Nothing Special   »   [go: up one dir, main page]

WO2019069648A1 - Vision examination device - Google Patents

Vision examination device Download PDF

Info

Publication number
WO2019069648A1
WO2019069648A1 PCT/JP2018/033824 JP2018033824W WO2019069648A1 WO 2019069648 A1 WO2019069648 A1 WO 2019069648A1 JP 2018033824 W JP2018033824 W JP 2018033824W WO 2019069648 A1 WO2019069648 A1 WO 2019069648A1
Authority
WO
WIPO (PCT)
Prior art keywords
subject
light
retina
image
invisible
Prior art date
Application number
PCT/JP2018/033824
Other languages
French (fr)
Japanese (ja)
Inventor
安井賢治
鈴木誠
菅原充
長谷川欣也
Original Assignee
株式会社Qdレーザ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Qdレーザ filed Critical 株式会社Qdレーザ
Priority to EP18864830.7A priority Critical patent/EP3692889B1/en
Priority to US16/650,798 priority patent/US11717157B2/en
Priority to JP2019546602A priority patent/JP6677859B2/en
Priority to CN201880064469.8A priority patent/CN111163682B/en
Publication of WO2019069648A1 publication Critical patent/WO2019069648A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/12Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for looking at the eye fundus, e.g. ophthalmoscopes
    • A61B3/1225Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for looking at the eye fundus, e.g. ophthalmoscopes using coherent radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/1025Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for confocal scanning
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/0016Operational features thereof
    • A61B3/0025Operational features thereof characterised by electronic signal processing, e.g. eye models
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/0016Operational features thereof
    • A61B3/0041Operational features thereof characterised by display arrangements
    • A61B3/0058Operational features thereof characterised by display arrangements for multiple images
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/0091Fixation targets for viewing direction
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/02Subjective types, i.e. testing apparatus requiring the active assistance of the patient
    • A61B3/024Subjective types, i.e. testing apparatus requiring the active assistance of the patient for determining the visual field, e.g. perimeter types

