Nothing Special   »   [go: up one dir, main page]

WO2019058514A1 - 熱交換器、冷凍サイクル装置、及び、熱交換器の製造方法 - Google Patents

熱交換器、冷凍サイクル装置、及び、熱交換器の製造方法 Download PDF

Info

Publication number
WO2019058514A1
WO2019058514A1 PCT/JP2017/034329 JP2017034329W WO2019058514A1 WO 2019058514 A1 WO2019058514 A1 WO 2019058514A1 JP 2017034329 W JP2017034329 W JP 2017034329W WO 2019058514 A1 WO2019058514 A1 WO 2019058514A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat transfer
heat exchanger
transfer tube
fin
header
Prior art date
Application number
PCT/JP2017/034329
Other languages
English (en)
French (fr)
Inventor
暁 八柳
石橋 晃
前田 剛志
中村 伸
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2017/034329 priority Critical patent/WO2019058514A1/ja
Priority to JP2019542917A priority patent/JP6880206B2/ja
Publication of WO2019058514A1 publication Critical patent/WO2019058514A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates

Definitions

  • the present invention relates to a heat exchanger provided with a header, a refrigeration cycle apparatus provided with the heat exchanger, and a method of manufacturing the heat exchanger provided with the header.
  • a plate fin tube type heat composed of a plurality of plate-like fins arranged via a fin pitch and a plurality of circular or flat heat transfer tubes Exchangers are known.
  • a corrugated fin-tube heat exchanger composed of a corrugated fin and a flat heat transfer tube.
  • the flat heat transfer tube is a heat transfer tube in which the width (in the direction of the major axis in the cross section) is larger than the longitudinal width (in the direction of the minor axis in the cross section). It is.
  • the heat transfer tube having a flat cross-sectional shape is referred to as a flat tube.
  • the heat transfer tube having a circular cross section is referred to as a circular tube.
  • the corrugated fin and tube type heat exchanger generally has a configuration in which wavy fins and flat heat transfer tubes are alternately stacked.
  • the plate-fin tube type heat exchanger is configured such that the heat transfer tube is inserted into a through hole or a notch formed in the fin.
  • the heat transfer tubes are attached to the through holes or notches of the fins so as to extend along the direction of arrangement of the fins.
  • the notch is formed to open one side of the fin.
  • the heat transfer tube inserted into the notch is attached to the fin by being inserted into the notch from the open side.
  • a heat transfer tube with a reduced diameter may be used in order to conduct heat exchange efficiently.
  • a flat tube may be used as such a heat transfer tube. Inside the flat tube, a number of finely divided flow paths are formed in parallel.
  • the flow passage formed inside the flat tube is referred to as an internal flow passage.
  • a heat exchanger provided with a heat transfer tube having a plurality of flow paths formed therein and a heat exchanger provided with a heat transfer tube having a groove formed on the inner surface are also known. In such a heat exchanger, the heat exchange performance is improved by increasing the surface area to be exchanged with heat by forming a plurality of flow paths inside the heat transfer pipe or forming a groove on the inner surface of the heat transfer pipe. ing.
  • heat exchangers one having a header (divider) is known.
  • the end of each heat transfer tube is connected to a header that forms a refrigerant flow path together with the heat transfer tube.
  • heat exchange is performed between a heat exchange fluid such as air flowing between the fins and a heat exchange fluid such as water flowing in the heat transfer pipe or a refrigerant.
  • the corrugated fin and tube type heat exchanger can be manufactured by alternately laminating heat transfer tubes and corrugated fins and fixing them by crimping or brazing.
  • a plate-fin tube type heat exchanger can be manufactured by inserting a hairpin-processed tube into a plurality of fins and pressing and expanding the inside of the tube to join the tube and the fins. This manufacturing method is referred to as an expansion method. Moreover, a plate fin tube type heat exchanger can be manufactured by fixing by brazing a tube and a fin.
  • a tube expansion method there is known a method in which a rigid rod is inserted into a heat transfer tube to mechanically spread the heat transfer tube from the inside.
  • This pipe expansion method is referred to as a mechanical pipe expansion method.
  • a pipe expansion method there is known a method in which a fluid is poured into a heat transfer pipe, and pressure is spread from inside the heat transfer pipe by raising the pressure in the heat transfer pipe. This pipe expansion method is referred to as a fluid pressure expansion method.
  • Patent Document 1 discloses a technique for manufacturing a heat exchanger using a fluid pressure expansion method.
  • Patent Document 1 it is necessary to design the inner space of the header and the header wall thickness so that the pressure resistance of the header is equal to or higher than the internal flow passage of the flat tube, and the cost required to ensure reliability It will increase.
  • the heat exchanger can not be realized to obtain the intended performance.
  • the cost increase of the header and the weight increase of the header and the reliability of the heat exchanger are caused due to the pressure resistance design of the header. It is likely to cause a decline. That is, it is necessary to increase the wall thickness of the header to correspond to the high pressure acting on the inside of the header to ensure reliability, and the cost of the header and the weight of the header will be increased accordingly. For this reason, a heat exchanger, a refrigeration cycle apparatus, and a method of manufacturing the heat exchanger, which can ensure the reliability of the heat exchanger while suppressing the increase in the cost of the header, are desired.
  • the present invention has been made to solve the above problems, and is provided with a heat exchanger that can improve the reliability of the heat exchanger while suppressing the increase in the cost of the header, and the heat exchanger.
  • a refrigeration cycle apparatus and a method of manufacturing a heat exchanger are provided.
  • the heat exchanger according to the present invention has a flat cross section, and has a plurality of heat transfer pipes in which a plurality of inner holes are formed, a plurality of fins to which the plurality of heat transfer pipes are joined, and the plurality of heat transfer pipes.
  • a refrigeration cycle apparatus includes a compressor, a first heat exchanger, a throttling device, and a refrigerant circuit in which a second heat exchanger is connected by a refrigerant pipe, and the above-described heat exchanger is the first heat exchanger.
  • the heat exchanger is used as at least one of the heat exchanger and the second heat exchanger.
  • a plurality of through holes are formed in a plate member serving as a fin, a heat transfer pipe is inserted into each of the plurality of through holes, and one end of the heat transfer pipe Sealing, supplying the gas from the other end of the heat transfer tube to expand the heat transfer tube, the heat transfer tube is joined to the fin, and after the heat transfer tube is joined to the fin, The heat transfer tube is brazed to a header having a fluid flow passage.
  • the thickness of the outer wall portion of the header can be made smaller compared to the inner diameter of the header, and the material cost can be reduced accordingly.
  • the refrigeration cycle apparatus of the present invention since the above-described heat exchanger is used as at least one of the first heat exchanger and the second heat exchanger, the manufacturing cost can be reduced accordingly.
  • the method of manufacturing a heat exchanger according to the present invention it is possible to expand a plurality of heat transfer tubes without using a header, and it is not necessary to provide the header with a pressure resistance equal to or higher than that of the heat transfer tube.
  • coolant It is a schematic sectional drawing which shows the cross section of the heat exchanger tube which comprises the heat exchanger which concerns on Embodiment 1 of this invention. It is a schematic front view of the fin which comprises the heat exchanger which concerns on Embodiment 1 of this invention. It is a schematic side view of the fin which comprises the heat exchanger which concerns on Embodiment 1 of this invention. It is a schematic top view of the fin which comprises the heat exchanger which concerns on Embodiment 1 of this invention.
  • FIG. 1 It is a schematic perspective view which shows the structural example of the header with which the heat exchanger which concerns on Embodiment 1 of this invention is provided. It is a schematic sectional drawing which shows an example of a cross-sectional structure of the header with which the heat exchanger which concerns on Embodiment 1 of this invention is provided. It is a schematic sectional drawing which shows another example of the cross-sectional structure of the header with which the heat exchanger which concerns on Embodiment 1 of this invention is provided. It is a flowchart which shows roughly the process of the manufacturing method of the heat exchanger which concerns on Embodiment 1 of this invention.
  • FIG. 1 is a schematic perspective view showing an example of the configuration of a heat exchanger according to Embodiment 1 of the present invention.
  • the heat exchanger according to the first embodiment is referred to as a heat exchanger 1A.
  • FIG. 2 is a schematic side view showing an example of the heat exchanger 1A as viewed from the air flow direction.
  • FIG. 3 is a schematic side view showing an example of the heat exchanger 1A as viewed from the flow direction of the refrigerant. An example of the heat exchanger 1A will be described based on FIGS. 1 to 3.
  • the heat exchanger 1A includes a plurality of fins 30A, a plurality of heat transfer pipes 20A, a header 40A, and an inter-row connecting member 45A.
  • the heat exchanger 1A is a heat exchanger having a two-row structure, and includes the upwind heat exchanger 41A, the downwind heat exchanger 42A, the upwind header 40A-1, the downwind header 40A-2, and , The inter-row connection member 45A.
  • the windward header 40A-1 and the windward header 40A-2 may be collectively referred to as a header 40A.
  • the upwind side heat exchanger 41A and the downwind side heat exchanger 42A are similarly configured. In the following, when the heat exchanger 1A is described, it is assumed that both the upwind side heat exchanger 41A and the downwind side heat exchanger 42A are described.
  • the windward header 40A-1 and the windward header 40A-2 are attached to the paper right side of the windward heat exchanger 41A and the paper right side of the windward heat exchanger 42A. Furthermore, as shown in FIG. 1, the inter-row connection member 45A is attached to the left side of the windward heat exchanger 41A in the drawing and the left side of the leeward heat exchanger 42A in the drawing. Thus, the heat exchanger 1A is produced.
  • the heat transfer tubes 20A are attached to the windward header 40A-1 at a predetermined interval (pitch P1). Similarly, the heat transfer tubes 20A are attached to the downwind side header 40A-2 at a predetermined interval (pitch P1).
  • the plurality of heat transfer tubes 20A are mounted to penetrate through the plurality of through holes 31A formed in the fins 30A, and intersect the fins 30A. As shown in FIG. 3, the heat transfer tube 20A is configured to have a circular cross section.
  • the plurality of heat transfer tubes 20A are disposed at predetermined intervals in a step direction (vertical direction in the drawing) orthogonal to the flow direction of the refrigerant.
  • the distance in the direction of gravity of the heat transfer tubes 20A vertically adjacent to each other is constant at the pitch P2 of the adjacent through holes 31A of the fins 30A.
  • the heat transfer tube 20A is made of aluminum or an aluminum alloy.
  • FIG. 2 and FIG. 3 show an example in which the number of heat transfer tubes 20A is ten, the number of heat transfer tubes 20A is not particularly limited.
  • the symbols shown in FIGS. 1 to 3 are also used in the following drawings.
  • a region where the through holes 31A of the fins 30A are formed is referred to as a heat transfer tube region 31R.
  • a region which is both ends in the short direction of the fins 30A and in which the fins 30A are continuous in the longitudinal direction without being divided by the through holes 31A is referred to as a fin region 32R.
  • the fin 30A is formed of a rectangular plate-like member having a long side and a short side.
  • the fins 30A have a pitch P1 in the longitudinal direction, and a plurality of through holes 31A are formed through the heat transfer pipe area 31R.
  • the fins 30A are made of aluminum or an aluminum alloy. Further, although the through holes 31A have a circular shape corresponding to the cross sectional shape of the heat transfer tube 20A, the shape is not specified.
  • the long side direction of the fin 30A is referred to as the longitudinal direction
  • the short side direction is referred to as the short direction.
  • FIG. 4 is a schematic perspective view showing an example of the configuration of the heat exchanger 1B.
  • FIG. 5 is a schematic side view showing an example of the heat exchanger 1B as viewed from the flow direction of the refrigerant.
  • FIG. 6 is a schematic cross-sectional view showing a cross section of the heat transfer tube 20B which constitutes the heat exchanger 1B.
  • FIG. 7 is a schematic front view of the fins 30B constituting the heat exchanger 1B.
  • FIG. 8 is a schematic side view of the fins 30B constituting the heat exchanger 1B.
  • FIG. 9 is a schematic top view of the fins 30B constituting the heat exchanger 1B.
  • An example of the heat exchanger 1B will be described based on FIGS. 4 to 9.
  • the heat exchanger 1B is provided with a plurality of plate-like fins 30B, a plurality of heat transfer tubes 20B, a header 40B, and an inter-row connecting member 45B.
  • the heat exchanger 1B is a heat exchanger having a two-row structure, and includes the upwind heat exchanger 41B, the downwind heat exchanger 42B, the upwind header 40B-1, the downwind header 40B-2, and , And inter-row connection member 45B.
  • the windward header 40B-1 and the windward header 40B-2 may be collectively referred to as a header 40B.
  • the upwind side heat exchanger 41B and the downwind side heat exchanger 42B are similarly configured. In the following, when the heat exchanger 1B is described, it is assumed that both the upwind side heat exchanger 41B and the downwind side heat exchanger 42B are described.
  • the windward header 40B-1 and the windward header 40B-2 are attached to the paper right side of the windward heat exchanger 41B and the paper right side of the windward heat exchanger 42B.
  • the inter-row connecting member 45B is attached to the left side of the windward side heat exchanger 41B as viewed in the drawing and the left side of the windward side heat exchanger 42B as viewed.
  • the heat exchanger 1B is produced.
  • a plurality of tube attachment portions 40Ba to which the heat transfer tubes 20B are attached are formed in the windward header 40B-1 at a predetermined interval (pitch P1).
  • a plurality of tube attachment portions 40Bb to which the heat transfer tubes 20B are attached are formed at a predetermined interval (pitch P1).
  • the plurality of heat transfer tubes 20B are attached to penetrate through the plurality of through holes 31B formed in the fins 30B, and intersect with the fins 30B. As shown in FIG. 6, the heat transfer tube 20B is configured to have a flat cross-sectional shape.
  • the plurality of heat transfer tubes 20B are arranged at predetermined intervals in a step direction (vertical direction in the drawing) orthogonal to the flow direction of the refrigerant.
  • the distance in the direction of gravity of the heat transfer tubes 20B vertically adjacent to each other is constant at the pitch P2 of the adjacent through holes 31B of the fins 30B.
  • the heat transfer tube 20B is made of aluminum or an aluminum alloy.
  • FIG. 5 shows an example in which the number of heat transfer tubes 20B is eight, the number of heat transfer tubes 20B is not particularly limited.
  • the symbols shown in FIG. 4 to FIG. 9 are similarly used in the following drawings.
  • a region where the through holes 31B of the fins 30B are formed is referred to as a heat transfer tube region 31R.
  • regions at both ends in the short direction of the fins 30B and not divided by the through holes 31B and in which the fins 30B extend in the longitudinal direction are referred to as fin regions 32R.
  • the fins 30 ⁇ / b> B are formed of rectangular plate members having long sides and short sides.
  • the fins 30B have a pitch P1 in the longitudinal direction, and a plurality of through holes 31B are formed through the heat transfer tube area 31R.
  • the peripheral portion of the through hole 31B functions as a fin collar.
  • the fin collar in the longitudinal direction of the through hole 31B is referred to as a first fin collar 311, and the fin collar in the lateral direction of the through hole 31B is referred to as a second fin collar 312.
  • the fin pitch P3 which is an interval of the plurality of fins 30B is defined by the second fin collar 312.
  • FIG. 7 shows a state in which the through holes 31B have a rectangular shape in which the short direction of the fins 30B is a long side and the longitudinal direction of the fins 30B is a short side.
