WO2019073937A1 - Risk evaluation system - Google Patents
Risk evaluation system Download PDFInfo
- Publication number
- WO2019073937A1 WO2019073937A1 PCT/JP2018/037473 JP2018037473W WO2019073937A1 WO 2019073937 A1 WO2019073937 A1 WO 2019073937A1 JP 2018037473 W JP2018037473 W JP 2018037473W WO 2019073937 A1 WO2019073937 A1 WO 2019073937A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- risk
- cell
- index
- monitoring target
- sediment
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01W—METEOROLOGY
- G01W1/00—Meteorology
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B21/00—Alarms responsive to a single specified undesired or abnormal condition and not otherwise provided for
- G08B21/02—Alarms for ensuring the safety of persons
- G08B21/10—Alarms for ensuring the safety of persons responsive to calamitous events, e.g. tornados or earthquakes
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B31/00—Predictive alarm systems characterised by extrapolation or other computation using updated historic data
Definitions
- the present invention relates to a technology for evaluating the risk of landslide caused by rainfall.
- Landslides caused by rainfall can cause life-threatening damage. Then, in order to reduce the damage of the landslide, the risk of the landslide caused by rainfall is specified, and when the risk is increased, a technique for notifying that effect has been proposed.
- the processing apparatus wirelessly receives rainfall information measured by a rain gauge installed in the observation area, and calculates the moisture content in the soil in consideration of the geographical condition of the observation area, A mechanism for making a notification based on the calculated water content is described.
- the patent document 2 determines the sediment water level at the upper end of the danger area where the occurrence of the landslide disaster is assumed and indicates that the possibility of the occurrence of the landslide disaster is high based on rainfall. In the light of the estimated water level at the point, a mechanism is identified to identify a high alert area for landslide disaster occurrence.
- the present invention provides a means for identifying an area where there is a high possibility that landslides that cause human life may occur due to rainfall.
- a region including a risk assessment cell and a plurality of monitoring target cells is used as a monitoring region of landslide, and sediment productivity for each monitoring target cell and each monitoring target cell
- the risk evaluation system for evaluating the risk of occurrence of landslide disaster in the risk evaluation cell is provided as a first aspect based on the reachability of the fallen soil to the risk evaluation cell.
- a gradient of each of the plurality of cells configuring an area including the monitoring region and a region supplying water flowing into the cell
- the index using the ratio between the gradient according to the area of the water collection area of the monitoring target cell and the gradient of the monitoring target cell calculated according to the regression equation that approximates the relationship with the area of the water collection area
- the configuration of using as a sediment productivity index indicating sediment productivity for each of the monitoring target cells may be adopted as a second aspect.
- a configuration may be adopted as a third aspect in which an index using the ratio of and is used as a reachability index indicating the reachability of the fallen soil for each monitoring target cell to the risk evaluation cell.
- a configuration in which an index using the ratio of and is used as a reachability index indicating the reachability of the fallen soil for each monitoring target cell to the risk evaluation cell may be adopted as a fourth aspect .
- the risk is calculated based on a statistic of an index calculated using the sediment productivity index and the reachability index for each of the plurality of monitoring target cells.
- a configuration of evaluating the risk of occurrence of landslide disaster in the evaluation cell may be adopted as a fifth aspect.
- the landslide disaster occurrence risk at a certain point in the area can be known by the digital elevation model of the area including the monitoring area.
- the risk rating system with respect to each of a plurality of cells on an infrastructure, the risk of occurrence of earth and sand disaster when the cell is the risk assessment cell is evaluated.
- the configuration may be adopted in which a dangerous cell on the infrastructure is identified.
- the occurrence time of landslide in the monitoring area is estimated based on the temporal change of rainfall amount in the area including the monitoring area.
- the configuration may be adopted as a seventh aspect.
- a computer-implemented sediment productivity index which is an index indicating sediment productivity for each of the monitoring target cells, in a monitoring area of landslides consisting of a plurality of monitoring target cells including risk assessment cells;
- a program for calculating an index indicating a risk of occurrence of a landslide disaster in the risk evaluation cell based on a reachability index that is an index indicating the reachability of the fallen soil for each target cell to the risk evaluation cell is Provided as an aspect of
- the computer realizes the degree-of-risk evaluation system of the first aspect.
- region The figure which illustrated the information which the indicator concerning one embodiment displays.
- the risk assessment system 1 notifies the user of the area where the risk of landslide disaster occurrence due to rainfall is high among infrastructures such as railways in the target area, and the time when the landslide disaster is estimated to occur Is a system for notifying the user.
- FIG. 1 is a view showing the entire configuration of the risk level evaluation system 1.
- the risk level evaluation system 1 is used by the user to generate information to notify the user, and the terminal device 11 to notify the user of the generated information, and the terminal device 11 to the terminal device 11 the history of the temporal change of the rainfall amount in the target area
- the server device 12 distributes rainfall amount data indicating values and estimated values.
- the terminal device 11 and the server device 12 are communicably connected via a network.
- the hardware of the terminal device 11 and the server device 12 is a computer.
- FIG. 2 is a diagram showing the configuration of the computer 10 used as the hardware of the terminal device 11.
- FIG. 3 is a diagram showing the configuration of the computer 20 used as the hardware of the server device 12.
- the computer 10 includes a memory 101 for storing various data, a processor 102 for performing various data processing in accordance with a program stored in the memory 101, a communication unit 103 for performing data communication with an external device, and various users.
- a display 104 for displaying information and a keyboard 105 for receiving data input operation of a user are provided. Note that at least one of the display 104 and the keyboard 105 may not be built in the computer 10, and may be connected to the computer 10 as an external device.
- the computer 20 includes a memory 201 for storing various data, a processor 202 for performing various data processing in accordance with a program stored in the memory 201, and a communication unit 203 for performing data communication with an external apparatus.
- the computer 20 When the processor 202 performs various data processing in accordance with the program stored in the memory 201, the computer 20 operates as the server device 12 for distributing rainfall amount data to the terminal device 11.
- the functional configuration of the server device 12 is the same as the functional configuration of the server device that performs general data distribution, and thus the description thereof is omitted.
- FIG. 4 is a diagram showing a functional configuration for performing processing for notifying the user of a place where the risk of occurrence of earth and sand disaster is high among the functional configurations of the terminal device 11.
- the functional configuration shown in FIG. 4 will be described below.
- the storage unit 111 is mainly realized by the memory 101 and stores various data.
- the storage unit 111 stores in advance numerical elevation model data indicating a numerical elevation model of the target area, and route data indicating a passing position of a railway (an example of infrastructure) in the target area.
- the storage unit 111 also stores various data generated by the calculation unit 110 described below.
- the operation unit 110 is mainly realized by the processor 102 and performs various operations.
- the calculation unit 110 includes a water collection area calculation unit 1101 that calculates a water collection area of each of a plurality of cells forming the target area.
- the cell means each of a plurality of rectangular areas of a predetermined size obtained by dividing the target area.
- the water collection area of a cell is the area of a water collection area which is an area for supplying water flowing into the cell.
- the water collection area calculation unit 1101 calculates the water collection area of each cell in the target area by known topographical hydrological analysis using the digital elevation model indicated by the digital elevation model data. Data indicating the water collection area of each cell calculated by the water collection area calculation unit 1101 is stored in the storage unit 111 as water collection area data.
- the calculation unit 110 includes a gradient calculation unit 1102 that calculates the gradient of each cell in the target area.
- the gradient calculation unit 1102 performs spatial differentiation of the digital elevation model indicated by the digital elevation model data, and calculates the gradient of each cell in the target area.
- Data indicating the gradient of each cell calculated by the gradient calculation unit 1102 is stored in the storage unit 111 as gradient data.
- the calculation unit 110 includes a regression equation identification unit 1103 that identifies a regression equation indicating a combination of a water collection area and a gradient that brings about a standard soil erosion ease in the target area.
- the regression equation identification unit 1103 associates the water collection area indicated by the water collection area data with the gradient indicated by the gradient data for each cell in the target area, and sets of the correlated water collection area and the gradient are used as samples.
- the regression equation is specified by regression analysis for the target population.
- the regression equation identified by the regression equation identifying unit 1103 has the structure of Equation 1 below.
- S is a gradient (unit: m / m) and A f is a water collection area (unit: m 2 ).
- B and p are constants determined by the characteristics of the soil in the target area, and are identified by regression analysis.
- Equation 1 is derived from Equation 2 below.
- E is the erosion rate of soil (unit: m / yr)
- K is the erosion efficiency of soil (unit: eg yr ⁇ 1 (depends on the power number m)).
- m and n are numerical values (m> 0, n> 0) indicating the weighting of the water collection area A f and the slope S.
- Equation 2 it is known that the erosion rate of soil has a relationship approximately proportional to the product of the slope and the power of the water collection area.
- the constant of equation 1 and the constant of equation 2 have the relationships shown in equations 3 and 4 below.
- Data indicating the regression equation identified by the regression equation identifying unit 1103 is stored in the storage unit 111 as regression equation data.
- the calculation unit 110 includes a risk evaluation cell extraction unit 1104 that extracts a cell through which the railway passes from among cells in the target area as a risk evaluation cell.
- the risk evaluation cell extraction unit 1104 extracts a risk evaluation cell based on the route data.
- Data indicating the danger evaluation cell extracted by the danger evaluation cell extraction unit 1104 is stored in the storage unit 111 as danger evaluation cell data.
- the calculation unit 110 includes a monitoring area specifying unit 1105 that specifies a water collection area of the risk evaluation cell as a monitoring area for each of the risk evaluation cells.
- the monitoring area specifying unit 1105 specifies a water collection area by known topographical hydrological analysis for each of the risk evaluation cells using the digital elevation model indicated by the digital elevation model data, and identifies the specified water collection area as the risk evaluation cell. And monitoring area.
- cells in the monitoring area are referred to as monitoring target cells.
- Figure 5 is a diagram showing one and risk assessment cell P i on line r in the target area U, the monitoring area Q i of the risk assessment cell P i.
- Data indicating the monitoring area of each risk assessment cell specified by the monitoring area specifying unit 1105 is stored in the storage unit 111 as monitoring area data.
- Arithmetic unit 110 (FIG. 4) relates to sediment productivity for each monitoring target cell in the monitoring area specified by monitoring area specifying unit 1105 for each of the plurality of risk evaluation cells extracted by risk evaluation cell extracting unit 1104.
- the sediment productivity index calculation unit 1106 is provided to calculate the sediment productivity index, which is an index indicating.
- the sediment productivity index calculation unit 1106 calculates the sediment productivity index SAI according to the following equation 5.
- S local is the gradient of the monitoring object cell which gradient data show
- a flocal is the water collection area of the monitoring area which water collection area data show.
- S (A flocal ) is a gradient corresponding to the water collection area A flocal of the monitoring area, which is calculated according to the regression equation (Equation 1) represented by the regression data.
- Data indicating the sediment productivity index SAI for each monitoring target cell of each risk evaluation cell calculated by the sediment productivity index calculation unit 1106 is stored in the storage unit 111 as sediment productivity index data.