Definitions

  • the present invention relates to a visual inspection apparatus.
  • a fundus examination with a scanning laser ophthalmoscope (SLO: Scanning Laser Ophthalmoscope) is known.
  • SLO Scanning Laser Ophthalmoscope
  • an ophthalmologic apparatus provided with a function of scanning laser ophthalmoscope and a function of visual field measurement (e.g., Patent Document 1).
  • the present invention has been made in view of the above problems, and an object thereof is to provide a visual inspection apparatus capable of projecting a high resolution image.
  • the present invention has a light source for emitting visible light and invisible light, and a first scanning unit for two-dimensionally scanning the visible light by oscillating at a first frequency, and the visible light is transmitted to the retina of the subject And an image projection optical system that projects an image onto the retina of the subject, and a second scanning unit that two-dimensionally scans the invisible light beam by oscillating at a second frequency different from the first frequency.
  • An invisible light optical system for irradiating the invisible light to the subject's retina, a detector for detecting the invisible light reflected by the subject's retina, the visible light from the light source and the invisible light
  • a control unit configured to control emission of a light beam and to detect a state of a fundus of the subject from an output signal of the detector.
  • the image display optical system and the invisible light may further include a light splitting unit that emits the visible light emitted from the light source in a first direction and emits the invisible light in a second direction different from the first direction.
  • the optical axis with the optical optical system is coincident, and the image projection optical system two-dimensionally scans the visible light emitted in the first direction and irradiates the retina of the subject with the invisible light.
  • the optical optical system may be configured to two-dimensionally scan the invisible light emitted in the second direction and to irradiate the retina of the subject.
  • the light separating unit may be a dichroic mirror that transmits one of the visible light and the invisible light and reflects the other.
  • the image processing apparatus may further include a combining unit configured to combine the visible light scanned by the first scanning unit and the invisible light scanned by the second scanning unit.
  • the invisible light beam may be an infrared light beam
  • the control unit may be configured to generate a fundus image of the eye of the subject based on an output signal of the detector.
  • control unit controls the emission of the visible light from the light source to project a fixation target for causing the line of sight of the subject to be directed to the retina of the subject, and the light source
  • the invisible light beam may be emitted from the light source to illuminate the invisible light beam on the retina of the subject.
  • control unit may be configured to control an emission of the visible light from the light source to project a test target for testing the eye of the subject on the retina of the subject.
  • control unit controls emission of the visible light from the light source to project a test target for testing the eye of the subject on the retina of the subject, and the light source. And the irradiation of the invisible light to the retina of the subject can be performed in parallel.
  • control unit controls the emission of the visible light from the light source to project a test target for testing the eye of the subject on the retina of the subject, and the detector
  • a third inspection image in which a first inspection image generated based on an output signal of the second inspection image and a second inspection image generated based on a response input according to the inspection target of the subject are superimposed can do.
  • the first examination image may be a fundus image
  • the second examination image may be an image regarding a visual field defect
  • the present invention has a light source for emitting visible light and invisible light, and a first scanning unit for two-dimensionally scanning the visible light by oscillating at a first frequency, and the visible light is transmitted to the retina of the subject And an image projection optical system that projects an image onto the retina of the subject, and a second scanning unit that two-dimensionally scans the invisible light beam by oscillating at a second frequency different from the first frequency.
  • An invisible light optical system for irradiating the invisible light to the subject's retina a detector for detecting the visible light and the invisible light reflected by the subject's retina, and the light source from the light source Control of emission of visible light and the invisible light, detection of the state of the first fundus of the subject from the output signal based on the visible light of the detector, and output signal based on the invisible light of the detector From the second fundus of the subject
  • a control unit for the detection of states, a visual inspection device comprising a.
  • control unit controls the emission of the visible light from the light source to cause the gaze of the subject to be directed to the retina of the subject, and the subject It is possible to project at least one of the examination targets for examining the eye of the subject.
  • control unit may be configured to generate a fundus image of the eye of the subject as the detection of the state of the first fundus and the detection of the state of the second fundus.
  • the present invention comprises a visible light source for emitting visible light, an invisible light source for emitting invisible light, a light source light combining unit for combining the visible light and the invisible light to generate combined light, and the visible light
  • a scanning unit for two-dimensionally scanning the invisible light beam, and the visible light beam irradiated to the retina of the subject to project an image on the retina of the subject, and the invisible light beam to the retina of the subject
  • An emission optical system for irradiating, a detector for detecting the invisible light reflected by the retina of the subject, and control of emission of the visible light from the visible light source and the invisible light from the invisible light source
  • a control unit that detects the state of the fundus of the subject from the output signal of the detector.
  • the invisible light beam may be an infrared light beam
  • the control unit may be configured to generate a fundus image of the eye of the subject based on an output signal of the detector.
  • control unit controls the emission of the visible light from the visible light source to project a fixation target for causing the subject's line of sight to be directed to the retina of the subject.
  • the invisible light beam may be emitted from the invisible light source to irradiate the retina of the subject with the invisible light beam.
  • control unit may control emission of the visible light from the visible light source to project a test target for testing the eye of the subject on the retina of the subject. can do.
  • control unit controls the emission of the visible light from the visible light source to project a test target for testing the eye of the subject on the retina of the subject
  • a third inspection image is generated by superimposing the first inspection image generated based on the output signal of the detector and the second inspection image generated based on the response inputted according to the test target of the subject. It can be configured.
  • the first examination image may be a fundus image
  • the second examination image may be an image regarding a visual field defect
  • a high resolution image can be projected.
  • FIG. 1 is a block diagram of a visual inspection apparatus according to a first embodiment.
  • FIG. 2 is a diagram illustrating an optical system of the visual inspection apparatus according to the first embodiment.
  • FIGS. 3A and 3B are diagrams for explaining scanning of visible laser light and infrared laser light.
  • FIG. 4 is a flowchart showing the process in the first embodiment.
  • FIG. 5 is an example of a fundus oculi image generated by the image generation unit.
  • FIG. 6 is a block diagram of a visual inspection apparatus according to a second embodiment.
  • FIG. 7 is an example of an image projected onto the retina in the second embodiment.
  • FIG. 8 is a flowchart showing processing in the second embodiment.
  • FIG. 9 is a flowchart showing a method of examination using the examination target in the second embodiment.
  • FIGS. 10 (a) to 10 (d) are diagrams for explaining an examination using an examination target.
  • FIGS. 11A to 11C are examples of the fundus image, the visual field defect image, and the superimposed image generated by the image generation unit.
  • FIGS. 12 (a) and 12 (b) are other examples of images projected onto the retina in Example 2.
  • FIG. 13 is a flowchart showing the process in the third embodiment.
  • FIG. 14 is a block diagram of a visual inspection apparatus according to a fourth embodiment.
  • FIG. 15 is a diagram of an optical system of a visual inspection apparatus according to a fourth embodiment.
  • FIG. 1 is a block diagram of a visual inspection apparatus according to a first embodiment.
  • the visual inspection apparatus 100 includes a projection unit 10, a control unit 30, a detector 40, and a display unit 41.
  • the projection unit 10 includes a light source 11, an adjustment unit 12, a spectroscopy unit 13, an image projection optical system 14, an infrared light optical system 15, a drive circuit 16, and an input circuit 17.
  • the image projection optical system 14 has a scanning unit 20, and the infrared light optical system 15 has a scanning unit 22.
  • the scanning units 20 and 22 (scanners) are, for example, scanning mirrors such as MEMS (Micro Electro Mechanical System) mirrors or transmission type scanners.
  • the control unit 30 includes a drive control unit 31, a signal processing unit 32, and an image generation unit 33.
  • the drive control unit 31 generates an image to be projected on the retina.
  • An image signal from the drive control unit 31 is input to the input circuit 17.
  • the drive circuit 16 drives the light source 11 and the scan units 20 and 22 based on the image signal acquired by the input circuit 17 and the control signal of the drive control unit 31.
  • the light source 11 includes, for example, visible light of red laser light (wavelength: about 610 nm to about 660 nm), green laser light (wavelength: about 515 nm to about 540 nm), and blue laser light (wavelength: about 440 nm to about 480 nm)
  • the invisible light beam (wavelength: about 850 nm) is emitted. That is, the light source 11 has laser diode chips for red laser light, green laser light, blue laser light, and infrared laser light in one module.
  • the light source 11 may emit laser light of a single wavelength as visible light.
  • the adjustment unit 12 includes a collimator lens, a toric lens, and / or an aperture, and shapes the laser beam 50 emitted from the light source 11.
  • the laser beam 50 is a light beam in which a red laser beam, a green laser beam, a blue laser beam, and / or an infrared laser beam are combined, and the optical axes of the respective laser beams coincide with each other.
  • the spectral unit 13 is, for example, a dichroic mirror, and divides the laser light 50 into visible laser light 50a of red laser light, green laser light, and blue laser light, and infrared laser light 50b.
  • the image projection optical system 14 two-dimensionally scans the visible laser light 50 a separated by the light separating unit 13 by the scanning unit 20 and irradiates the eye 70 of the subject.
  • the infrared light optical system 15 two-dimensionally scans the infrared laser light 50b separated by the light separating unit 13 by the scanning unit 22 and irradiates it to the eye 70 of the subject, for example, a conventional scanning type It implements some of the functions of the laser ophthalmoscope (SLO).
  • SLO laser ophthalmoscope
  • the detector 40 is, for example, a photodetector such as an avalanche photodiode, and detects the infrared laser light 50b reflected by the eye 70 of the subject.
  • the signal processing unit 32 processes the output signal of the detector 40 based on the control signal from the drive control unit 31.
  • the image generation unit 33 generates a two-dimensional image based on the signal processed by the signal processing unit 32.
  • the display unit 41 is, for example, a liquid crystal display, and displays an image generated by the image generation unit 33.
  • the detector 40 and the signal processing unit 32 start detection based on the synchronization signal from the drive circuit 16 at the timing when the light source 11 emits the infrared laser light 50 b.
  • a processor such as a central processing unit (CPU) may perform processing in cooperation with a program.
  • the drive control unit 31, the signal processing unit 32, and the image generation unit 33 may be circuits designed for exclusive use.
  • the drive control unit 31, the signal processing unit 32, and the image generation unit 33 may be one circuit or different circuits.
  • FIG. 2 is a diagram illustrating an optical system of the visual inspection apparatus according to the first embodiment.
  • the visual inspection apparatus 100 irradiates laser light to the retina 74 of the subject using Maxwell vision.
  • the numerical aperture (NA) and / or the beam diameter of the laser light 50 emitted from the light source 11 is adjusted by the adjustment unit 12.
  • the laser beam 50 is split into the visible laser beam 50a of the red laser beam, the green laser beam, and the blue laser beam, and the infrared laser beam 50b in the beam splitting unit 13.
  • the spectral unit 13 is, for example, a dichroic mirror that transmits the visible laser light 50 a and reflects the infrared laser light 50 b.
  • the light separating unit 13 is not limited to a dichroic mirror, and may be another optical element such as a dichroic prism.
  • the visible laser beam 50 a is reflected by the flat mirror 21 and scanned two-dimensionally by the scanning unit 20.
  • the scanned visible laser light 50 a is irradiated to the eye 70 of the subject via the lens 25, the combining unit 26, and the lens 27.
  • the visible laser light 50 a converges near the lens 72, passes through the vitreous body 76, and irradiates the retina 74.
  • an image is projected on the retina 74.
  • the scanning unit 20 vibrates at a relatively high frequency such as 28 kHz, for example, so that an image of 60 frames is projected per second.
  • the infrared laser beam 50 b is reflected by the flat mirror 23 and is two-dimensionally scanned by the scanning unit 22.
  • the scanned infrared laser light 50 b is applied to the eye 70 of the subject via the lens 24, the combining unit 26, and the lens 27.
  • the infrared laser light 50 b converges near the lens 72, passes through the vitreous body 76, and irradiates the retina 74.
  • the infrared laser light 50 b is reflected by the retina 74.
  • the reflected infrared laser light 50 b returns in the optical path along which the infrared laser light 50 b has traveled toward the retina 74.
  • the reflected infrared laser beam 50 b is an optical path in which the infrared laser beam 50 b has traveled toward the retina 74 in the order of the lens 27, the combining unit 26, the lens 24, the scanning unit 22, the plane mirror 23, and the light separating unit 13. , And enters the detector 40 via the half mirror 43 and the lens 44. Thereby, the detector 40 detects the infrared laser light 50b reflected by the retina 74. Detection of the state of the fundus of the eye 70 (acquisition of state information of the fundus) can be performed according to the detection result of the luminance change of the infrared laser light 50b by the detector 40, and a fundus image is acquired as an example of the detection target can do.
  • the scanning unit 22 is relatively low such as 12.5 kHz, which corresponds to the case where an image of 25 frames is projected, for example, so that detection of the state of the fundus of the eye 70 can be realized by the infrared laser light 50b. It vibrates at a frequency.
  • FIG. 3A and FIG. 3B are diagrams for explaining the scanning of the visible laser beam 50a and the infrared laser beam 50b.
  • the image 60 is projected onto the retina 74 by the visible laser beam 50a.
  • the scanning unit 20 of the image projection optical system 14 raster scans the visible laser light 50 a from the upper left to the lower right as shown by the arrow 61. Even if the scanning unit 20 vibrates, the visible laser light 50a is not irradiated to the retina 74 unless the light source 11 emits the visible laser light 50a.
  • the visible laser beam 50a is not emitted at the dashed arrow 61 in FIG. 3A.
  • the drive circuit 16 synchronizes the emission of the visible laser light 50 a from the light source 11 and the vibration of the scanning unit 20. Thereby, the light source 11 emits the visible laser light 50 a in the thick solid line 62.
  • a fixation target 63 for projecting the line of sight of the subject to a central region of the retina 74 is projected.
  • the fixation target 63 is not limited to the cross pattern, and may be any other figure as long as the line of sight of the subject can be directed, such as a dot pattern, a star pattern, a circular pattern, or a polygonal pattern.
  • the display position of the fixation target 63 is not limited to the central region of the retina 74, and may be appropriately changed as needed.
  • the scanning unit 22 of the infrared light optical system 15 raster scans the infrared laser light 50b from the upper left to the lower right as indicated by the arrow 64. If the light source 11 does not emit the infrared laser beam 50b even if the scanning unit 22 vibrates, the infrared laser beam 50b is not irradiated to the retina 74.
  • the drive circuit 16 synchronizes the emission of the infrared laser light 50 b from the light source 11 and the vibration of the scanning unit 22.
  • the infrared laser beam 50b is an invisible ray, so the subject can not recognize that the infrared laser beam 50b is irradiated.
  • the light source 11 emits the infrared laser light 50 b in, for example, substantially the same range as the image 60 in the vibration of the scanning unit 22.
  • the scanning angle of the visible laser light 50a by the scanning unit 20 and the scanning angle of the infrared laser light 50b by the scanning unit 22 are, for example, substantially the same size.
  • the combining unit 26 is, for example, a dichroic mirror, and combines the visible laser beam 50 a scanned by the scanning unit 20 and the infrared laser beam 50 b scanned by the scanning unit 22.
  • the optical axes of the visible laser light 50a and the infrared laser light 50b after being combined by the combining unit 26 coincide with each other.
  • the combining unit 26 is not limited to a dichroic mirror, but may be another optical element such as a dichroic prism.
  • the image projection optical system 14 includes a scanning unit 20, a plane mirror 21, a lens 25, a combining unit 26, and a lens 27.
  • the infrared light optical system 15 includes a scanning unit 22, a plane mirror 23, a lens 24, a combining unit 26, and a lens 27.
  • the combining unit 26 and the lens 27 are components common to the image projection optical system 14 and the infrared light optical system 15.
  • FIG. 4 is a flowchart showing the process in the first embodiment.
  • the drive control unit 31 generates an image 60 as illustrated in FIG. 3A, causes the projection unit 10 to project the generated image 60, and causes the retina 74 to project the fixation target 63. (Step S10).
  • the drive control unit 31 causes the projection unit 10 to irradiate the retina 74 with the infrared laser light 50b (step S12).
  • the signal processing unit 32 acquires an output signal of the detector 40 (step S14).
  • the detector 40 detects the infrared laser light 50 b in synchronization with the synchronization signal from the drive circuit 16. That is, the detector 40 detects the infrared laser light 50 b in synchronization with the emission of the infrared laser light 50 b from the light source 11.
  • the signal processing unit 32 starts acquiring the output signal of the detector 40 in synchronization with the emission of the infrared laser light 50 b.
  • the drive control unit 31 determines whether or not the irradiation of the infrared laser light 50b has ended in a predetermined number of frames (step S16).
  • the predetermined number of frames may be one frame or a plurality of frames such as five or ten frames.
  • the number of frames suitable for detecting the state of the fundus of the eye 70 may be appropriately selected by irradiating the retina 74 with the infrared laser light 50 b.
  • step S16: No steps S12 and S14 are repeated.
  • Step S16: Yes the drive control unit 31 causes the projection unit 10 to end the projection of the fixation target 63 (Step S18).
  • the image generation unit 33 generates an inspection image (for example, a fundus image) of the eye 70 based on the output signal of the detector 40 acquired by the signal processing unit 32 (step S20).
  • the image generation unit 33 may obtain an average value of the output signals of the detector 40 in each of the plurality of frames to generate an inspection image, or The inspection image may be generated by the maximum value.
  • the display unit 41 displays an examination image (step S22).
  • the examiner examines the vision of the subject by the examiner examining the examination image indicating the state of the fundus displayed on the display unit 41.
  • a detection of the state of the fundus it is also possible to detect an uneven tumor, a pseudo three-dimensional image using a phase difference, or opacity of the vitreous body.
  • FIG. 5 is an example of a fundus oculi image generated by the image generation unit.
  • reference numeral 80 is a fovea
  • reference numeral 81 is an optic nerve head
  • reference numeral 82 is a retinal artery or retinal vein.
  • the lesion 83 is shown by the cross hatch.
  • the retina 74 is irradiated with the infrared laser light 50b.
  • the image can be projected on the retina 74.
  • the image is projected on the retina 74 by irradiating the retina 74 with the visible laser light 50 a scanned by the scanning unit 20 two-dimensionally.
  • the scanning unit 20 that scans the visible laser light 50a vibrate at about 28 kHz so that an image of 60 frames is projected, for example, per second.
  • the condition of the fundus of the subject is detected from the output signal of the detector 40 that irradiates the retina 74 with the infrared laser light 50b scanned in a two-dimensional manner by the scanning unit 22 and detects the reflected light at the retina 74.
  • the scanning unit 22 vibrate at about 12.5 kHz, which corresponds to, for example, the case where an image of 25 frames is projected per second. This is due to the processing convenience such as the accuracy when using the infrared laser light 50b.
  • the scanning unit 20 for scanning the visible laser beam 50a and the scanning unit 22 for scanning the infrared laser beam 50b are separately provided, they can be oscillated at different frequencies, and the above-mentioned demands are realized. it can.
  • the inspection apparatus can be made smaller than when the image is projected using a liquid crystal display. it can.
  • the scanning units 20 and 22 are preferably two-axis MEMS mirrors in terms of downsizing, weight reduction, and cost reduction of the inspection apparatus.
  • the visible laser light 50a emitted from the light source 11 is emitted in the first direction
  • the infrared laser light 50b is emitted in the second direction different from the first direction.
  • the spectroscope unit 13 is provided.
  • the optical axes of the image projection optical system 14 and the infrared light optical system 15 coincide with each other, and the image projection optical system 14 two-dimensionally scans the visible laser light 50a emitted in the first direction by the spectroscope unit 13
  • the infrared light optical system 15 two-dimensionally scans the infrared laser light 50 b emitted in the second direction by the light separating unit 13 and irradiates the retina 74 with the light.
  • the optical system from the light source 11 to the light splitting unit 13 can be shared by the visible laser beam 50a and the infrared laser beam 50b, so that the number of parts can be reduced and the inspection apparatus can be miniaturized.
  • the light separating unit 13 is preferably a dichroic mirror that transmits the visible laser light 50a and reflects the infrared laser light 50b.
  • the light separating unit 13 may be a dichroic mirror that reflects the visible laser light 50a and transmits the infrared laser light 50b. Even in this case, the inspection device can be miniaturized.
  • the combining unit 26 that combines the visible laser beam 50 a scanned by the scanning unit 20 and the infrared laser beam 50 b scanned by the scanning unit 22 is provided. Thereby, it is possible to easily realize that the optical axes of the visible laser light 50a and the infrared laser light 50b are aligned and projected on the retina 74.
  • FIG. 6 is a block diagram of a visual inspection apparatus according to a second embodiment.
  • the visual inspection apparatus 200 of the second embodiment further includes an input unit 42 as compared with the visual inspection apparatus 100 of the first embodiment.
  • the input unit 42 is a device through which the subject inputs a result, and is, for example, a button, a touch panel, a keyboard, and / or a mouse.
  • the signal processing unit 32 processes the output signal of the detector 40 and the output signal of the input unit 42 based on the control signal from the drive control unit 31.
  • the detector 40 and the signal processing unit 32 start detection based on the synchronization signal from the drive circuit 16 at the timing when the light source 11 emits the visible laser light 50 a and the infrared laser light 50 b.
  • the other configuration is the same as that of the first embodiment shown in FIG.
  • the optical system of the visual inspection apparatus 200 of the second embodiment is the same as that of the first embodiment shown in FIG.
  • FIG. 7 is an example of an image projected onto the retina in the second embodiment.
  • an image 60 a as shown in FIG. 7 is projected on the retina 74. That is, in addition to the fixation visual target 63 projected on the central region of the retina 74, the inspection visual target 65 for inspecting the eye 70 is projected.
  • the test target 65 is projected at different times on different regions of the retina 74, FIG. 7 illustrates all of the test target 65 projected on the retina 74 for convenience.
  • the test target 65 is, for example, stimulation light irradiated to a region of a predetermined size.
  • test target 65 may be a polygonal shape such as an elliptical shape or a quadrangular shape.
  • the inspection target 65 may be white light including red, green and blue laser light, or may be monochromatic light including laser light of a single wavelength.
  • the diameter of the test target 65 is, for example, about several ⁇ m.
  • FIG. 8 is a flowchart showing processing in the second embodiment.
  • the control unit 30 projects an image 60 a as shown in FIG. 7 onto the retina 74 and performs an examination using the examination target 65 (step S ⁇ b> 30).
  • FIG. 9 is a flowchart showing a method of examination (step S30 in FIG. 8) using the examination target in the second embodiment.
  • 10 (a) to 10 (d) are diagrams for explaining an examination using an examination target.
  • the drive control unit 31 generates an image 60 a as illustrated in FIG. 7, and causes the projection unit 10 to project the generated image 60 a to set the fixation target 63 and the inspection target 65 on the retina 74.
  • Project step S50.
  • the test target 65 is projected at different times to different areas of the retina 74. Therefore, as shown in FIG. 10A, the inspection target 65 a of the inspection targets projected onto different regions of the retina 74 is projected.
  • the signal processing unit 32 acquires the output signal of the input unit 42 (step S52).
  • the subject operates the input unit 42 when recognizing that the test target 65 a is projected on the retina 74.
  • an output signal is output from the input unit 42 to the signal processing unit 32.
  • the signal processing unit 32 starts acquiring the output signal of the input unit 42 in synchronization with the emission of the visible laser light 50 a.
  • step S54 determines whether the projection of all the test target 65 has been completed on the retina 74 (step S54). If the examination mark 65 to be projected still remains, the determination at step S54 is negative (step S54: No), and steps S50 and S52 are repeated.
  • steps S50 and S52 are repeated.
  • steps S50 and S52 for example, several seconds after projecting the test target 65a of FIG. 10A, the test target in another region of the retina 74 as shown in FIG. 10B.
  • 65b has been projected and several seconds have elapsed, as shown in FIG. 10 (c)
  • the inspection target 65c is projected onto a further area of the retina 74. This is repeated, and the last examination target 65z is projected on the retina 74 as shown in FIG. 10 (d).
  • step S54 Yes
  • the inspection using the inspection marks 65 is ended. This allows, for example, inspection of visual field defects.
  • control unit 30 detects the state of the fundus using the infrared laser light 50b (step S32).
  • the detection of the state of the fundus oculi using the infrared laser light 50b is performed in the processes of steps S10 to S18 in FIG.
  • the image generation unit 33 generates a visual field defect image based on the output signal of the input unit 42 acquired by the signal processing unit 32 in the examination using the inspection visual target 65.
  • the image generation unit 33 generates a fundus oculi image based on the output signal of the detector 40 acquired by the signal processing unit 32 (in the inspection using the infrared laser light 50b) by being irradiated with the infrared laser light 50b.
  • the image generation unit 33 generates a superimposed image in which the visual field loss image and the fundus image are superimposed (step S34).
  • the display unit 41 displays the superimposed image (step S36).
  • the examiner examines the vision of the subject by the examiner examining the examination image superimposed and displayed on the display unit 41.
  • FIGS. 11A to 11C are examples of the fundus image, the visual field defect image, and the superimposed image generated by the image generation unit.
  • FIG. 11A is a fundus image.
  • reference numeral 80 is a fovea
  • reference numeral 81 is an optic nerve head
  • reference numeral 82 is a retinal artery or retinal vein.
  • a lesion 83 is shown by a cross hatch.
  • FIG. 11 (b) is a visual field defect image.
  • a portion 66 where the subject does not respond to the input section 42 despite projecting the test target 65 onto the retina 74 is indicated by a dotted line.
  • FIG. 11C shows a superimposed image in which the fundus oculi image and the visual field defect image are superimposed.
  • control unit 30 controls the emission of the visible laser light 50a from the light source 11 to project the test target 65 for testing the eye 70 on the retina 74 of the subject.
  • the examination of the eye 70 using the visible laser light 50a can also be performed.
  • the inspection target 65 is used after the inspection using the infrared laser light 50b.
  • the examination used may be performed.
  • the visible laser light 50a is emitted from the light source 11 and the scanning unit 20 is driven, and the infrared laser light 50b is not emitted from the light source 11 and The scanning unit 22 may not be driven.
  • the infrared laser beam 50b When an inspection using the infrared laser beam 50b is performed, the infrared laser beam 50b is emitted from the light source 11 and the scanning unit 22 is driven, and the visible laser beam 50a is not emitted from the light source 11, and the scanning unit 20 may not be driven. Further, the inspection using the inspection target 65 and the inspection using the infrared laser light 50b may be performed in parallel. That is, the control unit 30 may simultaneously perform the projection of the inspection target 65 and the irradiation of the infrared laser light 50b in parallel. Thereby, shortening of inspection time can be aimed at.
  • the control unit 30 generates the inspection image (fundus oculi image) generated based on the output signal of the detector 40 and the output signal of the input unit 42.
  • a superimposed image is generated by superimposing the test image (image relating to visual field loss).
  • PRL Preferred Retinal Locus: another retinal region where a visual target has come to be captured instead because the sensitivity of the retinal fovea has decreased.
  • the examination image generated based on the output signal of the detector 40 is a fundus image
  • the examination image generated based on the output signal of the input unit 42 is an image related to visual field loss.
  • FIGS. 12 (a) and 12 (b) are other examples of images projected onto the retina in Example 2.
  • FIG. 12 (a) and 12 (b) an image 60b having a test target 67 for examining retinal visual acuity may be projected onto the retina 74. That is, based on the output signal of the input unit 42, an image of a test result of retinal visual acuity may be generated. As shown in FIG.
  • the inspection target 67 is projected on the center of the image 60b, and a plurality of dot patterns are projected as the fixation target 63 so as to surround the inspection target 67.
  • the inspection target 67 is projected to the center of the retina 74.
  • the fixation visual target 63 is projected to the center of the image 60b, and the inspection visual target 67 is projected to the periphery.
  • the test target 67 is projected to different regions of the retina 74 at different times, but here, for convenience, all of the test target 67 projected onto the retina 74 Is illustrated.
  • the inspection target 67 is projected to a desired position of the retina 74.
  • the test target 67 is placed at a desired position on the retina 74 by projecting the fixation target 63 and causing the subject to fixate the fixation target 63. It can be projected.
  • the inspection target 67 is not limited to the case of the Landolt ring, and may be other cases such as characters.
  • the image projection optical system 14 projects the fixation target 63 and the infrared light optical system 15 irradiates the retina 74 with the infrared laser light 50 b, so that the control unit 30 is red.
  • An image in which the fixation visual target 63 is displayed on the inspection image of the eye 70 by the external laser beam 50 b can be acquired.
  • alignment of the image can be easily performed by the fixation visual target 63 on the inspection image, and even though the fixation visual target is projected, Even when the line of sight of the examiner moves, superposition of inspection images of a plurality of frames, identification of the position of a lesion, and the like can be performed more accurately.
  • the image projection optical system 14 projects an image such as a visual target, and the infrared light optical system 15 irradiates the retina 74 with the fundus of the eye 70 of the subject 70 by the infrared laser light 50b.
  • An example of detecting the state of In the third embodiment, the case where the image projection optical system 14 detects the state of the fundus of the eye 70 of the subject also by the visible laser light 50 a emitted to the retina 74 will be described.
  • the block diagram and the optical system of the visual inspection apparatus according to the third embodiment are the same as FIGS. 1 and 2 of the first embodiment, and therefore will be described using FIGS. 1 and 2 of the first embodiment.
  • the visual inspection apparatus of the third embodiment is different from the first embodiment in that the detector 40 is a photodetector capable of detecting visible light to infrared light. Therefore, in the third embodiment, the image projection optical system 14 irradiates the retina 74 and the detector 40 can detect the visible laser light 50 a reflected by the retina 74.
  • the visible laser beam 50a reflected by the retina 74 returns in the optical path along which the visible laser beam 50a has traveled toward the retina 74 in the order of the lens 27, the combining unit 26, the lens 25, the scanning unit 20, the flat mirror 21, and the light separating unit 13. , And incident on the detector 40 through the half mirror 43 and the lens 44.
  • FIG. 13 is a flowchart showing the process in the third embodiment.
  • the drive control unit 31 causes the projection unit 10 to irradiate the visible laser light 50 a onto the retina 74 (step S ⁇ b> 60).
  • the signal processing unit 32 acquires an output signal of the detector 40 (step S62).
  • the detector 40 detects the visible laser light 50 a in synchronization with the synchronization signal from the drive circuit 16. That is, the detector 40 detects the visible laser light 50 a in synchronization with the emission of the visible laser light 50 a from the light source 11.
  • the signal processing unit 32 starts acquiring the output signal of the detector 40 in synchronization with the emission of the visible laser light 50a.
  • the drive control unit 31 causes the projection unit 10 to irradiate the retina 74 with the infrared laser light 50b instead of the visible laser light 50a (step S64).
  • the signal processing unit 32 acquires an output signal of the detector 40 (step S66).
  • the detector 40 detects the infrared laser light 50 b in synchronization with the synchronization signal from the drive circuit 16. That is, the detector 40 detects the infrared laser light 50 b in synchronization with the emission of the infrared laser light 50 b from the light source 11.
  • the signal processing unit 32 starts acquiring the output signal of the detector 40 in synchronization with the emission of the infrared laser light 50 b.
  • the drive control unit 31 determines whether or not the irradiation of the visible laser light 50a and the infrared laser light 50b has ended in a predetermined number of frames (step S68).
  • the predetermined number of frames may be one frame or a plurality of frames such as five or ten frames.
  • step S68 When the irradiation of the predetermined number of frames is not completed (step S68: No), steps S60 to S66 are repeated.
  • Step S68: Yes When the irradiation of the predetermined number of frames is completed (Step S68: Yes), the image generation unit 33 generates an inspection image of the eye 70 based on the output signal of the detector 40 acquired by the signal processing unit 32 (Step S70). .
  • the image generation unit 33 generates a first examination image (first fundus image) based on the output signal of the detector 40 by the visible laser light 50a reflected by the retina 74, and the infrared laser light 50b reflected by the retina 74
  • a second examination image (second fundus image) is generated based on the output signal of the detector 40 according to
  • the display unit 41 displays an examination image (step S72). The doctor examines the inspection image displayed on the display unit 41 and examines the vision of the subject.
  • the control unit 30 in addition to detecting the state of the fundus of the eye 70 from the output signal based on the infrared laser light 50 b of the detector 40, the control unit 30 also outputs the output based on the visible laser light 50 a of the detector 40 The state of the fundus of the eye 70 is detected from the signal.
  • the two fundus states detected are based on laser beams of different frequencies, so that the states of the fundus with different characteristics can be detected. As a result, it is possible to evaluate different fundus conditions and improve the accuracy of visual inspection.
  • the case of acquiring the fundus image of the eye 70 is shown. Other cases are also possible.
  • control unit 30 may project a fixation target for causing the subject's gaze to be directed to the retina 74 of the subject as in the first embodiment, and / or As in the second embodiment, a test target for testing the eye 70 of the subject may be projected onto the retina 74 of the subject.
  • the scanning unit 20 that scans the visible laser light 50a and the red
  • the image projection optical system 14 having the scanning unit 20 for scanning the visible laser light 50a of visible light and the infrared light having the scanning unit 22 for scanning the infrared laser light 50b of invisible light
  • the optical system 15 has been described as an example.
  • an optical system for visible light and invisible light is made common, and a case where both a laser light of visible light and a laser light of invisible light are scanned by one scanning unit will be described.
  • FIG. 14 is a block diagram of a visual inspection apparatus according to a fourth embodiment.
  • the projection unit 10a includes a visible light source 90, a visible light adjustment unit 91, an invisible light source 92, an invisible light adjustment unit 93, a light source light combining unit 94, and a scanning unit 20, a drive circuit 16 and an input circuit 17.
  • the drive circuit 16 drives the visible light source 90, the invisible light source 92, and the scanning unit 20 based on the image signal acquired by the input circuit 17 and the control signal of the drive control unit 31.
  • the other configuration is the same as that of the first embodiment shown in FIG.
  • the input unit 42 may be provided.
  • FIG. 15 is a diagram of an optical system of a visual inspection apparatus according to a fourth embodiment.
  • the visual inspection apparatus 300 of the fourth embodiment includes a visible light source 90, a visible light adjustment unit 91, an invisible light source 92, an invisible light adjustment unit 93, and a light source light synthesis unit 94.
  • laser light is irradiated to the retina 74 of the subject using Maxwell vision.
  • the visible light source 90 emits visible laser light 51a of red laser light, green laser light, and blue laser light, and the optical axes of the laser lights of the respective wavelengths coincide with each other.
  • the visible light adjustment unit 91 has a collimating lens, a toric lens, and / or an aperture, etc., which has a characteristic that rivals visible light, and the visible laser light 51a has a suitable numerical aperture (NA) and / or beam diameter. Adjusted to The visible laser beam 51a is a light beam in which a red laser beam, a green laser beam, and a blue laser beam are combined, and the optical axes of the respective laser beams coincide with each other.
  • NA numerical aperture
  • the invisible light source 92 emits invisible laser light 51 b such as infrared light.
  • the invisible light adjusting unit 93 includes a collimating lens, a toric lens, and / or an aperture having characteristics suitable for invisible light such as infrared light, and the invisible laser light 51 b has a suitable numerical aperture (NA) and / or Or it is adjusted to the beam diameter.
  • NA numerical aperture
  • the light source light synthesis unit 94 reflects the visible laser light 51a adjusted by the visible light adjustment unit 91, and transmits the invisible laser light 51b adjusted by the invisible light adjustment unit 93, thereby adjusting the visible laser light 51a. It is a dichroic mirror that generates a combined laser beam 53 in which the adjusted invisible laser beam 51b is combined.
  • the light source light combining unit 94 is not limited to a dichroic mirror, and may be another optical element such as a dichroic prism.
  • the combined laser beam 53 passes through the half mirror 43, is reflected by the plane mirror 21, and is two-dimensionally scanned by the scanning unit 20.
  • the scanning unit 20 vibrates at a relatively high frequency such as 28 kHz so that an image of 60 frames is projected per second.
  • the combined laser beam 53 scanned by the scanning unit 20 converges in the vicinity of the lens 72 through the lens 25 and the lens 27, passes through the vitreous body 76, and irradiates the retina 74.
  • the lens 25 and the lens 27 irradiate the visible laser light 51a of the retina 74 of the subject to project an image on the retina 74 of the subject, and serve as an irradiation optical system 95 which irradiates the invisible laser light 51b to the retina 74 of the subject.
  • the synthetic laser beam 53 is a laser beam obtained by mixing the visible laser beam 51a and the invisible laser beam 51b
  • the visible laser beam 51a and the invisible laser beam 51b are applied to the retina 74 at the same scanning frequency. It is simultaneously irradiated to the same position.
  • the synthetic laser light 53 applied to the retina 74 is reflected by the retina 74.
  • the reflected combined laser light 53 returns in the optical path along which the combined laser light 53 has traveled to the retina 74. That is, the reflected combined laser light 53 returns in the optical path in which the combined laser light 53 has traveled toward the retina 74 in the order of the lens 27, the lens 25, the scanning unit 20 and the flat mirror 21.
  • the returned combined laser beam 53 is reflected by the half mirror 43 in the direction of the lens 44 and enters the detector 40 through the lens 44.
  • the detector 40 has a characteristic of detecting invisible light and not detecting visible light, and therefore detects only the reflected invisible laser light 51b.
  • the detection of the state of the fundus of the eye 70 can be performed based on the detection result such as the luminance change of the invisible laser beam 51b by the detector 40, and a fundus image is acquired as an example of the detection target. be able to.
  • the detection result detected by the detector 40 is matched with the irradiation timing of the visible laser light 51a and the invisible laser light 51b. If referred to, detection of both the visible laser light 51a and the invisible laser light 51b is also possible.
  • Examples 1 to 3 the method of scanning and projecting the visible laser light and the invisible laser light described in FIGS. 3, 7, 10, and 12 and FIGS. 4, 8, 9, and Regarding the process control flow described in 13, the method of scanning and projection in the fourth embodiment and the control flow in the fourth embodiment by replacing the visible laser light 50a and the infrared laser light 50b with the visible laser light 51a and the invisible laser light 51b. It will be explained.
  • the combined laser beam 53 in which the visible laser beam 51a and the invisible laser beam 51b are combined by the light source light combining unit 94 is scanned by one scanning unit 20 and is applied to the retina 74 of the subject.
  • the scanning unit 20 that scans the visible laser light 51a and the invisible laser light 51b is made common, control of the scanning unit 20 is simplified, and simplification of the apparatus is also realized. it can.
  • the case of infrared rays as the invisible light is shown as an example, but other cases such as ultraviolet rays may be used.
  • the case where the wavelength of the infrared ray is about 850 nm is shown as an example, it may be the case of near infrared rays of other wavelengths, or it may be the case of middle infrared rays or far infrared rays.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Surgery (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Ophthalmology & Optometry (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Signal Processing (AREA)
  • Eye Examination Apparatus (AREA)

