Nothing Special   »   [go: up one dir, main page]

WO2019073175A1 - Eolienne verticale a pales pivotantes - Google Patents

Eolienne verticale a pales pivotantes Download PDF

Info

Publication number
WO2019073175A1
WO2019073175A1 PCT/FR2018/052515 FR2018052515W WO2019073175A1 WO 2019073175 A1 WO2019073175 A1 WO 2019073175A1 FR 2018052515 W FR2018052515 W FR 2018052515W WO 2019073175 A1 WO2019073175 A1 WO 2019073175A1
Authority
WO
WIPO (PCT)
Prior art keywords
blade
point
pivoting
wind turbine
rotation
Prior art date
Application number
PCT/FR2018/052515
Other languages
English (en)
Inventor
Sébastien CUSSAC
Pascal EPINEAU
Christophe Leveque
Original Assignee
Collaborative Energy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Collaborative Energy filed Critical Collaborative Energy
Publication of WO2019073175A1 publication Critical patent/WO2019073175A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/06Rotors
    • F03D3/062Rotors characterised by their construction elements
    • F03D3/066Rotors characterised by their construction elements the wind engaging parts being movable relative to the rotor
    • F03D3/067Cyclic movements
    • F03D3/068Cyclic movements mechanically controlled by the rotor structure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/21Rotors for wind turbines
    • F05B2240/211Rotors for wind turbines with vertical axis
    • F05B2240/214Rotors for wind turbines with vertical axis of the Musgrove or "H"-type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/21Rotors for wind turbines
    • F05B2240/211Rotors for wind turbines with vertical axis
    • F05B2240/215Rotors for wind turbines with vertical axis of the panemone or "vehicle ventilator" type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/50Kinematic linkage, i.e. transmission of position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/70Adjusting of angle of incidence or attack of rotating blades
    • F05B2260/72Adjusting of angle of incidence or attack of rotating blades by turning around an axis parallel to the rotor centre line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/70Adjusting of angle of incidence or attack of rotating blades
    • F05B2260/78Adjusting of angle of incidence or attack of rotating blades the adjusting mechanism driven or triggered by aerodynamic forces
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/30Wind power
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction

Definitions

  • the technical field of the invention is that of vertical axis wind turbines.
  • wind turbines to produce electricity. These are essentially horizontal wind turbines. However, horizontal axis wind turbines do not align spontaneously with the direction of the wind and must have a dedicated steering mechanism. In addition, in order to be exposed to strong and constant winds, they require an installation several meters high, which poses aesthetic nuisances and makes the installation expensive, as well as the maintenance operations, in particular concerning the orientation mechanism.
  • vertical axis wind turbines Parallel to horizontal axis wind turbines, vertical axis wind turbines have been developed. They have the advantage of being able to be installed near the ground, and to be less expensive than vertical axis wind turbines, and to present a good compromise between the power released and the surface occupied on the ground, typically of the order of 20 W / m 2 . In addition, they can operate in light winds, whatever its orientation.
  • Several types of vertical axis wind turbines have been designed:
  • Savonius-type wind turbines which have fixed and curved blades, take the form of half-cylinders slightly offset from each other. The blades generally extend from a rotating shaft of the wind turbine. Such wind turbines can operate in a light wind, but their performance is limited when the wind speed increases.
  • Darrieus type wind turbines which have fixed blades, each blade being disposed at the end of an arm, perpendicular to the latter. Each arm extends between the axis of rotation of the wind turbine and the blade.
  • Such turbines have a higher efficiency than Savonius wind turbines when the wind is high.
  • their start is difficult, especially compared to Savonius type wind turbines.
  • Panemones with mobile blades whose blades are arranged at the end of an arm, and, unlike Darrieus type wind turbines, are movable relative to the latter.
  • each blade having a leading edge and a trailing edge, each blade being disposed at the end of an arm.
  • Each blade is connected, by its leading edge, to the arm now, and is rotatable relative to to the latter.
  • Each blade also has a link, extending between the trailing edge of said blade and the trailing edges of other blades. The function of the link is to limit the movement of the blade around the arm now.
  • the rotational movements of two opposite blades are symmetrical and synchronous: when a blade pivots at an angle, approaching the central axis of rotation of the wind turbine, the opposite blade pivots simultaneously, according to the same angle, away from the central axis of rotation.
  • the wind turbine described in the French patent application FR2997736 can be considered as an improvement of the device disclosed in EP0021790.
  • this wind turbine the trailing edges of two diametrically opposed blades are connected by a link.
  • the link is deformable, around one or more so-called return means, the latter being movable.
  • This wind turbine is arranged such that when a blade pivots too much with respect to the arm now, the opposite blade tends to limit its spacing, due to the presence of the link between the two blades.
  • the configuration of the wind turbine tends to a configuration of Darrieus type, previously mentioned.
  • the inventors have found that this wind turbine could still be improved, and in particular by better control of the angular clearance of the blades, particularly at low rotational speeds. They have devised the invention, described hereinafter, for this purpose.
  • An object of the invention is a wind turbine, comprising blades configured to rotate about a central axis of rotation in a direction of rotation, the central axis of rotation being intended to be oriented vertically, the wind turbine comprising a rigid frame , the chassis comprising at least one arm holding the blades and extending transversely to the central axis of rotation, each blade having a leading edge and a trailing edge, so that in the direction of rotation, the edge of attack is arranged in front of the trailing edge, the wind turbine comprising at least two blades, said pivoting blades, each pivoting blade being such that:
  • the pivoting blade is connected to a point of the arm, said point of attachment, the pivoting blade being movable in rotation about the point of attachment, along a pivot axis;
  • the pivoting blade is connected to another pivoting blade by a link, preferably flexible, said association link;
  • each pivoting blade is associated with a point, called the firing point, located on the chassis, the firing point preferably being closer to the point of attachment than to the central axis of rotation; each pivoting blade is connected to the firing point associated with it; so as to limit a movement, relative to the firing point, of said pivoting blade, around the pivot axis.
  • connection between the firing point and the pivoting blade serves to maintain, during the pivoting of the blade around the pivot axis, the trailing edge at a distance, less than a predetermined maximum distance, from the firing point. .
  • the firing point is a fixed point of the frame.
  • it can be mobile with respect to the latter.
  • the displacement of the firing point, relative to the frame is limited in a range of displacement, extending for example by a distance of less than 5 cm or 10 cm.
  • the firing points are different.
  • the firing point is closer to the central axis of rotation than is the point of attachment.
  • the points of attachment and firing can also be arranged equidistant from the central axis of rotation.
  • the distance between the point of attachment and the blade corresponds to a first radius of the wind turbine.
  • the firing point is disposed at a distance greater than half the first radius, or even greater than 75% of the first radius, of the central axis of rotation.
  • At least one pivoting blade is connected, at the firing point associated with it, by a return link extending between said firing point and a point, said point of intersection, located on the link of FIG. association connected to said blade.
  • the pivoting blade is connected, at the firing point associated with it, by a return link extending between said firing point and a point, said point of intersection, located on said blade.
  • the point of intersection is advantageously closer to the trailing edge than the point of attachment, and / or between the trailing edge and the point of attachment.
  • the return link is preferably movable around the firing point, along an axis that can be parallel to the central axis of rotation, or inclined relative thereto.
  • the return link is preferably movable with respect to the firing point according to a ball joint junction.
  • the association link associated with the pivoting blade extending along a length, between said pivoting blade and the other pivoting blade, the firing point can be disposed at a distance, less than one-fifth of said length, from the trailing edge of said pivoting blade.
  • the other pivoting blade may be a blade opposite the pivoting blade.
  • the firing point associated with a pivoting blade can be disposed on the arm holding said pivoting blade. It may also be disposed on an arm, said adjacent arm, maintaining an adjacent blade of the pivoting blade.
  • the attachment point is preferably disposed closer to the leading edge than the trailing edge, and / or between the leading edge and the trailing edge.
  • the length of the return link is preferably fixed; alternatively, it is variable in a range, for example less than ⁇ 25% or even ⁇ 50%, around a nominal length.
  • the length of the return link, or its nominal length, is preferably less than or at half the distance between the trailing edge of the leading edge.
  • the firing point is closer to the trailing edge than the point of attachment.
  • At least one pivoting blade defines a blade axis, extending between the trailing edge and the leading edge.
  • the pivoting blade has a surface center.
  • the pivoting blade corresponds to a so-called reference position, such that when the blade extends in the reference position, the axis of the blade defines a reference axis, the reference axis being perpendicular to a straight line. extending in a plane perpendicular to the axis of rotation, and connecting the axis of rotation to the surface center of the blade. The deflection of the trailing edge of the blade is then limited so that:
  • the angle between the blade axis and the reference axis is less than a first limit angle
  • the first limiting angle being greater than the second limiting angle.
  • the first limiting angle may be less than or equal to 60 ° or 50 ° or even 45 °, and / or the second limiting angle is less than 20 °, or even less than 10 °.
  • the wind turbine comprises:
  • the wind turbine may comprise 2 pivoting blades, or a number of pivoting blades greater than 2.
  • FIGS. 2A, 2B and 2C show different configurations of the blades of the wind turbine, according to the first embodiment, at different speeds of rotation, in constant wind. These figures correspond to values of a speed parameter respectively higher and higher.
  • FIGS. 3A to 3D illustrate the configurations of the blades of the wind turbine at a low rotational speed, according to four respective angular positions.
  • FIGS. 4A to 4D illustrate the configurations of the blades of the wind turbine at an average rotational speed, according to the four respective angular positions described with reference to FIGS. 3A to 3D.
  • FIGS. 5A to 5D illustrate the configurations of the blades of the wind turbine at a high speed of rotation, according to the four respective angular positions described with reference to FIGS. 3A to 3D.
  • FIG. 6 shows another embodiment of the invention.
  • Figure 7 is a photograph of another embodiment.
  • FIGS. 8A and 8B show wind turbines used in comparative tests, respectively representative of the invention and of the prior art.
  • FIG. 8C shows the comparative test results between a wind turbine as shown in Figure 8A and the wind turbine shown in Figure 8B.
  • FIG. 8D represents an electrical diagram implemented during the comparative tests.
  • FIG. 1 represents a wind turbine 1 according to a first embodiment of the invention.
  • the wind turbine comprises a frame 2, extending along a vertical axis Z, and of which FIG. 1 represents a transverse view, along a horizontal plane XY.
  • the frame 2 comprises a rigid arm 10.
  • the arm 10 is rotatable about the vertical axis Z, the latter constituting an axis of rotation, said central axis of rotation, of the wind turbine.
  • the term “one” is to be interpreted as meaning "at least one”.
  • At a first end 11 of the arm 10 is fixed a blade 20.
  • the blade 20 comprises a leading edge 21 and a trailing edge 22.
  • the arm 10 follows a rotational movement and the blade 20 is oriented such that, in a direction of rotation ⁇ , the leading edge 21 is placed in front of the trailing edge 22.
  • the blade 20 is pivotable relative to the arm 10. More specifically, the pivoting blade 20 is connected to the first end 11 of the arm 10 at a point, said point d
  • the attachment point 15 is formed in the arm 10, at the first end.
  • the point of attachment 15 is a fixed point relative to the arm 10.
  • the pivoting blade 20 is rotatable about the point of attachment 15, along a pivot axis W.
  • the pivoting blade extends parallel to the central axis of rotation Z.
  • the pivot axis W is then parallel to the central axis of rotation Z. It is therefore oriented parallel to the vertical. This condition is not necessary.
  • the pivot axis W can be inclined relative to the central axis of rotation Z. This is particularly the case when the pivoting blade 20 extends along a plane inclined relative to the vertical.
  • the attachment point 15 is located outside the blade, at the leading edge 21. According to a variant, it can be formed in the blade, for example between the leading edge 21 and the trailing edge 22. Whatever the embodiment, the blade pivots about the attachment point 15. Preferably, the attachment point 15 is closer to the leading edge 21 than the trailing edge 22 , and / or between the leading edge 21 and the trailing edge 22.
  • the wind turbine comprises another pivoting blade 20 ', called the opposite blade, diametrically opposed to the blade 20.
  • the term opposite blade designates a diametrically opposed blade, considering an angular tolerance of ⁇ 30 ° or ⁇ 20 ° with respect to the diameter.
  • the opposite blade 20 ' is identical to the blade 20. It is connected to a second end 11' of the arm 10. It comprises a leading edge 21 'and a trailing edge 22'. It is connected, by its leading edge 21 ', to an attachment point 15', the attachment point 15 'being formed at the second end 11'.
  • the opposite blade 20 ' is rotatable relative to the point of attachment 15' about a pivot axis W "parallel to the central axis of rotation Z.
  • the opposite blade 20 ' is obtained, from the pivoting blade 20, by a rotation angle of between 150 ° and 210 ° about the axis of rotation Z, a rotation of 180 ° corresponding in the particular case of a blade strictly diametrically opposed to the pivoting blade 20.
  • a link 23, said association link connects the blade 20 to the opposite blade 20'
  • the action of the association link is particularly important during the phases of tacking or jibeing of a blade, when the latter extends parallel to the direction of the wind V. More specifically, to each pivoting blade 20 20 'is associated with a point 28, 28', said point of association, and the association link 23 extends between the respective points of association of the blades between which it extends.
  • a pivoting blade 20 is preferably closer to the trailing edge 22 than the point of attachment 15, and / or between the trailing edge 22 and the attachment point 15.
  • the association link 23 can be flexible. By flexible means that its shape is not fixed; it evolves according to the position of the blades, associated by the association link, with respect to the direction of the wind V, as well as the speed of rotation around the central axis of rotation Z.
  • the link association 23 may be formed of a flexible material, for example a strap or a rope, or be composed of rigid segments articulated at points of articulation. The rigid segments may be formed by rods.
  • the association link 23 makes it possible to associate at least two blades with one another, the respective angular displacements of the two blades, around their respective pivot axes, thus being rendered dependent on one another. Angular displacement of a blade means the travel around the pivot axis W, W ".
  • the blade 20 may extend, parallel to the central axis of rotation Z, at a height of between 50 cm and 5 meters, or even 10 or 50 meters or more.
  • the blade can also extend along a plane inclined relative to the central axis of rotation, forming, with respect to the latter, an inclination angle of up to 45 ° or 60 °.
  • the radius of the arm that is to say the distance between the central axis of rotation Z and the first end 11 (or the second end 11 ') may be between 20 cm and 5 meters, or even 10 meters or more.
  • the length of each blade that is to say the distance between the leading edge 21 and the trailing edge 22, may be between 10 cm and 5 m or more.
  • the arm 10 is preferably made of a rigid material, for example a metal or a solid plastic material or a composite material.
  • Each blade 20 may be formed of a preferably rigid material, this material being for example a plastic, a composite material or a light metal, for example aluminum, or wood, or a fiber material, for example comprising carbon fibers. It may also be a flexible material, for example a material used in the manufacture of a nautical sail, advantageously stiffened by a rigid or flexible frame.
  • the pivoting blade 20 is associated with a point, called firing point 25, located on the chassis. It is connected to the firing point by a return link 26.
  • the firing point 25 is fixed relative to the arm 10 carrying the blade 20. It is preferably fixed relative to the point of attachment 15.
  • the point firing 25 associated with a blade is different from the point of attachment 15 of said blade. While the attachment point 15 is advantageously located closer to the leading edge 21 than the trailing edge 22, and defines the pivot axis W, the firing point 25 is located closer to the trailing edge 22 than the leading edge 21, and contributes to limiting the angular deflection of the blade 20 around the pivot axis W, via the return link 26.
  • the firing point 25 can be movable relative to the frame 2 , but its displacement is then limited in a range of displacement, extending for example on 5 or 10 cm.
  • the firing point 25 is preferably closer to the attachment point 15 than to the central axis of rotation Z. If a first radius of the wind turbine is defined as being the distance between the central axis of rotation Z and the point of attachment 15, the distance between the firing point 25 and the central axis of rotation Z is advantageously greater than half the first radius, or even greater than two-thirds of the first radius, or 75% of the first radius. Ray.
  • the attachment point 15 defines, during a rotation of the wind turbine, a circle, said peripheral circle C, centered on the central axis of rotation Z.
  • the firing point 25 is arranged closer to the peripheral circle C than the central axis of rotation Z.
  • the firing point 25 is located on a first auxiliary end 12 of the arm 10.
  • the first auxiliary end 12 is configured such that the pivoting blade 20 extends between the first end 11 and the first auxiliary end 12.
  • the firing point 25 ' associated with the opposite pivoting blade 20', is located on a second auxiliary end 12 'of the arm 10.
