Nothing Special   »   [go: up one dir, main page]

WO2019082279A1 - Terminal device, base station device, wireless communication system, and wireless communication method - Google Patents

Terminal device, base station device, wireless communication system, and wireless communication method

Info

Publication number
WO2019082279A1
WO2019082279A1 PCT/JP2017/038386 JP2017038386W WO2019082279A1 WO 2019082279 A1 WO2019082279 A1 WO 2019082279A1 JP 2017038386 W JP2017038386 W JP 2017038386W WO 2019082279 A1 WO2019082279 A1 WO 2019082279A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
unit
buffer
transmission
ack
Prior art date
Application number
PCT/JP2017/038386
Other languages
French (fr)
Japanese (ja)
Inventor
三夫 小林
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to PCT/JP2017/038386 priority Critical patent/WO2019082279A1/en
Priority to JP2019549721A priority patent/JPWO2019082279A1/en
Publication of WO2019082279A1 publication Critical patent/WO2019082279A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/04Error control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/34TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading

Definitions

  • the present invention relates to a terminal device, a base station device, a wireless communication system, and a wireless communication method.
  • traffic of mobile terminals (smart phones and feature phones) occupies most of network resources. Also, traffic used by mobile terminals tends to expand in the future.
  • next-generation (for example, 5G (5th generation mobile communication)) communication standard in addition to the standard technology of 4G (4th generation mobile communication), further higher data rate, larger capacity, lower delay Technologies to realize this technology are expected.
  • 3GPP for example, TSG-RAN WG1, TSG-RAN WG2, etc.
  • 5G is classified into eMBB (Enhanced Mobile Broad Band), Massive MTC (Machine Type Communications), and URLLC (Ultra-Reliable and Low Latency Communication). Support for many use cases is envisioned.
  • eMBB Enhanced Mobile Broad Band
  • Massive MTC Machine Type Communications
  • URLLC Ultra-Reliable and Low Latency Communication
  • URLLC aims to set the delay in the radio section of the user plane in uplink and downlink to 0.5 ms. This is a high demand of less than 1/10 of 4G wireless system LTE (Long Term Evolution). In URLLC, it is desirable to simultaneously satisfy the two requirements of ultra-reliability and low delay as described above.
  • ultra-reliable low delay communication data URLLC data
  • other data for example, eMBB data etc.
  • URLLC data ultra-reliable low delay communication data
  • eMBB data ultra-reliable low-delay communication data
  • the eMBB data includes, for example, ACK (ACKnowledgement) / NACK (Negative ACKnowledgement) for controlling retransmission of data on the downlink in a hybrid automatic repeat request (HARQ: Hybrid Automatic Repeat request).
  • ACK acknowledgement
  • NACK Negative ACKnowledgement
  • An object of the disclosed technology is to provide a terminal apparatus, a base station apparatus, a wireless communication system, and a wireless communication method capable of suppressing unnecessary retransmission in downlink.
  • the terminal device disclosed in the present application allocates an uplink signal including first data and an allocation unit that allocates transmission power to an uplink signal including second data having a higher priority than the first data;
  • a transmission control unit for stopping transmission of the uplink signal including the first data when the transmission power allocated to the uplink signal including the first data does not reach a predetermined level; and the transmission is stopped
  • a buffer management unit that stores an ACK, which is the first data indicating that reception of data in the downlink is successful, in a buffer, and reports that the ACK is stored in the buffer to control retransmission of the data.
  • a transmission unit for transmitting a buffer status report for holding the second data using the upstream signal including the second data.
  • the terminal apparatus it is possible to suppress unnecessary retransmission in the downlink.
  • FIG. 1 is a diagram illustrating an example of a configuration of a wireless communication system according to a first embodiment.
  • FIG. 2 is a block diagram illustrating an exemplary configuration of a terminal device according to the first embodiment.
  • FIG. 3 is a diagram of an example of the buffer management unit according to the first embodiment.
  • FIG. 4A is a diagram showing a specific example (No. 1) of the configuration of resources to be subjected to BSR insertion.
  • FIG. 4B is a diagram showing a specific example (No. 2) of the configuration of resources to be subjected to BSR insertion.
  • FIG. 4C is a diagram showing a specific example (No. 3) of the configuration of resources to be subjected to BSR insertion.
  • FIG. 4D is a diagram showing a specific example (No.
  • FIG. 5 is a block diagram of an exemplary configuration of a base station apparatus according to the first embodiment.
  • FIG. 6 is a sequence diagram illustrating an example of a wireless communication method according to the first embodiment.
  • FIG. 7 is a flowchart illustrating an example of the ACK buffering operation according to the first embodiment.
  • FIG. 8 is a flowchart of an example of the retransmission control operation according to the first embodiment.
  • FIG. 9 is a block diagram illustrating an exemplary configuration of a terminal device according to a second embodiment.
  • FIG. 10 is a block diagram of a configuration example of a base station apparatus according to a second embodiment.
  • FIG. 11 is a sequence diagram illustrating an example of a wireless communication method according to the second embodiment.
  • FIG. 12 is a flowchart of an example of the retransmission control operation according to the second embodiment.
  • FIG. 1 is a diagram illustrating an example of a configuration of a wireless communication system according to a first embodiment.
  • the wireless communication system illustrated in FIG. 1 includes a terminal device 100 and a base station device 200.
  • the terminal device 100 and the base station device 200 transmit and receive data such as eMBB data and URLLC data in uplink and downlink, for example.
  • the uplink between the terminal device 100 and the base station 200 includes an uplink for eMBB data (hereinafter referred to as "eMBB uplink”) and an uplink for URLLC data (hereinafter referred to as "URLLC uplink"). And is included.
  • eMBB uplink uplink for URLLC data
  • URLLC uplink URLLC uplink
  • URLLC data is expected to be transmitted with lower delay than eMBB data, and has higher priority than eMBB data.
  • the eMBB data is an example of the first data
  • the URLLC data is an example of the second data.
  • the terminal device 100 When the terminal device 100 simultaneously transmits eMBB data and URLLC data in the eMBB uplink and URLLC uplink, it allocates transmission power to an uplink signal including eMBB data and an uplink signal including URLLC data.
  • an uplink signal including eMBB data is referred to as an “eMBB transmission signal”
  • an uplink signal including URLLC data is referred to as a “URLLC transmission signal”.
  • the eMBB data transmitted in the eMBB uplink includes ACK / NACK for controlling retransmission of data in the downlink.
  • the terminal device 100 Since the URLLC data has higher priority than the eMBB data such as ACK / NACK, the terminal device 100 preferentially allocates the transmission power to the uplink signal including the URLLC data, that is, the URLLC transmission signal. Therefore, it is assumed that the transmission power allocated to the eMBB transmission signal does not reach a predetermined level for correctly receiving (decoding) the eMBB data in the base station apparatus 200. In this case, the terminal device 100 stops transmission of the eMBB transmission signal, and stores, in the buffer in the terminal device 100, an ACK, which is eMBB data indicating that reception of data on the downlink is successful, among eMBB data. Then, the terminal device 100 transmits a buffer status report (BSR: Buffer Statement Report) that reports that the ACK is stored in the buffer using the URLLC transmission signal, and retransmits the data according to the ACK to the base station device 200. Hold control
  • BSR Buffer Statement Report
  • the terminal device 100 receives, from the base station device 200 holding retransmission control, hold information indicating that retransmission control is held. Then, the terminal device 100 reads the ACK from the buffer according to the received hold information, and transmits an uplink signal including the ACK, thereby causing the base station device 200 to resume retransmission control.
  • Base station apparatus 200 receives the BSR transmitted from terminal apparatus 100, and suspends retransmission control for data in downlink according to BSR. Also, the base station apparatus 200 receives an uplink signal including an ACK from the terminal apparatus 100, and resumes retransmission control of data according to the ACK.
  • FIG. 2 is a block diagram illustrating an exemplary configuration of the terminal device 100 according to the first embodiment.
  • the terminal device 100 illustrated in FIG. 2 includes a processor 100a, a wireless transmission unit 100b, and a wireless reception unit 100c.
  • the processor 100a includes, for example, a central processing unit (CPU), a field programmable gate array (FPGA), or a digital signal processor (DSP), and centrally controls the entire terminal device 100.
  • the processor 100a includes a path loss measurement unit 101, a transmission power assignment unit 102, a transmission control unit 103, a buffer management unit 104, an eMBB transmission signal generation unit 105, a URLLC transmission signal generation unit 106, and a BSR insertion unit 107.
  • the processor 100 a further includes a PDCCH (Physical Downlink Control Channel) decoding unit 108, a DCI (Downlink Control Information) determination unit 109, and a PDSCH (Physical Downlink Shared Channel) decoding unit 110.
  • the processor 100a includes an ACK / NACK generation unit 111.
  • the path loss measurement unit 101 receives an input of a reception signal from the wireless reception unit 100 c.
  • the received signal includes the reference signal transmitted from the base station apparatus 200 to the downlink.
  • the path loss measurement unit 101 measures the received power of the reference signal, and measures the path loss measurement value by subtracting the measured received power from the transmission power of the predetermined reference signal.
  • the path loss measurement unit 101 outputs the path loss measurement value to the transmission power assignment unit 102.
  • Transmission power allocation section 102 allocates transmission power to the eMBB transmission signal transmitted to base station apparatus 200 in the eMBB uplink and to the URLLC transmission signal transmitted to base station apparatus 200 in the URLLC uplink. That is, the transmission power allocation unit 102 performs, for example, the calculation shown in the following equation (1) for the subframe i of the cell c, and allocates the transmission power P PUSCH, c, URLLC (i) to the URLLC transmission signal.
  • P CMAX, c (i) in the equation (1) is the maximum transmission power that can be used in the URLLC uplink and the eMBB uplink in the terminal device 100.
  • M PUSCH, c, URLLC (i) is the bandwidth allocated to the URLLC uplink.
  • P O — PUSCH, c, URLLC (j) is the target received power.
  • ⁇ c, URLLC (j) is a path loss compensation coefficient.
  • PL c is a path loss measurement.
  • ⁇ TF, c, URLLC (i) is a correction value based on the coding rate / modulation scheme.
  • f c, URLLC (i) is a TPC (Transmission Power Control) command value.
  • M PUSCH, c, URLLC (i), P O _ PUSCH, c, URL LC (j), ⁇ c, URL LC (j), ⁇ TF, c, URL LC (i) and f c, URL LC (i) are power
  • the information is notified from the base station apparatus 200 to the terminal apparatus 100 as information.
  • the transmission power allocation unit 102 performs, for example, the following equation (2) on the subframe i of the cell c, and transmits the transmission power P PUSCH, c, eMBB (i) to the eMBB transmission signal (that is, Assign to ACK / NACK).
  • P required_PUSCH, c, eMBB (i) in equation (2) is the target transmission power required to correctly receive (decode) eMBB data in base station apparatus 200, as shown in equation (3) below.
  • M PUSCH, c, eMBB (i) in equation (3) is the bandwidth allocated to the eMBB uplink.
  • PO_PUSCH, c, eMBB (j) is the target received power.
  • ⁇ c, eMBB (j) is a path loss compensation coefficient.
  • PL c is a path loss measurement.
  • ⁇ TF, c, eMBB (i) is a correction value based on a coding rate / modulation scheme.
  • f c, eMBB (i) are TPC command values.
  • M PUSCH, c, eMBB (i), PO_PUSCH, c, eMBB (j), ⁇ c, eMBB (j), ⁇ TF, c, eMBB (i) and f c, eMBB (i) The information is notified from the base station apparatus 200 to the terminal apparatus 100 as information.
  • Transmission control section 103 transmits the eMBB transmission signal when transmission power P PUSCH, c, eMBB (i) allocated to eMBB transmission signal (that is, ACK / NACK) by transmission power allocation section 102 does not reach a predetermined level. Stop. That is, transmission control section 103 determines whether or not transmission power P PUSCH, c, eMBB (i) has reached a predetermined level, using the following equation (4).
  • P threshold, c, eMBB (i) in the equation (4) is a threshold for determination, and may be held in advance in the terminal device 100 or may be notified from the base station device 200 by predetermined signaling. .
  • Transmission control section 103 determines that transmission power P PUSCH, c, eMBB (i) has not reached a predetermined level when the condition of equation (4) is satisfied. Then, the transmission control unit 103 outputs, to the eMBB transmission signal generation unit 105, a DTX (Discontinuous Transmission) control signal for stopping the output of the upstream signal (that is, the eMBB transmission signal) including the eMBB data. Then, the transmission control unit 103 sets “Enable”, which indicates that the ACK is to be stored in the buffer, in the buffering control signal, and outputs the buffering control signal to the buffer management unit 104. Furthermore, the transmission control unit 103 outputs, to the BSR insertion unit 107, a BSR that reports that the ACK has been stored in the buffer, that is, a BSR in which "true" is set.
  • the transmission control unit 103 determines that the transmission power P PUSCH, c, eMBB (i) has reached a predetermined level. In this case, the transmission control unit 103 does not output the above DTX control signal. Then, the transmission control unit 103 sets “Disable”, which indicates that the ACK is not stored in the buffer, in the buffering control signal, and outputs the buffering control signal to the buffer management unit 104. Furthermore, the transmission control unit 103 outputs, to the BSR insertion unit 107, a BSR that reports that the ACK is not stored in the buffer, that is, a BSR in which "false" is set.
  • the buffer management unit 104 stores the ACK in the buffer when the transmission of the eMBB transmission signal is stopped. Also, buffer management section 104 reads ACK from the buffer when transmission power P PUSCH, c, eMBB (i) allocated to the eMBB transmission signal reaches a predetermined level and hold information is received from base station apparatus 200. . When the transmission of the eMBB transmission signal is not stopped, the buffer management unit 104 outputs the ACK / NACK generated by the ACK / NACK generation unit 111 to the eMBB transmission signal generation unit 105.
  • the buffer management unit 104 includes a buffer 121, a selection unit 122, and a buffer control unit 123.
  • FIG. 3 is a diagram illustrating an example of the buffer management unit 104 according to the first embodiment.
  • the buffer 121 temporarily stores the ACK generated by the ACK / NACK generation unit 111 or reads the ACK under the control of the buffer control unit 123.
  • the selection unit 122 outputs the ACK read from the buffer 121 or the ACK / NACK generated by the ACK / NACK generation unit 111 to the eMBB transmission signal generation unit 105 under the control of the buffer control unit 123. Choose as.
  • the buffer control unit 123 receives an input of a buffering control signal from the transmission control unit 103.
  • the buffer control unit 123 receives an input of the retransmission hold signal from the DCI determination unit 109 described later.
  • the retransmission hold signal is a signal indicating whether or not retransmission control is suspended in the base station apparatus 200. When retransmission control is suspended, "Enable” is set, and retransmission control is not suspended. “Disable” is set.
  • the buffer control unit 123 controls the buffer 121 and the selection unit 122 based on the buffering control signal and the retransmission hold signal.
  • the buffer control unit 123 stores the ACK in the buffer 121 and cancels the selection by the selection unit 122.
  • the buffer control unit 123 cancels the reading of the ACK previously stored in the buffer 121, and the selection unit 122 Cancel selection.
  • the buffer control unit 123 reads the ACK from the buffer 121 and selects the ACK read from the buffer 121. Select to.
  • the buffer control unit 123 causes the selection unit 122 to select the ACK / NACK from the ACK / NACK generation unit 111.
  • the ACK / NACK from the ACK / NACK generation unit 111 is output to the eMBB transmission signal generation unit 105.
  • the eMBB transmission signal generation unit 105 generates an eMBB transmission signal to be transmitted to the base station apparatus 200. That is, the eMBB transmission signal generation unit 105 encodes and modulates the ACK read from the buffer by the buffer management unit 104 or the ACK / NACK generated by the ACK / NACK generation unit 111 as eMBB data. Then, the eMBB transmission signal generation unit 105 outputs the generated eMBB transmission signal to the wireless transmission unit 100b.
  • eMBB transmission signal generation section 105 outputs the eMBB transmission signal when transmission power P PUSCH, c, eMBB (i) has not reached a predetermined level. Stop.
  • the URLLC transmission signal generation unit 106 generates a URLLC transmission signal to be transmitted to the base station apparatus 200. That is, the URLLC transmission signal generation unit 106 encodes and modulates uplink URLLC data. Then, the URL LC transmission signal generation unit 106 outputs the generated URL LC transmission signal to the wireless transmission unit 100 b.
  • the BSR insertion unit 107 inserts the BSR output from the transmission control unit 103 into the URLLC transmission signal. Accordingly, the URLLC transmission signal in which the BSR is inserted is output to the wireless transmission unit 100b, and the BSR is transmitted to the base station apparatus 200 using the URLLC transmission signal in the wireless transmission unit 100b.
  • FIG. 4A is a diagram showing a specific example (No. 1) of the configuration of resources to be subjected to BSR insertion.
  • FIG. 4A shows a PUSCH (Physical Uplink Shared Channel) resource of a URLLC transmission signal, and the PUSCH has DRS (Demodulation Reference Signal) 501 and 502 in two symbol areas arranged in the time axis direction.
  • the BSR 601 is inserted into the symbol region adjacent to the DRS 501 having the smaller symbol number from the rear of the time axis, of the two DRS 501 and 502 in the PUSCH of the URLLC transmission signal.
  • FIG. 4B is a diagram showing a specific example (No. 2) of the configuration of resources to be subjected to BSR insertion.
  • FIG. 4B shows the PUSCH resource of the URLLC transmission signal, and the PUSCH has DRSs 501 and 502 in two symbol areas arranged in the time axis direction.
  • the BSR 601 is inserted into the symbol area adjacent to the DRS 502 having the larger symbol number from the front of the time axis, of the two DRSs 501 and 502 in the PUSCH of the URLLC transmission signal.
  • FIG. 4C is a diagram showing a specific example (No. 3) of the configuration of resources to be subjected to BSR insertion.
  • FIG. 4C shows the PUSCH resources of the URLLC transmission signal, and the PUSCH has the DRS 503 in one symbol area arranged in the time axis direction.
  • the BSR 601 is inserted into the symbol area adjacent to the DRS 503 from the back of the time axis on the PUSCH of the URLLC transmission signal.
  • FIG. 4D is a diagram showing a specific example (No. 4) of the configuration of resources to be subjected to BSR insertion.
  • FIG. 4D shows the PUSCH resources of the URLLC transmission signal, and the PUSCH has the DRS 503 in one symbol region arranged in the time axis direction.
  • the BSR 601 is inserted into the symbol area adjacent to the DRS 503 from the front of the time axis on the PUSCH of the URLLC transmission signal.
  • the PDCCH decoding unit 108 receives an input of the reception signal from the wireless reception unit 100 c.
  • the received signal includes a signal of PDCCH transmitted from the base station apparatus 200 to the downlink.
  • the PDCCH signal includes downlink control information (DCI).
  • the PDCCH decoding unit 108 demodulates and decodes the PDCCH signal to obtain DCI. Then, PDCCH decoding section 108 outputs DCI to DCI determination section 109.
  • the DCI determination unit 109 receives an input of DCI from the PDCCH decoding unit 108.
  • the DCI determination unit 109 determines the processing content in the PDSCH decoding unit 110 according to the content of the DCI, and outputs a retransmission hold signal to the buffer management unit 104. That is, when DCI is "new information" indicating that the data transmitted from the base station apparatus 200 to the downlink is new data, DCI determination section 109 performs PDSCH decoding for demodulation and decoding according to the new data. It instructs the part 110. At this time, the DCI determination unit 109 sets “Disable” in the retransmission hold signal to be output to the buffer management unit 104.
  • DCI determination section 109 performs PDSCH decoding for demodulation and decoding according to retransmission data, when DCI is “retransmission information” indicating that data transmitted from base station apparatus 200 to the downlink is retransmission data. It instructs the part 110. At this time, the DCI determination unit 109 sets “Disable” in the retransmission hold signal to be output to the buffer management unit 104. Further, when the DCI is “pending information” indicating that the retransmission control in the base station apparatus 200 is suspended, the DCI determination unit 109 stops the processing in the PDSCH decoding unit 110 and outputs it to the buffer management unit 104. Set “Enable” to the retransmission hold signal.
  • the PDSCH decoding unit 110 receives an input of the reception signal from the wireless reception unit 100c.
  • the received signal includes a PDSCH signal transmitted from the base station apparatus 200 to the downlink.
  • the PDSCH decoding unit 110 demodulates and decodes the PDSCH signal according to an instruction from the DCI determination unit 109 to acquire data. Then, the PDSCH decoding unit 110 determines whether the data has been decoded normally, and notifies the ACK / NACK generation unit 111 of the success or failure of the data decoding. However, when the DCI determination unit 109 instructs the PDSCH decoding unit 110 to stop the process, the PDSCH decoding unit 110 stops the process.
  • the ACK / NACK generation unit 111 receives a notification of success or failure of data decoding from the PDSCH decoding unit 110. Then, the ACK / NACK generation unit 111 generates an ACK indicating that the decoding (reception) of data has succeeded or a NACK indicating that the decoding (reception) of data has failed, and manages the generated ACK / NACK as a buffer. Output to unit 104.
  • the wireless transmission unit 100b performs wireless transmission processing such as D / A (Digital / Analog) conversion and up-conversion on the transmission signals output from the processor 100a, that is, the eMBB transmission signal and the URLLC transmission signal. Then, the wireless transmission unit 100b transmits the eMBB transmission signal and the URLLC transmission signal via the antenna. At this time, the BSR insertion unit 107 inserts a BSR that reports that ACK is not stored in the buffer in the URLLC transmission signal. However, when the output of the eMBB transmission signal by the processor 100a is stopped, the wireless transmission unit 100b transmits only the URLLC transmission signal. At this time, in the URLLC transmission signal, a BSR that reports that the ACK has been stored in the buffer is inserted. That is, the wireless transmission unit 100b transmits, using the URLLC transmission signal, a BSR that reports that the ACK has been stored in the buffer.
  • D / A Digital / Analog
  • the wireless reception unit 100c receives a signal via an antenna, and performs wireless reception processing such as down conversion and A / D (Analog / Digital) conversion on the received signal. Then, the wireless reception unit 100c outputs the received signal to the path loss measurement unit 101, the PDCCH decoding unit 108, and the PDSCH decoding unit 110.
  • wireless reception processing such as down conversion and A / D (Analog / Digital) conversion on the received signal. Then, the wireless reception unit 100c outputs the received signal to the path loss measurement unit 101, the PDCCH decoding unit 108, and the PDSCH decoding unit 110.
  • FIG. 5 is a block diagram showing a configuration example of the base station apparatus 200 according to the first embodiment.
  • the base station apparatus 200 illustrated in FIG. 5 includes a processor 200a, a wireless transmission unit 200b, and a wireless reception unit 200c.
  • the processor 200a includes, for example, a CPU, an FPGA, or a DSP, and centrally controls the entire base station apparatus 200. Specifically, the processor 200a includes an eMBB data decoding unit 201, a URLLC data decoding unit 202, a BSR extraction unit 203, and a retransmission control unit 204. Further, the processor 200a includes a PDCCH generation unit 205, a power information management unit 206, a PDSCH generation unit 207, and a retransmission buffer 208.
  • the eMBB data decoding unit 201 receives an input of a reception signal from the wireless reception unit 200c.
  • the received signal includes the eMBB transmission signal transmitted from the terminal device 100 in the eMBB uplink.
  • the eMBB transmission signal is not always included in the reception signal because the transmission of the eMBB transmission signal is stopped by the terminal device 100 when the transmission power allocated to the eMBB transmission signal is insufficient.
  • the eMBB data decoding unit 201 demodulates and decodes the eMBB transmission signal included in the received signal to obtain eMBB data (that is, ACK / NACK).
  • the eMBB data decoding unit 201 outputs DTX indicating that ACK / NACK or neither ACK nor NACK is obtained to the retransmission control unit 204 as a result of decoding (reception) of eMBB data.
  • the URLLC data decoding unit 202 receives an input of the reception signal from the wireless reception unit 200c.
  • the received signal includes the URLLC transmission signal transmitted from the terminal device 100 in the URLLC uplink.
  • the URLLC data decoding unit 202 demodulates and decodes the URLLC transmission signal contained in the received signal to acquire URLLC data.
  • the BSR extraction unit 203 extracts a BSR from the URLLC transmission signal demodulated and decoded by the URLLC data decoding unit 202, and outputs the extracted BSR to the retransmission control unit 204.
  • the retransmission control unit 204 receives an input of the decoding (reception) result of the eMBB data from the eMBB data decoding unit 201.
  • Retransmission control section 204 receives an input of BSR from BSR extraction section 203.
  • the retransmission control unit 204 suspends the retransmission control for the terminal device 100 based on the decoding result of the eMBB data and the BSR.