Abstract

A vision examination device comprising: a light source 11 that emits a visible laser light 50a and an infrared laser light 50b; an image projection optical system 14 that has a scanning unit 20 oscillating at a first frequency to scan the visible laser light 50a in two dimensions, and that shines the visible laser light 50a onto a subject's retina 74 to project an image onto the subject's retina 74; an infrared light optical system 15 that has a scanning unit 22 oscillating at a second frequency, which differs from the first frequency, to scan the infrared laser light 50b in two dimensions, and that shines the infrared laser light 50b onto the subject's retina 74; a detector 40 that detects the infrared laser light 50b reflected by the subject's retina 74; and a control unit 30 that controls the emission of the visible laser light 50a and the infrared laser light 50b from the light source 11, and detects a condition of the subject's ocular fundus from an output signal of the detector 40.

Description

視覚検査装置Visual inspection device
 本発明は、視覚検査装置に関する。 The present invention relates to a visual inspection apparatus.
 走査型レーザ検眼鏡(SLO:Scanning Laser Ophthalmoscope)による眼底検査が知られている。また、走査型レーザ検眼鏡の機能と視野計測の機能とが設けられた眼科装置が知られている(例えば、特許文献1)。 A fundus examination with a scanning laser ophthalmoscope (SLO: Scanning Laser Ophthalmoscope) is known. There is also known an ophthalmologic apparatus provided with a function of scanning laser ophthalmoscope and a function of visual field measurement (e.g., Patent Document 1).
特開2007-181537号公報JP 2007-181537 A
 眼の検査のための不可視光線を被検者の網膜に照射することに加え、網膜に画像を投影することが可能な検査装置において、特許文献1のように液晶ディスプレイを用いて画像を表示する場合では高解像度の画像を投影することが難しい。 In an examination apparatus capable of projecting an image on the retina in addition to irradiating invisible light for examination of the eye to the retina of the subject, the image is displayed using a liquid crystal display as in Patent Document 1 In some cases it is difficult to project high resolution images.
 本発明は、上記課題に鑑みなされたものであり、高解像度の画像を投影することが可能な視覚検査装置を提供することを目的とする。 The present invention has been made in view of the above problems, and an object thereof is to provide a visual inspection apparatus capable of projecting a high resolution image.
 本発明は、可視光線と不可視光線とを出射する光源と、第1周波数で振動することで前記可視光線を2次元に走査する第1走査部を有し、被検者の網膜に前記可視光線を照射して前記被検者の網膜に画像を投影する画像投影光学系と、前記第1周波数と異なる第2周波数で振動することで前記不可視光線を2次元に走査する第2走査部を有し、前記被検者の網膜に前記不可視光線を照射する不可視光光学系と、前記被検者の網膜で反射した前記不可視光線を検出する検出器と、前記光源からの前記可視光線及び前記不可視光線の出射を制御するとともに、前記検出器の出力信号から前記被検者の眼底の状態の検出を行う制御部と、を備える視覚検査装置である。 The present invention has a light source for emitting visible light and invisible light, and a first scanning unit for two-dimensionally scanning the visible light by oscillating at a first frequency, and the visible light is transmitted to the retina of the subject And an image projection optical system that projects an image onto the retina of the subject, and a second scanning unit that two-dimensionally scans the invisible light beam by oscillating at a second frequency different from the first frequency. An invisible light optical system for irradiating the invisible light to the subject's retina, a detector for detecting the invisible light reflected by the subject's retina, the visible light from the light source and the invisible light And a control unit configured to control emission of a light beam and to detect a state of a fundus of the subject from an output signal of the detector.
 上記構成において、前記光源から出射された前記可視光線を第1方向に射出し、前記不可視光線を前記第1方向と異なる第2方向に射出する分光部を備え、前記画像投影光学系と前記不可視光光学系との光軸は一致しており、前記画像投影光学系は、前記第1方向に射出された前記可視光線を2次元に走査して前記被検者の網膜に照射し、前記不可視光光学系は、前記第2方向に射出された前記不可視光線を2次元に走査して前記被検者の網膜に照射する構成とすることができる。 In the above-described configuration, the image display optical system and the invisible light may further include a light splitting unit that emits the visible light emitted from the light source in a first direction and emits the invisible light in a second direction different from the first direction. The optical axis with the optical optical system is coincident, and the image projection optical system two-dimensionally scans the visible light emitted in the first direction and irradiates the retina of the subject with the invisible light. The optical optical system may be configured to two-dimensionally scan the invisible light emitted in the second direction and to irradiate the retina of the subject.
 上記構成において、前記分光部は、前記可視光線及び前記不可視光線の一方を透過し他方を反射するダイクロイックミラーである構成とすることができる。 In the above configuration, the light separating unit may be a dichroic mirror that transmits one of the visible light and the invisible light and reflects the other.
 上記構成において、前記第1走査部で走査された前記可視光線と前記第2走査部で走査された前記不可視光線を合成する合成部を備える構成とすることができる。 In the above configuration, the image processing apparatus may further include a combining unit configured to combine the visible light scanned by the first scanning unit and the invisible light scanned by the second scanning unit.
 上記構成において、前記不可視光線は赤外光線であり、前記制御部は、前記検出器の出力信号に基づき前記被検者の眼の眼底画像を生成する構成とすることができる。 In the above configuration, the invisible light beam may be an infrared light beam, and the control unit may be configured to generate a fundus image of the eye of the subject based on an output signal of the detector.
 上記構成において、前記制御部は、前記光源からの前記可視光線の出射を制御して前記被検者の網膜に前記被検者の視線を向けさせるための固視視標を投影し、前記光源から前記不可視光線を出射させて前記被検者の網膜に前記不可視光線を照射させる構成とすることができる。 In the above configuration, the control unit controls the emission of the visible light from the light source to project a fixation target for causing the line of sight of the subject to be directed to the retina of the subject, and the light source The invisible light beam may be emitted from the light source to illuminate the invisible light beam on the retina of the subject.
 上記構成において、前記制御部は、前記光源からの前記可視光線の出射を制御して前記被検者の網膜に前記被検者の眼を検査するための検査視標を投影する構成とすることができる。 In the above configuration, the control unit may be configured to control an emission of the visible light from the light source to project a test target for testing the eye of the subject on the retina of the subject. Can.
 上記構成において、前記制御部は、前記光源からの前記可視光線の出射を制御して前記被検者の網膜への前記被検者の眼を検査するための検査視標の投影と、前記光源から前記不可視光線を出射させて前記被検者の網膜への前記不可視光線の照射と、を並行して行う構成とすることができる。 In the above configuration, the control unit controls emission of the visible light from the light source to project a test target for testing the eye of the subject on the retina of the subject, and the light source. And the irradiation of the invisible light to the retina of the subject can be performed in parallel.
 上記構成において、前記制御部は、前記光源からの前記可視光線の出射を制御して前記被検者の網膜に前記被検者の眼を検査するための検査視標を投影し、前記検出器の出力信号に基づき生成した第1検査画像と前記被検者の前記検査視標に応じて入力された応答に基づき生成した第2検査画像とを重ね合わせた第3検査画像を生成する構成とすることができる。 In the above configuration, the control unit controls the emission of the visible light from the light source to project a test target for testing the eye of the subject on the retina of the subject, and the detector A third inspection image in which a first inspection image generated based on an output signal of the second inspection image and a second inspection image generated based on a response input according to the inspection target of the subject are superimposed can do.
 上記構成において、前記第1検査画像は眼底画像であり、前記第2検査画像は視野欠損に関する画像である構成とすることができる。 In the above configuration, the first examination image may be a fundus image, and the second examination image may be an image regarding a visual field defect.
 本発明は、可視光線と不可視光線とを出射する光源と、第1周波数で振動することで前記可視光線を2次元に走査する第1走査部を有し、被検者の網膜に前記可視光線を照射して前記被検者の網膜に画像を投影する画像投影光学系と、前記第1周波数と異なる第2周波数で振動することで前記不可視光線を2次元に走査する第2走査部を有し、前記被検者の網膜に前記不可視光線を照射する不可視光光学系と、前記被検者の網膜で反射した前記可視光線と前記不可視光線とを検出する検出器と、前記光源からの前記可視光線及び前記不可視光線の出射を制御するとともに、前記検出器の前記可視光線に基づく出力信号から前記被検者の第1の眼底の状態の検出と前記検出器の前記不可視光線に基づく出力信号から前記被検者の第2の眼底の状態の検出とを行なう制御部と、を備える視覚検査装置である。 The present invention has a light source for emitting visible light and invisible light, and a first scanning unit for two-dimensionally scanning the visible light by oscillating at a first frequency, and the visible light is transmitted to the retina of the subject And an image projection optical system that projects an image onto the retina of the subject, and a second scanning unit that two-dimensionally scans the invisible light beam by oscillating at a second frequency different from the first frequency. An invisible light optical system for irradiating the invisible light to the subject's retina, a detector for detecting the visible light and the invisible light reflected by the subject's retina, and the light source from the light source Control of emission of visible light and the invisible light, detection of the state of the first fundus of the subject from the output signal based on the visible light of the detector, and output signal based on the invisible light of the detector From the second fundus of the subject A control unit for the detection of states, a visual inspection device comprising a.
 上記構成において、前記制御部は、前記光源からの前記可視光線の出射を制御して、前記被検者の網膜に前記被検者の視線を向けさせるための固視視標及び前記被検者の眼を検査するための検査視標の少なくとも一方を投影する構成とすることができる。 In the above configuration, the control unit controls the emission of the visible light from the light source to cause the gaze of the subject to be directed to the retina of the subject, and the subject It is possible to project at least one of the examination targets for examining the eye of the subject.
 上記構成において、前記制御部は、前記第1の眼底の状態の検出及び第2の眼底の状態の検出として前記被検者の眼の眼底画像を生成する構成とすることができる。 In the above configuration, the control unit may be configured to generate a fundus image of the eye of the subject as the detection of the state of the first fundus and the detection of the state of the second fundus.
 本発明は、可視光線を出射する可視光光源と、不可視光線を出射する不可視光光源と、前記可視光線と前記不可視光線とを合成して合成光を生成する光源光合成部と、前記可視光線と前記不可視光線とを2次元に走査する走査部と、被検者の網膜に前記可視光線を照射して前記被検者の網膜に画像を投影するとともに、前記不可視光線を被検者の網膜に照射する照射光学系と、前記被検者の網膜で反射した前記不可視光線を検出する検出器と、前記可視光光源からの前記可視光線及び前記不可視光光源からの前記不可視光線の出射を制御するとともに、前記検出器の出力信号から前記被検者の眼底の状態の検出を行う制御部と、を備える視覚検査装置である。 The present invention comprises a visible light source for emitting visible light, an invisible light source for emitting invisible light, a light source light combining unit for combining the visible light and the invisible light to generate combined light, and the visible light A scanning unit for two-dimensionally scanning the invisible light beam, and the visible light beam irradiated to the retina of the subject to project an image on the retina of the subject, and the invisible light beam to the retina of the subject An emission optical system for irradiating, a detector for detecting the invisible light reflected by the retina of the subject, and control of emission of the visible light from the visible light source and the invisible light from the invisible light source And a control unit that detects the state of the fundus of the subject from the output signal of the detector.
 上記構成において、前記不可視光線は赤外光線であり、前記制御部は、前記検出器の出力信号に基づき前記被検者の眼の眼底画像を生成する構成とすることができる。 In the above configuration, the invisible light beam may be an infrared light beam, and the control unit may be configured to generate a fundus image of the eye of the subject based on an output signal of the detector.
 上記構成において、前記制御部は、前記可視光光源からの前記可視光線の出射を制御して前記被検者の網膜に前記被検者の視線を向けさせるための固視視標を投影し、前記不可視光光源から前記不可視光線を出射させて前記被検者の網膜に前記不可視光線を照射させる構成とすることができる。 In the above configuration, the control unit controls the emission of the visible light from the visible light source to project a fixation target for causing the subject's line of sight to be directed to the retina of the subject. The invisible light beam may be emitted from the invisible light source to irradiate the retina of the subject with the invisible light beam.
 上記構成において、前記制御部は、前記可視光光源からの前記可視光線の出射を制御して前記被検者の網膜に前記被検者の眼を検査するための検査視標を投影する構成とすることができる。 In the above configuration, the control unit may control emission of the visible light from the visible light source to project a test target for testing the eye of the subject on the retina of the subject. can do.
 上記構成において、前記制御部は、前記可視光光源からの前記可視光線の出射を制御して前記被検者の網膜に前記被検者の眼を検査するための検査視標を投影し、前記検出器の出力信号に基づき生成した第1検査画像と前記被検者の前記検査視標に応じて入力された応答に基づき生成した第2検査画像とを重ね合わせた第3検査画像を生成する構成とすることができる。 In the above configuration, the control unit controls the emission of the visible light from the visible light source to project a test target for testing the eye of the subject on the retina of the subject, A third inspection image is generated by superimposing the first inspection image generated based on the output signal of the detector and the second inspection image generated based on the response inputted according to the test target of the subject. It can be configured.
 上記構成において、前記第1検査画像は眼底画像であり、前記第2検査画像は視野欠損に関する画像である構成とすることができる。 In the above configuration, the first examination image may be a fundus image, and the second examination image may be an image regarding a visual field defect.
 本発明によれば、高解像度の画像を投影することができる。 According to the present invention, a high resolution image can be projected.
図1は、実施例1に係る視覚検査装置のブロック図である。FIG. 1 is a block diagram of a visual inspection apparatus according to a first embodiment. 図2は、実施例1に係る視覚検査装置の光学系を示す図である。FIG. 2 is a diagram illustrating an optical system of the visual inspection apparatus according to the first embodiment. 図3(a)及び図3(b)は、可視レーザ光及び赤外レーザ光の走査を説明する図である。FIGS. 3A and 3B are diagrams for explaining scanning of visible laser light and infrared laser light. 図4は、実施例1における処理を示すフローチャートである。FIG. 4 is a flowchart showing the process in the first embodiment. 図5は、画像生成部が生成した眼底画像の一例である。FIG. 5 is an example of a fundus oculi image generated by the image generation unit. 図6は、実施例2に係る視覚検査装置のブロック図である。FIG. 6 is a block diagram of a visual inspection apparatus according to a second embodiment. 図7は、実施例2において網膜に投影される画像の一例である。FIG. 7 is an example of an image projected onto the retina in the second embodiment. 図8は、実施例2における処理を示すフローチャートである。FIG. 8 is a flowchart showing processing in the second embodiment. 図9は、実施例2における検査視標を用いた検査の方法を示すフローチャートである。FIG. 9 is a flowchart showing a method of examination using the examination target in the second embodiment. 図10(a)から図10(d)は、検査視標を用いた検査を説明するための図である。10 (a) to 10 (d) are diagrams for explaining an examination using an examination target. 図11(a)から図11(c)は、画像生成部が生成した眼底画像、視野欠損画像、及び重畳画像の一例である。FIGS. 11A to 11C are examples of the fundus image, the visual field defect image, and the superimposed image generated by the image generation unit. 図12(a)及び図12(b)は、実施例2において網膜に投影される画像の他の例である。FIGS. 12 (a) and 12 (b) are other examples of images projected onto the retina in Example 2. FIG. 図13は、実施例3における処理を示すフローチャートである。FIG. 13 is a flowchart showing the process in the third embodiment. 図14は、実施例4に係る視覚検査装置のブロック図である。FIG. 14 is a block diagram of a visual inspection apparatus according to a fourth embodiment. 図15は、実施例4に係る視覚検査装置の光学系を示す図である。FIG. 15 is a diagram of an optical system of a visual inspection apparatus according to a fourth embodiment.
 以下、図面を参照しつつ、本発明の実施例について説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 図1は、実施例1に係る視覚検査装置のブロック図である。図1のように、実施例1の視覚検査装置100は、投影部10、制御部30、検出器40、及び表示部41を備える。投影部10は、光源11、調整部12、分光部13、画像投影光学系14、赤外光光学系15、駆動回路16、及び入力回路17を備える。画像投影光学系14は走査部20を有し、赤外光光学系15は走査部22を有する。走査部20及び22(スキャナ)は、例えばMEMS(Micro Electro Mechanical System)ミラーなどの走査ミラー又は透過型のスキャナである。制御部30は、駆動制御部31、信号処理部32、及び画像生成部33を備える。 FIG. 1 is a block diagram of a visual inspection apparatus according to a first embodiment. As illustrated in FIG. 1, the visual inspection apparatus 100 according to the first embodiment includes a projection unit 10, a control unit 30, a detector 40, and a display unit 41. The projection unit 10 includes a light source 11, an adjustment unit 12, a spectroscopy unit 13, an image projection optical system 14, an infrared light optical system 15, a drive circuit 16, and an input circuit 17. The image projection optical system 14 has a scanning unit 20, and the infrared light optical system 15 has a scanning unit 22. The scanning units 20 and 22 (scanners) are, for example, scanning mirrors such as MEMS (Micro Electro Mechanical System) mirrors or transmission type scanners. The control unit 30 includes a drive control unit 31, a signal processing unit 32, and an image generation unit 33.
 駆動制御部31は、網膜に投影する画像の生成などを行う。入力回路17には、駆動制御部31から画像信号が入力する。駆動回路16は、入力回路17が取得した画像信号及び駆動制御部31の制御信号に基づき光源11と走査部20及び22を駆動する。 The drive control unit 31 generates an image to be projected on the retina. An image signal from the drive control unit 31 is input to the input circuit 17. The drive circuit 16 drives the light source 11 and the scan units 20 and 22 based on the image signal acquired by the input circuit 17 and the control signal of the drive control unit 31.
 光源11は、例えば赤色レーザ光(波長:610nm~660nm程度)、緑色レーザ光(波長:515nm~540nm程度)、及び青色レーザ光(波長:440nm~480nm程度)の可視光線と、赤外レーザ光(波長:850nm程度)である不可視光線と、を出射する。すなわち、光源11は、1つのモジュール内に、赤色レーザ光、緑色レーザ光、青色レーザ光、及び赤外レーザ光それぞれのレーザダイオードチップを有する。なお、光源11は、可視光線として単一の波長のレーザ光を出射してもよい。 The light source 11 includes, for example, visible light of red laser light (wavelength: about 610 nm to about 660 nm), green laser light (wavelength: about 515 nm to about 540 nm), and blue laser light (wavelength: about 440 nm to about 480 nm) The invisible light beam (wavelength: about 850 nm) is emitted. That is, the light source 11 has laser diode chips for red laser light, green laser light, blue laser light, and infrared laser light in one module. The light source 11 may emit laser light of a single wavelength as visible light.
 調整部12は、コリメートレンズ、トーリックレンズ、及び/又はアパーチャなどを有しており、光源11が出射したレーザ光50を成型する。レーザ光50は、赤色レーザ光、緑色レーザ光、青色レーザ光、及び/又は赤外レーザ光が合成された光線であり、それぞれのレーザ光の光軸が一致している。分光部13は、例えばダイクロイックミラーであり、レーザ光50を、赤色レーザ光、緑色レーザ光、及び青色レーザ光の可視レーザ光50aと、赤外レーザ光50bと、に分光する。画像投影光学系14は、分光部13で分光された可視レーザ光50aを走査部20によって2次元に走査して被検者の眼70に照射する。赤外光光学系15は、分光部13で分光された赤外レーザ光50bを走査部22によって2次元に走査して被検者の眼70に照射するもので、一例として、従来の走査型レーザ検眼鏡(SLO)の機能の一部を実現するものである。 The adjustment unit 12 includes a collimator lens, a toric lens, and / or an aperture, and shapes the laser beam 50 emitted from the light source 11. The laser beam 50 is a light beam in which a red laser beam, a green laser beam, a blue laser beam, and / or an infrared laser beam are combined, and the optical axes of the respective laser beams coincide with each other. The spectral unit 13 is, for example, a dichroic mirror, and divides the laser light 50 into visible laser light 50a of red laser light, green laser light, and blue laser light, and infrared laser light 50b. The image projection optical system 14 two-dimensionally scans the visible laser light 50 a separated by the light separating unit 13 by the scanning unit 20 and irradiates the eye 70 of the subject. The infrared light optical system 15 two-dimensionally scans the infrared laser light 50b separated by the light separating unit 13 by the scanning unit 22 and irradiates it to the eye 70 of the subject, for example, a conventional scanning type It implements some of the functions of the laser ophthalmoscope (SLO).
