow molecular weight distribution (MWD) of about 2.4 or less with an optimized tacticity range as described above. The homopolypropylene resin may have a molecular weight distribution of about 2.4 or less and black of about 2.0 to about 2.4, or about 2.05 to about 2.4, or about 2.1 to about 2.4. Here, the homopolypropylene resin should have a narrow molecular weight distribution (D) of about 2.4 or less in view of ensuring excellent toughness in the production of nonwoven fabric. The weight average molecular weight (Mw) and the number average molecular weight (Mn) of the homopolypropylene resin are measured by gel permeation chromatography (GPC), and the weight average molecular weight The ratio of molecular weight (Mw / Mn) was calculated. Specifically, a gel permeation chromatography (GPC) apparatus can be measured using a Waters PL-GPC220 instrument and a Polymer Laboratories PLgel MIX-B 300 image length column. The measurement temperature is 160 ° C, 1,2,4-trichlorobenzene is used as a solvent, and the flow rate is 1 mL / min. Samples of the homopolypropylene resin were each prepared at a concentration of 10 mg / 10 mL, and then supplied in an amount of 200 iiL. Values of Mw and Mn can be derived using a calibration curve formed using a polystyrene standard specimen. The weight average molecular weight of the polystyrene standard specimen is 2000 g / mol, 10000 g / mol, 30000 g / mol, 70000 g / mol, 200000 g / mol, 700000 g / mol, 2000000 g / mol, 10000000 g / mol can be used. Further, the homopolypropylene resin of the present invention has a melt index (Ml) and a melting point (Tm) of 20 to 30 g / min and 145, respectively, together with the optimized tacticity range and narrow molecular weight distribution as described above. C or less. The melt index (MI) of the homopolypropylene resin was measured at 230 ° C under a load of 2.16 kg according to ASTM D 1238 of the American Society for Testing and Materials (ASTM) 20 to about 30 g / 10 min, or about 20 to about 26 g / 10 min, or about 23 to about 26 g / 10 min. Here, the melt index (MI) should be maintained within the above-mentioned range in terms of securing both the radioactive property and the strength of the nonwoven fabric to an excellent degree. In particular, when the melt index (Ml) is less than about 20 g / 10 min in processing a nonwoven fabric using a resin, there is a problem that the processing pressure is increased and the workability is lowered. If the melt index (MI) exceeds about 30 g / 10 m in, the pressure can be secured during processing, but the strength of the product can not achieve the desired high strength. Further, the melting point (Tm) of the homo-polypropylene resin is about 145 ° C or less, or about 130 ° C to about 145 ° C, or from about 144 ° C or less, or about 132 ° C to about 144 ° C, or from about 143 ° C or from about 133 ° C to about 143 ° C. In particular, when a non-woven fabric is used, it is possible to secure a soft touch, The melting point (Tm) of the homopolypropylene resin should be 145 V or less in terms of preventing degradation of the resin due to the rise. Also, when the melting point (Tm) of the homopolypropylene resin exceeds 145 ° C, there arises a problem in radioactivity, so that single yarns of the fibers are generated and the percentage of defects can be increased. However, if the melting point (Tm) of the homopolypropylene resin is lowered to 130 ° C or lower, it may be difficult or the productivity may be lowered. On the other hand, in the present invention, the melting point of the homopolypropylene resin is determined by increasing the temperature of the homopolypropylene resin to 220 ° C, keeping it at that temperature for 5 minutes, then lowering it to 20 ° C, To measure the DSC (Di fferent i al Scanning Calorimeter, manufactured by TA Corporation) curve at the top of the curve as the melting point. At this time, the temperature rise and fall rates are respectively 10 ° C / min, and the melting points are the results measured at the second rise of the temperature. In addition, the homopolypropylene resin has a tacticity as described above, a molecular weight distribution, a melt index, a melting point (Tm) and the like, and has a narrow residual stress ratio of about 0.05%. The residual force ratio may be about 0.05% or less, or about 0.005% to 0.05%, the black is about 0.04% or less, or about 0.006% to 0.04%, the black is about 0.03% or less or about 0.006% to 0.03%. In particular, the residual force ratio can be confirmed by a rheological property test in an environment similar to the nonwoven fabric manufacturing process, and a large strain is applied to the homopolypropylene resin to perform a stress relaxation test ), Which is a value measured according to the following equation (1).
[계산식 1]  [Equation 1]
잔류웅력비율 = (RS!/RSo) 100 상기 계산식 1 에서, RSo는 235 °C 하에서 상기 호모 폴리프로필렌 수지에 200¾)의 변형을 가한후 0.05 초 미만의 어느 한 시점 (to)에서의 잔류 웅력이고, R¾ 은 235 °C 하에서 상기 호모 폴리프로필렌 수지에 200%의 변형을 가한 후 0.05 초 내지 1.50 초 사이의 어느 한 시점 ( )에서의 잔류 웅력이다. . 즉, 발명의 일 예에 따르면, 상기 계산식 1 에 따른 잔류 웅력의 비율이 0.05%를 초과할 경우, 해당 폴리프로필렌 수지를 원료로 한 멜트 블로잉의 수행시 단사의 가능성이 너무 높아 부직포 제조시 불량율이 증가되는 문제가 발생할 수 있다. 잔류웅력비율은 0.05% 이하, 또는 0.04% 이하, 또는 0.03% 이하를 유지하여야 부직포를 가공하는 데 있어서 섬유의 단사를 최소화할 수 있다. 특히, 잔류 웅력이 높다면 용융상태에서 섬유가 방사되고 쿨링 (cool ing)을 통해 반용융 상태에서 연신을 하게 되는데, 이때 잔류 웅력이 높으면 수축하고자 하는 성질이 커지게 됨으로써 섬유의 단사가 발생할 가능성이 높아진다. 상기 계산식 1 에서 RSo는 235 °C 하에서 호모 '폴리프로필렌 수지에 200%의 변형을 가한 직후, 예를 : 들어 0.05 초 미만의 어느 한 시점 (to)에서의 잔류 응력을 나타낸다. 그리고, 상기 계산식 1 에서 1?¾은 상기 RSo와 동일한 조건 하에서 상기 to 후 약 1.5 초 이내 [예를 들어 0.05 초 내지 2.00 초 사이의 어느 한 시점 ( ) ]에서의 잔류 웅력을 나타낸다. 구체적으로, 상기 계산식 1 에서 상기 t0는 0.이 초, 흑은 0.015초, 흑은 0.02 초, 혹은 0.025 초, 혹은 0.03 초, 혹은 0.035 초, 혹은 0.04 초 혹은 0.045 초에서 선택될 수 있다. 그리고, 상기 계산식 1 에서 ^은 0.05 초, 흑은 0. 10 초, 흑은 0.20 초, 흑은 0.30 초, 혹은 0.40 초, 혹은 0.50 초, 흑은 0.60 초, 흑은 0.70 초, 흑은 0.80 초, 흑은 0.90 초, 혹은 1.00 초, 혹은 1. 10 초, 혹은 1.20 초, 혹은 1.30 초, 흑^ 1.40 초, 혹은 1.50 초, 혹은 1.60 초, 혹은 1.70 초, 흑은 1.80 초, 혹은 1.90 초, 흑은 2.00 초에서 선택될 수 있다. 바람직하게는, 잔류 응력의 측정시 유효한 데이터를 용이하게 확보를 위하여, 상기 계산식 1에서 to는 0.02초이고, ^은 1.00 초인 것이 유리할 수 있다. Residual force ratio = (RS ! / RSo) 100 In the above formula 1, RSo is a residue ungryeok in said homopolypropylene any time point (to) of less than 0.05 seconds after adding the deformation of 200¾ on resin) in the 235 ° C, R¾ is the homopolypropylene under 235 ° C Is the residual force at any point () between 0.05 seconds and 1.50 seconds after applying 200% strain to the resin. . That is, according to an embodiment of the present invention, when the ratio of the residual force according to Equation 1 exceeds 0.05%, the possibility of single yarn is high when performing melt blowing using the polypropylene resin as a raw material, There may arise an increase in the number of users. The residual force ratio should be maintained at 0.05% or less, or 0.04% or less, or 0.03% or less to minimize the single yarns of the fibers in processing the nonwoven fabric. In particular, if the residual force is high, the fiber is radiated in the molten state and is drawn in a semi-molten state through cooling. At this time, if the residual force is high, the property of shrinkage is increased, . In the above formula 1 RSo is homo 'poly immediately added to the 200% strain in the propylene resin, for under 235 ° C: shows the remaining stress at any one time contains less than 0.05 seconds (to). In the above equation (1), 1? 占 represents the residual force at about 1.5 seconds or less (for example, any point in time between 0.05 seconds and 2.00 seconds) after the to under the same condition as RSo. Specifically, in the above equation (1), t 0 can be selected from 0. for seconds, black for 0.015 seconds, black for 0.02 seconds, or 0.025 seconds, 0.03 seconds, or 0.035 seconds, or 0.04 seconds or 0.045 seconds. In the above equation 1, 0.05, 0, 0, 0, 0, 0.30, 0.40, or 0.50 second for black, 0.20 second for black, 0.20 second for black, 0.70 second for black, 0.80 second for black, , Black is 0.90 seconds, or 1.00 seconds, or 1.10 seconds, or 1.20 seconds, or 1.30 seconds, black is 1.40 seconds, or 1.50 seconds, or 1.60 seconds, or 1.70 seconds, black is 1.80 seconds, Black can be selected in 2.00 seconds. Preferably, for ease of securing valid data in the measurement of residual stress, it is advantageous that in the above equation 1, to is 0.02 seconds and t is 1.00 seconds.
^  ^
그리고, 상기 호모 폴리프로필렌 수지의 잔류웅력비율은 부직포 제조시 멜트 블로잉의 수행을 위한 공정 조건과 유사한 환경 (예를 들어 235 °C ) 하에서 측정된다. 상기 235 °C의 온도는 호모 폴리프로필 ¾ 수지를 완전히 녹여 멜트 블로잉을 수행하기에 적합한 온도에 해당한다. 본 발명의 호모 폴리프로필렌 수지에서 잔류웅력비율을 상술한 바와 같은 최적 범위로 유지하며 우수한 섬유 가공성을 확보할 수 있도록, 분자량 분포 (MWD) 또한 상술한 바와 같이 상승하지 않으며 낮은 범위를 유지하는 것이 바람직하다. 이와 같이 발명의 일 구현예에 따른 상기 호모 폴리프로필렌 수지는 택티서티 (tact ici ty) 및 분자량분포 (丽 D) , 용융지수 (Ml ) , 용융점 (Tm) , 잔류웅력비율을 모두 최적화함과 동시에 좁은 분자량 분포의 특성을 가져, 부직포에 사용하면 기존 제품보다 소프트 (soft )한 촉감을 부여할 뿐만 아니라 높은 강도로 쉽게 찢어지지 않는 우수한 강인성을 동시에 구현할 수 있다. 상기와 같은 물성 및 구성적 특징을 갖는 발명의 일 구현예에 따른 부직포용 호모 폴리프로필렌 수지는, 촉매 활성 성분으로 하기 화학식 1 로 표시되는 전이금속 화합물만을 포함하는 단일 촉매 존재 하에서, 프로필렌을 중합시키는 단계를 포함하는 제조방법에 의해 제조될 수 있다. 이에 따라 발명의 다른 일 구현예에 따르면, 상술한 바와 같은 부직포용 호모 폴리프로필렌 수지를 제조하는 방법이 제공된다. [화학식 1] Then, the residual force ratio of the homopolypropylene resin is measured under an environment (for example, 235 ° C) similar to the process conditions for performing melt-blowing in producing the nonwoven fabric. The temperature of 235 ° C corresponds to a temperature suitable for completely melting the homopolypropyl resin to perform melt blowing. It is preferable that the molecular weight distribution (MWD) also does not rise as described above and maintains a low range so that the residual force ratio in the homopolypropylene resin of the present invention can be maintained in the optimum range as described above and excellent fiber processability can be ensured Do. As described above, the homopolypropylene resin according to an embodiment of the present invention optimizes both the tacticity and the molecular weight distribution (D), the melt index (Ml), the melting point (Tm), and the residual force ratio When it is used in a nonwoven fabric having a narrow molecular weight distribution characteristic, not only a soft feel is given to the conventional product, but also excellent toughness which is not torn easily with high strength can be realized at the same time. The homopolypropylene resin for a nonwoven fabric according to an embodiment of the present invention having the above physical properties and constitutional characteristics is characterized in that propylene is polymerized in the presence of a single catalyst containing only a transition metal compound represented by the following formula The method comprising the steps of: Accordingly, according to another embodiment of the present invention, there is provided a method for producing a homopolypropylene resin for a nonwoven fabric as described above. [Chemical Formula 1]
Figure imgf000015_0001
상기 화학식 1에서,
Figure imgf000015_0001
In Formula 1,
A는 탄소 (C) , 실리콘 (Si ) 또는 게르마늄 (Ge)이고,  A is carbon (C), silicon (Si) or germanium (Ge)
M은 4족 전이금속이며;  M is a Group 4 transition metal;
