WO2019069526A1 - Spectrometer - Google Patents
Spectrometer Download PDFInfo
- Publication number
- WO2019069526A1 WO2019069526A1 PCT/JP2018/026263 JP2018026263W WO2019069526A1 WO 2019069526 A1 WO2019069526 A1 WO 2019069526A1 JP 2018026263 W JP2018026263 W JP 2018026263W WO 2019069526 A1 WO2019069526 A1 WO 2019069526A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- slit
- light
- aperture
- plate
- spectroscope
- Prior art date
Links
- 230000003287 optical effect Effects 0.000 claims abstract description 50
- 238000005259 measurement Methods 0.000 claims description 27
- 238000004611 spectroscopical analysis Methods 0.000 claims description 11
- 230000005284 excitation Effects 0.000 claims description 6
- 239000000463 material Substances 0.000 claims description 4
- 230000035945 sensitivity Effects 0.000 description 10
- 238000001514 detection method Methods 0.000 description 8
- 230000003595 spectral effect Effects 0.000 description 6
- 125000006850 spacer group Chemical group 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 238000002835 absorbance Methods 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 230000002123 temporal effect Effects 0.000 description 2
- YZCKVEUIGOORGS-OUBTZVSYSA-N Deuterium Chemical compound [2H] YZCKVEUIGOORGS-OUBTZVSYSA-N 0.000 description 1
- 229910052805 deuterium Inorganic materials 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 238000010206 sensitivity analysis Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colours
- G01J3/02—Details
- G01J3/04—Slit arrangements slit adjustment
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colours
- G01J3/28—Investigating the spectrum
- G01J3/42—Absorption spectrometry; Double beam spectrometry; Flicker spectrometry; Reflection spectrometry
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colours
- G01J3/28—Investigating the spectrum
- G01J3/443—Emission spectrometry
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colours
- G01J3/12—Generating the spectrum; Monochromators
- G01J3/18—Generating the spectrum; Monochromators using diffraction elements, e.g. grating
Definitions
- the present invention relates to a spectrometry apparatus for analyzing a sample in a sample cell by irradiating light from a light source to a sample cell, and splitting the light from the sample cell with a spectrometer and guiding the light to a light detector for detection. It is a thing.
- FIG. 8 shows an example of a conventional spectrometer.
- This spectrometer measures the light from the light source 2 to the sample cell 6, guides the light transmitted through the sample cell 6 to the light detector 16, and measures the absorbance of the light of a specific wavelength of the sample in the sample cell 6. It is.
- a mirror 4 is provided as an irradiation optical system for guiding the light from the light source 2 to the sample cell 6, and a mirror 8, a slit 10a, and a measurement optical system for guiding the light transmitted through the sample cell 6 to the light detector 16.
- a diffraction grating 14 is provided.
- the slit 10 a is provided in the slit plate 10.
- the slit plate 10 is disposed between the mirror 8 and the diffraction grating 14.
- the light emitted from the light source 2 is irradiated to the sample cell 6 by the mirror 4, and the light transmitted through the sample cell 6 is reflected by the mirror 8, passes through the slit 10 a, and is dispersed by the diffraction grating 14 onto the light detector 16. It is imaged and detected.
- the sample cell 6 is connected to, for example, the downstream side of the analysis column of the separation channel of the liquid chromatograph, and a liquid containing the sample separated for each component in the separation column flows.
- the photodetector 16 detects a temporal change in the intensity of light transmitted through the sample cell 6, and detects the component concentration of each sample contained in the sample by the temporal change in absorbance based on the detected data. .
- the width of a slit provided in front of a spectrometer is configured to be changeable (see, for example, Patent Document 1).
- the slit width is narrowed, the light entering the spectrometer is limited to the light near the center of the light beam of the measurement light, and the wavelength resolution of the spectrometer is enhanced.
- increasing the slit width increases the amount of measurement light incident on the spectrometer and increases the detection sensitivity of the measurement (signal intensity), but also takes in light at a position distant from the center of the measurement light beam. The resolution is reduced.
- the numerical aperture of a spectroscope is the range of the spectroscope of the spectroscope used for spectroscopy. When the numerical aperture is reduced, spectroscopy is performed using a limited range on the center side of the spectral surface, and when the numerical aperture is increased, spectroscopy is performed using a wide range of the spectral surface.
- the numerical aperture is increased, light dispersed in a wide range of the spectral surface of the spectroscope can be guided to the detector, and the detection sensitivity becomes high, but at a position of poor spectral accuracy away from the center of the spectral surface The wavelength resolution is lowered because the split light is also used. Conversely, if the numerical aperture is reduced, the wavelength resolution will be high but the detection sensitivity will be low.
- the numerical aperture is set to a smaller value, even if the slit width is broadened to increase the detection sensitivity, only light incident on a narrow range of the spectral surface of the spectroscope can be used for measurement. Can not raise. That is, in the conventional apparatus, the high sensitivity measurement is limited in the spectrometric apparatus set to obtain high wavelength resolution, and the high wavelength resolution is set in the high sensitivity measurement possible. There was a problem that was not obtained.
- an object of the present invention is to provide a spectrometry device capable of performing measurement with wavelength resolution or sensitivity according to purpose from measurement with high wavelength resolution to measurement with high sensitivity.
- the present invention comprises a light source, a light detector, a sample cell made of a light transmitting material, for circulating or containing a sample, an irradiation optical system for guiding light from the light source to the sample cell, a sample cell And a measurement optical system having a spectroscope for separating light from the sample cell and guiding the light from the sample cell to the light detector, wherein the measurement optical systems have widths relative to one another.
- a variable slit section for arranging a slit selected as a use slit among the slits on the optical path of light guided to the spectroscope, and a numerical aperture of the spectroscope corresponding to a width of the use slit It is characterized by having a numerical aperture adjustment part which changes into a thing.
- the spectroscopic measurement device of the present invention can be applied to one in which the measurement optical system is configured to guide the light transmitted through the sample cell to the light detector.
- the irradiation optical system is configured to take out the excitation component for exciting the sample contained in the sample cell among the light from the light source and guide it to the sample cell, and the measurement optical system separates the light from the sample cell
- the present invention can also be applied to one configured to take out fluorescence components emitted from a sample by means of a light source and to guide it to a light detector.
- the variable slit portion is composed of a light shielding slit plate disposed perpendicular to the light path of light guided to the spectroscope and provided with a plurality of slits having different widths, and a slit driving mechanism for driving the slit plate
- the slit drive mechanism may drive the slit plate so that the slit selected as the use slit is on the optical path of the light guided to the spectroscope, in which case the numerical aperture adjustment unit It is composed of a light shielding aperture plate disposed perpendicular to the light path of light guided to the spectroscope and provided with apertures corresponding to the slits of the slit plate, and an aperture drive mechanism for driving the aperture plate.
- the aperture drive mechanism may drive the aperture plate so that the aperture corresponding to the light is on the optical path of the light guided to the spectroscope.
- One example of a preferred embodiment is one in which the aperture drive mechanism is configured to move the aperture plate in a direction perpendicular to the light path.
- the aperture drive mechanism is configured to rotationally drive the aperture plate, and each aperture is provided on the same track on the aperture plate drawn by the aperture plate being rotationally driven. It is
- the slit plate is held by the same holding member as the aperture plate, and the aperture drive mechanism drives the slit plate as the slit drive mechanism together with the aperture plate by driving the holding member.
- the slit and the aperture can be changed by one drive mechanism, and the cost of the apparatus can be reduced and the apparatus can be miniaturized.
- the numerical aperture of the spectroscope is disposed on the light path of the light guided to the spectroscope by the variable slit portion. Since the numerical aperture adjustment part which changes it into a thing according to the use slit is provided, the numerical aperture of a spectrometer can be made into the numerical aperture suitable for the width
- FIG. 7 schematically shows still another embodiment of a spectrometry apparatus. It is a perspective view which shows an example of the slit variable mechanism and numerical aperture adjustment part in the Example. It is a block diagram which shows roughly an example of the conventional spectroscopy apparatus.