  • the specific shape of the through hole 31B is not specified, and the through hole 31B may have any shape as long as the heat transfer tube 20B can be inserted.
  • the fins 30B are made of aluminum or an aluminum alloy.
  • the through hole 31B has a rectangular shape, the shape is not specified.
  • the long side direction of the fin 30B is referred to as the longitudinal direction
  • the short side direction is referred to as the short direction.
  • the heat transfer tube 20B will be described in detail. As shown in FIG. 6, the heat transfer tube 20B is formed in a shape in which the lateral width (the length in the cross sectional major axis direction) is larger than the longitudinal width (the length in the cross sectional minor axis direction).
  • the plurality of heat transfer tubes 20B have the direction of the major axis of the cross section as the flow direction of the fluid flowing between the fins 30B, and are arranged at predetermined intervals in the step direction (vertical direction in the drawing) orthogonal to the flow direction.
  • the cross-sectional long axis of the heat transfer tube 20B that is, a portion extending in the width direction (short direction) of the fins 30B may be referred to as the width direction of the heat transfer tube 20B.
  • the heat transfer tube 20B shown in FIG. 6 will be described by way of example in the case of a flat tube having a flat width (length in the cross sectional major axis direction) larger than the vertical width (length in the cross axis minor axis direction). It is not necessary for the heat transfer tube 20B to be strictly formed in a flat shape, as long as the heat transfer tube 20B has a shape having a larger horizontal width than the vertical width.
  • the heat transfer tube 20B includes an upper surface 21a including an upper portion, a lower surface 21c including a lower portion, and one side portion 21b including one end in the width direction (the end on the right side in FIG. 6); It has the other side 21 d including the other end in the width direction (the end on the left side in the drawing of FIG. 6).
  • the upper surface 21a, the lower surface 21c, the one side portion 21b, and the other side portion 21d are collectively referred to as an outer wall 21.
  • FIG. 6 shows an example in which the upper surface 21a and the lower surface 21c are parallel to each other, at least one of the upper surface 21a and the lower surface 21c may be inclined so as not to be parallel to each other.
  • the cross-sectional shape of the heat transfer tube 20B may be elliptical or the like.
  • the heat transfer tube 20B also has a plurality of inner walls 22.
  • the plurality of inner walls 22 are formed to partition the internal space of the heat transfer tube 20B.
  • a plurality of inner holes 23 partitioned in the inner wall 22 will be formed.
  • the inner hole 23 functions as an internal flow path through which the refrigerant flows.
  • a groove or a slit may be formed on the inner surface of the heat transfer tube 20B including the inner wall 22.
  • FIG. 10 is a schematic perspective view showing a configuration example of the header 40 provided in the heat exchanger according to the first embodiment.
  • FIG. 11 is a schematic cross-sectional view showing an example of the cross-sectional configuration of the header 40 provided in the heat exchanger according to the first embodiment.
  • FIG. 12 is a schematic cross-sectional view showing another example of the cross-sectional configuration of the header 40 provided in the heat exchanger according to the first embodiment.
  • the heat transfer pipe 20A and the heat transfer pipe 20B may be collectively referred to as the heat transfer pipe 20.
  • the fins 30A and the fins 30B may be collectively referred to as fins 30.
  • the through holes 31A and the through holes 31B may be collectively referred to as the through holes 31 in some cases.
  • a cylindrical header 40-1 communicating with the inside can be adopted.
  • the cylindrical header 40-1 has a cylindrical portion 46 in which an internal space 44 serving as a flow passage of the heat exchange fluid is formed. That is, the cylindrical header 40-1 is a hollow header.
  • the outer shell of the cylindrical portion 46 is formed by the outer wall portion 41. Further, in the outer wall portion 41, a plurality of heat transfer pipe connection portions 43 to which the heat transfer pipe 20B is connected are formed.
  • the shape of the heat transfer tube connection portion 43 is such that the heat transfer tube 20B can be directly connected.
  • the heat transfer pipe connection portion 43 may have a circular shape. That is, the shape of the heat transfer tube connection part 43 should just be a shape according to the shape of the heat transfer tube to connect.
  • the circular pipe joint will be described with reference to FIG.
  • the cross-sectional long axis of the heat transfer tube 20B is da
  • the number of the inner holes 23 is n
  • the thickness of the outer wall 21 is tp
  • the required withstand pressure is P.
  • the inner diameter of the cylindrical header 40-1 is dh
  • the thickness of the outer wall portion 41 is th
  • the tensile strength is ⁇ .
  • the cylindrical header 40-1 is configured such that dh / th is 2 ⁇ / ⁇ P * (da / n / tp-1) ⁇ or more. By doing this, the thickness of the outer wall portion 41 of the cylindrical header 40-1 can be made smaller compared to the inner diameter of the cylindrical header 40-1, and the material cost can be reduced accordingly.
  • the inner diameter of the cylindrical header 40-1 means the inner diameter of the cylindrical portion 46.
  • a laminated header 40-2 having a plurality of plate-like bodies 90 can be adopted.
  • the plate-like body 90 is formed by alternately laminating a first plate-like member 91a to a first plate-like member 91d to be a bear member and a second plate-like member 92a to a second plate-like member 92d to be a clad material. It is formed. On the outermost side in the stacking direction of the plate-like body 90, the first plate-like member 91a and the first plate-like member 91e are stacked.
  • first plate-like member 91a to the first plate-like member 91e may be collectively referred to as a plurality of first plate-like members 91.
  • second plate-like member 92a to the second plate-like member 92d may be collectively referred to as a plurality of second plate-like members 92.
  • the plurality of first plate members 91 are made of aluminum.
  • the brazing material is not applied to the plurality of first plate members 91.
  • a through hole serving as the distribution / merging flow path 65 is formed in each of the plurality of first plate-like members 91.
  • the through holes penetrate the front and back of the plurality of first plate members 91.
  • the through holes formed in the plurality of first plate members 91 form a flow passage for the heat exchange fluid. Function as a part of the distribution / merging channel 65.
  • the plurality of second plate-like members 92 are made of aluminum, and are formed thinner than the plurality of first plate-like members 91.
  • a brazing material is applied to at least the front and back surfaces of the plurality of second plate members 92.
  • Each of the plurality of second plate-like members 92 is formed with a through hole serving as the distribution and merging channel 65.
  • the through holes penetrate the front and back of the plurality of second plate members 92.
  • the through holes formed in the second plate-like members 92 with the number of hooks formed by stacking the plurality of first plate-like members 91 and the plurality of second plate-like members 92 are flow channels for the heat exchange fluid It functions as a part of the distribution / merging channel 65 which
  • connection pipe 61a is connected to the through hole formed in the first plate-like member 91a.
  • a nozzle or the like may be provided on the surface of the first plate member 91 a on the inflow side of the refrigerant, and the connection pipe 61 a may be connected via the nozzle or the like.
  • the inner peripheral surface of the through hole formed in the first plate-like member 91a is shaped to fit with the outer peripheral surface of the connection pipe 61a, and the connection pipe 61a is directly connected without using a die or the like. Good.
  • connection pipe 62a is connected to the through hole formed in the first plate member 91e.
  • a nozzle or the like may be provided on the surface of the first plate-like member 91 e on which the refrigerant flows, and the connection pipe 62 a may be connected via the nozzle or the like.
  • the inner peripheral surface of the through hole formed in the first plate-like member 91e is shaped to fit with the outer peripheral surface of the connection pipe 62a, and the connection pipe 62a may be directly connected without using a base or the like. Good.
  • the connection piping 62a may be connected by inserting the connection piping 62a so as to reach the through hole of the first plate-like member 91d.
  • the through holes formed in the first plate-like member 91 b and the first plate-like member 91 c are formed to pass through in a Z-shaped flow passage cross section.
  • a flow-path cross section is a cross section which cut the flow path in the direction orthogonal to the flow of the fluid.
  • FIG. 12 illustrates the case where the distribution / merging flow channel 65 has four fluid outlet portions for one fluid inlet portion, the number of branches is limited to four. is not.
  • the refrigerant in the upper stage branch portion 60a when the refrigerant flows in from the connection pipe 61a will be described.
  • the refrigerant having flowed through the connection pipe 61a flows into the inside of the upper stage branch portion 60a as a fluid inlet portion through the through hole of the first plate-like member 91a.
  • the refrigerant flows into the through hole of the second plate-like member 92a.
  • the refrigerant that has flowed into the through hole of the second plate member 92a flows into the center of the through hole of the first plate member 91b.
  • the refrigerant that has flowed into the center of the through hole of the first plate member 91b hits the surface of the second plate member 92d stacked adjacent to it and branches, and flows to the end of the through hole of the first plate member 91b.
  • the refrigerant reaching the end of the through hole of the first plate member 91b passes through the through hole of the second plate member 92b and flows into the center of the through hole of the first plate member 91c.
  • the refrigerant that has flowed into the center of the through hole of the first plate member 91c strikes the surface of the adjacent second laminated plate member 92c and branches, and flows to the end of the through hole of the first plate member 91c.
  • the refrigerant reaching the end of the through hole of the first plate member 91c passes through the through hole of the second plate member 92c and flows into the through hole of the first plate member 91d.
  • the refrigerant that has flowed into the through hole of the first plate member 91d passes through the through hole of the second plate member 92d, and is transferred to the heat transfer pipe 20B through the connection pipe 62a located in the through hole of the first plate member 91e. To flow.
  • the header 40 As described above, by forming the header 40 as the stacked header 40-2, uniformity of distribution of the refrigerant in the header 40 can be improved.
  • FIG. 13 is a flow chart schematically showing the steps of the method of manufacturing the heat exchanger 1B.
  • FIG. 14 is an explanatory view for explaining an example of how to attach the heat transfer tube to the sealing device 70 in the method of manufacturing the heat exchanger 1B.
  • the manufacturing method of the heat exchanger 1B is demonstrated based on FIG.13 and FIG.14. In addition, although the manufacturing method of the heat exchanger 1B is demonstrated here, it is applicable to the heat exchanger 1A similarly.
  • the method of manufacturing the heat exchanger 1B is roughly divided into two steps (a first step 51 and a second step 52).
  • the preparation process 50 is illustrated as a pre-process of the first process 51.
  • the preparation step 50 is a step of inserting the heat transfer tube 20B into the through hole 31B of the fin 30B and performing temporary assembly of the heat exchanger 1B.
  • the plurality of heat transfer pipes 20B are attached in parallel to the plurality of fins 30B arranged in parallel at the fin pitch P3. In this state, the first step 51 is performed.
  • the first step 51 is a step of expanding the heat transfer tube 20B by applying pressure to the inside of the heat transfer tube 20B so as to push and spread the heat transfer tube 20B from the inside.
  • the high pressure gas container 60 and the sealing device 70 are attached to both ends of the heat transfer tube 20B in the direction in which the fins 30B are arranged.
  • the high pressure gas is caused to flow into the heat transfer tube 20B.
  • the high pressure gas acts to push and spread the heat transfer pipe 20B from the inside of the heat transfer pipe 20B, and the heat transfer pipe 20B is expanded. That is, in the first step 51, the plurality of heat transfer tubes 20B are expanded without the header 40.
  • the sealing device 70 has an insertion portion 71 into which the heat transfer tube 20B is inserted.
  • the insertion portion 71 is formed with a recess 72 which is recessed toward the outer periphery.
  • a convex mounting portion 24 protruding outward is provided on the outer periphery of the end of the heat transfer tube 20B on the sealing device 70 side. Then, when the heat transfer tube 20B is attached to the sealing device 70, the mounting portion 24 of the heat transfer tube 20B is fitted into the recess 72 of the sealing device 70. By this, it is possible to fix the heat transfer tube 20B to the sealing device 70.
  • the specific configuration of the sealing device 70 is not specified, as long as the heat transfer tube 20B can be fixed.
  • the modification of the instrument 70 for sealing it demonstrates in FIG.15 and FIG.16.
  • the second step 52 is a step of joining the header 40 to the expanded plurality of heat transfer tubes 20B by brazing or the like.
  • the heat transfer tube 20B When the heat transfer tube 20B is expanded in the first step 51, the heat transfer tube 20B may be brought into close contact with the fins 30B, but in the second step 52, the heat transfer tube 20B and the header 40 are brazed simultaneously Both the heat pipe 20B and the fins 30B may be brazed.
  • a brazing material may be applied or laminated on the surface of at least one of the heat transfer tube 20B and the fins 30B, and the heat transfer tube 20B and the fins 30B may be brazed in the second step 52.
  • the adhesion between the heat transfer tube 20B and the fins 30B can be enhanced, and the performance of the heat exchanger 1B can be improved.
  • the heat transfer tube 20B may be in close contact with the fins 30B by any one of the means, or the heat transfer tube 20B may be in close contact with the fins 30B by both means.
  • FIG. 15 is an explanatory diagram for explaining another example of how to attach the heat transfer tube to the sealing device 70 in the method of manufacturing the heat exchanger 1B.
  • FIG. 16 is an explanatory view for explaining still another example of how the heat transfer tube is attached to the sealing device 70 in the method of manufacturing the heat exchanger 1B. Based on FIG.15 and FIG.16, the modification of the instrument 70 for sealing used by the manufacturing method of the heat exchanger 1B is demonstrated.
  • the heat transfer tube 20B is attached to the sealing device 70 by directly inserting the heat transfer tube 20B into the sealing device 70 as an example.
  • the heat transfer tube 20B is attached to the sealing device 70 via the circular pipe joint 80, instead of directly inserting the heat transfer tube 20B into the sealing device 70.
  • the circular pipe joint 80 is for connecting the heat transfer pipe 20B and the sealing device 70. Specifically, the circular pipe joint 80 converts the cross-sectional shape of the heat transfer tube 20B into a shape that can be connected to the sealing device 70.
  • the case where the circular pipe joint 80 connects the heat transfer pipe 20B having a flat cross-sectional shape to a sealing device 70 to which a pipe having a circular cross-sectional shape can be connected is shown as an example.
  • the sealing device 70 is configured to press the circular pipe portion from the inner wall side and the outer wall side by the insertion portion 71 with respect to the circular pipe joint 80 connected to the heat transfer pipe 20B.
  • the circular pipe portion of the circular pipe joint 80 is a portion having a circular cross section which is inserted into the sealing device 70 of the circular pipe joint 80.
  • the heat transfer tube 20B can be attached to the sealing device 70 by pressing this portion with the sealing device 70.
  • the sealing device 70 having such a configuration, in the second step 52, the circular tube portion of the circular pipe joint 80 is fixed more firmly from the inside and the outside by the sealing device 70 and the circular pipe joint 80. As it can be done, the degree of sealing is increased, and the leakage of high pressure gas can be further suppressed. Therefore, it is possible to improve manufacturing safety while improving the pressurizing efficiency in the second step 52. Moreover, highly reliable heat exchanger 1B can be manufactured efficiently. Thus, the reliability of the created heat exchanger 1B is improved.