X1 및 X2 는 서로 동일하거나 상이하고, 각각 독립적으로 할로겐, 치환 또는 비치환된 d-20 알킬 , 치환 또는 비치환된 C2-20 알케닐, 치환 또는 비치환된 C6-20 아릴, 니트로, 아미도, 치환 또는 비치환된 알킬아미노, 치환 또는 비치환된 C6-20 아릴아미노, 치환 또는 비치환된 d-20 알킬실릴, 치환 또는 비치환된 20 알콕시, 또는 치환 또는 비치환된 d-20 술포네이트이고; X 1 and X 2 are the same or different and are each independently a halogen, substituted or unsubstituted d-20 alkyl, substituted or unsubstituted C 2 - 20 alkenyl, substituted or unsubstituted C 6 - 20 aryl, nitro, amido, substituted or unsubstituted alkylamino, substituted or unsubstituted C 6 unsubstituted-20 arylamino, a substituted or unsubstituted d- 20 alkyl silyl, substituted or unsubstituted 20-alkoxy, or a substituted or unsubstituted ring d-20 sulfonate;
R1 및 R6은 서로 동일하거나 상이하고, 각각 독립적으로 수소, 또는 치환또는 비치환된 d-20 알킬이고; R 1 and R 6 are the same or different from each other, and each independently hydrogen or substituted or unsubstituted d- 20 alkyl;
R2 와 R3, 및 R7 와 R8은 각각 서로 연결되어 치환 또는 비치환된 C6-R 2 and R 3 , and R 7 and R 8 are each connected to each other to form a substituted or unsubstituted C 6 -
20 지방족 또는 방향족 고리를 형성하며; 20 form an aliphatic or aromatic ring;
R4, R5, R9, 및 R10은 서로 동일하거나 상이하고, 각각 독립적으로 수소, 할로겐, 치환 또는 비치환된 d-20 알킬, 치환 또는 비치환된 C2-20 알케닐, 치환 또는 비치환된 ( 20 알킬실릴, 치환 또는 비치환된 d-20 실릴알킬, 치환 또는 비치환된 ( 20 알콕시실릴, 치환 또는 비치환된 d-20 에테르, 치환 또는 비치환된 실릴에테르, 치환 또는 비치환된 알콕시, 치환 또는 비치환된 C6-20 아릴, 치환 또는 비치환된 C7-20 알킬아릴, 또는 치환또는 비치환된 C7-20 아릴알킬이고; R 4, R 5, R 9, and R 10 are each other the same or different, and are each independently hydrogen, halogen, substituted or unsubstituted d-20 alkyl, substituted or unsubstituted C 2 ring-alkenyl 20 alkenyl, substituted or unsubstituted (20 alkylsilyl group, a substituted or unsubstituted d-20 silyl alkyl, substituted or unsubstituted (20 alkoxysilyl group, a substituted or unsubstituted d-20 ether, a substituted or unsubstituted silyl ether, a substituted or unsubstituted Transformed Alkoxy, substituted or unsubstituted C 6 - 20 aryl, substituted or unsubstituted C 7 - 20 alkylaryl, or substituted or unsubstituted C 7 - 20 aryl-alkyl;
R11 및 R12는 서로 동일하며, C2-20 알킬이다. 본 명세서에서 특별한 제한이 없는 한 다음 용어는 하기와 같이 정의될 수 있다. 할로겐 (halogen)은 불소 (F) , 염소 (C1 ) , 브롬 (Br ) 또는 요오드 ( I )일 수 있다. R 11 and R 12 are the same each other, C 2 - 20 is alkyl. Unless defined otherwise herein, the following terms may be defined as follows. The halogen may be fluorine (F), chlorine (Cl), bromine (Br) or iodine (I).
' d-20 알킬, 즉, 탄소수 1 내지 20 의 알킬기는 직쇄, 분지쇄 또는 고리형 알킬기일 수 있다. 구체적으로, 탄소수 1 내지 20 의 알킬기는 탄소수 1 내지 20 의 직쇄 알킬기; 탄소수 1 내지 10 의 직쇄 알킬기; 탄소수 1 내지 5 의 직쇄 알킬기; 탄소수 3 내지 20 의 분지쇄 또는 고리형 알킬기; 탄소수 3 내지 15 의 분지쇄 또는 고리형 알킬기; 또는 탄소수 3 내지 10의 분지쇄 또는 고리형 알킬기일 수 있다. 보다 구체적으로, 탄소수 1 내지 20 의 알킬기는 메틸기, 에틸기, n-프로필기, i so-프로필기, n- 부틸기, i so-부틸기, tert-부틸기, n—펜틸기, i so—펜틸기, neo_펜틸기 또는 사이클로핵실기 등일 수 있다.  The d-20 alkyl, that is, the alkyl group having 1 to 20 carbon atoms, may be a straight chain, branched chain or cyclic alkyl group. Specifically, the alkyl group having 1 to 20 carbon atoms is preferably a straight chain alkyl group having 1 to 20 carbon atoms; A straight chain alkyl group having 1 to 10 carbon atoms; A straight chain alkyl group having 1 to 5 carbon atoms; Branched or cyclic alkyl group of 3 to 20 carbon atoms; Branched or cyclic alkyl group having 3 to 15 carbon atoms; Or a branched or cyclic alkyl group having 3 to 10 carbon atoms. More specifically, the alkyl group having 1 to 20 carbon atoms is preferably a methyl group, an ethyl group, an n-propyl group, an i-propyl group, an i-butyl group, A neopentyl group, a pentyl group, a neo_pentyl group or a cyclic nucleus group and the like.
Ci-20 알콕시, 즉, 탄소수 1 내지 20 의 알콕시기는 산소와 결합된 탄소수 1 내지 20 의 직쇄형 또는 분지형 알킬기 (-0R)를 의미한다. 구체적으로는 상기 알킬기는 탄소수 1 내지 20 , 보다 구체적으로는 탄소수 1 내지 . 6 의 알콕시기를 포함한다. 상기 알콕시기의 구체적인 예로는 메톡시기, 에록시기, 프로폭시기, 부록시기 또는 t-부록시기 등을 들 수 있다. Ci-20 alkoxy, that is, an alkoxy group having 1 to 20 carbon atoms means a straight-chain or branched alkyl group (-0 R) having 1 to 20 carbon atoms bonded with oxygen. Specifically, the alkyl group preferably has 1 to 20 carbon atoms, more specifically 1 to 6 carbon atoms. 6 < / RTI > alkoxy groups. Specific examples of the alkoxy group include a methoxy group, an eroxy group, a propoxy group, an enriched group, and a t-enoxy group.
C2-2o 알콕시알킬, 즉, 탄소수 2 내지 20 의 알콕시알킬기는 전술한 바와 같은 알콕시기가 직쇄 또는 분지형 알킬기의 탄소에 수소 대신에 치환된 작용기를 의미한다. 구체적으로 상기 알콕시알킬기는 탄소수 2 내지 20 , 보다 구체적으로는 탄소수 2 내지 12의 알콕시알킬기를 포함한다. 상기 알콕시알킬기의 구체적인 예로는 메톡시메틸기, tert-부특시메틸기, tert- 부록시핵실기, 1-에록시에틸기, 1-메틸 -1-메특시에틸기 등을 들 수 있다. C2-2o 알케닐, 즉, 탄소수 2 내지 20의 알케닐기는 직쇄, 분지쇄 또는 고리형 알케닐기일 수 있다. 구체적으로, 탄소수 2 내지 20 의 알케닐기는 탄소수 2 내지 20 의 직쇄 알케닐기, 탄소수 2 내지 10 의 직쇄 알케닐기, 탄소수 2 내지 5 의 직쇄 알케닐기, 탄소수 3 내지 20 의 분지쇄 알케닐기, 탄소수 3 내지 15 의 분지쇄 알케닐기, 탄소수 3 내지 10 의 분지쇄 알케닐기, 탄소수 5 내지 20 의 고리형 알케닐기 또는 탄소수 5 내지 10 의 고리형 알케닐기일 수 있다. 보다 구체적으로, 탄소수 2 내지 20 의 알케닐기는 에테닐기, 프로페닐기, 부테닐기, 펜테닐기 또는 사이클로핵세닐기 등일 수 있다. C3-2o 시클로알킬, 즉, 탄소수 3 내지 20 의 사이클로알킬기는 탄소수C 2 -2o alkoxyalkyl, that is, an alkoxyalkyl group having 2 to 20 carbon atoms means a functional group in which an alkoxy group as described above is substituted for a carbon of a linear or branched alkyl group in place of hydrogen. Specifically, the alkoxyalkyl group preferably has 2 to 7 carbon atoms, 20, more specifically an alkoxyalkyl group having 2 to 12 carbon atoms. Specific examples of the alkoxyalkyl group include a methoxymethyl group, a tert-butylmethyl group, a tert-butoxyundecenyl group, a 1-ethoxyethyl group and a 1-methyl-1 -methylcyclohexyl group. C 2 -2o alkenyl, that is, an alkenyl group having 2 to 20 carbon atoms, may be a straight-chain, branched-chain or cyclic alkenyl group. Specifically, the alkenyl group having 2 to 20 carbon atoms is preferably a straight chain alkenyl group having 2 to 20 carbon atoms, a straight chain alkenyl group having 2 to 10 carbon atoms, a straight chain alkenyl group having 2 to 5 carbon atoms, a branched alkenyl group having 3 to 20 carbon atoms, A branched alkenyl group having 3 to 10 carbon atoms, a cyclic alkenyl group having 5 to 20 carbon atoms, or a cyclic alkenyl group having 5 to 10 carbon atoms. More specifically, the alkenyl group having 2 to 20 carbon atoms may be an ethenyl group, a propenyl group, a butenyl group, a pentenyl group, or a cyclohexenyl group. C 3 -2 o cycloalkyl, that is, a cycloalkyl group having 3 to 20 carbon atoms,
3 내지 20 의 환형 포화 탄화수소기를 '의미한다. 구체적으로 상기 사이클로알킬기는 탄소수 3 내지 6 의 사이클로알킬기를 포함한다. 상기 사이클로알킬기의 구체적인 예로는, 사이클로프로필기, 사이클로부틸기 또는 사이클로핵실기 등을 들 수 있다. Cyclic saturated hydrocarbon groups of 3 to 20 of means. Specifically, the cycloalkyl group includes a cycloalkyl group having 3 to 6 carbon atoms. Specific examples of the cycloalkyl group include a cyclopropyl group, a cyclobutyl group, and a cyclic nucleus group.
,  ,
C6-2o 아릴, 즉, 탄소수 6 내지 20 의 아릴은 모노사이클릭, 바이사이클릭 또는 트라이사이클릭 방향족 탄화수소를 의미할 수 있다. 구체적으로, 탄소수 6 내지 20 의 아릴은 페닐기, 나프틸기 또는 안트라세닐기 등일 수 있다. . C 6 -2 O aryl, that is, aryl having 6 to 20 carbon atoms may mean monocyclic, bicyclic or tricyclic aromatic hydrocarbon. Specifically, aryl having 6 to 20 carbon atoms may be a phenyl group, a naphthyl group, or an anthracenyl group. .
C7-2o 알킬아릴, 즉, 탄소수 7 내지 30의 알킬아릴은 아릴의 1 이상의 수소가 알킬에 의하여 치환된 치환기를 의미할 수 있다. 구체적으로, 탄소수 7 내지 20 의 알킬아릴은 메틸페닐, 에틸페닐, n-프로필페닐, i so- 프로필페닐, n-부틸페닐, iso-부틸페닐,. tert-부틸페닐 또는 사이클로핵실페닐 등일 수 있다. C7-2o 아릴알킬, 즉, 탄소수 7 내지 20의 아릴알킬은 알킬의 1 이상의 수소가 아릴에 의하여 치환된 치환기를 의미할 수 있다. 구체적으로, 탄소수 7 내지 20의 아릴알킬은 벤질기, 페닐프로필 또는 페닐핵실 등일 수 있다. C 7 -2o alkyl aryl, i.e., an alkylaryl having 7 to 30 may have at least one hydrogen of the aryl mean a substituent substituted by alkyl. Specifically, the alkylaryl having 7 to 20 carbon atoms is preferably methylphenyl, ethylphenyl, n-propylphenyl, iso-propylphenyl, n-butylphenyl, iso-butylphenyl, tert-butylphenyl or cyclohexylphenyl, and the like. C 7 -2o aryl, i.e., arylalkyl having 7 to 20 may have at least one hydrogen of the alkyl means a substituent substituted by an aryl group. Specifically, the arylalkyl group having 7 to 20 carbon atoms may be a benzyl group, a phenylpropyl group, a phenyl nucleyl group, or the like.
C6-2o 아릴옥시, 즉, 탄소수 6 내지 20의 아릴옥시기는 산소와 결합된 아릴기 (_0Ar )를 의미하며, 이때 상기 아릴기는 앞서 정의한 바와 같다. 구체적으로 상기 아릴옥시기는 탄소수 6 내지 20, 보다 구체적으로는 탄소수 6 내지 12 의 아릴옥시기를 포함한다. 상기 아릴옥시기의 구체적인 예로는 페녹시 등을 들 수 있다. 실릴기는 실란 (si lane)으로부테 유도된 -Si¾ 라디칼을 의미하며, 상기 실릴기 내 수소원자 중 적어도 하나가 알킬기, 알콕시, 할로겐기 등의 다양한 유기기로 치환될 수도 있다. 이때 상기 알킬기, 알콕시, 할로겐기는 앞서 정의한 바와 같다 니트로기 (ni tro group)는 한개의 질소 원자와 두개의 산소 원가가 결합된 -N02 라디칼을 의미한다. C 6 -2 O aryloxy, that is, an aryloxy group having 6 to 20 carbon atoms means an aryl group (0 Ar) bonded with oxygen, wherein the aryl group is as defined above. Specifically, the aryloxy group includes an aryloxy group having 6 to 20 carbon atoms, more specifically 6 to 12 carbon atoms. Specific examples of the aryloxy group include phenoxy and the like. The silyl group refers to a -Si 3 radical induced by a silane, and at least one of the hydrogen atoms in the silyl group may be substituted with various organic groups such as an alkyl group, an alkoxy group and a halogen group. Wherein the alkyl, alkoxy, and halogen groups are as previously defined. A nitro group refers to a -NO 2 radical having one nitrogen atom and two oxygen atoms bonded together.
Ci-20 술포네이트, 즉, 탄소수 1 내지 20 의 술포네이트기 (sul fonate group)는 술폰산기 (_S03H) 중 수소가 알킬기로 치환된 작용기를 의미하며, 이때 알킬기는 앞서 정의한 바와 같다. 구체적으로 상기 술포네이트기는 - S03R (이때 R 은 탄소수 1 내지 20 의 직쇄 또는 분지상의 알킬기임)일 수 ¾다. 아미도기 (amido group)은 카르보닐기 (C=0)에 결합된 아미노기 의미한다. Ci-20 알킬아미노, 즉, 탄소수 1 내지 20 의 알킬아미노기는 아미노기 (-腿2)에서의 적어도 하나의 수소가 알킬기로 치환된 작용기를 의미하며, 이때 알킬기는 앞서 정의한 바와 같다. 구체적으로 상기 알킬아미노가는 -NR2(이때 R 은 각각 수소원자이거나 탄소수 1 내지 20 의 직쇄 또는 분지상의 알킬기일 수 있으며, 단 두개의 R 모두가 수소원자는 아님)일 수 있다. Ci-20 sulfonate, that is, a sul fonate group having 1 to 20 carbon atoms means a functional group in which a hydrogen is substituted with an alkyl group in a sulfonic acid group (SO 3 H), wherein the alkyl group is as defined above. Specifically, the sulfonate group may be - SO 3 R (wherein R is a straight chain or branched alkyl group having 1 to 20 carbon atoms). An amido group means an amino group bonded to a carbonyl group (C = O). Ci-20 alkylamino, i.e. an alkylamino group having from 1 to 20 carbon atoms, means a functional group in which at least one hydrogen in the amino group (-thymine 2 ) is substituted with an alkyl group, in which the alkyl group is as defined above. Specifically, the alkylamino group may be -NR 2 (wherein each R may be a hydrogen atom, or a straight chain or branched alkyl group having 1 to 20 carbon atoms, but not both of R's may be a hydrogen atom).
C6-2o 아릴아미노, 즉, 탄소수 6 내지 20 의 아릴아미노기는 아미노기 (-N¾)에서의 적어도 하나의 수소가 아릴기로 치환된 작용기를 의미하며, 이때 아릴기는 앞서 정의한 바와 같다. C 6 -C 20 arylamino, ie, an arylamino group having 6 to 20 carbon atoms means a functional group in which at least one hydrogen in the amino group (-N═) is substituted with an aryl group, wherein the aryl group is as defined above.
C6-2o 지방족 또는 방향족 고리, 즉, 탄소수 6 내지 20의 지방족 또는 방향족 고리는 시클로알킬기 또는 아릴기를 의미하며, 이때 시클로알킬기 및 아릴기는 앞서 정의한 바와 같다. C 6 -2o aliphatic or aromatic ring, i.e. an aliphatic or aromatic ring of 6 to 20 carbon atoms, means a cycloalkyl or aryl group, wherein the cycloalkyl and aryl groups are as defined above.