  • the second auxiliary end 12' is configured such that whereby the opposite pivoting blade 20 'extends between the second end 11' and the second auxiliary end 12 '.
  • the return link 26 extends between the firing point 25 and an intersection point 27, situated on the association link 23.
  • the return link 26 can be formed by a rigid or flexible material. It is rigid or flexible. Its length is preferably fixed.
  • the pivoting blade 20 is connected to the firing point 25:
  • point of intersection 27 forms a point of articulation of the association link 23.
  • point of articulation is meant a point disposed between two adjacent segments of the association link, said segments being articulated around the point of articulation. .
  • the return link 26 may advantageously be fixed to the firing point 25 by a ball-type junction, allowing a rotation of the return link 26, around the firing point 25, according to several degrees of freedom.
  • each pivoting blade 20 is associated with a firing point 25.
  • the respective firing points 25 of two different pivoting blades are distinct.
  • FIG. 1 also shows the firing point 25 'associated with the opposite blade 20', as well as the return link 26 'connecting between the firing point 25' and the trailing edge 22 'of the opposite blade .
  • the point of intersection 27 is preferably disposed closer to the trailing edge 22 than the point of attachment 15, and / or between the trailing edge 22 and the point of attachment 15. Its position varies according to the geometry of the blades and the arm holding the blades. It is preferably defined experimentally, or on the basis of numerical simulations.
  • the return link 26 extends directly between the firing point 25 and the blade, the latter being then connected to both the return link 26 and In this case, the return link 26 extends between the firing point and a point of intersection 27, the latter being located on the blade, and preferably between the trailing edge 22 and the point of attachment 15.
  • the firing point 25 associated with a blade is closer to the central axis of rotation Z than is the point of attachment 15 of said blade.
  • the firing point 25 associated with each pivoting blade being located at a second radius, strictly less than the first radius, of the central axis of rotation.
  • the firing point 25 associated with a blade is located at an equal distance from the central axis of rotation as the point of attachment of said blade: according to this variant, the firing point 25 is disposed on the circle peripheral.
  • the distance between the intersection point 27 and the central axis Z is variable depending on the speed of rotation and / or the position of the blade 20 relative to the wind direction V.
  • the distance between the trailing edge 22 and the central axis Z is variable depending on the speed of rotation and / or the position of the blade 20 relative to the wind direction V.
  • the distance between the firing point 25 and the intersection point 27 is constant, or undergoes a relative variation of ⁇ 25%, or even ⁇ 50% during a rotation.
  • the point of intersection 27 follows a curved trajectory around the firing point 25.
  • the return link 26 is rotatable about the firing point 25, along a pivot axis U, said secondary pivot axis, in this example parallel to the central axis of rotation Z, and passing through the firing point 25. .
  • the firing point 25 is located behind the trailing edge 22 of the blade 20 with which it is associated. It is therefore located behind the hooked point 15.
  • the association link 23 extends between two opposite pivoting blades 20, 20 'along a length; the point of intersection 27 is located at a distance from the trailing edge 22 of less than one-third to one-quarter to one-fifth of said length.
  • the distance between the trailing edge 22 of the blade 20 and the firing point 25 associated with said blade is less than one fifth, or one quarter, of the length of the association link 23 extending from the blade.
  • the blade 20 extends between the leading edge 21 and the trailing edge 22, along a length, called blade length.
  • the firing point 25 is located at a distance from the trailing edge 22 less than half or even third of the blade length.
  • the length of the return link is fixed, or is variable within a range of ⁇ 25% or ⁇ 50% around a nominal length.
  • the length, or nominal length, of the return link is preferably less than the blade length, or half the blade length.
  • the firing point 25 is closer to the trailing edge 22 than the leading edge 21 of the blade.
  • FIGS. 2A, 2B and 2C show the effect of the return link 26 on the angular displacement of a pivoting blade. These figures respectively represent configurations of two opposite blades when the speed of rotation is respectively low, medium and high, the wind speed being constant.
  • a pivoting blade 20 exposed to the wind and an opposite pivoting blade 20 ', leeward.
  • the direction of the wind V is represented by an arrow.
  • FIG. 2A also shows, in dashed lines, blade positions, called reference positions.
  • be an axis, called the blade axis, extending between the leading edge 21 and the trailing edge 22 of a blade.
  • a re f be an axis, referred to as the reference axis, extending between the leading edge 21 and the trailing edge 22 of the blade as it extends in the reference position.
  • G be the center of the blade surface.
  • Reference position means a position of a blade according to which the segment, connecting, in a plane XY perpendicular to the central axis of rotation Z, the surface center G of the blade to the central axis of rotation Z , is perpendicular to the reference axis A re f.
  • the wind turbine When the blades occupy their reference position, the wind turbine is configured like a Darrieus wind turbine.
  • the reference position of the blade is a position in which at least one section of the blade is oriented parallel to its displacement.
  • the reference axis A re f of the blade is therefore parallel to the direction of movement of the blade.
  • the trailing edge and the leading edge can in particular be equidistant from the central axis of rotation Z.
  • the speed of rotation is low, as represented in FIG. 2A, the The blade 20 exposed to the wind tends to incline, so that its trailing edge 22 approaches the central axis of rotation Z. In such a configuration, the trailing edge 22 is closer to the axis of rotation.
  • the return link 26 tends to limit the angular deflection of the blade 20, and in particular the deflection of the trailing edge 22 with respect to the firing point 25. In other words, the return link 26 tends to limit the approach of the edge of the blade. leakage 22 from the central axis of rotation Z.
  • the wind angle is important, for example of the order of 45 °.
  • the wind-exposed blade 20 exerts a driving force, driving the wind turbine in rotation, in a manner analogous to a conventional movable blade panemone.
  • the driving force corresponds to the thrust of the wind on the blade. It is exercised perpendicular to the blade.
  • the return link 26 tends to reduce the wind angle ⁇ , thereby reducing the driving contribution of the wind-exposed blade.
  • the blade 20 then tends to approach its reference position.
  • the return link 26 makes it possible to limit the effect of the centrifugal force on the blades, in particular during transient phases occurring when the wind speed fluctuates.
  • the return link 26 also makes it possible to limit the deflection of the point of intersection 27 around the firing point 25.
  • FIGS. 2A to 2C also show the angular displacement of the opposite blade 20 ', the latter being downwind.
  • ⁇ 'and A' re f respectively represent the axis of the opposite blade 20 ', and the axis of the reference position of the opposite blade, the opposite blade 20' pivots so that the axis of the blade ⁇ 'forms an angle ⁇ ', said angle downwind, with respect to the reference axis A ' re f.
  • the return link 26 ' tends to maintain the downwind angle below a low limit value, for example less than 20 ° or 10 °. It tends to limit the spacing of the trailing edge 22 'with respect to the central axis of rotation Z.
  • the leeward blade 20' When the rotational speed is low, the leeward blade 20' has only a marginal drive action relative to With the blade in the wind 20. The higher the speed of rotation, the more the driving contribution of the leeward lee 20 'increases, and becomes predominant beyond a certain speed of rotation. In FIGS. 2A and 2B, the angle a 'is small, typically less than 10 ° or 20 °. In FIG. 2C, the angle a 'decreases further, the opposite blade 20' approaching the reference position.
  • the wind turbine rotates in a configuration close to a panemone with moving blades, the driving action being mainly exerted by the blade in the wind 20.
  • the return link 26 makes it possible to limit the angle of inclination ⁇ of the blade 20, when it approaches the central axis of rotation, which is less than a first limit angle, the latter being less than or equal to 50 ° or even 45 °. It also makes it possible to limit the angle of inclination a 'of the blade 20, when it moves away from the central axis of rotation, lower than a second limit angle, the latter being less than 10 ° or 20 °.
  • the second limiting angle is smaller than the first limiting angle.
  • the return link 26 thus makes it possible to maintain the trailing edge 22 in a range of predetermined distance with respect to the central axis of rotation Z.
  • the range of distance is reduced as the speed of rotation of the wind turbine increases.
  • the second limiting angle defining the maximum deflection of the blade relative to its reference position, is well below the first limit angle.
  • the deflection of the blade beyond its reference position is flanged.
  • the deflection of the blade on either side of its reference position is therefore asymmetrical.
  • FIGS. 3A, 3B, 3C and 3D represent the evolution of a pivoting blade 20 and of an opposite blade 20 'during a half rotation, when the speed of rotation of the wind turbine is low.
  • the arm 10 forms an angle with respect to the wind direction V respectively equal to 0 °, 45 °, 90 ° and 135 °. It is observed that the angular clearance of the blades, around their respective pivoting axes, is limited by the return link 26.
  • the wind angle ⁇ is large, while the leeward angle ⁇ 'is small.
  • FIGS. 4A, 4B, 4C and 4D show the evolution of a pivoting blade 20 and an opposite blade 20 'during a half rotation, when the speed of rotation of the wind turbine is moderate.
  • the arm 10 forms an angle with respect to the wind direction V respectively equal to 0 °, 45 °, 90 ° and 135 °. It is observed that the angular clearance of the blades is limited by the return link 26 and that the angular displacement of the blades, and in particular of the blade in the wind (blade 20 in FIGS 4A and 4B, blade 20 'in FIG. tends to be reduced with respect to the low rotational speed configuration described in connection with FIGS. 3A, 3B, 3C and 3D.
  • FIGS. 5A, 5B, 5C and 5D show the evolution of a pivoting blade 20 and of an opposite blade 20 'during a half rotation, when the speed of rotation is important.
  • the arm 10 forms an angle with respect to the wind direction V respectively equal to 0 °, 45 °, 90 ° and 135 °.
  • the angular clearance of the blades is negligible, the blades being oriented according to their reference position. Their pivoting around their respective pivot axes becomes weak.
  • the blades are arranged in a Darrieus configuration, particularly suitable for exposures to strong winds.
  • the distance between the trailing edge 22 and the central axis of rotation Z is substantially constant during rotation.
  • the wind turbine works as well in low wind, because of the angular movement of the blades, as high wind, the wind turbine then presenting a "Darrieus" configuration.
  • An operating parameter of a wind turbine is the speed parameter ⁇ , also referred to as the specific speed, defined in such a way that:
  • U designates the peripheral speed of the wind turbine, that is to say the speed of the blade leading edge
  • V is the wind speed
  • the speed parameter is usually referred to as the "Speed Ratio", meaning speed ratio.
  • Figures 3 to 5 are representative of a start of a wind turbine in moderate or strong wind, the speed parameter ⁇ gradually increasing.
  • FIGS. 3 (3A, 3B, 3C and 3D) show a configuration of the wind turbine at the start-up moment, the speed parameter ⁇ being close to 0.
  • the wind turbine is essentially driven by the wind, similarly to a panemone with movable blades, the angular displacement of the blades being used for the blade to the wind produces a driving force of thrust to increase the rotational speed of the wind turbine.
  • FIGS. 5 illustrate a configuration of the wind turbine when the rotational speed is higher, the speed parameter ⁇ being 2.
  • the displacement of a blade, during a rotation is negligible.
  • the wind turbine is then in a Darrieus configuration, the driving force being mainly exerted by the leeward lee.
  • the angular displacement of each pivoting blade allows the wind turbine to acquire a certain speed of rotation, the driving action being mainly exercised by the blades exposed to the wind, as can be seen in Figures 2A, 3A to 3D.
  • the rotational speed increases, the angular deflection is reduced little by little (see FIGS. 2B, 4A to 4D), to become negligible, the wind turbine then being in a Darrieus configuration (see FIGS. 2C, 5A to 5D).
  • the invention thus makes it possible to obtain a Darrieus-type wind turbine, while having a certain efficiency when the wind is weak. This avoids the need for assistance in launching the wind turbine.
  • FIG. 6 shows a second embodiment, in which the frame 2 of the wind turbine has several arms 10, extending between one end 11 and the central axis of rotation Z. At each end 11 is fixed a pivoting blade 20 Each pivoting blade is associated with an attachment point 15, close to the leading edge 21 and a firing point 25, near the trailing edge 22. Each pivoting blade 20 is rotatable about an axis of pivoting W, parallel to the central axis of rotation Z, and passing through the point of attachment 15.
  • the various blades of the wind turbine are connected to an association link 23, having a star shape, so that that the trailing edge 22 of a pivoting blade 20 is connected to the trailing edge 22 'of several pivoting blades, and in particular of at least one opposite pivoting blade 20', as previously defined.
  • each pivoting blade is connected to the firing point 25, associated with said blade, by a return link 26, the latter extending between the firing point 25 and the association link 23.
  • intersection of the return link 26 and the association link 23 defines a point of intersection 27.
  • the association link 23 is articulated according to articulation points, each point of articulation being also a point of intersection.
  • the firing point 25 associated with a blade 20 is located near the attachment point 15a of an adjacent pivoting blade 20a.
  • the adjacent pivoting blade is carried by an arm 11a, adjacent to the arm 11 carrying the blade 20.
  • the peripheral circle C described by each attachment point 15 is also represented during a complete rotation of the blade. 'wind turbine.
  • FIG. 7 is a photograph of a third embodiment of the wind turbine.
  • the wind turbine has four blades.
  • Two blades 20, 20 ', diametrically opposite one another, are pivotable, as previously described.
  • Two other blades 20f, 20f are mounted fixed, in a Darrieus type configuration, that is to say oriented perpendicular to the arm supporting them.
  • the swivel blades are used to start the wind turbine, at low speed.
  • it is not necessary that all the blades of a wind turbine are pivoting.
  • FIG. 8C shows the evolution of the rotational speed (ordinate axis) as a function of the wind speed (abscissa axis), respectively for the reference wind turbine (dark bars) and for the wind turbine according to the invention (clear bars).
  • a converter has been arranged to convert the mechanical energy of each wind turbine into electrical energy, for the power supply of lamps.
  • the circuit diagram of the assembly is shown in FIG. 8D.
  • Three lamps Ll, L2 and L3, of electrical power 1W, were connected between the terminals coming from the wind turbine 1, the terminals being out of phase by 120 ° with respect to each other.
  • the average voltage was measured between two terminals, for example on either side of the lamp L3.
  • the average measured voltage is systematically greater, by at least 50%, by implementing the invention.
  • a wind turbine according to the invention makes it possible to obtain, at different wind speeds and with equal blade area, a higher rotational speed than a fixed-blade wind turbine.
  • the speed of rotation of the wind turbine is also higher than the speed of a Darrieus type wind turbine.
  • the wind turbine according to the invention is more adaptable to load fluctuations. Its dynamic behavior allows an optimal adjustment of the orientation of the swivel blades according to the operating conditions, be it a variation of the wind or a fluctuation of the electric charge connected to the wind turbine.
  • the invention can be implemented for the power supply of habitats, the installation being simple. One can for example consider a coupling of different wind turbines according to the invention. Furthermore, the invention may also be intended for the power supply of isolated dwellings, for example refuges. The dimensions and number of wind turbines will be adjusted to the electrical power to be supplied. Furthermore, the invention can be declined in small wind turbines, the height and / or the diameter is less than 1 m. Such wind turbines are suitable for nomadic uses, for example on recreational vehicles, or even ships.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Wind Motors (AREA)