  • the retransmission control unit 204 when “true” is set in BSR, that is, when ACK is stored in the buffer of the terminal device 100, the retransmission control unit 204 does not depend on the decoding result of the eMBB data. Suspend retransmission control for 100. That is, retransmission control section 204 outputs “pending information” indicating that retransmission control to terminal apparatus 100 is suspended as DCI to PDCCH generating section 205, and causes PDSCH generating section 207 to stop output of PDSCH signal. To direct.
  • the retransmission control unit 204 executes retransmission control according to the decoding result of eMBB data. That is, when the decoding result of the eMBB data is ACK, the retransmission control unit 204 outputs “new information” indicating that the data to be transmitted to the downlink is new data as DCI to the PDCCH generation unit 205, The new data is output to PDSCH generation section 207.
  • retransmission control section 204 outputs “retransmission information” indicating that the data to be transmitted to the downlink is retransmission data as DCI to PDCCH generation section 205 And instructs the PDSCH generation unit 207 to retransmit retransmission data.
  • the PDCCH generation unit 205 receives an input of DCI from the retransmission control unit 204.
  • the PDCCH generation unit 205 encodes and modulates the DCI to generate a signal of the PDCCH including the DCI.
  • the PDCCH generation unit 205 outputs the signal of the PDCCH including the DCI to the radio transmission unit 200b as a transmission signal.
  • the power information management unit 206 holds power information used for calculating transmission power to be allocated to the eMBB transmission signal transmitted from the terminal device 100 in the eMBB uplink and the URLLC transmission signal transmitted from the terminal device 100 in the URLLC uplink. Do.
  • the PDSCH generation unit 207 encodes and modulates the new data input from the retransmission control unit 204 to generate a PDSCH signal including the new data.
  • the PDSCH generation unit 207 outputs the signal of the PDSCH including the new data as a transmission signal to the wireless transmission unit 200b.
  • the PDSCH generation unit 207 acquires data to be retransmitted from among the data stored in the retransmission buffer 208. Then, the PDSCH generation unit 207 encodes and modulates the acquired data to generate a PDSCH signal including retransmission data. The PDSCH generation unit 207 outputs the signal of PDSCH including the retransmission data as a transmission signal to the radio transmission unit 200b.
  • the PDSCH generation unit 207 stops the output of the PDSCH signal according to the control of the retransmission control unit 204.
  • the retransmission buffer 208 is a temporary storage area of the PDSCH signal output from the PDSCH generation unit 207.
  • the retransmission buffer 208 discards the PDSCH signal stored in the past, and stores the current PDSCH signal.
  • the PDSCH signal output from the PDSCH generation unit 207 is a PDSCH signal including retransmission data, or when the output of the PDSCH signal from the PDSCH generation unit 207 is stopped, the PDSCH stored in the past Keep the signal of
  • the wireless transmission unit 200b performs, for example, wireless transmission processing such as D / A conversion and upconversion on the transmission signal output from the processor 200a, that is, the signal of PDSCH including new data or the signal of PDSCH including retransmission data. Apply. Then, the wireless transmission unit 200b transmits a transmission signal via the antenna.
  • wireless transmission processing such as D / A conversion and upconversion on the transmission signal output from the processor 200a
  • the wireless transmission unit 200b transmits a transmission signal via the antenna.
  • the wireless reception unit 200c receives a signal via an antenna, and performs wireless reception processing such as down conversion and A / D conversion on the received signal. Then, the wireless reception unit 200 c outputs the received signal to the eMBB data decoding unit 201 and the URLLC data decoding unit 202.
  • FIG. 6 is a sequence diagram illustrating an example of a wireless communication method according to the first embodiment.
  • the base station apparatus 200 transmits a signal of PDSCH including new data using the downlink (step S101). While transmission of URLLC data by the terminal device 100 has not occurred, the terminal device 100 transmits an eMBB transmission signal including ACK / NACK as eMBB data indicating success or failure of reception (decoding) of data in the downlink. Then, the base station apparatus 200 transmits new data or retransmission data according to ACK / NACK.
  • the terminal device 100 allocates transmission power to the eMBB transmission signal and the URLLC transmission signal (step S103). Since the URLLC data has higher priority than the eMBB data such as ACK / NACK, the terminal device 100 preferentially allocates the transmission power to the uplink signal including the URLLC data, that is, the URLLC transmission signal. Therefore, it is assumed that the transmission power allocated to the eMBB transmission signal does not reach a predetermined level for correctly receiving (decoding) the eMBB data in the base station apparatus 200.
  • the terminal device 100 stops transmission of an eMBB transmission signal including ACK / NACK as eMBB data (step S104). Then, the terminal device 100 stores an ACK, which is eMBB data indicating that reception of data on the downlink has succeeded among the eMBB data, in a buffer in the terminal device 100 (step S105). Then, the terminal device 100 inserts, into the URLLC transmission signal, a BSR that reports that the ACK has been stored in the buffer in the terminal device 100 (step S106). And the terminal device 100 transmits the said BSR using a URLLC transmission signal (step S107).
  • ACK which is eMBB data indicating that reception of data on the downlink has succeeded among the eMBB data
  • the base station apparatus 200 When the base station apparatus 200 receives the BSR transmitted from the terminal apparatus 100, the base station apparatus 200 suspends retransmission control for data on the downlink according to the BSR (step S108). Then, the base station apparatus 200 transmits, using a downlink, a PDCCH signal including, as DCI, “pending information” indicating that retransmission control to the terminal apparatus 100 is suspended (step S109).
  • the terminal apparatus 100 When receiving the signal of the PDCCH including “pending information” as DCI, the terminal apparatus 100 reads ACK from the buffer according to “pending information” (step S110), and transmits an uplink signal including ACK (step S111).
  • the base station apparatus 200 When receiving the uplink signal including the ACK, the base station apparatus 200 resumes retransmission control for the terminal apparatus 100 (step S112). In the example of FIG. 6, in response to the ACK, the base station apparatus 200 discards the PDSCH signal stored in the past in the retransmission buffer 208, and transmits the PDSCH signal including new data using the downlink.
  • FIG. 7 is a flowchart illustrating an example of the ACK buffering operation according to the first embodiment.
  • the buffer management unit 104 of the terminal device 100 stores the ACK in the buffer 121 (Step S123). ). At this time, the buffer management unit 104 cancels the selection by the selection unit 122. As a result, ACK / NACK is not output as eMBB data from the selection unit 122 to the eMBB transmission signal generation unit 105.
  • Step S121 Yes and Step S122 Yes the buffer control unit 123 stops reading the ACK previously stored in the buffer 121.
  • Step S124 the buffer management unit 104 cancels the selection by the selection unit 122.
  • ACK / NACK is not output as eMBB data from the selection unit 122 to the eMBB transmission signal generation unit 105.
  • the buffer control unit 123 reads ACK from the buffer 121 (Step S126). At this time, the buffer control unit 123 causes the selection unit 122 to select the ACK read from the buffer 121. Thus, the ACK read from the buffer 121 is output to the eMBB transmission signal generation unit 105, and the eMBB transmission signal generation unit 105 generates an eMBB transmission signal including the ACK as eMBB data.
  • the buffer control unit 123 receives ACK / NACK from the ACK / NACK generation unit 111.
  • the selection unit 122 is made to select.
  • the ACK / NACK from the ACK / NACK generation unit 111 is output to the eMBB transmission signal generation unit 105 (step S127).
  • FIG. 8 is a flowchart of an example of the retransmission control operation according to the first embodiment.
  • step S131 Yes If “true” is set in BSR, that is, if ACK is stored in the buffer of the terminal apparatus 100 (step S131 Yes), the retransmission control unit 204 of the base station apparatus 200 is not concerned with the decoding result of eMBB data. Then, the retransmission control for the terminal device 100 is suspended (step S132). That is, retransmission control section 204 outputs “pending information” indicating that retransmission control to terminal apparatus 100 is suspended as DCI to PDCCH generating section 205, and causes PDSCH generating section 207 to stop output of PDSCH signal. To direct. As a result, the output of the PDSCH signal from the PDSCH generation unit 207 is stopped.
  • the PDCCH generation unit 205 generates a signal of PDCCH including “pending information”, and the signal of the PDCCH is transmitted as a transmission signal through the wireless transmission unit 200 b.
  • the terminal device 100 that has received the signal of the PDCCH including the "pending information” reads the ACK from the buffer according to the "pending information", and transmits an uplink signal including the ACK.
  • retransmission control section 204 performs retransmission control according to the decoding result of eMBB data. Run. That is, when the decoding result of the eMBB data is ACK (Yes at step S133), retransmission control section 204 uses PDCI as “new information” indicating that the data transmitted to the downlink is new data to PDCCH generation section 205. It outputs the new data to the PDSCH generation unit 207.
  • a PDSCH signal including new data is generated in the PDSCH generation unit 207, and the signal of the PDSCH is transmitted as a transmission signal through the wireless transmission unit 200b (step S134). Furthermore, the PDCCH generation unit 205 generates a signal of PDCCH including “new information”, and the signal of the PDCCH is transmitted as a transmission signal through the wireless transmission unit 200 b.
  • the retransmission control unit 204 sets “retransmission information” indicating that the data transmitted to the downlink is retransmission data as DCI to the PDCCH generation unit It outputs to 205 and instructs the PDSCH generation unit 207 to retransmit retransmission data.
  • a PDSCH signal including retransmission data is generated in the PDSCH generation unit 207, and the signal of the PDSCH is transmitted as a transmission signal via the wireless transmission unit 200b (step S135).
  • the PDCCH generation unit 205 generates a signal of PDCCH including “retransmission information”, and the signal of the PDCCH is transmitted as a transmission signal through the wireless transmission unit 200 b.
  • the terminal device stops the eMBB transmission signal when the transmission power of the eMBB transmission signal does not reach a predetermined level under the condition where uplink eMBB data and URLCC data occur simultaneously. And stores ACK, which is eMBB data, in the buffer. Then, the terminal apparatus transmits, using the URLCC transmission signal, a BSR that reports that the ACK has been stored in the buffer of the terminal apparatus, and causes the base station apparatus to suspend retransmission control for data in the downlink. Thereby, when the transmission power allocated to eMBB data runs short, retransmission control in the base station apparatus can be suspended. As a result, it is possible to suppress unnecessary retransmissions that would otherwise occur in the downlink.
  • the transmission stop of the eMBB transmission signal is determined using the transmission power allocated to the eMBB transmission signal, but the eMBB transmission signal is further considered in consideration of a plurality of ACKs / NACKs included in the eMBB transmission signal. You may decide to stop sending. That is, it is assumed that the terminal device 100 transmits a plurality of ACKs / NACKs collectively. In this case, when it is determined that the transmission power P PUSCH, c, eMBB (i) has not reached the predetermined level, using the above equation (4), the transmission control unit 103 determines a plurality of eMBB transmission signals. It is determined whether or not all the ACKs / NACKs are NACKs.
  • the transmission control unit 103 eMBB transmits a DTX control signal for stopping the output of the uplink signal (that is, the eMBB transmission signal) including the eMBB data. It is output to the signal generation unit 105. Then, the transmission control unit 103 sets “Disable”, which indicates that the ACK is not stored in the buffer, in the buffering control signal, and outputs the buffering control signal to the buffer management unit 104. Furthermore, the transmission control unit 103 outputs, to the BSR insertion unit 107, a BSR reporting that ACK is not stored in the buffer, that is, a BSR in which "false" is set.
  • the transmission control unit 103 performs the following processing when all of the plurality of ACKs / NACKs included in the eMBB transmission signal are not NACKs, that is, when at least one ACK is included in the eMBB transmission signal. That is, the transmission control unit 103 outputs, to the eMBB transmission signal generation unit 105, a DTX control signal for stopping the output of the uplink signal (that is, the eMBB transmission signal) including the eMBB data. Then, the transmission control unit 103 sets “Enable” indicating that the ACK is to be stored in the buffer in the buffering control signal, and outputs the buffering control signal to the buffer management unit 104. Furthermore, the transmission control unit 103 outputs, to the BSR insertion unit 107, a BSR that reports that the ACK is stored in the buffer, that is, a BSR in which "true" is set.
  • transmission control section 103 does not output the above DTX control signal when it is determined that transmission power P PUSCH, c, eMBB (i) has reached a predetermined level, using equation (4) above. . Then, the transmission control unit 103 sets “Disable”, which indicates that the ACK is not stored in the buffer, in the buffering control signal, and outputs the buffering control signal to the buffer management unit 104. Furthermore, the transmission control unit 103 outputs, to the BSR insertion unit 107, a BSR that reports that the ACK is not stored in the buffer, that is, a BSR in which "false" is set.
  • the feature of the second embodiment is that, when the eMBB uplink and the URLLC uplink are set, the base station apparatus withholds the retransmission control for the data in downlink according to an advance notice that the ACK is stored in the buffer of the terminal apparatus. It is a point.
  • FIG. 9 is a block diagram illustrating a configuration example of the terminal device 100 according to the second embodiment.
  • the terminal device 100 illustrated in FIG. 9 includes an uplink setting unit 131 and a buffering prediction (BP) generation unit 132 in place of the BSR insertion unit 107 in FIG. 2.
  • BP buffering prediction
  • the uplink setting unit 131 sets an eMBB uplink for transmitting the eMBB transmission signal and a URLLC uplink for transmitting the URLLC transmission signal.
  • the uplink setting unit 131 sets up the eMBB uplink and the URLLC uplink by, for example, upper layer signaling such as RRC (Radio Resource Control) signaling in cooperation with the base station apparatus 200.
  • RRC Radio Resource Control
  • the BP generation unit 132 generates a BP notifying that the ACK is to be stored in the buffer of the terminal device 100 when the uplink setting unit 131 sets the eMBB uplink and the URLLC uplink. That is, when both the eMBB uplink and the URLLC uplink are set, the BP generation unit 132 generates a BP in which “true” indicating that ACK is stored in the buffer of the terminal device 100 is set. When only the eMBB uplink or only the URLLC uplink is set, the BP generation unit 132 generates a BP in which “false” is set.
  • the BP generation unit 132 outputs the generated BP to the eMBB transmission signal generation unit 105 or the URLLC transmission signal generation unit 106.
  • BP is inserted into the signaling message generated by eMBB transmission signal generation unit 105 or URLLC transmission signal generation unit 106, and BP is transmitted via wireless transmission unit 100b. .
  • FIG. 10 is a block diagram illustrating a configuration example of a base station apparatus 200 according to a second embodiment.
  • the base station apparatus 200 shown in FIG. 10 has an uplink setting section 211 and a retransmission control section 212 instead of the BSR extraction section 203 of FIG.
  • the uplink setting unit 211 sets up the eMBB uplink and the URLLC uplink by, for example, upper layer signaling such as RRC signaling in cooperation with the terminal device 100. At this time, uplink setting section 211 extracts a BP from the signaling message decoded by eMBB data decoding section 201 and URLLC data decoding section 202, and outputs the extracted BP to retransmission control section 212.
  • upper layer signaling such as RRC signaling
  • the retransmission control unit 212 receives an input of the decoding (reception) result of the eMBB data from the eMBB data decoding unit 201.
  • Retransmission control unit 212 receives an input of BP from uplink setting unit 211.
  • the retransmission control unit 212 suspends retransmission control for the terminal device 100 based on the BP and the result of decoding (reception) of eMBB data.
  • the retransmission control unit 212 performs the following processing when “true” is set to BP, that is, when it is notified that ACK is to be stored in the buffer of the terminal device 100.
  • the retransmission control unit 212 outputs “new information” indicating that the data to be transmitted to the downlink is new data as DCI to the PDCCH generation unit 205, and the new data Are output to the PDSCH generation unit 207.
  • the retransmission control unit 212 when the decoding result of the eMBB data is NACK, the retransmission control unit 212 outputs “retransmission information” indicating that the data transmitted to the downlink is retransmission data as DCI to the PDCCH generation unit 205, It instructs PDSCH generation section 207 to retransmit retransmission data.
  • the retransmission control unit 212 suspends the retransmission control for the terminal device 100. That is, retransmission control section 212 outputs “pending information” indicating that retransmission control to terminal apparatus 100 is suspended as DCI to PDCCH generating section 205, and causes PDSCH generating section 207 to stop output of the PDSCH signal. To direct.
  • the retransmission control unit 212 performs the following processing.
  • the decoding result of the eMBB data is ACK
  • the retransmission control unit 212 outputs “new information” indicating that the data to be transmitted to the downlink is new data as DCI to the PDCCH generation unit 205, and the new data Are output to the PDSCH generation unit 207.
  • the retransmission control unit 212 when the decoding result of the eMBB data is NACK, the retransmission control unit 212 outputs “retransmission information” indicating that the data transmitted to the downlink is retransmission data as DCI to the PDCCH generation unit 205, It instructs PDSCH generation section 207 to retransmit retransmission data.
  • FIG. 11 is a sequence diagram illustrating an example of a wireless communication method according to the second embodiment.
  • the terminal device 100 and the base station device 200 set up the eMBB uplink and the URLLC uplink, for example, by upper layer signaling such as RRC signaling (step S141). Since both the eMBB uplink and the URLLC uplink are set, the terminal device 100 generates a BP notifying that ACK is stored in the buffer of the terminal device 100, and transmits the generated BP using a signaling message. (Step S142). The base station apparatus 200 that has received the signaling message extracts the BP from the signaling message.
  • upper layer signaling such as RRC signaling
  • the base station apparatus 200 transmits the signal of PDSCH including new data using the downlink (step S143). While transmission of URLLC data by the terminal device 100 has not occurred, the terminal device 100 transmits an eMBB transmission signal including ACK / NACK as eMBB data indicating success or failure of reception (decoding) of data in the downlink. Then, the base station apparatus 200 transmits new data or retransmission data according to ACK / NACK.
  • the terminal device 100 allocates transmission power to the eMBB transmission signal and the URLLC transmission signal (step S145). Since the URLLC data has higher priority than the eMBB data such as ACK / NACK, the terminal device 100 preferentially allocates the transmission power to the uplink signal including the URLLC data, that is, the URLLC transmission signal. Therefore, it is assumed that the transmission power allocated to the eMBB transmission signal does not reach a predetermined level for correctly receiving (decoding) the eMBB data in the base station apparatus 200.
  • the terminal device 100 stops transmission of an eMBB transmission signal including ACK / NACK as eMBB data (step S146). Then, the terminal device 100 stores, in the buffer in the terminal device 100, an ACK, which is eMBB data indicating that reception of data on the downlink has succeeded among the eMBB data (step S147). Then, the terminal device 100 transmits a URLLC transmission signal on the URLLC uplink (step S148).
  • the base station apparatus 200 withholds retransmission control for the terminal apparatus 100 when the decoding result of the eMBB data is DTX because the BP has notified that the ACK will be stored in the buffer of the terminal apparatus 100 (DTX) (step S149, 150). Then, the base station apparatus 200 transmits, using a downlink, a PDCCH signal including, as DCI, “pending information” indicating that retransmission control for the terminal apparatus 100 is suspended (step S151).
  • the terminal apparatus 100 When receiving the signal of the PDCCH including “pending information” as DCI, the terminal apparatus 100 reads ACK from the buffer according to “pending information” (step S152), and transmits an uplink signal including ACK (step S153).
  • the base station apparatus 200 When receiving the uplink signal including the ACK, the base station apparatus 200 resumes the retransmission control for the terminal apparatus 100 (step S154). In the example of FIG. 11, the base station apparatus 200 discards the PDSCH signal stored in the past in the retransmission buffer 208 according to the ACK, and transmits the PDSCH signal including new data using the downlink.
  • FIG. 12 is a flowchart of an example of the retransmission control operation according to the second embodiment.
  • the retransmission control unit 212 performs the following processing when “true” is set to BP, that is, when it is notified that ACK is stored in the buffer of the terminal device 100 (Yes at step S161).
  • the retransmission control unit 212 outputs “new information” indicating that the data to be transmitted to the downlink is new data to the PDCCH generation unit 205 as DCI when the decoding result of the eMBB data is ACK (Yes at step S162) Outputs the new data to the PDSCH generation unit 207.
  • a PDSCH signal including new data is generated in the PDSCH generation unit 207, and the signal of the PDSCH is transmitted as a transmission signal through the wireless transmission unit 200b (step S163).
  • the PDCCH generation unit 205 generates a signal of PDCCH including “new information”, and the signal of the PDCCH is transmitted as a transmission signal through the wireless transmission unit 200 b.
  • the retransmission control unit 212 performs PDCCH with “retransmission information” indicating that the data transmitted to the downlink is retransmission data as DCI. It outputs to generation section 205 and instructs PDSCH generation section 207 to retransmit retransmission data.
  • a PDSCH signal including retransmission data is generated in the PDSCH generation unit 207, and the signal of the PDSCH is transmitted as a transmission signal via the wireless transmission unit 200b (step S165).
  • the PDCCH generation unit 205 generates a signal of PDCCH including “retransmission information”, and the signal of the PDCCH is transmitted as a transmission signal through the wireless transmission unit 200 b.
  • the retransmission control unit 212 suspends retransmission control on the terminal device 100 (step S166). That is, retransmission control section 212 outputs “pending information” indicating that retransmission control to terminal apparatus 100 is suspended as DCI to PDCCH generating section 205, and causes PDSCH generating section 207 to stop output of the PDSCH signal. To direct. As a result, the output of the PDSCH signal from the PDSCH generation unit 207 is stopped.
  • the PDCCH generation unit 205 generates a signal of PDCCH including “pending information”, and the signal of the PDCCH is transmitted as a transmission signal through the wireless transmission unit 200 b.
  • the terminal device 100 that has received the signal of the PDCCH including the "pending information” reads the ACK from the buffer according to the "pending information", and transmits an uplink signal including the ACK.
  • the retransmission control unit 212 performs the following processing.
  • the retransmission control unit 212 outputs “new information” indicating that the data to be transmitted to the downlink is new data as the DCI to the PDCCH generation unit 205 when the decoding result of the eMBB data is ACK (Yes at step S167) Outputs the new data to the PDSCH generation unit 207.
  • a PDSCH signal including new data is generated in the PDSCH generation unit 207, and the signal of the PDSCH is transmitted as a transmission signal via the wireless transmission unit 200b (step S168). Furthermore, the PDCCH generation unit 205 generates a signal of PDCCH including “new information”, and the signal of the PDCCH is transmitted as a transmission signal through the wireless transmission unit 200 b.
  • retransmission control section 212 sets “retransmission information” indicating that the data to be transmitted to the downlink is retransmission data as DCI to PDCCH generation section 205.
  • the PDSCH generation unit 207 to retransmit retransmission data.
  • a PDSCH signal including retransmission data is generated in the PDSCH generation unit 207, and the signal of the PDSCH is transmitted as a transmission signal via the wireless transmission unit 200b (step S169).
  • the PDCCH generation unit 205 generates a signal of PDCCH including “retransmission information”, and the signal of the PDCCH is transmitted as a transmission signal through the wireless transmission unit 200 b.
  • the terminal when the eMBB uplink and the URLLC uplink are set up, the terminal transmits a BP notifying that ACK is stored in the buffer of the terminal, and the base The station apparatus suspends retransmission control based on the BP and the decoding result of eMBB data. Therefore, the retransmission control in the base station apparatus can be put on hold simply by transmitting the BP once by the terminal apparatus, and the terminal apparatus performs a BSR every time an ACK is stored in the buffer of the terminal apparatus as in the first embodiment. It will not be sent. As a result, the processing load associated with BSR transmission can be reduced.
  • terminal device 101 path loss measurement unit 102 transmission power allocation unit 103 transmission control unit 104 buffer management unit 105 eMBB transmission signal generation unit 106 URLLC transmission signal generation unit 107 BSR insertion unit 108 PDCCH decoding unit 109 DCI determination unit 110 PDSCH decoding unit 111 ACK / NACK generation unit 121 buffer 122 selection unit 123 buffer control unit 131, 211 uplink control unit 132 BP generation unit 200 base station apparatus 201 eMBB data decoding unit 202 URLLC data decoding unit 203 BSR extraction unit 204, 212 retransmission control unit 205 PDCCH Generation unit 206 Power information management unit 207 PDSCH generation unit 208 Retransmission buffer