Ci-20 실릴알킬, 즉, 탄소수 1 내지 20 의 실릴알킬기는 알킬기에서의 적어도 하나의 수소가 실릴기로 치환된 작용기를 의미하며, 이때 알킬기 및 실릴기는 앞서 정의한 바와 같다. Ci-2o 에테르, 즉, 탄소수 1 내지 20 의 에테르는 -0— 라디칼을 포함하는'하이드로카르빌기를 의미하며, 에테르기 내 수소원자 중 적어도 하나가 실릴기 등의 다양한 유기기로 치환될 수도 있다. 이때 상기 실릴기는 앞서 정의한바와 같다 알킬리덴기 (alkyl idene group)란 알킬기의 동일한 탄소원자로부터Ci-20 silylalkyl, that is, a silylalkyl group having 1 to 20 carbon atoms means a functional group in which at least one hydrogen in the alkyl group is substituted with a silyl group, in which the alkyl group and the silyl group are as defined above. Ci-2o ether, that is, an ether having 1 to 20 carbon atoms means a hydrocarbyl group containing a -O-radical, and at least one of the hydrogen atoms in the ether group may be substituted with various organic groups such as a silyl group. Wherein the silyl group is as defined above. An alkyl idene group is an alkyl group having from the same carbon atom of an alkyl group
2 개의 수소원자가 제거된 2 가의 지방족 탄화수소기를 의미한다. 구체적으로 상기 알킬리덴기는 탄소수 1 내지 20, 보다 구체적으로는 탄소수 1 내지 12 의 알킬리덴기를 포함한다. 상기 알킬리덴기의 구체적인 예로는 프로판 -2일리덴기 (propane-2-yl idene group) 등을 들 수 있다. 아릴리덴기 (aryl idene group)란 아릴기의 동일한 탄소원자로부터 2 개의 수소원자가 제거된 2 가의 방향족 탄화수소기를 의미한다. 구체적으로 상기 아릴리덴기는 탄소수 6 내지 20 , 보다 구체적으로는 탄소수 6 내지 12 의 알릴리덴기를 포함한다. 상기 아릴리덴기의 구체적인 예로는 페닐리덴 등을 들 수 있다. 하이드로카르빌기 (hydrocarbyl group)는 알킬기, 아릴기, 알케닐기, 알킬아릴기, 아릴알킬기 등 그 구조에 상관없이 탄소 및 수소로만 이루어진 탄소수 1 내지 60의 1가의 탄화수소기를 의미한다. 또, 본 명세서에 있어서 특별히 정의되지 않는 한, '이들의 조합'이란 둘 이상의 작용기가 단일결합, 이중결합 (에틸렌기), 삼중결합 (아세틸렌기) 또는 탄소수 1 내지 20 의 알킬렌기 (예를 들면, 메틸렌기 (-c¾-) 또는 에틸렌기 (-(¾(¾-) , 등)와 같은 연결기에 의해 결합되어 있거나, 또는 둘 이상의 작용기가 축합, 연결되어 있는 것을 의미한다. 특히, 본 발명에서는 소프트하면서 강도가 우수한 부직포용 호모 폴리프로필렌 수지를 제조하기 위하여, 분자량 분포가 넓어 사출 등의 가공성에 적합한 용도로 사용하는 흔성 촉매가 아닌 상기 화학식 1 의 전이금속 화합물을 단일 성분으로 포함하는 단일 촉매를 사용하는 것을 특징으로 한다. 또한, 기존 공정에서는 특성이 다른 2 종의 수지를 흔합하여 부직포를 제조하는 경우도 있는데, 본 발명에서는 반웅기 내 제조 공정 (reactor-made)으로 제조한 1 종의 수지로 소프트와 강도를 동시에 충족할 수 있는 차별성이 있다. 상기 호모 폴리프로필렌은 상기 화학식 1 로 표시되는 전이금속 화합물을 포함하는 촉매와 프로필렌을 접촉시키는 중합 공정을 통해 제조될 수 있다. 또한, 본 발명의 일 실시예예 따르면, 상기 프로필렌의 단일 중합은 수소 기체 하에서 수행될 수 있다. 이때, 상기 수소 기체는 프로필렌의 전체 중량에 대하여 , 약 2000 ppm 이하 혹은 약 10 ppm 내지 약 2000 ppm, 혹은 약 50 ppm 내지 약 1500 ppm 이 되도록 투입될 수 있다. 상기 수소 기체의 사용량을 조절하여, 층분한 촉매 활성을 나타내면서도 제조되는 호모 폴리프로필렌 수지의 분자량 분포 및 유동성을 원하는 범위 내로 조절할 수 있으며, 이에 따라 용도에 따라 적절한 물성을 갖는 프로필렌- 부텐 공중합체를 제조할 수 있다. 상기 호모 폴리프로필렌 수지를 제조하는 데 촉매로 사용되는 전이금속 화합물로는 상기 화학식 1로 표시되는 전이금속 화합물화합물을 1 종 이상사용할 수 있다. 상기 화학식 1에서, R2 와 R3 및 R7 와 R8은 각각서로 연결되어 C6-20 아릴을 형성하는 것일 수 있다. 상기 화학식 1에서, A는 실리콘 (Si )일 수 있다. 상기 화학식 1에서, M은 지르코늄 (Zr) 또는 하프늄 (Hf )일 수 있다. 상기 화학식 1 에서, X1 및 X2는 각각 할로겐일 수 있다. 구체적으로Means a divalent aliphatic hydrocarbon group in which two hydrogen atoms have been removed. Specifically, the alkylidene group includes an alkylidene group having 1 to 20 carbon atoms, more specifically 1 to 12 carbon atoms. Specific examples of the alkylidene group include a propane-2-yl idene group and the like. The arylidene group means a bivalent aromatic hydrocarbon group in which two hydrogen atoms have been removed from the same carbon atom of the aryl group. Specifically, the arylidene group includes an allylidene group having 6 to 20 carbon atoms, more specifically 6 to 12 carbon atoms. Specific examples of the arylidene group include phenylidene and the like. The hydrocarbyl group means a monovalent hydrocarbon group of 1 to 60 carbon atoms consisting solely of carbon and hydrogen, regardless of its structure, such as an alkyl group, an aryl group, an alkenyl group, an alkylaryl group, and an arylalkyl group. Unless otherwise defined in the present specification, "a combination thereof" means that two or more functional groups are bonded to each other through a single bond, a double bond (ethylene group), a triple bond (acetylene group), or an alkylene group having 1 to 20 carbon atoms , A methylene group (-c¾-) or an ethylene group (- (¾ (¾-), etc.), or two or more functional groups are condensed and connected. In order to produce a homopolypropylene resin for a nonwoven fabric having good softness and high strength, a single catalyst containing a transition metal compound of the above formula (1) as a single component, which is not a common catalyst used for applications suitable for workability such as injection, In a conventional process, a nonwoven fabric may be produced by mixing two kinds of resins having different characteristics, In there is a resin of one kinds of manufactured in the manufacturing process (reactor-made) half unggi difference that meets the soft and the strength at the same time. The homopolypropylene can be produced through a polymerization process in which propylene is contacted with a catalyst containing a transition metal compound represented by the general formula (1). Further, according to one embodiment of the present invention, the single polymerization of propylene can be carried out under hydrogen gas. At this time, the hydrogen gas may be fed at a level of about 2000 ppm or less, or about 10 ppm to about 2000 ppm, or about 50 ppm to about 1500 ppm, based on the total weight of the propylene. It is possible to control the molecular weight distribution and fluidity of the homopolypropylene resin which is produced while controlling the amount of the hydrogen gas to be used while exhibiting the catalytic activity of the stratified catalyst, and accordingly, a propylene-butene copolymer Can be manufactured. As the transition metal compound used as a catalyst for preparing the homopolypropylene resin, one or more transition metal compound compounds represented by the general formula (1) may be used. In Formula 1, R 2 and R 3 and R 7 and R 8 is C 6 are coupled to each other - may be to form a 20 aryl. In Formula 1, A may be silicon (Si). In the above formula (1), M may be zirconium (Zr) or hafnium (Hf). In Formula 1, X 1 and X 2 may each be halogen. Specifically
X1 및 X2는 각각 클로로일 수 있다. 상기 화학식 1 에서, R1 및 R6는 각각 수소 또는 d-5 직쇄 알킬일 수 있고, 또는 수소 또는 메틸일 수 있다. 상기 화학식 1에서, R4 , R5 , R9 , 및 는 수소일 수 있다ᅳ 상기 화학식 1 에서, R11 및 R12는 동일하며, C2-4 직쇄 알킬기일 수 있다ᅳ - ' X 1 and X 2 may each be chloro. In the above formula (1), R 1 and R 6 may each be hydrogen or d- 5 straight chain alkyl, or may be hydrogen or methyl. In Formula 1, R 4 , R 5 , R 9 , and may be hydrogen. In Formula 1, R 11 and R 12 are the same and may be a C 2 -4 straight chain alkyl group.
상기 화학식 1에서, R12는 에틸 또는 6-(t-부특시) -핵실일 수 있다. 일 예로, 상기 전이 금속 화합물로는 상기 화학식 1 의 A 는 실리콘이고; M은 Zr 또는 Hf 이며 ; X1 및 X2는 각각 할로겐이고; R1 및 R6는 각각 수소 또는 메틸이며 ; R2 와 R3 및 R7 와 R8은 각각 서로 연결되어 C6-20 아릴을 형성하고; R4, R5, R9 , 및 R10는 수소이고; R11 및 R12는 동일하며 ,In the above formula (1), R 12 may be ethyl or 6- (t-butoxy) -nucleic acid. As the transition metal compound, for example, A in the formula (1) is silicon; M is Zr or Hf; X 1 and X 2 are each halogen; R 1 and R 6 are each hydrogen or methyl; R 2 and R 3 and R 7 and R 8 are respectively connected to each other C 6 - to form a 20 aryl; R 4 , R 5 , R 9 , and R 10 are hydrogen; R 11 and R 12 are the same,
C2-4 직쇄 알킬기인 전이 금속 화합물이 사용될 수 있다. 또한 , 구체적인 일 구현예로, 상기 전이금속 화합물은 하기 화학식 1-1로 표시되는 것일 수 있다. C 2 -4 straight chain alkyl group can be used. In one specific embodiment, the transition metal compound may be represented by the following general formula (1-1).
Figure imgf000022_0001
상기 화학식 1-1에서, A, M, X1, X2 , R1, R4, R5 , R6 , R9 , R10, R11 , 및 R12은 상기 화학식 1에서 정의한 바와 같다. 이러한 구조의 전이 금속 화합물은 적절한 입체 장애를 일으켜 상술한 효과를 보다 효과적으로 담보할 수 있다. 여기서, 실리콘 브릿지의 치환기인 R11 및 R12는 용해도를 증대시켜 담지 효율성을 개선하는 측면에서 용해도를 증대시켜 담지 효율성을 개선하는 측면에서 서로 동일하며, C2-10 알킬기일 수 있고, 보다 구체적으로는 C2-4 직쇄 알킬기, 보다 더 구체적으로는 각각 에틸일 수 있다. 이러한 브릿지의 치환기로서 메틸기를 포함하는 경우, 담지 촉매 조제시 용해도가좋지 않아 담지 반웅성이 떨어지는 문제가 나타날 수 있다. 또한, 상기 촉매의 중심 금속으로는 Zr 및 Hf가 .바람직한데, Zr은 활성을 높이는 특징이 있고, Hf는 생성되는 수지의 용융점 (Tm)을 약 2-3 °C 정도 높이는 특성이 있어 적절한 용도에 맞게 적용할 수 있다. 바람직하게는, 상기 전이금속 화합물은 하기 구조식 중 하나로 표시되는 것일 수 있다:
Figure imgf000022_0001
In Formula 1-1, A, M, X 1 , X 2 , R 1 , R 4 , R 5 , R 6 , R 9 , R 10 , R 11 and R 12 are as defined in Formula 1. The transition metal compound having such a structure can cause a proper steric hindrance to more effectively secure the above-mentioned effect. Wherein the substituents of R 11 and R 12 of the silicon bridge to increase the solubility in terms of improving the loading efficiency by increasing the solubility, and equal to each other in terms of improving the loading efficiency, C 2 - may be a 10-alkyl group, more particularly May be a C 2 -4 straight chain alkyl group, more particularly each ethyl. When a methyl group is included as a substituent of such a bridge, there is a problem that the solubility in preparing the supported catalyst is poor and the supported semisolid property is deteriorated. Zr and Hf are preferable as Zr and Hf, and Zr is a property of increasing the activity. Hf is a property of raising the melting point (Tm) of the resulting resin by about 2-3 ° C, Can be applied. Preferably, the transition metal compound may be represented by one of the following structural formulas:
Figure imgf000023_0001
상기 화학식 1 로 표시되는 전아 금속 화합물은 공지의 반응들을 웅용하여 합성될 수 있으며, 보다 상세한 합성 방법은 후술하는 제조예 1 내지 2를 참고할 수 있다. 한편, 상기 화학식 1 의 구조를 가지는 전이 금속 화합물을 포함하는 촉매는 높은 활성과 공정 안정성을 향상시키는 측면에서 다양한 조촉매를 추가로 포함할 수 있다. 이러한 조촉매 화합물로는 하기 화학식 2 또는 화학식 3으로 표시되는 화합물 중 1종 이상을 포함할 수 있다.
Figure imgf000023_0001
The electrophile metal compound represented by Formula 1 may be synthesized by using known reactions. For a more detailed synthesis method, Reference Examples 1 and 2 described below may be referred to. Meanwhile, the catalyst containing the transition metal compound having the structure of Formula 1 may further include various promoters in terms of improving the activity and the process stability. Such a promoter compound may include at least one compound represented by the following general formula (2) or (3).
[화학식 2]  (2)
R8-[Al (R7)-0]m-R9 R 8 - [Al (R 7 ) -O] m -R 9
상기 화학식 2에서,  In Formula 2,
R7 , R8 및 R9는 각각 독립적으로 수소, 할로겐, 탄소수 1 내지 20 의 하이드로카빌기 및 할로겐으로 치환된 탄소수 1 내지 20 의 하이드로카빌기 중 어느 하나이고, R 7 , R 8 and R 9 are each independently any one of hydrogen, halogen, hydrocarbyl group having 1 to 20 carbon atoms and hydrocarbyl group having 1 to 20 carbon atoms substituted with halogen,
m은 2 이상의 정수이며,  m is an integer of 2 or more,
[화학식 3]  (3)
[L-H] + [W(J)4]-또는 [L] + [W(J)4r [LH] + [W (J ) 4] - or [L] + [W (J ) 4 r
상기 화학식 3에서'  In the above formula (3)
L은 중성 또는 양이온성 루이스 염기이고,  L is a neutral or cationic Lewis base,
W 는 13 족 원소이며, J 는 각각 독립적으로 탄소수 1 내지 20 의 하이드로카빌기; 탄소수 1 내지 20 의 하이드로카빌옥시기; 및 이들 치환기의 1 이상의 수소 원자가 할로겐, 탄소수 1 내지 20 의 하이드로카빌옥시기 및 탄소수 1 내지 20의 하이드로카빌 (옥시)실릴기 중 1 이상의 치환기로 치환된 치환기들 중 어느 하나이다. 예컨대, 본 발명에서 조촉매로는 상기 화학식 2 또는 화학식 3 으로 표시되는 다양한 조촉매가모두 사용될 수 있다. 일 예로, 상기 화학식 2의 조촉매로는 메틸알루미녹산, 에틸알루미녹산, 이소부틸알루미녹산, tert- 부틸알루미녹산 또는 이들의 흔합물 등이 사용될 수 있다. 또한, 상기 화학식 3 의 조촉매로는 트리메틸암모늄 테트라키스 (펜타플루오로페닐)보레 ο 트리에틸암모늄 테트라키스 (펜타플루오로페닐)보레이트, Ν, Ν-디메틸아닐리늄 테트라키스 (펜타플루오로페닐)보레이트, Ν, Ν-디메틸아닐리늄 η- 부틸트리스 (펜타플루오로페닐)보레이트, Ν ,Ν-디메틸아닐리늄 벤질트리스 (펜타폴루오로페닐)보레이트, Ν ,Ν-디메틸아닐리늄 테트라키스 (4-W is a Group 13 element, J is independently a hydrocarbyl group having 1 to 20 carbon atoms; A hydrocarbyloxy group having 1 to 20 carbon atoms; And substituents in which at least one hydrogen atom of these substituents is substituted with at least one substituent selected from halogen, a hydrocarbyloxy group having 1 to 20 carbon atoms and a hydrocarbyl (oxy) silyl group having 1 to 20 carbon atoms. For example, as the promoter in the present invention, various promoters represented by the above formula (2) or (3) may be used. For example, methyl aluminoxane, ethyl aluminoxane, isobutyl aluminoxane, tert-butyl aluminoxane, or a mixture thereof may be used as the cocatalyst of formula (2). As the co-catalyst of the above formula (3), trimethylammonium N, N-dimethylanilinium tetrakis (pentafluorophenyl) borate, N, N-dimethylanilinium 侶 -butyl (pentafluorophenyl) borate, triethylammonium tetrakis Tris (pentafluorophenyl) borate, N, N-dimethylanilinium benzyltris (pentafluorophenyl) borate, N, N-dimethylanilinium tetrakis (4-