Abstract

L'invention est une éolienne (1), comportant des pales (20, 20', 20f, 20f', 20a) tournant autour d'un axe de rotation central (Z), l'axe de rotation central étant destiné à être orienté verticalement, l'éolienne comportant un châssis rigide (2), comportant au moins un bras (10) maintenant les pales, et s'étendant transversalement à l'axe de rotation central (Z), chaque pale comportant un bord d'attaque (21) et un bord de fuite (22), de telle sorte que selon le sens de rotation de l'éolienne (Ω), le bord d'attaque est disposé devant le bord de fuite, l'éolienne comportant au moins deux pales (20, 20'), pales pivotantes, chaque pale pivotante étant telle que : la pale pivotante (20) est reliée à un point du bras, dit point d'attache (15, 15'), la pale pivotante étant mobile en rotation, autour du point d'attache, selon un axe de pivotement (W, W); - la pale pivotante (20) est reliée à une autre pale pivotante (20') par un lien flexible (23), dit lien d'association; l'éolienne étant caractérisée en ce que : chaque pale pivotante est associée à un point, dit point de tir (25, 25'), situé sur le châssis, le point de tir étant plus proche du bord de fuite (22) que du bord d'attaque (21); - chaque pale pivotante est reliée au point de tir (25, 25') qui lui est associé; de façon à limiter un débattement, par rapport au point de tir, de ladite pale pivotante autour de l'axe de pivotement