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

This terminal device includes: an allocation unit which allocates transmission power to an uplink signal including first data and an uplink signal including second data having a higher priority than the first data; a transmission control unit which stops transmission of the uplink signal including the first data, when the transmission power allocated to the uplink signal including the first data does not reach a prescribed level; a buffer management unit which stores, to a buffer, an ACK which is the first data indicating content that data reception in a downlink line is successful, when the transmission stops; and a transmission unit which transmits a buffer state report in which the ACK reports the content stored in the buffer to suspend a retransmission control for the data by using the uplink signal including the second data.

Description

端末装置、基地局装置、無線通信システム及び無線通信方法Terminal apparatus, base station apparatus, wireless communication system and wireless communication method
 本発明は、端末装置、基地局装置、無線通信システム及び無線通信方法に関する。 The present invention relates to a terminal device, a base station device, a wireless communication system, and a wireless communication method.
 現在のネットワークは、モバイル端末(スマートフォンやフィーチャーホン)のトラフィックがネットワークのリソースの大半を占めている。また、モバイル端末が使うトラフィックは、今後も拡大していく傾向にある。 In current networks, traffic of mobile terminals (smart phones and feature phones) occupies most of network resources. Also, traffic used by mobile terminals tends to expand in the future.
 一方で、IoT(Internet of things)サービス(例えば、交通システム、スマートメータ、装置等の監視システム)の展開に合わせて、多様な要求条件を持つサービスに対応することが期待されている。そのため、次世代(例えば、5G(第5世代移動体通信))の通信規格では、4G(第4世代移動体通信)の標準技術に加えて、さらなる高データレート化、大容量化、低遅延化を実現する技術が期待されている。なお、次世代通信規格については、3GPPの作業部会(例えば、TSG-RAN WG1、TSG-RAN WG2等)で技術検討が進められている。 On the other hand, in line with the development of the IoT (Internet of things) service (for example, a traffic system, a smart meter, a monitoring system of a device, etc.), it is expected to respond to services having various requirements. Therefore, in the next-generation (for example, 5G (5th generation mobile communication)) communication standard, in addition to the standard technology of 4G (4th generation mobile communication), further higher data rate, larger capacity, lower delay Technologies to realize this technology are expected. As for the next-generation communication standard, technical studies are in progress at a working group of 3GPP (for example, TSG-RAN WG1, TSG-RAN WG2, etc.).
 上記で述べたように、多種多様なサービスに対応するために、5Gでは、eMBB(Enhanced Mobile BroadBand)、Massive MTC(Machine Type Communications)、及びURLLC(Ultra-Reliable and Low Latency Communication)に分類される多くのユースケースのサポートが想定されている。 As described above, in order to support a wide variety of services, 5G is classified into eMBB (Enhanced Mobile Broad Band), Massive MTC (Machine Type Communications), and URLLC (Ultra-Reliable and Low Latency Communication). Support for many use cases is envisioned.
 その中でも、URLLCは実現が最も困難なユースケースである。まず、無線区間でのエラーレートを10-5のオーダーにするという超高信頼性の要求がある。超高信頼性を実現する1つの方法として、使用リソース量を増やしてデータに冗長性を持たせる方法がある。しかし、無線リソースには限りがあるので、無制限に使用リソースを増やすことはできない。 Among them, URLLC is the most difficult use case to realize. First of all, there is a demand for ultra-high reliability in which the error rate in the wireless section is on the order of 10 -5 . One way to achieve ultra-high reliability is to increase the amount of resources used to make data redundant. However, because radio resources are limited, it is not possible to increase the use resources indefinitely.
 低遅延に関しても、URLLCでは、上り回線及び下り回線におけるユーザプレーンの無線区間での遅延を0.5ミリ秒とすることが目標とされている。これは4G無線システムLTE(Long Term Evolution)の1/10未満という高い要求である。URLLCでは、上記のような超高信頼性と低遅延の2つの要求を同時に満たすことが望まれている。 With regard to low delay, URLLC aims to set the delay in the radio section of the user plane in uplink and downlink to 0.5 ms. This is a high demand of less than 1/10 of 4G wireless system LTE (Long Term Evolution). In URLLC, it is desirable to simultaneously satisfy the two requirements of ultra-reliability and low delay as described above.
 また、5Gでは、超高信頼低遅延通信データ(URLLCデータ)と、他のデータ(例えば、eMBBデータ等)とを同一キャリアで同時にサポートできることが望まれている。その実現のために、超高信頼低遅延通信データ(URLLCデータ)及び他のデータ(例えば、eMBBデータ等)に送信電力を個別に割り当てる技術が提案されている。 Further, in 5G, it is desired that ultra-reliable low delay communication data (URLLC data) and other data (for example, eMBB data etc.) can be simultaneously supported by the same carrier. In order to realize this, there has been proposed a technique for individually allocating transmission power to ultra-reliable low-delay communication data (URLLC data) and other data (for example, eMBB data etc.).
 ところで、端末装置がeMBBデータ及びURLLCデータを同時に基地局装置へ送信する場合、より優先度が高いURLLCデータに優先的に送信電力が割り当てられることが考えられる。このため、eMBBデータに割り当てられる送信電力が低下し、基地局装置においてeMBBデータを正しく受信(復号)するための所定レベルを下回ることがある。eMBBデータには、例えば、ハイブリッド自動再送要求(HARQ:Hybrid Automatic Repeat reQuest)において下り回線におけるデータの再送を制御するためのACK(ACKnowledgement)/NACK(Negative ACKnowledgement)が含まれる。 By the way, when the terminal apparatus simultaneously transmits eMBB data and URLLC data to the base station apparatus, it is conceivable that transmission power is preferentially allocated to URLLC data having higher priority. For this reason, the transmission power allocated to eMBB data may decrease, and the base station apparatus may fall below a predetermined level for correctly receiving (decoding) eMBB data. The eMBB data includes, for example, ACK (ACKnowledgement) / NACK (Negative ACKnowledgement) for controlling retransmission of data on the downlink in a hybrid automatic repeat request (HARQ: Hybrid Automatic Repeat request).
 上り回線においてeMBBデータとして送信されるACKがeMBBデータの送信電力の低下に起因して基地局装置において正しく受信(復号)されない場合、基地局装置は、下り回線におけるデータの受信(復号)に失敗したと判断し、データの再送を行う。しかしながら、このようなデータの再送は、eMBBデータの送信電力が所定レベルに達している場合には、本来発生するはずのない無駄な再送である。 When an ACK transmitted as eMBB data in uplink is not correctly received (decoded) in the base station apparatus due to a decrease in transmission power of eMBB data, the base station apparatus fails in reception (decoding) of data in downlink. It is determined that the data has been retransmitted. However, such retransmission of data is useless retransmission that should not occur when the transmission power of eMBB data has reached a predetermined level.
 開示の技術は、下り回線における無駄な再送を抑制することができる端末装置、基地局装置、無線通信システム及び無線通信方法を提供することを目的とする。 An object of the disclosed technology is to provide a terminal apparatus, a base station apparatus, a wireless communication system, and a wireless communication method capable of suppressing unnecessary retransmission in downlink.
 本願の開示する端末装置は、一つの態様において、第1のデータを含む上り信号及び前記第1のデータよりも優先度が高い第2のデータを含む上り信号に送信電力を割り当てる割当部と、前記第1のデータを含む上り信号に割り当てられる送信電力が所定レベルに達しない場合に、前記第1のデータを含む上り信号の送信を停止する送信制御部と、前記送信が停止された場合に、下り回線におけるデータの受信に成功した旨を示す前記第1のデータであるACKをバッファに格納するバッファ管理部と、前記ACKが前記バッファに格納された旨を報告して前記データに関する再送制御を保留させるバッファ状態報告を前記第2のデータを含む上り信号を用いて送信する送信部とを有する。 In one aspect, the terminal device disclosed in the present application allocates an uplink signal including first data and an allocation unit that allocates transmission power to an uplink signal including second data having a higher priority than the first data; A transmission control unit for stopping transmission of the uplink signal including the first data when the transmission power allocated to the uplink signal including the first data does not reach a predetermined level; and the transmission is stopped A buffer management unit that stores an ACK, which is the first data indicating that reception of data in the downlink is successful, in a buffer, and reports that the ACK is stored in the buffer to control retransmission of the data. And a transmission unit for transmitting a buffer status report for holding the second data using the upstream signal including the second data.
 本願の開示する端末装置の一つの態様によれば、下り回線における無駄な再送を抑制することができるという効果を奏する。 According to one aspect of the terminal apparatus disclosed in the present application, it is possible to suppress unnecessary retransmission in the downlink.
図1は、実施例1に係る無線通信システムの構成例を示す図である。FIG. 1 is a diagram illustrating an example of a configuration of a wireless communication system according to a first embodiment. 図2は、実施例1に係る端末装置の構成例を示すブロック図である。FIG. 2 is a block diagram illustrating an exemplary configuration of a terminal device according to the first embodiment. 図3は、実施例1に係るバッファ管理部の一例を示す図である。FIG. 3 is a diagram of an example of the buffer management unit according to the first embodiment. 図4Aは、BSR挿入の対象となるリソースの構成の具体例(その1)を示す図である。FIG. 4A is a diagram showing a specific example (No. 1) of the configuration of resources to be subjected to BSR insertion. 図4Bは、BSR挿入の対象となるリソースの構成の具体例(その2)を示す図である。FIG. 4B is a diagram showing a specific example (No. 2) of the configuration of resources to be subjected to BSR insertion. 図4Cは、BSR挿入の対象となるリソースの構成の具体例(その3)を示す図である。FIG. 4C is a diagram showing a specific example (No. 3) of the configuration of resources to be subjected to BSR insertion. 図4Dは、BSR挿入の対象となるリソースの構成の具体例(その4)を示す図である。FIG. 4D is a diagram showing a specific example (No. 4) of the configuration of resources to be subjected to BSR insertion. 図5は、実施例1に係る基地局装置の構成例を示すブロック図である。FIG. 5 is a block diagram of an exemplary configuration of a base station apparatus according to the first embodiment. 図6は、実施例1に係る無線通信方法の一例を示すシーケンス図である。FIG. 6 is a sequence diagram illustrating an example of a wireless communication method according to the first embodiment. 図7は、実施例1に係るACKバッファリング動作の一例を示すフローチャートである。FIG. 7 is a flowchart illustrating an example of the ACK buffering operation according to the first embodiment. 図8は、実施例1に係る再送制御動作の一例を示すフローチャートである。FIG. 8 is a flowchart of an example of the retransmission control operation according to the first embodiment. 図9は、実施例2に係る端末装置の構成例を示すブロック図である。FIG. 9 is a block diagram illustrating an exemplary configuration of a terminal device according to a second embodiment. 図10は、実施例2に係る基地局装置の構成例を示すブロック図である。FIG. 10 is a block diagram of a configuration example of a base station apparatus according to a second embodiment. 図11は、実施例2に係る無線通信方法の一例を示すシーケンス図である。FIG. 11 is a sequence diagram illustrating an example of a wireless communication method according to the second embodiment. 図12は、実施例2に係る再送制御動作の一例を示すフローチャートである。FIG. 12 is a flowchart of an example of the retransmission control operation according to the second embodiment.
 以下に、本願の開示する端末装置、基地局装置、無線通信システム及び無線通信方法の実施例を図面に基づいて詳細に説明する。なお、各実施例により開示技術が限定されるものではない。また、各実施例において同等の機能を有する構成には同一の符号を付し、重複する説明は省略される。 Hereinafter, embodiments of a terminal apparatus, a base station apparatus, a wireless communication system, and a wireless communication method disclosed in the present application will be described in detail based on the drawings. The disclosed technology is not limited by the embodiments. In addition, the same reference numerals are given to the configurations having the same functions in the respective embodiments, and the overlapping description will be omitted.
 図1は、実施例1に係る無線通信システムの構成例を示す図である。図1に示す無線通信システムは、端末装置100及び基地局装置200を有する。端末装置100及び基地局装置200は、上り回線及び下り回線において、例えば、eMBBデータ及びURLLCデータ等のデータを送受信する。端末装置100と基地局装置200との間の上り回線には、eMBBデータ用の上り回線(以下「eMBB上り回線」と呼ぶ)と、URLLCデータ用の上り回線(以下「URLLC上り回線」と呼ぶ)とが含まれる。5Gにおいて、URLLCデータは、eMBBデータよりも低遅延で伝送されることが期待されており、eMBBデータよりも優先度が高い。なお、eMBBデータは、第1のデータの一例であり、URLLCデータは、第2のデータの一例である。 FIG. 1 is a diagram illustrating an example of a configuration of a wireless communication system according to a first embodiment. The wireless communication system illustrated in FIG. 1 includes a terminal device 100 and a base station device 200. The terminal device 100 and the base station device 200 transmit and receive data such as eMBB data and URLLC data in uplink and downlink, for example. The uplink between the terminal device 100 and the base station 200 includes an uplink for eMBB data (hereinafter referred to as "eMBB uplink") and an uplink for URLLC data (hereinafter referred to as "URLLC uplink"). And is included. In 5G, URLLC data is expected to be transmitted with lower delay than eMBB data, and has higher priority than eMBB data. The eMBB data is an example of the first data, and the URLLC data is an example of the second data.
 端末装置100は、eMBB上り回線及びURLLC上り回線においてeMBBデータ及びURLLCデータを同時に送信する際、eMBBデータを含む上り信号及びURLLCデータを含む上り信号に送信電力を割り当てる。以下では、eMBBデータを含む上り信号を「eMBB送信信号」と呼び、URLLCデータを含む上り信号を「URLLC送信信号」と呼ぶ。eMBB上り回線において送信されるeMBBデータには、下り回線におけるデータの再送を制御するためのACK/NACKが含まれる。URLLCデータは、ACK/NACK等のeMBBデータよりも優先度が高いため、端末装置100は、URLLCデータを含む上り信号、つまり、URLLC送信信号に優先的に送信電力を割り当てる。このため、eMBB送信信号に割り当てられる送信電力が基地局装置200においてeMBBデータを正しく受信(復号)するための所定レベルに達しない場合が想定される。この場合、端末装置100は、eMBB送信信号の送信を停止し、eMBBデータのうち、下り回線におけるデータの受信に成功した旨を示すeMBBデータであるACKを端末装置100内のバッファに格納する。そして、端末装置100は、ACKがバッファに格納された旨を報告するバッファ状態報告(BSR:Buffer Statement Report)をURLLC送信信号を用いて送信し、基地局装置200にACKに応じたデータに関する再送制御を保留させる。 When the terminal device 100 simultaneously transmits eMBB data and URLLC data in the eMBB uplink and URLLC uplink, it allocates transmission power to an uplink signal including eMBB data and an uplink signal including URLLC data. Hereinafter, an uplink signal including eMBB data is referred to as an “eMBB transmission signal”, and an uplink signal including URLLC data is referred to as a “URLLC transmission signal”. The eMBB data transmitted in the eMBB uplink includes ACK / NACK for controlling retransmission of data in the downlink. Since the URLLC data has higher priority than the eMBB data such as ACK / NACK, the terminal device 100 preferentially allocates the transmission power to the uplink signal including the URLLC data, that is, the URLLC transmission signal. Therefore, it is assumed that the transmission power allocated to the eMBB transmission signal does not reach a predetermined level for correctly receiving (decoding) the eMBB data in the base station apparatus 200. In this case, the terminal device 100 stops transmission of the eMBB transmission signal, and stores, in the buffer in the terminal device 100, an ACK, which is eMBB data indicating that reception of data on the downlink is successful, among eMBB data. Then, the terminal device 100 transmits a buffer status report (BSR: Buffer Statement Report) that reports that the ACK is stored in the buffer using the URLLC transmission signal, and retransmits the data according to the ACK to the base station device 200. Hold control
 また、端末装置100は、再送制御を保留している基地局装置200から、再送制御が保留されている旨を示す保留情報を受信する。そして、端末装置100は、受信された保留情報に従って、バッファからACKを読み出し、ACKを含む上り信号を送信することにより、基地局装置200に再送制御を再開させる。 Further, the terminal device 100 receives, from the base station device 200 holding retransmission control, hold information indicating that retransmission control is held. Then, the terminal device 100 reads the ACK from the buffer according to the received hold information, and transmits an uplink signal including the ACK, thereby causing the base station device 200 to resume retransmission control.
 基地局装置200は、端末装置100から送信されたBSRを受信し、BSRに従って下り回線におけるデータに関する再送制御を保留する。また、基地局装置200は、端末装置100から、ACKを含む上り信号を受信し、ACKに応じたデータの再送制御を再開させる。 Base station apparatus 200 receives the BSR transmitted from terminal apparatus 100, and suspends retransmission control for data in downlink according to BSR. Also, the base station apparatus 200 receives an uplink signal including an ACK from the terminal apparatus 100, and resumes retransmission control of data according to the ACK.
 これにより、eMBBデータに割り当てられる送信電力が不足する場合に、基地局装置200における再送制御を保留させることができる。結果として、下り回線において本来発生するはずのない無駄な再送を抑制することができる。 Thereby, when the transmission power allocated to eMBB data runs short, retransmission control in base station apparatus 200 can be suspended. As a result, it is possible to suppress unnecessary retransmissions that would otherwise occur in the downlink.
 図2は、実施例1に係る端末装置100の構成例を示すブロック図である。図2に示す端末装置100は、プロセッサ100a、無線送信部100b及び無線受信部100cを有する。 FIG. 2 is a block diagram illustrating an exemplary configuration of the terminal device 100 according to the first embodiment. The terminal device 100 illustrated in FIG. 2 includes a processor 100a, a wireless transmission unit 100b, and a wireless reception unit 100c.
 プロセッサ100aは、例えばCPU(Central Processing Unit)、FPGA(Field Programmable Gate Array)又はDSP(Digital Signal Processor)などを備え、端末装置100全体を統括制御する。具体的には、プロセッサ100aは、パスロス測定部101、送信電力割当部102、送信制御部103、バッファ管理部104、eMBB送信信号生成部105、URLLC送信信号生成部106及びBSR挿入部107を有する。また、プロセッサ100aは、PDCCH(Physical Downlink Control Channel)復号部108、DCI(Downlink Control Information)判定部109及びPDSCH(Physical Downlink Shared Channel)復号部110を有する。また、プロセッサ100aは、ACK/NACK生成部111を有する。 The processor 100a includes, for example, a central processing unit (CPU), a field programmable gate array (FPGA), or a digital signal processor (DSP), and centrally controls the entire terminal device 100. Specifically, the processor 100a includes a path loss measurement unit 101, a transmission power assignment unit 102, a transmission control unit 103, a buffer management unit 104, an eMBB transmission signal generation unit 105, a URLLC transmission signal generation unit 106, and a BSR insertion unit 107. . The processor 100 a further includes a PDCCH (Physical Downlink Control Channel) decoding unit 108, a DCI (Downlink Control Information) determination unit 109, and a PDSCH (Physical Downlink Shared Channel) decoding unit 110. Also, the processor 100a includes an ACK / NACK generation unit 111.
 パスロス測定部101は、無線受信部100cから受信信号の入力を受ける。受信信号には、基地局装置200から下り回線に送信された参照信号が含まれる。パスロス測定部101は、参照信号の受信電力を測定し、測定した受信電力を予め定められた参照信号の送信電力から減算することにより、パスロス測定値を測定する。パスロス測定部101は、パスロス測定値を送信電力割当部102へ出力する。 The path loss measurement unit 101 receives an input of a reception signal from the wireless reception unit 100 c. The received signal includes the reference signal transmitted from the base station apparatus 200 to the downlink. The path loss measurement unit 101 measures the received power of the reference signal, and measures the path loss measurement value by subtracting the measured received power from the transmission power of the predetermined reference signal. The path loss measurement unit 101 outputs the path loss measurement value to the transmission power assignment unit 102.
 送信電力割当部102は、eMBB上り回線において基地局装置200へ送信されるeMBB送信信号、及びURLLC上り回線において基地局装置200へ送信されるURLLC送信信号に送信電力を割り当てる。すなわち、送信電力割当部102は、セルcのサブフレームiに関して、例えば、次の数式(1)に示す計算を行い、送信電力PPUSCH,c,URLLC(i)をURLLC送信信号に割り当てる。 Transmission power allocation section 102 allocates transmission power to the eMBB transmission signal transmitted to base station apparatus 200 in the eMBB uplink and to the URLLC transmission signal transmitted to base station apparatus 200 in the URLLC uplink. That is, the transmission power allocation unit 102 performs, for example, the calculation shown in the following equation (1) for the subframe i of the cell c, and allocates the transmission power P PUSCH, c, URLLC (i) to the URLLC transmission signal.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 数式(1)中のPCMAX,c(i)は、端末装置100においてURLLC上り回線及びeMBB上り回線で使用可能な最大送信電力である。MPUSCH,c,URLLC(i)は、URLLC上り回線に割り当てられた帯域幅である。PO_PUSCH,c,URLLC(j)は、目標受信電力である。αc,URLLC(j)は、パスロス補償係数である。PLは、パスロス測定値である。ΔTF,c,URLLC(i)は、符号化率・変調方式に基づく補正値である。fc,URLLC(i)は、TPC(Transmission Power Control)コマンド値である。なお、MPUSCH,c,URLLC(i)、PO_PUSCH,c,URLLC(j)、αc,URLLC(j)、ΔTF,c,URLLC(i)及びfc,URLLC(i)は、電力情報として基地局装置200から端末装置100へ通知される。 P CMAX, c (i) in the equation (1) is the maximum transmission power that can be used in the URLLC uplink and the eMBB uplink in the terminal device 100. M PUSCH, c, URLLC (i) is the bandwidth allocated to the URLLC uplink. P O — PUSCH, c, URLLC (j) is the target received power. α c, URLLC (j) is a path loss compensation coefficient. PL c is a path loss measurement. Δ TF, c, URLLC (i) is a correction value based on the coding rate / modulation scheme. f c, URLLC (i) is a TPC (Transmission Power Control) command value. M PUSCH, c, URLLC (i), P O _ PUSCH, c, URL LC (j), α c, URL LC (j), Δ TF, c, URL LC (i) and f c, URL LC (i) are power The information is notified from the base station apparatus 200 to the terminal apparatus 100 as information.
 続いて、送信電力割当部102は、セルcのサブフレームiに関して、例えば、次の数式(2)に示す計算を行い、送信電力PPUSCH,c,eMBB(i)をeMBB送信信号(つまり、ACK/NACK)に割り当てる。 Subsequently, the transmission power allocation unit 102 performs, for example, the following equation (2) on the subframe i of the cell c, and transmits the transmission power P PUSCH, c, eMBB (i) to the eMBB transmission signal (that is, Assign to ACK / NACK).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 数式(2)中のPrequired_PUSCH,c,eMBB(i)は、基地局装置200においてeMBBデータを正しく受信(復号)するために要求される目標送信電力であり、次の数式(3)のように表現される。 P required_PUSCH, c, eMBB (i) in equation (2) is the target transmission power required to correctly receive (decode) eMBB data in base station apparatus 200, as shown in equation (3) below. Expressed in
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 数式(3)中のMPUSCH,c、eMBB(i)は、eMBB上り回線に割り当てられた帯域幅である。PO_PUSCH,c,eMBB(j)は、目標受信電力である。αc,eMBB(j)は、パスロス補償係数である。PLは、パスロス測定値である。ΔTF,c,eMBB(i)は、符号化率・変調方式に基づく補正値である。fc,eMBB(i)は、TPCコマンド値である。なお、MPUSCH,c、eMBB(i)、PO_PUSCH,c,eMBB(j)、αc,eMBB(j)、ΔTF,c,eMBB(i)及びfc,eMBB(i)は、電力情報として基地局装置200から端末装置100へ通知される。 M PUSCH, c, eMBB (i) in equation (3) is the bandwidth allocated to the eMBB uplink. PO_PUSCH, c, eMBB (j) is the target received power. α c, eMBB (j) is a path loss compensation coefficient. PL c is a path loss measurement. Δ TF, c, eMBB (i) is a correction value based on a coding rate / modulation scheme. f c, eMBB (i) are TPC command values. M PUSCH, c, eMBB (i), PO_PUSCH, c, eMBB (j), α c, eMBB (j), Δ TF, c, eMBB (i) and f c, eMBB (i) The information is notified from the base station apparatus 200 to the terminal apparatus 100 as information.
 送信制御部103は、送信電力割当部102によってeMBB送信信号(つまり、ACK/NACK)に割り当てられる送信電力PPUSCH,c,eMBB(i)が所定レベルに達しない場合に、eMBB送信信号の送信を停止する。すなわち、送信制御部103は、次の数式(4)を用いて、送信電力PPUSCH,c,eMBB(i)が所定レベルに達しているか否かを判定する。 Transmission control section 103 transmits the eMBB transmission signal when transmission power P PUSCH, c, eMBB (i) allocated to eMBB transmission signal (that is, ACK / NACK) by transmission power allocation section 102 does not reach a predetermined level. Stop. That is, transmission control section 103 determines whether or not transmission power P PUSCH, c, eMBB (i) has reached a predetermined level, using the following equation (4).