- the computing unit 110 For each of the monitoring target cells in the monitoring area identified by the monitoring area identifying unit 1105, the computing unit 110 relates to each of the plurality of danger assessment cells extracted by the risk assessment cell extracting unit 1104; A reachability indicator calculation unit 1107 is provided which calculates a reachability indicator that is an indicator indicating the reachability of the terminal.
- the reachability index calculation unit 1107 calculates the reachability index IEFC in accordance with Equation 6 below.
- H S is the height (unit: m) of the monitoring target cell based on the hazard evaluation cell indicated by the digital elevation model data, that is, the value obtained by subtracting the height of the hazard evaluation cell from the height of the monitoring target cell is there.
- L is a horizontal distance (unit: m) indicated by the digital elevation model data and indicating the danger evaluation cell and the monitoring target cell.
- Data indicating the reachability index IEFC of each of the monitoring target cells of each risk evaluation cell calculated by the reachability index calculation unit 1107 is stored in the storage unit 111 as reachability index data.
- the calculation unit 110 can reach the danger evaluation cell for each of the monitoring target cells in the monitoring area specified by the monitoring area specifying unit 1105 for each of the plurality of danger evaluation cells extracted by the risk evaluation cell extraction unit 1104.
- a hazard index calculation unit 1108 that calculates a hazard index that is an index indicating productivity of fallen soil is provided.
- the hazard index calculation unit 1108 calculates the hazard index TGI according to the following equation 7.
- Data indicating the hazard index TGI for each monitoring target cell of each hazard evaluation cell calculated by the hazard index calculation unit 1108 is stored in the storage unit 111 as hazard index data.
- the calculation unit 110 calculates an infrastructure risk index for calculating the statistics of the hazard index TGI calculated by the hazard index calculation unit 1108 for each of the plurality of danger evaluation cells extracted by the danger evaluation cell extraction unit 1104 as an infrastructure risk index.
- a unit 1109 is provided.
- the infrastructure risk index calculator 1109 calculates an arithmetic mean of the hazard indexes TGI as the infrastructure risk index SLPR.
- Data indicating the infrastructure risk indicator SLPR calculated for each risk evaluation cell by the infrastructure risk indicator calculation unit 1109 is stored in the storage unit 111 as infrastructure risk indicator data.
- the display unit 112 is mainly realized by the display 104, and displays information indicated by various data generated by the calculation unit 110 and stored in the storage unit 111.
- 6 and 7 are diagrams exemplifying information displayed by the display unit 112.
- FIG. 1
- FIG. 6 shows a hazard map displayed by the display unit 112.
- the hazard evaluation cells P 1 , P 2 , P 3 are regarded as hazard evaluation cells in which the infrastructure risk indicator SLPR is greater than or equal to a predetermined threshold. Is illustrated.
- the hazard index TGI is Monitored cells above a predetermined threshold are indicated by crosses.
- the user sees the hazard map, and can know a place susceptible to landslide disasters on the track r and a place prone to landslides causing landslide disasters in the target area.
- FIG. 7 shows a along-line risk line displayed by the display unit 112.
- the risk line along the road has a horizontal axis representing the distance from the predetermined reference point on the line r to the risk evaluation cell on the line r (distance along the line r), and the infrastructure of the risk evaluation cell according to the distance shown on the horizontal axis. It is the graph which plotted risk index SLPR on the vertical axis. The user can see the risk line along the road and know the susceptibility of each point on the track r to landslide disaster.
- FIG. 8 is a diagram showing a functional configuration for performing processing for notifying the user of the time at which it is estimated that earth and sand fall will occur among the functional configurations of the terminal device 11.
- the terminal device 11 includes a receiving unit 113 that receives rainfall data from the server device 12 in addition to the storage unit 111, the arithmetic unit 110, and the display unit 112 described above as a configuration unit for estimating occurrence time of landslide. .
- the receiving unit 113 is mainly realized by the communication unit 103.
- the calculation unit 110 includes a pressure head calculation unit 1110, a stability index calculation unit 1111, and an occurrence time estimation unit 1112 as a component for estimating the occurrence time of landslide.
- the pressure head calculation unit 1110 calculates the time t (that is, the time when time t (unit: s) has elapsed from the rainfall start time) based on the rainfall start time according to the following equation 8 for each of the cells in the target area Calculate the pressure head (t) (unit: m) at.
- the following equation 8 is a model equation proposed in a paper "Landslide triggering by rain infiltration” published in 2000 by Richard M. Iverson.
- t * is a value shown by the following equation 9.
- D 0 is a diffusion coefficient (unit: m 2 / s)
- ⁇ is a slope inclination angle (unit: deg)
- Z is a depth (unit: m).
- T * is a value shown by the following equation 10. Where T is the rainfall duration (unit: s).
- ⁇ 0 is the initial value of pressure head
- I Z is the rainfall intensity (unit: m / s)
- K Z is the permeability coefficient in the depth direction (m / s)
- R (t * ) is x in the following equation 11
- a value obtained by substituting t * into R, and R (t * -T * ) is a value obtained by substituting (t * -T * ) into x in the following Expression 11.
- Data indicating the pressure head (t) at time t for each cell calculated by the pressure head calculation unit 1110 is stored in the storage unit 111 as pressure head data.
- diffusion coefficient data indicating the diffusion coefficient D 0 as data used by the pressure head calculation unit 1110 to calculate the pressure head (t) at time t of each cell, diffusion coefficient data indicating the diffusion coefficient D 0 , slope inclination angle ⁇ of each cell slope inclination angle data indicating the depth data indicating the depth Z of each cell, rainfall intensity data indicating the rainfall intensity I Z, permeability data indicating the permeability K Z in the depth direction, rain indicating rainfall duration T Duration data is stored.
- the diffusion coefficient D 0 indicated by the diffusion coefficient data and the water permeability coefficient K Z indicated by the permeability coefficient data are values specified by fitting of the hydrological observation values at representative points in the target area with the model equation shown in Equation 8. is there.
- the slope inclination angle ⁇ of each cell indicated by the slope inclination data and the depth Z of each cell indicated by the depth data are values specified based on the digital elevation model data.
- the rainfall intensity I Z indicated by the rainfall intensity data and the rainfall duration T indicated by the rainfall duration data are values specified based on the rainfall amount data received by the receiving unit 113 from the server device 12.
- the initial value ⁇ 0 of the pressure head used by the pressure head calculation unit 1110 to calculate the pressure head (t) at time t is the pressure head at the rainfall start time indicated by the pressure head data.
- the stability index calculator 1111 calculates the slope stability index F S at time t according to the following equation 12 for each of the cells in the target area. Equation 12 below is a calculation equation proposed in the paper "Stability of Natural Slopes in London Clay” published in 1957 by A. W. Skempton and F. A. Delory.
- c is the adhesion of the soil layer (unit: kPa)
- ⁇ c is the increase in adhesion by the tree root system (unit: kPa)
- ⁇ is the saturation unit weight of the soil layer (unit: N / m 3 )
- ⁇ W Is a unit weight of water (unit: N / m 3 )
- h is a soil layer thickness (unit: m)
- ⁇ is a slope inclination angle (unit: deg)
- ⁇ is a shear resistance angle (unit: deg).
- m is a groundwater level parameter (ratio of pressure head to soil layer thickness h) calculated according to the following equation 13.
- the slope stability index F S indicates that the slope is stable if it is 1 or more and that landslide does not occur. If the slope stability index F S is less than 1, it indicates that the slope is unstable and landslide occurs.
- adhesion data indicating the adhesion c of the soil layer
- soil by the tree root system Adhesion force increase data showing increase amount ⁇ c of layer adhesion
- saturation unit weight data showing saturation unit weight ⁇ of soil layer
- unit weight data showing unit weight ⁇ W of water
- soil layer thickness h of each cell The stored soil layer thickness data, the slope inclination angle data indicating the slope inclination angle ⁇ of each cell, and the shear resistance angle data indicating the shear resistance angle ⁇ are stored.
- Adhesion force c of the soil layer indicated by the adhesion data, the saturation unit weight ⁇ of the soil layer indicated by the saturation unit weight data, and the shear resistance angle ⁇ indicated by the shear resistance angle data are performed using samples taken from within the target area It is the value specified by the shear test etc.
- Adhesion increase amount ⁇ c of the soil layer indicated by the adhesion increase amount data is empirically determined by the number density and root diameter distribution of the plant root system as a function of depth in the soil layer and the reverse analysis of the past disaster cases Value.
- the slope inclination angle ⁇ of each cell indicated by the slope inclination angle data is a value specified based on digital elevation model data.
- the soil layer thickness h of each cell indicated by the soil layer thickness data is a value calculated by substituting the slope curvature C specified based on the digital elevation model data into the following equation 14.
- h 0 is the soil layer thickness of the flat plate type slope portion inclined curvature C is 0
- a is an exponential factor.
- the index coefficient a in Equation 14 represents, for each of a plurality of cells randomly selected from the target area, a combination of the slope curvature C specified based on the digital elevation model data and the measured value of the soil layer thickness h as a sample Use the values specified by regression analysis for the target population.
- the function used to estimate the soil layer thickness h from the slope curvature C can be obtained by regression analysis, the type of the function is not limited to the exponential function illustrated in Equation 14, and the significance of the soil slope layer h from the slope curvature C
- any type of function such as a linear function, a polynomial function, or a power function may be used as long as it is possible to derive an estimated value.
- Data indicating the slope stability index F S at time t for each cell calculated by the stability index calculation unit 1111 is stored in the storage unit 111 as slope stability index data.
- the occurrence time estimation unit 1112 determines the time when the slope stability index data becomes less than 1 for each of the monitoring target cells included in the monitoring area according to each of the risk evaluation cells in which the infrastructure risk indicator SLPR is equal to or more than a predetermined threshold. It is estimated as the time when a landslide occurs in the monitoring target cell.
- FIG. 9 is a view exemplifying a hazard map displayed by the display unit 112.
- the hazard map illustrated in FIG. 9 in addition to the information included in the hazard map illustrated in FIG. 6, places and times at which occurrence of landslides is estimated are displayed.
- the user may look at the hazard map to know at which location and at which time the landslide will occur in the monitoring area that may cause the fallen soil to a location susceptible to landslide disasters on the track r. it can.
- the infrastructure is a railway, but the type of infrastructure is not limited to a railway, and may be any of a road, a power plant, a substation or the like.
- SAI defined in Equation 5 is used as an index indicating sediment productivity for each monitoring target cell, but it is an index indicating sediment productivity for each monitoring target cell
- other indicators may be used.
- the IEFC defined in the equation 6 is used as an index indicating the reachability of the fallen soil for each monitoring target cell to the risk evaluation cell. Other indicators may be used as long as they indicate the reachability of the fallen soil to the risk assessment cell.
- TGI defined in Equation 7 is used as an index indicating productivity of fallen soil that can reach the danger evaluation cell for each monitoring target cell.
- Other indexes may be used as long as they are calculated using the index indicating the productivity of sediment and the index indicating the possibility of reaching the risk evaluation cell of the fallen soil for each monitoring target cell.