 検出器40は、例えばアバランシェフォトダイオードなどのフォトディテクターであり、被検者の眼70で反射した赤外レーザ光50bを検出する。信号処理部32は、駆動制御部31からの制御信号に基づき検出器40の出力信号を処理する。画像生成部33は、信号処理部32が処理した信号に基づき2次元の画像を生成する。表示部41は、例えば液晶ディスプレイであり、画像生成部33が生成した画像を表示する。検出器40及び信号処理部32は、駆動回路16からの同期信号に基づき、光源11が赤外レーザ光50bを出射したタイミングで検出を開始する。 The detector 40 is, for example, a photodetector such as an avalanche photodiode, and detects the infrared laser light 50b reflected by the eye 70 of the subject. The signal processing unit 32 processes the output signal of the detector 40 based on the control signal from the drive control unit 31. The image generation unit 33 generates a two-dimensional image based on the signal processed by the signal processing unit 32. The display unit 41 is, for example, a liquid crystal display, and displays an image generated by the image generation unit 33. The detector 40 and the signal processing unit 32 start detection based on the synchronization signal from the drive circuit 16 at the timing when the light source 11 emits the infrared laser light 50 b.
 駆動制御部31、信号処理部32、及び画像生成部33は、例えばCPU(Central Processing Unit)などのプロセッサがプログラムと協働し処理を行ってもよい。駆動制御部31、信号処理部32、及び画像生成部33は、専用に設計された回路でもよい。駆動制御部31、信号処理部32、及び画像生成部33は、1つの回路でもよいし、異なる回路でもよい。 For example, in the drive control unit 31, the signal processing unit 32, and the image generation unit 33, a processor such as a central processing unit (CPU) may perform processing in cooperation with a program. The drive control unit 31, the signal processing unit 32, and the image generation unit 33 may be circuits designed for exclusive use. The drive control unit 31, the signal processing unit 32, and the image generation unit 33 may be one circuit or different circuits.
 図2は、実施例1に係る視覚検査装置の光学系を示す図である。図2のように、実施例1の視覚検査装置100は、マクスウェル視を利用して、被検者の網膜74にレーザ光を照射する。光源11が出射したレーザ光50は、調整部12において開口数(NA)及び/又はビーム径が調整される。レーザ光50は、分光部13において赤色レーザ光、緑色レーザ光、及び青色レーザ光の可視レーザ光50aと、赤外レーザ光50bと、に分光される。分光部13は、例えば可視レーザ光50aを透過し、赤外レーザ光50bを反射するダイクロイックミラーである。なお、分光部13は、ダイクロイックミラーに限らず、ダイクロイックプリズムなど、その他の光学素子であってもよい。 FIG. 2 is a diagram illustrating an optical system of the visual inspection apparatus according to the first embodiment. As illustrated in FIG. 2, the visual inspection apparatus 100 according to the first embodiment irradiates laser light to the retina 74 of the subject using Maxwell vision. The numerical aperture (NA) and / or the beam diameter of the laser light 50 emitted from the light source 11 is adjusted by the adjustment unit 12. The laser beam 50 is split into the visible laser beam 50a of the red laser beam, the green laser beam, and the blue laser beam, and the infrared laser beam 50b in the beam splitting unit 13. The spectral unit 13 is, for example, a dichroic mirror that transmits the visible laser light 50 a and reflects the infrared laser light 50 b. The light separating unit 13 is not limited to a dichroic mirror, and may be another optical element such as a dichroic prism.
 可視レーザ光50aは、平面ミラー21で反射し、走査部20により2次元に走査される。走査された可視レーザ光50aは、レンズ25、合成部26、及びレンズ27を介し、被検者の眼70に照射する。可視レーザ光50aは、水晶体72近傍で収束し、硝子体76を通過し網膜74に照射する。これにより、網膜74に画像が投影される。走査部20は、例えば、1秒間に60フレームの画像が投影されるような28kHzなどの比較的高い周波数で振動する。 The visible laser beam 50 a is reflected by the flat mirror 21 and scanned two-dimensionally by the scanning unit 20. The scanned visible laser light 50 a is irradiated to the eye 70 of the subject via the lens 25, the combining unit 26, and the lens 27. The visible laser light 50 a converges near the lens 72, passes through the vitreous body 76, and irradiates the retina 74. Thus, an image is projected on the retina 74. The scanning unit 20 vibrates at a relatively high frequency such as 28 kHz, for example, so that an image of 60 frames is projected per second.
 赤外レーザ光50bは、平面ミラー23で反射し、走査部22により2次元に走査される。走査された赤外レーザ光50bは、レンズ24、合成部26、及びレンズ27を介し、被検者の眼70に照射する。赤外レーザ光50bは、水晶体72近傍で収束し、硝子体76を通過し網膜74に照射する。赤外レーザ光50bは網膜74で反射する。反射した赤外レーザ光50bは、赤外レーザ光50bが網膜74に向かって進んできた光路を戻る。すなわち、反射した赤外レーザ光50bは、レンズ27、合成部26、レンズ24、走査部22、平面ミラー23、及び分光部13の順に赤外レーザ光50bが網膜74に向かって進んできた光路を戻り、ハーフミラー43及びレンズ44を介して検出器40に入射する。これにより、検出器40は、網膜74で反射した赤外レーザ光50bを検出する。検出器40による赤外レーザ光50bの輝度変化などの検出結果によって、眼70の眼底の状態の検出(眼底の状態情報の取得)を行うことができ、その検出対象の一例として眼底画像を取得することができる。走査部22は、赤外レーザ光50bによる眼70の眼底の状態の検出が実現できるよう、例えば1秒間に25フレームの画像が投影される場合に相当するような12.5kHzなどの比較的低い周波数で振動する。 The infrared laser beam 50 b is reflected by the flat mirror 23 and is two-dimensionally scanned by the scanning unit 22. The scanned infrared laser light 50 b is applied to the eye 70 of the subject via the lens 24, the combining unit 26, and the lens 27. The infrared laser light 50 b converges near the lens 72, passes through the vitreous body 76, and irradiates the retina 74. The infrared laser light 50 b is reflected by the retina 74. The reflected infrared laser light 50 b returns in the optical path along which the infrared laser light 50 b has traveled toward the retina 74. That is, the reflected infrared laser beam 50 b is an optical path in which the infrared laser beam 50 b has traveled toward the retina 74 in the order of the lens 27, the combining unit 26, the lens 24, the scanning unit 22, the plane mirror 23, and the light separating unit 13. , And enters the detector 40 via the half mirror 43 and the lens 44. Thereby, the detector 40 detects the infrared laser light 50b reflected by the retina 74. Detection of the state of the fundus of the eye 70 (acquisition of state information of the fundus) can be performed according to the detection result of the luminance change of the infrared laser light 50b by the detector 40, and a fundus image is acquired as an example of the detection target can do. The scanning unit 22 is relatively low such as 12.5 kHz, which corresponds to the case where an image of 25 frames is projected, for example, so that detection of the state of the fundus of the eye 70 can be realized by the infrared laser light 50b. It vibrates at a frequency.
 図3(a)及び図3(b)は、可視レーザ光50a及び赤外レーザ光50bの走査を説明する図である。図3(a)のように、可視レーザ光50aによって網膜74に画像60が投影される。画像投影光学系14の走査部20は、可視レーザ光50aを矢印61のように左上から右下までラスタースキャンする。走査部20が振動しても光源11が可視レーザ光50aを出射しないと、可視レーザ光50aは網膜74に照射されない。図3(a)の破線矢印61では可視レーザ光50aは出射されない。駆動回路16は、光源11からの可視レーザ光50aの出射と走査部20の振動とを同期させる。これにより、光源11は、太実線62において可視レーザ光50aを出射する。これにより、例えば網膜74の中央領域に、被検者の視線を向けさせるための固視視標63が投影される。なお、固視視標63は、十字パターンの場合に限られず、ドットパターン、星状パターン、円形状パターン、又は多角形状パターンなど、被検者の視線を向けさせることができればその他の図形でもよい。また、固視視標63の表示位置は、網膜74の中央領域に限られず、必要に応じて適宜変更してもよい。 FIG. 3A and FIG. 3B are diagrams for explaining the scanning of the visible laser beam 50a and the infrared laser beam 50b. As shown in FIG. 3A, the image 60 is projected onto the retina 74 by the visible laser beam 50a. The scanning unit 20 of the image projection optical system 14 raster scans the visible laser light 50 a from the upper left to the lower right as shown by the arrow 61. Even if the scanning unit 20 vibrates, the visible laser light 50a is not irradiated to the retina 74 unless the light source 11 emits the visible laser light 50a. The visible laser beam 50a is not emitted at the dashed arrow 61 in FIG. 3A. The drive circuit 16 synchronizes the emission of the visible laser light 50 a from the light source 11 and the vibration of the scanning unit 20. Thereby, the light source 11 emits the visible laser light 50 a in the thick solid line 62. As a result, for example, a fixation target 63 for projecting the line of sight of the subject to a central region of the retina 74 is projected. The fixation target 63 is not limited to the cross pattern, and may be any other figure as long as the line of sight of the subject can be directed, such as a dot pattern, a star pattern, a circular pattern, or a polygonal pattern. . Further, the display position of the fixation target 63 is not limited to the central region of the retina 74, and may be appropriately changed as needed.
 図3(b)のように、赤外光光学系15の走査部22は、赤外レーザ光50bを矢印64のように左上から右下までラスタースキャンする。走査部22が振動しても光源11が赤外レーザ光50bを出射しないと、赤外レーザ光50bは網膜74に照射されない。駆動回路16は、光源11からの赤外レーザ光50bの出射と走査部22の振動とを同期させる。赤外レーザ光50bが網膜74に照射されても、赤外レーザ光50bは不可視光線であることから、被検者は赤外レーザ光50bが照射されたことを認識できない。光源11は、例えば走査部22の振動のうちの画像60と略同じ範囲において赤外レーザ光50bを出射する。 As shown in FIG. 3B, the scanning unit 22 of the infrared light optical system 15 raster scans the infrared laser light 50b from the upper left to the lower right as indicated by the arrow 64. If the light source 11 does not emit the infrared laser beam 50b even if the scanning unit 22 vibrates, the infrared laser beam 50b is not irradiated to the retina 74. The drive circuit 16 synchronizes the emission of the infrared laser light 50 b from the light source 11 and the vibration of the scanning unit 22. Even when the infrared laser beam 50b is irradiated to the retina 74, the infrared laser beam 50b is an invisible ray, so the subject can not recognize that the infrared laser beam 50b is irradiated. The light source 11 emits the infrared laser light 50 b in, for example, substantially the same range as the image 60 in the vibration of the scanning unit 22.
 図2に戻り、走査部20による可視レーザ光50aの走査角度と走査部22による赤外レーザ光50bの走査角度は例えば略同じ大きさである。合成部26は、例えばダイクロイックミラーであり、走査部20で走査された可視レーザ光50aと走査部22で走査された赤外レーザ光50bとを合成する。可視レーザ光50aと赤外レーザ光50bは、合成部26で合成された後において光軸が一致している。なお、合成部26は、ダイクロイックミラーに限らず、ダイクロイックプリズムなど、その他の光学素子であってもよい。 Returning to FIG. 2, the scanning angle of the visible laser light 50a by the scanning unit 20 and the scanning angle of the infrared laser light 50b by the scanning unit 22 are, for example, substantially the same size. The combining unit 26 is, for example, a dichroic mirror, and combines the visible laser beam 50 a scanned by the scanning unit 20 and the infrared laser beam 50 b scanned by the scanning unit 22. The optical axes of the visible laser light 50a and the infrared laser light 50b after being combined by the combining unit 26 coincide with each other. The combining unit 26 is not limited to a dichroic mirror, but may be another optical element such as a dichroic prism.
 画像投影光学系14は、走査部20、平面ミラー21、レンズ25、合成部26、及びレンズ27を含んで構成されている。赤外光光学系15は、走査部22、平面ミラー23、レンズ24、合成部26、及びレンズ27を含んで構成されている。合成部26及びレンズ27は、画像投影光学系14及び赤外光光学系15で共通の部品である。 The image projection optical system 14 includes a scanning unit 20, a plane mirror 21, a lens 25, a combining unit 26, and a lens 27. The infrared light optical system 15 includes a scanning unit 22, a plane mirror 23, a lens 24, a combining unit 26, and a lens 27. The combining unit 26 and the lens 27 are components common to the image projection optical system 14 and the infrared light optical system 15.
 図4は、実施例1における処理を示すフローチャートである。図4のように、駆動制御部31は、図3(a)のような画像60を生成し、投影部10に生成した画像60を投影させて、網膜74に固視視標63を投影させる(ステップS10)。次いで、駆動制御部31は、図3(b)のように、投影部10に赤外レーザ光50bを網膜74に照射させる(ステップS12)。 FIG. 4 is a flowchart showing the process in the first embodiment. As illustrated in FIG. 4, the drive control unit 31 generates an image 60 as illustrated in FIG. 3A, causes the projection unit 10 to project the generated image 60, and causes the retina 74 to project the fixation target 63. (Step S10). Next, as shown in FIG. 3B, the drive control unit 31 causes the projection unit 10 to irradiate the retina 74 with the infrared laser light 50b (step S12).
 次いで、信号処理部32は、検出器40の出力信号を取得する(ステップS14)。例えば、検出器40は、駆動回路16からの同期信号に同期して赤外レーザ光50bを検出している。すなわち、検出器40は、光源11からの赤外レーザ光50bの出射に同期して赤外レーザ光50bを検出している。信号処理部32は、赤外レーザ光50bの出射に同期して、検出器40の出力信号の取得を開始する。 Next, the signal processing unit 32 acquires an output signal of the detector 40 (step S14). For example, the detector 40 detects the infrared laser light 50 b in synchronization with the synchronization signal from the drive circuit 16. That is, the detector 40 detects the infrared laser light 50 b in synchronization with the emission of the infrared laser light 50 b from the light source 11. The signal processing unit 32 starts acquiring the output signal of the detector 40 in synchronization with the emission of the infrared laser light 50 b.
 次いで、駆動制御部31は、所定のフレーム数において赤外レーザ光50bの照射が終了したか否かを判定する(ステップS16)。所定のフレーム数は、1フレームの場合でもよいし、5フレーム又は10フレームなどの複数フレームの場合でもよい。網膜74に赤外レーザ光50bを照射して眼70の眼底の状態を検出するのに適したフレーム数を適宜選択すればよい。 Next, the drive control unit 31 determines whether or not the irradiation of the infrared laser light 50b has ended in a predetermined number of frames (step S16). The predetermined number of frames may be one frame or a plurality of frames such as five or ten frames. The number of frames suitable for detecting the state of the fundus of the eye 70 may be appropriately selected by irradiating the retina 74 with the infrared laser light 50 b.
 所定フレーム数の赤外レーザ光50bの照射が終了していない場合(ステップS16:No)、ステップS12及びS14を繰り返し行う。所定フレーム数の赤外レーザ光50bの照射が終了した場合(ステップS16:Yes)、駆動制御部31は、投影部10に固視視標63の投影を終了させる(ステップS18)。 When the irradiation of the infrared laser light 50b of the predetermined number of frames is not completed (step S16: No), steps S12 and S14 are repeated. When the irradiation of the infrared laser light 50b of the predetermined number of frames is completed (Step S16: Yes), the drive control unit 31 causes the projection unit 10 to end the projection of the fixation target 63 (Step S18).
 次いで、画像生成部33は、信号処理部32が取得した検出器40の出力信号に基づき、眼70の検査画像(例えば眼底画像)を生成する(ステップS20)。複数フレームで赤外レーザ光50bが照射されている場合、画像生成部33は複数フレームそれぞれでの検出器40の出力信号の平均値を求めて検査画像を生成してもよいし、出力信号の最大値によって検査画像を生成してもよい。表示部41は、検査画像を表示する(ステップS22)。表示部41に表示された眼底の状態を示す検査画像を医師が精査することによって被検者の視覚の検査を行う。また、眼底の状態の検出として、起伏のある腫瘍、位相差を利用した疑似三次元画像、又は硝子体の混濁などを検出してもよい。 Next, the image generation unit 33 generates an inspection image (for example, a fundus image) of the eye 70 based on the output signal of the detector 40 acquired by the signal processing unit 32 (step S20). When the infrared laser light 50b is irradiated in a plurality of frames, the image generation unit 33 may obtain an average value of the output signals of the detector 40 in each of the plurality of frames to generate an inspection image, or The inspection image may be generated by the maximum value. The display unit 41 displays an examination image (step S22). The examiner examines the vision of the subject by the examiner examining the examination image indicating the state of the fundus displayed on the display unit 41. In addition, as a detection of the state of the fundus, it is also possible to detect an uneven tumor, a pseudo three-dimensional image using a phase difference, or opacity of the vitreous body.
 図5は、画像生成部が生成した眼底画像の一例である。図5において、符号80は中心窩であり、符号81は視神経乳頭であり、符号82は網膜動脈又は網膜静脈である。クロスハッチで病変部83を示している。 FIG. 5 is an example of a fundus oculi image generated by the image generation unit. In FIG. 5, reference numeral 80 is a fovea, reference numeral 81 is an optic nerve head, and reference numeral 82 is a retinal artery or retinal vein. The lesion 83 is shown by the cross hatch.
 実施例1では、図4のように、被検者の網膜74に固視視標63を投影している間に、網膜74に赤外レーザ光50bを照射している。これにより、被検者が固視視標63に視線を向けた状態での眼底の状態を示す検査画像の取得が可能となるため、安定した再現性の良い検査画像の取得が可能となる。このように、眼70の眼底の状態を示す検査画像の取得のための赤外レーザ光50bを網膜74に照射することに加え、網膜74に画像を投影できることが好ましいが、画像の投影に液晶ディスプレイを用いた場合では網膜74の所定の位置に高解像度の画像を投影することが難しい。 In the first embodiment, as shown in FIG. 4, while projecting the fixation target 63 onto the retina 74 of the subject, the retina 74 is irradiated with the infrared laser light 50b. As a result, since it becomes possible to obtain an examination image showing the state of the fundus in a state in which the subject directs his / her gaze at the fixation target 63, it is possible to obtain a stable examination image with good reproducibility. Thus, in addition to the irradiation of the retina 74 with the infrared laser light 50b for acquiring the examination image showing the state of the fundus of the eye 70, it is preferable that the image can be projected on the retina 74. When a display is used, it is difficult to project a high resolution image on a predetermined position of the retina 74.
 そこで、実施例1では、図1及び図2のように、走査部20が2次元に走査した可視レーザ光50aを網膜74に照射して網膜74に画像を投影している。これにより、高解像度の画像を投影することができる。このときに、可視レーザ光50aを走査する走査部20は、例えば1秒間に60フレームの画像が投影されるような28kHz程度で振動することが望まれている。一方で、走査部22が2次元に走査した赤外レーザ光50bを網膜74に照射し、網膜74での反射光を検出する検出器40の出力信号から被検者の眼底の状態の検出を行う場合、走査部22は、例えば1秒間に25フレームの画像が投影される場合に相当するような12.5kHz程度で振動することが望まれている。これは、赤外レーザ光50bを用いたときの精度など、処理の都合上によるものである。実施例1では、可視レーザ光50aを走査する走査部20と赤外レーザ光50bを走査する走査部22とを別々に設けているため、異なる周波数で振動させることができ、上述の要望を実現できる。また、走査部20で2次元に走査された可視レーザ光50aを網膜74に照射して画像を投影することで、液晶ディスプレイを用いて画像を投影する場合に比べて、検査装置の小型化ができる。検査装置の小型化、軽量化、及び低コスト化の点から、走査部20及び22は、2軸のMEMSミラーである場合が好ましい。 Therefore, in the first embodiment, as shown in FIGS. 1 and 2, the image is projected on the retina 74 by irradiating the retina 74 with the visible laser light 50 a scanned by the scanning unit 20 two-dimensionally. Thereby, a high resolution image can be projected. At this time, it is desirable that the scanning unit 20 that scans the visible laser light 50a vibrate at about 28 kHz so that an image of 60 frames is projected, for example, per second. On the other hand, the condition of the fundus of the subject is detected from the output signal of the detector 40 that irradiates the retina 74 with the infrared laser light 50b scanned in a two-dimensional manner by the scanning unit 22 and detects the reflected light at the retina 74. When this is done, it is desirable that the scanning unit 22 vibrate at about 12.5 kHz, which corresponds to, for example, the case where an image of 25 frames is projected per second. This is due to the processing convenience such as the accuracy when using the infrared laser light 50b. In the first embodiment, since the scanning unit 20 for scanning the visible laser beam 50a and the scanning unit 22 for scanning the infrared laser beam 50b are separately provided, they can be oscillated at different frequencies, and the above-mentioned demands are realized. it can. In addition, by projecting the image by irradiating the retina 74 with the visible laser light 50a scanned in a two-dimensional manner by the scanning unit 20, the inspection apparatus can be made smaller than when the image is projected using a liquid crystal display. it can. The scanning units 20 and 22 are preferably two-axis MEMS mirrors in terms of downsizing, weight reduction, and cost reduction of the inspection apparatus.
 また、実施例1によれば、図2のように、光源11から出射された可視レーザ光50aを第1方向に放射し、赤外レーザ光50bを第1方向と異なる第2方向に放射する分光部13を備える。画像投影光学系14と赤外光光学系15は光軸が一致していて、画像投影光学系14は分光部13で第1方向に放射された可視レーザ光50aを2次元に走査して網膜74に照射し、赤外光光学系15は分光部13で第2方向に放射された赤外レーザ光50bを2次元に走査して網膜74に照射する。これにより、光源11から分光部13までの光学系を可視レーザ光50aと赤外レーザ光50bで共用できるため、部品点数の削減及び検査装置の小型化を図ることができる。 Further, according to the first embodiment, as shown in FIG. 2, the visible laser light 50a emitted from the light source 11 is emitted in the first direction, and the infrared laser light 50b is emitted in the second direction different from the first direction. The spectroscope unit 13 is provided. The optical axes of the image projection optical system 14 and the infrared light optical system 15 coincide with each other, and the image projection optical system 14 two-dimensionally scans the visible laser light 50a emitted in the first direction by the spectroscope unit 13 The infrared light optical system 15 two-dimensionally scans the infrared laser light 50 b emitted in the second direction by the light separating unit 13 and irradiates the retina 74 with the light. As a result, the optical system from the light source 11 to the light splitting unit 13 can be shared by the visible laser beam 50a and the infrared laser beam 50b, so that the number of parts can be reduced and the inspection apparatus can be miniaturized.