  • the circular pipe joint 80 corresponds to the “joint” of the present invention. However, even when the heat transfer tube 20A is used, the heat transfer tube 20A may be attached to the sealing device 70 through a joint. In this case, the configuration of the joint corresponds to the heat transfer tube 20A and the sealing device 70.
  • the heat transfer tube 20B is attached to the sealing device 70 by directly inserting the heat transfer tube 20B into the sealing device 70.
  • the case where the attachment portion 24 is provided to the heat transfer tube 20B has been described as an example, but in FIG. 16, a part of the inner wall 22 of the end of the heat transfer tube 20B on the sealing device 70 side is removed There is.
  • the heat transfer tube 20 B is inserted into the insertion portion 71 of the sealing device 70.
  • the sealing device 70 is configured to press the heat transfer tube 20B from the inner wall side and the outer wall side by the insertion portion 71 in a region where the inner wall 22 of the heat transfer tube 20B does not exist. By this, it is possible to fix the heat transfer tube 20B to the sealing device 70.
  • the sealing device 70 By using the sealing device 70 having such a configuration, in the second step 52, the sealing device 70 enables the region where the inner wall 22 of the heat transfer tube 20B is not present to be fixed more firmly from the inside and the outside. Therefore, the degree of sealing is increased, and the leakage of high pressure gas can be further suppressed. Therefore, it is possible to improve manufacturing safety while improving the pressurizing efficiency in the second step 52. Moreover, highly reliable heat exchanger 1B can be manufactured efficiently. Thus, the reliability of the created heat exchanger 1B is improved.
  • FIG. 17 is a view showing a state in which the plate-like member to be the fins 30B provided in the heat exchanger 1B is cut.
  • FIG. 18 is a view showing a state in which the heat transfer pipe 20B is inserted into the through hole 31B of the fin 30B provided in the heat exchanger 1B.
  • FIG. 19 is a view showing a state in which the heat transfer pipe 20B inserted into the through hole 31B of the fin 30B provided in the heat exchanger 1B is expanded.
  • the peripheral portion of the through hole 31B functions as a fin collar.
  • a cut is provided in a portion to be the heat transfer tube region 31R of the plate-like member 30a.
  • a notch 311a is provided at the boundary of the portion where the first fin collar 311 of the plate member 30a is cut and raised.
  • the notch 312a is provided in the boundary of the part which cuts and raises the 2nd fin collar 312 of the plate-shaped member 30a.
  • the plate-like member 30a is bent in one direction via the cuts 311a and the cuts 312a.
  • the figure shows a state in which the plate-like member 30a is bent to the front side of the drawing sheet.
  • the peripheral portion of the through hole 31B is cut and raised like a tongue.
  • the tongue-like portion cut and raised in the longitudinal direction of the fin 30B through the notch 311a functions as the first fin collar 311.
  • the tongue-like portion cut and raised in the short direction of the fin 30 B through the notch 312 a functions as the second fin collar 312.
  • released functions as a through-hole 31B.
  • the first fin collar 311 and the first fin collar 311 have a length L1 in the short direction of the fins 30B of the first fin collar 311 greater than the length L2 in the longitudinal direction of the fins 30B of the second fin collar 312.
  • Two fin collars 312 are formed. That is, the cut 311a and the cut 312a are formed so as to satisfy the relationship of length L1> length L2. Further, the gap length L3 between the second fin collar 312 and the heat transfer pipe 20B inserted into the through hole 31B is the gap length L4 between the first fin collar 311 and the heat transfer pipe 20B inserted into the through hole 31B. It is set larger than.
  • the heat transfer pipe 20B is inserted into the through hole 31B.
  • the heat transfer pipe 20B is expanded. In this way, when the heat transfer tube 20B is expanded in the first step 51, the first fin collar 311 is in close contact with the surface of the outer wall 21 in the longitudinal direction of the cross section of the heat transfer tube 20B.
  • the first fin collar 311 can ensure the adhesion to the fins 30B on the longitudinal surface of the heat transfer tube 20B, and improve the heat exchange efficiency.
  • the heat transfer pipe 20B can be expanded by the second fin collar 312 while maintaining the distance between the adjacent fins 30B, and the reliability of the heat exchanger 1B can be secured.
  • the longitudinal surface of the heat transfer tube 20B means the surface of the outer wall 21 of the heat transfer tube 20B in the flow direction of the refrigerant.
  • FIG. 20 is a schematic view schematically showing an example of the shape of the end portion of the heat transfer tube 20B provided in the heat exchanger 1B.
  • FIG. 21 is a schematic view showing a state in which the cross section of the X region shown in FIG. 20 is enlarged. Based on FIG. 20 and FIG. 21, another example of the joining method of the heat exchanger tube 20B and the fin 30B is demonstrated. In addition, in FIG. 20, the state at the time of inserting the heat exchanger tube 20B in the fin 30B is illustrated.
  • the plurality of heat transfer pipes 20B are attached in parallel to the through holes 31B of the plurality of fins 30B arranged in parallel at the fin pitch P3.
  • one fin 30B is illustrated as an example.
  • a chamfered portion 21A is formed on the outer wall 21 at the insertion-side end of the heat transfer tube 20B to improve the insertability of the heat transfer tube 20B into the fin 30B.
  • the chamfered portion 21A is formed such that an angle ⁇ between a straight line L4 extending from the tube inner point A to the tube outer end B of the heat transfer tube 20B and the longitudinal direction (L5) of the fin 30B is an acute angle.
  • the insertability of the heat transfer tube 20B into the fins 30B can be improved. That is, when the heat transfer tubes 20B are inserted into the fins 30B, it is possible to prevent the heat transfer tubes 20B and the fins 30B from contacting each other and damaging each other. In addition, since the end on the insertion side of the heat transfer tube 20B is reduced, the insertion to the fin 30B is facilitated. Therefore, it is possible to improve manufacturing safety. Moreover, highly reliable heat exchanger 1B can be manufactured efficiently. Thus, the reliability of the created heat exchanger 1B is improved.
  • the header 40 is configured such that dh / th is 2 ⁇ / ⁇ P * (da / n / tp-1) ⁇ or more. Therefore, in the heat exchanger according to the first embodiment, the thickness of the outer wall portion 41 of the header 40 can be smaller than the inner diameter of the header 40. Therefore, according to the heat exchanger according to the first embodiment, it is possible to reduce the material cost by which the thickness of the outer wall portion 41 of the header 40 can be reduced.
  • the heat transfer tube 20 is brazed to the header 40 having a fluid flow passage inside. That is, in the method of manufacturing the heat exchanger according to the first embodiment, the pressurizing path can be sealed at the time of high-pressure gas supply without connecting the heat transfer pipe 20 to the header 40. Therefore, according to the method of manufacturing a heat exchanger according to the first embodiment, it is possible to expand the plurality of heat transfer tubes 20 without the header 40, and the header 40 has a pressure resistance equal to or higher than that of the heat transfer tubes 20. There is no need to have That is, the thickness of the outer wall portion 41 can be made thinner than the inner space 44 of the header 40. Thereby, the reliability of the heat exchanger according to the first embodiment can be secured while suppressing the weight increase of the heat exchanger according to the first embodiment.
  • the heat transfer tube 20 and the fin 30 are also brazed, so the adhesion between the heat transfer tube 20 and the fin 30 Can enhance the performance of the heat exchanger.
  • the length L1 of the first fin collar 311 is larger than the length L2 of the second fin collar 312, and the gap length L3 is the gap length L4. It is set larger than. Therefore, according to the method of manufacturing the heat exchanger according to the first embodiment, the adhesion between the heat transfer tube 20 and the fins 30 can be enhanced while maintaining the distance between the adjacent fins 30, and the performance of the heat exchanger can be improved. Can be improved.
  • the heat transfer tube 20 is fixed to the sealing device 70 by fitting the attachment portion 24 of the heat transfer tube 20 into the recess 72, the heat transfer tube 20 is sealed. It can be firmly fixed by the device 70, the degree of sealing is increased, and leakage of high pressure gas can be further suppressed. Therefore, according to the method of manufacturing a heat exchanger according to the first embodiment, it is possible to improve manufacturing safety while improving the pressurizing efficiency in the second step 52. In addition, a highly reliable heat exchanger can be manufactured efficiently.
  • the circular pipe portion of the circular pipe joint 80 is pressed down by the insertion portion 71 from the inner wall side and the outer wall side, so that the circular pipe joint 80 is reinforced by the sealing device 70.
  • the degree of sealing is increased, and the leakage of high pressure gas can be further suppressed. Therefore, according to the method of manufacturing a heat exchanger according to the first embodiment, it is possible to improve manufacturing safety while improving the pressurizing efficiency in the second step 52. In addition, a highly reliable heat exchanger can be manufactured efficiently.
  • the heat transfer tube 20 is inserted into the sealing device 70 by the region where the inner wall 22 of the heat transfer tube 20 is not provided being pressed from the inner wall side and the outer wall side by the insertion portion 71. It is fixed. Therefore, since the heat transfer tube 20 can be firmly fixed by the sealing device 70, the degree of sealing can be increased and leakage of high pressure gas can be further suppressed. Therefore, according to the method of manufacturing a heat exchanger according to the first embodiment, it is possible to improve manufacturing safety while improving the pressurizing efficiency in the second step 52. In addition, a highly reliable heat exchanger can be manufactured efficiently.
  • FIG. 22 is a schematic configuration diagram showing an example of the refrigerant circuit configuration of the refrigeration cycle apparatus 100. As shown in FIG. The case where the refrigeration cycle apparatus 100 is an air conditioner will be described as an example. In FIG. 22, the flow of the refrigerant during the cooling operation is indicated by a broken arrow, and the flow of the refrigerant during the heating operation is indicated by the solid arrow.
  • the refrigeration cycle apparatus 100 includes the compressor 101, the first heat exchanger 102, the first fan 105, the expansion device 103, the second heat exchanger 104, the second fan 106, and the flow path switching.
  • a device 107 is provided.
  • the compressor 101, the first heat exchanger 102, the expansion device 103, the second heat exchanger 104, and the flow path switching device 107 are connected by the refrigerant pipe 110 to form a refrigerant circuit.
  • the first heat exchanger 102 and the second heat exchanger 104 is the heat exchanger according to the first embodiment.
  • the compressor 101 compresses a refrigerant.
  • the refrigerant compressed by the compressor 101 is discharged and sent to the flow path switching device 107.
  • the compressor 101 can be configured by a rotary compressor, a scroll compressor, a screw compressor, a reciprocating compressor, or the like.
  • the first heat exchanger 102 functions as a condenser during heating operation and functions as an evaporator during cooling operation.
  • the first heat exchanger 102 is a finned tube type heat exchanger, a microchannel heat exchanger, a shell and tube type heat exchanger, a heat pipe type heat exchanger, a double pipe type heat exchanger, or a plate heat exchanger. And so on.
  • the first heat exchanger 102 is a finned tube heat exchanger.
  • the expansion device 103 expands and reduces the pressure of the refrigerant having passed through the first heat exchanger 102 or the second heat exchanger 104.
  • the expansion device 103 may be configured by an electric expansion valve or the like capable of adjusting the flow rate of the refrigerant.
  • As the expansion device 103 not only a motorized expansion valve but also a mechanical expansion valve employing a diaphragm in a pressure receiving portion, a capillary tube or the like can be applied.
  • the second heat exchanger 104 functions as an evaporator during heating operation and functions as a condenser during cooling operation.
  • the first heat exchanger 102 is a finned tube type heat exchanger, a microchannel heat exchanger, a shell and tube type heat exchanger, a heat pipe type heat exchanger, a double pipe type heat exchanger, or a plate heat exchanger. And so on.
  • the second heat exchanger 104 is a finned tube heat exchanger.
  • the flow path switching device 107 switches the flow of the refrigerant in the heating operation and the cooling operation. That is, the flow path switching device 107 is switched to connect the compressor 101 and the first heat exchanger 102 during heating operation, and connects the compressor 101 and the second heat exchanger 104 during cooling operation. It is switched.
  • the flow path switching device 107 may be configured by a four-way valve. However, a combination of a two-way valve or a three-way valve may be employed as the flow path switching device 107.
  • the first fan 105 is attached to the first heat exchanger 102 and supplies air, which is a heat exchange fluid, to the first heat exchanger 102.
  • the second fan 106 is attached to the second heat exchanger 104 and supplies air, which is a heat exchange fluid, to the second heat exchanger 104.
  • the cooling operation performed by the refrigeration cycle apparatus 100 will be described.
  • the compressor 101 when the compressor 101 is driven, the refrigerant in a high temperature / high pressure gas state is discharged from the compressor 101.
  • the refrigerant flows according to the broken arrow.
  • the high temperature / high pressure gas refrigerant (single phase) discharged from the compressor 101 flows into the second heat exchanger 104 functioning as a condenser via the flow path switching device 107.
  • the second heat exchanger 104 heat exchange is performed between the inflowing high-temperature and high-pressure gas refrigerant and the air supplied by the second fan 106, and the high-temperature and high-pressure gas refrigerant is condensed to a high pressure liquid. It becomes a refrigerant (single phase).
  • the high-pressure liquid refrigerant delivered from the second heat exchanger 104 is converted by the expansion device 103 into a two-phase refrigerant of low-pressure gas refrigerant and liquid refrigerant.
  • the two-phase refrigerant flows into the first heat exchanger 102 that functions as an evaporator.
  • heat exchange is performed between the inflowing two-phase refrigerant and the air supplied by the first fan 105, and the liquid refrigerant in the two-phase refrigerant is evaporated to evaporate. It is a low pressure gas refrigerant (single phase). By this heat exchange, the air conditioning target space is cooled.
  • the low-pressure gas refrigerant sent from the first heat exchanger 102 flows into the compressor 101 via the flow path switching device 107, is compressed and becomes a high-temperature and high-pressure gas refrigerant, and is discharged again from the compressor 101. Hereinafter, this cycle is repeated.
  • the heating operation performed by the refrigeration cycle apparatus 100 will be described.
  • the compressor 101 when the compressor 101 is driven, the refrigerant in a high temperature / high pressure gas state is discharged from the compressor 101.
  • the refrigerant flows according to the solid arrow.
  • the high temperature / high pressure gas refrigerant (single phase) discharged from the compressor 101 flows into the first heat exchanger 102 functioning as a condenser via the flow path switching device 107.
  • the first heat exchanger 102 heat exchange is performed between the inflowing high temperature / high pressure gas refrigerant and the air supplied by the first fan 105, and the high temperature / high pressure gas refrigerant is condensed to a high pressure It becomes a refrigerant (single phase). By this heat exchange, the air conditioning target space is heated.
  • the high-pressure liquid refrigerant delivered from the first heat exchanger 102 is converted by the expansion device 103 into a two-phase refrigerant of low-pressure gas refrigerant and liquid refrigerant.
  • the two-phase refrigerant flows into the second heat exchanger 104 which functions as an evaporator.
  • heat exchange is performed between the inflowing two-phase refrigerant and the air supplied by the second fan 106, and the liquid refrigerant in the two-phase refrigerant is evaporated to evaporate. It is a low pressure gas refrigerant (single phase).
  • the low-pressure gas refrigerant sent from the second heat exchanger 104 flows into the compressor 101 via the flow path switching device 107, is compressed and becomes a high-temperature and high-pressure gas refrigerant, and is discharged again from the compressor 101. Hereinafter, this cycle is repeated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