- the arithmetic mean of the hazard indicator TGI is used as the infrastructure risk indicator SLPR indicating the possibility that the hazard evaluation cell on the infrastructure may be damaged by the fallen soil. If it is a statistic of an index calculated using an index indicating sediment productivity for each time and an index indicating reachability to the risk evaluation cell of fallen soil for each monitoring target cell, another statistic is the infrastructure It may be used as a risk indicator SLPR.
- the slope stability index F S defined in Equation 12 is used as an index for estimating occurrence time of landslide in the monitoring area, but in the target area
- Other indicators may be used as long as they are indicators indicating slope stability of each cell, which are calculated based on time-dependent changes in rainfall.
- the terminal device 11 and the server device 12 are realized by the computer executing the process according to the program, but at least one of the terminal device 11 and the server device 12 is a dedicated device May be configured as
Landscapes
- Environmental & Geological Engineering (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Business, Economics & Management (AREA)
- Emergency Management (AREA)
- Physics & Mathematics (AREA)
- Biodiversity & Conservation Biology (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Atmospheric Sciences (AREA)
- Geology (AREA)
- Ecology (AREA)
- Environmental Sciences (AREA)
- Computing Systems (AREA)
- Alarm Systems (AREA)
- Emergency Alarm Devices (AREA)
- Pit Excavations, Shoring, Fill Or Stabilisation Of Slopes (AREA)
Abstract
The purpose of the present invention is to identify a region having a high probability of experiencing the occurrence of a life-threatening sediment disaster due to rainfall. Provided is a risk evaluation system comprising: a sediment productivity index calculation unit 1106 which calculates a sediment productivity index indicating a sediment productivity with respect to each of cells to be monitored in a sediment collapse monitoring region which is a region including an infrastructural risk evaluation cell and a plurality of cells to be monitored; an arrival probability index calculation unit 1107 which, with respect to each of the cells to be monitored, calculates an arrival probability index indicating the probability of arrival of collapsed sediment to the risk evaluation cell; and an infrastructural risk index calculation unit 1109 which calculates, using the sediment productivity index and the arrival probability index with respect to each of the cells to be monitored, an infrastructural risk index indicating the probability of the risk evaluation cell being subjected to a damage from collapsed sediment. The risk index and a threshold value are compared to evaluate a sediment disaster occurrence risk in the risk evaluation cell.
Description
本発明は降雨による土砂崩落の危険度を評価する技術に関する。
The present invention relates to a technology for evaluating the risk of landslide caused by rainfall.
降雨による土砂崩落は人命にかかわる被害をもたらす場合がある。そこで、土砂崩落の被害を軽減するために、降雨による土砂崩落の危険度を特定し、危険度が高まった場合、その旨を報知する技術が提案されている。
Landslides caused by rainfall can cause life-threatening damage. Then, in order to reduce the damage of the landslide, the risk of the landslide caused by rainfall is specified, and when the risk is increased, a technique for notifying that effect has been proposed.
例えば、特許文献1には、処理装置が、観測地区に設置されている雨量計により計測された雨量情報を無線で受け取り、観測地区の地理的状況を考慮した土中の含水量を算出し、算出した含水量に基づいて通報を行う仕組みが記載されている。
For example, in Patent Document 1, the processing apparatus wirelessly receives rainfall information measured by a rain gauge installed in the observation area, and calculates the moisture content in the soil in consideration of the geographical condition of the observation area, A mechanism for making a notification based on the calculated water content is described.
また、特許文献2には、土砂災害の発生が想定される危険地区の上端部における水位であって土砂災害発生の可能性が高いことを示す土砂災害水位を雨量に基づいて決定し、指定された地点の推定される水位に照らし、土砂災害発生の高い警戒区域を特定する仕組みが記載されている。
In addition, based on the rainfall, the patent document 2 determines the sediment water level at the upper end of the danger area where the occurrence of the landslide disaster is assumed and indicates that the possibility of the occurrence of the landslide disaster is high based on rainfall. In the light of the estimated water level at the point, a mechanism is identified to identify a high alert area for landslide disaster occurrence.
長期間にわたり降雨が続く場合、降雨を受ける全地域を危険地域と捉えて土砂崩落の監視対象としたり、それらの全地域への人の立ち入りを禁止したりすることは、リスクとリスクを回避するための代償とのバランスを欠き、現実的ではない。
If rainfall continues for a long period, all areas receiving rainfall will be regarded as dangerous areas to monitor landslides, or banning people from entering all areas will avoid risks and risks. It is not realistic because it is not balanced with the cost.
人命にかかわる土砂災害が発生する可能性が高い地域を特定できれば、その地域を集中的に監視したり、その地域に限り人の立ち入りを禁止したりすることによって、効率的にリスクを回避することができる。
If it is possible to identify an area where landslide disasters likely to cause human life are likely to occur, risk should be avoided efficiently by intensively monitoring the area or prohibiting the entry of people only in that area. Can.
本発明は、上記の事情に鑑み、降雨により人命にかかわる土砂災害が発生する可能性が高い地域を特定するための手段を提供する。
SUMMARY OF THE INVENTION In view of the above-described circumstances, the present invention provides a means for identifying an area where there is a high possibility that landslides that cause human life may occur due to rainfall.
上述した課題を解決するために、本発明は、危険評価セルと複数の監視対象セルとを含む領域を土砂崩落の監視領域とし、前記監視対象セル毎の土砂生産性と、前記監視対象セル毎の崩落土砂の前記危険評価セルへの到達可能性と、に基づき、前記危険評価セルにおける土砂災害発生リスクを評価する危険度評価システムを第1の態様として提供する。
In order to solve the problems described above, according to the present invention, a region including a risk assessment cell and a plurality of monitoring target cells is used as a monitoring region of landslide, and sediment productivity for each monitoring target cell and each monitoring target cell The risk evaluation system for evaluating the risk of occurrence of landslide disaster in the risk evaluation cell is provided as a first aspect based on the reachability of the fallen soil to the risk evaluation cell.
上記の第1の態様に係る危険度評価システムによれば、ある地点における土砂災害発生リスクが分かる。
According to the degree-of-risk evaluation system according to the first aspect described above, it is possible to know the risk of landslide disaster occurrence at a certain point.
上記の第1の態様に係る危険度評価システムにおいて、前記複数の監視対象セルの各々に関し、前記監視領域を含む地域を構成する複数のセルの各々の勾配と当該セルに流れ込む水を供給する領域である集水領域の面積との関係を近似する回帰式に従い算出される当該監視対象セルの集水領域の面積に応じた勾配と、当該監視対象セルの勾配と、の比を用いた指標を、前記監視対象セル毎の土砂生産性を示す土砂生産性指標として用いる、という構成が第2の態様として採用されてもよい。
In the risk assessment system according to the first aspect, with respect to each of the plurality of monitoring target cells, a gradient of each of the plurality of cells configuring an area including the monitoring region and a region supplying water flowing into the cell The index using the ratio between the gradient according to the area of the water collection area of the monitoring target cell and the gradient of the monitoring target cell calculated according to the regression equation that approximates the relationship with the area of the water collection area The configuration of using as a sediment productivity index indicating sediment productivity for each of the monitoring target cells may be adopted as a second aspect.
上記の第1の態様に係る危険度評価システムにおいて、前記複数の監視対象セルの各々に関し、当該監視対象セルと前記危険評価セルの高度差と、当該監視対象セルと前記危険評価セルの水平距離と、の比を用いた指標を、前記監視対象セル毎の崩落土砂の前記危険評価セルへの到達可能性を示す到達可能性指標として用いる、という構成が第3の態様として採用されてもよい。
In the risk evaluation system according to the first aspect, regarding each of the plurality of monitoring target cells, the height difference between the monitoring target cell and the risk evaluation cell, and the horizontal distance between the monitoring target cell and the risk evaluation cell A configuration may be adopted as a third aspect in which an index using the ratio of and is used as a reachability index indicating the reachability of the fallen soil for each monitoring target cell to the risk evaluation cell. .
また、第2の態様に係る危険度評価システムにおいて、前記複数の監視対象セルの各々に関し、当該監視対象セルと前記危険評価セルの高度差と、当該監視対象セルと前記危険評価セルの水平距離と、の比を用いた指標を、前記監視対象セル毎の崩落土砂の前記危険評価セルへの到達可能性を示す到達可能性指標として用いる、という構成が第4の態様として採用されてもよい。
In the risk evaluation system according to the second aspect, regarding each of the plurality of monitoring target cells, the height difference between the monitoring target cell and the risk evaluation cell, and the horizontal distance between the monitoring target cell and the risk evaluation cell A configuration in which an index using the ratio of and is used as a reachability index indicating the reachability of the fallen soil for each monitoring target cell to the risk evaluation cell may be adopted as a fourth aspect .
上記の第4の態様に係る危険度評価システムにおいて、前記複数の監視対象セルの各々に関し前記土砂生産性指標と前記到達可能性指標とを用いて算出される指標の統計量に基づき、前記危険評価セルにおける土砂災害発生リスクを評価する、という構成が第5の態様として採用されてもよい。
In the risk evaluation system according to the fourth aspect, the risk is calculated based on a statistic of an index calculated using the sediment productivity index and the reachability index for each of the plurality of monitoring target cells. A configuration of evaluating the risk of occurrence of landslide disaster in the evaluation cell may be adopted as a fifth aspect.
上記の第2乃至第5の態様に係る危険度評価システムによれば、監視領域を含む地域の数値標高モデルにより、当該地域内のある地点における土砂災害発生リスクが分かる。
According to the risk evaluation system according to the above-described second to fifth aspects, the landslide disaster occurrence risk at a certain point in the area can be known by the digital elevation model of the area including the monitoring area.
上記の第1乃至第5のいずれかの態様に係る危険度評価システムにおいて、インフラ上の複数のセルの各々に関し、当該セルを前記危険評価セルとした場合の前記土砂災害発生リスクを評価することによって、前記インフラ上の危険なセルを特定する、という構成が第6の態様として採用されてもよい。
In the risk rating system according to any one of the above first to fifth aspects, with respect to each of a plurality of cells on an infrastructure, the risk of occurrence of earth and sand disaster when the cell is the risk assessment cell is evaluated. According to the sixth aspect, the configuration may be adopted in which a dangerous cell on the infrastructure is identified.
上記の第6の態様に係る危険度評価システムによれば、人の立ち入りが多いインフラのうち土砂災害発生リスクが高い領域が分かる。
According to the degree-of-risk evaluation system according to the sixth aspect described above, it is possible to find out the area where the risk of landslide disaster occurrence is high in the infrastructure where there are many people entering.
上記の第1乃至第6のいずれかの態様に係る危険度評価システムにおいて、前記監視領域を含む地域における降雨量の経時変化に基づき、前記監視領域内における土砂崩落の発生時刻を推定する、という構成が第7の態様として採用されてもよい。
In the risk rating system according to any one of the first to sixth aspects, the occurrence time of landslide in the monitoring area is estimated based on the temporal change of rainfall amount in the area including the monitoring area. The configuration may be adopted as a seventh aspect.