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 数式(4)中のPthreshold,c,eMBB(i)は、判定用の閾値であり、端末装置100に予め保持されても良いし、基地局装置200から所定のシグナリングで通知されても良い。 P threshold, c, eMBB (i) in the equation (4) is a threshold for determination, and may be held in advance in the terminal device 100 or may be notified from the base station device 200 by predetermined signaling. .
 送信制御部103は、数式(4)の条件が成立する場合に、送信電力PPUSCH,c,eMBB(i)が所定レベルに達していないと判定する。そして、送信制御部103は、eMBBデータを含む上り信号(つまり、eMBB送信信号)の出力を停止させるDTX(Discontinuous Transmission)制御信号をeMBB送信信号生成部105へ出力する。そして、送信制御部103は、ACKをバッファに格納させる旨を示す「Enable」をバッファリング制御信号にセットし、当該バッファリング制御信号をバッファ管理部104へ出力する。さらに、送信制御部103は、ACKがバッファに格納された旨を報告するBSR、すなわち、「true」がセットされたBSRをBSR挿入部107へ出力する。 Transmission control section 103 determines that transmission power P PUSCH, c, eMBB (i) has not reached a predetermined level when the condition of equation (4) is satisfied. Then, the transmission control unit 103 outputs, to the eMBB transmission signal generation unit 105, a DTX (Discontinuous Transmission) control signal for stopping the output of the upstream signal (that is, the eMBB transmission signal) including the eMBB data. Then, the transmission control unit 103 sets “Enable”, which indicates that the ACK is to be stored in the buffer, in the buffering control signal, and outputs the buffering control signal to the buffer management unit 104. Furthermore, the transmission control unit 103 outputs, to the BSR insertion unit 107, a BSR that reports that the ACK has been stored in the buffer, that is, a BSR in which "true" is set.
 一方、送信制御部103は、数式(4)の条件が成立しない場合に、送信電力PPUSCH,c,eMBB(i)が所定レベルに達していると判定する。この場合、送信制御部103は、上記のDTX制御信号を出力しない。そして、送信制御部103は、ACKをバッファに格納しない旨を示す「Disable」をバッファリング制御信号にセットし、当該バッファリング制御信号をバッファ管理部104へ出力する。さらに、送信制御部103は、ACKがバッファに格納されていない旨を報告するBSR、すなわち、「false」がセットされたBSRをBSR挿入部107へ出力する。 On the other hand, when the condition of Expression (4) is not satisfied, the transmission control unit 103 determines that the transmission power P PUSCH, c, eMBB (i) has reached a predetermined level. In this case, the transmission control unit 103 does not output the above DTX control signal. Then, the transmission control unit 103 sets “Disable”, which indicates that the ACK is not stored in the buffer, in the buffering control signal, and outputs the buffering control signal to the buffer management unit 104. Furthermore, the transmission control unit 103 outputs, to the BSR insertion unit 107, a BSR that reports that the ACK is not stored in the buffer, that is, a BSR in which "false" is set.
 バッファ管理部104は、eMBB送信信号の送信が停止された場合に、ACKをバッファに格納する。また、バッファ管理部104は、eMBB送信信号に割り当てられる送信電力PPUSCH,c,eMBB(i)が所定レベルに達し且つ基地局装置200から保留情報が受信された場合に、バッファからACKを読み出す。なお、バッファ管理部104は、eMBB送信信号の送信が停止されていない場合には、ACK/NACK生成部111により生成されるACK/NACKをeMBB送信信号生成部105へ出力する。 The buffer management unit 104 stores the ACK in the buffer when the transmission of the eMBB transmission signal is stopped. Also, buffer management section 104 reads ACK from the buffer when transmission power P PUSCH, c, eMBB (i) allocated to the eMBB transmission signal reaches a predetermined level and hold information is received from base station apparatus 200. . When the transmission of the eMBB transmission signal is not stopped, the buffer management unit 104 outputs the ACK / NACK generated by the ACK / NACK generation unit 111 to the eMBB transmission signal generation unit 105.
 例えば、バッファ管理部104は、図3に示すように、バッファ121、選択部122及びバッファ制御部123を有する。図3は、実施例1に係るバッファ管理部104の一例を示す図である。 For example, as illustrated in FIG. 3, the buffer management unit 104 includes a buffer 121, a selection unit 122, and a buffer control unit 123. FIG. 3 is a diagram illustrating an example of the buffer management unit 104 according to the first embodiment.
 バッファ121は、バッファ制御部123による制御に従って、ACK/NACK生成部111により生成されるACKを一時的に記憶したり、ACKを読み出したりする。 The buffer 121 temporarily stores the ACK generated by the ACK / NACK generation unit 111 or reads the ACK under the control of the buffer control unit 123.
 選択部122は、バッファ制御部123による制御に従って、バッファ121から読み出されたACK、又はACK/NACK生成部111により生成されるACK/NACKを、eMBB送信信号生成部105へ出力されるeMBBデータとして選択する。 The selection unit 122 outputs the ACK read from the buffer 121 or the ACK / NACK generated by the ACK / NACK generation unit 111 to the eMBB transmission signal generation unit 105 under the control of the buffer control unit 123. Choose as.
 バッファ制御部123は、送信制御部103からバッファリング制御信号の入力を受ける。バッファ制御部123は、後述するDCI判定部109から再送保留信号の入力を受ける。再送保留信号は、基地局装置200において再送制御が保留されているか否かを示す信号であり、再送制御が保留されている場合に、「Enable」がセットされ、再送制御が保留されていない場合に、「Disable」がセットされる。バッファ制御部123は、バッファリング制御信号と、再送保留信号とに基づいて、バッファ121及び選択部122を制御する。 The buffer control unit 123 receives an input of a buffering control signal from the transmission control unit 103. The buffer control unit 123 receives an input of the retransmission hold signal from the DCI determination unit 109 described later. The retransmission hold signal is a signal indicating whether or not retransmission control is suspended in the base station apparatus 200. When retransmission control is suspended, "Enable" is set, and retransmission control is not suspended. "Disable" is set. The buffer control unit 123 controls the buffer 121 and the selection unit 122 based on the buffering control signal and the retransmission hold signal.
 すなわち、バッファ制御部123は、バッファリング制御信号が「Enable」であり且つ再送保留信号が「Disable」である場合に、ACKをバッファ121に格納し、且つ選択部122による選択を中止する。また、バッファ制御部123は、バッファリング制御信号が「Enable」であり且つ再送保留信号が「Enable」である場合に、バッファ121に前回格納されたACKの読出しを中止し、且つ選択部122による選択を中止する。また、バッファ制御部123は、バッファリング制御信号が「Disable」であり且つ再送保留信号が「Enable」である場合に、バッファ121からACKを読み出し、バッファ121から読み出されたACKを選択部122に選択させる。これにより、バッファ121から読み出されたACKがeMBB送信信号生成部105へ出力される。また、バッファ制御部123は、バッファリング制御信号が「Disable」であり且つ再送保留信号が「Disable」である場合に、ACK/NACK生成部111からのACK/NACKを選択部122に選択させる。これにより、ACK/NACK生成部111からのACK/NACKがeMBB送信信号生成部105へ出力される。 That is, when the buffering control signal is “Enable” and the retransmission hold signal is “Disable”, the buffer control unit 123 stores the ACK in the buffer 121 and cancels the selection by the selection unit 122. In addition, when the buffering control signal is “Enable” and the retransmission hold signal is “Enable”, the buffer control unit 123 cancels the reading of the ACK previously stored in the buffer 121, and the selection unit 122 Cancel selection. Also, when the buffering control signal is “Disable” and the retransmission hold signal is “Enable”, the buffer control unit 123 reads the ACK from the buffer 121 and selects the ACK read from the buffer 121. Select to. Thereby, the ACK read from the buffer 121 is output to the eMBB transmission signal generation unit 105. Also, when the buffering control signal is “Disable” and the retransmission hold signal is “Disable”, the buffer control unit 123 causes the selection unit 122 to select the ACK / NACK from the ACK / NACK generation unit 111. Thus, the ACK / NACK from the ACK / NACK generation unit 111 is output to the eMBB transmission signal generation unit 105.
 図2の説明に戻る。eMBB送信信号生成部105は、基地局装置200へ送信されるeMBB送信信号を生成する。すなわち、eMBB送信信号生成部105は、バッファ管理部104によりバッファから読み出されたACK、又はACK/NACK生成部111により生成されるACK/NACKをeMBBデータとして符号化及び変調する。そして、eMBB送信信号生成部105は、生成したeMBB送信信号を無線送信部100bへ出力する。ただし、eMBB送信信号生成部105は、送信制御部103から出力されるDTX制御信号に従って、送信電力PPUSCH,c,eMBB(i)が所定レベルに達していない場合には、eMBB送信信号の出力を停止する。 It returns to the explanation of FIG. The eMBB transmission signal generation unit 105 generates an eMBB transmission signal to be transmitted to the base station apparatus 200. That is, the eMBB transmission signal generation unit 105 encodes and modulates the ACK read from the buffer by the buffer management unit 104 or the ACK / NACK generated by the ACK / NACK generation unit 111 as eMBB data. Then, the eMBB transmission signal generation unit 105 outputs the generated eMBB transmission signal to the wireless transmission unit 100b. However, according to the DTX control signal output from transmission control section 103, eMBB transmission signal generation section 105 outputs the eMBB transmission signal when transmission power P PUSCH, c, eMBB (i) has not reached a predetermined level. Stop.
 URLLC送信信号生成部106は、基地局装置200へ送信されるURLLC送信信号を生成する。すなわち、URLLC送信信号生成部106は、上り回線のURLLCデータを符号化及び変調する。そして、URLLC送信信号生成部106は、生成したURLLC送信信号を無線送信部100bへ出力する。 The URLLC transmission signal generation unit 106 generates a URLLC transmission signal to be transmitted to the base station apparatus 200. That is, the URLLC transmission signal generation unit 106 encodes and modulates uplink URLLC data. Then, the URL LC transmission signal generation unit 106 outputs the generated URL LC transmission signal to the wireless transmission unit 100 b.
 BSR挿入部107は、送信制御部103から出力されるBSRをURLLC送信信号に挿入する。これにより、BSRが挿入されたURLLC送信信号が無線送信部100bへ出力され、無線送信部100bにおいて、BSRがURLLC送信信号を用いて基地局装置200へ送信される。 The BSR insertion unit 107 inserts the BSR output from the transmission control unit 103 into the URLLC transmission signal. Accordingly, the URLLC transmission signal in which the BSR is inserted is output to the wireless transmission unit 100b, and the BSR is transmitted to the base station apparatus 200 using the URLLC transmission signal in the wireless transmission unit 100b.
 ここで、BSR挿入部107によるBSR挿入について、具体的に説明する。図4Aは、BSR挿入の対象となるリソースの構成の具体例(その1)を示す図である。図4Aでは、URLLC送信信号のPUSCH(Physical Uplink Shared Channel)のリソースを示しており、PUSCHは、時間軸方向に配置された2つのシンボル領域にDRS(Demodulation Reference Signal)501,502を有する。BSR601は、URLLC送信信号のPUSCHにおいて、2つのDRS501,502のうち、よりシンボル番号が小さいDRS501に時間軸の後方から隣接するシンボル領域に挿入される。 Here, the BSR insertion by the BSR insertion unit 107 will be specifically described. FIG. 4A is a diagram showing a specific example (No. 1) of the configuration of resources to be subjected to BSR insertion. FIG. 4A shows a PUSCH (Physical Uplink Shared Channel) resource of a URLLC transmission signal, and the PUSCH has DRS (Demodulation Reference Signal) 501 and 502 in two symbol areas arranged in the time axis direction. The BSR 601 is inserted into the symbol region adjacent to the DRS 501 having the smaller symbol number from the rear of the time axis, of the two DRS 501 and 502 in the PUSCH of the URLLC transmission signal.
 図4Bは、BSR挿入の対象となるリソースの構成の具体例(その2)を示す図である。図4Bでは、URLLC送信信号のPUSCHのリソースを示しており、PUSCHは、時間軸方向に配置された2つのシンボル領域にDRS501,502を有する。BSR601は、URLLC送信信号のPUSCHにおいて、2つのDRS501,502のうち、よりシンボル番号が大きいDRS502に時間軸の前方から隣接するシンボル領域に挿入される。 FIG. 4B is a diagram showing a specific example (No. 2) of the configuration of resources to be subjected to BSR insertion. FIG. 4B shows the PUSCH resource of the URLLC transmission signal, and the PUSCH has DRSs 501 and 502 in two symbol areas arranged in the time axis direction. The BSR 601 is inserted into the symbol area adjacent to the DRS 502 having the larger symbol number from the front of the time axis, of the two DRSs 501 and 502 in the PUSCH of the URLLC transmission signal.
 図4Cは、BSR挿入の対象となるリソースの構成の具体例(その3)を示す図である。図4Cでは、URLLC送信信号のPUSCHのリソースを示しており、PUSCHは、時間軸方向に配置された1つのシンボル領域にDRS503を有する。BSR601は、URLLC送信信号のPUSCHにおいて、DRS503に時間軸の後方から隣接するシンボル領域に挿入される。 FIG. 4C is a diagram showing a specific example (No. 3) of the configuration of resources to be subjected to BSR insertion. FIG. 4C shows the PUSCH resources of the URLLC transmission signal, and the PUSCH has the DRS 503 in one symbol area arranged in the time axis direction. The BSR 601 is inserted into the symbol area adjacent to the DRS 503 from the back of the time axis on the PUSCH of the URLLC transmission signal.
 図4Dは、BSR挿入の対象となるリソースの構成の具体例(その4)を示す図である。図4Dでは、URLLC送信信号のPUSCHのリソースを示しており、PUSCHは、時間軸方向に配置された1つのシンボル領域にDRS503を有する。BSR601は、URLLC送信信号のPUSCHにおいて、DRS503に時間軸の前方から隣接するシンボル領域に挿入される。 FIG. 4D is a diagram showing a specific example (No. 4) of the configuration of resources to be subjected to BSR insertion. FIG. 4D shows the PUSCH resources of the URLLC transmission signal, and the PUSCH has the DRS 503 in one symbol region arranged in the time axis direction. The BSR 601 is inserted into the symbol area adjacent to the DRS 503 from the front of the time axis on the PUSCH of the URLLC transmission signal.
 図2の説明に戻る。PDCCH復号部108は、無線受信部100cから受信信号の入力を受ける。受信信号には、基地局装置200から下り回線に送信されるPDCCHの信号が含まれる。PDCCHの信号には、下り回線制御情報(DCI:Downlink Control Information)が含まれる。PDCCH復号部108は、PDCCHの信号を復調及び復号して、DCIを取得する。そして、PDCCH復号部108は、DCIをDCI判定部109へ出力する。 It returns to the explanation of FIG. The PDCCH decoding unit 108 receives an input of the reception signal from the wireless reception unit 100 c. The received signal includes a signal of PDCCH transmitted from the base station apparatus 200 to the downlink. The PDCCH signal includes downlink control information (DCI). The PDCCH decoding unit 108 demodulates and decodes the PDCCH signal to obtain DCI. Then, PDCCH decoding section 108 outputs DCI to DCI determination section 109.
 DCI判定部109は、PDCCH復号部108からDCIの入力を受ける。DCI判定部109は、DCIの内容に応じてPDSCH復号部110における処理内容を決定し、且つ、再送保留信号をバッファ管理部104へ出力する。すなわち、DCI判定部109は、DCIが基地局装置200から下り回線に送信されたデータが新規データであることを示す「新規情報」である場合に、新規データに応じた復調及び復号をPDSCH復号部110へ指示する。このとき、DCI判定部109は、バッファ管理部104へ出力する再送保留信号に「Disable」をセットする。また、DCI判定部109は、DCIが基地局装置200から下り回線に送信されたデータが再送データであることを示す「再送情報」である場合に、再送データに応じた復調及び復号をPDSCH復号部110へ指示する。このとき、DCI判定部109は、バッファ管理部104へ出力する再送保留信号に「Disable」をセットする。また、DCI判定部109は、DCIが基地局装置200における再送制御が保留されている旨を示す「保留情報」である場合に、PDSCH復号部110における処理を停止し、バッファ管理部104へ出力する再送保留信号に「Enable」をセットする。 The DCI determination unit 109 receives an input of DCI from the PDCCH decoding unit 108. The DCI determination unit 109 determines the processing content in the PDSCH decoding unit 110 according to the content of the DCI, and outputs a retransmission hold signal to the buffer management unit 104. That is, when DCI is "new information" indicating that the data transmitted from the base station apparatus 200 to the downlink is new data, DCI determination section 109 performs PDSCH decoding for demodulation and decoding according to the new data. It instructs the part 110. At this time, the DCI determination unit 109 sets “Disable” in the retransmission hold signal to be output to the buffer management unit 104. Further, DCI determination section 109 performs PDSCH decoding for demodulation and decoding according to retransmission data, when DCI is “retransmission information” indicating that data transmitted from base station apparatus 200 to the downlink is retransmission data. It instructs the part 110. At this time, the DCI determination unit 109 sets “Disable” in the retransmission hold signal to be output to the buffer management unit 104. Further, when the DCI is “pending information” indicating that the retransmission control in the base station apparatus 200 is suspended, the DCI determination unit 109 stops the processing in the PDSCH decoding unit 110 and outputs it to the buffer management unit 104. Set "Enable" to the retransmission hold signal.
 PDSCH復号部110は、無線受信部100cから受信信号の入力を受ける。受信信号には、基地局装置200から下り回線に送信されるPDSCHの信号が含まれる。PDSCH復号部110は、DCI判定部109による指示に応じてPDSCHの信号を復調及び復号して、データを取得する。そして、PDSCH復号部110は、データが正常に復号されたか否かを判定し、データの復号の成否をACK/NACK生成部111へ通知する。ただし、PDSCH復号部110は、DCI判定部109により処理の停止が指示された場合には、処理を停止する。 The PDSCH decoding unit 110 receives an input of the reception signal from the wireless reception unit 100c. The received signal includes a PDSCH signal transmitted from the base station apparatus 200 to the downlink. The PDSCH decoding unit 110 demodulates and decodes the PDSCH signal according to an instruction from the DCI determination unit 109 to acquire data. Then, the PDSCH decoding unit 110 determines whether the data has been decoded normally, and notifies the ACK / NACK generation unit 111 of the success or failure of the data decoding. However, when the DCI determination unit 109 instructs the PDSCH decoding unit 110 to stop the process, the PDSCH decoding unit 110 stops the process.
 ACK/NACK生成部111は、データの復号の成否の通知をPDSCH復号部110から受ける。そして、ACK/NACK生成部111は、データの復号(受信)に成功した旨を示すACK、又はデータの復号(受信)に失敗した旨を示すNACKを生成し、生成したACK/NACKをバッファ管理部104へ出力する。 The ACK / NACK generation unit 111 receives a notification of success or failure of data decoding from the PDSCH decoding unit 110. Then, the ACK / NACK generation unit 111 generates an ACK indicating that the decoding (reception) of data has succeeded or a NACK indicating that the decoding (reception) of data has failed, and manages the generated ACK / NACK as a buffer. Output to unit 104.
 無線送信部100bは、プロセッサ100aから出力される送信信号、つまり、eMBB送信信号及びURLLC送信信号に対して、例えばD/A(Digital/Analog)変換及びアップコンバートなどの無線送信処理を施す。そして、無線送信部100bは、アンテナを介してeMBB送信信号及びURLLC送信信号を送信する。このとき、URLLC送信信号には、ACKがバッファに格納されていない旨を報告するBSRがBSR挿入部107により挿入されている。ただし、無線送信部100bは、プロセッサ100aによるeMBB送信信号の出力が停止されると、URLLC送信信号のみを送信する。このとき、URLLC送信信号には、ACKがバッファに格納された旨を報告するBSRが挿入されている。すなわち、無線送信部100bは、ACKがバッファに格納された旨を報告するBSRをURLLC送信信号を用いて送信する。 The wireless transmission unit 100b performs wireless transmission processing such as D / A (Digital / Analog) conversion and up-conversion on the transmission signals output from the processor 100a, that is, the eMBB transmission signal and the URLLC transmission signal. Then, the wireless transmission unit 100b transmits the eMBB transmission signal and the URLLC transmission signal via the antenna. At this time, the BSR insertion unit 107 inserts a BSR that reports that ACK is not stored in the buffer in the URLLC transmission signal. However, when the output of the eMBB transmission signal by the processor 100a is stopped, the wireless transmission unit 100b transmits only the URLLC transmission signal. At this time, in the URLLC transmission signal, a BSR that reports that the ACK has been stored in the buffer is inserted. That is, the wireless transmission unit 100b transmits, using the URLLC transmission signal, a BSR that reports that the ACK has been stored in the buffer.
 無線受信部100cは、アンテナを介して信号を受信し、受信信号に対して、例えばダウンコンバート及びA/D(Analog/Digital)変換などの無線受信処理を施す。そして、無線受信部100cは、受信信号をパスロス測定部101、PDCCH復号部108及びPDSCH復号部110へ出力する。 The wireless reception unit 100c receives a signal via an antenna, and performs wireless reception processing such as down conversion and A / D (Analog / Digital) conversion on the received signal. Then, the wireless reception unit 100c outputs the received signal to the path loss measurement unit 101, the PDCCH decoding unit 108, and the PDSCH decoding unit 110.
 図5は、実施例1に係る基地局装置200の構成例を示すブロック図である。図5に示す基地局装置200は、プロセッサ200a、無線送信部200b及び無線受信部200cを有する。 FIG. 5 is a block diagram showing a configuration example of the base station apparatus 200 according to the first embodiment. The base station apparatus 200 illustrated in FIG. 5 includes a processor 200a, a wireless transmission unit 200b, and a wireless reception unit 200c.
 プロセッサ200aは、例えばCPU、FPGA又はDSPなどを備え、基地局装置200全体を統括制御する。具体的には、プロセッサ200aは、eMBBデータ復号部201、URLLCデータ復号部202、BSR抽出部203及び再送制御部204を有する。また、プロセッサ200aは、PDCCH生成部205、電力情報管理部206、PDSCH生成部207及び再送用バッファ208を有する。 The processor 200a includes, for example, a CPU, an FPGA, or a DSP, and centrally controls the entire base station apparatus 200. Specifically, the processor 200a includes an eMBB data decoding unit 201, a URLLC data decoding unit 202, a BSR extraction unit 203, and a retransmission control unit 204. Further, the processor 200a includes a PDCCH generation unit 205, a power information management unit 206, a PDSCH generation unit 207, and a retransmission buffer 208.
 eMBBデータ復号部201は、無線受信部200cから受信信号の入力を受ける。受信信号には、eMBB上り回線において端末装置100から送信されたeMBB送信信号が含まれる。eMBB送信信号は、eMBB送信信号に割り当てられる送信電力が不足する場合に端末装置100によりeMBB送信信号の送信が停止されるため、常に受信信号に含まれるわけではない。eMBBデータ復号部201は、受信信号に含まれるeMBB送信信号を復調及び復号して、eMBBデータ(つまり、ACK/NACK)を取得する。eMBBデータ復号部201は、ACK/NACK、又は、ACK及びNACKのいずれも取得されない旨を示すDTXをeMBBデータの復号(受信)結果として再送制御部204へ出力する。 The eMBB data decoding unit 201 receives an input of a reception signal from the wireless reception unit 200c. The received signal includes the eMBB transmission signal transmitted from the terminal device 100 in the eMBB uplink. The eMBB transmission signal is not always included in the reception signal because the transmission of the eMBB transmission signal is stopped by the terminal device 100 when the transmission power allocated to the eMBB transmission signal is insufficient. The eMBB data decoding unit 201 demodulates and decodes the eMBB transmission signal included in the received signal to obtain eMBB data (that is, ACK / NACK). The eMBB data decoding unit 201 outputs DTX indicating that ACK / NACK or neither ACK nor NACK is obtained to the retransmission control unit 204 as a result of decoding (reception) of eMBB data.
 URLLCデータ復号部202は、無線受信部200cから受信信号の入力を受ける。受信信号には、URLLC上り回線において端末装置100から送信されたURLLC送信信号が含まれる。URLLCデータ復号部202は、受信信号に含まれるURLLC送信信号を復調及び復号して、URLLCデータを取得する。 The URLLC data decoding unit 202 receives an input of the reception signal from the wireless reception unit 200c. The received signal includes the URLLC transmission signal transmitted from the terminal device 100 in the URLLC uplink. The URLLC data decoding unit 202 demodulates and decodes the URLLC transmission signal contained in the received signal to acquire URLLC data.
 BSR抽出部203は、URLLCデータ復号部202により復調及び復号されるURLLC送信信号からBSRを抽出し、抽出したBSRを再送制御部204へ出力する。 The BSR extraction unit 203 extracts a BSR from the URLLC transmission signal demodulated and decoded by the URLLC data decoding unit 202, and outputs the extracted BSR to the retransmission control unit 204.
 再送制御部204は、eMBBデータ復号部201からeMBBデータの復号(受信)結果の入力を受ける。再送制御部204は、BSR抽出部203からBSRの入力を受ける。再送制御部204は、eMBBデータの復号結果とBSRとに基づいて、端末装置100に対する再送制御を保留する。 The retransmission control unit 204 receives an input of the decoding (reception) result of the eMBB data from the eMBB data decoding unit 201. Retransmission control section 204 receives an input of BSR from BSR extraction section 203. The retransmission control unit 204 suspends the retransmission control for the terminal device 100 based on the decoding result of the eMBB data and the BSR.