( t-부틸디메틸실릴) -2,3 , 5 , 6-테트라플루오로페닐)보레이트, Ν , Ν- 디메틸아닐리늄 테트라키스 (4- (트리이소프로필실릴) -2,3,5 , 6ᅳ 테트라플루오로페닐)보레이트, Ν, Ν-디메틸아닐리늄 펜타플루오로페녹시트리스 (펜타플루오로페닐)보레이트, Ν , Ν-디메틸 -2 , 4 , 6- 트리메틸아닐리늄 테트라키스 (펜타플루오로페닐)보레이트, 트리메틸암모늄 테트라키스 (2, 3 , 4, 6-테트라플루오로페닐)보레이트, Ν, Ν-디메틸아닐리늄 테트라키스 (2,3,4,6-테트라플루오로페닐)보레이트, 핵사데실디메틸암모늄 테트라키스 (펜타플루오로페닐)보레이트, ' Ν-메틸 -Ν-도데실아닐리늄 테트라키스 (펜타플루오로페닐)보레이트, 메틸디 (도데실)암모늄 테트라키스 (펜타플루오로페닐)보레이트 또는 이들이 흔합물이 사용될 수 있다. 상기 조촉매의 사용 함량은, 목적하는 촉매와 호모 폴리프로필렌 수지의 물성이나 효과에 따라 적절하게 조절될 수 있다. 또한, 상기 화학식 1 의 구조를 가지는 전이 금속 화합물을 포함하는 촉매는, 상기 화학식 1 의 전이 금속 화합물 및 경우에 따라 상기 화학식 2 또는 화학식 3의 조촉매가 담체에 담지된 담지 촉매 형태로 사용할 수 있다. 상기 담체로는 표면에 하이드록시기 또는 실록산기를 함유하는 담체를 사용할 수 있다. 구체적으로, 상기 담체로는 고온에서 건조하여 표면에 수분을 제거함으로써 반웅성이 큰 하이드록시기 또는 실록산기를 함유하는 담체를 사용할 수 있다. 보다 구체적으로, 상기 담체로는 실리카, 알루미나, 마그네시아 또는 이들의 흔합물 등을 사용할 수 있다. 상기 담체는 고은에서 건조된 것일 수 있고, 이들은 통상적으로 Na20, K2C03 l BaS04 및 Mg(N03)2 등의 산화물, 탄산염, 황산염 , 질산염 성분을 포함할 수 있다. 상기 담지 촉매는 담체에 상기 화학식 2의 조촉매, 상기 화학식 1의 전이 금속 화합물 및 상기 화학식 3 의 조촉매가 순차적으로 담지되어 형성된 갓일 수 있다. 이러한 담지 순서에 따라 결정된 구조의 담지 촉매는 호모 폴리프로필렌 수지의 제조 공정에서 높은 활성과 함께 우수한 공정 안정성을 구현할 수 있다. 보다 구체적으로, 상기 담지 촉매는 촉매 활성 성분으로는 상기 화학식 1 로 표시되는 전이금속 화합물만을 포함하는 단일 담지 촉매가 될 수 있다. 상기 호모 폴리프로필렌 수지는 연속 중합 공정으로 제조될 수 있으며, 예컨대, 연속식 용액 중합 공정, 연속식 벌크 중합 공정, 연속식 현탁 중합 공정, 연속식 슬러리 중합 공정 또는 연속식 유화 중합 공정 등 올레핀 단량체의 중합 반웅으로 알려진 다양한 중합 공정을 채용할 수 있다. 다만, 상술한 바와 같은 균일한 분자량 분포를 얻고, 부직포 섬유용으로 적합한 호모 폴리프로필렌 수지를 제조하기 위해서는 연속식 벌크-슬러리 중합 공정이 바람직하다 . 구체적으로 상기 중합 반웅은 약 40 내지 110 °C , 또는 약 50 내지 100 °C, 또는 약 60 내지 90 °C의 온도 하에서 수행될 수 있다. 또한, 상기 중합 공정의 압력은 폴리프로필렌 수지 제조 분야에서 알려진 범위 내에서 수행할 수 있으며, 예컨대, 약 1 내지 100 kgf/cm2의 압력 하에서 수행될 수 있다. 일 예로, 실제 반웅기 크기에 따라 다르기는 하지만, 프로필렌의 투입량은 시간당 약 10 kg 내지 약 80 kg, 또는 약 20 kg 내지 약 65 kg, 또는 약 30 kg 내지 약 50 kg으로 하여, 연속 중합 공정을 수행할 수 있다. 또한, 상기 중합 반웅에서, 상기 촉매는 펜탄, 핵산, 헵탄, 노난, 데칸, 를루엔, 벤젠, 디클로로메탄, 클로로벤젠 등과 같은 용매에 용해 또는 희석된 상태로 이용될 수 있다. 이때, 상기 용매를 소량의 알킬알루미늄 등으로 처리함으로써, 촉매에 악영향을 줄 수 있는 소량의 물 또는 공기 등을 미리 제거할 수 있다. 일 예로, 상기 촉매는 오일, 그리스에 섞은 머드 촉매 형태로 사용할 수 있고, 오일, 그리스 등을 포함한 총 중량 기준으로 상기 촉매의 함량은 약 10% 내지 약 25%, 또는 약 12% 내지 약 20% , 또는 약 14% 내지 약 18%일 수 있다. 상기와 같이 발명의 다른 일 구현예에 따른 호모 폴리프로필렌 수지의 제조 방법은, 촉매 활성 성분으로 하기 화학식 1 로 표시되는 전이금속 화합물만을 포함하는 단일 촉매를 사용함으로써, 제조되는 호모 폴리프로필렌 수지는 택티서티 (tact i c i ty) 및 분자량분포 (MTO) , 용융지수 (Ml ) , 용융점 (Tm) , 잔류웅력비율을 모두 최적화함과 동시에 좁은 분자량 분포의 특성을 가져, 부직포에 사용하면 기존 제품보다 소프트 (soft )한 촉감을 부여할 뿐만 아니라 높은 강도로 쉽게 찢어지지 않는 우수한 강인성을 동시에 구현할 수 있다. 이에 따라 본 발명의 또 다른 일 구현예에 따르면 상술한 호모 폴리프로필렌 수지를 포함하는 부직포용 수지 조성물, 및 이를 이용하여 제조한부직포 제품을 제공한다. 구체적으로, 상기 부직포용 수지 조성물은 상술한 바와 같은 호모 폴리프로필렌 수지와 함께 액솔리드 0P950 등의 마스터배치용 첨가제를 포함할 수 있으며, 상기 호모 폴리프로필렌 수지에 마스터배치용 첨가제를 흔합하여 압출하는 단계를 포함하는 제조방법에 의해 제조될 수 있다. 또, 상기 수지 조성물 제조를 위한 압출 공정은 통상의 방법에 따라 수행될 수 있다, 일례로, 25 隱 트원-스크류 압출기 등과 같은 압출기를 사용하여 약 150 °C 내지 약 250 °C , 약 100 rpm 내지 약 1000 rpm 조건에서 수행될 수 있다. 상기 수지 조성물은 상술한 호모 폴리프로필렌 수지를 포함함으로써 택티서티 (tact ici ty) 및 분자량분포 (丽 D) , 용융지수 (Ml ) , 용융점 (Tm) , 잔류웅력비율을 모두 최적화하며 동시에 좁은 분자량 분포를 가짐에 따라, 부직포 제조시 트레이드 -오프 (trade-of f ) 관계에 있는 물성인 소프트한 감촉성 (softness)와 높은 강도를 동시에 구현할 수 있는 부직포용 수지 조성물로서 유용할 수 있다. 한편, 본 발명은 상기 수지 조성물을 사용하여 제조한 부직포를 제공하면, 상기 부직포는 멜트 블로잉 공정으로 제조된 스편본드 부직포일 수 있다. 구체적으로, 상기 부직포는 브라벤더 원추형 트휜 스크류 압출기를 이용하여 용융된 수지 조성물을 멜트 펌프 (65 rpm)에 공급한 후에 토출구가 구비된 멜트 블로잉 다이에 공급하는 공정으로 극세섬유 웹으로 압출하여 제조할 수 있다. 이때, 용융 은도는 235 °C , 스크류 속도는 120 rpm 으로 하고, 다이는 235 °C에서 유지하며, 1 차 공기 온도 및 압력은 각각 300 °C 및 60 . kPa(8.7 psi )으로 하고, 중합체 처리 속도는 5.44 kg/hr 으로, 수집기 /다이 거리는 15.2 cm으로 하여, 멜트 블로일 공장을 수행할 수 있다. 이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예들을 제시한다. 다만, 하기의 실시예들은 본 발명을 예시하기 위한 것일 뿐, 본 발명의 내용이 하기 실시예들쎄 의하여 한정되는 것은 아니다. (t-butyldimethylsilyl) -2,3,5,6-tetrafluorophenyl) borate, N, N-dimethylanilinium tetrakis (4- (triisopropylsilyl) -2,3,5,6- N, N-dimethyl anilinium pentafluorophenoxy tris (pentafluorophenyl) borate, N, N-dimethyl-2,4,6-trimethylanilinium tetrakis (pentafluorophenyl) borate, ) Borate, trimethylammonium tetrakis (2,3,4,6-tetrafluorophenyl) borate, N, N-dimethylanilinium tetrakis (2,3,4,6-tetrafluorophenyl) borate, dimethyl ammonium tetrakis (pentafluorophenyl) borate, 'Ν- -Ν- methyl dodecyl methyl tetrakis (pentafluorophenyl) borate, di (dodecyl) ammonium tetrakis (pentafluorophenyl) borate or These compounds can be used. The content of the co-catalyst can be appropriately controlled depending on the physical properties and effects of the desired catalyst and homopolypropylene resin. The catalyst comprising the transition metal compound having the structure of Formula 1 may be used in the form of a supported catalyst in which the transition metal compound of Formula 1 and the promoter of Formula 2 or Formula 3 are supported on the support . As the carrier, a carrier containing a hydroxyl group or a siloxane group on its surface can be used. Specifically, as the carrier, a carrier containing a hydroxyl group or a siloxane group having a large semi-maleic group may be used by drying at a high temperature to remove moisture on the surface. More specifically, as the carrier, silica, alumina, magnesia, or a mixture thereof can be used. The carrier may be one which has been dried in high silver, which are typically Na 2 O, K 2 CO 3 l BaSO 4 and Mg (NO 3 ) 2 , carbonate, sulfate, and nitrate components. The supported catalyst may be a support formed by sequentially supporting the co-catalyst of Formula 2, the transition metal compound of Formula 1, and the co-catalyst of Formula 3 on the support. The supported catalyst having a structure determined in accordance with such a carrying order can realize high activity and excellent process stability in the production process of homopolypropylene resin. More specifically, the supported catalyst may be a single supported catalyst containing only the transition metal compound represented by Formula 1 as the catalytically active component. The homopolypropylene resin can be produced by a continuous polymerization process, and can be produced, for example, by a continuous solution polymerization process, a continuous bulk polymerization process, a continuous suspension polymerization process, a continuous slurry polymerization process or a continuous emulsion polymerization process Various polymerization processes known as polymerization reactions can be employed. However, a continuous bulk-slurry polymerization process is preferable in order to obtain a homogeneous molecular weight distribution as described above and to produce a homopolypropylene resin suitable for nonwoven fabrics. Specifically, the polymerization reaction may be conducted at a temperature of about 40 to 110 ° C, or about 50 to 100 ° C, or about 60 to 90 ° C. In addition, the pressure of the polymerization process can be performed within a range known in the art of polypropylene resin production, and can be performed, for example, at a pressure of about 1 to 100 kgf / cm 2 . By way of example, the propylene feed may be from about 10 kg to about 80 kg, or from about 20 kg to about 65 kg, or from about 30 kg to about 50 kg per hour, Can be performed. Further, in the polymerization reaction, the catalyst may be used in a state in which the catalyst is dissolved or diluted in a solvent such as pentane, nucleic acid, heptane, nonane, decane, toluene, benzene, dichloromethane, chlorobenzene and the like. At this time, by treating the solvent with a small amount of alkylaluminum or the like, a small amount of water or air that can adversely affect the catalyst can be removed in advance. As an example, the catalyst may be used in the form of a mud catalyst mixed with oil and grease, and the content of the catalyst may be from about 10% to about 25%, or from about 12% to about 20% , Or from about 14% to about 18%. As described above, the method for producing a homopolypropylene resin according to another embodiment of the present invention uses a single catalyst containing only a transition metal compound represented by the following formula (1) as a catalytically active component, It has the characteristics of narrow molecular weight distribution while optimizing both tactic and molecular weight distribution (MTO), melt index (Ml), melting point (Tm) and residual force ratio. soft tactile feel as well as excellent toughness which is not torn easily at high strength can be realized at the same time. According to another embodiment of the present invention, there is provided a resin composition for a nonwoven fabric comprising the above homopolypropylene resin, and a nonwoven fabric product prepared using the same. Specifically, the resin composition for a nonwoven fabric may include an additive for master batch such as a liquid solid 0P950 together with the homopolypropylene resin as described above, and extruding the homopolypropylene resin by commonly mixing the additive for master batch ≪ / RTI > The extrusion process for producing the resin composition may be carried out according to a conventional method. For example, an extruder such as a 25-MW-screw extruder, From about 150 ° C to about 250 ° C, from about 100 rpm to about 1000 rpm. The resin composition contains both the homopolypropylene resin as described above to optimize both the tacticity and the molecular weight distribution (D), the melt index (Ml), the melting point (Tm) and the residual force ratio, , It can be useful as a resin composition for a nonwoven fabric which can simultaneously realize softness of softness and high strength which are physical properties in trade-of-f relationship in the production of nonwoven fabric. On the other hand, if the present invention provides a nonwoven fabric produced using the resin composition, the nonwoven fabric may be a spunbond nonwoven fabric produced by a melt blowing process. Specifically, the nonwoven fabric is produced by feeding a molten resin composition to a melt pump (65 rpm) using a Brabender conical twin screw extruder and then feeding the molten resin composition to a meltblowing die provided with a discharge port. . At this time, the melting temperature is 235 ° C, the screw speed is 120 rpm, the die is maintained at 235 ° C, the primary air temperature and pressure are 300 ° C and 60 ° C, respectively. kPa (8.7 psi), the polymer processing rate is 5.44 kg / hr, and the collector / die distance is 15.2 cm. Best Mode for Carrying Out the Invention Hereinafter, preferred embodiments are described to facilitate understanding of the present invention. However, the following examples are intended to illustrate the present invention, but the present invention is not limited thereto.
<촉매의 제조 > &Lt; Preparation of catalyst >
제조예 1: 전이 금속 화합물 및 담지 촉매의 제조 Preparation Example 1: Preparation of transition metal compound and supported catalyst
Figure imgf000029_0001
단계 1) (디에틸실란-디일) -비스 (2-메틸ᅳ 4, 5-벤조인데닐)실란의 제조 2—메틸 -4, 5-벤조인덴 (20.0 g)을 를루엔 /THF=10/1 용액 (220 mL)에 용해시킨 후, n—부틸리튬 용액 (2.5 M, 핵산 용매, 46 mL)을 0 °C에서 천천히 적가한 다음, 상온에서 하루 동안 교반하였다. 그 후, -78 °C에서 상기 흔합 용액에 디에틸디클로로실란 (8.6 g)을 천천히 적가하였고, 약 10 분 동안 교반한 뒤 상은에서 하루 동안 교반하였다. 그 후, 물을 가하여 유기층을 분리한 다음, 용매를 감압 증류하여 (디에틸실란-디일) -비스 (2- 메틸 -4 , 5-벤조인데닐)실란을 얻었다. ' 단계 2) [ (디에틸실란-디일) -비스 (2-메틸 -4, 5-벤조인데닐) ]하프늄 디클로라이드의 제조
Figure imgf000029_0001