熱交換器は、断面扁平形状であり、内部に内穴が複数形成されている複数本の伝熱管と、複数本の伝熱管が接合された複数枚のフィンと、複数本の伝熱管に接続され、内部に流体の流通流路を有するヘッダと、を備え、伝熱管の断面長軸をda、伝熱管の内穴の個数をn、伝熱管の外壁の肉厚をtp、伝熱管の必要耐圧をPとし、ヘッダの内径をdh、ヘッダの外壁部の肉厚をth、ヘッダの引張強さをσとしたとき、ヘッダは、dh/thが、2σ/{P*(da/n/tp-1)}以上に構成されている。

Description

熱交換器、冷凍サイクル装置、及び、熱交換器の製造方法
 本発明は、ヘッダを備えた熱交換器、この熱交換器を備えた冷凍サイクル装置、及び、ヘッダを備えた熱交換器の製造方法に関するものである。
 冷凍サイクル装置に用いられる熱交換器として、フィンピッチ間隔を介して並べられた複数枚の板状のフィン、及び、円形状もしくは扁平形状の複数本の伝熱管から構成されるプレートフィンチューブ型熱交換器が知られている。また、波状のフィン、及び、扁平形状の伝熱管から構成されるコルゲートフィンチューブ型熱交換器も知られている。
 なお、扁平形状の伝熱管とは、縦幅(断面短軸方向)よりも横幅(断面長軸方向)を大きくした形状であって、内部に複数の流体流路が形成されている伝熱管のことである。断面扁平形状の伝熱管を、扁平管と称するものとする。また、断面円形状の伝熱管を、円管と称するものとする。
 コルゲートフィンチューブ型熱交換器は、波状のフィン及び扁平形状の伝熱管を交互に積層するように配置した構成が一般的である。
 一方、プレートフィンチューブ型熱交換器は、伝熱管が、フィンに形成されている貫通穴又は切欠部に挿入するように配置された構成となっている。伝熱管は、フィンの並び方向に沿って延びるようにフィンの貫通穴又は切欠部に取り付けられる。切欠部は、フィンの一側面を開放するように形成されている。切欠部に挿入される伝熱管は、開放された側面から切欠部に挿入されることで、フィンに取り付けられる。
 これらの熱交換器では、熱交換を効率的に行うために、細径化された伝熱管を使用する場合がある。そのような伝熱管として、扁平管が使用される場合がある。扁平管の内部には、微細に区切られた多数の流路が並列に形成されている。扁平管の内部に形成されている流路を、内部流路と称するものとする。
 また、内部に複数の流路が形成された伝熱管を備えた熱交換器、及び、内面に溝が形成された伝熱管を備えた熱交換器も知られている。このような熱交換器では、伝熱管の内部に複数の流路を形成したり、伝熱管の内面に溝を形成したりすることによって、熱交換される表面積を増やし、熱交換性能を向上させている。
 また、熱交換器においては、ヘッダ(分配器)を備えたものが知られている。このような熱交換器は、各伝熱管の端部が、これら伝熱管とともに冷媒流路を形成するヘッダに接続されている。
 そして、熱交換器では、フィンの間を流動する空気等の熱交換流体と、伝熱管内を流動する水又は冷媒等の被熱交換流体と、の間で熱交換が実行される。
 コルゲートフィンチューブ型熱交換器は、伝熱管と波状フィンとを交互に積層し、これらを圧着したり、ロウ付けしたり、することにより相互に固定することで製造することができる。
 プレートフィンチューブ型熱交換器は、複数のフィンに対して、ヘアピン加工したチューブを挿入し、チューブの内部を押し広げることでチューブとフィンとを接合することで製造することができる。この製造方法を、拡管方法と称するものとする。
 また、プレートフィンチューブ型熱交換器は、チューブとフィンとをロウ付けすることにより固定することで製造することができる。
 拡管方法としては、伝熱管に剛体棒を挿入して、伝熱管を機械的に内側から押し広げる方法が知られている。この拡管方法を、機械拡管方法と称するものとする。
 また、拡管方法としては、伝熱管に流体を流し込み、伝熱管内の圧力を高めることにより伝熱管の内側から押し広げる方法が知られている。この拡管方法を、流体圧拡管方法と称するものとする。
 プレートフィンチューブ型熱交換器において、円管を用いる場合は、機械拡管方法が主流となっている。
 一方、プレートフィンチューブ型熱交換器において、扁平管を用いる場合は、所定のフィンピッチで並べられたフィンに扁平管を挿入した後に、ロウ付けにより接合する方法が一般的である。これは、扁平管の微細に区切られた多数の並行流路に対して、剛体棒を挿入して拡管することが非常に困難であることが起因している。
 ロウ付けにより接合する方法では、ロウ付けに用いる炉のような大型設備が必要となり、加えて大型設備を稼働させるためのエネルギーが莫大となり、製造コストが大きくなってしまう。
 一方で、流体圧拡管方法は、伝熱管及びフィン間の密着性が確保できるため、製造コストを低く抑えることができる。
 そこで、流体圧拡管方法を用いて熱交換器を製造するようにした技術が特許文献1に開示されている。
特許第4109444号公報
 流体圧拡管方法を採用して扁平管をフィンに取り付ける場合、扁平管の内部を高圧にするため、扁平管以外の加圧経路にも大きな圧力が作用することになる。そのため、流体の漏れ、局所への応力集中による破断を防ぐため、加圧経路を密封することが必要不可欠である。なお、扁平管以外の加圧経路としては、扁平管に接続されるヘッダ等が挙げられる。
 特許文献1では、低コストにて加圧経路を確保するため、扁平管とヘッダとを予め接続した状態で拡管するようにしている。つまり、ヘッダと扁平管との間をロウ付け等により接合することで、加圧経路を密封している。
 しかしながら、特許文献1では、ヘッダの耐圧が扁平管の内部流路と同等以上となるように、ヘッダの内部空間及びヘッダ壁厚を設計する必要があり、信頼性を確保するために要する費用が増大してしまう。
 また、冷凍サイクル装置の筐体サイズ等による構造的な制約が存在する場合、ヘッダのサイズが大きくなると、目的とする性能を得るため熱交換器が実現できなくなってしまう可能性がある。
 さらに、プレートフィンチューブ型熱交換器において、扁平管のヘッダ側の一端に対するだけでなく、扁平管の他端も同様に密封しておく必要がある。他端もロウ付けにより接合して密封する場合、ヘッダサイズの熱交換器性能に対する寄与はさらに大きくなってしまう。
 一方、ロウ付けを用いずに他端を密封する場合、扁平管の内部流路は微小であるため、扁平管の内側からの密封は困難であり、扁平管の外側からの密封手段を用意する必要がある。
 以上のように、ヘッダと扁平管とを接続した状態で流体圧拡管方法を採用すると、ヘッダの耐圧設計に起因して、ヘッダのコスト増及びヘッダの重量増、並びに、熱交換器の信頼性低下を招く可能性が高くなる。つまり、ヘッダの壁厚をヘッダ内部に作用する高圧力に対応させて厚くして、信頼性を確保する必要があり、その分、ヘッダのコスト及びヘッダの重量が増加してしまうことになる。
 このため、ヘッダのコスト増加を抑制しつつ、熱交換器の信頼性を確保できる熱交換器、冷凍サイクル装置、及び、熱交換器の製造方法が望まれている。
 本発明は、上記のような課題を解決するためになされたもので、ヘッダのコスト増加を抑制しつつ熱交換器の信頼性を向上できるようにした熱交換器、この熱交換器を備えた冷凍サイクル装置、及び、熱交換器の製造方法を提供するものである。
 本発明に係る熱交換器は、断面扁平形状であり、内部に内穴が複数形成されている複数本の伝熱管と、前記複数の伝熱管が接合された複数枚のフィンと、前記複数本の伝熱管に接続され、内部に流体の流通流路を有するヘッダと、を備え、前記伝熱管の断面長軸をda、前記伝熱管の前記内穴の個数をn、前記伝熱管の外壁の肉厚をtp、前記伝熱管の必要耐圧をPとし、前記ヘッダの内径をdh、前記ヘッダの外壁部の肉厚をth、前記ヘッダの引張強さをσとしたとき、前記ヘッダは、dh/thが、2σ/{P*(da/n/tp-1)}以上に構成されているものである。
 本発明に係る冷凍サイクル装置は、圧縮機、第1熱交換器、絞り装置、及び、第2熱交換器を冷媒配管によって接続した冷媒回路を有し、上記の熱交換器を、前記第1熱交換器及び前記第2熱交換器の少なくとも1つとして用いているものである。
 本発明に係る熱交換器の製造方法は、フィンとなる板状部材に複数の貫通穴を形成し、前記複数の貫通穴のそれぞれに伝熱管を挿入し、前記伝熱管の一方の端部を密封し、前記伝熱管の他方の端部からガスを供給して、前記伝熱管を拡管することで、前記伝熱管を前記フィンに接合し、前記伝熱管を前記フィンに接合した後に、内部に流体の流通流路を有するヘッダに前記伝熱管をロウ付けするものである。
 本発明に係る熱交換器によれば、ヘッダの外壁部の肉厚を、ヘッダの内径と比較してより小さくすることができ、その分の材料費が削減できる。
 本発明に係る冷凍サイクル装置によれば、上記の熱交換器を第1熱交換器及び第2熱交換器の少なくとも1つとして用いているので、その分、製造費用が低減できる。
 本発明に係る熱交換器の製造方法によれば、ヘッダを介さずに、複数の伝熱管を拡管することが可能となり、ヘッダに伝熱管と同等以上の耐圧強度を備えさせる必要がなくなる。
本発明の実施の形態1に係る熱交換器の構成の一例を示す概略斜視図である。 本発明の実施の形態1に係る熱交換器を空気の流れ方向から見た状態の一例を示す概略側面図である。 本発明の実施の形態1に係る熱交換器を冷媒の流れ方向から見た状態の一例を示す概略側面図である。 本発明の実施の形態1に係る熱交換器の構成の一例を示す概略斜視図である。 本発明の実施の形態1に係る熱交換器を冷媒の流れ方向から見た状態の一例を示す概略側面図である。 本発明の実施の形態1に係る熱交換器を構成している伝熱管の断面を示す概略断面図である。 本発明の実施の形態1に係る熱交換器を構成しているフィンの概略正面図である。 本発明の実施の形態1に係る熱交換器を構成しているフィンの概略側面図である。 本発明の実施の形態1に係る熱交換器を構成しているフィンの概略上面図である。 本発明の実施の形態1に係る熱交換器が備えるヘッダの構成例を示す概略斜視図である。 本発明の実施の形態1に係る熱交換器が備えるヘッダの断面構成の一例を示す概略断面図である。 本発明の実施の形態1に係る熱交換器が備えるヘッダの断面構成の他の一例を示す概略断面図である。 本発明の実施の形態1に係る熱交換器の製造方法の工程を概略的に示すフロー図である。 本発明の実施の形態1に係る熱交換器の製造方法における伝熱管の密封用器具への取り付け方の一例を説明するための説明図である。 本発明の実施の形態1に係る熱交換器の製造方法における伝熱管の密封用器具への取り付け方の他の一例を説明するための説明図である。 本発明の実施の形態1に係る熱交換器の製造方法における伝熱管の密封用器具への取り付け方の更に他の一例を説明するための説明図である。 本発明の実施の形態1に係る熱交換器が備えるフィンとなる板状部材に切り込みを設けた状態を示す図である。 本発明の実施の形態1に係る熱交換器が備えるフィンの貫通穴に伝熱管を挿入した状態を示す図である。 本発明の実施の形態1に係る熱交換器が備えるフィンの貫通穴に挿入した伝熱管を拡管した状態を示す図である。 本発明の実施の形態1に係る熱交換器が備える伝熱管の端部の形状の一例を模式的に示した概略図である。 図20に示すX領域を拡大した状態を示す概略図である。 本発明の実施の形態2に係る冷凍サイクル装置100の冷媒回路構成の一例を示す概略構成図である。
 以下、図面を適宜参照しながら本発明の実施の形態について説明する。なお、図1を含め、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。また、図1を含め、以下の図面において、同一の符号を付したものは、同一又はこれに相当するものであり、このことは明細書の全文において共通することとする。さらに、明細書全文に表わされている構成要素の形態は、あくまでも例示であって、これらの記載に限定されるものではない。
実施の形態1.
 図1は、本発明の実施の形態1に係る熱交換器の構成の一例を示す概略斜視図である。以下、実施の形態1に係る熱交換器を熱交換器1Aと称する。図2は、熱交換器1Aを空気の流れ方向から見た状態の一例を示す概略側面図である。図3は、熱交換器1Aを冷媒の流れ方向から見た状態の一例を示す概略側面図である。図1~図3に基づいて、熱交換器1Aの一例について説明する。
 図1及び図2に示すように、熱交換器1Aは、複数枚のフィン30Aと、複数本の伝熱管20Aと、ヘッダ40Aと、列間接続部材45Aと、を備えている。具体的には、熱交換器1Aは、二列構造の熱交換器であり、風上側熱交換器41A、風下側熱交換器42A、風上側ヘッダ40A-1、風下側ヘッダ40A-2、及び、列間接続部材45Aで構成されている。なお、風上側ヘッダ40A-1及び風下側ヘッダ40A-2を、まとめてヘッダ40Aと称する場合があるものとする。また、風上側熱交換器41A及び風下側熱交換器42Aは、同様に構成されている。以下において、熱交換器1Aとして説明されている場合には、風上側熱交換器41A及び風下側熱交換器42Aの双方を説明しているものとする。