- This spectrometric device irradiates the sample cell 6 with the light from the light source 2 composed of, for example, a deuterium lamp, disperses the light transmitted through the sample cell 6 with the spectroscope 14 and makes the light enter the light detector 16
- the detection is performed to analyze the sample components flowing through the sample cell 6. For example, a sample which has passed through a separation column of liquid chromatograph flows in the sample cell 6.
- a mirror 4 is provided as an illumination optical system for guiding light emitted from the light source 2 to the sample cell 6. Light emitted from the light source 2 is collected by the mirror 4 and guided to the sample cell 6.
- a mirror 8, a slit plate 10, an aperture plate 12 and a spectroscope 14 are provided as a measurement optical system for guiding the light from the sample cell 6 to the light detector 16. The light transmitted through the sample cell 6 is reflected by the mirror 8, passes through the slit 10 a provided in the slit plate 10 and the aperture 12 a provided in the aperture plate 12, and enters the spectroscope 14 and is separated by the spectroscope 14 Light is directed to the light detector 16.
- the spectroscope 14 is, for example, a diffraction grating.
- the slit plate 10 disposed between the mirror 8 and the spectroscope 14 is provided with a plurality of slits 10 a in a light shielding plate member.
- the slit plate 10 is disposed perpendicularly to the optical axis of the light guided from the mirror 8 to the spectroscope 14.
- the aperture plate 12 disposed closer to the spectroscope 14 than the slit plate 10 between the mirror 8 and the spectroscope 14 has a plurality of apertures 12 a provided in a light shielding plate member. In this example, the aperture plate 12 is disposed in parallel with the slit plate 10.
- the slit plate 10 is driven by the slit drive mechanism 11, and the slit drive mechanism 11 is controlled by the control unit 18.
- the slit drive mechanism 11 drives the slit plate 10 based on a signal from the control unit 18 and arranges one of the plurality of slits 10 a provided in the slit plate 10 on the optical axis of the light from the mirror 8 Do.
- the aperture plate 12 is driven by the aperture drive mechanism 13, and the aperture drive mechanism 13 is also controlled by the control unit 18.
- the aperture drive mechanism 13 arranges the aperture 12a corresponding to the slit 10a disposed on the optical axis from the mirror 8 on the same optical axis based on the signal from the control unit 18.
- variable slit portion An example of the configuration of the variable slit portion and the numerical aperture adjustment portion will be described with reference to FIG.
- the slit plate 10 is formed of a flat plate-like member made of a light shielding material, and slits 10a-1, 10a-2 and 10a-3 having different widths are provided in a line in the vertical direction in the plane. ing.
- the slit plate 10 is arranged perpendicularly to the optical axis so that the slits 10a-1, 10a-2 and 10a-3 are on a straight line perpendicular to the optical axis of the light from the mirror 8. .
- the aperture plate 12 is also formed of a flat plate-like member made of a light shielding material like the slit plate 10, and the apertures 12a-1, 12a-2 and 12a- corresponding to the respective slits of the slit plate 10 in the plane thereof. 3 are provided in a line in the vertical direction.
- the aperture plate 12 is disposed opposite to the slit plate 10 in parallel.
- the aperture 12a-1 is disposed at a position corresponding to the slit 10a-1
- the aperture 12a-2 is disposed at a position corresponding to the slit 10a-2
- the aperture 12a-3 is disposed at a position corresponding to the slit 10a-3.
- the corresponding position means a position where the slit of interest is disposed on the same optical path when the slit is disposed on the optical axis of the light from the mirror 8.
- the size of each aperture 12a-1, 12a-2 and 12a-3 optimizes the numerical aperture of the spectroscope 14 when the target slit 10a-1, 10a-2 or 10a-3 is used The size is set.
- the slit plate 10 and the aperture plate 12 are held by a spacer 20 which is a common holding member.
- the spacer 20 is moved in the vertical direction by the vertical drive mechanism 22 to drive the slit plate 10 and the aperture plate 12 in the vertical direction.
- the slit drive mechanism 11 and the aperture drive mechanism 13 shown in FIG. 1 are realized by the vertical drive mechanism 22.
- Examples of the configuration of the vertical drive mechanism 22 include one that moves the spacer 20 up and down by rotating a ball screw with a motor.
- the aperture 12a-1 is automatically disposed on the same optical axis, and when the slit 10a-2 is disposed, the automatic operation is performed. Specifically, the aperture 12a-2 is disposed on the same optical axis, and when the slit 10a-3 is disposed, the aperture 12a-3 is automatically disposed on the same optical axis.
- the aperture 12a corresponding to the slit 10a is automatically arranged on the same optical axis, and the numerical aperture of the spectroscope 14 is used It is automatically adjusted to a suitable one for the slit 10a.
- the slits 10 a-1, 10 a-2 and 10 a-3 and the apertures 12 a-1, 12 a-2 and 12 a-3 are respectively arranged in a line in the vertical direction.
- 10a-2 and 10a-3 and the apertures 12a-1, 12a-2 and 12a-3 may be arranged in a line in the left-right direction.
- the slit drive mechanism 11 and the aperture drive mechanism 13 can be realized by providing a mechanism for driving the slit plate 10 and the aperture plate 12 in the left-right direction instead of the vertical drive mechanism 22.
- the slit 10 a and the aperture used by rotating the slit plate 10 and the aperture plate 12 by the rotation drive mechanism 26 there is one that switches 12a.
- the slit plate 10 and the aperture plate 12 are both formed by a fan-shaped plate member and fixed to a common shaft 24.
- the rotary drive mechanism 26 rotationally drives both the slit plate 10 and the aperture plate 12 at the same time by rotationally driving the shaft 24 to realize the slit drive mechanism 11 and the aperture drive mechanism 13 of FIG. 1.
- the slits 10a-1, 10a-2 and 10a-3 are disposed on the path of the optical axis of the light from the mirror 8 which is drawn on the plane of the slit plate 10 as the slit plate 10 is rotationally driven.
- the apertures 12a-1, 12a-2 and 12a-3 have corresponding slits 10a on the path of the optical axis of the light from the mirror 8 which is drawn on the plane of the aperture plate 12 when the aperture plate 12 is rotationally driven. It is disposed at a position facing -1, 10a-2 and 10a-3.
- the aperture 12a corresponding to the slit 10a is automatically arranged on the same optical axis.
- the numerical aperture of the spectroscope 14 is automatically adjusted to one suitable for the slit 10a used.
- the slit drive mechanism 11 and the aperture drive mechanism 13 in FIG. 1 are commonly used by the vertical drive mechanism 22 or the rotary drive mechanism 26.
- the slit drive mechanism 11 and the aperture drive mechanism 13 are separately provided. It may be an independent drive mechanism.
- the numerical aperture adjustment unit is not limited to one that switches the aperture (aperture 12a) disposed on the optical axis of the light from the mirror 8 as in the example of FIG. 2 or FIG.
- the incident area of the spectroscope 14 may be limited by the aperture plate 12.
- the aperture plate 12 is composed of a pair of L-shaped plates 12-1 and 12-2, as shown in FIG.
- the aperture drive mechanism 13 is provided independently of the slit drive mechanism 11, and the inner opening region (in the in-plane direction by moving the pair of L-shaped plates 12-1 and 12-2) Adjust the size of the aperture 12a.
- the controller 18 controls the plates 12-1 and 12-2 through the aperture drive mechanism 13 so as to form an opening area 12a having a size corresponding to the size of the slit 10a disposed on the optical axis of the light from the mirror 8. Drive.
- the slit plate 10 may be the same as the example of FIG. 2 or FIG. 3
- FIG. 6 shows another embodiment of the spectrometer.
- the spectrometer of this embodiment extracts a wavelength component (excitation light) corresponding to excitation light from the light emitted from the light source 30 and guides it to the sample cell 38, and detects the fluorescence emitted from the excited sample.
- concentration of the specific component in the sample is measured by guiding it to 44 and measuring its fluorescence intensity.
- a mirror 31, an entrance slit 32, a spectroscope 34, and an exit slit 36 are provided as an irradiation optical system for extracting excitation light from light from the light source 30 and guiding it to the sample cell 38.