Preparation of (diethylsilane-diyl) -bis (2-methylphenyl) 4,5-benzoindenyl) silane 2-Methyl-4,5-benzoindene (20.0 g) was dissolved in toluene / THF = 10 / 1 solution (220 mL), an n-butyllithium solution (2.5 M, nucleic acid solvent, 46 mL) was slowly added dropwise at 0 ° C and then stirred at room temperature for one day. Then diethyldichlorosilane (8.6 g) was slowly added dropwise to the stirred solution at -78 ° C, stirred for about 10 minutes and then stirred in the upper phase for one day. Thereafter, water was added to separate the organic layer, and then the solvent was distilled off under reduced pressure to obtain (diethylsilane-diyl) -bis (2-methyl-4,5-benzoindenyl) silane. ' Step 2) Preparation of [(diethylsilane-diyl) -bis (2-methyl-4,5-benzoindenyl)] hafnium dichloride
상기 단계 1 에서 제조한 (디에틸실란-디일) -비스 (2-메틸 - S¬ 벤조인데닐)실란을 를루엔 /THF=5/1 용액 (120 mL)에 용해시킨 후, n_ 부틸리튬 용액 (2.5 M, 핵산 용매, 46 mL)을 -78 °C에서 천천히 적가한 후, 상온에서 하루 동안 교반하였다. 반웅액에 하프늄 클로라이드 (17.6 g)를 를루엔 (20 mL)에 희석시킨 후, -78 °C에서 천천히 적가하고 상온에서 하루 동안교반하였다. 반응액의 용매를 감압 제거한 다음, 디클로로메탄을 넣고 여과한 다음, 여액을 감압 증류하여 제거하였다. 를루엔과 핵산을 사용하여 재결정을 하여 고순도의 racᅳ [ (디에틸실란-디일) -비스 (2-메틸 -4, 5- 벤조인데닐) ]하프늄 디클로라이드 (11.9 g, 30%, rac :meso=20: l)를 얻었다. 단계 3) 담지된 촉매의 제조 3 L 반웅기에 실리카 100 g 과 10 %의 메틸알루미녹산 (670 g)을 넣어 90 °C에서 24 시간 동안 반웅시켰다. 침전 후 상층부는 제거하고 룰루엔으로 2회에 걸쳐 세척하였다. 상기 2단계에서 제조한 안사-메탈로센 화합물 rac- [ (디에틸실란-디일 ) -비스 (2-메틸 -4, 5_벤조인데닐 ) ]하프늄 디클로라이드 (5 g)을 를루엔에 회석시켜 반웅기에 첨가한 후, 70 °C에서 5 시간 동안 반웅시켰다. 반웅 종료 후 침전이 끝나면, 상층부 용액은 제거하고 남은 반웅 생성물을 를루엔으로 세척한 후 핵산으로 다시 세척하고 진공 건조하여 고체 입자 형태의 실리카 담지 메탈로센 촉매 150 g을 얻었다. 제조예 2: 전이 금속화합물 및 담지 촉매의 제조 Prepared in Step 1 (a silane-diethyl-diyl) -bis (2-methyl-S ¬ benzo indenyl) silane was dissolved in toluene / THF = 5/1 solution (120 mL), n_-butyllithium solution (2.5 M, nucleic acid solvent, 46 mL) was slowly added dropwise at -78 ° C, and then stirred at room temperature for one day. Hafnium chloride (17.6 g) was diluted in toluene (20 mL) at -78 ° C and stirred at room temperature for one day. The solvent of the reaction mixture was removed under reduced pressure, dichloromethane was added thereto and the mixture was filtered, and the filtrate was distilled off under reduced pressure. (11.9 g, 30%, rac: &lt; RTI ID = 0.0 &gt; meso = 20: 1). Step 3) Preparation of the supported catalyst 100 g of silica and 10% of methylaluminoxane (670 g) were added to the 3L Liquor, and the mixture was stirred at 90 ° C for 24 hours. After precipitation, the upper layer was removed and washed twice with LU. (5 g) of the anthra-metallocene compound rac- [(diethylsilanediyl) -bis (2-methyl-4,5-benzoindenyl)] hafnium dichloride And the mixture was stirred at 70 ° C for 5 hours. After completion of the precipitation, the upper layer solution was removed, and the remaining reaction product was washed with dilute hydrochloric acid, washed again with nucleic acid, and vacuum dried to obtain 150 g of silica supported metallocene catalyst in the form of solid particles. Production Example 2: Preparation of transition metal compound and supported catalyst
Figure imgf000030_0001
단계 1) (디에틸실란-디일) -비스 (2ᅳ메틸—4,5-벤조인데닐)실란의 제조
Figure imgf000030_0001
Step 1) Preparation of (diethylsilane-diyl) -bis (2-methyl-4,5-benzoindenyl) silane
2-메틸— 4, 5-벤조인덴 (20.0 g)을 를루엔 /THF=10/1 용액 (220 mL)에 용해시킨 후, n-부틸리튬 용액 (2.5 M, 핵산 용매, 46 mL)을 0 °C에서 천천히 적가한 다음, 상온에서 하루 동안 교반하였다. 그 후, -78 °C에서 상기 흔합 용액에 디에틸디클로로실란 (8.6 g)을 천천히 적가하였고, 약 10 분 동안 교반한 뒤 상온에서 하루 동안 교반하였다. 그 후, 물을 가하여 유기층을 분리한 다음, 용매를 감압 증류하여 (디에틸실란-디일) -비스 (2- 메틸 -4 , 5-벤조인데닐)실란을 얻었다. 단계 2) [ (디에틸실란-디일) -비스 (2-메틸 -4 , 5-벤조인데닐) ]지르코늄 디클로라이드의 제조 Butyllithium solution (2.5 M, nucleic acid solvent, 46 mL) was added to the solution after dissolving 2-methyl-4,5-benzoindene (20.0 g) in toluene / THF = Was slowly added dropwise at 0 ° C, and then stirred at room temperature for one day. Then diethyldichlorosilane (8.6 g) was slowly added dropwise to the stirred solution at -78 ° C, stirred for about 10 minutes and then stirred at room temperature for one day. Thereafter, water was added to separate the organic layer, and then the solvent was distilled off under reduced pressure to obtain (diethylsilane-diyl) -bis (2-methyl-4,5-benzoindenyl) silane. Step 2) Preparation of [(diethylsilane-diyl) -bis (2-methyl-4,5-benzoindenyl)] zirconium dichloride
상기 단계 1 에서 제조한 (디에틸실란-디일) -비스 (2-메틸 -4,5- 벤조인데닐)실란을 를루엔 /THF=5/1 용액 ( 120 mL)에 용해시킨 후, n_ 부틸리튬 용액 (2.5 M, 핵산 용매, 46 mL)을 -78 °C에서 천천히 적가한 후, 상온에서 하루 동안 교반하였다. 반웅액에 지크코늄 클로라이드 (12.8 g)를 를루엔 (20 mL)에 회석시킨 후, -78 °C에서 천천히 적가하고 상온에서 하루 동안 교반하였다. 반웅액의 용매를 감압 제거한 다음, 디클로로메탄을 넣고 여과한 다음, 여액을 감압 증류하여 제거하였다. 를루엔과 핵산을 사용하여 재결정을 하여 고순도의 rac— [ (디에틸실란-디일) -비스 (2-메틸 -4,5- 벤조인데닐) ]지르코늄 디클로라이드 ( 10.0 g, 29%, rac :meso=22 : l)를 얻었다. 단계 3) 담지된 촉매의 제조 The (diethylsilane-diyl) -bis (2-methyl-4,5-benzoindenyl) silane prepared in the above step 1 was dissolved in a solution of ruthenium / THF = 5/1 (120 mL) Lithium solution (2.5 M, nucleic acid solvent, 46 mL) was slowly added dropwise at -78 ° C, and then stirred at room temperature for one day. Zirconium chloride (12.8 g) was added to the solution in vacuo, and the mixture was slowly added dropwise at -78 ° C and stirred at room temperature for one day. The solvent of the NaOH solution was removed under reduced pressure, dichloromethane was added and the mixture was filtered, and the filtrate was distilled off under reduced pressure. (10.0 g, 29%, rac: [(2-methyl-4,5-benzoindenyl)] zirconium dichloride was obtained by recrystallization using luene and nucleic acid. meso = 22: 1). Step 3) Preparation of the supported catalyst
3 L 반웅기에 실리카 100 g 과 10 %의 메틸알루미녹산 (670 g)을 넣어 90 °C에서 24 시간 동안 반웅시켰다. 침전 후 상충부는 제거하고 를루엔으로 2회에 걸쳐 세척하였다. 상기 2 단계에서 제조한 안사-메탈로센 화합물 rac- [ (디에틸실란-디일) -비스 (2-메틸 -4,5-벤조인데닐) ]지르코늄 디클로라이드 (4.4 g)을 를루엔에 희석시켜 반응기에 첨가한 후, 70 °C에서 5 시간 .동안 반응시켰다. 반웅 종료 후 침전이 끝나면, 상층부 용액은 제거하고 남은 반웅 생성물을 를루엔으로 세척한 후 핵산으로 다시 세척하고 진공 건조하여 고체 입자 형태의 실리카 담지 메탈로센 촉매 150 g을 얻었다. 비교제조예 1: 전이 금속 화합물 및 담지 촉매의 제조 100 g of silica and 10% of methylaluminoxane (670 g) were added to the 3L Liquor, and the mixture was stirred at 90 ° C for 24 hours. The precipitate was removed and the precipitate was removed and washed twice with toluene. (4.4 g) of the anthra-metallocene compound rac- [(diethylsilane-diyl) -bis (2-methyl-4,5-benzoindenyl)] zirconium dichloride To the reactor and then at 70 ° C for 5 hours . Lt; / RTI &gt; After completion of the precipitation, the upper layer solution was removed, and the remaining reaction product was washed with dilute hydrochloric acid, washed again with nucleic acid, and vacuum dried to obtain 150 g of silica supported metallocene catalyst in the form of solid particles. Comparative Preparation Example 1: Preparation of transition metal compound and supported catalyst
하기 화학식 A 로 표시되는 전이 금속 화합물, [ (6-t_ 부톡시핵실메틸실란-디일) -비스 (2-메틸 -4-터트-부틸페닐인데닐) ]지르코늄' 디클로라이드를 이용하여 상기 제조예 2 의 단계 3)과 동일한 방법을 통해 고체 입자 형태의 실리카 담지 메탈로센 촉매를 제조하였다.
Figure imgf000032_0001
상기 화학식 A에서, ¾ιι 는 tert-부틸 (tertiary butyl)를 나타낸다. 비교제조예 2: 전이 금속 화합물 및 담지 촉매의 제조
To the transition metal compound represented by the formula A, [(6-t_-butoxycarbonyl haeksil methylsilane-diyl) -bis (2-methyl-4-tert-butylphenyl inde carbonyl)] For the manufacture using a zirconium, dichloride 2 in step 3), a silica-supported metallocene catalyst in the form of solid particles was prepared.
Figure imgf000032_0001
In the above formula (A), ¾ιι represents tertiary butyl. Comparative Preparation Example 2: Preparation of transition metal compound and supported catalyst
하기 화학식 B 로 표시되는 전이 금속 화합물, [(6-t- 부톡시핵실) (메틸) -실란-디일) -비스 (2-메틸 -4,5-벤조인데닐)]지르코늄 디클로라이드를 이용하여 상기 제조예 2 의 단계 3)과 동일한 방법을 통해 담지 촉매를 제조하였다.  Silane-diyl) -bis (2-methyl-4,5-benzoindenyl)] zirconium dichloride, which is a transition metal compound represented by the following formula (B) A supported catalyst was prepared in the same manner as in step 3) of Preparation Example 2 above.
Figure imgf000032_0002
비교제조예 3: 흔성 담지 촉매의 제조 전이금속 화합물로, 비교제조예 2 의 단계 1) 및 2)에 따라 제조된 [ (6-t-부록시핵실) (메틸)—실란-디일) -비스 (2-메틸 -4,5_
Figure imgf000032_0002
Comparative Preparation Example 3: Preparation of wrought supported catalyst (Methyl) silane-diyl) -bis (2-methyl-4,5-dihydroxyphenyl) propionate prepared according to steps 1) and 2) of Comparative Preparation Example 2,
벤조인데닐) ]지르코늄 디클로라이드와, 비교제조예 1 의 화학식 A 로 표시되는 [ (6-t-부록시핵실메틸실란-디일) -비스 (2-메틸 -4-터트- 부틸페닐인데닐) ]지르코늄 디클로라이드를 사용하여 흔성 담지 촉매를 제조하였다. 실리카 3 g 을 쉬링크 플라스크에 미리 칭량한 후, 미리 칭량한 후 메틸알루미녹산 (MA0) 13 隱 ol 을 넣어 95 °C에서 24 시간 동안 반웅시켰다. 침전 후 상충부를 제거하고 를루엔으로 1회 세척하였다. 상기 비교제조예 2 에서 제조한 전이금속 화합물, [ (6-t-부특시핵실) (메틸) -실란-디일) - 비스 (2-메틸 -4, 5-벤조인데닐) ]지르코늄 디클로라이드, 60 μ ιτιοΐ 을 를루엔에 녹인 후, 75 °C에서 5 시간 동안 반웅시켰다. 반응 종료 후 침전이 끝나면, 상층부 용액은 제거하고 남은 반응 생성물을 를루엔으로 1 회 세척하였다. 이어 상기 비교제조예 1 에서 제조한 전이금속 화합물, [ (6-t_ 부톡시핵실메틸실란-디일)—비스 (2-메틸 -4-터트-부틸페닐인데닐) ]지르코늄 디클로라이드, 20 μ ηιοΐ 을 를루엔에 녹인 후, 75 °C에서 2 시간 동안 추가로 반웅시켰다. 반응 종료 후 침전이 끝나면, 상층부 용액은 제거하고 남은 반응 생성물을 를루엔으로 세척한 후 핵산으로 다시 세척하고 진공 ?1조하여 고체 입자 형태의 실리카담지 메탈로센 촉매 4.6 g을 얻었다. 비교제조예 4: 전이 금속 화합물 및 담지 촉매의 제조 (2-methyl-4-tert-butylphenylindenyl) zirconium dichloride represented by the formula (A) of Comparative Preparation Example 1 and [(6-t- ] Zirconium dichloride was used to prepare a wrought supported catalyst. 3 g of silica was pre-weighed in a shinkle flask, pre-weighed, and 13 osmol of methylaluminoxane (MAO) was added to the mixture at 95 ° C for 24 hours. The precipitate was removed and the solution was washed once with diluted hydrochloric acid. Silane-diyl) -bis (2-methyl-4,5-benzoindenyl)] zirconium dichloride prepared in Comparative Preparation Example 2, [(6-t- 60 μ ιτιοΐ was dissolved in the ruben, and the reaction was allowed to proceed at 75 ° C for 5 hours. After completion of the reaction, when the precipitation was completed, the upper layer solution was removed and the remaining reaction product was washed once with Ru-Ni. (2-methyl-4-tert-butylphenylindenyl)] zirconium dichloride prepared in Comparative Preparation Example 1, [(6-t_butoxyhydroxylmethylsilane-diyl) Was dissolved in the ruben, followed by further reaction at 75 ° C for 2 hours. After the completion of the reaction, the upper layer solution was removed, and the remaining reaction product was washed with toluene, washed again with nucleic acid, and vacuum-dried to obtain 4.6 g of silica-supported metallocene catalyst in the form of solid particles. Comparative Preparation Example 4: Preparation of transition metal compound and supported catalyst
하기 화학식 C 로 표시되는 전이 금속 화합물, [ (디메틸실란-디일) - 비스 (2-메틸 -4, 5-벤조인데닐) ]지르코늄 디클로라이드를 이용하여 상기 제조예 2의 단계 3)과 동일한 방법을 통해 담지 촉매를 제조하였다.
Figure imgf000034_0001
The same procedure as in the step 3) of Preparation Example 2 was carried out using the transition metal compound represented by the following formula (C), [(dimethylsilanediyl) -bis (2-methyl-4,5-benzoindenyl)] zirconium dichloride To prepare a supported catalyst.
Figure imgf000034_0001
<프로필렌 중합체의 제조 > &Lt; Production of Propylene Polymer &
실시예 1 및 2: 프로필렌의 연속식 벌크-슬러리 호모중합  Examples 1 and 2: Continuous bulk-slurry homopolymerization of propylene