上記の第7の態様に係る危険度評価システムによれば、土砂災害発生リスクが高まる時刻が分かる。
According to the degree-of-risk evaluation system according to the seventh aspect described above, it is possible to know the time when the risk of landslide disaster increases.
また、本発明は、コンピュータに、危険評価セルを含む複数の監視対象セルから成る土砂崩落の監視領域における、前記監視対象セル毎の土砂生産性を示す指標である土砂生産性指標と、前記監視対象セル毎の崩落土砂の前記危険評価セルへの到達可能性を示す指標である到達可能性指標とに基づき、前記危険評価セルにおける土砂災害発生リスクを示す指標を算出させるためのプログラムを第8の態様として提供する。
Further, according to the present invention, there is provided a computer-implemented sediment productivity index, which is an index indicating sediment productivity for each of the monitoring target cells, in a monitoring area of landslides consisting of a plurality of monitoring target cells including risk assessment cells; A program for calculating an index indicating a risk of occurrence of a landslide disaster in the risk evaluation cell based on a reachability index that is an index indicating the reachability of the fallen soil for each target cell to the risk evaluation cell is Provided as an aspect of
上記の第8の態様に係るプログラムによれば、コンピュータによって、上記の第1の態様に係る危険度評価システムが実現される。
According to the program of the eighth aspect, the computer realizes the degree-of-risk evaluation system of the first aspect.
[実施形態]
以下、本発明の実施形態に係る危険度評価システム1を説明する。危険度評価システム1は、対象地域内の鉄道等のインフラのうち降雨による土砂災害発生リスクが高い領域をユーザに通知するとともに、土砂災害発生リスクが高い部分において土砂災害が発生すると推定される時刻をユーザに通知するシステムである。 [Embodiment]
Hereinafter, therisk evaluation system 1 according to the embodiment of the present invention will be described. The risk assessment system 1 notifies the user of the area where the risk of landslide disaster occurrence due to rainfall is high among infrastructures such as railways in the target area, and the time when the landslide disaster is estimated to occur Is a system for notifying the user.
以下、本発明の実施形態に係る危険度評価システム1を説明する。危険度評価システム1は、対象地域内の鉄道等のインフラのうち降雨による土砂災害発生リスクが高い領域をユーザに通知するとともに、土砂災害発生リスクが高い部分において土砂災害が発生すると推定される時刻をユーザに通知するシステムである。 [Embodiment]
Hereinafter, the
図1は危険度評価システム1の全体構成を示した図である。危険度評価システム1はユーザにより使用され、ユーザに対し通知する情報を生成するとともに、生成した情報をユーザに通知する端末装置11と、端末装置11に対し対象地域における降雨量の経時変化の実績値及び推定値を示す降雨量データを配信するサーバ装置12を備える。端末装置11とサーバ装置12はネットワークを介して通信接続されている。
FIG. 1 is a view showing the entire configuration of the risk level evaluation system 1. The risk level evaluation system 1 is used by the user to generate information to notify the user, and the terminal device 11 to notify the user of the generated information, and the terminal device 11 to the terminal device 11 the history of the temporal change of the rainfall amount in the target area The server device 12 distributes rainfall amount data indicating values and estimated values. The terminal device 11 and the server device 12 are communicably connected via a network.
端末装置11及びサーバ装置12のハードウェアはコンピュータである。図2は端末装置11のハードウェアとして用いられるコンピュータ10の構成を示した図である。また、図3はサーバ装置12のハードウェアとして用いられるコンピュータ20の構成を示した図である。
The hardware of the terminal device 11 and the server device 12 is a computer. FIG. 2 is a diagram showing the configuration of the computer 10 used as the hardware of the terminal device 11. FIG. 3 is a diagram showing the configuration of the computer 20 used as the hardware of the server device 12.
コンピュータ10は、各種データを記憶するメモリ101と、メモリ101に記憶されているプログラムに従う各種データ処理を行うプロセッサ102と、外部の装置との間でデータ通信を行う通信ユニット103と、ユーザに各種情報を表示するディスプレイ104と、ユーザのデータ入力操作を受け付けるキーボード105を備える。なお、ディスプレイ104及びキーボード105の少なくとも一方がコンピュータ10に内蔵されず、外付けの装置としてコンピュータ10に接続されてもよい。
The computer 10 includes a memory 101 for storing various data, a processor 102 for performing various data processing in accordance with a program stored in the memory 101, a communication unit 103 for performing data communication with an external device, and various users. A display 104 for displaying information and a keyboard 105 for receiving data input operation of a user are provided. Note that at least one of the display 104 and the keyboard 105 may not be built in the computer 10, and may be connected to the computer 10 as an external device.
コンピュータ20は、各種データを記憶するメモリ201と、メモリ201に記憶されているプログラムに従う各種データ処理を行うプロセッサ202と、外部の装置との間でデータ通信を行う通信ユニット203を備える。
The computer 20 includes a memory 201 for storing various data, a processor 202 for performing various data processing in accordance with a program stored in the memory 201, and a communication unit 203 for performing data communication with an external apparatus.
プロセッサ202がメモリ201に記憶されているプログラムに従う各種データ処理を行うと、コンピュータ20は降雨量データを端末装置11に配信するサーバ装置12として動作する。サーバ装置12の機能構成は、一般的なデータ配信を行うサーバ装置の機能構成と同様であるため、その説明を省略する。
When the processor 202 performs various data processing in accordance with the program stored in the memory 201, the computer 20 operates as the server device 12 for distributing rainfall amount data to the terminal device 11. The functional configuration of the server device 12 is the same as the functional configuration of the server device that performs general data distribution, and thus the description thereof is omitted.
図4は、端末装置11の機能構成のうち、土砂災害発生リスクが高い場所をユーザに通知するための処理を行う機能構成を示した図である。以下に図4に示される機能構成を説明する。
FIG. 4 is a diagram showing a functional configuration for performing processing for notifying the user of a place where the risk of occurrence of earth and sand disaster is high among the functional configurations of the terminal device 11. The functional configuration shown in FIG. 4 will be described below.
記憶部111は主としてメモリ101により実現され、各種データを記憶する。記憶部111には、予め、対象地域の数値標高モデルを示す数値標高モデルデータと、対象地域内の鉄道(インフラの一例)の通過する位置を示す路線データが記憶されている。また、記憶部111には、以下に説明する演算部110により生成される各種データが記憶されてゆく。
The storage unit 111 is mainly realized by the memory 101 and stores various data. The storage unit 111 stores in advance numerical elevation model data indicating a numerical elevation model of the target area, and route data indicating a passing position of a railway (an example of infrastructure) in the target area. The storage unit 111 also stores various data generated by the calculation unit 110 described below.
演算部110は主としてプロセッサ102により実現され、各種演算を行う。演算部110は、対象地域を構成する複数のセルの各々に関し、当該セルの集水面積を算出する集水面積算出部1101を備える。本願においてセルとは、対象地域を分割して得られる複数の所定の大きさの矩形の領域の各々を意味する。セルの集水面積とは、当該セルに流れ込む水を供給する領域である集水領域の面積である。集水面積算出部1101は、数値標高モデルデータが示す数値標高モデルを用いて、既知の地形水文分析により対象地域内の各セルの集水面積を算出する。集水面積算出部1101により算出された各セルの集水面積を示すデータは、集水面積データとして記憶部111に記憶される。
The operation unit 110 is mainly realized by the processor 102 and performs various operations. The calculation unit 110 includes a water collection area calculation unit 1101 that calculates a water collection area of each of a plurality of cells forming the target area. In the present application, the cell means each of a plurality of rectangular areas of a predetermined size obtained by dividing the target area. The water collection area of a cell is the area of a water collection area which is an area for supplying water flowing into the cell. The water collection area calculation unit 1101 calculates the water collection area of each cell in the target area by known topographical hydrological analysis using the digital elevation model indicated by the digital elevation model data. Data indicating the water collection area of each cell calculated by the water collection area calculation unit 1101 is stored in the storage unit 111 as water collection area data.
演算部110は、対象地域内の各セルの勾配を算出する勾配算出部1102を備える。勾配算出部1102は、数値標高モデルデータが示す数値標高モデルの空間微分を行い、対象地域内の各セルの勾配を算出する。勾配算出部1102により算出された各セルの勾配を示すデータは、勾配データとして記憶部111に記憶される。
The calculation unit 110 includes a gradient calculation unit 1102 that calculates the gradient of each cell in the target area. The gradient calculation unit 1102 performs spatial differentiation of the digital elevation model indicated by the digital elevation model data, and calculates the gradient of each cell in the target area. Data indicating the gradient of each cell calculated by the gradient calculation unit 1102 is stored in the storage unit 111 as gradient data.
演算部110は、対象地域における標準的な土砂の削れやすさをもたらす集水面積と勾配の組み合わせを示す回帰式を特定する回帰式特定部1103を備える。回帰式特定部1103は、対象地域内の各セルに関し、集水面積データが示す集水面積と、勾配データが示す勾配とを対応付け、対応付けられた集水面積と勾配の組をサンプルとする母集団に関し、回帰分析により回帰式を特定する。
The calculation unit 110 includes a regression equation identification unit 1103 that identifies a regression equation indicating a combination of a water collection area and a gradient that brings about a standard soil erosion ease in the target area. The regression equation identification unit 1103 associates the water collection area indicated by the water collection area data with the gradient indicated by the gradient data for each cell in the target area, and sets of the correlated water collection area and the gradient are used as samples. The regression equation is specified by regression analysis for the target population.
本実施形態において、回帰式特定部1103が特定する回帰式は、以下の式1の構造を備える。
ただし、Sは勾配(単位:m/m)、Afは集水面積(単位:m2)である。また、B及びpは対象地域の土砂の特性により定まる定数であり、回帰分析により特定される。
In the present embodiment, the regression equation identified by the regression equation identifying unit 1103 has the structure of Equation 1 below.
However, S is a gradient (unit: m / m) and A f is a water collection area (unit: m 2 ). Also, B and p are constants determined by the characteristics of the soil in the target area, and are identified by regression analysis.
式1は、以下の式2から導出される。
ただし、Eは土砂の侵食速度(単位:m/yr)、Kは土砂の侵食効率(単位:例えばyr-1(べき数mに依存))である。また、m及びnは集水面積Afと勾配Sの重み付けを示す数値(m>0、n>0)である。式2に示されるように、土砂の侵食速度が勾配と集水面積のべき乗の積に概ね比例する関係を有する点は既知である。なお、式1の定数と式2の定数には以下の式3及び式4に示す関係がある。
Equation 1 is derived from Equation 2 below.
However, E is the erosion rate of soil (unit: m / yr), K is the erosion efficiency of soil (unit: eg yr −1 (depends on the power number m)). Also, m and n are numerical values (m> 0, n> 0) indicating the weighting of the water collection area A f and the slope S. As shown in Equation 2, it is known that the erosion rate of soil has a relationship approximately proportional to the product of the slope and the power of the water collection area. The constant of equation 1 and the constant of equation 2 have the relationships shown in equations 3 and 4 below.