 検査装置の小型化の点から、分光部13は、可視レーザ光50aを透過し、赤外レーザ光50bを反射するダイクロイックミラーが好ましい。なお、分光部13は、可視レーザ光50aを反射し、赤外レーザ光50bを透過するダイクロイックミラーであってもよい。この場合でも、検査装置の小型化が図れる。 From the viewpoint of miniaturizing the inspection apparatus, the light separating unit 13 is preferably a dichroic mirror that transmits the visible laser light 50a and reflects the infrared laser light 50b. The light separating unit 13 may be a dichroic mirror that reflects the visible laser light 50a and transmits the infrared laser light 50b. Even in this case, the inspection device can be miniaturized.
 また、実施例1によれば、図2のように、走査部20で走査された可視レーザ光50aと走査部22で走査された赤外レーザ光50bを合成する合成部26を備える。これにより、可視レーザ光50aと赤外レーザ光50bの光軸を一致させて網膜74に投影することを容易に実現できる。 Further, according to the first embodiment, as illustrated in FIG. 2, the combining unit 26 that combines the visible laser beam 50 a scanned by the scanning unit 20 and the infrared laser beam 50 b scanned by the scanning unit 22 is provided. Thereby, it is possible to easily realize that the optical axes of the visible laser light 50a and the infrared laser light 50b are aligned and projected on the retina 74.
 図6は、実施例2に係る視覚検査装置のブロック図である。図6のように、実施例2の視覚検査装置200は、実施例1の視覚検査装置100と比べて、入力部42を更に備える。入力部42は、被検者が結果などを入力する機器であり、例えばボタン、タッチパネル、キーボード、及び/又はマウスなどである。信号処理部32は、駆動制御部31からの制御信号に基づき、検出器40の出力信号及び入力部42の出力信号を処理する。検出器40及び信号処理部32は、駆動回路16からの同期信号に基づき、光源11が可視レーザ光50a及び赤外レーザ光50bを出射したタイミングで検出を開始する。その他の構成は、実施例1の図1と同じであるため説明を省略する。また、実施例2の視覚検査装置200の光学系は、実施例1の図1と同じであるため図示及び説明を省略する。 FIG. 6 is a block diagram of a visual inspection apparatus according to a second embodiment. As shown in FIG. 6, the visual inspection apparatus 200 of the second embodiment further includes an input unit 42 as compared with the visual inspection apparatus 100 of the first embodiment. The input unit 42 is a device through which the subject inputs a result, and is, for example, a button, a touch panel, a keyboard, and / or a mouse. The signal processing unit 32 processes the output signal of the detector 40 and the output signal of the input unit 42 based on the control signal from the drive control unit 31. The detector 40 and the signal processing unit 32 start detection based on the synchronization signal from the drive circuit 16 at the timing when the light source 11 emits the visible laser light 50 a and the infrared laser light 50 b. The other configuration is the same as that of the first embodiment shown in FIG. The optical system of the visual inspection apparatus 200 of the second embodiment is the same as that of the first embodiment shown in FIG.
 図7は、実施例2において網膜に投影される画像の一例である。実施例2では、図7のような画像60aが網膜74に投影される。すなわち、網膜74の中央領域に投影される固視視標63に加えて、眼70を検査するための検査視標65が投影される。検査視標65は、網膜74の異なる複数の領域に異なる時間で投影されるが、図7では便宜上、網膜74に投影される検査視標65の全てを図示している。検査視標65は、例えば所定の大きさの領域に照射される刺激光である。検査視標65の形状として円形状の場合を例に説明するが、楕円形状又は四角形状などの多角形状でもよい。検査視標65は、赤色、緑色、及び青色レーザ光を含む白色光でもよいし、単一の波長のレーザ光を含む単色光でもよい。検査視標65の直径は、例えば数μm程度である。 FIG. 7 is an example of an image projected onto the retina in the second embodiment. In the second embodiment, an image 60 a as shown in FIG. 7 is projected on the retina 74. That is, in addition to the fixation visual target 63 projected on the central region of the retina 74, the inspection visual target 65 for inspecting the eye 70 is projected. Although the test target 65 is projected at different times on different regions of the retina 74, FIG. 7 illustrates all of the test target 65 projected on the retina 74 for convenience. The test target 65 is, for example, stimulation light irradiated to a region of a predetermined size. Although the case of a circular shape will be described as an example of the shape of the test target 65, it may be a polygonal shape such as an elliptical shape or a quadrangular shape. The inspection target 65 may be white light including red, green and blue laser light, or may be monochromatic light including laser light of a single wavelength. The diameter of the test target 65 is, for example, about several μm.
 図8は、実施例2における処理を示すフローチャートである。図8のように、制御部30は、図7のような画像60aを網膜74に投影させ、検査視標65を用いた検査を行う(ステップS30)。 FIG. 8 is a flowchart showing processing in the second embodiment. As shown in FIG. 8, the control unit 30 projects an image 60 a as shown in FIG. 7 onto the retina 74 and performs an examination using the examination target 65 (step S <b> 30).
 図9は、実施例2における検査視標を用いた検査(図8のステップS30)の方法を示すフローチャートである。図10(a)から図10(d)は、検査視標を用いた検査を説明するための図である。図9のように、駆動制御部31は、図7のような画像60aを生成し、投影部10に生成した画像60aを投影させて、網膜74に固視視標63と検査視標65を投影させる(ステップS50)。図7で説明したように、検査視標65は、網膜74の異なる複数の領域に異なる時間で投影される。したがって、図10(a)のように、網膜74の異なる複数の領域に投影される検査視標のうちの検査視標65aが投影される。 FIG. 9 is a flowchart showing a method of examination (step S30 in FIG. 8) using the examination target in the second embodiment. 10 (a) to 10 (d) are diagrams for explaining an examination using an examination target. As illustrated in FIG. 9, the drive control unit 31 generates an image 60 a as illustrated in FIG. 7, and causes the projection unit 10 to project the generated image 60 a to set the fixation target 63 and the inspection target 65 on the retina 74. Project (step S50). As described in FIG. 7, the test target 65 is projected at different times to different areas of the retina 74. Therefore, as shown in FIG. 10A, the inspection target 65 a of the inspection targets projected onto different regions of the retina 74 is projected.
 図9に戻り、信号処理部32は、入力部42の出力信号を取得する(ステップS52)。被検者は、網膜74に検査視標65aが投影されたことを認識したときに入力部42を操作する。被検者が入力部42を操作したときに入力部42から信号処理部32に出力信号が出力される。信号処理部32は、可視レーザ光50aの出射に同期して、入力部42の出力信号の取得を開始する。 Returning to FIG. 9, the signal processing unit 32 acquires the output signal of the input unit 42 (step S52). The subject operates the input unit 42 when recognizing that the test target 65 a is projected on the retina 74. When the subject operates the input unit 42, an output signal is output from the input unit 42 to the signal processing unit 32. The signal processing unit 32 starts acquiring the output signal of the input unit 42 in synchronization with the emission of the visible laser light 50 a.
 次いで、駆動制御部31は、網膜74に全ての検査視標65の投影が終了したか否かを判定する(ステップS54)。投影すべき検査視標65がまだ残っている場合は、ステップS54の判定が否定され(ステップS54:No)、ステップS50及びS52を繰り返し行う。ステップS50及びS52を繰り返し行うことで、図10(a)の検査視標65aを投影してから例えば数秒経過した後に、図10(b)のように、網膜74の別の領域に検査視標65bが投影され、さらに数秒経過した後に、図10(c)のように、網膜74の更に別の領域に検査視標65cが投影される。これが繰り返し行われ、図10(d)のように、網膜74に最後の検査視標65zが投影される。全ての検査視標65の投影が終了した場合(ステップS54:Yes)、検査視標65を用いた検査を終了する。これにより、例えば視野欠損の検査を行うことができる。 Next, the drive control unit 31 determines whether the projection of all the test target 65 has been completed on the retina 74 (step S54). If the examination mark 65 to be projected still remains, the determination at step S54 is negative (step S54: No), and steps S50 and S52 are repeated. By repeatedly performing steps S50 and S52, for example, several seconds after projecting the test target 65a of FIG. 10A, the test target in another region of the retina 74 as shown in FIG. 10B. After 65b has been projected and several seconds have elapsed, as shown in FIG. 10 (c), the inspection target 65c is projected onto a further area of the retina 74. This is repeated, and the last examination target 65z is projected on the retina 74 as shown in FIG. 10 (d). When the projection of all the inspection marks 65 is completed (step S54: Yes), the inspection using the inspection marks 65 is ended. This allows, for example, inspection of visual field defects.
 図8に戻り、制御部30は、赤外レーザ光50bを用いた眼底の状態の検出を行う(ステップS32)。赤外レーザ光50bを用いた眼底の状態の検出は、図4のステップS10からS18の処理を行う。 Returning to FIG. 8, the control unit 30 detects the state of the fundus using the infrared laser light 50b (step S32). The detection of the state of the fundus oculi using the infrared laser light 50b is performed in the processes of steps S10 to S18 in FIG.
 次いで、画像生成部33は、検査視標65を用いた検査において信号処理部32が取得した入力部42の出力信号に基づき視野欠損画像を生成する。画像生成部33は、赤外レーザ光50bが照射されることで(赤外レーザ光50bを用いた検査において)信号処理部32が取得した検出器40の出力信号に基づき眼底画像を生成する。そして、画像生成部33は、視野欠損画像と眼底画像とを重ね合わせた重畳画像を生成する(ステップS34)。表示部41は、重畳画像を表示する(ステップS36)。表示部41に重畳表示された検査画像を医師が精査することによって被検者の視覚の検査を行う。 Next, the image generation unit 33 generates a visual field defect image based on the output signal of the input unit 42 acquired by the signal processing unit 32 in the examination using the inspection visual target 65. The image generation unit 33 generates a fundus oculi image based on the output signal of the detector 40 acquired by the signal processing unit 32 (in the inspection using the infrared laser light 50b) by being irradiated with the infrared laser light 50b. Then, the image generation unit 33 generates a superimposed image in which the visual field loss image and the fundus image are superimposed (step S34). The display unit 41 displays the superimposed image (step S36). The examiner examines the vision of the subject by the examiner examining the examination image superimposed and displayed on the display unit 41.
 図11(a)から図11(c)は、画像生成部が生成した眼底画像、視野欠損画像、及び重畳画像の一例である。図11(a)は、眼底画像である。図5と同様に、符号80は中心窩であり、符号81は視神経乳頭であり、符号82は網膜動脈又は網膜静脈である。また、クロスハッチで病変部83を示している。図11(b)は、視野欠損画像である。網膜74に検査視標65を投影したにも関わらず被検者から入力部42に応答がなかった部位66を点線で示している。図11(c)は、眼底画像と視野欠損画像を重ね合わせた重畳画像である。眼底画像と視野欠損画像を重ね合わせることで、眼底画像での病変部83と視野欠損画像での視野欠損の部位66との関係を評価することができる。 FIGS. 11A to 11C are examples of the fundus image, the visual field defect image, and the superimposed image generated by the image generation unit. FIG. 11A is a fundus image. As in FIG. 5, reference numeral 80 is a fovea, reference numeral 81 is an optic nerve head, and reference numeral 82 is a retinal artery or retinal vein. In addition, a lesion 83 is shown by a cross hatch. FIG. 11 (b) is a visual field defect image. A portion 66 where the subject does not respond to the input section 42 despite projecting the test target 65 onto the retina 74 is indicated by a dotted line. FIG. 11C shows a superimposed image in which the fundus oculi image and the visual field defect image are superimposed. By superimposing the fundus oculi image and the visual field defect image, it is possible to evaluate the relationship between the lesion 83 in the fundus image and the portion 66 of the visual field defect in the visual field defect image.
 実施例2によれば、制御部30は、光源11からの可視レーザ光50aの出射を制御して被検者の網膜74に眼70を検査するための検査視標65を投影する。これにより、赤外レーザ光50bを用いた眼70の眼底の状態の検出に加えて、可視レーザ光50aを用いた眼70の検査も行うことができる。 According to the second embodiment, the control unit 30 controls the emission of the visible laser light 50a from the light source 11 to project the test target 65 for testing the eye 70 on the retina 74 of the subject. Thereby, in addition to the detection of the state of the fundus of the eye 70 using the infrared laser light 50b, the examination of the eye 70 using the visible laser light 50a can also be performed.
 図8では、検査視標65を用いた検査を行った後に赤外レーザ光50bを用いた検査を行うとして説明したが、赤外レーザ光50bを用いた検査を行った後に検査視標65を用いた検査を行ってもよい。この場合、検査視標65を用いた検査を行っているときは、光源11から可視レーザ光50aを出射させ且つ走査部20を駆動させるとともに、光源11から赤外レーザ光50bを出射させず且つ走査部22を駆動させないようにしてもよい。赤外レーザ光50bを用いた検査を行っているときは、光源11から赤外レーザ光50bを出射させ且つ走査部22を駆動させるとともに、光源11から可視レーザ光50aを出射させず且つ走査部20を駆動させないようにしてもよい。また、検査視標65を用いた検査と赤外レーザ光50bを用いた検査とを並行して行ってもよい。すなわち、制御部30は、検査視標65の投影と赤外レーザ光50bの照射とを並行して同時に行ってもよい。これにより、検査時間の短縮を図ることができる。 Although in FIG. 8 the inspection using the inspection target 65 is performed and then the inspection using the infrared laser light 50b is performed, the inspection target 65 is used after the inspection using the infrared laser light 50b. The examination used may be performed. In this case, when an inspection using the inspection target 65 is performed, the visible laser light 50a is emitted from the light source 11 and the scanning unit 20 is driven, and the infrared laser light 50b is not emitted from the light source 11 and The scanning unit 22 may not be driven. When an inspection using the infrared laser beam 50b is performed, the infrared laser beam 50b is emitted from the light source 11 and the scanning unit 22 is driven, and the visible laser beam 50a is not emitted from the light source 11, and the scanning unit 20 may not be driven. Further, the inspection using the inspection target 65 and the inspection using the infrared laser light 50b may be performed in parallel. That is, the control unit 30 may simultaneously perform the projection of the inspection target 65 and the irradiation of the infrared laser light 50b in parallel. Thereby, shortening of inspection time can be aimed at.
 また、実施例2によれば、図11(c)のように、制御部30は、検出器40の出力信号に基づき生成した検査画像(眼底画像)と入力部42の出力信号に基づき生成した検査画像(視野欠損に関する画像)とを重ね合わせた重畳画像を生成する。これにより、可視レーザ光50aによる検査の検査画像の病変部と赤外レーザ光50bによる検査の検査画像の病変部との関係を評価することができる。また、糖尿病発症の早期発見、緑内障の早期発見、及び/又は加齢黄斑変性の早期発見にも貢献できる。なお、視野欠損に関する画像を生成することで、PRL(Preferred Retinal Locus:網膜中心窩の感度が低下したために、その代わりとして視対象を捉えるようになった他の網膜領域)を特定することもできる。 Further, according to the second embodiment, as shown in FIG. 11C, the control unit 30 generates the inspection image (fundus oculi image) generated based on the output signal of the detector 40 and the output signal of the input unit 42. A superimposed image is generated by superimposing the test image (image relating to visual field loss). Thereby, the relationship between the lesion area of the examination image of the examination with the visible laser beam 50a and the lesion area of the examination image of the examination with the infrared laser beam 50b can be evaluated. It can also contribute to early detection of onset of diabetes, early detection of glaucoma, and / or early detection of age-related macular degeneration. Note that, by generating an image related to visual field loss, it is possible to specify PRL (Preferred Retinal Locus: another retinal region where a visual target has come to be captured instead because the sensitivity of the retinal fovea has decreased). .
 実施例2では、検出器40の出力信号に基づき生成した検査画像が眼底画像で、入力部42の出力信号に基づき生成した検査画像が視野欠損に関する画像である場合を例に示したが、その他の場合でもよい。図12(a)及び図12(b)は、実施例2において網膜に投影される画像の他の例である。図12(a)及び図12(b)のように、網膜視力を検査するための検査視標67を有する画像60bが網膜74に投影されてもよい。すなわち、入力部42の出力信号に基づき網膜視力の検査結果の画像が生成されてもよい。図12(a)のように、画像60bの中心に検査視標67を投影し、検査視標67を囲むように固視視標63として複数のドットパターンを投影する。これにより、被検者が複数の固視視標63を一様に見ることにより、検査視標67は網膜74の中心に投影される。図12(b)のように、画像60bの中心に固視視標63を投影するとともに周囲に検査視標67を投影する。なお、図7で説明したのと同様に、検査視標67は、網膜74の異なる複数の領域に異なる時間で投影されるが、ここでは便宜上、網膜74に投影される検査視標67の全てを図示している。これにより、被検者が固視視標63を見ることにより、検査視標67は網膜74の所望の位置に投影される。このように、検査視標67を投影するときに固視視標63を投影して被検者に固視視標63を固視させることで、検査視標67を網膜74の所望の位置に投影できる。なお、検査視標67は、ランドルト環の場合に限られず、文字などのその他の場合でもよい。 In the second embodiment, the examination image generated based on the output signal of the detector 40 is a fundus image, and the examination image generated based on the output signal of the input unit 42 is an image related to visual field loss. In the case of FIGS. 12 (a) and 12 (b) are other examples of images projected onto the retina in Example 2. FIG. As shown in FIGS. 12 (a) and 12 (b), an image 60b having a test target 67 for examining retinal visual acuity may be projected onto the retina 74. That is, based on the output signal of the input unit 42, an image of a test result of retinal visual acuity may be generated. As shown in FIG. 12A, the inspection target 67 is projected on the center of the image 60b, and a plurality of dot patterns are projected as the fixation target 63 so as to surround the inspection target 67. As a result, when the subject looks at the plurality of fixation targets 63 uniformly, the inspection target 67 is projected to the center of the retina 74. As shown in FIG. 12B, the fixation visual target 63 is projected to the center of the image 60b, and the inspection visual target 67 is projected to the periphery. As described in FIG. 7, the test target 67 is projected to different regions of the retina 74 at different times, but here, for convenience, all of the test target 67 projected onto the retina 74 Is illustrated. As a result, when the subject looks at the fixation target 63, the inspection target 67 is projected to a desired position of the retina 74. As described above, when projecting the test target 67, the test target 67 is placed at a desired position on the retina 74 by projecting the fixation target 63 and causing the subject to fixate the fixation target 63. It can be projected. The inspection target 67 is not limited to the case of the Landolt ring, and may be other cases such as characters.
 実施例1及び実施例2において、画像投影光学系14が固視視標63を投影するとともに赤外光光学系15が赤外レーザ光50bを網膜74に照射することで、制御部30は赤外レーザ光50bによる眼70の検査画像に固視視標63を表示した画像を取得することができる。これにより、複数フレームの検査画像を取得したときに、検査画像上の固視視標63によって画像の位置合わせを容易に行うことができ、固視視標を投影しているにも関わらず被検者の視線が動いた場合でも、複数フレームの検査画像の重ね合わせや病変部の位置の特定などをより正確に行うことができる。 In the first and second embodiments, the image projection optical system 14 projects the fixation target 63 and the infrared light optical system 15 irradiates the retina 74 with the infrared laser light 50 b, so that the control unit 30 is red. An image in which the fixation visual target 63 is displayed on the inspection image of the eye 70 by the external laser beam 50 b can be acquired. In this way, when inspection images of a plurality of frames are acquired, alignment of the image can be easily performed by the fixation visual target 63 on the inspection image, and even though the fixation visual target is projected, Even when the line of sight of the examiner moves, superposition of inspection images of a plurality of frames, identification of the position of a lesion, and the like can be performed more accurately.
 実施例1及び実施例2では、画像投影光学系14が視標などの画像を投影し、赤外光光学系15が網膜74に照射した赤外レーザ光50bによって被検者の眼70の眼底の状態を検出する場合の例を示した。実施例3では、画像投影光学系14が網膜74に照射した可視レーザ光50aによっても被検者の眼70の眼底の状態を検出する場合について説明する。 In Example 1 and Example 2, the image projection optical system 14 projects an image such as a visual target, and the infrared light optical system 15 irradiates the retina 74 with the fundus of the eye 70 of the subject 70 by the infrared laser light 50b. An example of detecting the state of In the third embodiment, the case where the image projection optical system 14 detects the state of the fundus of the eye 70 of the subject also by the visible laser light 50 a emitted to the retina 74 will be described.