제조예 1 및 2 에 따른 실리카 담지 메탈로센 촉매의 존재 하에서, 연속적인 2 기의 루프 반응기를 이용하여 프로필렌의 벌크-슬러리 중합을 진행하였다. 이 때, 트리에틸알루미늄 (TEAL) 및 수소 기체는 각각 펌프를 이용하여 투입하였고, 트리에틸알루미늄 (TEAL) 및 수소 기체의 함량은 연속식으로 투입되는 프로필렌 함량을 기준으로 하기 표 1 에 나타낸 바와 같은 양으로 투입하였다. 또한, 벌크—슬러리 중합을 위하여 제조예 1 및 2 에 따라 제조한 담지 촉매를 16 %로 오일, 그리스에 섞은 머드 촉매 형태로 사용하였다. 반웅기의 온도는 약 70 °C , 시간당 생산량은 대략 40 kg으로 운전을 하였다. 실시예 1 및 2 의 중합 공정에 대한 구체적인 반웅 조건은 하기 표 1 에 나타낸 바와 같으며, 이러한 중합 공정을 통해 실시예 1 의 호모 폴리프로필렌 (호모 mPP) 수지를 얻었다. 비교예 1: 프로필렌의 연속식 벌크-슬러리 호모중합 In the presence of the silica-supported metallocene catalysts according to Preparation Examples 1 and 2, bulk-slurry polymerization of propylene was carried out using two continuous loop reactors. At this time, triethylaluminum (TEAL) and hydrogen gas were respectively introduced by using a pump, and the content of triethylaluminum (TEAL) and hydrogen gas was determined based on the amount of propylene continuously fed into the reactor Respectively. In addition, for the bulk-slurry polymerization, the supported catalyst prepared according to Production Examples 1 and 2 was used in the form of a mud catalyst mixed with oil and grease at 16%. The temperature of Banwoonggi was about 70 ° C and the production rate was about 40 kg per hour. Specific reaction conditions for the polymerization processes of Examples 1 and 2 are shown in Table 1 below. Homopolypropylene (homo mPP) resin of Example 1 was obtained through such polymerization process. Comparative Example 1: Continuous bulk-slurry homopolymerization of propylene
제조예 1 의 담지 촉매 대신에 비교제조예 1 에서 제조한 메탈로센 단일 담지 촉매를 사용하며 수소 투입량을 350 ppm 으로 달리 적용한 것을 제외하고는 실시예 1 과 동일한 방법으로 중합 공정을 수행하여, 비교예 1의 호모 폴리프로필렌 수지를 얻었다. 비교예 2: 지글러 -나타촉매로 제조한호모폴리프로필렌 수지 지글러—타나 촉매를 사용하여 제조한 호모 폴리프로필렌 수지 (Z/N 호모 PP , 제조사: 엘지화학주식회사, H7700)를 준비하였다. 비교예 3: 프로필렌의 연속식 벌크-슬러리 호모중합 The metallocene single supported catalyst prepared in Comparative Preparation Example 1 was used in place of the supported catalyst of Production Example 1, , A polymerization process was carried out in the same manner as in Example 1 to obtain a homopolypropylene resin of Comparative Example 1. [ Comparative Example 2: Homo polypropylene resin prepared by using a Ziegler-Natta catalyst A homopolypropylene resin (Z / N homo PP manufactured by LG Chemical Co., Ltd., H7700) prepared using a Ziegler-Tana catalyst was prepared. Comparative Example 3: Continuous bulk-slurry homopolymerization of propylene
제조예 1 의 담지 촉매 대신에 비교제조예 2 에서 제조한 흔성 담지 촉매를 사용한 것을 제외하고는 실시예 1 과 동일한 방법으로 중합 공정을 수행하여, 비교예 3의 호모 폴리프로필렌 수지를 얻었다. 비교예 4: 프로필렌의 연속식 벌크-술러리 호모중합  A homopolypropylene resin of Comparative Example 3 was obtained by carrying out a polymerization process in the same manner as in Example 1, except that the stationary supported catalyst prepared in Comparative Preparation Example 2 was used in place of the supported catalyst of Production Example 1. Comparative Example 4: Continuous Bulk-Sulfur homopolymerization of propylene
제조예 1 의 담지 촉매 대신에 비교제조예 3 에서 제조한 메탈로센 단일 담지 촉매를 사용한 것을 제외하고는 실시예 1 과 동일한 방법으로 중합 공정을 수행하여, 비교예 4의 호모 폴리프로필렌 수지를 얻었다.  A polymerization process was carried out in the same manner as in Example 1 except that the metallocene single supported catalyst prepared in Comparative Preparation Example 3 was used instead of the supported catalyst of Production Example 1 to obtain a homopolypropylene resin of Comparative Example 4 .
【표 1][Table 1]
Figure imgf000035_0001
Figure imgf000036_0001
상기 표 1 에서 '호모 mPP 1는 호모 폴리프로필렌 수지를 지칭하는 것이며, ' Z/N 호모 PP 1는 지글러 -타나 촉매를 사용하여 제조한 호모 폴리프로필렌 수지 (상업용 제품)를 지칭하는 것이다. 또, 상기 표 1 에서 촉매 활성은 단위 시간 (h)을 기준으로 사용된 담지 촉매 질량 (g)당 생성된 중합체의 무게 (kg PP)의 비로 계산하였다. 특히, 비교예 4 의 경우에 촉매 중합 활성이 8 kg/g · cat 로 현저히 떨어지기 때문에 상업적으로 적용이 어렵거나 공정 불량 (trouble)이 발생하는 문제가 발생할 수 있다. 비교예 5: 프로필렌의 배치 타입 호모중합
Figure imgf000035_0001
Figure imgf000036_0001
In Table 1, "homo mPP 1 refers to a homopolypropylene resin, and" Z / N homo PP 1 refers to a homopolypropylene resin (commercial product) manufactured using a Ziegler-Tana catalyst. The catalyst activity in the above Table 1 was calculated as the ratio of the weight of the produced polymer (kg PP) per supported catalyst mass (g) used as a criterion based on the unit time (h). In particular, in the case of Comparative Example 4, since the catalytic polymerization activity is significantly lowered to 8 kg / g · cat, it may be difficult to apply the catalyst to commercial use or cause a problem of process failure. Comparative Example 5: Placement type of propylene Homopolymerization
하기 표 2 나타낸 바와 같은 조건 하에서, 배치 타입의 호모 중합 공정을 수행하여 비교예 5~7의 호모 폴리프로필렌 수지를 얻었다. 먼저, 2 L 스테인레스 반웅기를 65 °C에서 진공 건조한 후 넁각하고, 실온에서 트리에틸알루미늄 3 mL를 넣고, 770 g의 프로필렌을 투입하였다. 이를 10 분 동안 교반한 후, 비교제조예 2 에서 제조한 담지 촉매 45 mg 을 20 mL 의 핵산에 분산시켜 슬러리 형태로 제조하고 질소 압력을 이용해 반응기에 투입하였다. 이때, 상기 촉매와 함께 약 100 ppm 의 수소 기체를 투입하였다. 이후 반웅기 온도를 70 °C까지 서서히 승온한 후 1 시간 동안 중합하였다. 반웅 종료 후 미반웅된 프로필렌은 벤트하였다. 비교예 6: 프로필렌의 배치 타입 호모중합 A batch type homopolymerization process was carried out under the conditions shown in Table 2 below to obtain homopolypropylene resins of Comparative Examples 5 to 7. First, a 2 L stainless steel barn was vacuum dried at 65 ° C, agitated, 3 mL of triethylaluminum was added at room temperature, and 770 g of propylene was added. After stirring for 10 minutes, 45 mg of the supported catalyst prepared in Comparative Preparation Example 2 was dispersed in 20 mL of nucleic acid to prepare a slurry, which was introduced into the reactor using nitrogen pressure. At this time, about 100 ppm of hydrogen gas was added together with the catalyst. Then, the temperature was raised gradually to 70 ° C and then polymerized for 1 hour. At the end of the reaction, the unreacted propylene was vented. Comparative Example 6: Placement type of propylene Homopolymerization
하기 표 2 에 나타낸 바와 같이, 중합 온도를 50 °C로 달리한 것을 제외하고는 비교예 5 와 동일한 방법으로 중합 공정을 수행하여, 비교예 6의 호모 폴리프로필렌 수지를 얻었다. 비교예 7: 프로필렌의 배치 타입 랜덤 중합 As shown in the following Table 2, the polymerization process was carried out in the same manner as in Comparative Example 5, except that the polymerization temperature was changed to 50 ° C, to obtain a homopolypropylene resin of Comparative Example 6. Comparative Example 7: Placement type of propylene Random polymerization
하기 표 2 에 나타낸 바와 같이, 770 g 의 프로필렌과 함께 20 g 의 에틸렌을 투입하여 램덤 중합을 수행한 것을 제외하고는 비교예 5와동일한 방법으로 중합 공정을 수행하여 비교예 7의 폴리프로필렌 호모 /랜덤 블랜드 수지를 얻었다. 비교예 8: 프로필렌의 배치 타입 호모중합  As shown in the following Table 2, a polymerization process was carried out in the same manner as in Comparative Example 5 except that 20 g of ethylene was charged with 770 g of propylene to perform random polymerization, thereby obtaining a polypropylene homo / Random blend resin. Comparative Example 8: Placement type of propylene Homopolymerization
하기 표 2 에 나타낸 바와 같이, 수소 기체의 투입량을 약 350 ppm으로 달리한 것을 제외하고는 비교예 5와 동일한 방법으로 중합공정을 수행하여, 비교예 8의 호모 폴리프로필렌 수지를 얻었다.  As shown in the following Table 2, the polymerization process was carried out in the same manner as in Comparative Example 5, except that the amount of hydrogen gas was changed to about 350 ppm to obtain a homopolypropylene resin of Comparative Example 8. [
【표 2] [Table 2]
Figure imgf000037_0001
상기 표 2 에서 '호모 mPP '는 호모 폴리프로필렌 수지를 지칭하는 것이며, 1랜덤 mPP '는 프로필렌과 에틸렌이 랜덤 공중합된 폴리프로필렌 호모 /랜덤 블랜드 수지를 지칭하는 것이다.
Figure imgf000037_0001
In Table 2, 'Homo mPP' refers to a homopolypropylene resin, and 1 random mPP 'refers to a polypropylene homo / random blend resin in which propylene and ethylene are randomly copolymerized.
<프로필렌 중합체와 이로부터 제조된 부직포에 대한물성 평가 > 시험예 1: 프로필렌 중합체의 물성 평가 &Lt; Evaluation of physical properties of propylene polymer and nonwoven fabric produced therefrom > Test Example 1: Evaluation of physical properties of propylene polymer
상기 실시예와 비교예에 따른 프로필렌 중합체에 대하여, 아래와 같은 방법으로 물성 평가를 수행하고, 그의 결과를 하기 표 3에 나타내었다.  The properties of the propylene polymers according to Examples and Comparative Examples were evaluated in the following manner, and the results are shown in Table 3 below.
( 1) 용융지수 (mel t index , MI ) 미국재료시험학회규격 ASTM D 1238 에 따라 230 °C에서 2.16 kg 하중으로 측정하였으며, 10 분 동안 용융되어 나온 중합체의 무게 (g)로 나타내었다. (2) Tacticity (mol%) (1) Melt index (MI t index, MI) Measured at 230 ° C under a load of 2.16 kg according to the American Society for Testing and Materials Standard ASTM D 1238, expressed as the weight (g) of the polymer melted for 10 minutes. (2) Tacticity (mol%)
핵자기공명 (NMR, nuclear magnetic resonance) 분석을 통해 중합체의 택티서티 (tacticity, mol%)를 측정하였다. 구체적으로, 핵사클로로부타디엔 용액 (테트라메틸실란을 기준으로 함)을 사용하여 NMR 스펙트럼을 측정하고, 19.5~21.9 ppm 에 나타나는 피크의 전면적 (100%)에 대한 21.0~21.9 ppm 에 나타나는 피크의 면적의 비율 (%)을 택티서티 (tacticity, mol%)로 구하였다. (3) 용융점 (Tm)  The tacticity (mol%) of the polymer was measured through nuclear magnetic resonance (NMR) analysis. Specifically, the NMR spectrum was measured using a nuclear chlorobutadiene solution (based on tetramethylsilane) and the peak area at 21.0 to 21.9 ppm relative to the overall area (100%) of the peak at 19.5 to 21.9 ppm The ratio (%) was obtained as tacticity (mol%). (3) Melting point (Tm)
시차주사열량계 (Differential Scanning Calorimeter, DSC, 장치명: Differential Scanning Calorimeter (DSC)
DSC 2920, 제조사: TA instrument)를 이용하여 프로필렌 중합체의 녹는점, 용융점 (Tm)을 측정하였다. 구체적으로 온도를 중합체를 220 °C까지 가열한 후 5 분 동안 그 온도에서 유지하고, 그 다음 20 °C까지 내리고, 다시 온도를 증가시켜 DSC(Differential Scanning Calorimeter, TA 사 제조) 곡선의 꼭대기를 용융점으로 하였다. 이 때, 온도의 상승과 내림의 속도는 10 °C/min이고, 용융점은 두 번째 온도가상승하는 구간에서 측정한 결과를 사용하였다. DSC 2920, manufacturer: TA instrument) was used to measure the melting point and melting point (Tm) of the propylene polymer. Specifically, the temperature of the polymer is heated up to 220 ° C, held at that temperature for 5 minutes, then lowered to 20 ° C, and the temperature is again increased to the top of the curve of DSC (Differential Scanning Calorimeter, TA) Respectively. In this case, the temperature rise and fall rates were 10 ° C / min, and the melting points were measured at the second temperature rise.
(4) 분자량 분포 (MWD, polydispersity index): 겔 투과 크로마토그래피 (GPC, gel permeation chromatography, Water 사 제조)를 이용하여 중합체의 중량평균 분자량 (Mw)과 수평균 분자량 (Mn)을 측정하고, 중량평균 분자량을 수평균 분자량으로 나누어 분자량 분포 (MWD)를 계산하였다. 구체적으로, 겔투과 크로마토그래피 (GPC) 장치로는 Waters PL-GPC220 기기를 이용하고, Polymer Laborator ies PLgel MIX— B 300隱 길이 칼럼을 사용하였다. 이때 측정 온도는 160 °C이며, 1,2,4-트리클로로벤젠 (1,2,4- Tr ichlorobenzene)을 용매로서 사용하였으며, 유속은 1 mL/min 로 하였다. 실시예 및 비교예에 따른 중합체의 샘플은 각각 GPC 분석 기기 (PL- GP220)을 이용하여 BHT 0.0125% 포함된 트리클로로벤젠 ( 1,2,4- Tr ichlorobenzene)에서 160 °C, 10 시간 동안 녹여 전처리하고, 10 mg/10mL의 농도로 조제한 다음, 200 ii L 의 양으로 공급하였다. 폴리스티렌 표준 시편을 이용하여 형성된 검정 곡선을 이용하여 Mw 및 Mn 의 값을 유도하였다. 폴리스티렌 표준 시편의 중량평균 분자량은 2000 g/mol , 10000 g/mol , 30000 g/mol , 70000 g/mol , 200000 g/mol , 700000 g/mol , 2000000 g/mol , 4000000 g/mol , 10000000 g/mol의 9종을사용하였다. (4) MWD (polydispersity index): The weight average molecular weight (Mw) and the number average molecular weight (Mn) of the polymer were measured using gel permeation chromatography (GPC) The molecular weight distribution (MWD) was calculated by dividing the average molecular weight by the number average molecular weight. Specifically, a Waters PL-GPC220 instrument was used as the gel permeation chromatography (GPC) apparatus, and a Polymer Laboratories PLgel MIX-B 300-mm long column was used. The measurement temperature was 160 ° C. 1,2,4-Trichlorobenzene was used as a solvent and the flow rate was 1 mL / min. Samples of the polymers according to Examples and Comparative Examples were respectively dissolved in trichlorobenzene (1,2,4-Trichlorobenzene) containing 0.0125% of BHT at 160 ° C for 10 hours using a GPC analyzer (PL-GP220) Pretreated, prepared at a concentration of 10 mg / 10 mL, and then fed in an amount of 200 iiL. Values of Mw and Mn were derived using a calibration curve formed using a polystyrene standard specimen. The weight average molecular weight of the polystyrene standard specimen is 2000 g / mol, 10000 g / mol, 30000 g / mol, 70000 g / mol, 200000 g / mol, 70000 g / mol, 2000000 g / mol, / mol. &lt; / RTI &gt;