- a mirror 40, an entrance slit 10a, an aperture 12a, a spectroscope 42, and an exit slit 10b are provided as a measurement optical system for guiding the fluorescence emitted from the excited sample to the photodetector 44.
- the inlet slit 10 a and the outlet slit 10 b are provided in one slit plate 10 as a variable slit portion.
- the aperture 12 a is provided on the aperture plate 12 as a numerical aperture adjustment unit disposed closer to the spectroscope 42 than the slit plate 10.
- the light emitted from the light source 30 is guided by the mirror 31 to the spectroscope 34 through the entrance slit 32 and dispersed, and only the wavelength component corresponding to the excitation light among the light dispersed by the spectroscope 34 is the exit slit 36.
- the sample cell 38 is irradiated through.
- the fluorescence emitted from the excited sample is reflected by the mirror 40 and guided to the spectroscope 42 through the entrance slit 10a and the aperture 12a. Of the light separated by the spectroscope 42, only the wavelength component corresponding to the fluorescence is guided to the light detector 44 through the exit slit 10b, and the intensity is detected.
- the slit plate 10 in this example is formed of a disk-shaped plate-like member, and the inlet slits 10a-1, 10a-2 and 10a-3 arranged in the circumferential direction in the plane and the outlet slits corresponding to them. 10b-1, 10b-2 and 10b-3 are provided.
- the center of the slit plate 10 is fixed to the rotation shaft 24.
- the aperture plate 12 is also fixed to the rotating shaft 24, and is configured to be rotationally driven together with the slit plate 10 by a common drive mechanism.
- the aperture plate 12 is provided with apertures 12a-1, 12a-2 and 12a-3 at positions corresponding to the inlet slits 10a-1, 10a-2 and 10a-3, respectively.
- the exit slits 10b-1, 10b-2 and 10b-3 lead from the spectroscope 42 to the light detector 44 also when the corresponding entrance slits 10a-1, 10a-2 or 10a-3 respectively are used. It is provided in the position which can be arrange
- corresponding inlet and outlet slits are arranged in symmetrical positions about the axis of rotation 24.
- the rotation shaft 24 is driven by a rotation drive mechanism.
- the inlet slit 10a is switched to any of 10a-1, 10a-2 and 10a-3, and at the same time the outlet slit 10b and the aperture 12a correspond to the inlet slit It is automatically switched to things.
- slits 10a and apertures 12a are provided and switched, but two types or four or more types of slits 10a and apertures 12a may be used.
Landscapes
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- General Physics & Mathematics (AREA)
- Spectrometry And Color Measurement (AREA)
Abstract
A slit plate 10 constituting a variable slit portion and an aperture plate 12 constituting a numerical aperture adjustment portion are arranged between a mirror 8 and a spectroscope 14. A slit drive mechanism 11 drives the slit plate 10 on the basis of a signal from a control unit 18 and arranges, on the optical axis of light from the mirror 8, one of a plurality of slits 10a provided in the slit plate 10. An aperture drive mechanism 13 arranges an aperture 12a corresponding to the slit 10a arranged on the optical axis of the light from the mirror 8, on the same optical axis on the basis of a signal from the control unit 18.
Description
本発明は、光源からの光を試料セルに照射し、試料セルからの光を分光器で分光して光検出器へ導いて検出することにより試料セル内の試料の分析を行なう分光測定装置に関するものである。
The present invention relates to a spectrometry apparatus for analyzing a sample in a sample cell by irradiating light from a light source to a sample cell, and splitting the light from the sample cell with a spectrometer and guiding the light to a light detector for detection. It is a thing.
図8に従来の分光測定装置の一例を示す。
FIG. 8 shows an example of a conventional spectrometer.
この分光測定装置は、光源2からの光を試料セル6に導き、試料セル6を透過した光を光検出器16へ導いて試料セル6内の試料の特定波長の光の吸光度を測定するものである。光源2からの光を試料セル6に導くための照射光学系としてミラー4が設けられおり、試料セル6を透過した光を光検出器16に導くための測定光学系としてミラー8、スリット10a及び回折格子14が設けられている。スリット10aはスリット板10に設けられている。スリット板10はミラー8と回折格子14の間に配置されている。
This spectrometer measures the light from the light source 2 to the sample cell 6, guides the light transmitted through the sample cell 6 to the light detector 16, and measures the absorbance of the light of a specific wavelength of the sample in the sample cell 6. It is. A mirror 4 is provided as an irradiation optical system for guiding the light from the light source 2 to the sample cell 6, and a mirror 8, a slit 10a, and a measurement optical system for guiding the light transmitted through the sample cell 6 to the light detector 16. A diffraction grating 14 is provided. The slit 10 a is provided in the slit plate 10. The slit plate 10 is disposed between the mirror 8 and the diffraction grating 14.
光源2から発せられた光はミラー4によって試料セル6に照射され、試料セル6を透過した光はミラー8で反射され、スリット10aを通って回折格子14で分光されて光検出器16上に結像され、検出される。
The light emitted from the light source 2 is irradiated to the sample cell 6 by the mirror 4, and the light transmitted through the sample cell 6 is reflected by the mirror 8, passes through the slit 10 a, and is dispersed by the diffraction grating 14 onto the light detector 16. It is imaged and detected.
試料セル6は、例えば液体クロマトグラフの分離流路の分析カラムの下流側に接続されており、分離カラムで成分ごとに分離された試料を含む液が流れる。光検出器16では、試料セル6を透過した光の強度の時間的な変化が検出され、その検出データに基づいた吸光度の時間的変化により試料中に含まれる各試料の成分濃度が検出される。
The sample cell 6 is connected to, for example, the downstream side of the analysis column of the separation channel of the liquid chromatograph, and a liquid containing the sample separated for each component in the separation column flows. The photodetector 16 detects a temporal change in the intensity of light transmitted through the sample cell 6, and detects the component concentration of each sample contained in the sample by the temporal change in absorbance based on the detected data. .
このような分光測定装置では、分光器の手前に設けられたスリットの幅が変更可能に構成されているものがある(例えば、特許文献1参照。)。スリット幅を狭めると分光器に入射する光が測定光の光束の中心付近の光に限定され、分光器の波長分解能が高まる。逆に、スリット幅を広げると分光器に入射する測定光の光量が増加し、測定の検出感度(信号強度)が高まるが、測定光の光束の中心から離れた位置の光も取り込むために波長分解能は低下する。
Among such spectrometers, there is one in which the width of a slit provided in front of a spectrometer is configured to be changeable (see, for example, Patent Document 1). When the slit width is narrowed, the light entering the spectrometer is limited to the light near the center of the light beam of the measurement light, and the wavelength resolution of the spectrometer is enhanced. Conversely, increasing the slit width increases the amount of measurement light incident on the spectrometer and increases the detection sensitivity of the measurement (signal intensity), but also takes in light at a position distant from the center of the measurement light beam. The resolution is reduced.
分光器の波長分解能や検出感度に影響するスリット幅以外の要素として分光器の開口数(開口絞り)がある。分光器の開口数とは分光に利用する分光器の分光面の範囲である。開口数を小さくすれば、分光面の中心側の限定された範囲を利用して分光が行なわれ、開口数を大きくすれば、分光面の広い範囲を利用して分光が行なわれる。したがって、開口数を大きくすると、分光器の分光面の広い範囲で分光された光を検出器に導くことができるため検出感度が高くなるが、分光面の中心から離れた分光精度の悪い位置で分光された光も利用するため、波長分解能は低下する。逆に、開口数を小さくすると、波長分解能が高くなるが、検出感度は低くなる。
There is a numerical aperture (aperture stop) of the spectrometer as an element other than the slit width that affects the wavelength resolution and detection sensitivity of the spectrometer. The numerical aperture of a spectroscope is the range of the spectroscope of the spectroscope used for spectroscopy. When the numerical aperture is reduced, spectroscopy is performed using a limited range on the center side of the spectral surface, and when the numerical aperture is increased, spectroscopy is performed using a wide range of the spectral surface. Therefore, if the numerical aperture is increased, light dispersed in a wide range of the spectral surface of the spectroscope can be guided to the detector, and the detection sensitivity becomes high, but at a position of poor spectral accuracy away from the center of the spectral surface The wavelength resolution is lowered because the split light is also used. Conversely, if the numerical aperture is reduced, the wavelength resolution will be high but the detection sensitivity will be low.