 具体的には、再送制御部204は、BSRに「true」がセットされている場合、すなわち、ACKが端末装置100のバッファに格納されている場合、eMBBデータの復号結果に関わらず、端末装置100に対する再送制御を保留する。すなわち、再送制御部204は、端末装置100に対する再送制御が保留されている旨を示す「保留情報」をDCIとしてPDCCH生成部205へ出力し、PDSCH生成部207にPDSCHの信号の出力の停止を指示する。 Specifically, when “true” is set in BSR, that is, when ACK is stored in the buffer of the terminal device 100, the retransmission control unit 204 does not depend on the decoding result of the eMBB data. Suspend retransmission control for 100. That is, retransmission control section 204 outputs “pending information” indicating that retransmission control to terminal apparatus 100 is suspended as DCI to PDCCH generating section 205, and causes PDSCH generating section 207 to stop output of PDSCH signal. To direct.
 また、再送制御部204は、BSRに「false」がセットされている場合、すなわち、ACKが端末装置100のバッファに格納されていない場合、eMBBデータの復号結果に応じた再送制御を実行する。すなわち、再送制御部204は、eMBBデータの復号結果がACKである場合に、下り回線に送信されるデータが新規データである旨を示す「新規情報」をDCIとしてPDCCH生成部205へ出力し、新規データをPDSCH生成部207へ出力する。 Also, when “false” is set in BSR, that is, when ACK is not stored in the buffer of the terminal device 100, the retransmission control unit 204 executes retransmission control according to the decoding result of eMBB data. That is, when the decoding result of the eMBB data is ACK, the retransmission control unit 204 outputs “new information” indicating that the data to be transmitted to the downlink is new data as DCI to the PDCCH generation unit 205, The new data is output to PDSCH generation section 207.
 一方、再送制御部204は、eMBBデータの復号結果がNACK又はDTXであると、下り回線に送信されるデータが再送データである旨を示す「再送情報」をDCIとしてPDCCH生成部205へ出力し、再送データの再送をPDSCH生成部207へ指示する。 On the other hand, if the decoding result of the eMBB data is NACK or DTX, retransmission control section 204 outputs “retransmission information” indicating that the data to be transmitted to the downlink is retransmission data as DCI to PDCCH generation section 205 And instructs the PDSCH generation unit 207 to retransmit retransmission data.
 PDCCH生成部205は、再送制御部204からDCIの入力を受ける。PDCCH生成部205は、DCIを符号化及び変調して、DCIを含むPDCCHの信号を生成する。PDCCH生成部205は、DCIを含むPDCCHの信号を送信信号として無線送信部200bへ出力する。 The PDCCH generation unit 205 receives an input of DCI from the retransmission control unit 204. The PDCCH generation unit 205 encodes and modulates the DCI to generate a signal of the PDCCH including the DCI. The PDCCH generation unit 205 outputs the signal of the PDCCH including the DCI to the radio transmission unit 200b as a transmission signal.
 電力情報管理部206は、eMBB上り回線において端末装置100から送信されるeMBB送信信号及びURLLC上り回線において端末装置100から送信されるURLLC送信信号に割り当てられる送信電力の算出に用いられる電力情報を保持する。 The power information management unit 206 holds power information used for calculating transmission power to be allocated to the eMBB transmission signal transmitted from the terminal device 100 in the eMBB uplink and the URLLC transmission signal transmitted from the terminal device 100 in the URLLC uplink. Do.
 PDSCH生成部207は、再送制御部204から入力される新規データを符号化及び変調して、新規データを含むPDSCHの信号を生成する。PDSCH生成部207は、新規データを含むPDSCHの信号を送信信号として無線送信部200bへ出力する。 The PDSCH generation unit 207 encodes and modulates the new data input from the retransmission control unit 204 to generate a PDSCH signal including the new data. The PDSCH generation unit 207 outputs the signal of the PDSCH including the new data as a transmission signal to the wireless transmission unit 200b.
 また、PDSCH生成部207は、再送制御部204から再送データの再送を指示された場合、再送用バッファ208に格納されたデータの中から、再送対象となるデータを取得する。そして、PDSCH生成部207は、取得したデータを符号化及び変調して、再送データを含むPDSCHの信号を生成する。PDSCH生成部207は、再送データを含むPDSCHの信号を送信信号として無線送信部200bへ出力する。 Also, when instructed by the retransmission control unit 204 to retransmit retransmission data, the PDSCH generation unit 207 acquires data to be retransmitted from among the data stored in the retransmission buffer 208. Then, the PDSCH generation unit 207 encodes and modulates the acquired data to generate a PDSCH signal including retransmission data. The PDSCH generation unit 207 outputs the signal of PDSCH including the retransmission data as a transmission signal to the radio transmission unit 200b.
 また、PDSCH生成部207は、再送制御部204による制御に従って、PDSCHの信号の出力を停止する。 Further, the PDSCH generation unit 207 stops the output of the PDSCH signal according to the control of the retransmission control unit 204.
 再送用バッファ208は、PDSCH生成部207から出力されるPDSCHの信号の一時的な記憶領域である。PDSCH生成部207から出力されるPDSCHの信号が新規データを含むPDSCHの信号である場合、再送用バッファ208は、過去に記憶されたPDSCHの信号を破棄し、現在のPDSCHの信号を記憶する。また、PDSCH生成部207から出力されるPDSCHの信号が再送データを含むPDSCHの信号である場合、又は、PDSCH生成部207からのPDSCHの信号の出力が停止された場合、過去に記憶されたPDSCHの信号を継続的に保持する。 The retransmission buffer 208 is a temporary storage area of the PDSCH signal output from the PDSCH generation unit 207. When the PDSCH signal output from the PDSCH generation unit 207 is a PDSCH signal including new data, the retransmission buffer 208 discards the PDSCH signal stored in the past, and stores the current PDSCH signal. In addition, when the PDSCH signal output from the PDSCH generation unit 207 is a PDSCH signal including retransmission data, or when the output of the PDSCH signal from the PDSCH generation unit 207 is stopped, the PDSCH stored in the past Keep the signal of
 無線送信部200bは、プロセッサ200aから出力される送信信号、つまり、新規データを含むPDSCHの信号又は再送データを含むPDSCHの信号に対して、例えばD/A変換及びアップコンバートなどの無線送信処理を施す。そして、無線送信部200bは、アンテナを介して送信信号を送信する。 The wireless transmission unit 200b performs, for example, wireless transmission processing such as D / A conversion and upconversion on the transmission signal output from the processor 200a, that is, the signal of PDSCH including new data or the signal of PDSCH including retransmission data. Apply. Then, the wireless transmission unit 200b transmits a transmission signal via the antenna.
 無線受信部200cは、アンテナを介して信号を受信し、受信信号に対して、例えばダウンコンバート及びA/D変換などの無線受信処理を施す。そして、無線受信部200cは、受信信号をeMBBデータ復号部201及びURLLCデータ復号部202へ出力する。 The wireless reception unit 200c receives a signal via an antenna, and performs wireless reception processing such as down conversion and A / D conversion on the received signal. Then, the wireless reception unit 200 c outputs the received signal to the eMBB data decoding unit 201 and the URLLC data decoding unit 202.
 次に、上記のように構成された無線通信システムにおける無線通信方法について、図6を参照しながら説明する。図6は、実施例1に係る無線通信方法の一例を示すシーケンス図である。 Next, a wireless communication method in the wireless communication system configured as described above will be described with reference to FIG. FIG. 6 is a sequence diagram illustrating an example of a wireless communication method according to the first embodiment.
 基地局装置200は、新規データを含むPDSCHの信号を下り回線を用いて送信する(ステップS101)。端末装置100によるURLLCデータの送信が発生していない間、端末装置100は、下り回線におけるデータの受信(復号)の成否を示すACK/NACKをeMBBデータとして含むeMBB送信信号を送信する。そして、基地局装置200は、ACK/NACKに応じて新規データ又は再送データを送信する。 The base station apparatus 200 transmits a signal of PDSCH including new data using the downlink (step S101). While transmission of URLLC data by the terminal device 100 has not occurred, the terminal device 100 transmits an eMBB transmission signal including ACK / NACK as eMBB data indicating success or failure of reception (decoding) of data in the downlink. Then, the base station apparatus 200 transmits new data or retransmission data according to ACK / NACK.
 そして、端末装置100においてURLLCデータが発生すると(ステップS102)、端末装置100は、eMBB送信信号及びURLLC送信信号に送信電力を割り当てる(ステップS103)。URLLCデータは、ACK/NACK等のeMBBデータよりも優先度が高いため、端末装置100は、URLLCデータを含む上り信号、つまり、URLLC送信信号に優先的に送信電力を割り当てる。このため、eMBB送信信号に割り当てられる送信電力が基地局装置200においてeMBBデータを正しく受信(復号)するための所定レベルに達しない場合が想定される。 Then, when URLLC data is generated in the terminal device 100 (step S102), the terminal device 100 allocates transmission power to the eMBB transmission signal and the URLLC transmission signal (step S103). Since the URLLC data has higher priority than the eMBB data such as ACK / NACK, the terminal device 100 preferentially allocates the transmission power to the uplink signal including the URLLC data, that is, the URLLC transmission signal. Therefore, it is assumed that the transmission power allocated to the eMBB transmission signal does not reach a predetermined level for correctly receiving (decoding) the eMBB data in the base station apparatus 200.
 この場合、端末装置100は、ACK/NACKをeMBBデータとして含むeMBB送信信号の送信を停止する(ステップS104)。そして、端末装置100は、eMBBデータのうち、下り回線におけるデータの受信に成功した旨を示すeMBBデータであるACKを端末装置100内のバッファに格納する(ステップS105)。そして、端末装置100は、ACKが端末装置100内のバッファに格納された旨を報告するBSRをURLLC送信信号に挿入する(ステップS106)。そして、端末装置100は、当該BSRをURLLC送信信号を用いて送信する(ステップS107)。 In this case, the terminal device 100 stops transmission of an eMBB transmission signal including ACK / NACK as eMBB data (step S104). Then, the terminal device 100 stores an ACK, which is eMBB data indicating that reception of data on the downlink has succeeded among the eMBB data, in a buffer in the terminal device 100 (step S105). Then, the terminal device 100 inserts, into the URLLC transmission signal, a BSR that reports that the ACK has been stored in the buffer in the terminal device 100 (step S106). And the terminal device 100 transmits the said BSR using a URLLC transmission signal (step S107).
 基地局装置200は、端末装置100から送信されたBSRを受信すると、BSRに従って下り回線におけるデータに関する再送制御を保留する(ステップS108)。そして、基地局装置200は、端末装置100に対する再送制御が保留されている旨を示す「保留情報」をDCIとして含むPDCCHの信号を下り回線を用いて送信する(ステップS109)。 When the base station apparatus 200 receives the BSR transmitted from the terminal apparatus 100, the base station apparatus 200 suspends retransmission control for data on the downlink according to the BSR (step S108). Then, the base station apparatus 200 transmits, using a downlink, a PDCCH signal including, as DCI, “pending information” indicating that retransmission control to the terminal apparatus 100 is suspended (step S109).
 端末装置100は、「保留情報」をDCIとして含むPDCCHの信号を受信すると、「保留情報」に従って、ACKをバッファから読み出し(ステップS110)、ACKを含む上り信号を送信する(ステップS111)。 When receiving the signal of the PDCCH including “pending information” as DCI, the terminal apparatus 100 reads ACK from the buffer according to “pending information” (step S110), and transmits an uplink signal including ACK (step S111).
 基地局装置200は、ACKを含む上り信号を受信すると、端末装置100に対する再送制御を再開する(ステップS112)。図6の例では、基地局装置200は、ACKに応じて、再送用バッファ208において過去に記憶されたPDSCHの信号を破棄し、新規データを含むPDSCHの信号を下り回線を用いて送信する。 When receiving the uplink signal including the ACK, the base station apparatus 200 resumes retransmission control for the terminal apparatus 100 (step S112). In the example of FIG. 6, in response to the ACK, the base station apparatus 200 discards the PDSCH signal stored in the past in the retransmission buffer 208, and transmits the PDSCH signal including new data using the downlink.
 次に、端末装置100におけるACKバッファリング動作について、図7を参照しながら説明する。図7は、実施例1に係るACKバッファリング動作の一例を示すフローチャートである。 Next, an ACK buffering operation in the terminal device 100 will be described with reference to FIG. FIG. 7 is a flowchart illustrating an example of the ACK buffering operation according to the first embodiment.
 端末装置100のバッファ管理部104は、バッファリング制御信号が「Enable」であり且つ再送保留信号が「Disable」である場合に(ステップS121Yes且つステップS122No)、ACKをバッファ121に格納する(ステップS123)。このとき、バッファ管理部104は、選択部122による選択を中止する。これにより、選択部122からeMBB送信信号生成部105へACK/NACKがeMBBデータとして出力されなくなる。 When the buffering control signal is “Enable” and the retransmission hold signal is “Disable” (Step S121 Yes and Step S122 No), the buffer management unit 104 of the terminal device 100 stores the ACK in the buffer 121 (Step S123). ). At this time, the buffer management unit 104 cancels the selection by the selection unit 122. As a result, ACK / NACK is not output as eMBB data from the selection unit 122 to the eMBB transmission signal generation unit 105.
 また、バッファ制御部123は、バッファリング制御信号が「Enable」であり且つ再送保留信号が「Enable」である場合に(ステップS121Yes且つステップS122Yes)、バッファ121に前回格納されたACKの読み出しを中止する(ステップS124)。このとき、バッファ管理部104は、選択部122による選択を中止する。これにより、選択部122からeMBB送信信号生成部105へACK/NACKがeMBBデータとして出力されなくなる。 In addition, when the buffering control signal is “Enable” and the retransmission hold signal is “Enable” (Step S121 Yes and Step S122 Yes), the buffer control unit 123 stops reading the ACK previously stored in the buffer 121. (Step S124). At this time, the buffer management unit 104 cancels the selection by the selection unit 122. As a result, ACK / NACK is not output as eMBB data from the selection unit 122 to the eMBB transmission signal generation unit 105.
 また、バッファ制御部123は、バッファリング制御信号が「Disable」であり且つ再送保留信号が「Enable」である場合に(ステップS121No且つステップS125Yes)、バッファ121からACKを読み出す(ステップS126)。このとき、バッファ制御部123は、バッファ121から読み出されたACKを選択部122に選択させる。これにより、バッファ121から読み出されたACKがeMBB送信信号生成部105へ出力され、eMBB送信信号生成部105においてACKをeMBBデータとして含むeMBB送信信号が生成される。 In addition, when the buffering control signal is “Disable” and the retransmission hold signal is “Enable” (Step S121 No and Step S125 Yes), the buffer control unit 123 reads ACK from the buffer 121 (Step S126). At this time, the buffer control unit 123 causes the selection unit 122 to select the ACK read from the buffer 121. Thus, the ACK read from the buffer 121 is output to the eMBB transmission signal generation unit 105, and the eMBB transmission signal generation unit 105 generates an eMBB transmission signal including the ACK as eMBB data.
 また、バッファ制御部123は、バッファリング制御信号が「Disable」であり且つ再送保留信号が「Disable」である場合に(ステップS121No且つステップS125No)、ACK/NACK生成部111からのACK/NACKを選択部122に選択させる。これにより、ACK/NACK生成部111からのACK/NACKがeMBB送信信号生成部105へ出力される(ステップS127)。 Also, when the buffering control signal is “Disable” and the retransmission hold signal is “Disable” (Step S121 No and Step S125 No), the buffer control unit 123 receives ACK / NACK from the ACK / NACK generation unit 111. The selection unit 122 is made to select. Thus, the ACK / NACK from the ACK / NACK generation unit 111 is output to the eMBB transmission signal generation unit 105 (step S127).
 次に、基地局装置200における再送制御動作について、図8を参照しながら説明する。図8は、実施例1に係る再送制御動作の一例を示すフローチャートである。 Next, the retransmission control operation in base station apparatus 200 will be described with reference to FIG. FIG. 8 is a flowchart of an example of the retransmission control operation according to the first embodiment.
 基地局装置200の再送制御部204は、BSRに「true」がセットされている場合、すなわち、ACKが端末装置100のバッファに格納されている場合(ステップS131Yes)、eMBBデータの復号結果に関わらず、端末装置100に対する再送制御を保留する(ステップS132)。すなわち、再送制御部204は、端末装置100に対する再送制御が保留されている旨を示す「保留情報」をDCIとしてPDCCH生成部205へ出力し、PDSCH生成部207にPDSCHの信号の出力の停止を指示する。これにより、PDSCH生成部207からのPDSCHの信号の出力が停止される。さらに、PDCCH生成部205において「保留情報」を含むPDCCHの信号が生成され、無線送信部200bを介して当該PDCCHの信号が送信信号として送信される。「保留情報」を含むPDCCHの信号を受信した端末装置100は、「保留情報」に従って、ACKをバッファから読み出し、ACKを含む上り信号を送信する。 If "true" is set in BSR, that is, if ACK is stored in the buffer of the terminal apparatus 100 (step S131 Yes), the retransmission control unit 204 of the base station apparatus 200 is not concerned with the decoding result of eMBB data. Then, the retransmission control for the terminal device 100 is suspended (step S132). That is, retransmission control section 204 outputs “pending information” indicating that retransmission control to terminal apparatus 100 is suspended as DCI to PDCCH generating section 205, and causes PDSCH generating section 207 to stop output of PDSCH signal. To direct. As a result, the output of the PDSCH signal from the PDSCH generation unit 207 is stopped. Further, the PDCCH generation unit 205 generates a signal of PDCCH including “pending information”, and the signal of the PDCCH is transmitted as a transmission signal through the wireless transmission unit 200 b. The terminal device 100 that has received the signal of the PDCCH including the "pending information" reads the ACK from the buffer according to the "pending information", and transmits an uplink signal including the ACK.
 また、再送制御部204は、BSRに「false」がセットされている場合、すなわち、ACKが端末装置100のバッファに格納されていない場合(ステップS131No)、eMBBデータの復号結果に応じた再送制御を実行する。すなわち、再送制御部204は、eMBBデータの復号結果がACKである場合(ステップS133Yes)、下り回線に送信されるデータが新規データである旨を示す「新規情報」をDCIとしてPDCCH生成部205へ出力し、新規データをPDSCH生成部207へ出力する。これにより、PDSCH生成部207において新規データを含むPDSCHの信号が生成され、無線送信部200bを介して当該PDSCHの信号が送信信号として送信される(ステップS134)。さらに、PDCCH生成部205において「新規情報」を含むPDCCHの信号が生成され、無線送信部200bを介して当該PDCCHの信号が送信信号として送信される。 In addition, when “false” is set in BSR, that is, when ACK is not stored in the buffer of terminal apparatus 100 (step S131 No), retransmission control section 204 performs retransmission control according to the decoding result of eMBB data. Run. That is, when the decoding result of the eMBB data is ACK (Yes at step S133), retransmission control section 204 uses PDCI as “new information” indicating that the data transmitted to the downlink is new data to PDCCH generation section 205. It outputs the new data to the PDSCH generation unit 207. As a result, a PDSCH signal including new data is generated in the PDSCH generation unit 207, and the signal of the PDSCH is transmitted as a transmission signal through the wireless transmission unit 200b (step S134). Furthermore, the PDCCH generation unit 205 generates a signal of PDCCH including “new information”, and the signal of the PDCCH is transmitted as a transmission signal through the wireless transmission unit 200 b.
 一方、再送制御部204は、eMBBデータの復号結果がNACK又はDTXである場合(ステップS133No)、下り回線に送信されるデータが再送データである旨を示す「再送情報」をDCIとしてPDCCH生成部205へ出力し、再送データの再送をPDSCH生成部207へ指示する。これにより、PDSCH生成部207において再送データを含むPDSCHの信号が生成され、無線送信部200bを介して当該PDSCHの信号が送信信号として送信される(ステップS135)。さらに、PDCCH生成部205において「再送情報」を含むPDCCHの信号が生成され、無線送信部200bを介して当該PDCCHの信号が送信信号として送信される。 On the other hand, when the decoding result of the eMBB data is NACK or DTX (No at step S133), the retransmission control unit 204 sets “retransmission information” indicating that the data transmitted to the downlink is retransmission data as DCI to the PDCCH generation unit It outputs to 205 and instructs the PDSCH generation unit 207 to retransmit retransmission data. As a result, a PDSCH signal including retransmission data is generated in the PDSCH generation unit 207, and the signal of the PDSCH is transmitted as a transmission signal via the wireless transmission unit 200b (step S135). Further, the PDCCH generation unit 205 generates a signal of PDCCH including “retransmission information”, and the signal of the PDCCH is transmitted as a transmission signal through the wireless transmission unit 200 b.
 以上のように、本実施例によれば、上り回線のeMBBデータ及びURLCCデータが同時に発生する状況下でeMBB送信信号の送信電力が所定レベルに達しないと、端末装置は、eMBB送信信号を停止し、eMBBデータであるACKをバッファに格納する。そして、端末装置は、ACKが端末装置のバッファに格納された旨を報告するBSRをURLCC送信信号を用いて送信し、基地局装置に下り回線におけるデータに関する再送制御を保留させる。これにより、eMBBデータに割り当てられる送信電力が不足する場合に、基地局装置における再送制御を保留させることができる。結果として、下り回線において本来発生するはずのない無駄な再送を抑制することができる。 As described above, according to this embodiment, the terminal device stops the eMBB transmission signal when the transmission power of the eMBB transmission signal does not reach a predetermined level under the condition where uplink eMBB data and URLCC data occur simultaneously. And stores ACK, which is eMBB data, in the buffer. Then, the terminal apparatus transmits, using the URLCC transmission signal, a BSR that reports that the ACK has been stored in the buffer of the terminal apparatus, and causes the base station apparatus to suspend retransmission control for data in the downlink. Thereby, when the transmission power allocated to eMBB data runs short, retransmission control in the base station apparatus can be suspended. As a result, it is possible to suppress unnecessary retransmissions that would otherwise occur in the downlink.
 なお、上記実施例1では、eMBB送信信号に割り当てられる送信電力を用いてeMBB送信信号の送信停止を判断したが、さらに、eMBB送信信号に含まれる複数のACK/NACKを考慮してeMBB送信信号の送信停止を判断しても良い。すなわち、端末装置100が複数のACK/NACKを一括で送信する場合を想定する。この場合、上記の数式(4)を用いて、送信電力PPUSCH,c,eMBB(i)が所定レベルに達していないと判定された場合、送信制御部103は、eMBB送信信号に含まれる複数のACK/NACKが全てNACKであるか否かを判定する。そして、送信制御部103は、eMBB送信信号に含まれる複数のACK/NACKが全てNACKである場合、eMBBデータを含む上り信号(つまり、eMBB送信信号)の出力を停止させるDTX制御信号をeMBB送信信号生成部105へ出力する。そして、送信制御部103は、ACKをバッファに格納しない旨を示す「Disable」をバッファリング制御信号にセットし、当該バッファリング制御信号をバッファ管理部104へ出力する。さらに、送信制御部103は、ACKがバッファに格納されない旨を報告するBSR、すなわち、「false」がセットされたBSRをBSR挿入部107へ出力する。 In the first embodiment, the transmission stop of the eMBB transmission signal is determined using the transmission power allocated to the eMBB transmission signal, but the eMBB transmission signal is further considered in consideration of a plurality of ACKs / NACKs included in the eMBB transmission signal. You may decide to stop sending. That is, it is assumed that the terminal device 100 transmits a plurality of ACKs / NACKs collectively. In this case, when it is determined that the transmission power P PUSCH, c, eMBB (i) has not reached the predetermined level, using the above equation (4), the transmission control unit 103 determines a plurality of eMBB transmission signals. It is determined whether or not all the ACKs / NACKs are NACKs. Then, when the plurality of ACKs / NACKs included in the eMBB transmission signal are all NACKs, the transmission control unit 103 eMBB transmits a DTX control signal for stopping the output of the uplink signal (that is, the eMBB transmission signal) including the eMBB data. It is output to the signal generation unit 105. Then, the transmission control unit 103 sets “Disable”, which indicates that the ACK is not stored in the buffer, in the buffering control signal, and outputs the buffering control signal to the buffer management unit 104. Furthermore, the transmission control unit 103 outputs, to the BSR insertion unit 107, a BSR reporting that ACK is not stored in the buffer, that is, a BSR in which "false" is set.
 また、送信制御部103は、eMBB送信信号に含まれる複数のACK/NACKが全てNACKでない場合、すなわち、eMBB送信信号に少なくとも1つのACKが含まれる場合、以下の処理を行う。すなわち、送信制御部103は、eMBBデータを含む上り信号(つまり、eMBB送信信号)の出力を停止させるDTX制御信号をeMBB送信信号生成部105へ出力する。そして、送信制御部103は、ACKをバッファに格納する旨を示す「Enable」をバッファリング制御信号にセットし、当該バッファリング制御信号をバッファ管理部104へ出力する。さらに、送信制御部103は、ACKがバッファに格納される旨を報告するBSR、すなわち、「true」がセットされたBSRをBSR挿入部107へ出力する。 Further, the transmission control unit 103 performs the following processing when all of the plurality of ACKs / NACKs included in the eMBB transmission signal are not NACKs, that is, when at least one ACK is included in the eMBB transmission signal. That is, the transmission control unit 103 outputs, to the eMBB transmission signal generation unit 105, a DTX control signal for stopping the output of the uplink signal (that is, the eMBB transmission signal) including the eMBB data. Then, the transmission control unit 103 sets “Enable” indicating that the ACK is to be stored in the buffer in the buffering control signal, and outputs the buffering control signal to the buffer management unit 104. Furthermore, the transmission control unit 103 outputs, to the BSR insertion unit 107, a BSR that reports that the ACK is stored in the buffer, that is, a BSR in which "true" is set.