 また、図1に示すように、風上側ヘッダ40A-1及び風下側ヘッダ40A-2は、風上側熱交換器41Aの紙面右側及び風下側熱交換器42Aの紙面右側に取り付けられる。さらに、図1に示すように、列間接続部材45Aは、風上側熱交換器41Aの紙面左側及び風下側熱交換器42Aの紙面左側に取り付けられる。このようにして、熱交換器1Aが作製される。
 風上側ヘッダ40A-1には、所定の間隔(ピッチP1)で伝熱管20Aが取り付けられる。同様に、風下側ヘッダ40A-2にも、所定の間隔(ピッチP1)で伝熱管20Aが取り付けられる。
 複数本の伝熱管20Aは、フィン30Aに形成されている複数の貫通穴31Aに貫通するように装着され、フィン30Aと交差する。伝熱管20Aは、図3に示すように、断面円形状に構成されている。複数本の伝熱管20Aは、冷媒の流通方向に対して直交する段方向(紙面上下方向)に所定間隔で配置される。
 上下に隣り合う伝熱管20Aの重力方向の距離は、フィン30Aの隣り合う貫通穴31AのピッチP2で一定としている。
 また、伝熱管20Aは、アルミニウム製又はアルミニウム合金製である。
 なお、図2及び図3では、伝熱管20Aの本数が10本である場合を例に示しているが、伝熱管20Aの本数を特に限定するものではない。図1~図3で示した記号については、以下の図面でも同様に使用する。
 また、フィン30Aの貫通穴31Aが形成される領域を伝熱管領域31Rと称する。
 さらに、フィン30Aの短手方向の両端部であって貫通穴31Aによって分断されずフィン30Aが長手方向に連なっている領域をフィン領域32Rと称する。
 フィン30Aは、長辺及び短辺を有する長方形状の板状部材で構成されている。そして、フィン30Aは、長手方向に、ピッチP1を置いて伝熱管領域31Rに複数の貫通穴31Aが貫通形成されている。
 なお、フィン30Aは、アルミニウム製又はアルミニウム合金製である。
 また、貫通穴31Aは、伝熱管20Aの断面形状に対応して円形状となっているが、形状を特定するものではない。
 以下の説明において、フィン30Aの長辺方向を長手方向、短辺方向を短手方向と称している。
 本発明の実施の形態1に係る熱交換器の他の構成について説明する。実施の形態1に係る熱交換器の他の構成を熱交換器1Bと称する。図4は、熱交換器1Bの構成の一例を示す概略斜視図である。図5は、熱交換器1Bを冷媒の流れ方向から見た状態の一例を示す概略側面図である。図6は、熱交換器1Bを構成している伝熱管20Bの断面を示す概略断面図である。図7は、熱交換器1Bを構成しているフィン30Bの概略正面図である。図8は、熱交換器1Bを構成しているフィン30Bの概略側面図である。図9は、熱交換器1Bを構成しているフィン30Bの概略上面図である。図4~図9に基づいて、熱交換器1Bの一例について説明する。
 図4に示すように、熱交換器1Bは、複数枚の板状のフィン30Bと、複数本の伝熱管20Bと、ヘッダ40Bと、列間接続部材45Bと、を備えている。具体的には、熱交換器1Bは、二列構造の熱交換器であり、風上側熱交換器41B、風下側熱交換器42B、風上側ヘッダ40B-1、風下側ヘッダ40B-2、及び、列間接続部材45Bで構成されている。なお、風上側ヘッダ40B-1及び風下側ヘッダ40B-2を、まとめてヘッダ40Bと称する場合があるものとする。また、風上側熱交換器41B及び風下側熱交換器42Bは、同様に構成されている。以下において、熱交換器1Bとして説明されている場合には、風上側熱交換器41B及び風下側熱交換器42Bの双方を説明しているものとする。
 また、図4に示すように、風上側ヘッダ40B-1及び風下側ヘッダ40B-2は、風上側熱交換器41Bの紙面右側及び風下側熱交換器42Bの紙面右側に取り付けられる。さらに、図4に示すように、列間接続部材45Bは、風上側熱交換器41Bの紙面左側及び風下側熱交換器42Bの紙面左側に取り付けられる。このようにして、熱交換器1Bが作製される。
 風上側ヘッダ40B-1には、伝熱管20Bが取り付けられる管取付部40Baが所定の間隔(ピッチP1)で複数開口形成されている。同様に、風下側ヘッダ40B-2には、伝熱管20Bが取り付けられる管取付部40Bbが所定の間隔(ピッチP1)で複数開口形成されている。
 複数本の伝熱管20Bは、フィン30Bに形成されている複数の貫通穴31Bに貫通するように装着され、フィン30Bと交差する。伝熱管20Bは、図6に示すように、断面扁平形状に構成されている。複数本の伝熱管20Bは、冷媒の流通方向に対して直交する段方向(紙面上下方向)に所定間隔で配置される。
 上下に隣り合う伝熱管20Bの重力方向の距離は、フィン30Bの隣り合う貫通穴31BのピッチP2で一定としている。
 また、伝熱管20Bは、アルミニウム製又はアルミニウム合金製である。
 なお、図5では、伝熱管20Bの本数が8本である場合を例に示しているが、伝熱管20Bの本数を特に限定するものではない。図4~図9で示した記号については、以下の図面でも同様に使用する。
 また、フィン30Bの貫通穴31Bが形成される領域を伝熱管領域31Rと称する。
 さらに、フィン30Bの短手方向の両端部であって貫通穴31Bによって分断されずフィン30Bが長手方向に連なっている領域をフィン領域32Rと称する。
 図7に示すように、フィン30Bは、長辺及び短辺を有する長方形状の板状部材で構成されている。そして、フィン30Bは、長手方向に、ピッチP1を置いて伝熱管領域31Rに複数の貫通穴31Bが貫通形成されている。貫通穴31Bを形成した際、貫通穴31Bの周縁部分がフィンカラーとして機能する。貫通穴31Bの長手方向のフィンカラーを第1のフィンカラー311、貫通穴31Bの短手方向のフィンカラーを第2のフィンカラー312と称する。そうすることで、図8及び図9に示すように、第2のフィンカラー312によって、複数枚のフィン30Bの間隔であるフィンピッチP3が規定される。
 図7では、貫通穴31Bが、フィン30Bの短手方向が長辺となり、フィン30Bの長手方向が短辺となる長方形状となっている状態を示している。なお、貫通穴31Bの具体的な形状を特定するものではなく、貫通穴31Bは、伝熱管20Bが挿通可能な形状であればよい。
 なお、フィン30Bは、アルミニウム製又はアルミニウム合金製である。
 また、貫通穴31Bは、長方形状となっているが、形状を特定するものではない。
 以下の説明において、フィン30Bの長辺方向を長手方向、短辺方向を短手方向と称している。
 伝熱管20Bについて詳しく説明する。
 伝熱管20Bは、図6に示すように、縦幅(断面短軸方向の長さ)よりも横幅(断面長軸方向の長さ)を大きくした形状に構成されている。複数の伝熱管20Bは、断面長軸の向きがフィン30Bの間を流れる流体の流通方向とされ、流通方向に対して直交する段方向(紙面上下方向)に所定間隔で配置される。なお、以下の説明において、伝熱管20Bの断面長軸、つまりフィン30Bの幅方向(短手方向)に伸びる部分を、伝熱管20Bの幅方向と称する場合がある。
 図6に示す伝熱管20Bは、縦幅(断面短軸方向の長さ)よりも横幅(断面長軸方向の長さ)を大きくした扁平形状の扁平管である場合を例に説明するが、伝熱管20Bが厳密に扁平形状に構成されている必要はなく、伝熱管20Bは縦幅よりも横幅が大きい形状であればよい。
 伝熱管20Bは、図6に示すように、上部を含む上面21a、下部を含む下面21c、幅方向の一方の端部(図6では紙面右側の端部)を含む一側部21b、及び、幅方向の他方の端部(図6では紙面左側の端部)を含む他側部21dを有している。上面21a、下面21c、一側部21b、及び、他側部21dを、外壁21と総称する。
 なお、図6では、上面21aと下面21cとが平行になっている場合を例に示しているが、上面21a及び下面21cの少なくとも一方を傾斜させて両者が平行になっていなくてもよい。また、伝熱管20Bの断面形状が楕円形状等であってもよい。
 また、伝熱管20Bは、複数の内壁22を有する。複数の内壁22は、伝熱管20Bの内部空間を仕切るように形成される。伝熱管20Bの内部に内壁22を形成することで、内壁22に区画された内穴23が複数形成されることになる。この内穴23が、冷媒が流通する内部流路として機能する。
 なお、内壁22を含む伝熱管20Bの内面に溝又はスリットを形成してもよい。これにより、内穴23を流れる冷媒との接触面積が増えることになり、熱交換効率が向上する。
 ヘッダ40A及びヘッダ40Bについて詳しく説明する。ヘッダ40A及びヘッダ40Bをまとめてヘッダ40として説明する。図10は、実施の形態1に係る熱交換器が備えるヘッダ40の構成例を示す概略斜視図である。図11は、実施の形態1に係る熱交換器が備えるヘッダ40の断面構成の一例を示す概略断面図である。図12は、実施の形態1に係る熱交換器が備えるヘッダ40の断面構成の他の一例を示す概略断面図である。
 なお、ここでは、熱交換器1Bに基づいて説明するが、熱交換器1Aにも同様に適用することができる。また、以下の説明において、伝熱管20A及び伝熱管20Bをまとめて伝熱管20と称する場合があるものとする。同様に、フィン30A及びフィン30Bをまとめてフィン30と称する場合があるものとする。また、貫通穴31A及び貫通穴31Bをまとめて貫通穴31と称する場合があるものとする。
 ヘッダ40としては、図10及び図11に示すように、内部が連通している円筒型ヘッダ40-1を採用することができる。円筒型ヘッダ40-1は、被熱交換流体の流通流路となる内部空間44が形成されている円筒部46を有している。つまり、円筒型ヘッダ40-1は、中空ヘッダである。円筒部46の外殻は、外壁部41によって形成される。また、外壁部41には、伝熱管20Bが接続される伝熱管接続部43が複数形成されている。伝熱管接続部43の形状は、伝熱管20Bが直接接続できるような形状となっている。
 なお、伝熱管20Bのヘッダ40側の端部に、円管ジョイントを接続する場合、伝熱管接続部43の形状は、円形状であってもよい。つまり、伝熱管接続部43の形状は、接続する伝熱管の形状に応じた形状であればよい。円管ジョイントについては、図15で説明する。
 ここで、伝熱管20Bの断面長軸をda、内穴23の個数をn、外壁21の肉厚をtp、必要耐圧をPとする。
 また、円筒型ヘッダ40-1の内径をdh、外壁部41の肉厚をth、引張強さをσとする。
 このとき、円筒型ヘッダ40-1は、dh/thを2σ/{P*(da/n/tp-1)}以上となるように構成されている。
 こうすることにより、円筒型ヘッダ40-1の外壁部41の肉厚を、円筒型ヘッダ40-1の内径と比較してより小さくすることができ、その分材料費を削減できる。
 なお、円筒型ヘッダ40-1の内径とは、円筒部46の内径を意味している。
 また、ヘッダ40としては、図12に示すように、複数の板状体90を有する積層型ヘッダ40-2を採用することができる。板状体90は、ベア材となる第1板状部材91a~第1板状部材91dと、クラッド材となる第2板状部材92a~第2板状部材92dと、が交互に積層されて形成される。板状体90の積層方向の最も外側には、第1板状部材91a、及び、第1板状部材91eが積層される。
 なお、以下では、第1板状部材91a~第1板状部材91eを総称して、複数の第1板状部材91と称する場合がある。同様に、第2板状部材92a~第2板状部材92dを総称して、複数の第2板状部材92と記載する場合がある。
 複数の第1板状部材91は、アルミニウム製である。複数の第1板状部材91には、ロウ材が塗布されない。複数の第1板状部材91のそれぞれには、分配合流流路65となる貫通穴が形成される。貫通穴は、複数の第1板状部材91の表裏を貫通する。複数の第1板状部材91と複数の第2板状部材92とが積層されることで、複数の第1板状部材91に形成された貫通穴が、被熱交換流体の流通流路となる分配合流流路65の一部として機能する。
 複数の第2板状部材92は、アルミニウム製であり、複数の第1板状部材91と比較して薄く形成されている。複数の第2板状部材92の少なくとも表裏面には、ロウ材が塗布される。複数の第2板状部材92のそれぞれには、分配合流流路65となる貫通穴が形成される。貫通穴は、複数の第2板状部材92の表裏を貫通する。複数の第1板状部材91と複数の第2板状部材92とが積層されることで、フック数の第2板状部材92に形成された貫通穴が、被熱交換流体の流通流路となる分配合流流路65の一部として機能する。
 第1板状部材91aに形成される貫通穴には、接続配管61aが接続される。第1板状部材91aの冷媒の流入側の面に口金等が設けられ、その口金等を介して接続配管61aが接続されてもよい。また、第1板状部材91aに形成される貫通穴の内周面が、接続配管61aの外周面と嵌合する形状であり、口金等を用いずに、接続配管61aが直接接続されてもよい。
 第1板状部材91eに形成される貫通穴には、接続配管62aが接続される。第1板状部材91eの冷媒の流入側の面に口金等が設けられ、その口金等を介して接続配管62aが接続されてもよい。また、第1板状部材91eに形成される貫通穴の内周面が、接続配管62aの外周面と嵌合する形状であり、口金等を用いずに、接続配管62aが直接接続されてもよい。なお、接続配管62aを第1板状部材91dの貫通穴にまで到達するように挿入して、接続配管62aを接続してもよい。
 第1板状部材91b及び第1板状部材91cに形成される貫通穴は、流路断面Z字状に貫通形成される。