 実施例3に係る視覚検査装置のブロック図及び光学系は、実施例1の図1及び図2と同様であるため、実施例1の図1及び図2を用いて説明する。実施例3の視覚検査装置では、検出器40が可視光から赤外光まで検出できるフォトディテクターである点が実施例1と異なる。このため、実施例3では、画像投影光学系14が網膜74に照射して網膜74で反射された可視レーザ光50aを検出器40で検出できる。網膜74で反射した可視レーザ光50aは、レンズ27、合成部26、レンズ25、走査部20、平面ミラー21、分光部13の順に可視レーザ光50aが網膜74に向かって進んできた光路を戻り、ハーフミラー43及びレンズ44を介して検出器40に入射する。 The block diagram and the optical system of the visual inspection apparatus according to the third embodiment are the same as FIGS. 1 and 2 of the first embodiment, and therefore will be described using FIGS. 1 and 2 of the first embodiment. The visual inspection apparatus of the third embodiment is different from the first embodiment in that the detector 40 is a photodetector capable of detecting visible light to infrared light. Therefore, in the third embodiment, the image projection optical system 14 irradiates the retina 74 and the detector 40 can detect the visible laser light 50 a reflected by the retina 74. The visible laser beam 50a reflected by the retina 74 returns in the optical path along which the visible laser beam 50a has traveled toward the retina 74 in the order of the lens 27, the combining unit 26, the lens 25, the scanning unit 20, the flat mirror 21, and the light separating unit 13. , And incident on the detector 40 through the half mirror 43 and the lens 44.
 図13は、実施例3における処理を示すフローチャートである。図13のように、駆動制御部31は、投影部10に可視レーザ光50aを網膜74に照射させる(ステップS60)。次いで、信号処理部32は、検出器40の出力信号を取得する(ステップS62)。例えば、検出器40は、駆動回路16からの同期信号に同期して可視レーザ光50aを検出している。すなわち、検出器40は、光源11からの可視レーザ光50aの出射に同期して可視レーザ光50aを検出している。信号処理部32は、可視レーザ光50aの出射に同期して、検出器40の出力信号の取得を開始する。 FIG. 13 is a flowchart showing the process in the third embodiment. As illustrated in FIG. 13, the drive control unit 31 causes the projection unit 10 to irradiate the visible laser light 50 a onto the retina 74 (step S <b> 60). Next, the signal processing unit 32 acquires an output signal of the detector 40 (step S62). For example, the detector 40 detects the visible laser light 50 a in synchronization with the synchronization signal from the drive circuit 16. That is, the detector 40 detects the visible laser light 50 a in synchronization with the emission of the visible laser light 50 a from the light source 11. The signal processing unit 32 starts acquiring the output signal of the detector 40 in synchronization with the emission of the visible laser light 50a.
 次いで、駆動制御部31は、投影部10に可視レーザ光50aに代えて赤外レーザ光50bを網膜74に照射させる(ステップS64)。次いで、信号処理部32は、検出器40の出力信号を取得する(ステップS66)。例えば、検出器40は、駆動回路16からの同期信号に同期して赤外レーザ光50bを検出している。すなわち、検出器40は、光源11からの赤外レーザ光50bの出射に同期して赤外レーザ光50bを検出している。信号処理部32は、赤外レーザ光50bの出射に同期して、検出器40の出力信号の取得を開始する。 Next, the drive control unit 31 causes the projection unit 10 to irradiate the retina 74 with the infrared laser light 50b instead of the visible laser light 50a (step S64). Next, the signal processing unit 32 acquires an output signal of the detector 40 (step S66). For example, the detector 40 detects the infrared laser light 50 b in synchronization with the synchronization signal from the drive circuit 16. That is, the detector 40 detects the infrared laser light 50 b in synchronization with the emission of the infrared laser light 50 b from the light source 11. The signal processing unit 32 starts acquiring the output signal of the detector 40 in synchronization with the emission of the infrared laser light 50 b.
 次いで、駆動制御部31は、所定のフレーム数において可視レーザ光50a及び赤外レーザ光50bの照射が終了したか否かを判定する(ステップS68)。所定のフレーム数は、1フレームの場合でもよいし、5フレーム又は10フレームなどの複数フレームの場合でもよい。 Next, the drive control unit 31 determines whether or not the irradiation of the visible laser light 50a and the infrared laser light 50b has ended in a predetermined number of frames (step S68). The predetermined number of frames may be one frame or a plurality of frames such as five or ten frames.
 所定フレーム数の照射が終了していない場合(ステップS68:No)、ステップS60からS66を繰り返し行う。所定フレーム数の照射が終了した場合(ステップS68:Yes)、画像生成部33は、信号処理部32が取得した検出器40の出力信号に基づき、眼70の検査画像を生成する(ステップS70)。例えば、画像生成部33は、網膜74で反射した可視レーザ光50aによる検出器40の出力信号に基づき第1検査画像(第1眼底画像)を生成し、網膜74で反射した赤外レーザ光50bによる検出器40の出力信号に基づき第2検査画像(第2眼底画像)を生成する。表示部41は、検査画像を表示する(ステップS72)。表示部41に表示された検査画像を医師が精査することによって被検者の視覚の検査を行う。 When the irradiation of the predetermined number of frames is not completed (step S68: No), steps S60 to S66 are repeated. When the irradiation of the predetermined number of frames is completed (Step S68: Yes), the image generation unit 33 generates an inspection image of the eye 70 based on the output signal of the detector 40 acquired by the signal processing unit 32 (Step S70). . For example, the image generation unit 33 generates a first examination image (first fundus image) based on the output signal of the detector 40 by the visible laser light 50a reflected by the retina 74, and the infrared laser light 50b reflected by the retina 74 A second examination image (second fundus image) is generated based on the output signal of the detector 40 according to The display unit 41 displays an examination image (step S72). The doctor examines the inspection image displayed on the display unit 41 and examines the vision of the subject.
 実施例3によれば、制御部30は、検出器40の赤外レーザ光50bに基づく出力信号から眼70の眼底の状態を検出することに加え、検出器40の可視レーザ光50aに基づく出力信号から眼70の眼底の状態を検出している。検出した2つの眼底の状態は、周波数の異なるレーザ光に基づくものであるため、特性が異なる眼底の状態を検出することができる。これにより、異なった眼底の状態の評価を行うことができ、視覚検査の精度を向上させることができる。 According to the third embodiment, in addition to detecting the state of the fundus of the eye 70 from the output signal based on the infrared laser light 50 b of the detector 40, the control unit 30 also outputs the output based on the visible laser light 50 a of the detector 40 The state of the fundus of the eye 70 is detected from the signal. The two fundus states detected are based on laser beams of different frequencies, so that the states of the fundus with different characteristics can be detected. As a result, it is possible to evaluate different fundus conditions and improve the accuracy of visual inspection.
 実施例3において、検出器40の可視レーザ光50a及び赤外レーザ光50bに基づく出力信号から眼70の眼底の状態を検出する例として眼70の眼底画像を取得する場合を例に示したがその他の場合でもよい。 In the third embodiment, as an example of detecting the state of the fundus of the eye 70 from the output signal based on the visible laser light 50a and the infrared laser light 50b of the detector 40, the case of acquiring the fundus image of the eye 70 is shown. Other cases are also possible.
 実施例3においても、制御部30は、実施例1のように被検者の網膜74に被検者の視線を向けさせるための固視視標を投影してもよいし、及び/又は、実施例2のように被検者の網膜74に被検者の眼70を検査するための検査視標を投影してもよい。 Also in the third embodiment, the control unit 30 may project a fixation target for causing the subject's gaze to be directed to the retina 74 of the subject as in the first embodiment, and / or As in the second embodiment, a test target for testing the eye 70 of the subject may be projected onto the retina 74 of the subject.
 実施例1から実施例3では、可視レーザ光50aと赤外レーザ光50bとを別々の走査部20及び22で2次元に走査する場合、すなわち、可視レーザ光50aを走査する走査部20と赤外レーザ光50bを走査する走査部22との2種の走査部を有する場合を例に示したが、実施例4では、1つの走査部で2次元に走査する場合について説明する。すなわち、実施例1から実施例3では、可視光の可視レーザ光50aを走査する走査部20を有する画像投影光学系14と不可視光の赤外レーザ光50bを走査する走査部22を有する赤外光学系15とを備える場合を例に説明した。これに対し、実施例4では、可視光及び不可視光の光学系を共通化し、可視光のレーザ光及び不可視光のレーザ光をともに1つの走査部で走査する場合について説明する。 In the first to third embodiments, when the visible laser light 50a and the infrared laser light 50b are two-dimensionally scanned by the separate scanning units 20 and 22, that is, the scanning unit 20 that scans the visible laser light 50a and the red Although the case where it has two types of scanning parts with the scanning part 22 which scans the external laser beam 50b was shown as an example, in Example 4, the case where it scans in two dimensions by one scanning part is demonstrated. That is, in the first to third embodiments, the image projection optical system 14 having the scanning unit 20 for scanning the visible laser light 50a of visible light and the infrared light having the scanning unit 22 for scanning the infrared laser light 50b of invisible light The case of including the optical system 15 has been described as an example. On the other hand, in the fourth embodiment, an optical system for visible light and invisible light is made common, and a case where both a laser light of visible light and a laser light of invisible light are scanned by one scanning unit will be described.
 図14は、実施例4に係る視覚検査装置のブロック図である。図14のように、実施例4の視覚検査装置300では、投影部10aは、可視光光源90、可視光調整部91、不可視光光源92、不可視光調整部93、光源光合成部94、走査部20、駆動回路16、及び入力回路17を備える。駆動回路16は、入力回路17が取得した画像信号及び駆動制御部31の制御信号に基づき可視光光源90、不可視光光源92、及び走査部20を駆動する。その他の構成は、実施例1の図1と同じであるため説明を省略する。なお、実施例4の視覚検査装置300においても、実施例2の図6と同様に、入力部42を備える構成であってもよい。 FIG. 14 is a block diagram of a visual inspection apparatus according to a fourth embodiment. As illustrated in FIG. 14, in the visual inspection apparatus 300 according to the fourth embodiment, the projection unit 10a includes a visible light source 90, a visible light adjustment unit 91, an invisible light source 92, an invisible light adjustment unit 93, a light source light combining unit 94, and a scanning unit 20, a drive circuit 16 and an input circuit 17. The drive circuit 16 drives the visible light source 90, the invisible light source 92, and the scanning unit 20 based on the image signal acquired by the input circuit 17 and the control signal of the drive control unit 31. The other configuration is the same as that of the first embodiment shown in FIG. Also in the visual inspection apparatus 300 of the fourth embodiment, as in FIG. 6 of the second embodiment, the input unit 42 may be provided.
 図15は、実施例4に係る視覚検査装置の光学系を示す図である。図15のように、実施例4の視覚検査装置300は、可視光光源90、可視光調整部91、不可視光光源92、不可視光調整部93、及び光源光合成部94を備える。実施例4では、実施例1と同様に、マクスウェル視を利用して、被検者の網膜74にレーザ光を照射する。可視光光源90は、赤色レーザ光、緑色レーザ光、及び青色レーザ光の可視レーザ光51aを出射し、それぞれの波長のレーザ光の光軸は一致している。可視光調整部91は、可視光に敵した特性を有するコリメートレンズ、トーリックレンズ、及び/又はアパーチャなどを有しており、可視レーザ光51aが、適した開口数(NA)及び/又はビーム径に調整される。可視レーザ光51aは、赤色レーザ光、緑色レーザ光、及び青色レーザ光が合成された光線であり、それぞれのレーザ光の光軸が一致している。 FIG. 15 is a diagram of an optical system of a visual inspection apparatus according to a fourth embodiment. As illustrated in FIG. 15, the visual inspection apparatus 300 of the fourth embodiment includes a visible light source 90, a visible light adjustment unit 91, an invisible light source 92, an invisible light adjustment unit 93, and a light source light synthesis unit 94. In the fourth embodiment, similarly to the first embodiment, laser light is irradiated to the retina 74 of the subject using Maxwell vision. The visible light source 90 emits visible laser light 51a of red laser light, green laser light, and blue laser light, and the optical axes of the laser lights of the respective wavelengths coincide with each other. The visible light adjustment unit 91 has a collimating lens, a toric lens, and / or an aperture, etc., which has a characteristic that rivals visible light, and the visible laser light 51a has a suitable numerical aperture (NA) and / or beam diameter. Adjusted to The visible laser beam 51a is a light beam in which a red laser beam, a green laser beam, and a blue laser beam are combined, and the optical axes of the respective laser beams coincide with each other.
 不可視光光源92は、赤外線などの不可視レーザ光51bを出射する。不可視光調整部93は、赤外線などの不可視光に適した特性を有するコリメートレンズ、トーリックレンズ、及び/又はアパーチャなどを有しており、不可視レーザ光51bが、適した開口数(NA)及び/又はビーム径に調整される。 The invisible light source 92 emits invisible laser light 51 b such as infrared light. The invisible light adjusting unit 93 includes a collimating lens, a toric lens, and / or an aperture having characteristics suitable for invisible light such as infrared light, and the invisible laser light 51 b has a suitable numerical aperture (NA) and / or Or it is adjusted to the beam diameter.
 光源光合成部94は、可視光調整部91で調整された可視レーザ光51aを反射し、不可視光調整部93で調整された不可視レーザ光51bを透過させることによって、調整された可視レーザ光51aと調整された不可視レーザ光51bとが合成された合成レーザ光53を生成するダイクロックミラーである。光源光合成部94はダイクロイックミラーに限らず、ダイクロイックプリズムなど、その他の光学素子であってもよい。 The light source light synthesis unit 94 reflects the visible laser light 51a adjusted by the visible light adjustment unit 91, and transmits the invisible laser light 51b adjusted by the invisible light adjustment unit 93, thereby adjusting the visible laser light 51a. It is a dichroic mirror that generates a combined laser beam 53 in which the adjusted invisible laser beam 51b is combined. The light source light combining unit 94 is not limited to a dichroic mirror, and may be another optical element such as a dichroic prism.
 合成レーザ光53は、ハーフミラー43を透過した後、平面ミラー21で反射し、走査部20により2次元に走査される。ここで、走査部20は、実施例1と同様に、1秒間に60フレームの画像が投影されるような28kHzなどの比較的高い周波数で振動する。走査部20で走査された合成レーザ光53は、レンズ25及びレンズ27を介して水晶体72近傍で収束し、硝子体76を通過し網膜74に照射する。レンズ25及びレンズ27が、被験者の網膜74の可視レーザ光51aを照射して被験者の網膜74に画像を投影するとともに、不可視レーザ光51bを被験者の網膜74に照射する照射光学系95となる。
合成レーザ光53は、可視レーザ光51aと不可視レーザ光51bとが混合したレーザ光であるため、実施例4では、可視レーザ光51aと不可視レーザ光51bとが、同じ走査周波数で、網膜74に同時に同じ位置に照射される。
The combined laser beam 53 passes through the half mirror 43, is reflected by the plane mirror 21, and is two-dimensionally scanned by the scanning unit 20. Here, as in the first embodiment, the scanning unit 20 vibrates at a relatively high frequency such as 28 kHz so that an image of 60 frames is projected per second. The combined laser beam 53 scanned by the scanning unit 20 converges in the vicinity of the lens 72 through the lens 25 and the lens 27, passes through the vitreous body 76, and irradiates the retina 74. The lens 25 and the lens 27 irradiate the visible laser light 51a of the retina 74 of the subject to project an image on the retina 74 of the subject, and serve as an irradiation optical system 95 which irradiates the invisible laser light 51b to the retina 74 of the subject.
Since the synthetic laser beam 53 is a laser beam obtained by mixing the visible laser beam 51a and the invisible laser beam 51b, in the fourth embodiment, the visible laser beam 51a and the invisible laser beam 51b are applied to the retina 74 at the same scanning frequency. It is simultaneously irradiated to the same position.
 網膜74に照射された合成レーザ光53は網膜74で反射する。反射した合成レーザ光53は、合成レーザ光53が網膜74に向かって進んできた光路を戻る。すなわち、反射した合成レーザ光53は、レンズ27、レンズ25、走査部20及び平面ミラー21の順に合成レーザ光53が網膜74に向かって進んできた光路を戻る。戻ってきた合成レーザ光53は、ハーフミラー43で、レンズ44の方向に反射して、レンズ44を介して検出器40に入射する。検出器40は、不可視光を検出して、可視光を検出しない特性を有しているので、反射した不可視レーザ光51bのみを検出する。検出器40による不可視レーザ光51bの輝度変化などの検出結果によって、眼70の眼底の状態の検出(眼底の状態情報の取得)を行うことができ、その検出対象の一例として眼底画像を取得することができる。ここで、検出器40が可視光及び不可視光の両方を検出できる特性を有していれば、可視レーザ光51aと不可視レーザ光51bの照射タイミングに合わせて、検出器40で検出した検出結果を参照すれば、可視レーザ光51a及び不可視レーザ光51b両方の検出も可能となる。 The synthetic laser light 53 applied to the retina 74 is reflected by the retina 74. The reflected combined laser light 53 returns in the optical path along which the combined laser light 53 has traveled to the retina 74. That is, the reflected combined laser light 53 returns in the optical path in which the combined laser light 53 has traveled toward the retina 74 in the order of the lens 27, the lens 25, the scanning unit 20 and the flat mirror 21. The returned combined laser beam 53 is reflected by the half mirror 43 in the direction of the lens 44 and enters the detector 40 through the lens 44. The detector 40 has a characteristic of detecting invisible light and not detecting visible light, and therefore detects only the reflected invisible laser light 51b. The detection of the state of the fundus of the eye 70 (acquisition of state information of the fundus) can be performed based on the detection result such as the luminance change of the invisible laser beam 51b by the detector 40, and a fundus image is acquired as an example of the detection target. be able to. Here, if the detector 40 has a characteristic capable of detecting both visible light and invisible light, the detection result detected by the detector 40 is matched with the irradiation timing of the visible laser light 51a and the invisible laser light 51b. If referred to, detection of both the visible laser light 51a and the invisible laser light 51b is also possible.
 実施例1から実施例3において、図3、図7、図10、及び図12で説明した可視レーザ光と不可視レーザ光の走査及び投影の方法、並びに図4、図8、図9、及び図13で説明した処理制御フローついては、可視レーザ光50a及び赤外レーザ光50bを、可視レーザ光51a及び不可視レーザ光51bに読み替えることによって、実施例4での走査及び投影の方法、並びに、制御フローの説明となる。 In Examples 1 to 3, the method of scanning and projecting the visible laser light and the invisible laser light described in FIGS. 3, 7, 10, and 12 and FIGS. 4, 8, 9, and Regarding the process control flow described in 13, the method of scanning and projection in the fourth embodiment and the control flow in the fourth embodiment by replacing the visible laser light 50a and the infrared laser light 50b with the visible laser light 51a and the invisible laser light 51b. It will be explained.
 実施例4によれば、光源光合成部94で可視レーザ光51aと不可視レーザ光51bが合成された合成レーザ光53は、1つの走査部20で走査されて、被験者の網膜74に照射される。このように、可視レーザ光51aと不可視レーザ光51bとを走査する走査部20が共通化されていることによって、走査部20の制御が簡略化されるとともに、装置の簡略化も実現することができる。 According to the fourth embodiment, the combined laser beam 53 in which the visible laser beam 51a and the invisible laser beam 51b are combined by the light source light combining unit 94 is scanned by one scanning unit 20 and is applied to the retina 74 of the subject. As described above, since the scanning unit 20 that scans the visible laser light 51a and the invisible laser light 51b is made common, control of the scanning unit 20 is simplified, and simplification of the apparatus is also realized. it can.
 実施例1から実施例4では、不可視光線として赤外光線の場合を例に示したが、紫外光線などのその他の場合でもよい。また、赤外光線の波長が850nm程度である場合を例に示したがその他の波長の近赤外光線の場合でもよく、また、中赤外光線又は遠赤外光線の場合でもよい。 In the first to fourth embodiments, the case of infrared rays as the invisible light is shown as an example, but other cases such as ultraviolet rays may be used. Although the case where the wavelength of the infrared ray is about 850 nm is shown as an example, it may be the case of near infrared rays of other wavelengths, or it may be the case of middle infrared rays or far infrared rays.
 以上、本発明の実施例について詳述したが、本発明はかかる特定の実施例に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。 As mentioned above, although the embodiment of the present invention has been described in detail, the present invention is not limited to such a specific embodiment, and various modifications may be made within the scope of the subject matter of the present invention described in the claims. Changes are possible.
 10、10a 投影部
 11 光源
 12 調整部
 13 分光部
 14 画像投影光学系
 15 赤外光光学系
 16 駆動回路
 17 入力回路
 20、22 走査部
 21、23 平面ミラー
 24、25、27 レンズ
 26 合成部
 30 制御部
 31 駆動制御部
 32 信号処理部
 33 画像生成部
 40 検出器
 41 表示部
 42 入力部
 43 ハーフミラー
 44 レンズ
 50 レーザ光
 50a 可視レーザ光
 50b 赤外レーザ光
 51a 可視レーザ光
 51b 不可視レーザ光
 53 合成レーザ光
 60~60b 画像
 63 固視視標
 65~65z 検査視標
 66 部位
 67 検査視標
 70 眼
 72 水晶体
 74 網膜
 76 硝子体
 80 中心窩
 81 視神経乳頭
 82 網膜動脈又は網膜静脈
 83 病変部
 90 可視光光源
 91 可視光調整部
 92 不可視光光源
 93 不可視光調整部
 94 光源光合成部
 95 照射光学系
 100、200、300 視覚検査装置
10, 10a Projection unit 11 Light source 12 Adjustment unit 13 Spectroscopic unit 14 Image projection optical system 15 Infrared light optical system 16 Drive circuit 17 Input circuit 20, 22 Scanning unit 21, 23 Flat mirror 24, 25, 27 Lens 26 Combining unit 30 Control unit 31 Drive control unit 32 Signal processing unit 33 Image generation unit 40 Detector 41 Display unit 42 Input unit 43 Half mirror 44 Lens 50 Laser light 50a Visible laser light 50b Infrared laser light 51a Visible laser light 51b Invisible laser light 53 Composition Laser beam 60-60b Image 63 Fixation target 65-65z Test target 66 Part 67 Test target 70 Eye 72 Lens 74 Retina 76 Vitreous body 80 Central fossa 81 Optic papilla 82 Retinal artery or retinal vein 83 Lesion part 90 Visible light Light source 91 visible light adjustment unit 92 invisible light source 93 invisible light adjustment unit 9 DESCRIPTION OF SYMBOLS 4 Light source light-synthesis part 95 Irradiation optical system 100, 200, 300 Visual inspection apparatus