(5) 잔류응력비율 측정 (5) Measurement of residual stress ratio
상기 실시예와 비교예에 따른 프로필렌 중합체에 대해, 각각 시료를 취하여 235 °C 하에서 200%의 변형 (strain)을 가한 후 10 분 동안 잔류 웅력의 변화를 측정하였다. 상기 잔류 웅력의 측정에는 TA Instruments 사의 Di scovery Hybrid Rheometer (DHR)를 이용하였고, 지름 25 匪 인 상하부 plate 사이에 시료를 충분히 로딩하여 235 °C 하에서 녹인 후 gap 을 1 隱 로 고정하여 측정하였다. 측정된 잔류 응력의 데이터를 토대로, 하기 계산식 2 에 따라 잔류 응력의 비율 (1 %)을 산측하고 하기 표 3에 나타내었다: For each of the propylene polymers according to the above Examples and Comparative Examples, a sample was taken, and 200% strain was applied at 235 ° C, and the change in the residual force was measured for 10 minutes. The residual force was measured by using a DiScovery Hybrid Rheometer (TA) from TA Instruments. The sample was loaded between the upper and lower plates with a diameter of 25 하여 and dissolved at 235 캜. Based on the measured residual stress data, the ratio of the residual stress (1%) according to the following equation 2 is calculated and shown in Table 3 below:
[계산식 2]  [Equation 2]
잔류웅력비율 (Y) = ( Si/RSo) 100  Residual force ratio (Y) = (Si / RSo) 100
상기 계산식 2 에서 , RSo는 235 °C 하에서 상기 폴리프로필렌 수지 시료에 20 의 변형을 가한 후 0.02 초 (t0)에서의 잔류 웅력이고, R¾ 은 235 °C 하에서 상가 폴리프로필렌 수지 시료에 200%의 변형을 가한 후 1.00 초 ( )에서의 잔류 웅력이다. In the above equation 2, RSo is the residual force at 0.02 sec (t 0 ) after applying 20 deformation to the polypropylene resin sample at 235 ° C, It is the residual force at 1.00 sec () after 200% strain applied to the polypropylene resin sample at 235 ° C.
【표 3] [Table 3]
Figure imgf000040_0001
상기 표 3에 나타난 바와 같이, 실시예 1 및 2의 호모 폴리프로필렌 수지는 용융지수 (Ml) 23 내지 26 g/10min, 택티서티 (tacticity) 85% 내지 87%로 최적화됨과 동시에, 2.4 이하의 좁은 분자량분포 (MWD)와 141 t 이하의 낮은 용융점 (Tm), 0.03% 이하의 낮은 잔류웅력비율을 갖는 것을 알 수 있다. 반면에, 비교예 1 내지 8 의 경우에 택티서티 (tacticity) 또는 분자량분포 (MWD), 용융지수 (Ml), 용융점 (Tm), 잔류웅력비율을 동시에 최적 범위로 층족하지 못함을 알 수 있다. 특히, 비교예 4 의 경우 촉매의 낮은 활성으로 인해 용융지수가 (Ml)가 높아지며, 분자량 분포가 2.6 로 증가하게 되고 잔류웅력비율도 증가하여 0.07%로 높게 나타남을 알 수 있다. 시험예 2
Figure imgf000040_0001
As shown in Table 3, the homopolypropylene resins of Examples 1 and 2 were optimized to a melt index (Ml) of 23 to 26 g / 10 min and a tacticity of 85% to 87%, and a narrow It has a molecular weight distribution (MWD), a low melting point (Tm) of 141 t or less, and a low residual force ratio of 0.03% or less. On the other hand, in the case of Comparative Examples 1 to 8, tacticity or molecular weight distribution (MWD), melt index (Ml), melting point (Tm) and residual power ratio can not be simultaneously satisfied. In particular, in Comparative Example 4, the melt index (Ml) is increased due to the low activity of the catalyst, the molecular weight distribution is increased to 2.6, and the residual force ratio is increased to 0.07%. Test Example 2
상기 실시예와 비교예에 따른 프로필렌 중합체 원료로 사용하여 멜트 블로잉 공정을 수행하여 스펀본드 부직포를 제조하였다. 구체적으로, 25 隱 트원-스크류 압출기를 이용하여 실시예 1 내지 2 및 비교예 1 내지 8 에 따른 프로필렌 중합체와 엑솔리드 (상표) 0P950 첨가제 (2.5 중량 %)의 마스터배치를 제조한 후, 이것을 펠렛화하였다. 이어서, 31 匪 브라벤더 원추형 트원 스크류 압출기를 이용하여 용융된 마스터배치 수지 조성물을 멜트 펌프 (65 rpm)에 공급한 후에 토출구 (10 개 토출구 /cm) 및 381 m의 토출구 직경을 갖는 25 cm 너비의 멜트 블로잉 다이에 공급한 점을 제외하고는, 문헌 [Report No. 4364 of the Naval Research Laboratories , published May 25, 1954 entitled "Manufacture of Superfine Organic Fibers" by Went e , Van. A. Boone , C. D. , and Fluharty E. L.]에 기재된 것과 유사한 공정에 의해 마스터배치 펠렛을 극세섬유 웹으로 압출하였다. 용융 온도는 235 °C였고, 스크류 속도는 120 rpm 이었으며, 다이는 235 °C에서 유지되었고, 1 차 공기 온도 및 압력은 각각 300 °C 및 60 kPa(8.7 psi)이었으며, 중합체 처리 속도는 5.44 kg/hr 였고, 수집기 /다이 거리는 15.2 cm였다. 상기 실시예와 비교예에 따른 폴리프로필렌 수지를 사용하여 제조한 스펀본드 부직포에 대하여, 아래와 같은 방법으로 물성 평가를 수행하고, 그의 결과를 하기 표 4에 나타내었다. (1) 부직포의 중량 A spunbonded nonwoven fabric was prepared by performing the melt blowing process using the propylene polymer raw materials according to the above Examples and Comparative Examples. Specifically, a propylene polymer according to Examples 1 to 2 and Comparative Examples 1 to 8 and a propylene polymer (trade name) 0P950 A master batch of additive (2.5 wt%) was prepared and then pelletized. Subsequently, the molten masterbatch resin composition was fed to a melt pump (65 rpm) using a 31 ° Br Braider cone twin screw extruder, and then extruded at a discharge port (10 discharge ports / cm) and a 25 cm width Except for the fact that it was supplied to the meltblowing die, 4364 of the Naval Research Laboratories, published May 25, 1954 entitled " Manufacture of Superfine Organic Fibers " by Went e, Van. The master batch pellets were extruded into a microfiber web by a process similar to that described in A. Boone, CD, and Fluharty EL. The melt temperature was 235 ° C, the screw speed was 120 rpm, the die was maintained at 235 ° C, the primary air temperature and pressure were 300 ° C and 60 kPa (8.7 psi), and the polymer throughput rate was 5.44 kg / hr and the collector / die distance was 15.2 cm. The properties of the spunbonded nonwoven fabric prepared using the polypropylene resin according to the above Examples and Comparative Examples were evaluated by the following methods, and the results are shown in Table 4 below. (1) Weight of nonwoven fabric
시험예 2 에 따라 극세 섬유 웹으로 압출하여 제조한 부직포 중량을 측정하여, 단위 면적당부직포 중량을산측하였다.  The weight of the nonwoven fabric produced by extruding into a superfine fiber web according to Test Example 2 was measured and the weight of the nonwoven fabric per unit area was measured.
(2) 부직포의 가공성 (2) Processability of nonwoven fabric
시험예 2 에 따라 부직포 제조시 섬유의 단사 발생 여부에 따라 부직포의 가공성을 평가하였으며, 섬유의 단사 발생이 10% 이하인 경우에는 "양호 "로 표시하고, 섬유의 단사 발생이 1 를 초과하는 경우에는 "불량"으로 표시하였다. . (3) 부직포의 강도 미국재료시험학회 ASTM D 5035:2011(2015) 방법에 따라 5cm 폭 Cut strip 법에 의해 부직포의 강도를 측정하였다 The processability of the nonwoven fabric was evaluated according to whether the single yarn was generated during the production of the nonwoven fabric according to Test Example 2. When the single yarn occurrence of the fibers was 10% or less, the result was shown as "good"Quot; bad &quot;. . (3) Strength of nonwoven fabric The strength of the nonwoven fabric was measured by a 5 cm wide cut strip method according to the American Society for Testing and Materials (ASTM D 5035: 2011 (2015) method)
(4) 부직포의 마찰계수 (4) Friction coefficient of nonwoven fabric
마찰계수 측정기 (제조사: Thwing-Albert 사, 제품명: FP-2260)를 사용하여 부직포의 마찰계수를 측정하였다.  The coefficient of friction of the nonwoven fabric was measured using a coefficient of friction meter (manufacturer: Thwing-Albert, product name: FP-2260).
(5) 부직포의 감촉성 (5) Sensitivity of nonwoven fabric
10 명의 블라인드 패널 평가를 통해 부직포의 감촉성을 측정하였으며, 부직포 감촉에 대하여 부드럽다는 평가가 7명 이상인 경우에 양호한 것으로 판단하여 로 표시하고, 4~6 명인 경우에는 보통으로 판단하여 "Δ"으로 표시하고, 3명 이하인 경우에는 불량으로 판단하여 "X"로 표시하였다.  The sensibility of the nonwoven fabric was measured by ten blind panel evaluations, and when it was judged that the nonwoven fabric had a soft feel of more than 7, it was judged as being good, and when it was 4 to 6, , And when the number is 3 or less, it is judged to be defective and "X" is indicated.
【표 4]  [Table 4]
Figure imgf000042_0001
상기 표 4 에 나타낸 바와 같이, 본 발명의 일 구현예에 따라 택티서티 (tacticity)와 분자량분포 (MWD), 용융지수 (Ml), 용융점 ( ), 잔류웅력비율을 모두 최적화한 실시예 1 내지 2 의 호모 폴리프 £필렌 수지는 이를 원료로 한 멜트 블로잉 공정에서 단사가 발생하지 않아 공정의 연속적인 수행이 가능하면서도, 모듈러스 (modulus)를 감소시켜 기존 제품보다 소프트 (soft)한 부직포를 제조할 수 있음을 알 수 있다. 반면에, 택티서티 (tacticity) 또는 분자량분포 (MTO), 용융지수 (Ml), 용융점 (Tm), 잔류웅력비율 등이 이러한 최적 범위를 벗어나는 비교예 1 내지 8 의 폴리프로필렌 수지는, 이를 원료로 한 멜트 블로잉 공정에서 단사가 발생하여 공정의 연속적인 수행이 불가능하고, 넓은 분자량 분포로 인해 강도가 저하되는 단점이 나타나거나, 높은 택티서티 (tacticity)로 인해 제조된 부직포의 마찰계수나 감촉성이 떨어지는 문제가 있음이 확인되었다. 특히, 비교예 1 은 용융점이 높아지며 제조된 부직포의 마찰계수나 감촉성이 떨어지는 문제가 있음이 확인되었다. 비교예 2 및 3 은 3 이상의 넓은 분자량분포로 인해 부직포의 제조시 가공성이 떨어지고 부직포의 전체적인 균일성 (부분적으로 듬성하거나 빽빽하게 몰린 부분이 존재)이 떨어져 강도, 마찰계수, 감촉성이 떨어짐을 확인하였다. 비교예 4 의 경우에는 용융지수 (Ml)가 높은 수지이기 때문에 부직포의 생산이 불가능 (미제조)한 한계가 있어 부직포의 물성을 측정할 수 없는 문제가 발생하였다.
Figure imgf000042_0001
As shown in Table 4, in Examples 1 to 2, in which tacticity and molecular weight distribution (MWD), melt index (Ml), melting point () and residual force ratio were all optimized in accordance with an embodiment of the present invention Homopolypolyethylene resin can be used to produce a nonwoven fabric that is softer than conventional products by reducing the modulus while allowing the continuous process to be carried out because no single yarn is generated in the melt blowing process using the same. . On the other hand, the polypropylene resins of Comparative Examples 1 to 8, in which the tacticity or molecular weight distribution (MTO), the melt index (Ml), the melting point (Tm) It is impossible to carry out the continuous process due to the occurrence of single yarn in a melt blowing process and a disadvantage that the strength is lowered due to a broad molecular weight distribution appears or the coefficient of friction and the feel of the nonwoven fabric produced due to high tacticity It was confirmed that there was a falling problem. In particular, in Comparative Example 1, it was confirmed that there was a problem that the melting point was increased and the coefficient of friction and the feeling of touch of the produced nonwoven fabric were inferior. In Comparative Examples 2 and 3, it was confirmed that the nonwoven fabric had poor processability in production of the nonwoven fabric due to a wide molecular weight distribution of 3 or more, and the overall uniformity of the nonwoven fabric (partially or densely crowded portions) fell, resulting in poor strength, . In the case of Comparative Example 4, since the resin had a high melt index (Ml), it was impossible to produce a nonwoven fabric (not yet manufactured), and thus the physical properties of the nonwoven fabric could not be measured.
'또한, 비교예 5 는 넓은 분자량분포 (>2.4)로 인해 가공성이 블량하여 부직포의 전체적인 균일성 (부분적으로 듬성하거나 빽빽하게 몰린 부분이 존재)이 떨어져 강도, 마찰계수, 감촉성이 떨어짐을 알 수 있다. 비교예 6 은 동일 촉매라고 하더라도 수지의 제조 조건이 50 °C로 일반적으로 상업적 또는 실험실에서 사용할 수 있는 온도 범위 (70 °C)보다 낮아 택티서티 (tact ici ty)가 높아져서 제조된 부직포의 마찰계수나 감촉성이 떨어지는 문제가 있음이 확인되었다. 비교예 7 은 수지의 종류가 호모가 아닌 랜덤 수지로서 특히 강도 물성이 급격히 저하되는 것이 확인되었다. 또한, 비교예 8 의 경우에는 수소 투입량이 높아 용융지수 (Ml )가 50 g/10min 의 높은 유동성을 갖는 수지이기 때문에 강도뿐만 아니라, 부직포 가공에서 단사 (breakage)의 문제점이 있어 정상적인 부직포를 제조할 수 없음을 확인하였다. In addition, the comparative example 5 shows that the overall uniformity of the nonwoven fabric (due to the presence of a partly or densely crowded portion) deteriorates in strength, friction coefficient and feelability due to a large workability due to a broad molecular weight distribution (> 2.4) have. Comparative Example 6 shows that even if the same catalyst is used, the production conditions of the resin are lower than the temperature range (70 ° C) generally available in a commercial or laboratory environment at 50 ° C It has been found that there is a problem that the friction coefficient and the feelability of the nonwoven fabric produced are low because the tacticity is increased. In Comparative Example 7, it was confirmed that the physical properties of the random resin, particularly the type of the resin, were not significantly degraded. In the case of Comparative Example 8, since the resin has a high fluidity such as a high hydrogen input amount and a melt index (Ml) of 50 g / 10 min, there is a problem of not only strength but also breakage in nonwoven fabrication, .