 なお、流路断面とは、流路を流体の流れと直交する方向で切った断面である。
 第1板状部材91と第2板状部材92とが積層されると、第1板状部材91に形成されている貫通穴と、第2板状部材92に形成されている貫通穴と、が連通して分配合流流路65が形成される。つまり、第1板状部材91と第2板状部材92とが積層されると、隣接する貫通穴同士が連通するとともに、連通する貫通穴以外の部分が隣接する第1板状部材91又は第2板状部材92に閉塞され、分配合流流路65が形成されることになる。
 なお、図12では、分配合流流路65が、1つの流体入口部に対して4つの流体出口部を有している場合を例に図示しているが、分岐数を4分岐に限定するものではない。
 接続配管61aから冷媒が流入する場合の上段分岐部60aにおける冷媒の流れについて説明する。
 図12に示すように、接続配管61aを流れてきた冷媒は、第1板状部材91aの貫通穴を流体入口部として、上段分岐部60aの内部に流入する。この冷媒は、第2板状部材92aの貫通穴に流入する。
 第2板状部材92aの貫通穴に流入した冷媒は、第1板状部材91bの貫通穴の中心に流入する。第1板状部材91bの貫通穴の中心に流入した冷媒は、隣接して積層される第2板状部材92dの表面に当たって分岐し、第1板状部材91bの貫通穴の端部に流れる。第1板状部材91bの貫通穴の端部に至った冷媒は、第2板状部材92bの貫通穴を通過して、第1板状部材91cの貫通穴の中心に流入する。
 第1板状部材91cの貫通穴の中心に流入した冷媒は、隣接して積層される第2板状部材92cの表面に当たって分岐し、第1板状部材91cの貫通穴の端部に流れる。第1板状部材91cの貫通穴の端部に至った冷媒は、第2板状部材92cの貫通穴を通過して、第1板状部材91dの貫通穴に流入する。第1板状部材91dの貫通穴に流入した冷媒は、第2板状部材92dの貫通穴を通過し、第1板状部材91eの貫通穴内に位置する接続配管62aを介して伝熱管20Bに流入する。
 このように、ヘッダ40を積層型ヘッダ40-2とすることで、ヘッダ40における冷媒の分配の均一性が向上できる。
 次に、本発明の実施の形態1に係る熱交換器1Bの製造方法について説明する。図13は、熱交換器1Bの製造方法の工程を概略的に示すフロー図である。図14は、熱交換器1Bの製造方法における伝熱管の密封用器具70への取り付け方の一例を説明するための説明図である。図13及び図14に基づいて、熱交換器1Bの製造方法について説明する。なお、ここでは、熱交換器1Bの製造方法について説明するが、熱交換器1Aにも同様に適用することができる。
 図13に示すように、熱交換器1Bの製造方法は、大きく2つの工程(第1の工程51、及び、第2の工程52)に分けられる。なお、図13では、第1の工程51の前工程として準備工程50を図示している。
 準備工程50は、伝熱管20Bをフィン30Bの貫通穴31Bに挿入し、熱交換器1Bの仮組を実行する工程である。準備工程50では、フィンピッチP3で平行に配置されている複数のフィン30Bに、複数の伝熱管20Bを並列に貫通するよう取り付ける。この状態で、第1の工程51を実行する。
 第1の工程51は、伝熱管20Bを内部から押し広げるように伝熱管20Bの内部に圧力を作用させて伝熱管20Bを拡管する工程である。まず、準備工程50の後、高圧ガス容器60及び密封用器具70を伝熱管20Bのフィン30Bの並び方向の両端に取り付ける。こうして、高圧ガスを伝熱管20Bの内部に流入させる。この高圧ガスが伝熱管20Bの内部から伝熱管20Bを押し広げるように作用し、伝熱管20Bが拡管することになる。つまり、第1の工程51においては、ヘッダ40を介さずに、複数の伝熱管20Bを拡管するようにしている。
 密封用器具70への伝熱管20Bの取り付け方について図14を参照しながら説明する。密封用器具70は、伝熱管20Bが挿入される挿入部71を有している。挿入部71には、外周に向かって凹んでいる凹部72が形成されている。伝熱管20Bの密封用器具70側の端部の外周に、外側に向かって突出する凸形状の取付部24を設けておく。そして、伝熱管20Bを密封用器具70に取り付ける際、伝熱管20Bの取付部24を、密封用器具70の凹部72に嵌めこむ。こうすることにより、伝熱管20Bを密封用器具70に固定することが可能になる。
 ただし、密封用器具70の具体的な構成を特定するものではなく、伝熱管20Bを固定できるものであればよい。なお、密封用器具70の変形例については、図15及び図16で説明する。
 再び図13を参照する。第2の工程52は、拡管された複数本の伝熱管20Bに対して、ヘッダ40をロウ付け等により接合する工程である。
 第1の工程51で伝熱管20Bを拡管した際に、伝熱管20Bをフィン30Bに密着させてもよいが、第2の工程52において、伝熱管20Bとヘッダ40とをロウ付けすると同時に、伝熱管20Bとフィン30Bともロウ付けしてもよい。この場合、伝熱管20B及びフィン30Bの少なくともいずれかの表面にロウ材を塗布又は積層しておき、第2の工程52で伝熱管20Bとフィン30Bとをロウ付けすればよい。
 いずれの場合であっても、伝熱管20Bとフィン30Bとの密着性を高めることができ、熱交換器1Bの性能を向上させることができる。なお、いずれか一方の手段で伝熱管20Bとフィン30Bとを密着させてもよく、双方の手段で伝熱管20Bとフィン30Bとを密着させてもよい。
<熱交換器1Bの製造方法で使用する密封用器具70の変形例>
 図15は、熱交換器1Bの製造方法における伝熱管の密封用器具70への取り付け方の他の一例を説明するための説明図である。図16は、熱交換器1Bの製造方法における伝熱管の密封用器具70への取り付け方の更に他の一例を説明するための説明図である。図15及び図16に基づいて、熱交換器1Bの製造方法で使用する密封用器具70の変形例について説明する。
 図14では、密封用器具70に伝熱管20Bを直接挿入することで、伝熱管20Bを密封用器具70に取り付けるようにした場合を例に説明した。図15では、密封用器具70に伝熱管20Bを直接挿入するのではなく、円管ジョイント80を介して伝熱管20Bを密封用器具70に取り付けるようにしている。
 円管ジョイント80は、伝熱管20Bと密封用器具70とを接続するものである。具体的には、円管ジョイント80は、伝熱管20Bの断面形状を、密封用器具70に接続できる形状に変換するものである。ここでは、円管ジョイント80が、断面扁平形状の伝熱管20Bを、断面円形状の管が接続できる密封用器具70に接続している場合を例に示している。
 密封用器具70は、伝熱管20Bに接続された円管ジョイント80に対して、挿入部71によって円管部を内壁側及び外壁側から押さえ込むように構成されている。円管ジョイント80の円管部とは、円管ジョイント80の密封用器具70に挿入される断面円形状の部分である。この部分を密封用器具70で押さえ込むことで、伝熱管20Bを密封用器具70に取り付けられるようになっている。
 このような構成の密封用器具70を使用することで、第2の工程52において、密封用器具70及び円管ジョイント80により、円管ジョイント80の円管部を内側及び外側からより強固に固定できるので、密閉度が増し、高圧ガスの漏れを更に抑制できる。したがって、第2の工程52における加圧効率を向上させつつ、製造上の安全性も向上させることが可能になる。また、信頼性の高い熱交換器1Bを、効率よく、製造することができる。よって、作成された熱交換器1Bの信頼性が向上することになる。
 なお、円管ジョイント80が、本発明の「ジョイント」に相当する。
 ただし、伝熱管20Aを使用した場合であっても、ジョイントを介して伝熱管20Aを密封用器具70に取り付けるようにしてもよい。この場合、ジョイントの構成が、伝熱管20Aと密封用器具70に対応したものとなる。
 図16では、図14と同様に、密封用器具70に伝熱管20Bを直接挿入することで、伝熱管20Bを密封用器具70に取り付けるようにしている。図14では、伝熱管20Bに取付部24を設けた場合を例に説明したが、図16では、伝熱管20Bの密封用器具70側の端部の内壁22の一部を削除するようにしている。
 伝熱管20Bを密封用器具70の挿入部71に挿入する。密封用器具70は、伝熱管20Bの内壁22が存在しない領域において、挿入部71によって伝熱管20Bを内壁側及び外壁側から押さえ込むように構成されている。こうすることにより、伝熱管20Bを密封用器具70に固定することが可能になる。
 このような構成の密封用器具70を使用することで、第2の工程52において、密封用器具70により、伝熱管20Bの内壁22が存在していない領域を内側及び外側からより強固に固定できるので、密閉度が増し、高圧ガスの漏れを更に抑制できる。したがって、第2の工程52における加圧効率を向上させつつ、製造上の安全性も向上させることが可能になる。また、信頼性の高い熱交換器1Bを、効率よく、製造することができる。よって、作成された熱交換器1Bの信頼性が向上することになる。
<伝熱管20Bとフィン30Bとの接合方法の変形例>
 図17は、熱交換器1Bが備えるフィン30Bとなる板状部材に切り込みを設けた状態を示す図である。図18は、熱交換器1Bが備えるフィン30Bの貫通穴31Bに伝熱管20Bを挿入した状態を示す図である。図19は、熱交換器1Bが備えるフィン30Bの貫通穴31Bに挿入した伝熱管20Bを拡管した状態を示す図である。図17~図19に基づいて、伝熱管20Bとフィン30Bとの接合方法の一例について説明する。なお、フィン30Bとなる板状部材を板状部材30aとして示す。
 上述したように、貫通穴31Bの周縁部分はフィンカラーとして機能する。まず、図17に示すように、板状部材30aの伝熱管領域31Rとなる部分に切り込みを設ける。具体的には、板状部材30aの第1のフィンカラー311を切り起こす部分の境界に切り込み311aを設ける。また、板状部材30aの第2のフィンカラー312を切り起こす部分の境界に切り込み312aを設ける。
 切り込み311a及び切り込み312aを設けたら、図18に示すように、切り込み311a及び切り込み312aを介して板状部材30aを一つの方向に折り曲げる。図では、紙面手前側に板状部材30aが折り曲げられた状態を示している。こうすることで、貫通穴31Bの周縁部分が舌片状に切り起こされることになる。切り込み311aを介してフィン30Bの長手方向に切り起こされた舌片状部分が、第1のフィンカラー311として機能する。切り込み312aを介してフィン30Bの短手方向に切り起こされた舌片状部分が、第2のフィンカラー312として機能する。そして、板状部材30aの開放された部分が、貫通穴31Bとして機能することになる。
 第1のフィンカラー311のフィン30Bの短手方向の長さL1は、第2のフィンカラー312のフィン30Bの長手方向の長さL2よりも大きくなるように、第1のフィンカラー311及び第2のフィンカラー312が形成される。つまり、長さL1>長さL2の関係を満たすように、切り込み311a及び切り込み312aが形成される。
 また、第2のフィンカラー312と貫通穴31Bに挿入された伝熱管20Bとの隙間長さL3は、第1のフィンカラー311と貫通穴31Bに挿入された伝熱管20Bとの隙間長さL4よりも大きく設定されている。
 貫通穴31Bを形成したら、図18に示すように、伝熱管20Bを貫通穴31Bに挿入する。次に、図19に示すように、伝熱管20Bを拡管する。こうすることで、第1の工程51において、伝熱管20Bを拡管すると、第1のフィンカラー311が伝熱管20Bの断面長手方向の外壁21の表面と密着することになる。
 このように伝熱管20Bをフィン30Bに接合することで、第1のフィンカラー311により、伝熱管20Bの長手面におけるフィン30Bとの密着性を確保することができ、熱交換効率を向上させることができる。また、第2のフィンカラー312により、隣接するフィン30B間の距離を保ちながら、伝熱管20Bを拡管でき、熱交換器1Bの信頼性を確保することができる。よって、作成された熱交換器1Bの信頼性が向上することになる。
 なお、伝熱管20Bの長手面とは、冷媒の流れ方向における伝熱管20Bの外壁21の表面を意味している。
 図20は、熱交換器1Bが備える伝熱管20Bの端部の形状の一例を模式的に示した概略図である。図21は、図20に示すX領域の断面を拡大した状態を示す概略図である。図20及び図21に基づいて、伝熱管20Bとフィン30Bとの接合方法の別の一例について説明する。なお、図20では、フィン30Bに伝熱管20Bを挿入する際の状態を図示している。
 第1の工程51においては、フィンピッチP3で平行に配置された複数枚のフィン30Bの貫通穴31Bに、複数本の伝熱管20Bを並列に貫通するよう取り付ける。なお、図20では、1枚のフィン30Bを例示的に示している。このとき、伝熱管20Bの挿入側の端部(紙面左側の端部)が、貫通穴31Bの周縁に引っかかってしまうことが想定される。そこで、伝熱管20Bの挿入側の端部を、貫通穴31Bの周縁に引っかかりにくい形状とすることが好ましい。
 具体的には、伝熱管20Bの挿入側の端部における外壁21に、面取り部21Aを形成し、伝熱管20Bのフィン30Bへの挿入性を向上させている。面取り部21Aは、伝熱管20Bの管内側点Aから管外側端Bへ向かう直線L4と、フィン30Bの長手方向(L5)と、のなす角度θが、鋭角となるように形成されている。