Description

Eolienne verticale à pales pivotantes Description
DOMAINE TECHNIQUE
Le domaine technique de l'invention est celui des éoliennes à axe vertical. ART ANTERIEUR
L'utilisation du vent comme source d'énergie est ancienne, mais elle connaît actuellement un regain d'intérêt du fait de la croissance de la demande en énergies renouvelables. On a assisté récemment à un développement d'éoliennes, pour produire de l'électricité. Il s'agit essentiellement d'éoliennes à axe horizontal. Cependant les éoliennes à axe horizontal ne s'alignent pas spontanément par rapport à la direction du vent et doivent posséder un mécanisme d'orientation dédié. De plus, de manière à être exposées à des vents forts et constants, elles nécessitent une installation à plusieurs mètres de hauteur, ce qui pose des nuisances esthétiques et rend l'installation coûteuse, de même que les opérations de maintenance, en particulier concernant le mécanisme d'orientation.
Parallèlement aux éoliennes à axe horizontal, des éoliennes à axe vertical se sont développées. Elles présentent l'avantage de pouvoir être installées à proximité du sol, et d'être moins coûteuses que les éoliennes à axe vertical, et de présenter un bon compromis entre la puissance dégagée et la surface occupée au sol, typiquement de l'ordre de 20 W/m2. De plus, elles peuvent fonctionner par vent faible, quelle que soit son orientation. Plusieurs types d'éoliennes à axe vertical ont été conçus:
Les éoliennes de type Savonius, qui disposent de pales fixes, et courbées, prenant la forme de demi-cylindres légèrement désaxés l'un par rapport à l'autre. Les pales s'étendent généralement à partir d'un arbre de rotation de l'éolienne. De telles éoliennes peuvent fonctionner sous un vent faible, mais leur rendement est limité lorsque la vitesse du vent augmente.
Les éoliennes de type Darrieus, qui disposent de pales fixes, chaque pale étant disposée au niveau de l'extrémité d'un bras, perpendiculairement à ce dernier. Chaque bras s'étend entre l'axe de rotation de l'éolienne et la pale. De telles éoliennes ont un rendement plus élevé que les éoliennes Savonius lorsque le vent est élevé. Cependant, leur démarrage est difficile, en particulier par rapport aux éoliennes de type Savonius.
Les panémones à pales mobiles, dont les pales sont disposées au bout d'un bras, et, à la différence des éoliennes de type Darrieus, sont mobiles par rapport à ce dernier.
La demande de brevet EP0021790 décrit une éolienne de type panémone, chaque pale disposant d'un bord d'attaque et d'un bord de fuite, chaque pale étant disposée à l'extrémité d'un bras. Chaque pale est reliée, par son bord d'attaque, au bras la maintenant, et est mobile en rotation par rapport à ce dernier. Chaque pale comporte également un lien, s'étendant entre le bord de fuite de ladite pale et les bords de fuite d'autres pales. La fonction du lien est de limiter le débattement de la pale autour du bras la maintenant. Selon cette éolienne, les mouvements de rotation de deux pales opposées sont symétriques et synchrones : lorsqu'une pale pivote, selon un angle, en se rapprochant de l'axe de rotation central de l'éolienne, la pale opposée pivote simultanément, selon le même angle, en s'éloignant de l'axe de rotation central.
L'éolienne décrite dans la demande de brevet français FR2997736 peut être considérée comme un perfectionnement du dispositif exposé dans EP0021790. Dans cette éolienne, les bords de fuite de deux pales diamétralement opposées sont reliés par un lien. Le lien est déformable, autour d'un ou plusieurs moyens dits de renvoi, ces derniers pouvant être mobiles. Cette éolienne est agencée de telle sorte que lorsqu'une pale pivote de façon trop importante par rapport au bras la maintenant, la pale opposée tend à limiter son écartement, du fait de la présence du lien entre les deux pales. Lorsque la vitesse de rotation augmente, la configuration de l'éolienne tend vers une configuration de type Darrieus, précédemment évoquée. Cependant, les inventeurs ont constaté que cette éolienne pouvait encore être perfectionnée, et notamment par une meilleure maîtrise du débattement angulaire des pales, en particulier à faible vitesse de rotation. Ils ont conçu l'invention, décrite ci-après, à cette fin.
EXPOSE DE L'INVENTION
Un objet de l'invention est une éolienne, comportant des pales configurées pour tourner autour d'un axe de rotation central selon un sens de rotation, l'axe de rotation central étant destiné à être orienté verticalement, l'éolienne comportant un châssis rigide, le châssis comprenant au moins un bras maintenant les pales et s'étendant transversalement à l'axe de rotation central, chaque pale comportant un bord d'attaque et un bord de fuite, de telle sorte que selon le sens de rotation, le bord d'attaque est disposé devant le bord de fuite, l'éolienne comportant au moins deux pales, dites pales pivotantes, chaque pale pivotante étant telle que :
la pale pivotante est reliée à un point du bras, dit point d'attache, la pale pivotante étant mobile en rotation, autour du point d'attache, selon un axe de pivotement;
la pale pivotante est reliée à une autre pale pivotante par un lien, de préférence flexible, dit lien d'association;
l'éolienne étant caractérisée en ce que :
chaque pale pivotante est associée à un point, dit point de tir, situé sur le châssis, le point de tir étant de préférence plus proche du point d'attache que de l'axe de rotation central; chaque pale pivotante est reliée au point de tir qui lui est associé; de façon à limiter un débattement, par rapport au point de tir, de ladite pale pivotante, autour de l'axe de pivotement.
La liaison entre le point de tir et la pale pivotante a pour fonction de maintenir, lors du pivotement de la pale autour de l'axe de pivotement, le bord de fuite à une distance, inférieure à une distance maximale prédéterminée, du point de tir.
De préférence, le point de tir est un point fixe du châssis. De façon alternative, il peut être mobile par rapport à ce dernier. Dans ce dernier cas, le déplacement du point de tir, par rapport au châssis, est limité dans une plage de déplacement, s'étendant par exemple selon une distance inférieure à 5 cm ou 10 cm.
De préférence, les points de tir, respectivement associés à deux pales pivotantes différentes, sont différents.
De préférence, le point de tir est plus proche de l'axe de rotation central, que ne l'est le point d'attache. Les points d'attache et de tir peuvent également être disposés à égale distance de l'axe de rotation central.
La distance entre le point d'attache et la pale correspond à un premier rayon de l'éolienne. De préférence, le point de tir est disposé à une distance, supérieure à la moitié du premier rayon, voire supérieure à 75% du premier rayon, de l'axe de rotation central.
Selon un mode de réalisation, au moins une pale pivotante est reliée, au point de tir lui étant associé, par une liaison de rappel s'étendant entre ledit point de tir et un point, dit point d'intersection, situé sur le lien d'association relié à ladite pale.
Selon un autre mode de réalisation, la pale pivotante est reliée, au point de tir lui étant associé, par une liaison de rappel s'étendant entre ledit point de tir et un point, dit point d'intersection, situé sur ladite pale.
Quel que soit le mode de réalisation, le point d'intersection est avantageusement plus proche du bord de fuite que du point d'attache, et/ou entre le bord de fuite et le point d'attache.
Quel que soit le mode de réalisation, la liaison de rappel est de préférence mobile autour du point de tir, selon un axe pouvant être parallèle à l'axe de rotation central, ou incliné par rapport à ce dernier. La liaison de rappel est de préférence mobile par rapport au point de tir selon une jonction de type rotule.
Le lien d'association associé à la pale pivotante s'étendant selon une longueur, entre ladite pale pivotante et l'autre pale pivotante, le point de tir peut être disposé à une distance, inférieure au cinquième de ladite longueur, du bord de fuite de ladite pale pivotante.
L'autre pale pivotante peut être une pale opposée à la pale pivotante. Le point de tir associé à une pale pivotante peut être disposé sur le bras maintenant ladite pale pivotante. Il peut également être disposé sur un bras, dit bras adjacent, maintenant une pale adjacente de la pale pivotante.
Le point d'attache est de préférence disposé plus proche du bord d'attaque que du bord de fuite, et/ou entre le bord d'attaque et le bord de fuite.
La longueur de la liaison de rappel est de préférence fixe ; selon une variante, elle est variable selon une plage, par exemple inférieure à ±25% voire ±50%, autour d'une longueur nominale. La longueur de la liaison de rappel, ou sa longueur nominale, est de préférence inférieure à la distance séparant le bord de fuite du bord d'attaque, ou à la moitié de cette distance.
De préférence, le point de tir est plus proche du bord de fuite, que le point d'attache.
De préférence, au moins une pale pivotante définit un axe de pale, s'étendant entre le bord de fuite et le bord d'attaque. La pale pivotante présente un centre de surface. A la pale pivotante correspond une position, dite de référence, de telle sorte que lorsque la pale s'étend selon la position de référence, l'axe de la pale définit un axe de référence, l'axe de référence étant perpendiculaire à une droite s'étendant dans un plan perpendiculaire à l'axe de rotation, et reliant l'axe de rotation au centre de surface de la pale. Le débattement du bord de fuite de la pale est alors limité de telle sorte que :
- lorsque la pale s'incline en se rapprochant de l'axe de rotation central, l'angle entre l'axe de pale et l'axe de référence est inférieur à un premier angle limite;
- lorsque la pale s'incline en s'éloignant de l'axe de rotation central l'angle entre l'axe de pale et l'axe de référence est inférieur à un deuxième angle limite;
le premier angle limite étant supérieur au deuxième angle limite.
Le premier angle limite peut être inférieur ou égal à 60° ou 50° voire 45°, et/ou le deuxième angle limite est inférieur à 20°, voire inférieur à 10°.
Selon un mode de réalisation, l'éolienne comporte :
au moins deux pales pivotantes opposées,
au moins deux pales fixes, opposées, reliées à un bras, et immobiles par rapport à ce dernier. L'éolienne peut comporter 2 pales pivotantes, ou un nombre de pales pivotantes supérieur à 2.
D'autres avantages et caractéristiques ressortiront plus clairement de la description qui va suivre de modes particuliers de réalisation de l'invention, donnés à titre d'exemples non limitatifs, et représentés sur les figures listées ci-dessous.
FIGURES
La figure 1 représente un premier mode de réalisation de l'invention. Les figures 2A, 2B et 2C montrent différentes configurations des pales de l'éolienne, selon le premier mode de réalisation, à différentes vitesses de rotation, par vent constant. Ces figures correspondent à des valeurs d'un paramètre de rapidité respectivement de plus en plus élevées.
Les figures 3A à 3D illustrent les configurations des pales de l'éolienne à une faible vitesse de rotation, selon quatre positions angulaires respectives.
Les figures 4A à 4D illustrent les configurations des pales de l'éolienne à une vitesse de rotation moyenne, selon les quatre positions angulaires respectives décrites en lien avec les figures 3A à 3D. Les figures 5A à 5D illustrent les configurations des pales de l'éolienne à une forte vitesse de rotation, selon les quatre positions angulaires respectives décrites en lien avec les figures 3A à 3D.
La figure 6 représente un autre mode de réalisation de l'invention.
La figure 7 est une photographie d'un autre mode de réalisation.
Les figures 8A et 8B représentent des éoliennes utilisées lors d'essais comparatifs, respectivement représentatives de l'invention et de l'art antérieur.
La figure 8C montre les résultats d'essais comparatifs entre une éolienne telle que représentée sur la figure 8A et l'éolienne représentée sur la figure 8B. La figure 8D représente un schéma électrique mis en oeuvre lors des essais comparatifs.
EXPOSE DE MODES DE REALISATION PARTICULIERS
La figure 1 représente une éolienne 1 selon un premier mode de réalisation de l'invention. L'éolienne comporte un châssis 2, s'étendant selon un axe vertical Z, et dont la figure 1 représente une vue transversale, selon un plan horizontal XY. Le châssis 2 comporte un bras rigide 10. Le bras 10 est mobile en rotation autour de l'axe vertical Z, ce dernier constituant un axe de rotation, dit axe de rotation central, de l'éolienne. Le terme "un" est à interpréter comme signifiant "au moins un". A une première extrémité 11 du bras 10 est fixée une pale 20. La pale 20 comporte un bord d'attaque 21 et un bord de fuite 22. De façon classique, lorsque l'éolienne fonctionne, le bras 10 suit un mouvement de rotation et la pale 20 est orientée de telle sorte que, selon un sens de rotation Ω, le bord d'attaque 21 est placé devant le bord de fuite 22.
De même que dans les documents cités en lien avec l'art antérieur, la pale 20 est pivotante par rapport au bras 10. Plus précisément, la pale pivotante 20 est reliée à la première extrémité 11 du bras 10 en un point, dit point d'attache 15. Le point d'attache 15 est ménagé dans le bras 10, au niveau de la première extrémité. Dans cet exemple, le point d'attache 15 est un point fixe par rapport au bras 10. La pale pivotante 20 est mobile en rotation autour du point d'attache 15, selon un axe de pivotement W. Dans cet exemple, la pale pivotante s'étend parallèlement à l'axe de rotation central Z. L'axe de pivotement W est alors parallèle à l'axe de rotation central Z. Il est donc orienté parallèlement à la verticale. Cette condition n'est nullement nécessaire. Selon d'autres configurations, l'axe de pivotement W peut être incliné par rapport à l'axe de rotation central Z. C'est notamment le cas lorsque la pale pivotante 20 s'étend selon un plan incliné par rapport à la verticale.
Dans cet exemple, le point d'attache 15 est situé à l'extérieur de la pale, au niveau du bord d'attaque 21. Selon une variante, il peut être ménagé dans la pale, par exemple entre le bord d'attaque 21 et le bord de fuite 22. Quel que soit le mode de réalisation, la pale pivote autour du point d'attache 15. De préférence, le point d'attache 15 est plus proche du bord d'attaque 21 que du bord de fuite 22, et/ou entre le bord d'attaque 21 et le bord de fuite 22.