回帰式特定部1103により特定された回帰式を示すデータは、回帰式データとして記憶部111に記憶される。
Data indicating the regression equation identified by the regression equation identifying unit 1103 is stored in the storage unit 111 as regression equation data.
演算部110は、対象地域内のセルの中から鉄道が通るセルを危険評価セルとして抽出する危険評価セル抽出部1104を備える。危険評価セル抽出部1104は、路線データに基づき危険評価セルを抽出する。危険評価セル抽出部1104により抽出された危険評価セルを示すデータは、危険評価セルデータとして記憶部111に記憶される。
The calculation unit 110 includes a risk evaluation cell extraction unit 1104 that extracts a cell through which the railway passes from among cells in the target area as a risk evaluation cell. The risk evaluation cell extraction unit 1104 extracts a risk evaluation cell based on the route data. Data indicating the danger evaluation cell extracted by the danger evaluation cell extraction unit 1104 is stored in the storage unit 111 as danger evaluation cell data.
演算部110は、危険評価セルの各々に関し、当該危険評価セルの集水領域を監視領域として特定する監視領域特定部1105を備える。監視領域特定部1105は、数値標高モデルデータが示す数値標高モデルを用いて、危険評価セルの各々に関し、既知の地形水文分析により集水領域を特定し、特定した集水領域を当該危険評価セルの監視領域とする。以下、監視領域内のセルを監視対象セルという。
The calculation unit 110 includes a monitoring area specifying unit 1105 that specifies a water collection area of the risk evaluation cell as a monitoring area for each of the risk evaluation cells. The monitoring area specifying unit 1105 specifies a water collection area by known topographical hydrological analysis for each of the risk evaluation cells using the digital elevation model indicated by the digital elevation model data, and identifies the specified water collection area as the risk evaluation cell. And monitoring area. Hereinafter, cells in the monitoring area are referred to as monitoring target cells.
図5は、対象地域U内の線路r上の1つの危険評価セルPiと、危険評価セルPiの監視領域Qiを示した図である。監視領域特定部1105により特定された各危険評価セルの監視領域を示すデータは、監視領域データとして記憶部111に記憶される。
Figure 5 is a diagram showing one and risk assessment cell P i on line r in the target area U, the monitoring area Q i of the risk assessment cell P i. Data indicating the monitoring area of each risk assessment cell specified by the monitoring area specifying unit 1105 is stored in the storage unit 111 as monitoring area data.
演算部110(図4)は、危険評価セル抽出部1104により抽出された複数の危険評価セルの各々に関し、監視領域特定部1105により特定された監視領域内の監視対象セル毎に、土砂生産性を示す指標である土砂生産性指標を算出する土砂生産性指標算出部1106を備える。
Arithmetic unit 110 (FIG. 4) relates to sediment productivity for each monitoring target cell in the monitoring area specified by monitoring area specifying unit 1105 for each of the plurality of risk evaluation cells extracted by risk evaluation cell extracting unit 1104. The sediment productivity index calculation unit 1106 is provided to calculate the sediment productivity index, which is an index indicating.
本実施形態において、土砂生産性指標算出部1106は以下の式5に従い土砂生産性指標SAIを算出する。
ただし、Slocalは勾配データが示す監視対象セルの勾配、Aflocalは集水面積データが示す監視領域の集水面積である。また、S(Aflocal)は回帰式データが示す回帰式(式1)に従い算出される、監視領域の集水面積Aflocalに応じた勾配である。
In the present embodiment, the sediment productivity index calculation unit 1106 calculates the sediment productivity index SAI according to the following equation 5.
However, S local is the gradient of the monitoring object cell which gradient data show, A flocal is the water collection area of the monitoring area which water collection area data show. Further, S (A flocal ) is a gradient corresponding to the water collection area A flocal of the monitoring area, which is calculated according to the regression equation (Equation 1) represented by the regression data.
土砂生産性指標算出部1106により算出された各危険評価セルの監視対象セル毎の土砂生産性指標SAIを示すデータは、土砂生産性指標データとして記憶部111に記憶される。
Data indicating the sediment productivity index SAI for each monitoring target cell of each risk evaluation cell calculated by the sediment productivity index calculation unit 1106 is stored in the storage unit 111 as sediment productivity index data.
演算部110は、危険評価セル抽出部1104により抽出された複数の危険評価セルの各々に関し、監視領域特定部1105により特定された監視領域内の監視対象セル毎に、崩落土砂の当該危険評価セルへの到達可能性を示す指標である到達可能性指標を算出する到達可能性指標算出部1107を備える。
For each of the monitoring target cells in the monitoring area identified by the monitoring area identifying unit 1105, the computing unit 110 relates to each of the plurality of danger assessment cells extracted by the risk assessment cell extracting unit 1104; A reachability indicator calculation unit 1107 is provided which calculates a reachability indicator that is an indicator indicating the reachability of the terminal.
本実施形態において、到達可能性指標算出部1107は以下の式6に従い到達可能性指標IEFCを算出する。
ただし、HSは数値標高モデルデータが示す、危険評価セルを基準とする監視対象セルの高さ(単位:m)、すなわち監視対象セルの高さから危険評価セルの高さを減じた値である。また、Lは数値標高モデルデータが示す、危険評価セルと監視対象セルの水平距離(単位:m)である。
In the present embodiment, the reachability index calculation unit 1107 calculates the reachability index IEFC in accordance with Equation 6 below.
However, H S is the height (unit: m) of the monitoring target cell based on the hazard evaluation cell indicated by the digital elevation model data, that is, the value obtained by subtracting the height of the hazard evaluation cell from the height of the monitoring target cell is there. L is a horizontal distance (unit: m) indicated by the digital elevation model data and indicating the danger evaluation cell and the monitoring target cell.
到達可能性指標算出部1107により算出された各危険評価セルの監視対象セル毎の到達可能性指標IEFCを示すデータは、到達可能性指標データとして記憶部111に記憶される。
Data indicating the reachability index IEFC of each of the monitoring target cells of each risk evaluation cell calculated by the reachability index calculation unit 1107 is stored in the storage unit 111 as reachability index data.
演算部110は、危険評価セル抽出部1104により抽出された複数の危険評価セルの各々に関し、監視領域特定部1105により特定された監視領域内の監視対象セル毎に、危険評価セルに到達し得る崩落土砂の生産性を示す指標であるハザード指標を算出するハザード指標算出部1108を備える。
The calculation unit 110 can reach the danger evaluation cell for each of the monitoring target cells in the monitoring area specified by the monitoring area specifying unit 1105 for each of the plurality of danger evaluation cells extracted by the risk evaluation cell extraction unit 1104. A hazard index calculation unit 1108 that calculates a hazard index that is an index indicating productivity of fallen soil is provided.
本実施形態において、ハザード指標算出部1108は以下の式7に従いハザード指標TGIを算出する。
In the present embodiment, the hazard index calculation unit 1108 calculates the hazard index TGI according to the following equation 7.
ハザード指標算出部1108により算出された各危険評価セルの監視対象セル毎のハザード指標TGIを示すデータは、ハザード指標データとして記憶部111に記憶される。
Data indicating the hazard index TGI for each monitoring target cell of each hazard evaluation cell calculated by the hazard index calculation unit 1108 is stored in the storage unit 111 as hazard index data.
演算部110は、危険評価セル抽出部1104により抽出された複数の危険評価セルの各々に関し、ハザード指標算出部1108により算出されたハザード指標TGIの統計量をインフラリスク指標として算出するインフラリスク指標算出部1109を備える。
The calculation unit 110 calculates an infrastructure risk index for calculating the statistics of the hazard index TGI calculated by the hazard index calculation unit 1108 for each of the plurality of danger evaluation cells extracted by the danger evaluation cell extraction unit 1104 as an infrastructure risk index. A unit 1109 is provided.
本実施形態において、インフラリスク指標算出部1109はハザード指標TGIの算術平均をインフラリスク指標SLPRとして算出する。インフラリスク指標算出部1109により危険評価セル毎に算出されたインフラリスク指標SLPRを示すデータは、インフラリスク指標データとして記憶部111に記憶される。
In the present embodiment, the infrastructure risk index calculator 1109 calculates an arithmetic mean of the hazard indexes TGI as the infrastructure risk index SLPR. Data indicating the infrastructure risk indicator SLPR calculated for each risk evaluation cell by the infrastructure risk indicator calculation unit 1109 is stored in the storage unit 111 as infrastructure risk indicator data.
表示部112は主としてディスプレイ104により実現され、演算部110により生成され、記憶部111に記憶されている各種データが示す情報を表示する。図6及び図7は、表示部112が表示する情報を例示した図である。
The display unit 112 is mainly realized by the display 104, and displays information indicated by various data generated by the calculation unit 110 and stored in the storage unit 111. 6 and 7 are diagrams exemplifying information displayed by the display unit 112. FIG.
図6は、表示部112が表示するハザードマップを示している。図6に例示のハザードマップには、対象地域U内の線路r上の危険評価セルのうちインフラリスク指標SLPRが所定の閾値以上の危険評価セルとして、危険評価セルP1、P2、P3が図示されている。また、図6に例示のハザードマップには、危険評価セルP1、P2、P3の各々に応じた監視領域Q1、Q2、Q3に含まれる監視対象セルのうちハザード指標TGIが所定の閾値以上の監視対象セルが×印で示されている。
FIG. 6 shows a hazard map displayed by the display unit 112. In the hazard map illustrated in FIG. 6, among the hazard evaluation cells on the line r in the target area U, the hazard evaluation cells P 1 , P 2 , P 3 are regarded as hazard evaluation cells in which the infrastructure risk indicator SLPR is greater than or equal to a predetermined threshold. Is illustrated. Further, in the hazard map illustrated in FIG. 6, among the monitoring target cells included in the monitoring areas Q 1 , Q 2 and Q 3 corresponding to each of the risk assessment cells P 1 , P 2 and P 3 , the hazard index TGI is Monitored cells above a predetermined threshold are indicated by crosses.
ユーザはハザードマップを見て、線路r上で土砂災害を受けやすい場所と、対象地域内で土砂災害をもたらす土砂崩落の発生しやすい場所を知ることができる。
The user sees the hazard map, and can know a place susceptible to landslide disasters on the track r and a place prone to landslides causing landslide disasters in the target area.
図7は、表示部112が表示する沿線リスクラインを示している。沿線リスクラインは、線路rの所定の基準点から線路r上の危険評価セルまでの距離(線路rに沿った距離)を横軸とし、横軸に示される距離に応じた危険評価セルのインフラリスク指標SLPRを縦軸にプロットしたグラフである。ユーザは沿線リスクラインを見て、線路r上の各地点の土砂災害の受けやすさを知ることができる。
FIG. 7 shows a along-line risk line displayed by the display unit 112. The risk line along the road has a horizontal axis representing the distance from the predetermined reference point on the line r to the risk evaluation cell on the line r (distance along the line r), and the infrastructure of the risk evaluation cell according to the distance shown on the horizontal axis. It is the graph which plotted risk index SLPR on the vertical axis. The user can see the risk line along the road and know the susceptibility of each point on the track r to landslide disaster.