Claims (19)

  1.  可視光線と不可視光線とを出射する光源と、
     第1周波数で振動することで前記可視光線を2次元に走査する第1走査部を有し、被検者の網膜に前記可視光線を照射して前記被検者の網膜に画像を投影する画像投影光学系と、
     前記第1周波数と異なる第2周波数で振動することで前記不可視光線を2次元に走査する第2走査部を有し、前記被検者の網膜に前記不可視光線を照射する不可視光光学系と、
     前記被検者の網膜で反射した前記不可視光線を検出する検出器と、
     前記光源からの前記可視光線及び前記不可視光線の出射を制御するとともに、前記検出器の出力信号から前記被検者の眼底の状態の検出を行う制御部と、を備える視覚検査装置。
    A light source that emits visible light and invisible light;
    An image having a first scanning unit for two-dimensionally scanning the visible light by oscillating at a first frequency, and projecting the image on the retina of the subject by irradiating the visible light to the retina of the subject Projection optics,
    An invisible light optical system including a second scanning unit configured to two-dimensionally scan the invisible light by vibrating at a second frequency different from the first frequency, and irradiating the invisible light to the retina of the subject;
    A detector for detecting the invisible light reflected by the retina of the subject;
    A control unit configured to control emission of the visible light beam and the invisible light beam from the light source and to detect a state of a fundus of the subject from an output signal of the detector.
  2.  前記光源から出射された前記可視光線を第1方向に射出し、前記不可視光線を前記第1方向と異なる第2方向に射出する分光部を備え、
     前記画像投影光学系と前記不可視光光学系との光軸は一致しており、
     前記画像投影光学系は、前記第1方向に射出された前記可視光線を2次元に走査して前記被検者の網膜に照射し、
     前記不可視光光学系は、前記第2方向に射出された前記不可視光線を2次元に走査して前記被検者の網膜に照射する、請求項1記載の視覚検査装置。
    The light source may further include a splitting unit that emits the visible light emitted from the light source in a first direction and emits the invisible light in a second direction different from the first direction.
    The optical axes of the image projection optical system and the invisible light optical system coincide with each other,
    The image projection optical system two-dimensionally scans the visible light emitted in the first direction and irradiates the retina of the subject.
    The visual inspection apparatus according to claim 1, wherein the invisible light optical system two-dimensionally scans the invisible light emitted in the second direction to irradiate the retina of the subject.
  3.  前記分光部は、前記可視光線及び前記不可視光線の一方を透過し他方を反射するダイクロイックミラーである、請求項2記載の視覚検査装置。 The visual inspection apparatus according to claim 2, wherein the light splitting unit is a dichroic mirror that transmits one of the visible light and the invisible light and reflects the other.
  4.  前記第1走査部で走査された前記可視光線と前記第2走査部で走査された前記不可視光線を合成する合成部を備える、請求項1から3のいずれか一項記載の視覚検査装置。 The visual inspection apparatus according to any one of claims 1 to 3, further comprising: a combining unit configured to combine the visible light scanned by the first scanning unit and the invisible light scanned by the second scanning unit.
  5.  前記不可視光線は赤外光線であり、
     前記制御部は、前記検出器の出力信号に基づき前記被検者の眼の眼底画像を生成する、請求項1から4のいずれか一項記載の視覚検査装置。
    The invisible rays are infrared rays,
    The visual inspection apparatus according to any one of claims 1 to 4, wherein the control unit generates a fundus image of the eye of the subject based on an output signal of the detector.
  6.  前記制御部は、前記光源からの前記可視光線の出射を制御して前記被検者の網膜に前記被検者の視線を向けさせるための固視視標を投影し、前記光源から前記不可視光線を出射させて前記被検者の網膜に前記不可視光線を照射させる、請求項1から5のいずれか一項記載の視覚検査装置。 The control unit controls the emission of the visible light from the light source to project a fixation target for directing the line of sight of the subject to the retina of the subject, and the invisible light from the light source The visual inspection apparatus according to any one of claims 1 to 5, wherein the invisible light is emitted to the retina of the subject.
  7.  前記制御部は、前記光源からの前記可視光線の出射を制御して前記被検者の網膜に前記被検者の眼を検査するための検査視標を投影する、請求項1から6のいずれか一項記載の視覚検査装置。 7. The control unit projects an examination target for inspecting the eye of the subject on the retina of the subject by controlling the emission of the visible light from the light source. A visual inspection apparatus according to any one of the preceding claims.
  8.  前記制御部は、前記光源からの前記可視光線の出射を制御して前記被検者の網膜への前記被検者の眼を検査するための検査視標の投影と、前記光源から前記不可視光線を出射させて前記被検者の網膜への前記不可視光線の照射と、を並行して行う、請求項1から7のいずれか一項記載の視覚検査装置。 The control unit controls emission of the visible light from the light source to project a test target for testing the eye of the subject onto the retina of the subject, and the invisible light from the light source The visual inspection apparatus according to any one of claims 1 to 7, wherein the irradiation of the invisible light to the retina of the subject is performed in parallel.
  9.  前記制御部は、前記光源からの前記可視光線の出射を制御して前記被検者の網膜に前記被検者の眼を検査するための検査視標を投影し、前記検出器の出力信号に基づき生成した第1検査画像と前記被検者の前記検査視標に応じて入力された応答に基づき生成した第2検査画像とを重ね合わせた第3検査画像を生成する、請求項1から8のいずれか一項記載の視覚検査装置。 The control unit controls emission of the visible light from the light source to project a test target for testing the eye of the subject on the retina of the subject, and outputs the test signal to the output signal of the detector. The third inspection image is generated by superimposing the first inspection image generated based on the second inspection image generated based on the response input according to the test target of the subject. The visual inspection apparatus according to any one of the preceding claims.
  10.  前記第1検査画像は眼底画像であり、前記第2検査画像は視野欠損に関する画像である、請求項9記載の視覚検査装置。 The visual inspection apparatus according to claim 9, wherein the first inspection image is a fundus image, and the second inspection image is an image regarding a visual field defect.
  11.  可視光線と不可視光線とを出射する光源と、
     第1周波数で振動することで前記可視光線を2次元に走査する第1走査部を有し、被検者の網膜に前記可視光線を照射して前記被検者の網膜に画像を投影する画像投影光学系と、
     前記第1周波数と異なる第2周波数で振動することで前記不可視光線を2次元に走査する第2走査部を有し、前記被検者の網膜に前記不可視光線を照射する不可視光光学系と、
     前記被検者の網膜で反射した前記可視光線と前記不可視光線とを検出する検出器と、
     前記光源からの前記可視光線及び前記不可視光線の出射を制御するとともに、前記検出器の前記可視光線に基づく出力信号から前記被検者の第1の眼底の状態の検出と前記検出器の前記不可視光線に基づく出力信号から前記被検者の第2の眼底の状態の検出とを行なう制御部と、を備える視覚検査装置。
    A light source that emits visible light and invisible light;
    An image having a first scanning unit for two-dimensionally scanning the visible light by oscillating at a first frequency, and projecting the image on the retina of the subject by irradiating the visible light to the retina of the subject Projection optics,
    An invisible light optical system including a second scanning unit configured to two-dimensionally scan the invisible light by vibrating at a second frequency different from the first frequency, and irradiating the invisible light to the retina of the subject;
    A detector for detecting the visible light and the invisible light reflected by the retina of the subject;
    Control of emission of the visible light and the invisible light from the light source and detection of a state of a first fundus of the subject from an output signal based on the visible light of the detector and the invisible of the detector A control unit configured to detect a state of a second fundus of the subject from an output signal based on a light beam.
  12.  前記制御部は、前記光源からの前記可視光線の出射を制御して、前記被検者の網膜に前記被検者の視線を向けさせるための固視視標及び前記被検者の眼を検査するための検査視標の少なくとも一方を投影する、請求項11記載の視覚検査装置。 The control unit controls emission of the visible light from the light source to inspect a fixation target for causing the subject's gaze to point at the retina of the subject and an eye of the subject. The visual inspection apparatus according to claim 11, wherein at least one of the inspection targets to be projected is projected.
  13.  前記制御部は、前記第1の眼底の状態の検出及び第2の眼底の状態の検出として前記被検者の眼の眼底画像を取得する、請求項11または12記載の視覚検査装置。 The visual inspection apparatus according to claim 11, wherein the control unit acquires a fundus image of the eye of the subject as the detection of the state of the first fundus and the detection of the state of the second fundus.
  14.  可視光線を出射する可視光光源と、
     不可視光線を出射する不可視光光源と、
     前記可視光線と前記不可視光線とを合成して合成光を生成する光源光合成部と、
     前記可視光線と前記不可視光線とを2次元に走査する走査部と、
     被検者の網膜に前記可視光線を照射して前記被検者の網膜に画像を投影するとともに、前記不可視光線を被検者の網膜に照射する照射光学系と、
     前記被検者の網膜で反射した前記不可視光線を検出する検出器と、
     前記可視光光源からの前記可視光線及び前記不可視光光源からの前記不可視光線の出射を制御するとともに、前記検出器の出力信号から前記被検者の眼底の状態の検出を行う制御部と、を備える視覚検査装置。
    A visible light source that emits visible light;
    An invisible light source that emits invisible light;
    A light source light combining unit that combines the visible light and the invisible light to generate combined light;
    A scanning unit that two-dimensionally scans the visible light beam and the invisible light beam;
    An irradiation optical system which irradiates the visible light onto the retina of the subject to project an image on the retina of the subject and irradiates the invisible light onto the retina of the subject;
    A detector for detecting the invisible light reflected by the retina of the subject;
    A control unit configured to control emission of the visible light from the visible light source and the invisible light from the invisible light source and to detect the state of the fundus of the subject from the output signal of the detector; Visual inspection apparatus provided.
  15.  前記不可視光線は赤外光線であり、
     前記制御部は、前記検出器の出力信号に基づき前記被検者の眼の眼底画像を生成する、請求項14記載の視覚検査装置。
    The invisible rays are infrared rays,
    The visual inspection apparatus according to claim 14, wherein the control unit generates a fundus image of the eye of the subject based on an output signal of the detector.
  16.  前記制御部は、前記可視光光源からの前記可視光線の出射を制御して前記被検者の網膜に前記被検者の視線を向けさせるための固視視標を投影し、前記不可視光光源から前記不可視光線を出射させて前記被検者の網膜に前記不可視光線を照射させる、請求項14または15記載の視覚検査装置。 The control unit controls the emission of the visible light from the visible light source to project a fixation target for directing the line of sight of the subject on the retina of the subject, and the invisible light source The visual inspection apparatus according to claim 14 or 15, wherein the invisible light is emitted from the light source to irradiate the retina of the subject with the invisible light.
  17.  前記制御部は、前記可視光光源からの前記可視光線の出射を制御して前記被検者の網膜に前記被検者の眼を検査するための検査視標を投影する、請求項14から16のいずれか一項記載の視覚検査装置。 The control unit projects an examination target for examining an eye of the subject on the retina of the subject by controlling emission of the visible light from the visible light source. The visual inspection apparatus according to any one of the preceding claims.
  18.  前記制御部は、前記可視光光源からの前記可視光線の出射を制御して前記被検者の網膜に前記被検者の眼を検査するための検査視標を投影し、前記検出器の出力信号に基づき生成した第1検査画像と前記被検者の前記検査視標に応じて入力された応答に基づき生成した第2検査画像とを重ね合わせた第3検査画像を生成する、請求項14から17のいずれか一項記載の視覚検査装置。 The control unit controls the emission of the visible light from the visible light source to project a test target for testing the eye of the subject on the retina of the subject, and the output of the detector A third inspection image is generated by superimposing a first inspection image generated based on a signal and a second inspection image generated based on a response input according to the test target of the subject. A visual inspection apparatus according to any of the preceding claims.
  19.  前記第1検査画像は眼底画像であり、前記第2検査画像は視野欠損に関する画像である、請求項18記載の視覚検査装置。 The visual inspection apparatus according to claim 18, wherein the first inspection image is a fundus image, and the second inspection image is an image regarding a visual field defect.
PCT/JP2018/033824 2017-10-05 2018-09-12 Vision examination device WO2019069648A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP18864830.7A EP3692889B1 (en) 2017-10-05 2018-09-12 Visiual sense examination device
US16/650,798 US11717157B2 (en) 2017-10-05 2018-09-12 Visual sense examination device
JP2019546602A JP6677859B2 (en) 2017-10-05 2018-09-12 Visual inspection device
CN201880064469.8A CN111163682B (en) 2017-10-05 2018-09-12 Visual examination device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-195447 2017-10-05
JP2017195447 2017-10-05