L'éolienne comporte une autre pale pivotante 20', dite pale opposée, diamétralement opposée à la pale 20. Dans la suite de cette description, le terme pale opposée désigne une pale diamétralement opposée, en considérant une tolérance angulaire de ± 30° ou ±20° par rapport au diamètre. Dans cet exemple, la pale opposée 20' est identique à la pale 20. Elle est reliée à une deuxième extrémité 11' du bras 10. Elle comporte un bord d'attaque 21' et un bord de fuite 22'. Elle est reliée, par son bord d'attaque 21', à un point d'attache 15', le point d'attache 15' étant ménagé au niveau de la deuxième extrémité 11'. La pale opposée 20' est mobile en rotation par rapport au point d'attache 15' autour d'un axe de pivotement W" parallèle à l'axe de rotation central Z.
Les points d'attache 15 et 15' étant solidaires du bras 10, ils sont mobiles en rotation autour de l'axe central de rotation Z. Il en est de même des axes de pivotement W et W".
Dans d'autres exemples, la pale opposée 20' est obtenue, à partir de la pale pivotante 20, par une rotation d'angle compris entre 150° et 210° autour de l'axe de rotation Z, une rotation de 180° correspondant au cas particulier d'une pale strictement diamétralement opposée à la pale pivotante 20.
Afin de limiter les débattements angulaires respectifs de la pale 20 et de la pale opposée 20' autour de leurs axes de pivotement respectifs W et W", un lien 23, dit lien d'association, relie la pale 20 à la pale opposée 20'. L'action du lien d'association est particulièrement importante lors des phases de virement de bord ou d'empannage d'une pale, lorsque cette dernière s'étend parallèlement à la direction du vent V. Plus précisément, à chaque pale pivotante 20, 20' est associé un point 28, 28', dit point d'association. Le lien d'association 23 s'étend entre les points d'association respectifs des pales entre lesquelles il s'étend. Le point d'association 28 d'une pale pivotante 20 est de préférence plus proche du bord de fuite 22 que du point d'attache 15, et/ou entre le bord de fuite 22 et le point d'attache 15.
Le lien d'association 23 peut être flexible. Par flexible, on entend que sa forme n'est pas fixe ; elle évolue en fonction de la position des pales, associées par le lien d'association, par rapport au sens du vent V, ainsi qu'en fonction de la vitesse de rotation autour de l'axe de rotation central Z. Le lien s'association 23 peut être formé d'un matériau souple, par exemple une sangle ou une corde, ou être composé de segments rigides articulés au niveau de points d'articulation. Les segments rigides peuvent être formés par des biellettes. Le lien d'association 23 permet d'associer au moins deux pales entre elles, les débattements angulaires respectifs des deux pales, autour de leurs axes de pivotement respectifs, étant ainsi rendus dépendants l'un de l'autre. Par débattement angulaire d'une pale, on entend le débattement autour de l'axe de pivotement W, W".
La pale 20 peut s'étendre, parallèlement à l'axe de rotation central Z, selon une hauteur comprise entre 50 cm et 5 mètres, voire 10 ou 50 mètres, voire davantage. La pale peut également s'étendre selon un plan incliné par rapport à l'axe de rotation central, en formant, par rapport à ce dernier, un angle d'inclinaison pouvant atteindre 45° voire 60°. Le rayon du bras, c'est-à-dire la distance entre l'axe de rotation central Z et la première extrémité 11 (ou la deuxième extrémité 11') peut être comprise entre 20 cm et 5 mètres, voire 10 mètres, voire davantage. La longueur de chaque pale, c'est-à-dire la distance entre le bord d'attaque 21 et le bord de fuite 22, peut être comprise entre 10 cm et 5 m, voire davantage. Le bras 10 est de préférence réalisé selon un matériau rigide, par exemple un métal ou une matière plastique solide ou un matériau composite. Chaque pale 20 peut être formée d'un matériau de préférence rigide, ce matériau étant par exemple un plastique, un matériau composite ou un métal léger, par exemple de l'aluminium, ou du bois, ou un matériau fibré, comportant par exemple des fibres de carbone. Il peut également s'agir d'un matériau souple, par exemple un matériau utilisé dans la fabrication d'une voile nautique, avantageusement rigidifié par une armature rigide ou flexible.
Un aspect important de l'invention est que la pale pivotante 20 est associée à un point, dit point de tir 25, situé sur le châssis. Elle est reliée au point de tir par une liaison de rappel 26. De préférence, le point de tir 25 est fixe par rapport au bras 10 portant la pale 20. Il est de préférence fixe par rapport au point d'attache 15. Le point de tir 25 associé à une pale est différent du point d'attache 15 de ladite pale. Alors que le point d'attache 15 est avantageusement disposé plus proche du bord d'attaque 21 que du bord de fuite 22, et définit l'axe pivotement W, le point de tir 25 est situé plus proche du bord de fuite 22 que du bord d'attaque 21, et contribue à limiter le débattement angulaire de la pale 20 autour de l'axe de pivotement W, par l'intermédiaire de la liaison de rappel 26. Le point de tir 25 peut être mobile par rapport au châssis 2, mais son déplacement est alors limité dans une plage de déplacement, s'étendant par exemple sur 5 ou 10 cm. Le point de tir 25 est de préférence plus proche du point d'attache 15 que de l'axe de rotation central Z. Si un premier rayon de l'éolienne est défini comme étant la distance entre l'axe de rotation central Z et le point d'attache 15, la distance entre le point de tir 25 et l'axe de rotation central Z est avantageusement supérieure à la moitié du premier rayon, voire supérieure aux deux tiers du premier rayon, ou à 75% du premier rayon. Le point d'attache 15 définit, au cours d'une rotation de l'éolienne, un cercle, dit cercle périphérique C, centré sur l'axe de rotation central Z. Le point de tir 25 est disposé plus proche du cercle périphérique C que de l'axe de rotation central Z.
Dans l'exemple représenté sur la figure 1, le point de tir 25 est localisé sur une première extrémité auxiliaire 12 du bras 10. La première extrémité auxiliaire 12 est configurée de telle sorte que la pale pivotante 20 s'étend entre la première extrémité 11 et la première extrémité auxiliaire 12. De façon analogue, le point de tir 25', associé à la pale pivotante opposée 20', est localisé sur une deuxième extrémité auxiliaire 12' du bras 10. La deuxième extrémité auxiliaire 12' est configurée de telle sorte que la pale pivotante opposée 20' s'étend entre la deuxième extrémité 11' et la deuxième extrémité auxiliaire 12'.
Dans l'exemple représenté sur la figure 1, la liaison de rappel 26 s'étend entre le point de tir 25 et un point d'intersection 27, situé sur le lien d'association 23. La liaison de rappel 26 peut être formée par un matériau rigide ou souple. Elle est rigide ou flexible. Sa longueur est de préférence fixe. Dans cet exemple, la pale pivotante 20 est reliée au point de tir 25 :
- par un segment 24 du lien d'association 23, s'étendant entre le point d'association 28 et le point d'intersection 27 ;
et par la liaison de rappel 26, s'étendant entre le point d'intersection 27 et le point de tir 25.
Le point d'intersection 27 forme un point d'articulation du lien d'association 23. Par point d'articulation, on entend un point disposé entre deux segments adjacents du lien d'association, lesdits segments étant articulés autour du point d'articulation.
La liaison de rappel 26 peut avantageusement être fixée au point de tir 25 par une jonction de type rotule, autorisant une rotation de la liaison de rappel 26, autour du point de tir 25, selon plusieurs degrés de liberté.
Ainsi, à chaque pale pivotante 20 est associé un point de tir 25. Les points de tirs 25 respectifs de deux pales pivotantes différentes, sont distincts. Sur la figure 1, on a également représenté le point de tir 25' associé à la pale opposée 20', ainsi que la liaison de rappel 26' reliant entre le point de tir 25' et le bord de fuite 22' de la pale opposée.
Quel que soit le mode de réalisation, le point d'intersection 27 est de préférence disposé plus proche du bord de fuite 22 que du point d'attache 15, et/ou entre le bord de fuite 22 et le point d'attache 15. Sa position varie en fonction de la géométrie des pales et du bras maintenant les pales. Elle est de préférence définie expérimentalement, ou sur la base de simulations numériques.
On peut concevoir que, dans d'autres configurations, la liaison de rappel 26 s'étende directement entre le point de tir 25 et la pale, cette dernière étant alors reliée à la fois à la liaison de rappel 26 et au lien d'association 23. Dans ce cas, la liaison de rappel 26 s'étend entre le point de tir et un point d'intersection 27, ce dernier étant situé sur la pale, et de préférence entre le bord de fuite 22 et le point d'attache 15.
Les dispositions du point de tir 25, de la liaison de rappel 26, et du point d'intersection 27 sont ajustées au cas par cas, en fonction de la géométrie du châssis 2, et notamment du bras 10 portant la pale pivotante 20. Cependant, d'une façon générale, il est préférable qu'au moins une des conditions suivantes soit respectée :
Le point de tir 25 associé à une pale est plus proche de l'axe de rotation central Z que ne l'est le point d'attache 15 de ladite pale. Autrement dit, le point de tir 25 associé à chaque pale pivotante étant situé à un deuxième rayon, strictement inférieur au premier rayon, de l'axe de rotation central. Selon une variante, le point de tir 25 associé à une pale est situé à une égale distance de l'axe de rotation central que le point d'attache de ladite pale : selon cette variante, le point de tir 25 est disposé sur le cercle périphérique.
La distance entre le point d'intersection 27 et l'axe central Z est variable en fonction de la vitesse de rotation et/ou de la position de la pale 20 par rapport à la direction du vent V.
La distance entre le bord de fuite 22 et l'axe central Z est variable en fonction de la vitesse de rotation et/ou de la position de la pale 20 par rapport à la direction du vent V.
La distance entre le point de tir 25 et le point d'intersection 27 est constante, ou subit une variation relative de ±25%, voire ±50% durant une rotation. Ainsi, au cours d'une rotation, le point d'intersection 27 suit une trajectoire courbe autour du point de tir 25.
La liaison de rappel 26 est mobile en rotation autour du point de tir 25, selon un axe de pivotement U, dit axe de pivotement secondaire, dans cet exemple parallèle à l'axe de rotation central Z, et passant par le point de tir 25.
Considérant le sens de rotation Ω, le point de tir 25 est situé derrière le bord de fuite 22 de la pale 20 à laquelle il est associé. Il est par conséquent situé derrière le point d'accroché 15.
Le lien d'association 23 s'étend, entre deux pales pivotantes opposées 20, 20' selon une longueur ; le point d'intersection 27 est situé à une distance du bord de fuite 22 inférieure au tiers, voire au quart ou au cinquième, de ladite longueur.
La distance entre le bord de fuite 22 de la pale 20 et le point de tir 25 associé à ladite pale est inférieure au cinquième, ou au quart, de la longueur du lien d'association 23 s'étendant à partir de la pale.
La pale 20 s'étend, entre le bord d'attaque 21 et le bord de fuite 22, selon une longueur, dite longueur de pale. Le point de tir 25 est situé à une distance du bord de fuite 22 inférieure à la moitié, voire au tiers, de la longueur de pale. La longueur de la liaison de rappel est fixe, ou est variable selon une plage de ±25% ou ±50% autour d'une longueur nominale. La longueur, ou la longueur nominale, de la liaison de rappel, est de préférence inférieure à la longueur de pale, ou à la moitié de la longueur de pale.
- Le point de tir 25 est plus proche du bord de fuite 22 que du bord d'attaque 21 de la pale.
Les figures 2A, 2B et 2C permettent d'apprécier l'effet de la liaison de rappel 26 sur le débattement angulaire d'une pale pivotante. Ces figures représentent respectivement des configurations de deux pales opposées lorsque la vitesse de rotation est respectivement faible, moyenne et forte, la vitesse du vent étant constante. Sur chacune de ces figures, on a représenté une pale pivotante 20 exposée au vent et une pale pivotante opposée 20', sous le vent. La pale pivotante 20 au vent et la pale pivotante opposée 20', sous le vent, tournent selon le sens de rotation Ω. Le sens du vent V est représenté par une flèche.
Sur la figure 2A, on a également représenté, en pointillés, des positions de pales, dites positions de référence. Soit Δ, un axe, dit axe de pale, s'étendant entre le bord d'attaque 21 et le bord de fuite 22 d'une pale. Soit Aref, un axe, dit axe de référence, s'étendant entre le bord d'attaque 21 et le bord de fuite 22 de la pale lorsqu'elle s'étend selon la position de référence. Soit G, le centre de surface de la pale. Par position de référence, on entend une position d'une pale selon laquelle le segment, reliant, dans un plan XY perpendiculaire à l'axe central de rotation Z, le centre de surface G de la pale à l'axe de rotation central Z, est perpendiculaire à l'axe de référence Aref. Lorsque les pales occupent leur position de référence, l'éolienne est configurée telle une éolienne de type Darrieus. Ainsi, la position de référence de la pale est une position selon laquelle au moins une section de la pale est orientée parallèlement à son déplacement. L'axe de référence Aref de la pale est donc parallèle à la direction du déplacement de la pale. Lorsque la pale est orientée selon la position de référence, le bord de fuite et le bord d'attaque peuvent notamment être équidistants de l'axe de rotation central Z. Lorsque la vitesse de rotation est faible, comme représenté sur la figure 2A, la pale 20 exposée au vent tend à s'incliner, de telle sorte que son bord de fuite 22 se rapproche de l'axe de rotation central Z. Dans une telle configuration, le bord de fuite 22 est plus proche de l'axe de rotation central que le point de tir 25. L'axe de pale Δ forme un angle a, dit angle au vent, par rapport à l'axe de référence ΔΓβί. La liaison de rappel 26 tend à limiter le débattement angulaire de la pale 20, et en particulier le débattement du bord de fuite 22 par rapport au point de tir 25. Autrement dit, la liaison de rappel 26 tend à limiter le rapprochement du bord de fuite 22 de l'axe de rotation central Z.