図8は、端末装置11の機能構成のうち、土砂崩落が発生すると推定される時刻をユーザに通知するための処理を行う機能構成を示した図である。端末装置11は、土砂崩落の発生時刻を推定するための構成部として、上述した記憶部111、演算部110、表示部112に加え、サーバ装置12から降雨量データを受信する受信部113を備える。受信部113は主として通信ユニット103により実現される。
FIG. 8 is a diagram showing a functional configuration for performing processing for notifying the user of the time at which it is estimated that earth and sand fall will occur among the functional configurations of the terminal device 11. The terminal device 11 includes a receiving unit 113 that receives rainfall data from the server device 12 in addition to the storage unit 111, the arithmetic unit 110, and the display unit 112 described above as a configuration unit for estimating occurrence time of landslide. . The receiving unit 113 is mainly realized by the communication unit 103.
演算部110は、土砂崩落の発生時刻を推定するための構成部として、圧力水頭算出部1110、安定性指標算出部1111、発生時刻推定部1112を備える。
The calculation unit 110 includes a pressure head calculation unit 1110, a stability index calculation unit 1111, and an occurrence time estimation unit 1112 as a component for estimating the occurrence time of landslide.
圧力水頭算出部1110は、対象地域内のセルの各々に関し、以下の式8に従い、降雨開始時刻を基準とする時刻t(すなわち、降雨開始時刻から時間t(単位:s)が経過した時刻)における圧力水頭ψ(t)(単位:m)を算出する。なお、以下の式8は、Richard M. Iversonにより2000年に発表された論文"Landslide triggering by rain infiltration"において提案されたモデル方程式である。
The pressure head calculation unit 1110 calculates the time t (that is, the time when time t (unit: s) has elapsed from the rainfall start time) based on the rainfall start time according to the following equation 8 for each of the cells in the target area Calculate the pressure head (t) (unit: m) at. The following equation 8 is a model equation proposed in a paper "Landslide triggering by rain infiltration" published in 2000 by Richard M. Iverson.
ただし、t*は以下の式9で示される値である。
ただし、D0は拡散係数(単位:m2/s)、αは斜面傾斜角(単位:deg)、Zは深さ(単位:m)である。
However, t * is a value shown by the following equation 9.
However, D 0 is a diffusion coefficient (unit: m 2 / s), α is a slope inclination angle (unit: deg), and Z is a depth (unit: m).
また、T*は以下の式10で示される値である。
ただし、Tは降雨持続時間(単位:s)である。
Moreover, T * is a value shown by the following equation 10.
Where T is the rainfall duration (unit: s).
また、ψ0は圧力水頭の初期値、IZは雨量強度(単位:m/s)、KZは深さ方向の透水係数(m/s)、R(t*)は以下の式11のxにt*を代入した値、R(t*-T*)は以下の式11のxに(t*-T*)を代入した値である。
Ψ0 is the initial value of pressure head, I Z is the rainfall intensity (unit: m / s), K Z is the permeability coefficient in the depth direction (m / s), R (t * ) is x in the following equation 11 A value obtained by substituting t * into R, and R (t * -T * ) is a value obtained by substituting (t * -T * ) into x in the following Expression 11.
圧力水頭算出部1110により算出されたセル毎の時刻tにおける圧力水頭ψ(t)を示すデータは、圧力水頭データとして記憶部111に記憶される。
Data indicating the pressure head (t) at time t for each cell calculated by the pressure head calculation unit 1110 is stored in the storage unit 111 as pressure head data.
記憶部111には、圧力水頭算出部1110が各セルの時刻tにおける圧力水頭ψ(t)を算出するために用いるデータとして、拡散係数D0を示す拡散係数データ、各セルの斜面傾斜角αを示す斜面傾斜角データ、各セルの深さZを示す深さデータ、雨量強度IZを示す雨量強度データ、深さ方向の透水係数KZを示す透水係数データ、降雨持続時間Tを示す降雨持続時間データが記憶されている。
In the storage unit 111, as data used by the pressure head calculation unit 1110 to calculate the pressure head (t) at time t of each cell, diffusion coefficient data indicating the diffusion coefficient D 0 , slope inclination angle α of each cell slope inclination angle data indicating the depth data indicating the depth Z of each cell, rainfall intensity data indicating the rainfall intensity I Z, permeability data indicating the permeability K Z in the depth direction, rain indicating rainfall duration T Duration data is stored.
拡散係数データが示す拡散係数D0と、透水係数データが示す透水係数KZは、対象地域内の代表点における水文観測値と、式8に示されるモデル方程式とのフィッティングにより特定された値である。
The diffusion coefficient D 0 indicated by the diffusion coefficient data and the water permeability coefficient K Z indicated by the permeability coefficient data are values specified by fitting of the hydrological observation values at representative points in the target area with the model equation shown in Equation 8. is there.
斜面傾斜角データが示す各セルの斜面傾斜角αと、深さデータが示す各セルの深さZは、数値標高モデルデータに基づき特定された値である。
The slope inclination angle α of each cell indicated by the slope inclination data and the depth Z of each cell indicated by the depth data are values specified based on the digital elevation model data.
雨量強度データが示す雨量強度IZと、降雨持続時間データが示す降雨持続時間Tは、受信部113がサーバ装置12から受信した降雨量データに基づき特定された値である。
The rainfall intensity I Z indicated by the rainfall intensity data and the rainfall duration T indicated by the rainfall duration data are values specified based on the rainfall amount data received by the receiving unit 113 from the server device 12.
なお、圧力水頭算出部1110が時刻tにおける圧力水頭ψ(t)の算出に用いる圧力水頭の初期値ψ0は、圧力水頭データが示す降雨開始時刻における圧力水頭である。
The initial value ψ 0 of the pressure head used by the pressure head calculation unit 1110 to calculate the pressure head (t) at time t is the pressure head at the rainfall start time indicated by the pressure head data.
安定性指標算出部1111は、対象地域内のセルの各々に関し、以下の式12に従い時刻tにおける斜面安定性指標FSを算出する。なお、以下の式12は、A. W. SkemptonとF. A. Deloryにより1957年に発表された論文" Stability of Natural Slopes in London Clay"において提案された算出式である。
The stability index calculator 1111 calculates the slope stability index F S at time t according to the following equation 12 for each of the cells in the target area. Equation 12 below is a calculation equation proposed in the paper "Stability of Natural Slopes in London Clay" published in 1957 by A. W. Skempton and F. A. Delory.
ただし、cは土層の粘着力(単位:kPa)、Δcは樹木根系による粘着力の増加量(単位:kPa)、γは土層の飽和単位重量(単位:N/m3)、γWは水の単位重量(単位:N/m3)、hは土層厚(単位:m)、αは斜面傾斜角(単位:deg)、φはせん断抵抗角(単位:deg)である。
Where c is the adhesion of the soil layer (unit: kPa), Δc is the increase in adhesion by the tree root system (unit: kPa), γ is the saturation unit weight of the soil layer (unit: N / m 3 ), γ W Is a unit weight of water (unit: N / m 3 ), h is a soil layer thickness (unit: m), α is a slope inclination angle (unit: deg), and φ is a shear resistance angle (unit: deg).
また、mは以下の式13に従い算出される地下水位パラメータ(土層厚hに対する圧力水頭の比)である。
Moreover, m is a groundwater level parameter (ratio of pressure head to soil layer thickness h) calculated according to the following equation 13.
斜面安定性指標FSは、1以上であれば斜面が安定しており、土砂崩落が発生しないことを示し、1未満であれば斜面が不安定であり、土砂崩落が発生することを示す。
The slope stability index F S indicates that the slope is stable if it is 1 or more and that landslide does not occur. If the slope stability index F S is less than 1, it indicates that the slope is unstable and landslide occurs.
記憶部111には、安定性指標算出部1111が各セルの時刻tにおける斜面安定性指標FSを算出するために用いるデータとして、土層の粘着力cを示す粘着力データ、樹木根系による土層の粘着力の増加量Δcを示す粘着力増加量データ、土層の飽和単位重量γを示す飽和単位重量データ、水の単位重量γWを示す単位重量データ、各セルの土層厚hを示す土層厚データ、各セルの斜面傾斜角αを示す斜面傾斜角データ、せん断抵抗角φを示すせん断抵抗角データが記憶されている。
In the storage unit 111, as data used by the stability index calculation unit 1111 to calculate the slope stability index F S at time t of each cell, adhesion data indicating the adhesion c of the soil layer, soil by the tree root system Adhesion force increase data showing increase amount Δc of layer adhesion, saturation unit weight data showing saturation unit weight γ of soil layer, unit weight data showing unit weight γ W of water, soil layer thickness h of each cell The stored soil layer thickness data, the slope inclination angle data indicating the slope inclination angle α of each cell, and the shear resistance angle data indicating the shear resistance angle φ are stored.
粘着力データが示す土層の粘着力c、飽和単位重量データが示す土層の飽和単位重量γ、せん断抵抗角データが示すせん断抵抗角φは、対象地域内から採取したサンプルを用いて行われたせん断試験等により特定された値である。粘着力増加量データが示す土層の粘着力の増加量Δcは、土層中における深度の関数としての植物根系の数密度や根直径分布および過去の発災事例の逆解析により経験的に求められた値である。
The adhesion force c of the soil layer indicated by the adhesion data, the saturation unit weight γ of the soil layer indicated by the saturation unit weight data, and the shear resistance angle φ indicated by the shear resistance angle data are performed using samples taken from within the target area It is the value specified by the shear test etc. Adhesion increase amount Δc of the soil layer indicated by the adhesion increase amount data is empirically determined by the number density and root diameter distribution of the plant root system as a function of depth in the soil layer and the reverse analysis of the past disaster cases Value.
斜面傾斜角データが示す各セルの斜面傾斜角αは、数値標高モデルデータに基づき特定された値である。
The slope inclination angle α of each cell indicated by the slope inclination angle data is a value specified based on digital elevation model data.
土層厚データが示す各セルの土層厚hは、数値標高モデルデータに基づき特定された傾斜曲率Cを以下の式14に代入して算出された値である。
ただし、h0は傾斜曲率Cが0の箇所の平板型斜面の土層厚であり、aは指数係数である。
The soil layer thickness h of each cell indicated by the soil layer thickness data is a value calculated by substituting the slope curvature C specified based on the digital elevation model data into the following equation 14.
However, h 0 is the soil layer thickness of the flat plate type slope portion inclined curvature C is 0, a is an exponential factor.