Publications (1)

Publication Number Publication Date
WO2019069648A1 true WO2019069648A1 (en) 2019-04-11

Family

ID=65994618

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/033824 WO2019069648A1 (en) 2017-10-05 2018-09-12 Vision examination device

Country Status (5)

Country Link
US (1) US11717157B2 (en)
EP (1) EP3692889B1 (en)
JP (2) JP6677859B2 (en)
CN (1) CN111163682B (en)
WO (1) WO2019069648A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021013576A (en) * 2019-07-12 2021-02-12 株式会社Qdレーザ Visual inspection apparatus
WO2021256400A1 (en) * 2020-06-18 2021-12-23 株式会社Qdレーザ Fundus imaging device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019069578A1 (en) * 2017-10-05 2019-04-11 株式会社Qdレーザ Vision examining apparatus

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59200628A (en) * 1983-04-18 1984-11-14 アイ−デイ−・デベロツプメント・セカンド・リミテツド Eyeground scanner around cavity
JPH01113025A (en) * 1987-10-28 1989-05-01 Topcon Corp Laser scanning ophthalmic apparatus
US20050286019A1 (en) * 2004-06-10 2005-12-29 Wiltberger Michael W Scanning ophthalmic fixation method and apparatus
JP2007181537A (en) 2006-01-05 2007-07-19 Nidek Co Ltd Perimeter
JP2012011146A (en) * 2010-07-05 2012-01-19 Nidek Co Ltd Ophthalmologic apparatus
JP2013119019A (en) * 2011-12-09 2013-06-17 Nidek Co Ltd Device and program for evaluation of visual function
CN103750814A (en) * 2013-12-31 2014-04-30 苏州微清医疗器械有限公司 Fundus scanning imaging device
WO2014084231A1 (en) * 2012-11-30 2014-06-05 株式会社トプコン Fundus photographing device

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62266032A (en) * 1986-05-12 1987-11-18 興和株式会社 Eyeground examination apparatus
US5620000A (en) * 1993-07-02 1997-04-15 Heidelberg Engineering, Optische Messsysteme Gmbh Method and apparatus for measuring flow rate, particularly of blood
US5543866A (en) * 1994-01-07 1996-08-06 Jozef F. Van de Velde Scanning laser ophthalmoscope for binocular imaging and functional testing
CA2515109A1 (en) * 2003-02-05 2004-08-26 James L. Lambert Non-invasive in vivo measurement of macular carotenoids
JP3950876B2 (en) * 2004-08-27 2007-08-01 キヤノン株式会社 Fundus examination device
US20070291277A1 (en) * 2006-06-20 2007-12-20 Everett Matthew J Spectral domain optical coherence tomography system
JP5340693B2 (en) 2008-11-05 2013-11-13 株式会社ニデック Ophthalmic imaging equipment
JP5479047B2 (en) * 2008-12-26 2014-04-23 キヤノン株式会社 Imaging apparatus and imaging method
JP2010164351A (en) * 2009-01-14 2010-07-29 Kowa Co Optical tomographic imaging apparatus
JP5255514B2 (en) * 2009-05-01 2013-08-07 株式会社ニデック Ophthalmic imaging equipment
JP5641744B2 (en) * 2010-02-10 2014-12-17 キヤノン株式会社 Imaging apparatus and control method thereof
JP5627248B2 (en) * 2010-02-17 2014-11-19 キヤノン株式会社 Ophthalmic apparatus, ophthalmic apparatus control method, and program thereof
NL2005253C2 (en) * 2010-08-23 2012-02-27 Optics B V I Confocal line-scan ophthalmoscope.
JP2014188254A (en) * 2013-03-28 2014-10-06 Nidek Co Ltd Visual field testing apparatus
KR101422731B1 (en) * 2014-04-07 2014-07-24 나정면 Imaging device for laminography of muridae retina
JP6443091B2 (en) * 2015-01-30 2018-12-26 株式会社ニデック Ophthalmic equipment
WO2016196463A1 (en) 2015-06-01 2016-12-08 Santec Corporation Optical coherence tomography system combining two wavelengths
JP6606881B2 (en) * 2015-06-16 2019-11-20 株式会社ニデック OCT signal processing apparatus, OCT signal processing program, and OCT apparatus
US10653310B2 (en) * 2017-02-28 2020-05-19 Canon Kabushiki Kaisha Imaging apparatus, control method for an imaging apparatus, and program

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59200628A (en) * 1983-04-18 1984-11-14 アイ−デイ−・デベロツプメント・セカンド・リミテツド Eyeground scanner around cavity
JPH01113025A (en) * 1987-10-28 1989-05-01 Topcon Corp Laser scanning ophthalmic apparatus
US20050286019A1 (en) * 2004-06-10 2005-12-29 Wiltberger Michael W Scanning ophthalmic fixation method and apparatus
JP2007181537A (en) 2006-01-05 2007-07-19 Nidek Co Ltd Perimeter
JP2012011146A (en) * 2010-07-05 2012-01-19 Nidek Co Ltd Ophthalmologic apparatus
JP2013119019A (en) * 2011-12-09 2013-06-17 Nidek Co Ltd Device and program for evaluation of visual function
WO2014084231A1 (en) * 2012-11-30 2014-06-05 株式会社トプコン Fundus photographing device
CN103750814A (en) * 2013-12-31 2014-04-30 苏州微清医疗器械有限公司 Fundus scanning imaging device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3692889A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021013576A (en) * 2019-07-12 2021-02-12 株式会社Qdレーザ Visual inspection apparatus
JP7223424B2 (en) 2019-07-12 2023-02-16 株式会社Qdレーザ visual inspection device
WO2021256400A1 (en) * 2020-06-18 2021-12-23 株式会社Qdレーザ Fundus imaging device
JP2022000142A (en) * 2020-06-18 2022-01-04 株式会社Qdレーザ Ocular fundus imaging device
JP7476857B2 (en) 2020-06-18 2024-05-01 株式会社Qdレーザ Fundus photography device

Also Published As

Publication number Publication date
US11717157B2 (en) 2023-08-08
CN111163682A (en) 2020-05-15
EP3692889A4 (en) 2020-09-09
JP6677859B2 (en) 2020-04-08
EP3692889B1 (en) 2024-01-03
EP3692889A1 (en) 2020-08-12
JP2020099736A (en) 2020-07-02
CN111163682B (en) 2022-06-03
US20200229694A1 (en) 2020-07-23
JPWO2019069648A1 (en) 2020-01-23

Similar Documents

Publication Publication Date Title
JP5606813B2 (en) Ophthalmic equipment
WO2016027589A1 (en) Ophthalmological imaging device and control method therefor
US10939817B2 (en) Fundus imaging apparatus and imaging method
US20190059723A1 (en) Ophthalmologic apparatus and method of controlling the same
WO2017135015A1 (en) Ophthalmological device and ophthalmological inspection system
JP6677859B2 (en) Visual inspection device
US9339185B2 (en) Imaging apparatus that acquires a first image and, via an aberration correction unit, a second image of an area corresponding to a part of the first image
JP2017195944A (en) Ophthalmologic imaging device
US8690327B2 (en) Image capture device for fundus and imaging method
JP7181135B2 (en) ophthalmic equipment
WO2023068071A1 (en) Ophthalmological device
JP2018110691A (en) Ophthalmologic apparatus
JP7223424B2 (en) visual inspection device
JP6833081B2 (en) Ophthalmic equipment and ophthalmic examination system
JP6999176B2 (en) Ophthalmic examination equipment
JP2012223428A (en) Ophthalmic apparatus
JP7317582B2 (en) Ophthalmic device and control method for ophthalmic device
JP7348334B2 (en) Ophthalmology imaging device
JP7089823B1 (en) Image projection device, visual test device, and fundus photography device
JP6837107B2 (en) Ophthalmic equipment
JP7103814B2 (en) Ophthalmic equipment
JP2023169685A (en) Ophthalmologic apparatus and focusing determination method
JP2017051430A (en) Ophthalmologic apparatus, control method thereof, and program
JP2016150157A (en) Optometrist imaging device
JP2021049277A (en) Ophthalmologic apparatus, ophthalmologic apparatus control method, and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18864830

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019546602

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018864830

Country of ref document: EP

Effective date: 20200506