したがって、スリット幅を狭めても開口数が十分に小さくなっていないと、思うような波長分解能が得られないという問題があった。そのため、高い波長分解能が得られるようにするためには、分光器の開口数を、スリット幅を最小にした時に十分な波長分解能が得られる程度の小さめの開口数にしておく必要があった。
Therefore, there is a problem that the desired wavelength resolution can not be obtained unless the numerical aperture is sufficiently reduced even if the slit width is narrowed. Therefore, in order to obtain high wavelength resolution, it is necessary to set the numerical aperture of the spectroscope to a small numerical aperture such that sufficient wavelength resolution can be obtained when the slit width is minimized.
しかし、開口数を小さめに設定しておくと、スリット幅を広げて検出感度を高めようとしても、分光器の分光面の狭い範囲に入射した光しか測定に利用できないため、検出感度を十分に高めることができない。すなわち、従来の装置では、高い波長分解能が得られるように設定された分光測定装置では高感度測定に限界があり、逆に高感度測定が可能なように設定された分光測定装置では高い波長分解能が得られないという問題あった。
However, if the numerical aperture is set to a smaller value, even if the slit width is broadened to increase the detection sensitivity, only light incident on a narrow range of the spectral surface of the spectroscope can be used for measurement. Can not raise. That is, in the conventional apparatus, the high sensitivity measurement is limited in the spectrometric apparatus set to obtain high wavelength resolution, and the high wavelength resolution is set in the high sensitivity measurement possible. There was a problem that was not obtained.
そこで、本発明は、高い波長分解能での測定から高感度での測定まで目的に応じた波長分解能又は感度での測定を行なうことができる分光測定装置を提供することを目的とするものである。
Therefore, an object of the present invention is to provide a spectrometry device capable of performing measurement with wavelength resolution or sensitivity according to purpose from measurement with high wavelength resolution to measurement with high sensitivity.
本発明は、光源と、光検出器と、光透過性材料で構成され試料を流通させ又は収容するための試料セルと、光源からの光を試料セルに導くための照射光学系と、試料セルからの光を分光する分光器を有し試料セルからの光を分光器で分光して光検出器に導く測定光学系と、を備えた分光測定装置であって、測定光学系は、互いに幅の異なる複数のスリットを備えそれらのスリットのうち使用スリットとして選択されたスリットを分光器に導かれる光の光路上に配置する可変スリット部、及び分光器の開口数を使用スリットの幅に対応したものに変更する開口数調整部を備えていることを特徴とするものである。
The present invention comprises a light source, a light detector, a sample cell made of a light transmitting material, for circulating or containing a sample, an irradiation optical system for guiding light from the light source to the sample cell, a sample cell And a measurement optical system having a spectroscope for separating light from the sample cell and guiding the light from the sample cell to the light detector, wherein the measurement optical systems have widths relative to one another. A variable slit section for arranging a slit selected as a use slit among the slits on the optical path of light guided to the spectroscope, and a numerical aperture of the spectroscope corresponding to a width of the use slit It is characterized by having a numerical aperture adjustment part which changes into a thing.
本発明の分光測定装置は、測定光学系が試料セルを透過した光を光検出器に導くように構成されたものに適用することができる。
The spectroscopic measurement device of the present invention can be applied to one in which the measurement optical system is configured to guide the light transmitted through the sample cell to the light detector.
また、照射光学系が光源からの光のうち試料セルに収容されている試料を励起させるための励起成分を取り出して試料セルに導くように構成され、測定光学系が試料セルからの光を分光器で分光して試料から発せられた蛍光成分を取り出して光検出器に導くように構成されたものにも適用することができる。
In addition, the irradiation optical system is configured to take out the excitation component for exciting the sample contained in the sample cell among the light from the light source and guide it to the sample cell, and the measurement optical system separates the light from the sample cell The present invention can also be applied to one configured to take out fluorescence components emitted from a sample by means of a light source and to guide it to a light detector.
上記可変スリット部は、分光器に導かれる光の光路に対して垂直に配置され互いに幅の異なる複数のスリットが設けられた遮光性のスリット板及びスリット板を駆動するスリット駆動機構で構成されており、使用スリットとして選択されたスリットが分光器に導かれる光の光路上にくるようにスリット駆動機構でスリット板を駆動するものであってもよく、その場合には、開口数調整部は、分光器に導かれる光の光路に対して垂直に配置されスリット板の各スリットに対応するアパーチャが設けられた遮光性のアパーチャ板及びアパーチャ板を駆動するアパーチャ駆動機構で構成されており、使用スリットに対応したアパーチャが分光器に導かれる光の光路上にくるようにアパーチャ駆動機構でアパーチャ板を駆動するものであってもよい。
The variable slit portion is composed of a light shielding slit plate disposed perpendicular to the light path of light guided to the spectroscope and provided with a plurality of slits having different widths, and a slit driving mechanism for driving the slit plate The slit drive mechanism may drive the slit plate so that the slit selected as the use slit is on the optical path of the light guided to the spectroscope, in which case the numerical aperture adjustment unit It is composed of a light shielding aperture plate disposed perpendicular to the light path of light guided to the spectroscope and provided with apertures corresponding to the slits of the slit plate, and an aperture drive mechanism for driving the aperture plate. The aperture drive mechanism may drive the aperture plate so that the aperture corresponding to the light is on the optical path of the light guided to the spectroscope.
好ましい実施形態の一例は、アパーチャ駆動機構がアパーチャ板を光路に対して垂直な方向へ移動させるように構成されているものである。
One example of a preferred embodiment is one in which the aperture drive mechanism is configured to move the aperture plate in a direction perpendicular to the light path.
好ましい実施形態の他の例は、アパーチャ駆動機構がアパーチャ板を回転駆動するように構成されており、各アパーチャはアパーチャ板が回転駆動されることで描かれるアパーチャ板上の同一軌道上に設けられているものである。
Another example of the preferred embodiment is that the aperture drive mechanism is configured to rotationally drive the aperture plate, and each aperture is provided on the same track on the aperture plate drawn by the aperture plate being rotationally driven. It is
上記の2つの例では、スリット板はアパーチャ板と共通の保持部材に保持され、アパーチャ駆動機構は保持部材を駆動することによりアパーチャ板とともにスリット駆動機構としてスリット板を駆動するようになっていることが好ましい。そうすれば、1つの駆動機構でスリットとアパーチャの変更が可能になり、装置のコストの低減や装置の小型化を図ることができる。
In the above two examples, the slit plate is held by the same holding member as the aperture plate, and the aperture drive mechanism drives the slit plate as the slit drive mechanism together with the aperture plate by driving the holding member. Is preferred. Then, the slit and the aperture can be changed by one drive mechanism, and the cost of the apparatus can be reduced and the apparatus can be miniaturized.
本発明では、試料セルからの光を分光器で分光して光検出器に導く測定光学系において、分光器の開口数を、可変スリット部により分光器に導かれる光の光路上に配置された使用スリットに応じたものに変更する開口数調整部を備えているので、分光器の開口数をスリットの幅に適した開口数にすることができる。これにより、スリット幅を狭くして高分解能での分析を行なう場合には分光器の開口数も小さくして波長分解能を十分に高めることができ、逆に、スリット幅を広げて高感度分析を行なう場合は分光器の開口数も高くして検出器への入射光量を高め、十分な検出感度を得ることができる。
In the present invention, in the measurement optical system for separating the light from the sample cell by the spectroscope and guiding the light to the light detector, the numerical aperture of the spectroscope is disposed on the light path of the light guided to the spectroscope by the variable slit portion. Since the numerical aperture adjustment part which changes it into a thing according to the use slit is provided, the numerical aperture of a spectrometer can be made into the numerical aperture suitable for the width | variety of a slit. Thereby, when the slit width is narrowed and analysis is performed with high resolution, the numerical aperture of the spectrometer can be reduced to sufficiently enhance the wavelength resolution, and conversely, the slit width is expanded to perform high sensitivity analysis. When this is done, the numerical aperture of the spectroscope can be increased to increase the amount of light incident on the detector, and sufficient detection sensitivity can be obtained.