Claims

【청구의 범위】 Claims:
【청구항 】  Claims:
택티서티 (tact i ci ty)가 80% 내지 90%이고, 분자량 분포 (MWD) 2.4 이하이며, 용융지수 (Ml )가 20 내지 30 g/min 이고, 용융점 (Tm)이 145 °C 이하이며, 잔류웅력비율이 0.05% 이하인, 부직포용 호모 폴리프로필렌 수지 Tacticity concertina and (tact i ci ty) is 80% to 90%, a molecular weight distribution (MWD) is more than 2.4, melt index, and (Ml) of from 20 to 30 g / min, melting point (Tm) of a less than 145 ° C, A homopolypropylene resin for nonwoven fabric having a residual force ratio of 0.05% or less
【청구항 2] [Claim 2]
제 1항에 있어서,  The method according to claim 1,
분자량분포 (丽 D)가 2. 1 내지 2.4인,  A molecular weight distribution (D) of 2.1 to 2.4,
부직포용 호모 폴리프로필렌 수지.  Homopolypropylene resin for nonwoven fabric.
【청구항 3】 [Claim 3]
제 1항에 있어서,  The method according to claim 1,
용융점 (Tm)이 133 °C 내지 143 °C인, The melting point (Tm) of 133 ° C to 143 ° C,
부직포용 호모 폴리프로필렌 수지 .  Homopolypropylene resin for nonwoven fabric.
【청구항 4】 Claim 4
제 1항에 있어서,  The method according to claim 1,
택티서티 (tact i ci ty)가 82% 내지 87%인,  Wherein the tacticity is 82% to 87%
부직포용 호모 폴리프로필렌 수지 .  Homopolypropylene resin for nonwoven fabric.
【청구항 5】 [Claim 5]
제 1항에 있어서,  The method according to claim 1,
용융지수 (Ml )가 23 g/min 내지 26 g/min인,  A melt index (Ml) of 23 g / min to 26 g / min,
부직포용 호모 폴리프로필렌 수지 .  Homopolypropylene resin for nonwoven fabric.
【청구항 6】 [Claim 6]
제 1항에 있어서,  The method according to claim 1,
잔류웅력비율이 0.006%내지 0.03%인,  Wherein the residual force ratio is 0.006% to 0.03%
부직포용 호모 폴리프로필렌 수지 . Homopolypropylene resin for nonwoven fabric.
【청구항 7] [7]
촉매 활성 성분으로 하기 화학식 1 로 표시되는 전이 금속 화합물만을 포함하는 단일 촉매 존재 하에서, 프로필렌을 중합시키는 단계를 포함하는, 제 1 항에 따른 부직포용 호모 폴리프로필렌 수지의 제조 방법:  A process for producing a homopolypropylene resin for a nonwoven fabric according to claim 1, comprising the step of polymerizing propylene in the presence of a single catalyst containing only a transition metal compound represented by the following formula (1) as a catalytically active component:
[화학식 1]  [Chemical Formula 1]
Figure imgf000046_0001
상기 화학식 1에서,
Figure imgf000046_0001
In Formula 1,
A는 탄소, 실리콘또는 게르마늄이고,  A is carbon, silicon or germanium,
M은 4족 전이금속이며;  M is a Group 4 transition metal;
X1 및 X2 는 서로 동일하거나 상이하고, 각각 독립적으로 할로겐, 치환 또는 비치환된 알킬 치환 또는 비치환된 C2-20 알케닐, 치환 또는 비치환된 C6-20 아릴, 니트로,、아미도, 치환 또는 비치환된 d-20 알킬아미노, 치환 또는 비치환된 C6-20 아릴아미노, 치환 또는 비치환된 d-20 알킬실릴, 치환 또는 비치환된 Cwo 알콕시 또는 치환 또는 비치환된 d-20 술포네이트이고; X 1 and X 2 are the same or different and are each independently a halogen, a substituted or unsubstituted alkyl, substituted or unsubstituted C 2 - 20 alkenyl, substituted or unsubstituted C 6 - 20 aryl, nitro, amino ,, also, a substituted or unsubstituted d-20 alkyl, substituted or unsubstituted C 6 - 20 arylamino, a substituted or unsubstituted d-20 alkyl silyl group, a substituted or unsubstituted Cwo alkoxy or substituted or unsubstituted d - 20 sulfonate;
R1 및 R6은 서로 동일하거나 상이하고, 각각 독립적으로 수소, 또는 치환또는 비치환된 d-20 알킬이고; R2 와 R3 , 및 R7 와 R8은 각각 서로 연결되어 치환또는 비치환된 C6- 20 지방족 또는 방향족 고리를 형성하며 ; R 1 and R 6 are the same or different from each other, and each independently hydrogen or substituted or unsubstituted d-20 alkyl; R 2 and R 3, and R 7 and R 8 are each connected to each other substituted or unsubstituted C 6 - to form a 20 aliphatic or aromatic ring;
R4 , R5, R9, 및 R10은 서로 동일하거나 상이하고, 각각 독립적으로 수소, 할로겐, 치환 또는 비치환된 d-20 알킬, 치환 또는 비치환된 C2-20 알케닐, 치환 또는 비치환된 알킬실릴, 치환 또는 비치환된 실릴알킬, 치환 또는 비치환된 알콕시실릴, 치환 또는 비치환된 d-20 에테르, 치환 또는 비치환된 실릴에테르, 치환 또는 비치환된 d-20 알콕시, 치환 또는 비치환된 C6-20 아릴, 치환 또는 비치환된 C7-20 알킬아릴, 또는 치환또는 비치환된 C7-20 아릴알킬이고; R 4 , R 5 , R 9 and R 10 are the same or different and each independently represents hydrogen, halogen, substituted or unsubstituted d- 20 alkyl, substituted or unsubstituted C 2 -C 20 alkenyl, Substituted or unsubstituted alkylsilyl, substituted or unsubstituted silylalkyl, substituted or unsubstituted alkoxysilyl, substituted or unsubstituted d-20 ether, substituted or unsubstituted silyl ether, substituted or unsubstituted d-20 alkoxy, substituted or unsubstituted C 6 - 20 aryl, substituted or unsubstituted C 7 - 20 alkylaryl, or substituted or unsubstituted C 7 - 20 aryl-alkyl;
R11 및 R12는 서로 동일하며, C2-20 알킬이다. R 11 and R 12 are the same each other, C 2 - 20 is alkyl.
[청구항 8】 [Claim 8]
제 7항에 있어서,  8. The method of claim 7,
R2 와 R3 및 R7 와 R8은 각각 서로 연결되어 C6-20 아릴을 형성하는 것인, R 2 and R 3 and R 7 and R 8 are respectively connected to each other C 6 - 20 which is to form an aryl,
부직포용 호모 폴리프로필렌 수지의 제조 방법 .  A process for producing homopolypropylene resin for nonwoven fabric.
【청구항 9】 [Claim 9]
제 7항에 있어서,  8. The method of claim 7,
상기 전이금속 화합물은 하기 화학식 1-1로 표시되는 것인, 부직포용 호모 폴리프로필렌 수지의 제조 방법. Wherein the transition metal compound is represented by the following formula (1-1).
Figure imgf000048_0001
상기 화학식 1-1에서,
Figure imgf000048_0001
In Formula 1-1,
A, M, X1, X2, R1, R4, R5, R6, R9, R10, R11, 및 R12은 게 1 항에서 정의한 바와 같다. A, M, X 1 , X 2 , R 1 , R 4 , R 5 , R 6 , R 9 , R 10 , R 11 and R 12 are as defined in Reagent 1.
【청구항 10】 Claim 10
제 7항에 있어서,  8. The method of claim 7,
A는 실리콘이고,  A is silicon,
M은 지르코늄 또는 하프늄인,  M is zirconium or hafnium,
부직포용 호모 폴리프로필렌 수지의 제조 방법 .  A process for producing homopolypropylene resin for nonwoven fabric.
【청구항 11】 Claim 11
제 7항에 있어서,  8. The method of claim 7,
X1 및 X2는 각각 독립적으로 할로겐인, X 1 and X 2 are each independently halogen,
부직포용 호모 폴리프로필렌 수지의 제조 방법 .  A process for producing homopolypropylene resin for nonwoven fabric.
【청구항 12】 제 7함에 있어서, Claim 12 In the seventh aspect,
R1 및 R6는 각각 독립적으로 수소 또는 d-5 직쇄 알킬인, 부직포용 호모 폴리프로필렌 수지의 제조 방법 . R 1 and R 6 are each independently a process for producing a homo-polypropylene resin for hydrogen or d- 5 straight chain alkyl, a non-woven fabric.
【청구항 13】 Claim 13
제 7항에 있어서 ,  8. The method of claim 7,
R4, R5, R9, 및 R10는 수소인, R 4 , R 5 , R 9 , and R 10 are hydrogen,
부직포용 호모 폴리프로필렌 수지의 제조 방법.  A process for producing homopolypropylene resin for nonwoven fabric.
【청구항 14】 14.
제 7항에 있어서,  8. The method of claim 7,
R11 및 R12는 동일하며, C2-4 직쇄 알킬기인, R 11 and R 12 are the same and are a C 2 -4 straight chain alkyl group,
부직포용 호모 폴리프로필렌 수지의 제조 방법 .  A process for producing homopolypropylene resin for nonwoven fabric.
[청구항 15】 [Claim 15]
제 7항에 있어서,  8. The method of claim 7,
상기 전이금속 화합물은 하기 구조식 중 하나로 표시되는 것인, . 부직포용 호모 폴리프로필렌 수지의 제조 방법:  Wherein the transition metal compound is represented by one of the following structural formulas. Production method of homopolypropylene resin for nonwoven fabric:
Figure imgf000049_0001
Figure imgf000049_0001
【청구항 16】 . 16.
제 7항에 있어서,  8. The method of claim 7,
상기 중합 단계는 연속식 벌크-슬러리 중합 공정으로 이뤄지는 것인, 부직포용 호모 폴리프로필렌 수지의 제조 방법. Wherein the polymerization step is a continuous bulk-slurry polymerization process. A process for producing homopolypropylene resin for nonwoven fabric.
PCT/KR2018/013548 2017-11-08 2018-11-08 Homopolypropylene resin for non-woven fabric and manufacturing method therefor WO2019093789A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201880052625.9A CN111032703B (en) 2017-11-08 2018-11-08 Homopolypropylene resin for non-woven fabrics and preparation method thereof
EP18876898.0A EP3650473A4 (en) 2017-11-08 2018-11-08 Homopolypropylene resin for non-woven fabric and manufacturing method therefor
JP2020501829A JP7089015B2 (en) 2017-11-08 2018-11-08 Homopolypropylene resin for non-woven fabric and its manufacturing method
US16/636,719 US11111323B2 (en) 2017-11-08 2018-11-08 Homopolypropylene resin for non-woven fabric and method for preparing the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2017-0148291 2017-11-08
KR20170148291 2017-11-08
KR10-2018-0136198 2018-11-07
KR1020180136198A KR102317015B1 (en) 2017-11-08 2018-11-07 Homo polypropylene resin for non-woven fabric and preparation method thereof

Publications (1)

Publication Number Publication Date
WO2019093789A1 true WO2019093789A1 (en) 2019-05-16

Family

ID=66438022

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/013548 WO2019093789A1 (en) 2017-11-08 2018-11-08 Homopolypropylene resin for non-woven fabric and manufacturing method therefor

Country Status (1)

Country Link
WO (1) WO2019093789A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001123322A (en) * 1999-10-15 2001-05-08 Ube Nitto Kasei Co Ltd Polypropylene-based drawn fiber, nonwoven fabric and method for producing the drawn fiber
JP2002235237A (en) 2001-02-07 2002-08-23 Japan Polychem Corp Polypropylene fiber and hot-melt type nonwoven fabric made of the same
US20060160967A1 (en) * 2004-12-16 2006-07-20 Voskoboynikov Alexander Z Halogen substituted metallocene compounds for olefin polymerization
WO2013176686A1 (en) * 2012-05-21 2013-11-28 Fina Technology, Inc. Multi-component metallocene catalyst systems for the production of reactor blends of polypropylene
KR101692346B1 (en) * 2016-04-27 2017-01-03 한화케미칼 주식회사 High density ethylene polymer using supported hybrid metallocene catalyst and methods for producing the same
KR20170023705A (en) * 2015-08-24 2017-03-06 주식회사 엘지화학 Transition metal compound, catalyst composition comprising the same, and method for preparing olefin polymer using the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001123322A (en) * 1999-10-15 2001-05-08 Ube Nitto Kasei Co Ltd Polypropylene-based drawn fiber, nonwoven fabric and method for producing the drawn fiber
JP2002235237A (en) 2001-02-07 2002-08-23 Japan Polychem Corp Polypropylene fiber and hot-melt type nonwoven fabric made of the same
US20060160967A1 (en) * 2004-12-16 2006-07-20 Voskoboynikov Alexander Z Halogen substituted metallocene compounds for olefin polymerization
WO2013176686A1 (en) * 2012-05-21 2013-11-28 Fina Technology, Inc. Multi-component metallocene catalyst systems for the production of reactor blends of polypropylene
KR20170023705A (en) * 2015-08-24 2017-03-06 주식회사 엘지화학 Transition metal compound, catalyst composition comprising the same, and method for preparing olefin polymer using the same
KR101692346B1 (en) * 2016-04-27 2017-01-03 한화케미칼 주식회사 High density ethylene polymer using supported hybrid metallocene catalyst and methods for producing the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3650473A4 *

Similar Documents

Publication Publication Date Title
KR102317015B1 (en) Homo polypropylene resin for non-woven fabric and preparation method thereof
EP3572441B1 (en) Homopolypropylene and method for preparing the same
KR102326791B1 (en) Polypropylene and method for preparing the same
KR102372221B1 (en) Propylene copolymer resin composition and method for preparing the same
EP3617239B1 (en) Propylene-butene copolymer and preparation method therefor
EP4253472A1 (en) Polypropylene resin composition and non-woven fabric prepared using same
KR102378415B1 (en) Resin composition for bi-component fiber
WO2019093789A1 (en) Homopolypropylene resin for non-woven fabric and manufacturing method therefor
KR102442033B1 (en) Preparation method for polypropylene resin and non-woven fabric
KR102464410B1 (en) Polypropylene for filament and method for preparing the same
KR20240135380A (en) Polypropylene resin composition and polypropylene fiber prepared using the same
WO2019103306A1 (en) Polypropylene and preparation method therefor
KR20220003927A (en) Propylene-ethylene-1-butene terpolymer and method for preparing the same
KR20220041669A (en) Polyethylene and method for preparing the same
US20230001340A1 (en) Filtration media made from melt-blown fibers with improved filtration properties
KR20200145767A (en) Propylene-1-butene copolymer and method for preparing the same
KR20200145768A (en) Polypropylene and method for preparing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18876898

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020501829

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018876898

Country of ref document: EP

Effective date: 20200206

NENP Non-entry into the national phase

Ref country code: DE