 このようにすることで、角度θが鋭角であるため、伝熱管20Bのフィン30Bへの挿入性を向上できる。つまり、伝熱管20Bをフィン30Bに挿入するとき、伝熱管20Bとフィン30Bとが接触して各々が破損してしまうことを予防できる。また、伝熱管20Bの挿入側の端部が縮小しているため、フィン30Bへの挿入も容易になる。したがって、製造上の安全性も向上させることが可能になる。また、信頼性の高い熱交換器1Bを、効率よく、製造することができる。よって、作成された熱交換器1Bの信頼性が向上することになる。
<実施の形態1に係る熱交換器、及び、熱交換器の製造方法の奏する効果>
 実施の形態1に係る熱交換器は、ヘッダ40が、dh/thが、2σ/{P*(da/n/tp-1)}以上となるように構成されている。そのため、実施の形態1に係る熱交換器では、ヘッダ40の外壁部41の肉厚を、ヘッダ40の内径と比較してより小さくできることになる。したがって、実施の形態1に係る熱交換器によれば、ヘッダ40の外壁部41の肉厚を小さくできる分の材料費が削減できる。
 実施の形態1に係る熱交換器の製造方法は、伝熱管20をフィン30に接合した後に、内部に流体の流通流路を有するヘッダ40に伝熱管20をロウ付けする。つまり、実施の形態1に係る熱交換器の製造方法では、ヘッダ40に伝熱管20を接続することなく、高圧ガス供給時において加圧経路を密封できる。したがって、実施の形態1に係る熱交換器の製造方法によれば、ヘッダ40を介さずに、複数の伝熱管20を拡管することが可能となり、ヘッダ40に伝熱管20と同等以上の耐圧強度を備えさせる必要がない。すなわち、ヘッダ40の内部空間44に対して、外壁部41の厚さを薄くすることができる。これにより、実施の形態1に係る熱交換器の重量増大を抑制しつつ、実施の形態1に係る熱交換器の信頼性を確保することができる。
 実施の形態1に係る熱交換器の製造方法は、ヘッダ40と伝熱管20とをロウ付けする際に、伝熱管20とフィン30ともロウ付けするので、伝熱管20とフィン30との密着性を高めることができ、熱交換器の性能を向上させることができる。
 実施の形態1に係る熱交換器の製造方法は、第1のフィンカラー311の長さL1が、第2のフィンカラー312の長さL2よりも大きく、隙間長さL3が、隙間長さL4よりも大きく設定されている。そのため、実施の形態1に係る熱交換器の製造方法によれば、隣接するフィン30間の距離を保ちながら、伝熱管20とフィン30との密着性を高めることができ、熱交換器の性能を向上させることができる。
 実施の形態1に係る熱交換器の製造方法は、伝熱管20の取付部24を凹部72に嵌め込むことで、伝熱管20が密封用器具70に固定されるので、伝熱管20を密封用器具70により強固に固定でき、密閉度が増し、高圧ガスの漏れを更に抑制できる。したがって、実施の形態1に係る熱交換器の製造方法によれば、第2の工程52における加圧効率を向上させつつ、製造上の安全性も向上させることが可能になる。また、信頼性の高い熱交換器を、効率よく、製造することができる。
 実施の形態1に係る熱交換器の製造方法は、円管ジョイント80の円管部が挿入部71によって内壁側及び外壁側から押さえ込まれることで、円管ジョイント80が密封用器具70により強固にできるので、密閉度が増し、高圧ガスの漏れを更に抑制できる。したがって、実施の形態1に係る熱交換器の製造方法によれば、第2の工程52における加圧効率を向上させつつ、製造上の安全性も向上させることが可能になる。また、信頼性の高い熱交換器を、効率よく、製造することができる。
 実施の形態1に係る熱交換器の製造方法は、伝熱管20の内壁22を有さない領域が挿入部71によって内壁側及び外壁側から押さえ込まれることで、伝熱管20が密封用器具70に固定される。
 そのため、伝熱管20を密封用器具70により強固に固定できるので、密閉度が増し、高圧ガスの漏れを更に抑制できる。したがって、実施の形態1に係る熱交換器の製造方法によれば、第2の工程52における加圧効率を向上させつつ、製造上の安全性も向上させることが可能になる。また、信頼性の高い熱交換器を、効率よく、製造することができる。
 実施の形態1に係る熱交換器の製造方法は、伝熱管20の一方の端部における外壁21に、角度θが鋭角となる面取り部21Aが形成されているので、伝熱管20とフィン30との接触を抑制しつつ、伝熱管20のフィン30への挿入を容易にできる。
実施の形態2.
 本発明の実施の形態2に係る冷凍サイクル装置100について説明する。図22は、冷凍サイクル装置100の冷媒回路構成の一例を示す概略構成図である。なお、冷凍サイクル装置100が空気調和装置である場合を例として説明する。図22では、冷房運転時の冷媒の流れを破線矢印で示し、暖房運転時の冷媒の流れを実線矢印で示している。
<冷凍サイクル装置100の構成>
 図22に示すように、冷凍サイクル装置100は、圧縮機101、第1熱交換器102、第1ファン105、絞り装置103、第2熱交換器104、第2ファン106、及び、流路切替装置107を備えている。圧縮機101、第1熱交換器102、絞り装置103、第2熱交換器104、及び、流路切替装置107が、冷媒配管110によって接続され、冷媒回路が形成されている。
 なお、第1熱交換器102及び第2熱交換器104の少なくとも一方が、実施の形態1に係る熱交換器であるものとする。
 圧縮機101は、冷媒を圧縮するものである。圧縮機101で圧縮された冷媒は、吐出されて流路切替装置107へ送られる。圧縮機101は、ロータリ圧縮機、スクロール圧縮機、スクリュー圧縮機、又は、往復圧縮機等で構成することができる。
 第1熱交換器102は、暖房運転時には凝縮器として機能し、冷房運転時には蒸発器として機能するものである。第1熱交換器102は、フィンチューブ型熱交換器、マイクロチャネル熱交換器、シェルアンドチューブ式熱交換器、ヒートパイプ式熱交換器、二重管式熱交換器、又は、プレート熱交換器等で構成することができる。なお、第1熱交換器102として実施の形態1に係る熱交換器を適用する場合は、第1熱交換器102はフィンチューブ型熱交換器ということになる。
 絞り装置103は、第1熱交換器102又は第2熱交換器104を経由した冷媒を膨張させて減圧するものである。絞り装置103は、冷媒の流量を調整可能な電動膨張弁等で構成するとよい。なお、絞り装置103としては、電動膨張弁だけでなく、受圧部にダイアフラムを採用した機械式膨張弁、又は、キャピラリーチューブ等を適用することも可能である。
 第2熱交換器104は、暖房運転時には蒸発器として機能し、冷房運転時には凝縮器として機能するものである。第1熱交換器102は、フィンチューブ型熱交換器、マイクロチャネル熱交換器、シェルアンドチューブ式熱交換器、ヒートパイプ式熱交換器、二重管式熱交換器、又は、プレート熱交換器等で構成することができる。なお、第2熱交換器104として実施の形態1に係る熱交換器を適用する場合は、第2熱交換器104はフィンチューブ型熱交換器ということになる。
 流路切替装置107は、暖房運転と冷房運転とにおいて冷媒の流れを切り替えるものである。つまり、流路切替装置107は、暖房運転時には圧縮機101と第1熱交換器102とを接続するように切り替えられ、冷房運転時には圧縮機101と第2熱交換器104とを接続するように切り替えられる。なお、流路切替装置107は、四方弁で構成するとよい。ただし、二方弁又は三方弁の組み合わせを流路切替装置107として採用してもよい。
 第1ファン105は、第1熱交換器102に付設されており、第1熱交換器102に熱交換流体である空気を供給するものである。
 第2ファン106は、第2熱交換器104に付設されており、第2熱交換器104に熱交換流体である空気を供給するものである。
<冷凍サイクル装置100の動作>
 次に、冷凍サイクル装置100の動作について、冷媒の流れとともに説明する。ここでは、熱交換流体が空気であり、被熱交換流体が冷媒である場合を例に、冷凍サイクル装置100の動作について説明する。第1熱交換器102が空調対象空間の空気を冷却又は加温するものとして、冷凍サイクル装置100の動作を説明する。なお、冷房運転時の冷媒の流れは、図22の破線矢印で示している。また、暖房運転時の冷媒の流れは、図22に実線矢印で示している。
 まず、冷凍サイクル装置100が実行する冷房運転について説明する。
 図22に示すように、圧縮機101を駆動させることによって、圧縮機101から高温高圧のガス状態の冷媒が吐出する。以下、破線矢印にしたがって冷媒が流れる。圧縮機101から吐出した高温高圧のガス冷媒(単相)は、流路切替装置107を介して凝縮器として機能する第2熱交換器104に流れ込む。第2熱交換器104では、流れ込んだ高温高圧のガス冷媒と、第2ファン106によって供給される空気との間で熱交換が行われて、高温高圧のガス冷媒は、凝縮して高圧の液冷媒(単相)になる。
 第2熱交換器104から送り出された高圧の液冷媒は、絞り装置103によって、低圧のガス冷媒と液冷媒との二相状態の冷媒になる。二相状態の冷媒は、蒸発器として機能する第1熱交換器102に流れ込む。第1熱交換器102では、流れ込んだ二相状態の冷媒と、第1ファン105によって供給される空気との間で熱交換が行われて、二相状態の冷媒のうち液冷媒が蒸発して低圧のガス冷媒(単相)になる。この熱交換によって、空調対象空間が冷却されることになる。
 第1熱交換器102から送り出された低圧のガス冷媒は、流路切替装置107を介して圧縮機101に流れ込み、圧縮されて高温高圧のガス冷媒となって、再び圧縮機101から吐出する。以下、このサイクルが繰り返される。
 次に、冷凍サイクル装置100が実行する暖房運転について説明する。
 図22に示すように、圧縮機101を駆動させることによって、圧縮機101から高温高圧のガス状態の冷媒が吐出する。以下、実線矢印にしたがって冷媒が流れる。圧縮機101から吐出した高温高圧のガス冷媒(単相)は、流路切替装置107を介して凝縮器として機能する第1熱交換器102に流れ込む。第1熱交換器102では、流れ込んだ高温高圧のガス冷媒と、第1ファン105によって供給される空気との間で熱交換が行われて、高温高圧のガス冷媒は、凝縮して高圧の液冷媒(単相)になる。この熱交換によって、空調対象空間が加温されることになる。
 第1熱交換器102から送り出された高圧の液冷媒は、絞り装置103によって、低圧のガス冷媒と液冷媒との二相状態の冷媒になる。二相状態の冷媒は、蒸発器として機能する第2熱交換器104に流れ込む。第2熱交換器104では、流れ込んだ二相状態の冷媒と、第2ファン106によって供給される空気との間で熱交換が行われて、二相状態の冷媒のうち液冷媒が蒸発して低圧のガス冷媒(単相)になる。
 第2熱交換器104から送り出された低圧のガス冷媒は、流路切替装置107を介して圧縮機101に流れ込み、圧縮されて高温高圧のガス冷媒となって、再び圧縮機101から吐出する。以下、このサイクルが繰り返される。
<実施の形態2に係る冷凍サイクル装置100の奏する効果>
 実施の形態2に係る冷凍サイクル装置100は、実施の形態1に係る熱交換器を第1熱交換器102及び第2熱交換器104の少なくとも1つとして用いているので、熱交換器における信頼性の向上及びヘッダ40のコスト削減が実現できる。
 1A 熱交換器、1B 熱交換器、20A 伝熱管、20B 伝熱管、21 外壁、21A 面取り部、21a 上面、21b 一側部、21c 下面、21d 他側部、22 内壁、23 内穴、24 取付部、30A フィン、30B フィン、30a 板状部材、31A 貫通穴、31B 貫通穴、31R 伝熱管領域、32R フィン領域、40 ヘッダ、40-1 円筒型ヘッダ、40-2 積層型ヘッダ、40A ヘッダ、40A-1 風上側ヘッダ、40A-2 風下側ヘッダ、40B ヘッダ、40B-1 風上側ヘッダ、40B-2 風下側ヘッダ、40Ba 管取付部、40Bb 管取付部、41 外壁部、41A 風上側熱交換器、41B 風上側熱交換器、42A 風下側熱交換器、42B 風下側熱交換器、43 伝熱管接続部、44 内部空間、45A 列間接続部材、45B 列間接続部材、46 円筒部、50 準備工程、51 第1の工程、52 第2の工程、60 高圧ガス容器、60a 上段分岐部、61a 接続配管、62a 接続配管、65 分配合流流路、70 密封用器具、71 挿入部、72 凹部、80 円管ジョイント、90 板状体、91 第1板状部材、91a 第1板状部材、91b 第1板状部材、91c 第1板状部材、91d 第1板状部材、91e 第1板状部材、92 第2板状部材、92a 第2板状部材、92b 第2板状部材、92c 第2板状部材、92d 第2板状部材、100 冷凍サイクル装置、101 圧縮機、102 第1熱交換器、103 絞り装置、104 第2熱交換器、105 第1ファン、106 第2ファン、107 流路切替装置、110 冷媒配管、311 第1のフィンカラー、311a 切り込み、312 第2のフィンカラー、312a 切り込み、A 内側点、B 外側端、P1 ピッチ、P2 ピッチ、P3 フィンピッチ、θ 角度。