分光測定装置の一実施例について、図1を用いて説明する。
One embodiment of the spectrometer will be described with reference to FIG.
この分光測定装置は、例えば重水素ランプなどで構成された光源2からの光を試料セル6に照射し、試料セル6を透過した光を分光器14で分光して光検出器16に入射させて検出することにより、試料セル6を流れる試料成分の分析を行なうものである。試料セル6には、例えば液体クロマトグラフの分離カラムを経た試料が流れる。
This spectrometric device irradiates the sample cell 6 with the light from the light source 2 composed of, for example, a deuterium lamp, disperses the light transmitted through the sample cell 6 with the spectroscope 14 and makes the light enter the light detector 16 The detection is performed to analyze the sample components flowing through the sample cell 6. For example, a sample which has passed through a separation column of liquid chromatograph flows in the sample cell 6.
光源2から発せられた光を試料セル6に導くための照射光学系としてミラー4を備えている。光源2から発せられた光はミラー4によって集光されて試料セル6に導かれる。試料セル6からの光を光検出器16に導くための測定光学系として、ミラー8、スリット板10、アパーチャ板12及び分光器14を備えている。試料セル6を透過した光はミラー8で反射され、スリット板10に設けられたスリット10a及びアパーチャ板12に設けられたアパーチャ12aを通って分光器14に入射し、分光器14で分光された光が光検出器16に導かれる。分光器14は、例えば回折格子である。
A mirror 4 is provided as an illumination optical system for guiding light emitted from the light source 2 to the sample cell 6. Light emitted from the light source 2 is collected by the mirror 4 and guided to the sample cell 6. A mirror 8, a slit plate 10, an aperture plate 12 and a spectroscope 14 are provided as a measurement optical system for guiding the light from the sample cell 6 to the light detector 16. The light transmitted through the sample cell 6 is reflected by the mirror 8, passes through the slit 10 a provided in the slit plate 10 and the aperture 12 a provided in the aperture plate 12, and enters the spectroscope 14 and is separated by the spectroscope 14 Light is directed to the light detector 16. The spectroscope 14 is, for example, a diffraction grating.
ミラー8と分光器14の間に配置されているスリット板10は、遮光性の板状部材に複数のスリット10aが設けられたものである。スリット板10は、ミラー8から分光器14に導かれる光の光軸に対して垂直に配置されている。ミラー8と分光器14の間でスリット板10よりも分光器14側に配置されたアパーチャ板12は、遮光性の板状部材に複数のアパーチャ12aが設けられたものである。この例では、アパーチャ板12はスリット板10と平行に配置されている。
The slit plate 10 disposed between the mirror 8 and the spectroscope 14 is provided with a plurality of slits 10 a in a light shielding plate member. The slit plate 10 is disposed perpendicularly to the optical axis of the light guided from the mirror 8 to the spectroscope 14. The aperture plate 12 disposed closer to the spectroscope 14 than the slit plate 10 between the mirror 8 and the spectroscope 14 has a plurality of apertures 12 a provided in a light shielding plate member. In this example, the aperture plate 12 is disposed in parallel with the slit plate 10.
スリット板10はスリット駆動機構11によって駆動され、スリット駆動機構11は制御部18によって制御される。スリット駆動機構11は制御部18からの信号に基づいてスリット板10を駆動し、スリット板10に設けられている複数のスリット10aのうちの1つをミラー8からの光の光軸上に配置する。アパーチャ板12はアパーチャ駆動機構13によって駆動され、アパーチャ駆動機構13も制御部18によって制御される。アパーチャ駆動機構13は制御部18からの信号に基づいて、ミラー8からの光軸上に配置されているスリット10aに対応するアパーチャ12aを同光軸上に配置する。
The slit plate 10 is driven by the slit drive mechanism 11, and the slit drive mechanism 11 is controlled by the control unit 18. The slit drive mechanism 11 drives the slit plate 10 based on a signal from the control unit 18 and arranges one of the plurality of slits 10 a provided in the slit plate 10 on the optical axis of the light from the mirror 8 Do. The aperture plate 12 is driven by the aperture drive mechanism 13, and the aperture drive mechanism 13 is also controlled by the control unit 18. The aperture drive mechanism 13 arranges the aperture 12a corresponding to the slit 10a disposed on the optical axis from the mirror 8 on the same optical axis based on the signal from the control unit 18.
可変スリット部及び開口数調整部の構成の一例について図2を用いて説明する。
An example of the configuration of the variable slit portion and the numerical aperture adjustment portion will be described with reference to FIG.
この例では、スリット板10が遮光性の材質からなる平板状の部材で構成され、その平面内に互いに幅の異なるスリット10a-1、10a-2及び10a-3が垂直方向に一列に設けられている。スリット板10は、それらのスリット10a-1、10a-2及び10a-3がミラー8からの光の光軸と垂直に交わる直線上にくるように同光軸に対して垂直に配置されている。
In this example, the slit plate 10 is formed of a flat plate-like member made of a light shielding material, and slits 10a-1, 10a-2 and 10a-3 having different widths are provided in a line in the vertical direction in the plane. ing. The slit plate 10 is arranged perpendicularly to the optical axis so that the slits 10a-1, 10a-2 and 10a-3 are on a straight line perpendicular to the optical axis of the light from the mirror 8. .
アパーチャ板12もスリット板10と同様に遮光性の材質からなる平板状の部材で構成され、その平面内にスリット板10の各スリットのそれぞれに対応するアパーチャ12a-1、12a-2及び12a-3が垂直方向に一列に設けられている。アパーチャ板12はスリット板10と平行に対向配置されている。アパーチャ12a-1はスリット10a-1に対応する位置に、アパーチャ12a-2はスリット10a-2に対応する位置に、アパーチャ12a-3はスリット10a-3に対応する位置にそれぞれ配置されている。対応する位置とは、対象のスリットがミラー8からの光の光軸上に配置されたときに自身も同光路上に配置される位置を意味する。各アパーチャ12a-1、12a-2及び12a-3の大きさは、対象のスリット10a-1、10a-2又は10a-3が使用されたときに分光器14の開口数を最適なものとする大きさに設定されている。
The aperture plate 12 is also formed of a flat plate-like member made of a light shielding material like the slit plate 10, and the apertures 12a-1, 12a-2 and 12a- corresponding to the respective slits of the slit plate 10 in the plane thereof. 3 are provided in a line in the vertical direction. The aperture plate 12 is disposed opposite to the slit plate 10 in parallel. The aperture 12a-1 is disposed at a position corresponding to the slit 10a-1, the aperture 12a-2 is disposed at a position corresponding to the slit 10a-2, and the aperture 12a-3 is disposed at a position corresponding to the slit 10a-3. The corresponding position means a position where the slit of interest is disposed on the same optical path when the slit is disposed on the optical axis of the light from the mirror 8. The size of each aperture 12a-1, 12a-2 and 12a-3 optimizes the numerical aperture of the spectroscope 14 when the target slit 10a-1, 10a-2 or 10a-3 is used The size is set.
スリット板10とアパーチャ板12は共通の保持部材であるスペーサ20に保持されている。スペーサ20は上下駆動機構22によって上下方向に移動させられ、これによってスリット板10及びアパーチャ板12が上下方向に駆動される。この例では、図1に示されているスリット駆動機構11とアパーチャ駆動機構13が上下駆動機構22によって実現されている。上下駆動機構22の構成としては、例えばボールネジをモータで回転させることによってスペーサ20を上下動させるものが挙げられる。
The slit plate 10 and the aperture plate 12 are held by a spacer 20 which is a common holding member. The spacer 20 is moved in the vertical direction by the vertical drive mechanism 22 to drive the slit plate 10 and the aperture plate 12 in the vertical direction. In this example, the slit drive mechanism 11 and the aperture drive mechanism 13 shown in FIG. 1 are realized by the vertical drive mechanism 22. Examples of the configuration of the vertical drive mechanism 22 include one that moves the spacer 20 up and down by rotating a ball screw with a motor.