式14の指数係数aは、対象地域内からランダムに選択された複数のセルの各々に関し、数値標高モデルデータに基づき特定された傾斜曲率Cと土層厚hの実測値との組み合わせをサンプルとする母集団に関し、回帰分析により特定された値を用いる。なお、傾斜曲率Cから土層厚hを推定するために用いる関数は回帰分析により求められるが、関数の種別は式14に例示の指数関数に限られず、傾斜曲率Cから土層厚hの有意な推定値を導出できる限り、例えば、線形関数、多項式関数、べき関数等のいずれの種別の関数が用いられてもよい。
The index coefficient a in Equation 14 represents, for each of a plurality of cells randomly selected from the target area, a combination of the slope curvature C specified based on the digital elevation model data and the measured value of the soil layer thickness h as a sample Use the values specified by regression analysis for the target population. Although the function used to estimate the soil layer thickness h from the slope curvature C can be obtained by regression analysis, the type of the function is not limited to the exponential function illustrated in Equation 14, and the significance of the soil slope layer h from the slope curvature C For example, any type of function such as a linear function, a polynomial function, or a power function may be used as long as it is possible to derive an estimated value.
安定性指標算出部1111により算出されたセル毎の時刻tにおける斜面安定性指標FSを示すデータは、斜面安定性指標データとして記憶部111に記憶される。
Data indicating the slope stability index F S at time t for each cell calculated by the stability index calculation unit 1111 is stored in the storage unit 111 as slope stability index data.
発生時刻推定部1112は、インフラリスク指標SLPRが所定の閾値以上の危険評価セルの各々に応じた監視領域に含まれる監視対象セルの各々に関し、斜面安定性指標データが1未満となる時刻を、その監視対象セルにおいて土砂崩落が発生する時刻として推定する。
The occurrence time estimation unit 1112 determines the time when the slope stability index data becomes less than 1 for each of the monitoring target cells included in the monitoring area according to each of the risk evaluation cells in which the infrastructure risk indicator SLPR is equal to or more than a predetermined threshold. It is estimated as the time when a landslide occurs in the monitoring target cell.
表示部112は、発生時刻推定部1112により推定される土砂崩落の発生場所及び発生時刻を表示する。図9は、表示部112が表示するハザードマップを例示した図である。図9に例示のハザードマップには、図6に示したハザードマップに含まれる情報に加え、土砂崩落の発生が推定される場所と時刻が表示される。
The display unit 112 displays the occurrence location and occurrence time of the landslide that is estimated by the occurrence time estimation unit 1112. FIG. 9 is a view exemplifying a hazard map displayed by the display unit 112. In the hazard map illustrated in FIG. 9, in addition to the information included in the hazard map illustrated in FIG. 6, places and times at which occurrence of landslides is estimated are displayed.
ユーザはハザードマップを見て、線路r上で土砂災害を受けやすい場所に対し崩落土砂をもたらす可能性のある監視領域内において、いずれの場所でどの時刻で土砂崩落が発生するかを知ることができる。
The user may look at the hazard map to know at which location and at which time the landslide will occur in the monitoring area that may cause the fallen soil to a location susceptible to landslide disasters on the track r. it can.
[変形例]
本発明は、上述した実施形態と異なる形態で実施されてもよい。以下に上述した実施形態の変形例を示す。また、以下の変形例は各々組み合わされてもよい。 [Modification]
The present invention may be implemented in a form different from the embodiment described above. Below, the modification of embodiment mentioned above is shown. Moreover, the following modifications may be combined respectively.
本発明は、上述した実施形態と異なる形態で実施されてもよい。以下に上述した実施形態の変形例を示す。また、以下の変形例は各々組み合わされてもよい。 [Modification]
The present invention may be implemented in a form different from the embodiment described above. Below, the modification of embodiment mentioned above is shown. Moreover, the following modifications may be combined respectively.
(1)上述した実施形態において、インフラは鉄道であるものとしたが、インフラの種別は鉄道に限られず、道路、発電所、変電所等のいずれであってもよい。
(1) In the embodiment described above, the infrastructure is a railway, but the type of infrastructure is not limited to a railway, and may be any of a road, a power plant, a substation or the like.
(2)上述した実施形態においては、監視対象セル毎の土砂生産性を示す指標として式5に定義されるSAIが用いられるものとしたが、監視対象セル毎の土砂生産性を示す指標であれば、他の指標が用いられてもよい。
(2) In the embodiment described above, SAI defined in Equation 5 is used as an index indicating sediment productivity for each monitoring target cell, but it is an index indicating sediment productivity for each monitoring target cell For example, other indicators may be used.
(3)上述した実施形態においては、監視対象セル毎の崩落土砂の危険評価セルへの到達可能性を示す指標として式6に定義されるIEFCが用いられるものとしたが、監視対象セル毎の崩落土砂の危険評価セルへの到達可能性を示す指標であれば、他の指標が用いられてもよい。
(3) In the embodiment described above, the IEFC defined in the equation 6 is used as an index indicating the reachability of the fallen soil for each monitoring target cell to the risk evaluation cell. Other indicators may be used as long as they indicate the reachability of the fallen soil to the risk assessment cell.
(4)上述した実施形態においては、監視対象セル毎の危険評価セルに到達し得る崩落土砂の生産性を示す指標として式7に定義されるTGIが用いられるものとしたが、監視対象セル毎の土砂生産性を示す指標と、監視対象セル毎の崩落土砂の危険評価セルへの到達可能性を示す指標とを用いて算出される指標であれば、他の指標が用いられてもよい。
(4) In the embodiment described above, TGI defined in Equation 7 is used as an index indicating productivity of fallen soil that can reach the danger evaluation cell for each monitoring target cell. Other indexes may be used as long as they are calculated using the index indicating the productivity of sediment and the index indicating the possibility of reaching the risk evaluation cell of the fallen soil for each monitoring target cell.
(5)上述した実施形態においては、インフラ上の危険評価セルが崩落土砂の被害を受ける可能性を示すインフラリスク指標SLPRとして、ハザード指標TGIの算術平均が用いられるものとしたが、監視対象セル毎の土砂生産性を示す指標と、監視対象セル毎の崩落土砂の危険評価セルへの到達可能性を示す指標とを用いて算出される指標の統計量であれば、他の統計量がインフラリスク指標SLPRとして用いられてもよい。
(5) In the above-described embodiment, the arithmetic mean of the hazard indicator TGI is used as the infrastructure risk indicator SLPR indicating the possibility that the hazard evaluation cell on the infrastructure may be damaged by the fallen soil. If it is a statistic of an index calculated using an index indicating sediment productivity for each time and an index indicating reachability to the risk evaluation cell of fallen soil for each monitoring target cell, another statistic is the infrastructure It may be used as a risk indicator SLPR.
(6)上述した実施形態においては、監視領域内における土砂崩落の発生時刻を推定するための指標として、式12に定義される斜面安定性指標FSが用いられるものとしたが、対象地域における降雨量の経時変化に基づき算出される、各セルの斜面安定性を示す指標であれば、他の指標が用いられてもよい。
(6) In the embodiment described above, the slope stability index F S defined in Equation 12 is used as an index for estimating occurrence time of landslide in the monitoring area, but in the target area Other indicators may be used as long as they are indicators indicating slope stability of each cell, which are calculated based on time-dependent changes in rainfall.
(7)上述した実施形態においては、端末装置11及びサーバ装置12はコンピュータがプログラムに従う処理を実行することにより実現されるものとしたが、端末装置11及びサーバ装置12の少なくとも一方が、専用装置として構成されてもよい。
(7) In the embodiment described above, the terminal device 11 and the server device 12 are realized by the computer executing the process according to the program, but at least one of the terminal device 11 and the server device 12 is a dedicated device May be configured as
1…危険度評価システム、10…コンピュータ、11…端末装置、12…サーバ装置、20…コンピュータ、101…メモリ、102…プロセッサ、103…通信ユニット、104…ディスプレイ、105…キーボード、110…演算部、111…記憶部、112…表示部、113…受信部、201…メモリ、202…プロセッサ、203…通信ユニット、1101…集水面積算出部、1102…勾配算出部、1103…回帰式特定部、1104…危険評価セル抽出部、1105…監視領域特定部、1106…土砂生産性指標算出部、1107…到達可能性指標算出部、1108…ハザード指標算出部、1109…インフラリスク指標算出部、1110…圧力水頭算出部、1111…安定性指標算出部、1112…発生時刻推定部
DESCRIPTION OF SYMBOLS 1 ... danger degree evaluation system, 10 ... computer, 11 ... terminal device, 12 ... server apparatus, 20 ... computer, 101 ... memory, 102 ... processor, 103 ... communication unit, 104 ... display, 105 ... keyboard, 110 ... calculating part , 111: storage unit, 112: display unit, 113: reception unit, 201: memory, 202: processor, 203: communication unit, 1101: water collection area calculation unit, 1102: slope calculation unit, 1103: regression expression identification unit, 1104 ... hazard evaluation cell extraction unit, 1105 ... monitoring area identification unit, 1106 ... sediment productivity index calculation unit, 1107 ... reachability index calculation unit, 1108 ... hazard index calculation unit, 1109 ... infrastructure risk index calculation unit, 1110 ... Pressure head calculation unit, 1111 ... stability index calculation unit, 1112 ... generation time estimation unit
Claims (10)
- 危険評価セルと複数の監視対象セルとを含む領域を土砂崩落の監視領域とし、前記監視対象セル毎の土砂生産性と、前記監視対象セル毎の崩落土砂の前記危険評価セルへの到達可能性と、に基づき、前記危険評価セルにおける土砂災害発生リスクを評価する危険度評価システム。 An area including a risk evaluation cell and a plurality of monitoring target cells is used as a monitoring area of sediment loss, and sediment productivity for each of the monitoring target cells and reachability to the risk evaluation cell of falling sediment for each of the monitoring target cells And a risk evaluation system for evaluating the risk of landslide disaster occurrence in the risk evaluation cell based on.