Claims (12)

  1.  断面扁平形状であり、内部に内穴が複数形成されている複数本の伝熱管と、
     前記複数本の伝熱管が接合された複数枚のフィンと、
     前記複数本の伝熱管に接続され、内部に流体の流通流路を有するヘッダと、を備え、
     前記伝熱管の断面長軸をda、前記伝熱管の前記内穴の個数をn、前記伝熱管の外壁の肉厚をtp、前記伝熱管の必要耐圧をPとし、
     前記ヘッダの内径をdh、前記ヘッダの外壁部の肉厚をth、前記ヘッダの引張強さをσとしたとき、
     前記ヘッダは、
     dh/thが、2σ/{P*(da/n/tp-1)}以上に構成されている
     熱交換器。
  2.  圧縮機、第1熱交換器、絞り装置、及び、第2熱交換器を冷媒配管によって接続した冷媒回路を有し、
     請求項1に記載の熱交換器を、前記第1熱交換器及び前記第2熱交換器の少なくとも1つとして用いている
     冷凍サイクル装置。
  3.  フィンとなる板状部材に複数の貫通穴を形成し、
     前記複数の貫通穴のそれぞれに伝熱管を挿入し、
     前記伝熱管の一方の端部を密封し、
     前記伝熱管の他方の端部からガスを供給して、前記伝熱管を拡管することで、前記伝熱管を前記フィンに接合し、
     前記伝熱管を前記フィンに接合した後に、内部に流体の流通流路を有するヘッダに前記伝熱管をロウ付けする
     熱交換器の製造方法。
  4.  前記伝熱管及び前記フィンの少なくとも1つの表面にロウ材を塗布又は積層し、
     前記ヘッダと前記伝熱管とをロウ付けする際に、前記伝熱管と前記フィンともロウ付けする
     請求項3に記載の熱交換器の製造方法。
  5.  前記板状部材の伝熱管領域となる部分に切り込みを設け、
     前記切り込みを介して前記板状部材を折り曲げてフィンカラーと前記貫通穴を形成し、
     前記フィンカラーのうち前記フィンの長手方向に切り起こされた前記フィンカラーを第1のフィンカラーとし、
     前記フィンカラーのうち前記フィンの短手方向に切り起こされた前記フィンカラーを第2のフィンカラーとしたとき、
     前記第1のフィンカラーの前記フィンの短手方向の長さL1が、前記第2のフィンカラーの前記フィンの長手方向の長さL2よりも大きく、
     前記第2のフィンカラーと前記貫通穴に挿入された前記伝熱管との隙間長さL3が、前記第1のフィンカラーと前記貫通穴に挿入された前記伝熱管との隙間長さL4よりも大きく設定されている
     請求項3又は4に記載の熱交換器の製造方法。
  6.  前記伝熱管の一方の端部を密封用器具に挿入することで前記伝熱管を密封するようになっており、
     前記伝熱管の一方の端部の外周には外側に向かって突出する取付部が形成され、
     前記密封用器具の前記伝熱管が挿入される挿入部には外側に向かって凹む凹部が形成され、
     前記伝熱管は、
     前記取付部が前記凹部に嵌め込むことで、前記密封用器具に固定される
     請求項3~5のいずれか一項に記載の熱交換器の製造方法。
  7.  前記伝熱管の一方の端部をジョイントを介して密封用器具に接続することで前記伝熱管を密封するようになっており、
     前記ジョイントは、
     前記密封用器具の挿入部に挿入される円管部が、前記挿入部によって内壁側及び外壁側から押さえ込まれることで、前記密封用器具に固定される
     請求項3~5のいずれか一項に記載の熱交換器の製造方法。
  8.  前記伝熱管の一方の端部を密封用器具に挿入することで前記伝熱管を密封するようになっており、
     前記伝熱管には、前記伝熱管の一方の端部において内部に内穴を形成する内壁を有さない領域が形成され、
     前記密封用器具には、前記伝熱管が挿入される挿入部が形成され、
     前記伝熱管は、
     前記内壁を有さない領域が、前記挿入部によって内壁側及び外壁側から押さえ込まれることで、前記密封用器具に固定される
     請求項3~5のいずれか一項に記載の熱交換器の製造方法。
  9.  前記伝熱管は、
     一方の端部における外壁に面取り部が形成されている
     請求項3~8のいずれか一項に記載の熱交換器の製造方法。
  10.  前記面取り部は、
     前記伝熱管の管内側点Aから管外側端Bへ向かう直線と、前記フィンの長手方向と、のなす角度θが、鋭角となるように形成されている
     請求項9に記載の熱交換器の製造方法。
  11.  前記伝熱管は、
     断面形状が扁平形状又は円形状である
     請求項3~10のいずれか一項に記載の熱交換器の製造方法。
  12.  前記ヘッダは、
     中空ヘッダ又は積層型ヘッダである
     請求項3~11のいずれか一項に記載の熱交換器の製造方法。
PCT/JP2017/034329 2017-09-22 2017-09-22 熱交換器、冷凍サイクル装置、及び、熱交換器の製造方法 WO2019058514A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2017/034329 WO2019058514A1 (ja) 2017-09-22 2017-09-22 熱交換器、冷凍サイクル装置、及び、熱交換器の製造方法
JP2019542917A JP6880206B2 (ja) 2017-09-22 2017-09-22 熱交換器の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/034329 WO2019058514A1 (ja) 2017-09-22 2017-09-22 熱交換器、冷凍サイクル装置、及び、熱交換器の製造方法

Publications (1)

Publication Number Publication Date
WO2019058514A1 true WO2019058514A1 (ja) 2019-03-28

Family

ID=65811077

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/034329 WO2019058514A1 (ja) 2017-09-22 2017-09-22 熱交換器、冷凍サイクル装置、及び、熱交換器の製造方法

Country Status (2)

Country Link
JP (1) JP6880206B2 (ja)
WO (1) WO2019058514A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020262378A1 (ja) * 2019-06-28 2020-12-30 ダイキン工業株式会社 熱交換器およびヒートポンプ装置

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5450467A (en) * 1977-09-09 1979-04-20 Ferodo Sa Assemblly consisting of fins and tubes for use as heat exchanger and method of making same
JPS6046866A (ja) * 1983-08-25 1985-03-13 Mitsubishi Heavy Ind Ltd フインと管の接続方法
JPH05187786A (ja) * 1992-02-20 1993-07-27 Nippondenso Co Ltd 空調装置用コンデンサ
JPH07127985A (ja) * 1993-11-04 1995-05-19 Toshiba Corp 熱交換器およびその製造方法
JPH09192765A (ja) * 1996-01-18 1997-07-29 Nippon Light Metal Co Ltd プレートフィン型熱交換器における偏平状熱交換管の作製方法
JP2004333028A (ja) * 2003-05-08 2004-11-25 Denso Corp 熱交換器
JP2004353954A (ja) * 2003-05-29 2004-12-16 Denso Corp 熱交換器
JP2005221117A (ja) * 2004-02-04 2005-08-18 Hidaka Seiki Kk 熱交換器の製造方法
JP2007093036A (ja) * 2005-09-27 2007-04-12 Matsushita Electric Ind Co Ltd 熱交換器及びその製造方法並びにその製造装置
JP2008232600A (ja) * 2007-03-23 2008-10-02 Mitsubishi Electric Corp 熱交換器及びこの熱交換器を備えた空気調和機
JP2009293849A (ja) * 2008-06-04 2009-12-17 Mitsubishi Electric Corp 熱交換器、及びこの熱交換器を用いた空気調和機
JP2015055398A (ja) * 2013-09-11 2015-03-23 ダイキン工業株式会社 熱交換器のロウ付け方法
JP2017026281A (ja) * 2015-07-28 2017-02-02 サンデンホールディングス株式会社 熱交換器
JP2017122549A (ja) * 2016-01-08 2017-07-13 株式会社デンソー 熱交換器及びその製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57195545A (en) * 1981-05-26 1982-12-01 Sanyo Electric Co Ltd Tube expanding jig for finned heat exchanger
JP2773459B2 (ja) * 1991-04-12 1998-07-09 日立電線株式会社 フィンアンドチューブ式熱交換器の製造方法
JPH06114543A (ja) * 1992-10-02 1994-04-26 Hitachi Cable Ltd 熱交換器の製造方法
JP3329222B2 (ja) * 1997-03-06 2002-09-30 日立電線株式会社 熱交換器の製造方法
JP2002361346A (ja) * 2001-06-05 2002-12-17 Fujitsu General Ltd 熱交換器の製造方法
JP4109444B2 (ja) * 2001-11-09 2008-07-02 Gac株式会社 熱交換器およびその製造方法

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5450467A (en) * 1977-09-09 1979-04-20 Ferodo Sa Assemblly consisting of fins and tubes for use as heat exchanger and method of making same
JPS6046866A (ja) * 1983-08-25 1985-03-13 Mitsubishi Heavy Ind Ltd フインと管の接続方法
JPH05187786A (ja) * 1992-02-20 1993-07-27 Nippondenso Co Ltd 空調装置用コンデンサ
JPH07127985A (ja) * 1993-11-04 1995-05-19 Toshiba Corp 熱交換器およびその製造方法
JPH09192765A (ja) * 1996-01-18 1997-07-29 Nippon Light Metal Co Ltd プレートフィン型熱交換器における偏平状熱交換管の作製方法
JP2004333028A (ja) * 2003-05-08 2004-11-25 Denso Corp 熱交換器
JP2004353954A (ja) * 2003-05-29 2004-12-16 Denso Corp 熱交換器
JP2005221117A (ja) * 2004-02-04 2005-08-18 Hidaka Seiki Kk 熱交換器の製造方法
JP2007093036A (ja) * 2005-09-27 2007-04-12 Matsushita Electric Ind Co Ltd 熱交換器及びその製造方法並びにその製造装置
JP2008232600A (ja) * 2007-03-23 2008-10-02 Mitsubishi Electric Corp 熱交換器及びこの熱交換器を備えた空気調和機
JP2009293849A (ja) * 2008-06-04 2009-12-17 Mitsubishi Electric Corp 熱交換器、及びこの熱交換器を用いた空気調和機
JP2015055398A (ja) * 2013-09-11 2015-03-23 ダイキン工業株式会社 熱交換器のロウ付け方法
JP2017026281A (ja) * 2015-07-28 2017-02-02 サンデンホールディングス株式会社 熱交換器
JP2017122549A (ja) * 2016-01-08 2017-07-13 株式会社デンソー 熱交換器及びその製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020262378A1 (ja) * 2019-06-28 2020-12-30 ダイキン工業株式会社 熱交換器およびヒートポンプ装置
JP2021008973A (ja) * 2019-06-28 2021-01-28 ダイキン工業株式会社 熱交換器およびヒートポンプ装置
US11740026B2 (en) 2019-06-28 2023-08-29 Daikin Industries, Ltd. Heat exchanger and heat pump apparatus

Also Published As

Publication number Publication date
JP6880206B2 (ja) 2021-06-02
JPWO2019058514A1 (ja) 2020-10-15

Similar Documents

Publication Publication Date Title
US9322602B2 (en) Heat exchanger having a plurality of plate-like fins and a plurality of flat-shaped heat transfer pipes orthogonal to the plate-like fins
JP6012857B2 (ja) 積層型ヘッダー、熱交換器、及び、空気調和装置
JP6005267B2 (ja) 積層型ヘッダー、熱交換器、及び、空気調和装置
JP6116683B2 (ja) 積層型ヘッダー、熱交換器、及び、空気調和装置
JP6573722B2 (ja) 熱交換器およびこの熱交換器を備えた冷凍サイクル装置
JP2005055108A (ja) 熱交換器
WO2017109933A1 (ja) 熱交換器、これを備えた空気調和機、及び扁平管uベンドの製造方法
US11199344B2 (en) Heat exchanger and air-conditioning apparatus
JP6931533B2 (ja) 熱交換器の製造方法
JP6711317B2 (ja) 熱交換器
EP3845851A1 (en) Heat exchanger, heat exchanger unit, and refrigeration cycle device
WO2019058514A1 (ja) 熱交換器、冷凍サイクル装置、及び、熱交換器の製造方法
EP3578913A1 (en) Heat exchanger and refrigeration cycle apparatus
WO2016121124A1 (ja) 熱交換器、及び冷凍サイクル装置
WO2019150864A1 (ja) 冷凍装置
JP6797304B2 (ja) 熱交換器及び空気調和機
JP6440867B2 (ja) 熱交換器およびそれを備えた空気調和機ならびに熱交換器の製造方法
US11988463B2 (en) Microchannel heat exchanger for appliance condenser
JP7462832B2 (ja) 熱交換器
EP4394303A1 (en) Heat exchanger
EP4043823A1 (en) Heat exchanger, heat exchanger unit, refrigeration cycle apparatus, and heat exchange member manufacturing method
WO2019207805A1 (ja) 熱交換器およびこれを備える空気調和機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17925724

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019542917

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17925724

Country of ref document: EP

Kind code of ref document: A1