上記の構成により、ミラー8からの光の光軸上にスリット10a-1が配置されると自動的にアパーチャ12a-1が同光軸上に配置され、スリット10a-2が配置されると自動的にアパーチャ12a-2が同光軸上に配置され、スリット10a-3が配置されると自動的にアパーチャ12a-3が同光軸上に配置される。すなわち、測定の目的に応じて使用するスリット10aを光軸上に配置することで、そのスリット10aに対応したアパーチャ12aが自動的に同光軸上に配置され、分光器14の開口数が使用スリット10aに適したものに自動的に調整される。
With the above configuration, when the slit 10a-1 is disposed on the optical axis of the light from the mirror 8, the aperture 12a-1 is automatically disposed on the same optical axis, and when the slit 10a-2 is disposed, the automatic operation is performed. Specifically, the aperture 12a-2 is disposed on the same optical axis, and when the slit 10a-3 is disposed, the aperture 12a-3 is automatically disposed on the same optical axis. That is, by arranging the slit 10a used on the optical axis according to the purpose of measurement, the aperture 12a corresponding to the slit 10a is automatically arranged on the same optical axis, and the numerical aperture of the spectroscope 14 is used It is automatically adjusted to a suitable one for the slit 10a.
なお、図2の例は、スリット10a-1、10a-2及び10a-3とアパーチャ12a-1、12a-2及び12a-3がそれぞれ上下方向に一列に配置されているが、スリット10a-1、10a-2及び10a-3とアパーチャ12a-1、12a-2及び12a-3をそれぞれ左右方向に一列に配置してもよい。その場合は、上下駆動機構22に代えてスリット板10及びアパーチャ板12を左右方向に駆動する機構を設けることで、スリット駆動機構11及びアパーチャ駆動機構13を実現することができる。
In the example of FIG. 2, the slits 10 a-1, 10 a-2 and 10 a-3 and the apertures 12 a-1, 12 a-2 and 12 a-3 are respectively arranged in a line in the vertical direction. 10a-2 and 10a-3 and the apertures 12a-1, 12a-2 and 12a-3 may be arranged in a line in the left-right direction. In that case, the slit drive mechanism 11 and the aperture drive mechanism 13 can be realized by providing a mechanism for driving the slit plate 10 and the aperture plate 12 in the left-right direction instead of the vertical drive mechanism 22.
可変スリット部及び開口数調整部の構成の他の例としては、図3に示されているように、スリット板10及びアパーチャ板12を回転駆動機構26によって回転させることで使用するスリット10a及びアパーチャ12aを切り替えるものが挙げられる。この例では、スリット板10及びアパーチャ板12はともに扇形の板状部材により構成されており、共通の軸24に固定されている。回転駆動機構26は軸24を回転駆動することにより、スリット板10とアパーチャ板12の両方を同時に回転駆動し、図1のスリット駆動機構11及びアパーチャ駆動機構13を実現している。
As another example of the configuration of the variable slit portion and the numerical aperture adjustment portion, as shown in FIG. 3, the slit 10 a and the aperture used by rotating the slit plate 10 and the aperture plate 12 by the rotation drive mechanism 26. There is one that switches 12a. In this example, the slit plate 10 and the aperture plate 12 are both formed by a fan-shaped plate member and fixed to a common shaft 24. The rotary drive mechanism 26 rotationally drives both the slit plate 10 and the aperture plate 12 at the same time by rotationally driving the shaft 24 to realize the slit drive mechanism 11 and the aperture drive mechanism 13 of FIG. 1.
スリット10a-1、10a-2及び10a-3は、スリット板10が回転駆動されることによってスリット板10の平面上に描かれるミラー8からの光の光軸の軌道上に配置されている。アパーチャ12a-1、12a-2及び12a-3は、アパーチャ板12が回転駆動されることによってアパーチャ板12の平面上に描かれるミラー8からの光の光軸の軌道上で、対応するスリット10a-1、10a-2及び10a-3と対向する位置に配置されている。
The slits 10a-1, 10a-2 and 10a-3 are disposed on the path of the optical axis of the light from the mirror 8 which is drawn on the plane of the slit plate 10 as the slit plate 10 is rotationally driven. The apertures 12a-1, 12a-2 and 12a-3 have corresponding slits 10a on the path of the optical axis of the light from the mirror 8 which is drawn on the plane of the aperture plate 12 when the aperture plate 12 is rotationally driven. It is disposed at a position facing -1, 10a-2 and 10a-3.
上記の構成により、図2の例と同様に、測定の目的に応じて使用するスリット10aを光軸上に配置することで、そのスリット10aに対応したアパーチャ12aが自動的に同光軸上に配置され、分光器14の開口数が使用スリット10aに適したものに自動的に調整される。
According to the above configuration, as in the example of FIG. 2, by arranging the slit 10a used on the optical axis according to the purpose of measurement, the aperture 12a corresponding to the slit 10a is automatically arranged on the same optical axis. Once placed, the numerical aperture of the spectroscope 14 is automatically adjusted to one suitable for the slit 10a used.
また、上記2つの実施例では、図1におけるスリット駆動機構11とアパーチャ駆動機構13を上下駆動機構22又は回転駆動機構26によって共通化しているが、スリット駆動機構11とアパーチャ駆動機構13をそれぞれ別個独立の駆動機構としてもよい。
In the two embodiments, the slit drive mechanism 11 and the aperture drive mechanism 13 in FIG. 1 are commonly used by the vertical drive mechanism 22 or the rotary drive mechanism 26. However, the slit drive mechanism 11 and the aperture drive mechanism 13 are separately provided. It may be an independent drive mechanism.
また、開口数調整部は、図2や図3の例のようにミラー8からの光の光軸上に配置する開口部(アパーチャ12a)を切り替えるものに限られず、図4に示されるように、分光器14の入射領域をアパーチャ板12によって制限するものであってもよい。この例では、アパーチャ板12は、図5に示されているように、一対のL字型板12-1と12-2で構成されている。
Also, the numerical aperture adjustment unit is not limited to one that switches the aperture (aperture 12a) disposed on the optical axis of the light from the mirror 8 as in the example of FIG. 2 or FIG. The incident area of the spectroscope 14 may be limited by the aperture plate 12. In this example, the aperture plate 12 is composed of a pair of L-shaped plates 12-1 and 12-2, as shown in FIG.
この例では、アパーチャ駆動機構13がスリット駆動機構11とは独立して設けられており、一対のL字型板12-1、12-2を平面内方向で移動させることによって内側の開口領域(アパーチャ)12aの大きさを調整する。制御部18は、ミラー8からの光の光軸上に配置したスリット10aの大きさに対応した大きさの開口領域12aとなるように板12-1、12-2をアパーチャ駆動機構13を介して駆動する。なお、スリット板10は図2や図3の例と同じでよい
In this example, the aperture drive mechanism 13 is provided independently of the slit drive mechanism 11, and the inner opening region (in the in-plane direction by moving the pair of L-shaped plates 12-1 and 12-2) Adjust the size of the aperture 12a. The controller 18 controls the plates 12-1 and 12-2 through the aperture drive mechanism 13 so as to form an opening area 12a having a size corresponding to the size of the slit 10a disposed on the optical axis of the light from the mirror 8. Drive. The slit plate 10 may be the same as the example of FIG. 2 or FIG. 3
図6に分光測定装置の他の実施例を示す。
FIG. 6 shows another embodiment of the spectrometer.