Lorsque la vitesse de rotation est faible, comme représenté sur la figure 2A, l'angle au vent a est important, par exemple de l'ordre de 45°. La pale 20 exposée au vent exerce une force motrice, entraînant l'éolienne en rotation, d'une façon analogue à une panémone à pales mobiles classique. La force motrice correspond à la poussée du vent sur la pale. Elle s'exerce perpendiculairement à la pale. Lorsque la vitesse de rotation augmente, comme illustré sur les figures 2B et 2C, la liaison de rappel 26 tend à réduire l'angle au vent a, réduisant ainsi la contribution motrice de la pale 20 exposée au vent. La pale 20 tend alors à se rapprocher de sa position de référence. La liaison de rappel 26 permet de limiter l'effet de la force centrifuge sur les pales, notamment lors de phases transitoires apparaissant lorsque la vitesse du vent fluctue. La liaison de rappel 26 permet également de limiter le débattement du point d'intersection 27 autour du point de tir 25.
Sur les figures 2A à 2C, on a également représenté le débattement angulaire de la pale opposée 20', cette dernière étant sous le vent. Si Δ' et A'ref représentent respectivement l'axe de la pale opposée 20', et l'axe de la position de référence de la pale opposée, la pale opposée 20' pivote de telle sorte que l'axe de la pale Δ' forme un angle α', dit angle sous le vent, par rapport à l'axe de référence A'ref. La liaison de rappel 26' tend à maintenir l'angle sous le vent a'en dessous d'une valeur limite faible, par exemple inférieure à 20° ou à 10°. Elle tend à limiter l'écartement du bord de fuite 22' par rapport à l'axe de rotation central Z. Lorsque la vitesse de rotation est faible, la pale sous le vent 20' n'a qu'une action motrice marginale par rapport à la pale au vent 20. Plus la vitesse de rotation augmente, plus la contribution motrice de la pale sous le vent 20' augmente, et devient prépondérante au-delà d'une certaine vitesse de rotation. Sur les figures 2A et 2B, l'angle a' est faible, typiquement inférieur à 10° ou 20°. Sur la figure 2C, l'angle a' diminue encore, la pale opposée 20' se rapprochant de la position de référence. Ainsi, lorsque la vitesse de rotation est faible, l'éolienne tourne selon une configuration proche d'une panémone à pales mobiles, l'action motrice étant principalement exercée par la pale au vent 20. Lorsque la vitesse de rotation augmente, l'éolienne tend vers une configuration de type Darrieus, les pales s'orientant selon leurs positions de référence respectives. L'action motrice est alors principalement exercée par la pale sous le vent. D'une façon générale, la liaison de rappel 26 permet de limiter l'angle d'inclinaison a de la pale 20, lorsqu'elle se rapproche de l'axe de rotation central, inférieur à un premier angle limite, ce dernier étant inférieur ou égal à 50°, voire 45°. Elle permet également de limiter l'angle d'inclinaison a' de la pale 20, lorsqu'elle s'éloigne de l'axe de rotation central, inférieur à un deuxième angle limite, ce dernier étant inférieur à 10° ou 20°. Le deuxième angle limite est inférieur au premier angle limite. La liaison de rappel 26 permet ainsi de maintenir le bord de fuite 22 dans une plage de distance prédéterminée par rapport à l'axe de rotation central Z. La plage de distance se réduit au fur et à mesure que la vitesse de rotation de l'éolienne augmente. On remarque que contrairement à l'art antérieur, le deuxième angle limite, définissant le débattement maximal de la pale par rapport à sa position de référence, est bien inférieur au premier angle limite. Ainsi, le débattement de la pale au- delà de sa position de référence est bridé. Le débattement de la pale de part et d'autre de sa position de référence est donc asymétrique.
Les figures 3A, 3B, 3C et 3D représentent l'évolution d'une pale pivotante 20 et d'une pale opposée 20' au cours d'une demi-rotation, lorsque la vitesse de rotation de l'éolienne est faible. Sur ces figures, le bras 10 forme un angle par rapport à la direction du vent V respectivement égal à 0°, 45°, 90° et 135°. On observe que le débattement angulaire des pales, autour de leurs axes de pivotement respectif, est limité par la liaison de rappel 26. L'angle au vent a est important, tandis que l'angle sous le vent a' est faible.
Les figures 4A, 4B, 4C et 4D représentent l'évolution d'une pale pivotante 20 et d'une pale opposée 20' au cours d'une demi-rotation, lorsque la vitesse de rotation de l'éolienne est modérée. Sur ces figures, le bras 10 forme un angle par rapport à la direction du vent V respectivement égal à 0°, 45°, 90° et 135°. On observe que le débattement angulaire des pales est limité par la liaison de rappel 26 et que le débattement angulaire des pales, et notamment de la pale au vent (pale 20 sur les figures 4A et 4B; pale 20' sur la figure 4D), tend à se réduire par rapport à la configuration à faible vitesse de rotation décrite en lien avec les figures 3A, 3B, 3C et 3D.
Les figures 5A, 5B, 5C et 5D représentent l'évolution d'une pale pivotante 20 et d'une pale opposée 20' au cours d'une demi-rotation, lorsque la vitesse de rotation est importante. Sur ces figures, le bras 10 forme un angle par rapport à la direction du vent V respectivement égal à 0°, 45°, 90° et 135°. Selon une telle configuration, le débattement angulaire des pales est négligeable, les pales étant orientées selon leur position de référence. Leur pivotement autour de leurs axes de pivotement respectifs devient faible. Selon cette configuration, les pales sont disposées selon une configuration Darrieus, particulièrement adaptée à des expositions à des vents forts. La distance entre le bord de fuite 22 et l'axe de rotation central Z est sensiblement constante durant la rotation.
Ainsi, l'éolienne fonctionne aussi bien par vent faible, du fait du débattement angulaire des pales, que par vent élevé, l'éolienne se présentant alors sous une configuration "Darrieus".
Un paramètre de fonctionnement d'une éolienne est le paramètre de rapidité λ, également désigné par le terme vitesse spécifique, défini de telle sorte que :
. u ,
À = - ou :
v
U désigne la vitesse périphérique de l'éolienne, c'est-à-dire la vitesse du bord d'attaque de pale ;
V désigne la vitesse du vent.
Le paramètre de rapidité est usuellement désigné par le terme anglosaxon "Speed Ratio", signifiant rapport des vitesses. Les figures 3 à 5 sont représentatives d'un démarrage d'une éolienne par vent modéré ou fort, le paramètre de rapidité λ augmentant peu à peu. Les figures 3 (3A, 3B, 3C et 3D) montrent une configuration de l'éolienne au moment du démarrage, le paramètre de rapidité λ étant proche de 0. L'éolienne est essentiellement poussée par le vent, de façon analogue à une panémone à pales mobiles, le débattement angulaire des pales étant mis à profit pour que la pale au vent produise une force motrice de poussée permettant d'augmenter la vitesse de rotation de l'éolienne. Les figures 4 (4A, 4B, 4C et 4D) montrent une configuration de l'éolienne après l'acquisition d'une certaine vitesse de rotation, le paramètre de rapidité λ étant voisin de 1. La contribution à la rotation est équilibrée entre la pale au vent 20 et la pale sous le vent 20'. Le débattement angulaire d'une pale, au cours d'une rotation, se réduit. Les figures 5 (5A, 5B, 5C et 5D) illustrent une configuration de l'éolienne lorsque la vitesse de rotation est plus élevée, le paramètre de rapidité λ étant de 2. Le débattement d'une pale, au cours d'une rotation, est négligeable. L'éolienne se trouve alors selon une configuration Darrieus, la force motrice étant principalement exercée par la pale sous le vent.
Ainsi, à faible vitesse de rotation, c'est-à-dire au démarrage de l'éolienne, le débattement angulaire de chaque pale pivotante permet à l'éolienne d'acquérir une certaine vitesse de rotation, l'action motrice étant principalement exercée par les pales exposées au vent, comme on peut le voir sur les figures 2A, 3A à 3D. Lorsque la vitesse de rotation augmente, le débattement angulaire se réduit peu à peu (cf. figures 2B, 4A à 4D), pour devenir négligeable, l'éolienne se trouvant alors selon une configuration Darrieus (cf. figures 2C, 5A à 5D). L'invention permet ainsi d'obtenir une éolienne de type Darrieus, tout en présentant une certaine efficacité lorsque le vent est faible. Cela permet d'éviter le recours à une assistance au lancement de l'éolienne.
La figure 6 montre un deuxième mode de réalisation, dans lequel le châssis 2 de l'éolienne présente plusieurs bras 10, s'étendant entre une extrémité 11 et l'axe de rotation central Z. A chaque extrémité 11 est fixée une pale pivotante 20. A chaque pale pivotante est associé un point d'attache 15, à proximité du bord d'attaque 21 et un point de tir 25, à proximité du bord de fuite 22. Chaque pale pivotante 20 est mobile en rotation autour d'un axe de pivotement W, parallèle à l'axe de rotation central Z, et passant par le point d'attache 15. Les différentes pales de l'éolienne sont reliées à un lien d'association 23, présentant une forme en étoile, de telle sorte que le bord de fuite 22 d'une pale pivotante 20 est relié au bord de fuite 22' de plusieurs pales pivotantes, et en particulier d'au moins une pale pivotante opposée 20', telle que précédemment définie. Le bord de fuite 22 de chaque pale pivotante est relié au point de tir 25, associé à ladite pale, par une liaison de rappel 26, cette dernière s'étendant entre le point de tir 25 et le lien d'association 23. L'intersection de la liaison de rappel 26 et du lien d'association 23 définit un point d'intersection 27. De même que dans le mode de réalisation précédent, le lien d'association 23 est articulé selon des points d'articulation, chaque point d'articulation étant également un point d'intersection. Selon ce mode de réalisation, le point de tir 25 associé à une pale 20 est situé à proximité du point d'attache 15a d'une pale pivotante adjacente 20a. La pale pivotante adjacente est portée par un bras lia, adjacent du bras 11 portant la pale 20. On a également représenté, sur cette figure, le cercle périphérique C décrit par chaque point d'attache 15 au cours d'une rotation complète de l'éolienne.
La figure 7 est une photographie d'un troisième mode de réalisation de l'éolienne. Selon ce mode de réalisation, l'éolienne présente quatre pales. Deux pales 20, 20', diamétralement opposées l'une à l'autre, sont pivotantes, tel que précédemment décrit. Deux autres pales 20f, 20f sont montées fixes, selon une configuration de type Darrieus, c'est-à-dire orientées perpendiculairement au bras les supportant. Les pales pivotantes permettent de lancer l'éolienne, à faible vitesse de rotation. Ainsi, il n'est pas nécessaire que toutes les pales d'une éolienne soient pivotantes. Il est cependant préférable qu'au moins deux pales pivotantes, opposées l'une à l'autre, le soient.
Des essais comparatifs ont été réalisés à l'aide d'une éolienne telle que représentée sur la figure 8A, représentative de l'invention, et d'une éolienne à pales fixes, selon une configuration Darrieus, formant une éolienne de référence, cette dernière étant représentée sur la figure 8B. Chaque éolienne s'étend selon un diamètre de 24 cm et comporte deux pales identiques, de hauteur 40 cm et de longueur de corde égale à 6 cm. Les éoliennes ont été soumises à un vent dont la vitesse varie entre 10 km/h et 65 Km/h. On a mesuré, pour différentes vitesses du vent, la vitesse de rotation ainsi que le paramètre de rapidité λ.
Le tableau suivant montre les différentes valeurs mesurées :
Vitesse du Référence Référence Référence Invention Invention Invention vent
Vitesse λ Tension Vitesse λ Tension (Km/h) (tours/min) (tours/min) (V)
(V)
10 0 0 0 100 0,44 3
20 80 0,18 2,4 250 0,56 7,5
30 230 0,34 6,9 340 0,52 10,2
40 240 0,26 7,2 373 0,42 11,2
50 260 0,24 7,8 440 0,4 13,2
60 296 0,22 8,9 467 0,352 14
65 307 0,21 9,2 477 0,352 14,3 Lorsque la vitesse du vent est faible (10 Km/h), l'éolienne de référence ne tourne pas, tandis que l'éolienne selon invention acquiert une vitesse de rotation déjà significative. Dans les essais impliquant une vitesse du vent supérieure, l'éolienne de référence a été lancée à la main. Aux différentes vitesses du vent, la vitesse de rotation de l'éolienne selon l'invention est systématiquement supérieure à celle de l'éolienne de référence. La figure 8C montre l'évolution de la vitesse de rotation (axe des ordonnées) en fonction de la vitesse du vent (axe des abscisses), respectivement pour l'éolienne de référence (barres sombres) et pour l'éolienne selon l'invention (barres claires).
Un convertisseur a été disposé de façon à convertir l'énergie mécanique de chaque éolienne en énergie électrique, pour l'alimentation électrique de lampes. Le schéma électrique du montage est représenté sur la figure 8D. On a connecté 3 lampes Ll, L2 et L3, de puissance électrique 1W, entre les bornes issues de l'éolienne 1, les bornes étant déphasées de 120° l'une par rapport à l'autre. On a mesuré la tension moyenne entre deux bornes, par exemple de part et d'autre de la lampe L3. La tension moyenne mesurée est systématiquement supérieure, d'au moins 50%, en mettant en œuvre l'invention.
Ainsi, une éolienne selon l'invention permet d'obtenir, à différentes vitesses de vent, et à surface de pales égale, une vitesse de rotation plus élevée qu'une éolienne à pales fixes. Lorsque la vitesse du vent augmente, la vitesse de rotation de l'éolienne est également supérieure à la vitesse d'une éolienne de type Darrieus. L'éolienne selon l'invention s'adapte davantage aux fluctuations de charge. Son comportement dynamique permet un ajustement optimal de l'orientation des pales pivotantes en fonction des conditions opérationnelles, qu'il s'agisse d'une variation du vent ou d'une fluctuation de la charge électrique raccordée à l'éolienne.
L'invention pourra être mise en œuvre pour l'alimentation électrique d'habitats, l'installation étant simple. On peut par exemple envisager un couplage de différentes éoliennes selon l'invention. Par ailleurs, l'invention peut également être destinée à l'alimentation électrique d'habitations isolées, par exemple des refuges. Les dimensions et le nombre des éoliennes seront ajustés à la puissance électrique à fournir. Par ailleurs, l'invention peut se décliner en des éoliennes de faibles dimensions, dont la hauteur et/ou le diamètre est inférieur à 1 m. De telles éoliennes sont adaptées à des utilisations nomades, par exemple sur des véhicules de loisirs, ou encore des navires.