 一方、送信制御部103は、上記の数式(4)を用いて、送信電力PPUSCH,c,eMBB(i)が所定レベルに達していると判定された場合、上記のDTX制御信号を出力しない。そして、送信制御部103は、ACKをバッファに格納しない旨を示す「Disable」をバッファリング制御信号にセットし、当該バッファリング制御信号をバッファ管理部104へ出力する。さらに、送信制御部103は、ACKがバッファに格納されていない旨を報告するBSR、すなわち、「false」がセットされたBSRをBSR挿入部107へ出力する。 On the other hand, transmission control section 103 does not output the above DTX control signal when it is determined that transmission power P PUSCH, c, eMBB (i) has reached a predetermined level, using equation (4) above. . Then, the transmission control unit 103 sets “Disable”, which indicates that the ACK is not stored in the buffer, in the buffering control signal, and outputs the buffering control signal to the buffer management unit 104. Furthermore, the transmission control unit 103 outputs, to the BSR insertion unit 107, a BSR that reports that the ACK is not stored in the buffer, that is, a BSR in which "false" is set.
 実施例2の特徴は、eMBB上り回線及びURLLC上り回線が設定された場合に、ACKが端末装置のバッファに格納される旨を予告して基地局装置に下り回線におけるデータに関する再送制御を保留させる点である。 The feature of the second embodiment is that, when the eMBB uplink and the URLLC uplink are set, the base station apparatus withholds the retransmission control for the data in downlink according to an advance notice that the ACK is stored in the buffer of the terminal apparatus. It is a point.
 実施例2に係る無線通信システムは、実施例1に係る無線通信システム(図1)と同様であるため、その説明を省略する。図9は、実施例2に係る端末装置100の構成例を示すブロック図である。図9において、図2と同じ部分には同じ符号を付し、その説明を省略する。図9に示す端末装置100は、図2のBSR挿入部107に代えて、上り回線設定部131及びバッファリング予告(BP:Buffering Prediction)生成部132を有する。 The wireless communication system according to the second embodiment is the same as the wireless communication system according to the first embodiment (FIG. 1), and thus the description thereof will be omitted. FIG. 9 is a block diagram illustrating a configuration example of the terminal device 100 according to the second embodiment. In FIG. 9, the same parts as those in FIG. 2 are denoted by the same reference numerals, and the description thereof is omitted. The terminal device 100 illustrated in FIG. 9 includes an uplink setting unit 131 and a buffering prediction (BP) generation unit 132 in place of the BSR insertion unit 107 in FIG. 2.
 上り回線設定部131は、eMBB送信信号を送信するためのeMBB上り回線及びURLLC送信信号を送信するためのURLLC上り回線を設定する。上り回線設定部131は、基地局装置200と協働して、例えばRRC(Radio Resource Control)シグナリングなどの上位レイヤのシグナリングによってeMBB上り回線及びURLLC上り回線を設定する。 The uplink setting unit 131 sets an eMBB uplink for transmitting the eMBB transmission signal and a URLLC uplink for transmitting the URLLC transmission signal. The uplink setting unit 131 sets up the eMBB uplink and the URLLC uplink by, for example, upper layer signaling such as RRC (Radio Resource Control) signaling in cooperation with the base station apparatus 200.
 BP生成部132は、上り回線設定部131によってeMBB上り回線及びURLLC上り回線が設定される場合に、ACKが端末装置100のバッファに格納される旨を予告するBPを生成する。すなわち、BP生成部132は、eMBB上り回線及びURLLC上り回線の両方が設定される場合に、ACKが端末装置100のバッファに格納される旨を示す「true」がセットされたBPを生成する。なお、BP生成部132は、eMBB上り回線のみ又はURLLC上り回線のみが設定された場合に、「false」がセットされたBPを生成する。そして、BP生成部132は、生成したBPをeMBB送信信号生成部105又はURLLC送信信号生成部106へ出力する。これにより、例えばRRCシグナリングが実行される場合に、eMBB送信信号生成部105又はURLLC送信信号生成部106により生成されるシグナリングメッセージにBPが挿入され、BPが無線送信部100bを介して送信される。 The BP generation unit 132 generates a BP notifying that the ACK is to be stored in the buffer of the terminal device 100 when the uplink setting unit 131 sets the eMBB uplink and the URLLC uplink. That is, when both the eMBB uplink and the URLLC uplink are set, the BP generation unit 132 generates a BP in which “true” indicating that ACK is stored in the buffer of the terminal device 100 is set. When only the eMBB uplink or only the URLLC uplink is set, the BP generation unit 132 generates a BP in which “false” is set. Then, the BP generation unit 132 outputs the generated BP to the eMBB transmission signal generation unit 105 or the URLLC transmission signal generation unit 106. Thereby, for example, when RRC signaling is performed, BP is inserted into the signaling message generated by eMBB transmission signal generation unit 105 or URLLC transmission signal generation unit 106, and BP is transmitted via wireless transmission unit 100b. .
 図10は、実施例2に係る基地局装置200の構成例を示すブロック図である。図10において、図5と同じ部分には同じ符号を付し、その説明を省略する。図10に示す基地局装置200は、図5のBSR抽出部203に代えて、上り回線設定部211及び再送制御部212を有する。 FIG. 10 is a block diagram illustrating a configuration example of a base station apparatus 200 according to a second embodiment. In FIG. 10, the same parts as those in FIG. The base station apparatus 200 shown in FIG. 10 has an uplink setting section 211 and a retransmission control section 212 instead of the BSR extraction section 203 of FIG.
 上り回線設定部211は、端末装置100と協働して、例えばRRCシグナリングなどの上位レイヤのシグナリングによってeMBB上り回線及びURLLC上り回線を設定する。このとき、上り回線設定部211は、eMBBデータ復号部201及びURLLCデータ復号部202により復号されるシグナリングメッセージからBPを抽出し、抽出したBPを再送制御部212へ出力する。 The uplink setting unit 211 sets up the eMBB uplink and the URLLC uplink by, for example, upper layer signaling such as RRC signaling in cooperation with the terminal device 100. At this time, uplink setting section 211 extracts a BP from the signaling message decoded by eMBB data decoding section 201 and URLLC data decoding section 202, and outputs the extracted BP to retransmission control section 212.
 再送制御部212は、eMBBデータ復号部201からeMBBデータの復号(受信)結果の入力を受ける。再送制御部212は、上り回線設定部211からBPの入力を受ける。再送制御部212は、BPとeMBBデータの復号(受信)結果とに基づいて、端末装置100に対する再送制御を保留する。 The retransmission control unit 212 receives an input of the decoding (reception) result of the eMBB data from the eMBB data decoding unit 201. Retransmission control unit 212 receives an input of BP from uplink setting unit 211. The retransmission control unit 212 suspends retransmission control for the terminal device 100 based on the BP and the result of decoding (reception) of eMBB data.
 具体的には、再送制御部212は、BPに「true」がセットされている場合、すなわち、ACKが端末装置100のバッファに格納される旨が予告された場合、以下の処理を行う。再送制御部212は、eMBBデータの復号結果がACKである場合に、下り回線に送信されるデータが新規データである旨を示す「新規情報」をDCIとしてPDCCH生成部205へ出力し、新規データをPDSCH生成部207へ出力する。また、再送制御部212は、eMBBデータの復号結果がNACKである場合に、下り回線に送信されるデータが再送データである旨を示す「再送情報」をDCIとしてPDCCH生成部205へ出力し、再送データの再送をPDSCH生成部207へ指示する。 Specifically, the retransmission control unit 212 performs the following processing when “true” is set to BP, that is, when it is notified that ACK is to be stored in the buffer of the terminal device 100. When the decoding result of the eMBB data is ACK, the retransmission control unit 212 outputs “new information” indicating that the data to be transmitted to the downlink is new data as DCI to the PDCCH generation unit 205, and the new data Are output to the PDSCH generation unit 207. Also, when the decoding result of the eMBB data is NACK, the retransmission control unit 212 outputs “retransmission information” indicating that the data transmitted to the downlink is retransmission data as DCI to the PDCCH generation unit 205, It instructs PDSCH generation section 207 to retransmit retransmission data.
 また、再送制御部212は、eMBBデータの復号結果がDTXである場合に、端末装置100に対する再送制御を保留する。すなわち、再送制御部212は、端末装置100に対する再送制御が保留されている旨を示す「保留情報」をDCIとしてPDCCH生成部205へ出力し、PDSCH生成部207にPDSCHの信号の出力の停止を指示する。 Also, when the decoding result of the eMBB data is DTX, the retransmission control unit 212 suspends the retransmission control for the terminal device 100. That is, retransmission control section 212 outputs “pending information” indicating that retransmission control to terminal apparatus 100 is suspended as DCI to PDCCH generating section 205, and causes PDSCH generating section 207 to stop output of the PDSCH signal. To direct.
 一方、再送制御部212は、BPに「false」がセットされている場合、すなわち、ACKが端末装置100のバッファに格納される旨が予告されない場合、以下の処理を行う。再送制御部212は、eMBBデータの復号結果がACKである場合に、下り回線に送信されるデータが新規データである旨を示す「新規情報」をDCIとしてPDCCH生成部205へ出力し、新規データをPDSCH生成部207へ出力する。また、再送制御部212は、eMBBデータの復号結果がNACKである場合に、下り回線に送信されるデータが再送データである旨を示す「再送情報」をDCIとしてPDCCH生成部205へ出力し、再送データの再送をPDSCH生成部207へ指示する。 On the other hand, when “false” is set to BP, that is, when it is not notified that ACK will be stored in the buffer of the terminal device 100, the retransmission control unit 212 performs the following processing. When the decoding result of the eMBB data is ACK, the retransmission control unit 212 outputs “new information” indicating that the data to be transmitted to the downlink is new data as DCI to the PDCCH generation unit 205, and the new data Are output to the PDSCH generation unit 207. Also, when the decoding result of the eMBB data is NACK, the retransmission control unit 212 outputs “retransmission information” indicating that the data transmitted to the downlink is retransmission data as DCI to the PDCCH generation unit 205, It instructs PDSCH generation section 207 to retransmit retransmission data.
 次に、上記のように構成された無線通信システムにおける無線通信方法について、図11を参照しながら説明する。図11は、実施例2に係る無線通信方法の一例を示すシーケンス図である。 Next, a wireless communication method in the wireless communication system configured as described above will be described with reference to FIG. FIG. 11 is a sequence diagram illustrating an example of a wireless communication method according to the second embodiment.
 端末装置100及び基地局装置200は、例えばRRCシグナリングなどの上位レイヤのシグナリングによってeMBB上り回線及びURLLC上り回線を設定する(ステップS141)。eMBB上り回線及びURLLC上り回線の両方が設定されるため、端末装置100は、ACKが端末装置100のバッファに格納される旨を予告するBPを生成し、生成したBPをシグナリングメッセージを用いて送信する(ステップS142)。シグナリングメッセージを受信した基地局装置200は、シグナリングメッセージからBPを抽出する。 The terminal device 100 and the base station device 200 set up the eMBB uplink and the URLLC uplink, for example, by upper layer signaling such as RRC signaling (step S141). Since both the eMBB uplink and the URLLC uplink are set, the terminal device 100 generates a BP notifying that ACK is stored in the buffer of the terminal device 100, and transmits the generated BP using a signaling message. (Step S142). The base station apparatus 200 that has received the signaling message extracts the BP from the signaling message.
 基地局装置200は、新規データを含むPDSCHの信号を下り回線を用いて送信する(ステップS143)。端末装置100によるURLLCデータの送信が発生していない間、端末装置100は、下り回線におけるデータの受信(復号)の成否を示すACK/NACKをeMBBデータとして含むeMBB送信信号を送信する。そして、基地局装置200は、ACK/NACKに応じて新規データ又は再送データを送信する。 The base station apparatus 200 transmits the signal of PDSCH including new data using the downlink (step S143). While transmission of URLLC data by the terminal device 100 has not occurred, the terminal device 100 transmits an eMBB transmission signal including ACK / NACK as eMBB data indicating success or failure of reception (decoding) of data in the downlink. Then, the base station apparatus 200 transmits new data or retransmission data according to ACK / NACK.
 そして、端末装置100においてURLLCデータが発生すると(ステップS144)、端末装置100は、eMBB送信信号及びURLLC送信信号に送信電力を割り当てる(ステップS145)。URLLCデータは、ACK/NACK等のeMBBデータよりも優先度が高いため、端末装置100は、URLLCデータを含む上り信号、つまり、URLLC送信信号に優先的に送信電力を割り当てる。このため、eMBB送信信号に割り当てられる送信電力が基地局装置200においてeMBBデータを正しく受信(復号)するための所定レベルに達しない場合が想定される。 Then, when the URLLC data is generated in the terminal device 100 (step S144), the terminal device 100 allocates transmission power to the eMBB transmission signal and the URLLC transmission signal (step S145). Since the URLLC data has higher priority than the eMBB data such as ACK / NACK, the terminal device 100 preferentially allocates the transmission power to the uplink signal including the URLLC data, that is, the URLLC transmission signal. Therefore, it is assumed that the transmission power allocated to the eMBB transmission signal does not reach a predetermined level for correctly receiving (decoding) the eMBB data in the base station apparatus 200.
 この場合、端末装置100は、ACK/NACKをeMBBデータとして含むeMBB送信信号の送信を停止する(ステップS146)。そして、端末装置100は、eMBBデータのうち、下り回線におけるデータの受信に成功した旨を示すeMBBデータであるACKを端末装置100内のバッファに格納する(ステップS147)。そして、端末装置100は、URLLC上り回線においてURLLC送信信号を送信する(ステップS148)。 In this case, the terminal device 100 stops transmission of an eMBB transmission signal including ACK / NACK as eMBB data (step S146). Then, the terminal device 100 stores, in the buffer in the terminal device 100, an ACK, which is eMBB data indicating that reception of data on the downlink has succeeded among the eMBB data (step S147). Then, the terminal device 100 transmits a URLLC transmission signal on the URLLC uplink (step S148).
 基地局装置200は、ACKが端末装置100のバッファに格納される旨がBPによって予告されているため、eMBBデータの復号結果がDTXである場合に、端末装置100に対する再送制御を保留する(ステップS149、150)。そして、基地局装置200は、端末装置100に対する再送制御が保留されている旨を示す「保留情報」をDCIとして含むPDCCHの信号を下り回線を用いて送信する(ステップS151)。 The base station apparatus 200 withholds retransmission control for the terminal apparatus 100 when the decoding result of the eMBB data is DTX because the BP has notified that the ACK will be stored in the buffer of the terminal apparatus 100 (DTX) (step S149, 150). Then, the base station apparatus 200 transmits, using a downlink, a PDCCH signal including, as DCI, “pending information” indicating that retransmission control for the terminal apparatus 100 is suspended (step S151).
 端末装置100は、「保留情報」をDCIとして含むPDCCHの信号を受信すると、「保留情報」に従って、ACKをバッファから読み出し(ステップS152)、ACKを含む上り信号を送信する(ステップS153)。 When receiving the signal of the PDCCH including “pending information” as DCI, the terminal apparatus 100 reads ACK from the buffer according to “pending information” (step S152), and transmits an uplink signal including ACK (step S153).
 基地局装置200は、ACKを含む上り信号を受信すると、端末装置100に対する再送制御を再開する(ステップS154)。図11の例では、基地局装置200は、ACKに応じて、再送用バッファ208において過去に記憶されたPDSCHの信号を破棄し、新規データを含むPDSCHの信号を下り回線を用いて送信する。 When receiving the uplink signal including the ACK, the base station apparatus 200 resumes the retransmission control for the terminal apparatus 100 (step S154). In the example of FIG. 11, the base station apparatus 200 discards the PDSCH signal stored in the past in the retransmission buffer 208 according to the ACK, and transmits the PDSCH signal including new data using the downlink.
 次に、基地局装置200における再送制御動作について、図12を参照しながら説明する。図12は、実施例2に係る再送制御動作の一例を示すフローチャートである。 Next, the retransmission control operation in base station apparatus 200 will be described with reference to FIG. FIG. 12 is a flowchart of an example of the retransmission control operation according to the second embodiment.
 再送制御部212は、BPに「true」がセットされている場合、すなわち、ACKが端末装置100のバッファに格納される旨が予告された場合(ステップS161Yes)、以下の処理を行う。再送制御部212は、eMBBデータの復号結果がACKである場合に(ステップS162Yes)、下り回線に送信されるデータが新規データである旨を示す「新規情報」をDCIとしてPDCCH生成部205へ出力し、新規データをPDSCH生成部207へ出力する。これにより、PDSCH生成部207において新規データを含むPDSCHの信号が生成され、無線送信部200bを介して当該PDSCHの信号が送信信号として送信される(ステップS163)。さらに、PDCCH生成部205において「新規情報」を含むPDCCHの信号が生成され、無線送信部200bを介して当該PDCCHの信号が送信信号として送信される。 The retransmission control unit 212 performs the following processing when “true” is set to BP, that is, when it is notified that ACK is stored in the buffer of the terminal device 100 (Yes at step S161). The retransmission control unit 212 outputs “new information” indicating that the data to be transmitted to the downlink is new data to the PDCCH generation unit 205 as DCI when the decoding result of the eMBB data is ACK (Yes at step S162) Outputs the new data to the PDSCH generation unit 207. As a result, a PDSCH signal including new data is generated in the PDSCH generation unit 207, and the signal of the PDSCH is transmitted as a transmission signal through the wireless transmission unit 200b (step S163). Furthermore, the PDCCH generation unit 205 generates a signal of PDCCH including “new information”, and the signal of the PDCCH is transmitted as a transmission signal through the wireless transmission unit 200 b.
 また、再送制御部212は、eMBBデータの復号結果がNACKである場合に(ステップS162No、ステップS164Yes)、下り回線に送信されるデータが再送データである旨を示す「再送情報」をDCIとしてPDCCH生成部205へ出力し、再送データの再送をPDSCH生成部207へ指示する。これにより、PDSCH生成部207において再送データを含むPDSCHの信号が生成され、無線送信部200bを介して当該PDSCHの信号が送信信号として送信される(ステップS165)。さらに、PDCCH生成部205において「再送情報」を含むPDCCHの信号が生成され、無線送信部200bを介して当該PDCCHの信号が送信信号として送信される。 Also, when the decoding result of the eMBB data is NACK (No at step S162 and step S164), the retransmission control unit 212 performs PDCCH with “retransmission information” indicating that the data transmitted to the downlink is retransmission data as DCI. It outputs to generation section 205 and instructs PDSCH generation section 207 to retransmit retransmission data. As a result, a PDSCH signal including retransmission data is generated in the PDSCH generation unit 207, and the signal of the PDSCH is transmitted as a transmission signal via the wireless transmission unit 200b (step S165). Further, the PDCCH generation unit 205 generates a signal of PDCCH including “retransmission information”, and the signal of the PDCCH is transmitted as a transmission signal through the wireless transmission unit 200 b.
 また、再送制御部212は、eMBBデータの復号結果がDTXである場合に(ステップS162No、ステップS164No)、端末装置100に対する再送制御を保留する(ステップS166)。すなわち、再送制御部212は、端末装置100に対する再送制御が保留されている旨を示す「保留情報」をDCIとしてPDCCH生成部205へ出力し、PDSCH生成部207にPDSCHの信号の出力の停止を指示する。これにより、PDSCH生成部207からのPDSCHの信号の出力が停止される。さらに、PDCCH生成部205において「保留情報」を含むPDCCHの信号が生成され、無線送信部200bを介して当該PDCCHの信号が送信信号として送信される。「保留情報」を含むPDCCHの信号を受信した端末装置100は、「保留情報」に従って、ACKをバッファから読み出し、ACKを含む上り信号を送信する。 In addition, when the decoding result of the eMBB data is DTX (No in step S162 and step S164), the retransmission control unit 212 suspends retransmission control on the terminal device 100 (step S166). That is, retransmission control section 212 outputs “pending information” indicating that retransmission control to terminal apparatus 100 is suspended as DCI to PDCCH generating section 205, and causes PDSCH generating section 207 to stop output of the PDSCH signal. To direct. As a result, the output of the PDSCH signal from the PDSCH generation unit 207 is stopped. Further, the PDCCH generation unit 205 generates a signal of PDCCH including “pending information”, and the signal of the PDCCH is transmitted as a transmission signal through the wireless transmission unit 200 b. The terminal device 100 that has received the signal of the PDCCH including the "pending information" reads the ACK from the buffer according to the "pending information", and transmits an uplink signal including the ACK.
 一方、再送制御部212は、BPに「false」がセットされている場合、すなわち、ACKが端末装置100のバッファに格納される旨が予告されない場合(ステップS161No)、以下の処理を行う。再送制御部212は、eMBBデータの復号結果がACKである場合に(ステップS167Yes)、下り回線に送信されるデータが新規データである旨を示す「新規情報」をDCIとしてPDCCH生成部205へ出力し、新規データをPDSCH生成部207へ出力する。これにより、PDSCH生成部207において新規データを含むPDSCHの信号が生成され、無線送信部200bを介して当該PDSCHの信号が送信信号として送信される(ステップS168)。さらに、PDCCH生成部205において「新規情報」を含むPDCCHの信号が生成され、無線送信部200bを介して当該PDCCHの信号が送信信号として送信される。 On the other hand, when "false" is set to BP, that is, when it is not notified that the ACK is stored in the buffer of the terminal device 100 (No at step S161), the retransmission control unit 212 performs the following processing. The retransmission control unit 212 outputs “new information” indicating that the data to be transmitted to the downlink is new data as the DCI to the PDCCH generation unit 205 when the decoding result of the eMBB data is ACK (Yes at step S167) Outputs the new data to the PDSCH generation unit 207. As a result, a PDSCH signal including new data is generated in the PDSCH generation unit 207, and the signal of the PDSCH is transmitted as a transmission signal via the wireless transmission unit 200b (step S168). Furthermore, the PDCCH generation unit 205 generates a signal of PDCCH including “new information”, and the signal of the PDCCH is transmitted as a transmission signal through the wireless transmission unit 200 b.
 また、再送制御部212は、eMBBデータの復号結果がNACKである場合に(ステップS167No)、下り回線に送信されるデータが再送データである旨を示す「再送情報」をDCIとしてPDCCH生成部205へ出力し、再送データの再送をPDSCH生成部207へ指示する。これにより、PDSCH生成部207において再送データを含むPDSCHの信号が生成され、無線送信部200bを介して当該PDSCHの信号が送信信号として送信される(ステップS169)。さらに、PDCCH生成部205において「再送情報」を含むPDCCHの信号が生成され、無線送信部200bを介して当該PDCCHの信号が送信信号として送信される。 In addition, when the decoding result of the eMBB data is NACK (No at step S167), retransmission control section 212 sets “retransmission information” indicating that the data to be transmitted to the downlink is retransmission data as DCI to PDCCH generation section 205. And the PDSCH generation unit 207 to retransmit retransmission data. As a result, a PDSCH signal including retransmission data is generated in the PDSCH generation unit 207, and the signal of the PDSCH is transmitted as a transmission signal via the wireless transmission unit 200b (step S169). Further, the PDCCH generation unit 205 generates a signal of PDCCH including “retransmission information”, and the signal of the PDCCH is transmitted as a transmission signal through the wireless transmission unit 200 b.
 以上のように、本実施例によれば、端末装置は、eMBB上り回線及びURLLC上り回線が設定される際に、ACKが端末装置のバッファに格納される旨を予告するBPを送信し、基地局装置は、BPとeMBBデータの復号結果とを基に、再送制御を保留する。このため、端末装置が一度BPを送信するだけで、基地局装置における再送制御を保留させることができ、実施例1のようにACKが端末装置のバッファに格納される度に端末装置がBSRを送信することがなくなる。結果として、BSRの送信に伴う処理負荷を削減することができる。 As described above, according to the present embodiment, when the eMBB uplink and the URLLC uplink are set up, the terminal transmits a BP notifying that ACK is stored in the buffer of the terminal, and the base The station apparatus suspends retransmission control based on the BP and the decoding result of eMBB data. Therefore, the retransmission control in the base station apparatus can be put on hold simply by transmitting the BP once by the terminal apparatus, and the terminal apparatus performs a BSR every time an ACK is stored in the buffer of the terminal apparatus as in the first embodiment. It will not be sent. As a result, the processing load associated with BSR transmission can be reduced.
100 端末装置
101 パスロス測定部
102 送信電力割当部
103 送信制御部
104 バッファ管理部
105 eMBB送信信号生成部
106 URLLC送信信号生成部
107 BSR挿入部
108 PDCCH復号部
109 DCI判定部
110 PDSCH復号部
111 ACK/NACK生成部
121 バッファ
122 選択部
123 バッファ制御部
131、211 上り回線設定部
132 BP生成部
200 基地局装置
201 eMBBデータ復号部
202 URLLCデータ復号部
203 BSR抽出部
204、212 再送制御部
205 PDCCH生成部
206 電力情報管理部
207 PDSCH生成部
208 再送用バッファ
100 terminal device 101 path loss measurement unit 102 transmission power allocation unit 103 transmission control unit 104 buffer management unit 105 eMBB transmission signal generation unit 106 URLLC transmission signal generation unit 107 BSR insertion unit 108 PDCCH decoding unit 109 DCI determination unit 110 PDSCH decoding unit 111 ACK / NACK generation unit 121 buffer 122 selection unit 123 buffer control unit 131, 211 uplink control unit 132 BP generation unit 200 base station apparatus 201 eMBB data decoding unit 202 URLLC data decoding unit 203 BSR extraction unit 204, 212 retransmission control unit 205 PDCCH Generation unit 206 Power information management unit 207 PDSCH generation unit 208 Retransmission buffer