この実施例の分光測定装置は、光源30から発せられる光から励起光に相当する波長成分(励起光)を抽出して試料セル38に導き、励起された試料から発せられた蛍光を光検出器44に導いてその蛍光強度を計測することにより、試料中の特定成分濃度を測定する。この分光測定装置では、光源30からの光から励起光を抽出して試料セル38に導くための照射光学系として、ミラー31、入口スリット32、分光器34及び出口スリット36を備えている。そして、励起された試料から発せられる蛍光を光検出器44に導くための測定光学系として、ミラー40、入口スリット10a、アパーチャ12a、分光器42及び出口スリット10bを備えている。入口スリット10a及び出口スリット10bは、可変スリット部としての1枚のスリット板10に設けられている。アパーチャ12aはスリット板10よりも分光器42側に配置された開口数調整部としてのアパーチャ板12に設けられている。
The spectrometer of this embodiment extracts a wavelength component (excitation light) corresponding to excitation light from the light emitted from the light source 30 and guides it to the sample cell 38, and detects the fluorescence emitted from the excited sample. The concentration of the specific component in the sample is measured by guiding it to 44 and measuring its fluorescence intensity. In this spectrometric measurement apparatus, a mirror 31, an entrance slit 32, a spectroscope 34, and an exit slit 36 are provided as an irradiation optical system for extracting excitation light from light from the light source 30 and guiding it to the sample cell 38. A mirror 40, an entrance slit 10a, an aperture 12a, a spectroscope 42, and an exit slit 10b are provided as a measurement optical system for guiding the fluorescence emitted from the excited sample to the photodetector 44. The inlet slit 10 a and the outlet slit 10 b are provided in one slit plate 10 as a variable slit portion. The aperture 12 a is provided on the aperture plate 12 as a numerical aperture adjustment unit disposed closer to the spectroscope 42 than the slit plate 10.
光源30から発せられた光はミラー31により入口スリット32を介して分光器34に導かれて分光され、分光器34で分光された光のうち励起光に相当する波長成分のみが出口スリット36を通って試料セル38に照射される。励起された試料から発せられる蛍光はミラー40で反射され、入口スリット10a及びアパーチャ12aを通って分光器42に導かれる。分光器42で分光された光のうち蛍光に相当する波長成分のみが出口スリット10bを通って光検出器44に導かれ、その強度が検出される。
The light emitted from the light source 30 is guided by the mirror 31 to the spectroscope 34 through the entrance slit 32 and dispersed, and only the wavelength component corresponding to the excitation light among the light dispersed by the spectroscope 34 is the exit slit 36. The sample cell 38 is irradiated through. The fluorescence emitted from the excited sample is reflected by the mirror 40 and guided to the spectroscope 42 through the entrance slit 10a and the aperture 12a. Of the light separated by the spectroscope 42, only the wavelength component corresponding to the fluorescence is guided to the light detector 44 through the exit slit 10b, and the intensity is detected.
スリット板10及びアパーチャ板12として図7に示される例を挙げることができる。この例のスリット板10は円盤型の板状部材で構成されており、その面内に円周方向に配列された入口スリット10a-1、10a-2及び10a-3とそれらに対応した出口スリット10b-1、10b-2及び10b-3を備えている。スリット板10はその中心が回転軸24に固定されている。アパーチャ板12も回転軸24に固定されており、共通の駆動機構によってスリット板10とともに回転駆動されるように構成されている。
As the slit plate 10 and the aperture plate 12, an example shown in FIG. 7 can be mentioned. The slit plate 10 in this example is formed of a disk-shaped plate-like member, and the inlet slits 10a-1, 10a-2 and 10a-3 arranged in the circumferential direction in the plane and the outlet slits corresponding to them. 10b-1, 10b-2 and 10b-3 are provided. The center of the slit plate 10 is fixed to the rotation shaft 24. The aperture plate 12 is also fixed to the rotating shaft 24, and is configured to be rotationally driven together with the slit plate 10 by a common drive mechanism.
アパーチャ板12は入口スリット10a-1、10a-2及び10a-3のそれぞれに対応する位置にアパーチャ12a-1、12a-2及び12a-3を備えている。
The aperture plate 12 is provided with apertures 12a-1, 12a-2 and 12a-3 at positions corresponding to the inlet slits 10a-1, 10a-2 and 10a-3, respectively.
出口スリット10b-1、10b-2及び10b-3は、それぞれが対応する入口スリット10a-1、10a-2又は10a-3が使用されるときに自身も分光器42から光検出器44に導かれる蛍光成分の光軸上に配置され得る位置に設けられている。この例では、対応する入口スリットと出口スリットが回転軸24を中心として互いに対象な位置に配置されている。
The exit slits 10b-1, 10b-2 and 10b-3 lead from the spectroscope 42 to the light detector 44 also when the corresponding entrance slits 10a-1, 10a-2 or 10a-3 respectively are used. It is provided in the position which can be arrange | positioned on the optical axis of the fluorescence component to be mixed. In this example, corresponding inlet and outlet slits are arranged in symmetrical positions about the axis of rotation 24.
図示は省略されているが、図3の例と同様に、回転軸24は回転駆動機構によって駆動される。回転駆動機構によって回転軸24を回転駆動することで、入口スリット10aが10a-1、10a-2及び10a-3のいずれかに切り替えられ、同時に出口スリット10bとアパーチャ12aがその入口スリットに対応したものに自動的に切り替えられる。
Although illustration is omitted, as in the example of FIG. 3, the rotation shaft 24 is driven by a rotation drive mechanism. By rotationally driving the rotary shaft 24 by the rotary drive mechanism, the inlet slit 10a is switched to any of 10a-1, 10a-2 and 10a-3, and at the same time the outlet slit 10b and the aperture 12a correspond to the inlet slit It is automatically switched to things.
以上において説明した実施例では、スリット10aとアパーチャ12aを3種類ずつ設けて切り替えるように構成しているが、スリット10aとアパーチャ12aは2種類又は4種類以上であってもよい。
In the embodiment described above, three types of slits 10a and apertures 12a are provided and switched, but two types or four or more types of slits 10a and apertures 12a may be used.
2,30 光源
4,8,31,40 ミラー
6,38 試料セル
10 スリット板
10a スリット(入口スリット)
10b 出口スリット
11 スリット駆動機構
12 アパーチャ板
12a アパーチャ
13 アパーチャ駆動機構
14 分光器
16,44 光検出器
18 制御部
20 スペーサ(保持部材)
22 上下駆動機構
24 回転軸
26 回転駆動機構 2, 30 light source 4, 8, 31, 40 mirrors 6, 38 sample cell 10 slit plate 10 a slit (inlet slit)
10b Exit Slit 11 Slit Driving Mechanism 12 Aperture Plate 12a Aperture 13 Aperture Driving Mechanism 14 Spectroscope 16, 44 Photo Detector 18 Control Unit 20 Spacer (Holding Member)
22Vertical drive mechanism 24 Rotary shaft 26 Rotary drive mechanism
4,8,31,40 ミラー
6,38 試料セル
10 スリット板
10a スリット(入口スリット)
10b 出口スリット
11 スリット駆動機構
12 アパーチャ板
12a アパーチャ
13 アパーチャ駆動機構
14 分光器
16,44 光検出器
18 制御部
20 スペーサ(保持部材)
22 上下駆動機構
24 回転軸
26 回転駆動機構 2, 30
22
Claims (7)
- 光源と、光検出器と、光透過性材料で構成され試料を流通させ又は収容するための試料セルと、前記光源からの光を前記試料セルに導くための照射光学系と、前記試料セルからの光を分光する分光器を有し前記試料セルからの光を前記分光器で分光して前記光検出器に導く測定光学系と、を備えた分光測定装置において、
前記測定光学系は、互いに幅の異なる複数のスリットを備えそれらの前記スリットのうち使用スリットとして選択されたスリットを前記分光器に導かれる光の光路上に配置する可変スリット部、及び前記分光器の開口数を前記使用スリットの幅に対応したものに変更する開口数調整部を備えていることを特徴とする分光測定装置。 A light source, a light detector, a sample cell made of a light transmissive material for circulating or containing a sample, an irradiation optical system for guiding light from the light source to the sample cell, and the sample cell And a measurement optical system having a spectroscope for spectrally separating light from the sample cell and guiding the light from the sample cell to the light detector,
The measurement optical system includes a plurality of slits different in width from each other, and a variable slit unit that arranges a slit selected as a use slit among the slits on an optical path of light guided to the spectroscope, and the spectroscope And a numerical aperture adjustment unit configured to change the numerical aperture of the aperture to a value corresponding to the width of the slit used. - 前記測定光学系は前記試料セルを透過した光を前記光検出器に導くものである請求項1に記載の分光測定装置。 The spectrometry apparatus according to claim 1, wherein the measurement optical system guides light transmitted through the sample cell to the light detector.