- 前記複数の監視対象セルの各々に関し、前記監視領域を含む地域を構成する複数のセルの各々の勾配と当該セルに流れ込む水を供給する領域である集水領域の面積との関係を近似する回帰式に従い算出される当該監視対象セルの集水領域の面積に応じた勾配と、当該監視対象セルの勾配と、の比を用いた指標を、前記監視対象セル毎の土砂生産性を示す土砂生産性指標として用いる
請求項1に記載の危険度評価システム。 Regression for approximating the relationship between the gradient of each of the plurality of cells constituting the area including the monitoring area and the area of the water collection area that is the area supplying water flowing into the cell for each of the plurality of monitoring target cells Sediment production showing sediment productivity for each of the monitoring target cells, an index using the ratio of the gradient according to the area of the water collection area of the monitoring target cell calculated according to the formula and the gradient of the monitoring target cell The risk evaluation system according to claim 1, wherein the risk evaluation system is used as a gender index. - 前記複数の監視対象セルの各々に関し、当該監視対象セルと前記危険評価セルの高度差と、当該監視対象セルと前記危険評価セルの水平距離と、の比を用いた指標を、前記監視対象セル毎の崩落土砂の前記危険評価セルへの到達可能性を示す到達可能性指標として用いる
請求項1に記載の危険度評価システム。 For each of the plurality of monitoring target cells, an index using the ratio of the height difference between the monitoring target cell and the risk evaluation cell and the horizontal distance between the monitoring target cell and the risk evaluation cell is the monitoring target cell. The risk level evaluation system according to claim 1, wherein the risk level evaluation system is used as a reachability index indicating the reachability of the fallen soil to the risk evaluation cell. - 前記複数の監視対象セルの各々に関し、当該監視対象セルと前記危険評価セルの高度差と、当該監視対象セルと前記危険評価セルの水平距離と、の比を用いた指標を、前記監視対象セル毎の崩落土砂の前記危険評価セルへの到達可能性を示す到達可能性指標として用いる
請求項2に記載の危険度評価システム。 For each of the plurality of monitoring target cells, an index using the ratio of the height difference between the monitoring target cell and the risk evaluation cell and the horizontal distance between the monitoring target cell and the risk evaluation cell is the monitoring target cell. The risk level evaluation system according to claim 2, wherein the risk level evaluation system is used as a reachability index indicating the reachability of the fallen soil to the risk evaluation cell. - 前記複数の監視対象セルの各々に関し前記土砂生産性指標と前記到達可能性指標とを用いて算出される指標の統計量に基づき、前記危険評価セルにおける土砂災害発生リスクを評価する
請求項4に記載の危険度評価システム。 The risk of occurrence of landslide disaster in the risk evaluation cell is evaluated based on the statistics of the index calculated using the sediment productivity index and the reachability index for each of the plurality of monitoring target cells. Risk assessment system described. - インフラ上の複数のセルの各々に関し、当該セルを前記危険評価セルとした場合の前記土砂災害発生リスクを評価することによって、前記インフラ上の危険なセルを特定する
請求項1に記載の危険度評価システム。 The risk degree according to claim 1, wherein the dangerous cell on the infrastructure is identified by evaluating the risk of occurrence of the earth-and-sand disaster when the cell is regarded as the risk evaluation cell for each of a plurality of cells on the infrastructure. Evaluation system. - 前記監視領域を含む地域における降雨量の経時変化に基づき、前記監視領域内における土砂崩落の発生時刻を推定する
請求項1乃至6のいずれか1項に記載の危険度評価システム。 The risk degree evaluation system according to any one of claims 1 to 6, wherein the occurrence time of landslide in the monitoring area is estimated based on a temporal change of rainfall amount in an area including the monitoring area. - 前記複数の監視対象セルは、前記危険評価セルに流れ込む水を供給する領域である前記危険評価セルの集水領域を構成する複数のセルである
請求項1に記載の危険度評価システム。 The risk degree evaluation system according to claim 1, wherein the plurality of monitoring target cells are a plurality of cells constituting a water collection area of the risk evaluation cell, which is an area for supplying water flowing into the risk evaluation cell. - 前記監視対象セル毎にその土砂生産性を示す土砂生産性指標を算出する土砂生産指標算出部と、
前記監視対象セル毎にその崩落土砂の前記危険評価セルへの到達可能性を示す到達可能性指標を算出する到達可能性指標算出部と、
前記監視対象セル毎の土砂生産性指標及び到達可能性指標を用いて前記危険評価セルが崩落土砂の被害を受ける可能性を示すリスク指標を算出するリスク指標算出部と、
を含み、
前記リスク指標と閾値とを比較することによって前記危険評価セルにおける土砂災害発生リスクを評価する
請求項1に記載の危険度評価システム。 A sediment production index calculation unit that calculates a sediment productivity index indicating the sediment productivity for each of the monitoring target cells;
A reachability index calculation unit that calculates a reachability index indicating the reachability of the fallen soil to the risk evaluation cell for each of the monitoring target cells;
A risk index calculation unit that calculates a risk index indicating the possibility that the risk evaluation cell may be damaged by the fallen soil using the sediment productivity index and the reachability index for each of the monitoring target cells;
Including
The risk assessment system according to claim 1, wherein the risk of landslide disaster occurrence in the risk assessment cell is evaluated by comparing the risk indicator with a threshold. - コンピュータに、危険評価セルと複数の監視対象セルとを含む土砂崩落の監視領域における、前記監視対象セル毎の土砂生産性を示す指標である土砂生産性指標と、前記監視対象セル毎の崩落土砂の前記危険評価セルへの到達可能性を示す指標である到達可能性指標とに基づき、前記危険評価セルにおける土砂災害発生リスクを示す指標を算出させるためのプログラム。 Sediment productivity index, which is an index indicating sediment productivity for each of the monitoring target cells in a monitoring area of landslides including a risk evaluation cell and a plurality of monitoring target cells, on a computer, and fallen soil for each of the monitoring target cells And a program for calculating an index indicating a risk of occurrence of landslide disaster in the risk evaluation cell based on the reachability index which is an index indicating the reachability to the risk evaluation cell.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-196948 | 2017-10-10 | ||
JP2017196948A JP6941319B2 (en) | 2017-10-10 | 2017-10-10 | Risk assessment system |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019073937A1 true WO2019073937A1 (en) | 2019-04-18 |
Family
ID=66100616
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/037473 WO2019073937A1 (en) | 2017-10-10 | 2018-10-05 | Risk evaluation system |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP6941319B2 (en) |
TW (1) | TWI802599B (en) |
WO (1) | WO2019073937A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109935054A (en) * | 2019-04-25 | 2019-06-25 | 成都星感智联科技有限公司 | A kind of landslide short period forecasting procedure |
CN111415065A (en) * | 2020-02-26 | 2020-07-14 | 广州地理研究所 | A risk assessment method of mountain disaster ecological damage based on action process |
CN112464474A (en) * | 2020-11-26 | 2021-03-09 | 北京市地质研究所 | Low-frequency debris flow early warning method based on risk evaluation |
CN116416762A (en) * | 2023-06-09 | 2023-07-11 | 四川川核地质工程有限公司 | Mud-rock flow early warning method and system based on artificial intelligence |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020060078A (en) * | 2018-10-12 | 2020-04-16 | 日本信号株式会社 | System for estimating time landslide occurs |
CN111311879B (en) * | 2020-01-16 | 2021-04-20 | 广州地理研究所 | Method and device for early warning of debris flow |
CN112504624A (en) * | 2020-11-11 | 2021-03-16 | 华能澜沧江水电股份有限公司 | Hydrodynamic landslide multi-information multi-source fusion early warning method |
CN115019478A (en) * | 2022-08-09 | 2022-09-06 | 中地宝联(北京)国土资源勘查技术开发集团有限公司 | Monitoring and early warning method applied to critical landslide |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016122239A (en) * | 2014-12-24 | 2016-07-07 | エー・シー・エス株式会社 | Earth and sand disaster prediction system |
WO2017047061A1 (en) * | 2015-09-14 | 2017-03-23 | 日本電気株式会社 | Disaster prediction system, moisture prediction device, disaster prediction method, and program recording medium |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3656852B1 (en) * | 2004-07-22 | 2005-06-08 | 有限会社山口ティー・エル・オー | Disaster prevention business plan support method and system |
TWI284865B (en) * | 2005-02-15 | 2007-08-01 | Nat Pingtung University Of Sci | Real-time mobile debris-flow disaster prevention and alert system |
-
2017
- 2017-10-10 JP JP2017196948A patent/JP6941319B2/en active Active
-
2018
- 2018-10-05 WO PCT/JP2018/037473 patent/WO2019073937A1/en active Application Filing
- 2018-10-09 TW TW107135611A patent/TWI802599B/en active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016122239A (en) * | 2014-12-24 | 2016-07-07 | エー・シー・エス株式会社 | Earth and sand disaster prediction system |
WO2017047061A1 (en) * | 2015-09-14 | 2017-03-23 | 日本電気株式会社 | Disaster prediction system, moisture prediction device, disaster prediction method, and program recording medium |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109935054A (en) * | 2019-04-25 | 2019-06-25 | 成都星感智联科技有限公司 | A kind of landslide short period forecasting procedure |
CN111415065A (en) * | 2020-02-26 | 2020-07-14 | 广州地理研究所 | A risk assessment method of mountain disaster ecological damage based on action process |
CN111415065B (en) * | 2020-02-26 | 2023-05-12 | 广州地理研究所 | A risk assessment method for ecological damage of mountain disasters based on action process |
CN112464474A (en) * | 2020-11-26 | 2021-03-09 | 北京市地质研究所 | Low-frequency debris flow early warning method based on risk evaluation |
CN112464474B (en) * | 2020-11-26 | 2023-09-15 | 北京市地质灾害防治研究所 | Low-frequency debris flow early warning method based on risk evaluation |
CN116416762A (en) * | 2023-06-09 | 2023-07-11 | 四川川核地质工程有限公司 | Mud-rock flow early warning method and system based on artificial intelligence |
CN116416762B (en) * | 2023-06-09 | 2023-08-15 | 四川川核地质工程有限公司 | Mud-rock flow early warning method and system based on artificial intelligence |
Also Published As
Publication number | Publication date |
---|---|
TW201928400A (en) | 2019-07-16 |
JP2019070961A (en) | 2019-05-09 |
TWI802599B (en) | 2023-05-21 |
JP6941319B2 (en) | 2021-09-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019073937A1 (en) | Risk evaluation system | |
US11237148B2 (en) | Flood disaster prediction | |
JP2023026680A (en) | A system for estimating the time of occurrence of a landslide | |
KR102242977B1 (en) | Early warning method and system for landslide integrated with weather forecasting information | |
CN113611085B (en) | Monitoring and early warning method and system for geological disasters in geotechnical engineering | |
Greco et al. | Early warning of rainfall-induced landslides based on empirical mobility function predictor | |
KR20180009093A (en) | Wireless sensor network measurring system and method for forcasting landslide | |
JP2022047348A (en) | A system for estimating the possibility of sediment-related disasters at specific points | |
CN113538857B (en) | Landslide geological disaster early warning method, device, terminal and storage medium | |
CN113111595B (en) | Intelligent slope early warning method and device | |
Strader et al. | A Monte Carlo model for estimating tornado impacts | |
CN107958312B (en) | Method, system and storage medium for galloping prediction of transmission line based on inversion algorithm | |
KR101497100B1 (en) | Prediction methods and apparatus of flood risk index for roads considering real-time accumulation rainfall | |
US11493666B2 (en) | System and method for forecasting snowfall probability distributions | |
de Oliveira et al. | Assessing the use of rainfall synthetic series to estimate rainfall erosivity in Brazil | |
CN107491839B (en) | Power grid galloping forecasting method and system based on historical galloping characteristics | |
CN113393144A (en) | Evaluation method and evaluation device for risk classification of static elements of geological landslide | |
JP2010150862A (en) | Apparatus, method and program for determining danger of debris flow | |
JP6555391B2 (en) | Prediction device, prediction system, prediction method, and program | |
KR20100115958A (en) | Prediction method of slope failure to real-time in seashore revetment facilities | |
Pardowitz et al. | Forecasting weather related fire brigade operations on the basis of nowcasting data | |
CN110174713B (en) | Power line strong convection weather monitoring and early warning method and device | |
CN114490897B (en) | Intelligent lightning protection method and device based on big data | |
CN117828384B (en) | Geological disaster risk point monitoring and emergency response system and method | |
Yang et al. | Typhoon damage assessment of power transportation networks using bias-corrected typhoon wind field with dense wind measurements |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18865878 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18865878 Country of ref document: EP Kind code of ref document: A1 |