Claims (7)

  1.  第1のデータを含む上り信号及び前記第1のデータよりも優先度が高い第2のデータを含む上り信号に送信電力を割り当てる割当部と、
     前記第1のデータを含む上り信号に割り当てられる送信電力が所定レベルに達しない場合に、前記第1のデータを含む上り信号の送信を停止する送信制御部と、
     前記送信が停止された場合に、下り回線におけるデータの受信に成功した旨を示す前記第1のデータであるACKをバッファに格納するバッファ管理部と、
     前記ACKが前記バッファに格納された旨を報告して前記データに関する再送制御を保留させるバッファ状態報告を前記第2のデータを含む上り信号を用いて送信する送信部と
     を有することを特徴とする端末装置。
    An assignment unit that assigns transmission power to an uplink signal including first data and an uplink signal including second data having a higher priority than the first data;
    A transmission control unit that stops transmission of an uplink signal including the first data when transmission power allocated to the uplink signal including the first data does not reach a predetermined level;
    A buffer management unit that stores, in a buffer, an ACK, which is the first data indicating that data reception on the downlink has succeeded, when the transmission is stopped;
    And a transmitter configured to transmit, using an uplink signal including the second data, a buffer status report that reports that the ACK has been stored in the buffer and suspends retransmission control for the data. Terminal equipment.
  2.  前記バッファ状態報告に従って前記データに関する再送制御を保留する基地局装置から、前記再送制御が保留されている旨を示す保留情報を受信する受信部をさらに有し、
     前記バッファ管理部は、
     前記第1のデータを含む上り信号に割り当てられる送信電力が所定レベルに達し且つ前記保留情報が受信された場合に、前記バッファからACKを読み出し、
     前記送信部は、
     前記バッファから読み出されたACKを含む上り信号を送信することにより、前記基地局装置に前記再送制御を再開させることを特徴とする請求項1に記載の端末装置。
    The base station further includes a receiving unit for receiving suspension information indicating that the retransmission control is suspended from the base station apparatus which suspends retransmission control for the data according to the buffer status report;
    The buffer management unit
    When the transmission power allocated to the uplink signal including the first data reaches a predetermined level and the hold information is received, the ACK is read from the buffer;
    The transmission unit is
    The terminal apparatus according to claim 1, wherein the base station apparatus is caused to resume the retransmission control by transmitting an uplink signal including an ACK read from the buffer.
  3.  下り回線におけるデータの受信に成功した旨を示すデータであるACKが端末装置のバッファに格納された旨を報告して前記データに関する再送制御を保留させるバッファ状態報告を受信する受信部と、
     受信されたバッファ状態報告に従って、前記データに関する再送制御を保留する再送制御部と
     を有することを特徴とする基地局装置。
    A receiving unit for receiving a buffer status report for reporting that an ACK, which is data indicating that data has been successfully received on the downlink, has been stored in the buffer of the terminal apparatus and holding retransmission control for the data;
    And a retransmission control unit which suspends retransmission control for the data according to the received buffer status report.
  4.  第1のデータを含む上り信号を送信するための第1の上り回線及び前記第1のデータよりも優先度が高い第2のデータを含む上り信号を送信するための第2の上り回線を設定する上り回線設定部と、
     前記第1のデータを含む上り信号及び前記第2のデータを含む上り信号に送信電力を割り当てる割当部と、
     前記第1のデータを含む上り信号に割り当てられる送信電力が所定レベルに達しない場合に、前記第1のデータを含む上り信号の送信を停止する送信制御部と、
     前記送信が停止された場合に、下り回線におけるデータの受信に成功した旨を示す前記第1のデータであるACKをバッファに格納するバッファ管理部と、
     前記上り回線設定部によって前記第1の上り回線及び前記第2の上り回線が設定される場合に、前記ACKが前記バッファに格納される旨を予告して前記データに関する再送制御を保留させるバッファリング予告を送信する送信部と
     を有することを特徴とする端末装置。
    A first uplink for transmitting an uplink signal including first data and a second uplink for transmitting an uplink signal including second data having higher priority than the first data are set The uplink setting unit to
    An assignment unit for assigning transmission power to an uplink signal including the first data and an uplink signal including the second data;
    A transmission control unit that stops transmission of an uplink signal including the first data when transmission power allocated to the uplink signal including the first data does not reach a predetermined level;
    A buffer management unit that stores, in a buffer, an ACK, which is the first data indicating that data reception on the downlink has succeeded, when the transmission is stopped;
    Buffering that suspends retransmission control related to the data by giving notice that the ACK is stored in the buffer when the first uplink and the second uplink are set by the uplink setting unit And a transmitting unit for transmitting a notice.
  5.  第1のデータを含む上り信号を送信するための第1の上り回線及び第1のデータよりも優先度が高い第2のデータを含む上り信号を送信するための第2の上り回線が設定された場合に、下り回線におけるデータの受信に成功した旨を示す前記第1のデータであるACKが端末装置のバッファに格納される旨を予告するバッファリング予告を受信する受信部と、
     前記バッファリング予告と前記第1のデータの復号結果とに従って、前記データに関する再送制御を保留する再送制御部と
     を有することを特徴とする基地局装置。
    A first uplink for transmitting an uplink signal including first data, and a second uplink for transmitting an uplink signal including second data having higher priority than the first data; A receiving unit for receiving a buffering notice for notifying that the first data ACK indicating that reception of data on the downlink has succeeded is stored in the buffer of the terminal device;
    A retransmission control unit which suspends retransmission control for the data according to the buffering notice and the decoding result of the first data.
  6.  端末装置と、基地局装置とを有する無線通信システムであって、
     前記端末装置は、
     第1のデータを含む上り信号及び前記第1のデータよりも優先度が高い第2のデータを含む上り信号に送信電力を割り当てる割当部と、
     前記第1のデータを含む上り信号に割り当てられる送信電力が所定レベルに達しない場合に、前記第1のデータを含む上り信号の送信を停止する送信制御部と、
     前記送信が停止された場合に、下り回線におけるデータの受信に成功した旨を示す前記第1のデータであるACKをバッファに格納するバッファ管理部と、
     前記ACKが前記バッファに格納された旨を報告して前記データに関する再送制御を保留させるバッファ状態報告を前記第2のデータを含む上り信号を用いて送信する送信部とを有し、
     前記基地局装置は、
     前記送信部から送信されたバッファ状態報告を受信する受信部と、
     受信されたバッファ状態報告に従って、前記データに関する再送制御を保留する再送制御部とを有する
     ことを特徴とする無線通信システム。
    A wireless communication system having a terminal device and a base station device,
    The terminal device is
    An assignment unit that assigns transmission power to an uplink signal including first data and an uplink signal including second data having a higher priority than the first data;
    A transmission control unit that stops transmission of an uplink signal including the first data when transmission power allocated to the uplink signal including the first data does not reach a predetermined level;
    A buffer management unit that stores, in a buffer, an ACK, which is the first data indicating that data reception on the downlink has succeeded, when the transmission is stopped;
    And a transmitter configured to transmit, using an uplink signal including the second data, a buffer status report that reports that the ACK has been stored in the buffer and suspends retransmission control for the data;
    The base station apparatus
    A receiving unit that receives the buffer status report transmitted from the transmitting unit;
    And a retransmission control unit which suspends retransmission control for the data according to the received buffer status report.
  7.  端末装置と、基地局装置とを有する無線通信システムにおける無線通信方法であって、
     第1のデータを含む上り信号及び前記第1のデータよりも優先度が高い第2のデータを含む上り信号に送信電力を割り当て、
     前記第1のデータを含む上り信号に割り当てられる送信電力が所定レベルに達しない場合に、前記第1のデータを含む上り信号の送信を停止し、
     前記送信が停止された場合に、下り回線におけるデータの受信に成功した旨を示す前記第1のデータであるACKをバッファに格納し、
     前記ACKが前記バッファに格納された旨を報告して前記データに関する再送制御を保留させるバッファ状態報告を前記第2のデータを含む上り信号を用いて送信し、
     前記基地局装置は、
     前記端末装置から送信されたバッファ状態報告を受信し、
     受信されたバッファ状態報告に従って、前記データに関する再送制御を保留する
     処理を有することを特徴とする無線通信方法。
    A wireless communication method in a wireless communication system including a terminal device and a base station device,
    Assigning transmission power to an uplink signal including first data and an uplink signal including second data having a higher priority than the first data;
    When the transmission power allocated to the upstream signal including the first data does not reach a predetermined level, the transmission of the upstream signal including the first data is stopped.
    Storing, in the buffer, an ACK, which is the first data indicating that the data has been successfully received on the downlink, when the transmission is stopped;
    Transmitting, using an uplink signal including the second data, a buffer status report that reports that the ACK has been stored in the buffer and suspends retransmission control for the data;
    The base station apparatus
    Receive a buffer status report sent from the terminal;
    A wireless communication method comprising: a process of suspending retransmission control for the data according to a received buffer status report.
PCT/JP2017/038386 2017-10-24 2017-10-24 Terminal device, base station device, wireless communication system, and wireless communication method WO2019082279A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2017/038386 WO2019082279A1 (en) 2017-10-24 2017-10-24 Terminal device, base station device, wireless communication system, and wireless communication method
JP2019549721A JPWO2019082279A1 (en) 2017-10-24 2017-10-24 Terminal device, base station device, wireless communication system, and wireless communication method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/038386 WO2019082279A1 (en) 2017-10-24 2017-10-24 Terminal device, base station device, wireless communication system, and wireless communication method

Publications (1)

Publication Number Publication Date
WO2019082279A1 true WO2019082279A1 (en) 2019-05-02

Family

ID=66247226

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/038386 WO2019082279A1 (en) 2017-10-24 2017-10-24 Terminal device, base station device, wireless communication system, and wireless communication method

Country Status (2)

Country Link
JP (1) JPWO2019082279A1 (en)
WO (1) WO2019082279A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015015776A (en) * 2010-09-28 2015-01-22 エルジー エレクトロニクス インコーポレイティド Method and apparatus for transmitting reception confirmation in wireless communication system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015015776A (en) * 2010-09-28 2015-01-22 エルジー エレクトロニクス インコーポレイティド Method and apparatus for transmitting reception confirmation in wireless communication system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Power Sharing Mechanisms with LTE-NR DC and NR", 3GPP TSG RAN WG1 #90 RL-1714118, 11 August 2017 (2017-08-11), XP051316907, Retrieved from the Internet <URL:http://www.39PP.org/ftp/tsg_ran/WG1_RL1/TSGR1-90/Docs/R1-174118.zip> *

Also Published As

Publication number Publication date
JPWO2019082279A1 (en) 2020-08-06

Similar Documents

Publication Publication Date Title
US12004127B2 (en) Communication device, system and method for communication using feedback
US10367611B2 (en) Methods and apparatus for enhancement for HARQ with channel repetitions
KR101721015B1 (en) Blind scheduiling apparatus in a mobile communication system and method thereof
JP5009410B2 (en) Mobile station apparatus, radio communication method, and integrated circuit
JP5302391B2 (en) Improved reliability of hybrid automatic repeat request protocol
KR101343899B1 (en) Method, system and equipment for processing information
CN107624227B (en) Apparatus and method for handling configuration of bundle size in communication
US10555334B2 (en) Radio terminal, base station, and processor
EP3472954A1 (en) Reallocation of control channel resources for retransmission of data in wireless networks based on communications mode
CN108631948B (en) Data retransmission method, communication equipment and data retransmission system
KR20160036458A (en) Method and apparatus for device to device harq process management
CN114270888A (en) Method and apparatus for resource allocation in V2X communication
US20190356422A1 (en) Wireless communication system, base station device, terminal device, and wireless communication method
CN109691006B (en) Feedback response information sending method, receiving method, device and system
US12003331B2 (en) Wireless data transmission apparatus, wireless data reception apparatus and methods
JP5502935B2 (en) Mobile station apparatus, radio communication method, and integrated circuit
TWI784764B (en) Device of handling a harq retransmission
JP7277492B2 (en) Apparatus and method for handling physical uplink control channel collisions
WO2019082279A1 (en) Terminal device, base station device, wireless communication system, and wireless communication method
WO2021024461A1 (en) Base station device, terminal device, and wireless communication system
JP5719460B2 (en) Mobile station apparatus, radio communication method, and integrated circuit
US20240172194A1 (en) Repetition factor adaptation for mini-slot-based transport block transmission
JPWO2017199672A1 (en) Base station, terminal and communication method
KR101531032B1 (en) Method for allocating resource, and resource management apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17929496

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019549721

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17929496

Country of ref document: EP

Kind code of ref document: A1