Claims

REVENDICATIONS
1. Eolienne (1), comportant des pales (20, 20', 20f, 20f, 20a), configurées pour tourner autour d'un axe de rotation central (Z) selon un sens de rotation (Ω), l'axe de rotation central étant destiné à être orienté verticalement, l'éolienne comportant un châssis rigide (2), comprenant au moins un bras (10) maintenant les pales, et s'étendant transversalement à l'axe de rotation central (Z), chaque pale comportant un bord d'attaque (21) et un bord de fuite (22), de telle sorte que selon le sens de rotation (Ω), le bord d'attaque est disposé devant le bord de fuite, l'éolienne comportant au moins deux pales (20, 20'), pales pivotantes, chaque pale pivotante étant telle que :
la pale pivotante (20) est reliée à un point du bras, dit point d'attache (15, 15'), la pale pivotante étant mobile en rotation, autour du point d'attache, selon un axe de pivotement (W, W);
la pale pivotante (20) est reliée à une autre pale pivotante (20') par un lien flexible (23), dit lien d'association ;
l'éolienne étant caractérisée en ce que :
chaque pale pivotante est associée à un point, dit point de tir (25, 25'), situé sur le châssis, le point de tir étant plus proche du bord de fuite (22) que du bord d'attaque (21), le point de tir étant plus proche du point d'attache que de l'axe de rotation central (Z) ;
- chaque pale pivotante est reliée au point de tir (25,25') qui lui est associé par une liaison de rappel (26), fixée au point de tir, s'étendant
entre le point de tir (25) et un point d'intersection (27), situé sur le lien d'association (23) relié à la pale, le point d'intersection correspondant alors à l'intersection entre le lien d'association (23) et la liaison de rappel (26);
■ ou entre le point de tir (25) et un point d'intersection situé sur la pale, la pale étant reliée à la fois à la liaison de rappel (26) et au lien d'association (23) ; de façon à limiter un débattement, par rapport au point de tir, de ladite pale pivotante autour de l'axe de pivotement (W,W).
2. Eolienne selon la revendication 1, dans laquelle les points de tir (25, 25'), respectivement associés à deux pales pivotantes différentes (20, 20'), sont différents.
3. Eolienne selon l'une quelconque des revendications précédentes, dans laquelle le point de tir (25) est plus proche de l'axe de rotation central (Z), que le point d'attache (15), ou aussi proche de l'axe de rotation central (Z) que le point d'attache (15).
4. Eolienne selon l'une quelconque des revendications précédentes, dans laquelle le point d'intersection (27) est plus proche du bord de fuite (22) que du point d'attache (15)
5. Eolienne selon l'une quelconque des revendications précédentes, dans laquelle le lien d'association (23) associé à la pale pivotante (20) s'étendant selon une longueur, entre ladite pale pivotante (20) et ladite autre pale pivotante (20'), le point de tir (25) est disposé à une distance, inférieure au cinquième de ladite longueur, du bord de fuite (22) de ladite pale pivotante.
6. Eolienne selon l'une quelconque des revendications précédentes, dans laquelle la liaison de rappel (26) est mobile en rotation autour du point de tir (25).
7. Eolienne selon la revendication 6, dans laquelle la liaison de rappel (26) est fixée au point de tir (25) par une jonction de type rotule.
8. Eolienne selon l'une quelconque des revendications précédentes, dans laquelle le point de tir (25) est plus proche du bord de fuite (22) que du point d'attache (15).
9. Eolienne selon l'une quelconque des revendications précédentes, dans laquelle le point de tir (25) est fixe sur le châssis.
10. Eolienne selon l'une quelconque des revendications précédentes, dans laquelle le point de tir (25) associé à une pale pivotante est disposé :
- sur le bras (11) maintenant ladite pale pivotante (20) ;
- ou sur un bras (lia) adjacent du bras maintenant la pale pivotante (20), le bras adjacent maintenant une pale (20a) adjacente de ladite pale pivotante.
11. Eolienne selon l'une quelconque des revendications précédentes, dans laquelle pour chaque pale pivotante, la liaison de rappel (26), fixée au point de tir, s'étend entre le point de tir (25) et un point d'intersection (27), situé sur le lien d'association (23) relié à la pale, le point d'intersection correspondant alors à l'intersection entre le lien d'association (23) et la liaison de rappel (26), et dans laquelle :
- le lien d'association (23) s'étend entre deux points d'association (28, 28') respectifs de deux pales pivotantes (20, 20');
chaque pale pivotante (20) est reliée au point de tir (25) :
par un segment (24) du lien d'association (23), s'étendant entre le point d'association (28) associé à ladite pale pivotante (20) et le point d'intersection (27) ;
■ et par la liaison de rappel (26), s'étendant entre le point d'intersection (27) et le point de tir (25).
12. Eolienne selon l'une quelconque des revendications précédentes, dans laquelle : au moins une pale pivotante (20) définit un axe de pale (Δ), s'étendant entre le bord de fuite et le bord d'attaque ;
la pale pivotante présente un centre de surface (G) ;
à la pale pivotante correspond une position, dite de référence, de telle sorte que lorsque la pale s'étend selon la position de référence, l'axe de la pale définit un axe de référence (Aref), l'axe de référence étant perpendiculaire à une droite, s'étendant perpendiculairement à l'axe de rotation, et reliant l'axe de rotation au centre de surface de la pale;
le débattement du bord de fuite (22) de la pale étant limité de telle sorte que :
lorsque la pale s'incline vers l'axe de rotation central (Z), l'angle (a) entre l'axe de pale (A),et l'axe de référence (Aref) est inférieur à un premier angle limite;
lorsque la pale s'incline en s'éloignant de l'axe de rotation central (Z), l'angle (α') entre l'axe de pale (Δ) et l'axe de référence (Aref) est inférieur à un deuxième angle limite;
le premier angle limite étant supérieur au deuxième angle limite.
13. Eolienne selon la revendication 12 dans laquelle le premier angle limite est inférieur ou égal à 45°, et/ou le deuxième angle limite est inférieur ou égal à 20°.
14. Eolienne selon l'une quelconque des revendications précédentes, comportant :
au moins deux pales pivotantes (20, 20') opposées ;
au moins deux pales fixes (20f, 20f), opposées, reliées à un bras, et immobiles par rapport à ce dernier.
PCT/FR2018/052515 2017-10-11 2018-10-10 Eolienne verticale a pales pivotantes WO2019073175A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1759526A FR3072134B1 (fr) 2017-10-11 2017-10-11 Eolienne verticale a pales pivotantes
FR1759526 2017-10-11

Publications (1)

Publication Number Publication Date
WO2019073175A1 true WO2019073175A1 (fr) 2019-04-18

Family

ID=61003118

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2018/052515 WO2019073175A1 (fr) 2017-10-11 2018-10-10 Eolienne verticale a pales pivotantes

Country Status (2)

Country Link
FR (1) FR3072134B1 (fr)
WO (1) WO2019073175A1 (fr)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0021790A1 (fr) 1979-06-19 1981-01-07 Frederick Charles Evans Aéromoteurs et turbines à axe vertical
US20030049128A1 (en) * 2000-03-21 2003-03-13 Rogan Alan John Wind turbine
US20130045080A1 (en) * 2010-04-18 2013-02-21 Brian Kinloch Kirke Cross flow wind or hydrokinetic turbines
DE102012018908A1 (de) * 2012-09-24 2014-03-27 Ludwig Resch Fliehkraftwindrad
FR2997736A1 (fr) 2012-11-02 2014-05-09 Pascal Epineau Eolienne a axe vertical, comprenant au moins une paire de pales pivotantes dont les pivotements sont associes l'un a l'autre

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0021790A1 (fr) 1979-06-19 1981-01-07 Frederick Charles Evans Aéromoteurs et turbines à axe vertical
US20030049128A1 (en) * 2000-03-21 2003-03-13 Rogan Alan John Wind turbine
US20130045080A1 (en) * 2010-04-18 2013-02-21 Brian Kinloch Kirke Cross flow wind or hydrokinetic turbines
DE102012018908A1 (de) * 2012-09-24 2014-03-27 Ludwig Resch Fliehkraftwindrad
FR2997736A1 (fr) 2012-11-02 2014-05-09 Pascal Epineau Eolienne a axe vertical, comprenant au moins une paire de pales pivotantes dont les pivotements sont associes l'un a l'autre

Also Published As

Publication number Publication date
FR3072134A1 (fr) 2019-04-12
FR3072134B1 (fr) 2020-10-23

Similar Documents

Publication Publication Date Title
EP2986848B1 (fr) Structure d'eolienne flottante
EP3426917B1 (fr) Eolienne flottante a turbines jumelles a axe vertical a rendement ameliore
EP2572100B1 (fr) Turbogenerateur a rotor a pales a incidence adaptee au vent apparent
CA2862705C (fr) Rotor d'hydrolienne comportant au moins une pale mobile en rotation autour d'un axe radial et des moyens de limitation du mouvement en rotation de ladite pale, et hydrolienne comprenant un tel rotor
FR2482673A1 (fr) Turbine eolienne a systeme de compensation de mouvement de lacet
WO2015158754A1 (fr) Eolienne adaptative
WO2019073175A1 (fr) Eolienne verticale a pales pivotantes
WO2010109081A1 (fr) Rotor pour générateur d'énergie, en particulier pour éoliennes
EP1588050A1 (fr) Eolienne de type a autoregulation de puissance
BE1017920A3 (fr) Machine hydroelectrique flottante.
FR2945325A1 (fr) Eolienne a axe de rotation perpendiculaire a la direction du vent.
FR2667904A1 (fr) Procede et eolienne pour renforcer l'alimentation d'un reseau electrique.
WO2012001320A1 (fr) Eolienne verticale a winglets
EP3189233A1 (fr) Structure de tour pour rotor d'éolienne a axe vertical
WO2020249709A1 (fr) Éolienne et installation de conversion d'énergie comprenant une telle éolienne
EP2337951A2 (fr) Eolienne a axe vertical
FR2997736A1 (fr) Eolienne a axe vertical, comprenant au moins une paire de pales pivotantes dont les pivotements sont associes l'un a l'autre
WO2023152657A1 (fr) Éolienne à axe vertical, et navire équipé d'au moins une telle éolienne
FR2766241A1 (fr) Turbine a vent pour generatrice
EP4295033A1 (fr) Eolienne à flux transverse à pales jumelles, et à axes de rotation inclinés
FR3082893A1 (fr) Eolienne verticale.
FR2491556A1 (fr) Eolienne a capteur lent adaptable aux conditions de vent
FR3025839A1 (fr) Dispositif permettant de realiser le demarrage et la regulation de fonctionnement d'une eolienne a axe de rotation vertical de type darrieus ou d'une hydrolienne du meme type
WO1999031385A1 (fr) Turbine eolienne a axe transversal
FR2996265A1 (fr) Eolienne a axe vertical

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18800248

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18800248

Country of ref document: EP

Kind code of ref document: A1