- 前記照射光学系は前記光源からの光のうち前記試料セルに収容されている試料を励起させるための励起成分を取り出して前記試料セルに導くものであり、
前記測定光学系は前記試料セルからの光を前記分光器で分光して試料から発せられた蛍光成分を取り出して前記光検出器に導くものである請求項1に記載の分光測定装置。 The irradiation optical system takes out, from the light from the light source, an excitation component for exciting a sample contained in the sample cell, and guides it to the sample cell.
The spectrometric measurement apparatus according to claim 1, wherein the measurement optical system separates the light from the sample cell with the spectroscope, takes out the fluorescent component emitted from the sample, and guides the fluorescence component to the light detector. - 前記可変スリット部は、前記分光器に導かれる光の光路に対して垂直に配置され互いに幅の異なる複数のスリットが設けられた遮光性のスリット板及び前記スリット板を駆動するスリット駆動機構で構成されており、前記使用スリットとして選択された前記スリットが前記分光器に導かれる光の光路上にくるように前記スリット駆動機構で前記スリット板を駆動するものであり、
前記開口数調整部は、前記分光器に導かれる光の光路に対して垂直に配置され前記スリット板の各スリットに対応するアパーチャが設けられた遮光性のアパーチャ板及び前記アパーチャ板を駆動するアパーチャ駆動機構で構成されており、前記使用スリットに対応した前記アパーチャが前記分光器に導かれる光の光路上にくるように前記アパーチャ駆動機構で前記アパーチャ板を駆動するものである請求項1から3のいずれか一項に記載の分光測定装置。 The variable slit portion includes a light shielding slit plate disposed perpendicular to the light path of light guided to the spectroscope and provided with a plurality of slits having different widths, and a slit driving mechanism for driving the slit plate. Driving the slit plate by the slit drive mechanism so that the slit selected as the use slit is on the optical path of the light guided to the spectroscope,
The numerical aperture adjustment unit is disposed perpendicular to the optical path of light guided to the spectroscope, and has a light shielding aperture plate provided with apertures corresponding to the slits of the slit plate and an aperture for driving the aperture plate 4. The driving device according to claim 1, wherein the aperture drive mechanism drives the aperture plate such that the aperture corresponding to the use slit is on the optical path of light guided to the spectroscope. The spectrometer according to any one of the preceding claims. - 前記アパーチャ駆動機構は前記アパーチャ板を前記分光器に導かれる光の光路に対して垂直な方向へ移動させるものである請求項4に記載の分光測定装置。 5. The spectrometer according to claim 4, wherein the aperture drive mechanism moves the aperture plate in a direction perpendicular to a light path of light guided to the spectroscope.
- 前記アパーチャ駆動機構は前記アパーチャ板を回転駆動するものであり、前記各アパーチャは前記アパーチャ板が回転駆動されることで描かれる前記アパーチャ板上の同一軌道上に設けられている請求項5に記載の分光測定装置。 The aperture drive mechanism according to claim 5, wherein the aperture drive mechanism rotationally drives the aperture plate, and the respective apertures are provided on the same track on the aperture plate which is drawn by the aperture plate being rotationally driven. Spectroscopic measuring device.
- 前記スリット板は前記アパーチャ板と共通の保持部材に保持され、
前記アパーチャ駆動機構は前記保持部材を駆動することにより前記アパーチャ板とともに前記スリット駆動機構として前記スリット板を駆動する請求項4から6のいずれか一項に記載の分光測定装置。 The slit plate is held by a holding member common to the aperture plate,
The spectrometry apparatus according to any one of claims 4 to 6, wherein the aperture drive mechanism drives the slit plate as the slit drive mechanism together with the aperture plate by driving the holding member.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-194574 | 2017-10-04 | ||
JP2017194574 | 2017-10-04 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019069526A1 true WO2019069526A1 (en) | 2019-04-11 |
Family
ID=65995405
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/026263 WO2019069526A1 (en) | 2017-10-04 | 2018-07-12 | Spectrometer |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2019069526A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110196100A (en) * | 2019-05-21 | 2019-09-03 | 中国科学院上海技术物理研究所 | A kind of quick Method of Adjustment of imaging spectrometer |
JP2021507224A (en) * | 2017-12-15 | 2021-02-22 | ホリバ インスツルメンツ インコーポレイテッドHoriba Instruments Incorporated | Systems and methods for selective resolution of concave grating spectrometers |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57138026U (en) * | 1981-02-23 | 1982-08-28 | ||
JPH10160569A (en) * | 1996-12-03 | 1998-06-19 | Yokogawa Electric Corp | Spectral device |
JPH11241948A (en) * | 1998-02-26 | 1999-09-07 | Hitachi Ltd | Spectrometric apparatus |
JP2003166878A (en) * | 2001-12-04 | 2003-06-13 | Shimadzu Corp | Spectrophotometer |
-
2018
- 2018-07-12 WO PCT/JP2018/026263 patent/WO2019069526A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57138026U (en) * | 1981-02-23 | 1982-08-28 | ||
JPH10160569A (en) * | 1996-12-03 | 1998-06-19 | Yokogawa Electric Corp | Spectral device |
JPH11241948A (en) * | 1998-02-26 | 1999-09-07 | Hitachi Ltd | Spectrometric apparatus |
JP2003166878A (en) * | 2001-12-04 | 2003-06-13 | Shimadzu Corp | Spectrophotometer |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021507224A (en) * | 2017-12-15 | 2021-02-22 | ホリバ インスツルメンツ インコーポレイテッドHoriba Instruments Incorporated | Systems and methods for selective resolution of concave grating spectrometers |
JP7421478B2 (en) | 2017-12-15 | 2024-01-24 | ホリバ インスツルメンツ インコーポレイテッド | System and method for selective resolution of concave grating spectrometers |
CN110196100A (en) * | 2019-05-21 | 2019-09-03 | 中国科学院上海技术物理研究所 | A kind of quick Method of Adjustment of imaging spectrometer |
CN110196100B (en) * | 2019-05-21 | 2021-04-09 | 中国科学院上海技术物理研究所 | Rapid assembling and adjusting method for imaging spectrometer |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1784625B1 (en) | Autonomous calibration for optical analysis system | |
JP4059403B2 (en) | Optical path difference compensation mechanism for time-series signal acquisition of time-series conversion pulse spectrometer | |
JPS5929803B2 (en) | Multichannel analyzer for liquid chromatography separation | |
US20050275844A1 (en) | Variable Exposure Rotary Spectrometer | |
JP6255022B2 (en) | Apparatus having an arrangement of optical elements | |
US4326802A (en) | Dual monochromator type of spectroanalysis system | |
JPS591971B2 (en) | Bunko Koudokei | |
US2823577A (en) | Multiple slit spectrograph for direct reading spectrographic analysis | |
US9891104B2 (en) | Spectroscopic detector | |
US20170030827A1 (en) | Analysis device (photometer) having a serial light guide | |
JPH03202754A (en) | Atomic absorption spectrophotometer for simultaneous analysis of many elements and simultaneous analysis method of many elements | |
EP0798559B1 (en) | Method of detecting sample substances and fluorescence spectrometer using the method | |
JPS63500267A (en) | Method and device for improving separation characteristics in spectroscopic measurements | |
WO2019069526A1 (en) | Spectrometer | |
US10876887B2 (en) | Spectroscopic detector | |
US10760968B2 (en) | Spectrometric measuring device | |
WO2007121593A1 (en) | Method for measurement and determination of concentration within a mixed medium | |
JP2006194812A (en) | Spectrofluorometer | |
WO2015171076A1 (en) | Device for analysing a specimen and corresponding method | |
JP2000206037A (en) | Spectroscopic analytical method | |
JP4336847B2 (en) | Microspectrophotometer | |
JP2000329714A (en) | X-ray fluorescence analyzer | |
JP3473524B2 (en) | Spectrometer | |
JP2023534613A (en) | Light source for variable path length systems | |
JP4136891B2 (en) | Fluorescence measurement device for measuring fluorescence image / spectrum |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18864604 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18864604 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |