Nothing Special   »   [go: up one dir, main page]

WO2019044398A1 - Resin sheet, semiconductor device and method for using resin sheet - Google Patents

Resin sheet, semiconductor device and method for using resin sheet Download PDF

Info

Publication number
WO2019044398A1
WO2019044398A1 PCT/JP2018/029431 JP2018029431W WO2019044398A1 WO 2019044398 A1 WO2019044398 A1 WO 2019044398A1 JP 2018029431 W JP2018029431 W JP 2018029431W WO 2019044398 A1 WO2019044398 A1 WO 2019044398A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
resin composition
layer
sheet
composition layer
Prior art date
Application number
PCT/JP2018/029431
Other languages
French (fr)
Japanese (ja)
Inventor
裕介 根津
康貴 渡邉
貴志 杉野
Original Assignee
リンテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by リンテック株式会社 filed Critical リンテック株式会社
Priority to CN201880026660.3A priority Critical patent/CN110536796A/en
Priority to KR1020197032509A priority patent/KR20200047447A/en
Priority to JP2019539121A priority patent/JPWO2019044398A1/en
Publication of WO2019044398A1 publication Critical patent/WO2019044398A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/12Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/06Interconnection of layers permitting easy separation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • C09J133/04Homopolymers or copolymers of esters
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/30Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier
    • C09J2301/312Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier parameters being the characterizing feature

Definitions

  • the present invention relates to a resin sheet used for forming an insulating film, a semiconductor device manufactured using the resin sheet, and a method of using the resin sheet.
  • the insulating film can be formed using a resin sheet provided with a curable resin composition layer.
  • Patent Document 1 discloses, as such a resin sheet, an adhesive film comprising a thermosetting resin composition layer and a support laminated on one side of the thermosetting resin composition layer, Furthermore, a method of manufacturing a component built-in circuit board using the adhesive film is disclosed.
  • Patent Document 2 discloses a method of manufacturing a multilayer printed wiring board using a sheet in which a resin composition layer is laminated on a base material. In the method, after laminating a resin composition layer on a circuit board, the resin composition layer is thermally cured to form an insulating layer, and then the substrate is peeled off from the insulating layer.
  • the resin sheet as described above usually contains a thermosetting resin such as an epoxy resin and a curing accelerator in the resin composition layer, the storage stability tends to be low, and therefore, it is necessary to store under refrigeration. There is a case.
  • the resin composition layer in the resin sheet is thermally cured to form a cured layer in a state where the support sheet is laminated on the resin composition layer, it may be difficult to peel the support sheet from the cured layer. For this reason, the peeling force at the time of peeling a support sheet from a hardened layer is reduced to a predetermined range by using as a support sheet the thing in which the field which touches a resin composition layer exfoliated by the silicone type release agent. It is also conceivable.
  • the resin sheet described above when using a resin composition layer having a high inorganic filler content or depending on the type of the resin component, there is also a resin sheet having a small tackiness (tack) on the surface of the resin composition layer.
  • tack small tackiness
  • the resin composition layer having such a small tack is protected by the support sheet treated with a silicone-based release agent as described above, the resin composition layer and the resin sheet are transported, stored, processed, etc. It becomes easy to generate float at the interface with the support sheet.
  • problems such as chipping and cracking occur in the resin composition layer during processing and transportation of the resin sheet.
  • resin sheets are often stored refrigerated, and the floating problem becomes significant when stored refrigerated in this manner.
  • the present invention has been made in view of such a situation, and even when the tack on the surface of the resin composition layer is small, the floating at the interface between the resin composition layer and the support sheet does not easily occur. And, even when used in a method of manufacturing a semiconductor device in which the support sheet is peeled off from the formed cured layer after heat curing of the resin composition layer, a resin sheet which easily peels the support sheet from the hardened layer is provided.
  • the purpose is to The invention also provides good quality semiconductor devices manufactured using such resin sheets, and methods of using such resin sheets.
  • the present invention is a resin sheet used for forming an insulating film, wherein the resin sheet is laminated on a first support sheet and one side of the first support sheet.
  • the resin composition layer is formed of a resin composition containing a thermosetting resin and inorganic fine particles, and the inorganic fine particles in the resin composition. Content is 50 mass% or more and 90 mass% or less
  • Said 1st support sheet is equipped with a support base material and the adhesive layer laminated
  • the first support sheet is provided with the support base and the pressure-sensitive adhesive layer, and the surface of the pressure-sensitive adhesive layer opposite to the support base is cured.
  • the first support sheet adheres well to the curable resin composition layer, whereby the interface between the curable resin composition layer and the first support sheet Even in the case where the first support sheet is peeled off from the cured layer formed by heat curing the curable resin composition layer, the peeling can be easily performed.
  • the resin composition layer contains a thermoplastic resin, and the content of the thermoplastic resin in the resin composition is 1.0% by mass or more and 30% by mass or less Is preferable (invention 2).
  • the said adhesive layer is comprised from the acrylic adhesive (invention 3).
  • the pressure-sensitive adhesive layer is composed of at least one pressure-sensitive adhesive selected from an active energy ray-curable pressure-sensitive adhesive, a thermally foamable pressure-sensitive adhesive and a thermosetting pressure-sensitive adhesive. Is preferred (invention 4).
  • the first cured layer is formed by curing the resin composition layer. It is preferable that peeling force (F12) at the time of peeling the support sheet of is 0.5 N / 25 mm or more and 3.0 N / 25 mm or less (invention 5).
  • the pressure-sensitive adhesive layer in the first support sheet preferably has a storage elastic modulus of 1 ⁇ 10 5 Pa or more at 100 ° C. and a measurement frequency of 1 Hz. (Invention 6).
  • the first support sheet has the pressure-sensitive adhesive layer surface adhered to a copper foil, is heated at 100 ° C. for 30 minutes, and is subsequently heated to 180 ° C. for 30 minutes
  • the adhesive strength at room temperature to the copper foil after heating at 190 ° C. for 1 hour is 0.7 N / 25 mm or more and 2.0 N / 25 mm or less
  • the pressure-sensitive adhesive layer surface is It is attached to a polyimide film, heated under conditions of 100 ° C. and 30 minutes, subsequently heated under conditions of 180 ° C. and 30 minutes, and further heated under conditions of 190 ° C. and 1 hour, room temperature relative to the polyimide film
  • the adhesive force in (7) is 0.7 N / 25 mm or more and 2.0 N / 25 mm or less.
  • the pressure-sensitive adhesive layer in the first support sheet preferably has a 5% weight loss temperature of 250 ° C. or more (Invention 8).
  • thermoplastic resin is preferably at least one selected from phenoxy resins, polyvinyl acetal resins and polyvinyl butyral resins (Invention 9).
  • the inorganic fine particles are preferably surface-treated with a surface treatment agent (Invention 10).
  • the average particle diameter of the inorganic fine particles is preferably 0.01 ⁇ m or more and 3.0 ⁇ m or less (Invention 11).
  • the thickness of the resin composition layer is preferably 5 ⁇ m or more and 80 ⁇ m or less (Invention 12).
  • the support substrate is preferably a resin support substrate having a glass transition temperature (Tg) of 50 ° C. or more (Invention 13).
  • the resin sheet preferably includes a second support sheet laminated on the surface of the resin composition layer opposite to the first support sheet (Invention 14) ).
  • the insulating film is preferably an insulation film in a buildup layer of the semiconductor device (Invention 16).
  • the semiconductor device is preferably at least one of a component built-in substrate, a multilayer printed wiring board, a fanout type wafer level package and a fanout type panel level package (Invention 17) .
  • the present invention provides an insulating film formed by curing the resin composition layer in the resin sheet (Inventions 1 to 17) (Invention 18).
  • the present invention provides a semiconductor device comprising a cured layer obtained by curing the resin composition layer in the above-mentioned resin sheet (inventions 1 to 17) as an insulating layer (invention 19).
  • the present invention is a method of using the resin sheet (inventions 1 to 17), wherein the step of curing the resin composition layer to obtain a cured layer, and after curing of the resin composition layer And removing the first support sheet from the cured layer.
  • a method of using the resin sheet is provided (Invention 20).
  • the resin sheet of the present invention even when the tack on the surface of the resin composition layer is small, it is difficult for the floating at the interface between the resin composition layer and the support sheet to occur, and the heat of the resin composition layer Even in the case of using the method for manufacturing a semiconductor device in which the supporting sheet is peeled off from the formed hardened layer after curing, the supporting sheet is easily peeled off from the hardened layer. Moreover, the semiconductor device which has favorable quality can be manufactured by using the resin sheet of this invention.
  • FIG. 1 shows a cross-sectional view of the resin sheet 1 according to the present embodiment.
  • the resin sheet 1 according to the present embodiment includes a first support sheet 11 and a curable resin composition layer 10 laminated on one side of the first support sheet 11 (hereinafter referred to as “resin composition Object layer 10 ").
  • the first support sheet 11 includes a support base 111 and an adhesive layer 112 laminated on one side of the support base 111, and the resin composition layer 10 has adhesion in the first support sheet 11. It is laminated on the surface on the agent layer 112 side.
  • the resin sheet 1 which concerns on this embodiment is provided with the 2nd support sheet 12 laminated
  • the resin composition layer 10 is laminated on the surface of the first support sheet 11 on the pressure-sensitive adhesive layer 112 side, the resin composition layer 10 and the first support sheet Lifting at the interface with 11 is less likely to occur.
  • the tack on the surface of the resin composition layer 10 is small, the floating at the interface between the resin composition layer 10 and the first support sheet 11 can be effectively suppressed.
  • production of the chipping and the crack in the resin composition layer 10 is suppressed at the time of storage or conveyance.
  • the resin composition layer 10 is laminated on the surface of the first support sheet 11 on the pressure-sensitive adhesive layer 112 side, so that the resin composition layer 10 is thermally cured.
  • the first support sheet 11 can be easily peeled off from the hardened layer.
  • the resin composition layer 10 in the present embodiment is formed of a thermosetting resin and a resin composition containing inorganic fine particles.
  • the content of the inorganic fine particles in the resin composition is 50% by mass or more and 90% by mass or less.
  • the resin composition layer 10 has curability, and a cured layer can be formed by curing the resin composition layer 10.
  • the cured layer formed by curing the resin composition layer 10 exhibits insulation. It is preferable that the resin composition layer 10 does not contain a conductive material from the viewpoint of easily forming a cured layer exhibiting an insulating property.
  • the cured layer preferably has a surface resistivity of 1 ⁇ 10 15 ⁇ / ⁇ or more, and more preferably 1 ⁇ 10 16 ⁇ / ⁇ or more.
  • thermosetting resin is not particularly limited, and examples thereof include epoxy resin, phenol resin, naphthol resin, active ester resin, benzoxazine resin, cyanate ester resin, etc. These can be used singly or in combination of two or more.
  • epoxy resin various known epoxy resins can be used. Specifically, glycidyl ethers of phenols such as bisphenol A, bisphenol F, resorcinol, phenyl novolac, cresol novolac; butanediol, polyethylene glycol, Glycidyl ethers of alcohols such as polypropylene glycol; Glycidyl ethers of carboxylic acids such as phthalic acid, isophthalic acid and tetrahydrophthalic acid; Glycidyl type or alkyl glycidyl in which active hydrogen bonded to a nitrogen atom such as aniline isocyanurate is substituted by glycidyl group Type epoxy resin; vinylcyclohexane diepoxide, 3,4-epoxycyclohexylmethyl-3,4-dicyclohexanecarboxylate, 2- (3,4-epoxy So-called cycloaliphatic epoxides, such as cyclohexyl
  • an epoxy resin having a biphenyl skeleton, a triphenylmethane skeleton, a dicyclohexadiene skeleton, a naphthalene skeleton and the like can also be used. These epoxy resins can be used singly or in combination of two or more.
  • glycidyl ether of bisphenol A bisphenol A type epoxy resin
  • epoxy resin having biphenyl skeleton biphenyl type epoxy resin
  • epoxy resin having naphthalene skeleton naphthalene type epoxy resin
  • phenolic resin examples include bisphenol A, tetramethyl bisphenol A, diallyl bisphenol A, biphenol, bisphenol F, diallyl bisphenol F, triphenylmethane-type phenol, tetrakisphenol, novolac-type phenol, cresol novolac resin, biphenylaralkyl skeleton
  • the phenol which has (biphenyl type phenol) etc. is mentioned, It is preferable to use a biphenyl type phenol among these.
  • These phenolic resins can be used singly or in combination of two or more.
  • an epoxy resin as curable resin it is preferable to use a phenol resin together from a viewpoint of the reactivity with an epoxy resin etc.
  • the content of the thermosetting resin in the resin composition is preferably 10% by mass or more, particularly preferably 15% by mass or more, and further preferably 20% by mass or more.
  • the content is preferably 60% by mass or less, particularly preferably 50% by mass or less, and further preferably 40% by mass or less.
  • the content is 10% by mass or more, curing of the resin composition layer 10 becomes more sufficient, and a stronger insulating film can be formed.
  • the content is 60% by mass or less, curing of the resin composition layer 10 in an unintended stage can be further suppressed, and the storage stability becomes more excellent.
  • the said content of a thermosetting resin is solid content conversion value.
  • the resin composition in the present embodiment may contain a thermoplastic resin.
  • the thermoplastic resin includes, for example, phenoxy resin, olefin resin, polyester resin, polyurethane resin, polyester urethane resin, acrylic resin, amide resin, styrene-isobutylene-styrene copolymer (SIS), etc. Styrene resin, silane resin, rubber resin, polyvinyl acetal resin, polyvinyl butyral resin, polyimide resin, polyamide imide resin, polyether sulfone resin, polysulfone resin, fluorine resin and the like can be mentioned. These can be used alone or in combination of two or more. Moreover, these thermoplastic resins may have a curable functional group.
  • a cured layer formed by curing the resin composition layer 10 By forming an electrode on top a rewiring layer may be provided.
  • the hardened layer is treated under severe conditions such as being exposed to an alkaline solution.
  • the cured layer may be dissolved, and the wiring formability such as a decrease in plating peel strength may be poor.
  • the thermoplastic resin does not contain an acrylic resin from the viewpoint of the wiring formation to the cured layer.
  • the thermoplastic resin it is preferable to use at least one selected from the group consisting of phenoxy resins, polyvinyl acetal resins, and polyvinyl butyral resins among the above-described thermoplastic resins.
  • a phenoxy resin For example, bisphenol A type, bisphenol F type, bisphenol A / bisphenol F copolymer type, bisphenol S type, bisphenol acetophenone type, novolak type, fluorene type, dicyclopentadiene type, norbornene Of naphthalene type, naphthalene type, anthracene type, adamantane type, terpene type, trimethylcyclohexane type, biphenol type and biphenyl type phenoxy resins are exemplified, and among these, it is preferable to use bisphenol A type phenoxy resin.
  • the terminal of the phenoxy resin may be any functional group such as phenolic hydroxyl group and epoxy group.
  • a phenoxy resin may be used individually by 1 type, or may use 2 or more types together.
  • the tack on the surface of the resin composition layer 10 tends to be small.
  • the resin sheet 1 according to the present embodiment even when the tack is small as described above, the resin composition layer 10 is laminated on the surface of the first support sheet 11 on the pressure-sensitive adhesive layer 112 side. By being present, the floating at the interface between the resin composition layer 10 and the first support sheet 11 can be effectively suppressed. Therefore, the resin sheet 1 which concerns on this embodiment is suitable also when using a phenoxy type-resin as a thermoplastic resin.
  • the weight average molecular weight (Mw) of the thermoplastic resin is preferably 100 or more, particularly preferably 1000 or more, and particularly preferably 10,000 or more.
  • the weight average molecular weight (Mw) of the thermoplastic resin is preferably 1,000,000 or less, particularly preferably 800,000 or less, and particularly preferably 100,000 or less.
  • the weight average molecular weight in this specification is a standard polystyrene conversion value measured by gel permeation chromatography (GPC) method.
  • the content of the thermoplastic resin in the resin composition is preferably 1.0% by mass or more, particularly preferably 3.0% by mass or more, and further preferably 5.0% by mass or more preferable.
  • the content is preferably 30% by mass or less, particularly preferably 20% by mass or less, and further preferably 10% by mass or less.
  • the said content of a thermoplastic resin is solid content conversion value.
  • the resin composition in this embodiment contains an inorganic fine particle by 50 mass% or more and 90 mass% or less.
  • the thermal expansion coefficient and the water absorption coefficient of the cured layer in which the resin composition layer 10 is cured become relatively small, whereby the resin composition layer 10 exhibits excellent flexibility, fluidity, and adhesiveness. It will be done.
  • the content of the inorganic fine particles in the resin composition is preferably 55% by mass or more, and particularly preferably 60% by mass or more.
  • the content is preferably 85% by mass or less, particularly 80% by mass from the viewpoint of the wiring formability in the case where the rewiring layer is formed in the cured layer formed by curing of the resin composition layer 10 It is preferable that it is the following.
  • the said content of inorganic fine particles is a solid content conversion value.
  • the inorganic fine particles for example, silica, alumina, glass, titanium oxide, aluminum hydroxide, magnesium hydroxide, calcium carbonate, magnesium carbonate, calcium silicate, magnesium silicate, calcium oxide, magnesium oxide, magnesium oxide, aluminum oxide, aluminum nitride, Inorganic fine particles composed of aluminum borate, boron nitride, crystalline silica, amorphous silica, mullite, cordierite and other composite oxides, montmorillonite, smectite, boehmite, talc, iron oxide, silicon carbide, zirconium oxide, etc. These can be used alone or in combination of two or more. Among these, it is preferable to use silica fine particles and alumina fine particles, and it is particularly preferable to use silica fine particles.
  • the inorganic fine particles are preferably surface-treated with a surface treatment agent.
  • a surface treatment agent include epoxysilanes, vinylsilanes, silazane compounds, alkoxysilanes and silane coupling agents. These may be used alone or in combination.
  • the minimum coating area of the surface treatment agent is preferably less than 550 m 2 / g, particularly preferably 520 m 2 / g or less, and further preferably 450 m 2 / g or less.
  • the lower limit value of the minimum covering area of the surface treatment agent is preferably 100 m 2 / g or more, particularly preferably 200 m 2 / g or more, and further preferably 300 m 2 / g or more . While the dispersibility and filling property of the inorganic fine particle in a resin composition improve by the minimum covering area being the said range, the formation property of the electrode with respect to the hardened layer which the resin composition layer 10 hardens
  • the minimum coverage area (m 2 / g) of the surface treatment agent refers to the area (m 2 ) of the monomolecular film when the monomolecular film is formed using 1 g of the surface treatment agent.
  • the minimum coverage area can be theoretically calculated from the structure of the surface treatment agent and the like.
  • Preferred examples of the surface treatment agent include epoxysilanes such as 3-glycidoxypropyltrimethoxysilane and vinylsilanes such as vinyltrimethoxysilane.
  • the average particle diameter of the inorganic fine particles is preferably 0.01 ⁇ m or more, particularly preferably 0.1 ⁇ m or more, and further preferably 0.3 ⁇ m or more.
  • the average particle diameter of the inorganic fine particles is preferably 3.0 ⁇ m or less, and particularly preferably 1.0 ⁇ m or less.
  • the maximum particle size of the inorganic fine particles is preferably 0.05 ⁇ m or more, and more preferably 0.5 ⁇ m or more. Further, the maximum particle size is preferably 5 ⁇ m or less, and particularly preferably 3 ⁇ m or less. When the maximum particle size of the inorganic fine particles is in the above range, the inorganic fine particles can be easily filled in the resin composition, and the coefficient of thermal expansion at the time of curing can be suppressed low. Further, as described above, when the rewiring layer is formed on the cured layer formed by curing of the resin composition layer 10, fine wiring is easily formed.
  • the average particle size and the maximum particle size of the inorganic fine particles in the present specification were measured by a dynamic light scattering method using a particle size distribution measuring apparatus (manufactured by Nikkiso Co., Ltd., product name “Nanotrac Wave-UT 151”). It will be a value.
  • the resin composition in the present embodiment preferably further contains a curing catalyst.
  • a curing catalyst examples include imidazole curing catalysts, amine curing catalysts, phosphorus curing catalysts and the like.
  • the curing catalysts described above may be used alone or in combination of two or more.
  • the content of the curing catalyst in the resin composition is preferably 0.01% by mass or more, particularly preferably 0.05% by mass or more, and further preferably 0.1% by mass or more preferable.
  • the content is preferably 2.0% by mass or less, particularly preferably 1.5% by mass or less, and further preferably 1.0% by mass or less.
  • the resin composition layer 10 can be cured more favorably.
  • the said content of a curing catalyst is a solid content conversion value.
  • the resin composition in the present embodiment may further contain a plasticizer, a stabilizer, a tackifier, a colorant, a coupling agent, an antistatic agent, an antioxidant, and the like.
  • the thickness of the resin composition layer 10 is preferably 5 ⁇ m or more, particularly preferably 10 ⁇ m or more, and further preferably 15 ⁇ m or more. Further, the thickness is preferably 80 ⁇ m or less, particularly preferably 60 ⁇ m or less, and further preferably 40 ⁇ m or less.
  • the tack on the surface of the resin composition layer 10 may be less than 5 g of probe tack at 25 ° C. measured using a probe with a diameter of 25 mm.
  • the resin composition layer 10 is on the pressure-sensitive adhesive layer 112 side of the first support sheet 11 By being laminated on the surface of the above, the floating at the interface between the resin composition layer 10 and the first support sheet 11 can be effectively suppressed.
  • the lower limit value of the probe tack at 25 ° C. is not particularly limited, and may be, for example, 0.00001 g.
  • the probe tack at 25 ° C. described above can be measured by a probe tack test. Specifically, a stainless steel probe with a diameter of 25 mm was contacted for 10 seconds with a contact load of 0.98 N / cm 2 on the surface of the resin composition layer 10 on the first support sheet 11 side under an environment of 25 ° C. After that, the probe is released from the test piece at a speed of 10 mm / sec, and can be measured as the value of the load at that time.
  • the first support sheet 11 in the present embodiment includes a support base 111 and a pressure-sensitive adhesive layer 112 laminated on one side of the support base 111.
  • Support base material 111 is not specifically limited,
  • the support base material 111 it is preferable to use a resin film, a nonwoven fabric, paper etc.
  • the resin film include polyester films such as polyethylene terephthalate film, polybutylene terephthalate film and polyethylene naphthalate film; polyolefin films such as polyethylene film and polypropylene film; polyimide film and the like.
  • the non-woven fabric include non-woven fabrics using fibers such as rayon, acrylic and polyester.
  • Examples of the above-mentioned paper include high-quality paper, glassine paper, impregnated paper, coated paper and the like. You may use these as 2 or more types of laminated bodies.
  • the material forming the resin film preferably has a glass transition temperature (Tg) of 50 ° C. or higher, particularly preferably 55 ° C. or higher, and more preferably 60 ° C. or higher.
  • Tg glass transition temperature
  • the upper limit of the glass transition temperature (Tg) is not particularly limited, but is preferably 500 ° C. or less, particularly preferably 400 ° C. or less.
  • the glass transition temperature (Tg) is a value measured using a differential scanning calorimeter.
  • the support base 111 constituting the first support sheet 11 is subjected to primer treatment, corona treatment, if desired, on one side or both sides, as desired, for the purpose of improving the adhesion with the pressure-sensitive adhesive layer 112 laminated on the surface.
  • primer treatment corona treatment
  • Surface treatment such as plasma treatment or oxidation treatment may be performed.
  • the thickness of the support base 111 is not particularly limited, but is preferably 10 ⁇ m or more, particularly preferably 15 ⁇ m or more, and further preferably 20 ⁇ m or more from the viewpoint of the handling property of the resin sheet 1 preferable.
  • the thickness is preferably 500 ⁇ m or less, particularly preferably 100 ⁇ m or less, and further preferably 75 ⁇ m or less.
  • the heat shrinkage ratio of the support substrate 111 in the MD direction and the CD direction when heated for 30 minutes at 150 ° C. is preferably 2.0% or less, and particularly preferably 1.5% or less. Is preferred.
  • the lower limit value of the thermal contraction rate in the MD direction of the support base 111 and the lower limit value of the thermal contraction rate in the CD direction are preferably as small as possible, and usually 0.01% or more is preferable.
  • the thermal contraction rate in the MD direction of the support base 111 and the thermal contraction rate in the CD direction of the support base 111 satisfy the above ranges, and the ratio of the thermal contraction rate in the MD direction and the thermal contraction rate in the CD direction (The thermal contraction rate in the MD direction / the thermal contraction rate in the CD direction) is preferably in the range of 0.03 or more and 30 or less, and particularly preferably in the range of 0.5 or more and 5.0 or less.
  • the thermal contraction rate in the MD direction / the thermal contraction rate in the CD direction is preferably in the range of 0.03 or more and 30 or less, and particularly preferably in the range of 0.5 or more and 5.0 or less.
  • the above-mentioned MD direction is a direction parallel to the direction in which the support base 111 is transported when the support base 111 is formed into a long film, and the CD direction is on the same surface of the support base 111. It is a direction orthogonal to the MD direction.
  • the thermal contraction rate mentioned above shall be measured by the following method based on JISZ1712.
  • the supporting substrate 111 is cut into a size of 20 mm wide and 200 mm long in the MD direction and the TD direction, suspended in a hot air oven at 150 ° C., and heated for 5 minutes. Then, the length after heating is measured, and the ratio (percentage) of the contracted length to the original length is taken as the thermal contraction rate.
  • the thermal contraction rate of the support base material 111 selects the material which satisfy
  • the support base material 111 it is preferable to select the thing to which a low molecular-weight component (oligomer) does not precipitate easily.
  • a supporting substrate 111 it is possible to suppress precipitation of the oligomer contained in the supporting substrate 111 by heating at the time of curing of the resin composition layer 10 and transfer to the cured layer, thereby achieving higher quality.
  • Semiconductor devices can be manufactured.
  • the degree of precipitation of the low molecular weight component is as follows: the resin sheet 1 is heated at 100 ° C. for 60 minutes and then heated at 170 ° C. for 60 minutes, and then the resin composition layer 10 is cured.
  • the first support sheet 11 is peeled off from the hardened layer, and the exposed surface of the hardened layer is observed with a digital microscope (500 ⁇ magnification) to confirm the presence or absence of residues derived from low molecular weight components. It can be judged by
  • the pressure-sensitive adhesive constituting the pressure-sensitive adhesive layer 112 is not particularly limited as long as the first support sheet 11 exhibits desired adhesiveness to the resin composition layer 10.
  • Examples of the pressure-sensitive adhesive constituting the pressure-sensitive adhesive layer 112 include acrylic pressure-sensitive adhesives, rubber-based pressure-sensitive adhesives, silicone-based pressure-sensitive adhesives, urethane-based pressure-sensitive adhesives, polyester-based pressure-sensitive adhesives, and polyvinyl ether-based pressure-sensitive adhesives. it can.
  • the pressure-sensitive adhesive constituting the pressure-sensitive adhesive layer 112 is preferably composed of at least one pressure-sensitive adhesive selected from an active energy ray-curable pressure-sensitive adhesive, a thermally foamable pressure-sensitive adhesive, and a thermosetting pressure-sensitive adhesive.
  • the first support sheet 11 exhibits desired adhesiveness to the resin composition layer 10, and the floating between the resin composition layer 10 and the first support sheet 11 is suppressed.
  • the above-mentioned adhesive can reduce the adhesive strength by irradiation or heating of active energy rays, whereby the first support sheet from the cured layer formed by curing the resin composition layer 10 It becomes possible to easily carry out peeling of 11, and it becomes possible to control the occurrence of chipping and cracking of the hardened layer.
  • acrylic-based pressure-sensitive adhesive is not particularly limited, it is a pressure-sensitive adhesive prepared using a pressure-sensitive adhesive composition P containing a (meth) acrylic acid ester polymer (A) Is preferred.
  • (meth) acrylic acid ester means both acrylic acid ester and methacrylic acid ester. Other similar terms are also the same.
  • the (meth) acrylic acid ester polymer (A) preferably contains, as a monomer constituting the polymer, a (meth) acrylic acid alkyl ester having 1 to 20 carbon atoms in the alkyl group. Thereby, the obtained adhesive can express desirable adhesiveness.
  • the (meth) acrylic acid alkyl ester having 1 to 20 carbon atoms in the alkyl group may be used alone or in combination of two or more. From the viewpoint of heat resistance, it is preferable to use a (meth) acrylic acid alkyl ester having 6 to 10 carbon atoms in the alkyl group as the above (meth) acrylic acid alkyl ester, and in particular, (meth) acrylic acid 2 Preference is given to using ethylhexyl.
  • the (meth) acrylic acid ester polymer (A) contains 10% by mass or more of (meth) acrylic acid alkyl ester having 1 to 20 carbon atoms in the alkyl group as a monomer unit constituting the polymer
  • the content is preferably 50% by mass or more, more preferably 70% by mass or more, particularly preferably 85% by mass or more, and still more preferably 90% by mass or more.
  • the (meth) acrylic acid ester polymer (A) contains, as a monomer unit constituting the polymer, an (meth) acrylic acid alkyl ester having 1 to 20 carbon atoms in the alkyl group at 99% by mass or less
  • the content is preferably 98% by mass or less, and more preferably 97% by mass or less.
  • the (meth) acrylic acid ester polymer (A) contains the monomer (reactive functional group containing monomer) which has a reactive functional group as a monomer which comprises the said polymer.
  • a reactive functional group containing monomer a hydroxyl group containing monomer, a carboxyl group containing monomer, an amino group containing monomer etc. are mentioned preferably.
  • One of these reactive functional group-containing monomers may be used alone, or two or more thereof may be used in combination.
  • the (meth) acrylic acid ester polymer (A) preferably contains 1% by mass or more of the reactive functional group-containing monomer as a monomer unit constituting the polymer, and particularly preferably 2% by mass or more It is preferable to contain 3 mass% or more preferably. Further, the (meth) acrylic acid ester polymer (A) preferably contains, as a monomer unit constituting the polymer, a reactive functional group-containing monomer at 30% by mass or less, and at 20% by mass or less It is more preferable that the content be 10% by mass or less, particularly preferably 7% by mass or less.
  • the (meth) acrylic acid ester polymer (A) may further contain another monomer as a monomer constituting the polymer.
  • the other monomer for example, (meth) acrylic acid ester having aliphatic ring, non-crosslinkable acrylamide, (meth) acrylic acid ester having non-crosslinkable tertiary amino group, vinyl acetate, styrene and the like It can be mentioned. These may be used alone or in combination of two or more.
  • a (meth) acrylic acid ester polymer (A) may be used individually by 1 type, and may be used combining 2 or more types.
  • the adhesive composition P for producing the said acrylic adhesive further contains a crosslinking agent (B), and the said acrylic adhesive is the (meth) acrylic acid ester polymer (A) mentioned above, It is preferable that it is what bridge
  • the crosslinker (B) may be any one that reacts with the reactive functional group possessed by the (meth) acrylic acid ester polymer (A).
  • an isocyanate crosslinker an epoxy crosslinker, an amine crosslinker Agent, melamine based crosslinking agent, aziridine based crosslinking agent, hydrazine based crosslinking agent, aldehyde based crosslinking agent, oxazoline based crosslinking agent, metal alkoxide based crosslinking agent, metal chelate based crosslinking agent, metal salt based crosslinking agent, ammonium salt based crosslinking agent Etc.
  • a crosslinking agent (B) can be used individually by 1 type or in combination of 2 or more types.
  • the content of the crosslinking agent (B) in the adhesive composition P is preferably 0.1 parts by mass or more, and 1 part by mass with respect to 100 parts by mass of the (meth) acrylic acid ester polymer (A).
  • the content is more preferably 2 parts by mass or more, still more preferably 3 parts by mass or more.
  • the content is preferably 20 parts by mass or less, particularly preferably 15 parts by mass or less, and further 10 parts by mass with respect to 100 parts by mass of the (meth) acrylic acid ester polymer (A). It is preferable that it is less than part.
  • the silicone-based pressure-sensitive adhesive is not particularly limited, and examples thereof include a pressure-sensitive adhesive containing dimethylpolysiloxane.
  • a pressure-sensitive adhesive composition containing an organopolysiloxane having an unsaturated group such as a vinyl group, a dimethylpolysiloxane having an SiH group as a crosslinking agent, and a platinum-based catalyst is cured.
  • addition polymerization type silicone-based pressure-sensitive adhesive or a silicone-based pressure-sensitive adhesive obtained by curing an organopolysiloxane with an organic peroxide such as benzoyl peroxide (BPO).
  • organic peroxide such as benzoyl peroxide (BPO)
  • addition polymerization type silicone pressure-sensitive adhesives are preferable.
  • the addition polymerization type silicone-based pressure-sensitive adhesive can be favorably formed by performing heating or the like for addition polymerization.
  • the active energy ray-curable adhesive cures by irradiation of active energy rays while exhibiting a predetermined adhesive power before irradiation of active energy rays.
  • the pressure-sensitive adhesive is not particularly limited as long as it is sufficiently reduced.
  • the active energy ray curable adhesive may contain an active energy ray curable polymer, and the active energy ray non-curable polymer (polymer having no active energy ray curable) and at least one or more polymers. Or a mixture of monomers and / or oligomers having an active energy ray-curable group of
  • the heat-foamable pressure-sensitive adhesive is not particularly limited as long as it is a pressure-sensitive adhesive which is foamed by heating to sufficiently reduce the adhesiveness while exhibiting a predetermined adhesiveness before heating.
  • a pressure-sensitive adhesive containing a pressure-sensitive adhesive component as a matrix and a foaming agent is preferable.
  • the heat-foamable pressure-sensitive adhesives are described in detail in JP-A-2004-277749, JP-A-2012-117040, JP-A-2010-094834, etc. Alternatively, it may be used as an adhesive in the present embodiment.
  • the first support sheet 11 in which the pressure-sensitive adhesive layer 112 is formed of a heat-foamable pressure-sensitive adhesive may be a commercially available product, and as an example, the product name "REVAALPHA" (manufactured by Nitto Denko Corporation) etc. Is preferably mentioned.
  • thermosetting adhesive is not particularly limited as long as it is a pressure-sensitive adhesive that cures by heating to sufficiently reduce the adhesion while exhibiting a predetermined adhesion before heating.
  • conventionally known materials such as a pressure-sensitive adhesive containing a pressure-sensitive adhesive component and a thermosetting resin can be used.
  • Examples of the pressure-sensitive adhesive component include acrylic pressure-sensitive adhesives, rubber pressure-sensitive adhesives, silicone pressure-sensitive adhesives, urethane pressure-sensitive adhesives and the like. One of these may be used alone, or two or more may be used in combination.
  • additives which are usually used, for example, refractive index modifiers, antistatic agents, tackifiers, silane coupling agents Antioxidants, UV absorbers, light stabilizers, softeners, fillers, light curing agents, photopolymerization initiators and the like can be added.
  • the pressure-sensitive adhesive constituting the pressure-sensitive adhesive layer 112 preferably contains, as a tackifier, a rubber-based resin having a reactive group.
  • a rubber-type resin the hydrogenation type polybutadiene resin which has a carboxyl group at the terminal, the hydrogenation type polybutadiene resin which has a hydroxyl group at the terminal, etc. are mentioned, for example.
  • the product name "CI1000” by Nippon Soda Co., Ltd. etc. is mentioned.
  • product names "GI1000”, "GI2000”, “GI3000” etc. made by Nippon Soda Co., Ltd. are mentioned.
  • the adhesive which comprises the adhesive layer 112 including the tackifier mentioned above, and also a resin composition layer
  • the adhesive residue can be prevented from remaining in the cured layer.
  • the content of the tackifier in the adhesive composition P is preferably 1 part by mass or more, particularly 5 parts by mass or more based on 100 parts by mass of the (meth) acrylic acid ester polymer (A). Is preferred. Further, the content is preferably 30 parts by mass or less, and particularly preferably 15 parts by mass or less, with respect to 100 parts by mass of the (meth) acrylic acid ester polymer (A).
  • the thickness of the pressure-sensitive adhesive layer 112 is preferably 1 ⁇ m or more, particularly preferably 5 ⁇ m or more, and further preferably 10 ⁇ m or more. Further, the thickness is preferably 500 ⁇ m or less, particularly preferably 100 ⁇ m or less, and further preferably 50 ⁇ m or less.
  • the pressure-sensitive adhesive layer 112 preferably has a storage elastic modulus of 1 ⁇ 10 5 Pa or more at 100 ° C. and a measurement frequency of 1 Hz. If the pressure-sensitive adhesive layer 112 has such a storage elastic modulus, after curing the resin composition layer 10 and forming a cured layer, the first support sheet 11 is more easily peeled off from the cured layer. It is possible to prevent the problem that the pressure-sensitive adhesive remains on the surface of the cured layer (so-called adhesive residue).
  • the upper limit of the storage elastic modulus when the measurement frequency is 1 Hz at 100 ° C. of the pressure-sensitive adhesive layer 112 is not particularly limited, but is preferably 1 ⁇ 10 7 Pa or less.
  • the storage elastic modulus is a value measured by a torsional shear method using a dynamic viscoelasticity measuring apparatus, and the details of the measuring method are as described in the examples to be described later.
  • the first support sheet 11 has a surface on the adhesive layer 112 side adhered to a copper foil, is heated under conditions of 100 ° C. and 30 minutes, and is subsequently heated under conditions of 180 ° C. and 60 minutes, It is preferable that the adhesion at room temperature with respect to is 0.7 N / 25 mm or more and 2.0 N / 25 mm or less.
  • the surface of the first support sheet 11 on the adhesive layer 112 side is attached to a polyimide film, heated at 100 ° C. for 30 minutes, and subsequently heated at 180 ° C. for 60 minutes.
  • the adhesion at room temperature to the film is preferably 0.7 N / 25 mm or more and 2.0 N / 25 mm or less.
  • the first support sheet 11 is more easily peeled off from the cured layer formed by heat curing the resin composition layer 10.
  • room temperature refers to a temperature of 22 ° C. or more and 24 ° C. or less.
  • the pressure-sensitive adhesive layer 112 is reduced by 5% from the viewpoint of effectively suppressing the adhesive residue caused by the deterioration of the pressure-sensitive adhesive layer 112 when the first support sheet 11 is peeled off from the cured layer after being heated.
  • the temperature is preferably 250 ° C. or more, more preferably 300 ° C. or more.
  • the resin sheet 1 according to the present embodiment preferably includes the second support sheet 12 laminated on the surface of the resin composition layer 10 opposite to the first support sheet 11.
  • the resin composition layer 10 can be protected from both sides by the first support sheet 11 and the second support sheet 12. As a result, appearance problems and the occurrence of chipping or cracking of the resin composition layer 10 are effectively suppressed.
  • the second support sheet 12 is not particularly limited, and for example, a polyester film such as polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, a plastic film such as polyolefin film such as polypropylene or polyethylene, high quality paper, glassine paper, impregnated paper And paper such as coated paper, non-woven fabric and the like. You may use these as 2 or more types of laminated bodies.
  • the second support sheet 12 may be subjected to surface treatment such as mud treatment or corona treatment.
  • the contact surface with the resin composition layer 10 in the 2nd support sheet 12 may be exfoliated by the exfoliation agent.
  • the release agent include silicone release agents, alkyd release agents, fluorine release agents, long chain alkyl release agents, olefin resin release agents, acrylic release agents, rubber release agents, and the like. Among these, it is preferable to use at least one selected from silicone-based release agents and alkyd-based release agents, and in particular, generation of floating between the second support sheet 12 and the resin composition layer 10 is prevented. In view of the above, it is more preferable to use an alkyd release agent.
  • the second support sheet 12 may have a pressure-sensitive adhesive layer on the side in contact with the resin composition layer 10.
  • the pressure-sensitive adhesive layer may be the same as the pressure-sensitive adhesive layer 112 included in the first support sheet 11.
  • the thickness of the second support sheet 12 is not particularly limited, but is usually 20 ⁇ m or more and 250 ⁇ m or less.
  • the peeling force (F11) at the time of peeling the first support sheet 11 from the resin composition layer 10 before curing is preferably 0.1 N / 25 mm or more, particularly 0.2 N / 25 mm or more Is preferably 0.3 N / 25 mm or more.
  • the peeling force (F11) is 0.1 N / 25 mm or more, floating of the first support sheet 11 and the resin composition layer 10 during storage (particularly during cold storage) or handling of the resin sheet 1 The occurrence is effectively suppressed.
  • the peeling force (F11) is preferably 3.0 N / 25 mm or less, particularly preferably 2.0 N / 25 mm or less, and further preferably 0.5 N / 25 mm or less.
  • the peeling force (F11) is 30 N / 25 mm.
  • the peeling force (F11) is in these ranges, it is possible to effectively suppress chipping and cracking of the resin composition layer 10 when peeling the first support sheet 11.
  • the measuring method of the peeling force (F11) mentioned above is as showing to the test example mentioned later.
  • the first support sheet 11 is peeled off from the cured layer formed by heat curing the resin composition layer 10
  • the peeling force (F12) at the time of carrying out is preferably 0.5 N / 25 mm or more, particularly preferably 0.7 N / 25 mm or more, and further preferably 0.8 N / 25 mm or more. Further, the peeling force (F12) is preferably 3.0 N / 25 mm or less, particularly preferably 2.0 N / 25 mm or less, and further preferably 1.5 N / 25 mm or less.
  • the unintended peeling of the 1st support sheet 11 before and behind thermosetting of the resin composition layer 10 can be suppressed, and the obtained hardened layer is obtained. Can be better protected by the first support sheet 11. Moreover, even after heating the first support sheet 11 because the peeling force (F12) is 3.0 N / 25 mm or less, from the surface of the cured layer formed by curing the resin composition layer 10 The first support sheet 11 can be easily peeled off, and chipping and cracking of the resin composition layer 10 can be effectively suppressed.
  • the measuring method of the peeling force (F12) mentioned above is as showing to the test example mentioned later.
  • the peeling force (F2) at the time of peeling the 2nd support sheet 12 from the resin composition layer 10 before hardening is a lower type.
  • F11 / F2> 1 (1) It is preferable that the Thereby, the second support sheet 12 can be easily peeled off from the resin composition layer 10 while suppressing the occurrence of floating between the first support sheet 11 and the resin composition layer 10.
  • the peeling force (F2) is preferably 0.05 N / 100 mm or more, and particularly preferably 0.10 N / 100 mm or more. Moreover, it is preferable that the said peeling force (F2) is 2.0 N / 100 mm or less.
  • the measuring method of the peeling force (F2) mentioned above is as showing to the test example mentioned later.
  • the method of manufacturing the resin sheet 1 according to the present embodiment is not particularly limited.
  • the second support sheet 12 contains the above-described resin composition and, if desired, further a solvent or dispersion medium.
  • the coating liquid to be applied is applied, dried (or heat-crosslinked as necessary), and the resin composition layer 10 is formed. Then, it can manufacture by bonding together the surface at the side of the adhesive layer 112 in the 1st support sheet 11 prepared separately to the surface on the opposite side to the 2nd support sheet 12 in the said resin composition layer 10 .
  • the manufacturing method of the 1st support sheet 11 is not specifically limited, either, It can manufacture by a well-known method.
  • Examples of the coating method include known methods such as spin coating method, spray coating method, bar coating method, knife coating method, roll coating method, roll knife coating method, blade coating method, die coating method and gravure coating method.
  • examples of the solvent include organic solvents such as toluene, ethyl acetate and methyl ethyl ketone.
  • the resin sheet 1 according to the present embodiment can be used to form an insulating film. More specifically, in a semiconductor device such as a component built-in substrate, a multilayer printed wiring board, a fan-out type wafer level package, a fan-out type panel level package, etc., it can be suitably used for forming an insulating film. More specifically, the resin sheet 1 according to the present embodiment includes an insulating film in a buildup layer of a semiconductor device such as a component built-in substrate, a multilayer printed wiring board, a fanout type wafer level package, and a fanout type panel level package. It can be suitably used to form.
  • the semiconductor device according to the present embodiment includes a cured layer formed by curing the resin composition layer 10 in the resin sheet 1 according to the present embodiment as an insulating film.
  • Examples of such semiconductor devices include component built-in boards, multilayer printed wiring boards and the like. These semiconductor devices can be manufactured by the method described later using the resin sheet 1 according to the present embodiment.
  • the resin sheet 1 according to the present embodiment is hard to generate floating at the interface between the resin composition layer 10 and the first support sheet 11, and is cured by heat curing the resin composition layer 10. Peeling of the first support sheet 11 from the layer is easy. Therefore, the semiconductor device according to the present embodiment manufactured using the resin sheet 1 has a good quality by being manufactured using the resin sheet 1 according to the present embodiment described above. It becomes.
  • the resin sheet 1 which concerns on this embodiment can be used for the manufacturing method of a semiconductor device, for example.
  • curing the resin composition layer 10 in the resin sheet 1 which concerns on embodiment as an insulating film is demonstrated.
  • 2 and 3 show cross-sectional views for explaining an example of the manufacturing method.
  • the electronic component 2 is provided on one surface of the temporary fixing member 8 as a preparation step.
  • the method of providing the electronic component 2 on the temporary fixing material 8 is not particularly limited, and a general method can be employed.
  • the temporary fixing material 8 is not particularly limited as long as the electronic component 2 can be temporarily fixed on the temporary fixing material 8, and it is a pressure-sensitive adhesive sheet comprising a substrate and a pressure-sensitive adhesive layer laminated on the substrate A laminated member consisting of a hard support plate and a pressure-sensitive adhesive layer laminated on the hard support plate. It may be.
  • the resin sheet 1 according to the present embodiment can be used as the temporary fixing material 8.
  • the electronic component 2 is provided on the surface of the curable resin composition layer 10 opposite to the first support sheet 11.
  • heating for forming the sealing resin layer 13 ′ and formation of the insulating film 10 ′ as described later Heating can be performed simultaneously, and the process can be simplified.
  • the electronic component 2 is not particularly limited as long as it is generally an electronic component to be sealed, and examples thereof include a semiconductor chip and the like.
  • the electronic component 2 may be one in which a semiconductor chip is mounted at a predetermined position of the interposer. In this case, at least a part of the interposer is sealed together with the semiconductor chip and the like in the mounted state.
  • a lead frame, a polyimide tape, a printed circuit board etc. are mentioned.
  • a frame also referred to as a frame-like member
  • a frame made of metal such as copper or a resin-made frame may be provided around the electronic component 2 on the temporary fixing material 8.
  • the frame-like member usually comprises one or more openings consisting of holes penetrating in the thickness direction, and a frame-like part made of copper or the like, resin or the like.
  • the electronic component 2 is placed at the position of the opening of the frame-like member Do.
  • the exudation of the sealing resin to the outside of the opening can be suppressed, and the thickness of the obtained semiconductor device can be made uniform, and further, the sealing resin layer It is possible to suppress the occurrence of warpage and to suppress the warpage of the obtained semiconductor device.
  • the surface of the temporary fixing material 8 on which the electronic component 2 is provided is sealed.
  • the sealing sheet 13 is laminated on the side of the temporary fixing material 8 on which the electronic component 2 is provided.
  • the sealing sheet 13 is laminated on the side of the temporary fixing material 8 on which the electronic component 2 is provided.
  • the sealing sheet 13 is covered by the sealing sheet 13.
  • laminating the sealing sheet 13 it is preferable to laminate so that no space is generated around the electronic component 2.
  • the sealing sheet 13 can be laminated
  • the sealing sheet 13 is cured to form a sealing resin layer 13 '.
  • the curing is preferably performed by heating the sealing sheet 13.
  • a sealing body 4 including the sealing resin layer 13 ′ and the electronic component 2 sealed by the sealing resin layer 13 ′ is obtained.
  • Curing of the sealing sheet 13 is preferably performed, for example, by heating at 100 ° C. to 240 ° C. for 15 minutes to 300 minutes.
  • the temporary fixing material 8 is peeled off from the sealing body 4.
  • an insulating film formation step is performed.
  • the first support of the resin composition layer 10 of the resin sheet 1 according to the present embodiment is applied to the exposed surface of the sealing body 4 exposed by the peeling of the temporary fixing material 8.
  • the surface opposite to the sheet 11 is laminated.
  • the resin composition layer 10 is cured to form a cured layer as an insulating film 10 '.
  • the curing is preferably performed by heating, and the heat treatment is preferably performed, for example, at a temperature of 100 ° C. to 240 ° C. for 15 minutes to 300 minutes.
  • the first support sheet 11 is peeled off from the insulating film 10 '.
  • the pressure-sensitive adhesive constituting the pressure-sensitive adhesive layer 112 includes the above-described active energy ray-curable pressure-sensitive adhesive
  • active energy ray an ultraviolet ray, an electron beam or the like can be used.
  • Case of irradiation with ultraviolet rays can be carried out by a xenon lamp or the like, the dose of ultraviolet ray is illuminance 50 mW / cm 2 or more, 1000 mW / cm 2 or less, the amount of light 50 mJ / cm 2 or more, 1000 mJ It is preferable to set it as / cm ⁇ 2 > or less.
  • the irradiation amount of the electron beam is preferably 10 krad or more and 1000 krad or less.
  • an active energy ray curable adhesive is included as an adhesive which comprises the adhesive layer 112
  • the support base material 111 can permeate
  • active energy rays can be applied to the pressure-sensitive adhesive layer 112 through the support base 111.
  • the pressure-sensitive adhesive constituting the pressure-sensitive adhesive layer 112 includes the thermally foamable pressure-sensitive adhesive
  • heating means such as a hot plate, a hot-air dryer, a near-infrared lamp, an air dryer, an infrared lamp, heating water, can be used, for example.
  • the heating conditions can be appropriately set depending on the type of the foaming agent, the heat resistance of the supporting substrate 111, the insulating film 10 ', etc., the heating method (heat capacity, heating means, etc.), but in particular, the heating temperature is in the adhesive layer 112. It is preferable to set it as the temperature which becomes more than the foaming start temperature (thermal expansion start temperature) of the foaming agent (thermal expansion microsphere etc.). Under general heating conditions, the temperature is 100 ° C. or more and 250 ° C. or less, and the heating time in the case of using a hot plate or the like is 1 second or more and 90 seconds or less, and a hot air drier or the like is used The heating time is 5 minutes or more and 15 minutes or less.
  • the heat treatment for causing foaming in the pressure-sensitive adhesive layer 112 may be performed at a desired stage depending on the purpose of use, and may be performed together with the heat treatment for curing the resin composition layer 10, for example. .
  • the pressure-sensitive adhesive that constitutes the pressure-sensitive adhesive layer 112 includes the thermosetting pressure-sensitive adhesive described above, it is preferable to cure the pressure-sensitive adhesive layer 112 by heating the pressure-sensitive adhesive layer 112. As a result, the adhesion of the first support sheet 11 to the insulating film 10 ′ is reduced, and the first support sheet 11 can be easily peeled off.
  • the heating means and heating conditions in this case it is preferable to use the heating means and heating conditions in the case where the heat-expandable pressure-sensitive adhesive is included as the pressure-sensitive adhesive constituting the pressure-sensitive adhesive layer 112.
  • an electrode is formed on the insulating film 10' by any method known in the art. Below, the example formed by the semi-additive method is demonstrated.
  • the holes 5 penetrating the insulating film 10 ' are formed. Specifically, a hole 5 penetrating from the surface of the insulating film 10 ′ opposite to the electronic component 2 to the interface between the insulating film 10 ′ and the electronic component 2 is formed.
  • the cross-sectional view of FIG. 3D shows that two holes 5 are formed in one electronic component 2. The formation of the holes 5 can be carried out in a conventional manner.
  • the sealing body 4 on which the insulating film 10 ′ in which the holes 5 are formed is stacked is exposed to an alkaline solution.
  • the said process can be performed by the conventionally well-known general method.
  • the electrode 6 is formed in the hole 5 as an electrode forming step.
  • the electrode 6 is electrically connected to the electronic component 2 through the hole 5.
  • the formation of the electrode 6 can be performed by a general method.
  • FIGS. 3D and 3E the example in which the electrode is formed on the insulating film 10 ′ has been described, but the hole formation and the formation on either of the sealing resin layer 13 ′ and the insulating film 10 ′ are described. Electrode formation may be performed, or hole formation and electrode formation may be performed on both of the sealing resin layer 13 ′ and the insulating film 10 ′.
  • the resin sheet 1 According to the method of using the resin sheet 1 according to the present embodiment, even when the resin sheet 1 is stored under refrigeration, occurrence of floating at the interface between the resin composition layer 10 and the support sheet is effectively suppressed. , Peeling of the first support sheet 11 from the insulating film 10 ′ can be easily performed, as a result, the yield can be improved, and a high quality component built-in substrate, multilayer printed wiring board, fan-out type wafer level package, It becomes possible to manufacture semiconductor devices such as fan-out type panel level packages.
  • Example 1 (1) Preparation of first support sheet Acrylic acid ester copolymer (92.8 mass% of 2-ethylhexyl acrylate, 7.0 mass% of 2-hydroxyethyl acrylate, 0.2 mass% of acrylic acid, Copolymers), 50 parts by mass of hydrogenated hydroxyl-terminated polybutadiene as a tackifier (product name “GI-1000” manufactured by Nippon Soda Co., Ltd.), and fat having hexamethylene diisocyanate as a crosslinking agent
  • a mixed solution of a pressure-sensitive adhesive composition having a solid content concentration of 30% by mass was mixed with methyl ethyl ketone-based isocyanate (manufactured by Nippon Polyurethane Industry Co., Ltd., product name "Coronato HX”) and 3.5 parts by mass in methyl ethyl ketone Prepared.
  • a release film obtained by release-treating one side of a polyethylene terephthalate film with a silicone release layer using a roll coater with a coating solution of the prepared pressure-sensitive adhesive composition (product name “SP-PET 382150, manufactured by Lintec Co., Ltd.) (Thickness: 38 ⁇ m), coated on a release-treated surface, heated at 90 ° C. for 90 seconds, subsequently dried at 115 ° C.
  • a first support sheet comprising a pressure-sensitive adhesive layer composed of an acrylic pressure-sensitive adhesive having a thickness of 50 ⁇ m and a supporting substrate by bonding the first support sheet to It was prepared in a state in which the release film is laminated on the surface of the destination agent layer side.
  • the storage elastic modulus at a measurement frequency of 1 Hz at 100 ° C. of the obtained pressure-sensitive adhesive layer was 2.36 ⁇ 10 5 Pa.
  • the adhesive force with respect to the copper foil of the obtained 1st support sheet was 1.2 N / 25 mm.
  • the adhesive force with respect to the polyimide film of a 1st support sheet was 1.1 N / 25 mm.
  • the 5% weight loss temperature of the pressure-sensitive adhesive layer was 304.degree.
  • the first support sheet is cut into a length of 100 mm and a width of 25 mm, and the peelable film is peeled to form a test piece, which is applied to the copper foil at 0.5 MPa and 50 ° C. for 20 minutes for application. Heating was performed for 30 minutes, followed by heating at 180 ° C. and 60 minutes, and then left for 24 hours in a standard environment (23 ° C., 50% RH). Thereafter, using a tensile tester (product name “Autograph AG-IS” manufactured by Shimadzu Corporation) under a standard environment (23 ° C., 50% RH), a peeling angle of 180 ° and a peeling speed of 300 mm / min.
  • a tensile tester product name “Autograph AG-IS” manufactured by Shimadzu Corporation
  • the first support sheet was peeled off from the copper foil and the adhesion (mN / 25 mm) was measured. Moreover, the adhesive force with respect to the polyimide film mentioned above measured the measuring method of the adhesive force similar to the above except changing the object which the 1st support sheet sticks to a polyimide film from copper foil.
  • thermogravimetric measurement was performed by raising the temperature from 40 ° C. to 550 ° C. (based on JIS K 7120 “Thermogravimetric measurement method of plastic”). Based on the obtained thermal weight curve, a temperature (5% weight loss temperature) at which the weight decreases by 5% with respect to the weight at a temperature of 100 ° C. was determined.
  • a release film obtained by release-treating one side of a polyethylene terephthalate film as a second support sheet with an alkyd release agent as a second support sheet (Lintec Corporation, product name “PET 38 AL-5”, It apply
  • Example 2 As a second support sheet, a release film (made by Lintec Co., Ltd., product name “SP-PET 38X, thickness: 38 ⁇ m) was used, in which one surface of a polyethylene terephthalate film was release-treated with a non-silicone release layer, In the same manner as Example 1, a resin sheet was obtained.
  • a release film made by Lintec Co., Ltd., product name “SP-PET 38X, thickness: 38 ⁇ m
  • Example 3 As a first support sheet, a sheet (a product name “River Alpha” manufactured by Nitto Denko Corporation) is used, in which a pressure-sensitive adhesive layer composed of a heat-expandable pressure-sensitive adhesive is laminated on one side of a polyethylene terephthalate film. In the same manner as Example 1, a resin sheet was obtained.
  • Example 4 100 parts by mass of an acrylic copolymer obtained by reacting 86% by mass of 2-ethylhexyl acrylate and 14% by mass of 2-hydroxyethyl acrylate and 15 parts by mass of 2-methacryloyloxyethyl isocyanate It was made to react and obtained the polymer which has active energy ray curability.
  • the coating solution is coated on a release-treated surface of a release film (Lintec Co., Ltd., product name “SP-PET 382150”, thickness: 38 ⁇ m) obtained by release-treating one surface of a polyethylene terephthalate film with a silicone-based release layer And the coating obtained thereby was dried.
  • a transparent polyethylene terephthalate film made by Toyobo Co., Ltd., product name “PET 50A-4300”, thickness: 50 ⁇ m, glass transition temperature: 67 ° C., as a supporting substrate, and the surface opposite to the peeling film in the coating film.
  • the thermal contraction rate in the MD direction 1.2%
  • the thermal contraction rate in the CD direction 0.6%.
  • stacked in order was obtained. Furthermore, a first supporting substrate and a pressure-sensitive adhesive layer composed of an active energy ray-curable pressure-sensitive adhesive laminated on one side of the supporting substrate by peeling a peeling film from the laminate. I got a support sheet.
  • a resin sheet was obtained in the same manner as in Example 1 except that the first support sheet was used.
  • Comparative Example 1 As a first support sheet, a release film (made by Lintec Co., Ltd., product name “SP-PET 3811”, thickness: 38 ⁇ m) in which one surface of a polyethylene terephthalate film is release-treated with a silicone release agent is used.
  • Example 1 and Example 1 were used except that a release film (made by Lintec Co., Ltd., product name “SP-PET 381031”, thickness: 38 ⁇ m) was used as the support sheet, one side of the polyethylene terephthalate film being release treated with a silicone release agent.
  • a resin sheet was obtained in the same manner.
  • Comparative Example 2 A polyethylene terephthalate (PET) film (thickness: 38 ⁇ m) whose both surfaces are not release-treated with a release agent is used as the first support sheet, and one side of the polyethylene terephthalate film is silicone as the second support sheet.
  • a resin sheet was obtained in the same manner as in Example 1 except that a release film release-treated with a release agent (manufactured by Lintec Corporation, product name "SP-PET 381031", thickness: 38 ⁇ m) was used.
  • the adhesive constituting the adhesive layer in the first support sheet is heated by heating the resin sheet of Example 3 at 200 ° C. for 20 seconds using an oven. It was foamed. Subsequently, after cooling a resin sheet to room temperature, the 1st support sheet was exfoliated from a hardening layer.
  • the said adhesive layer was hardened by irradiating an ultraviolet-ray with respect to the adhesive layer of a 1st support sheet. Thereafter, the first support sheet was peeled off from the cured layer.
  • the 1st support sheet was exfoliated from a hardened layer, without performing processings, such as heating and ultraviolet irradiation.
  • AB Lifting does not occur at the interface between the curable resin composition layer and the first support sheet, but lifting occurs at the interface between the curable resin composition layer and the second support sheet.
  • B Lifting occurs both at the interface between the curable resin composition layer and the first support sheet and at the interface between the curable resin composition layer and the second support sheet.
  • Example 3 the adhesive which comprises the adhesive layer in a 1st support sheet was heated, and it was made to foam by heating for 20 seconds at 200 degreeC using oven. Moreover, about Example 4, the said adhesive layer was hardened by irradiating an ultraviolet-ray with respect to the adhesive layer of a 1st support sheet. After these, the first support sheet was peeled off from the cured layer for each example. Thereby, the laminated body which consists of a core material and the hardened layer as an insulating layer was obtained.
  • a laser was irradiated to the surface on the insulating layer side in the obtained laminate using a CO 2 laser processing machine to form a via hole having a diameter of 100 ⁇ m on the surface of the insulating layer.
  • the laminate was immersed at 60 ° C. for 5 minutes in an alkaline swelling solution in which a glycol ether solvent and ethylene glycol monobutyl ether were mixed. Subsequently, the laminate was immersed in a roughening solution (alkaline permanganic acid aqueous solution) at 80 ° C. for 15 minutes. Furthermore, the laminate was neutralized by immersing in an aqueous solution of sulfuric acid at 40 ° C. for 5 minutes. Finally, the desmear treatment was completed by drying the laminate at 80 ° C. for 5 minutes.
  • the laminate subjected to the desmear treatment is immersed in the solution for electroless plating at 40 ° C. for 6 minutes, and further immersed in the electroless copper plating solution at 25 ° C. for 18 minutes, and then annealed for 30 minutes at 150 ° C. Did.
  • a plating resist layer is attached to the surface on which the via hole is formed, and a predetermined pattern (wiring width (L): 50 ⁇ m, wiring spacing (S): 50 ⁇ m) in the plating resist layer is obtained by exposure and development. The area was removed.
  • copper sulfate electrolytic plating was performed to form a layer of copper having a thickness of 10 ⁇ m in the removed area.
  • the remaining plating resist layer was peeled off, unnecessary portions of electroless copper plating were removed by flash etching, and finally, annealing was performed at 190 ° C. for 60 minutes.
  • the electrode formed as described above was observed, and the formability of the electrode was evaluated based on the following criteria. The results are shown in Table 1. : It was possible to form an electrode having the intended wiring pattern (wiring width (L): 50 ⁇ m, wiring spacing (S): 50 ⁇ m). X: The electrode having the intended wiring pattern could not be formed.
  • the resin sheet according to the example even after heat curing, the first support sheet could be peeled well from the cured layer. Moreover, in the resin sheet which concerns on an Example, generation
  • the resin sheet according to the present invention can be suitably used for the production of semiconductor devices such as component built-in substrates, multilayer printed wiring boards, fan-out type wafer level packages, and fan-out type panel level packages.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Laminated Bodies (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

A resin sheet 1 which is used for the formation of an insulating film; and this resin sheet 1 comprises a first supporting sheet 11 and a curable resin composition layer 10. The resin composition layer 10 is formed from a resin composition that contains a thermosetting resin and inorganic fine particles; and the content of the inorganic fine particles is from 50% by mass to 90% by mass (inclusive). The first supporting sheet 11 comprises a supporting substrate 111 and an adhesive layer 112; and the resin composition layer is laminated on the adhesive layer 112-side surface of the first supporting sheet 11. This resin sheet 1 is not susceptible to the occurrence of adhesion loss at the interface between the resin composition layer and the supporting sheet even in cases where the resin composition layer has low surface tackiness; and in cases where this resin sheet 1 is used in a method for producing a semiconductor device, wherein the supporting sheet is separated from a cured layer after forming the cured layer by thermally curing the resin composition layer, the supporting sheet is easily separated from the cured layer.

Description

樹脂シート、半導体装置、および樹脂シートの使用方法Resin sheet, semiconductor device, and method of using resin sheet
 本発明は、絶縁膜の形成に用いられる樹脂シート、当該樹脂シートを使用して製造された半導体装置、および当該樹脂シートの使用方法に関する。 The present invention relates to a resin sheet used for forming an insulating film, a semiconductor device manufactured using the resin sheet, and a method of using the resin sheet.
 近年、多層プリント配線板や電子部品を内層回路基板に内蔵させた部品内蔵基板として、高機能化や小型化を図る観点から、絶縁膜と導体層とを交互に積層してなるビルドアップ方式のものが提案されている。このようなビルドアップ方式の多層プリント配線板や部品内蔵基板では、絶縁膜を、硬化性の樹脂組成物層を備える樹脂シートを用いて形成することができる。 In recent years, as a component built-in board in which a multilayer printed wiring board and electronic parts are built in an inner layer circuit board, from the viewpoint of achieving high functionality and miniaturization, a buildup system in which insulating films and conductor layers are alternately laminated Things have been proposed. In such a buildup type multilayer printed wiring board or component-embedded substrate, the insulating film can be formed using a resin sheet provided with a curable resin composition layer.
 上述のような樹脂シートとしては、通常、その加工時や運搬時における取り扱い性を向上するために、樹脂組成物層に支持シートが積層された構成を有する樹脂シートが使用されることがある。例えば、特許文献1には、このような樹脂シートとして、熱硬化性樹脂組成物層と、当該熱硬化性樹脂組成物層の片面に積層された支持体を備える接着フィルムが開示されており、さらに、当該接着フィルムを用いた部品内蔵回路板の製造方法が開示されている。また、例えば、特許文献2には、基材に樹脂組成物層が積層されたシートを用いて、多層プリント配線板を製造する方法が開示されている。当該方法では、樹脂組成物層を回路基板に積層した後、当該樹脂組成物層を熱硬化して絶縁層を形成し、その後、当該絶縁層から基板を剥離している。 As the resin sheet as described above, in general, a resin sheet having a structure in which a support sheet is laminated on a resin composition layer may be used in order to improve the handleability at the time of processing or transport. For example, Patent Document 1 discloses, as such a resin sheet, an adhesive film comprising a thermosetting resin composition layer and a support laminated on one side of the thermosetting resin composition layer, Furthermore, a method of manufacturing a component built-in circuit board using the adhesive film is disclosed. For example, Patent Document 2 discloses a method of manufacturing a multilayer printed wiring board using a sheet in which a resin composition layer is laminated on a base material. In the method, after laminating a resin composition layer on a circuit board, the resin composition layer is thermally cured to form an insulating layer, and then the substrate is peeled off from the insulating layer.
 また、上述のような樹脂シートは、通常、樹脂組成物層にエポキシ樹脂等の熱硬化性樹脂や硬化促進剤を含有するため、貯蔵安定性が低いものとなり易く、そのため冷蔵保管が必要になる場合がある。 In addition, since the resin sheet as described above usually contains a thermosetting resin such as an epoxy resin and a curing accelerator in the resin composition layer, the storage stability tends to be low, and therefore, it is necessary to store under refrigeration. There is a case.
特開2015-2295号公報JP, 2015-2295, A 特開2014-7403号公報JP, 2014-7403, A
 ところで、樹脂組成物層に支持シートが積層された状態で、樹脂シートにおける樹脂組成物層を熱硬化して硬化層を形成した場合、当該硬化層から支持シートを剥離し難くなることがある。このため、支持シートとして、樹脂組成物層と接する面がシリコーン系剥離剤により剥離処理されたものを使用することで、硬化層から支持シートを剥離する際の剥離力を所定の範囲に低下させることも考えられる。 By the way, when the resin composition layer in the resin sheet is thermally cured to form a cured layer in a state where the support sheet is laminated on the resin composition layer, it may be difficult to peel the support sheet from the cured layer. For this reason, the peeling force at the time of peeling a support sheet from a hardened layer is reduced to a predetermined range by using as a support sheet the thing in which the field which touches a resin composition layer exfoliated by the silicone type release agent. It is also conceivable.
 上述した樹脂シートには、無機充填材含有量の高い樹脂組成物層を使用する場合や、樹脂成分の種類によっては、樹脂組成物層の表面における粘着性(タック)が小さいものも存在する。このようにタックが小さい樹脂組成物層を、上述のような、シリコーン系剥離剤で処理された支持シートで保護する場合、樹脂シートの搬送中、保管中、加工中等において、樹脂組成物層と支持シートとの界面において浮きが発生し易いものとなる。当該浮きが発生すると、樹脂シートの加工時や運搬時に、樹脂組成物層に欠けや割れが発生するなどの問題が生じる。特に、樹脂シートは冷蔵保管されることが多く、当該浮きの問題は、このように冷蔵保管された場合において顕著となる。 In the resin sheet described above, when using a resin composition layer having a high inorganic filler content or depending on the type of the resin component, there is also a resin sheet having a small tackiness (tack) on the surface of the resin composition layer. When the resin composition layer having such a small tack is protected by the support sheet treated with a silicone-based release agent as described above, the resin composition layer and the resin sheet are transported, stored, processed, etc. It becomes easy to generate float at the interface with the support sheet. When the floating occurs, problems such as chipping and cracking occur in the resin composition layer during processing and transportation of the resin sheet. In particular, resin sheets are often stored refrigerated, and the floating problem becomes significant when stored refrigerated in this manner.
 また、近年では、樹脂シートを用いてウエハレベルパッケージやパネルスケールパッケージを製造することも検討されている。このようなパッケージの製造には、樹脂シートとして大面積を有するものが使用されるが、樹脂シートのサイズが比較的大面積となる場合、上述した浮きが特に発生し易くなる。 Also, in recent years, it has been considered to manufacture a wafer level package and a panel scale package using a resin sheet. Although the thing which has a large area as a resin sheet is used for manufacture of such a package, when the size of a resin sheet becomes a comparatively large area, the float mentioned above becomes especially easy to occur.
 以上のように、従来の樹脂シートでは、硬化層から支持シートを容易に剥離することと、樹脂組成物層と支持シートとの界面における浮きを抑制することとを両立することは困難である。 As mentioned above, in the conventional resin sheet, it is difficult to simultaneously achieve peeling of the support sheet from the cured layer and suppression of the floating at the interface between the resin composition layer and the support sheet.
 本発明は、このような実状に鑑みてなされたものであり、樹脂組成物層の表面におけるタックが小さい場合であっても、樹脂組成物層と支持シートとの界面における浮きが発生し難く、かつ、樹脂組成物層の熱硬化後に、形成された硬化層から支持シートを剥離する半導体装置の製造方法に使用する場合であっても、当該硬化層から支持シートを剥離しやすい樹脂シートを提供することを目的とする。また、本発明は、そのような樹脂シートを使用して製造される良好な品質を有する半導体装置、およびそのような樹脂シートの使用方法を提供する。 The present invention has been made in view of such a situation, and even when the tack on the surface of the resin composition layer is small, the floating at the interface between the resin composition layer and the support sheet does not easily occur. And, even when used in a method of manufacturing a semiconductor device in which the support sheet is peeled off from the formed cured layer after heat curing of the resin composition layer, a resin sheet which easily peels the support sheet from the hardened layer is provided. The purpose is to The invention also provides good quality semiconductor devices manufactured using such resin sheets, and methods of using such resin sheets.
 上記目的を達成するために、第1に本発明は、絶縁膜の形成に用いられる樹脂シートであって、前記樹脂シートが、第1の支持シートと、前記第1の支持シートにおける片面に積層された硬化性樹脂組成物層とを備え、前記樹脂組成物層が、熱硬化性樹脂および無機微粒子を含有する樹脂組成物から形成されたものであり、前記無機微粒子の前記樹脂組成物中における含有量が、50質量%以上、90質量%以下であり、前記第1の支持シートが、支持基材と、前記支持基材の片面側に積層された粘着剤層とを備え、前記樹脂組成物層が、前記第1の支持シートにおける前記粘着剤層側の面上に積層されていることを特徴とする樹脂シートを提供する(発明1)。 In order to achieve the above object, firstly, the present invention is a resin sheet used for forming an insulating film, wherein the resin sheet is laminated on a first support sheet and one side of the first support sheet. And the resin composition layer is formed of a resin composition containing a thermosetting resin and inorganic fine particles, and the inorganic fine particles in the resin composition. Content is 50 mass% or more and 90 mass% or less, Said 1st support sheet is equipped with a support base material and the adhesive layer laminated | stacked on the single-sided side of said support base material, The said resin composition An object layer is laminated on the surface of the first support sheet on the pressure-sensitive adhesive layer side, and a resin sheet is provided (Invention 1).
 上記発明(発明1)に係る樹脂シートでは、第1の支持シートが支持基材と粘着剤層とを備えたものであるとともに、当該粘着剤層における支持基材とは反対側の面が硬化性樹脂組成物層に接していることにより、第1の支持シートが硬化性樹脂組成物層に良好に密着するものとなり、それにより、硬化性樹脂組成物層と第1の支持シートとの界面における浮きが発生し難く、硬化性樹脂組成物層を熱硬化してなる硬化層から第1の支持シートを剥離する場合であっても、当該剥離を容易に行うことができる。 In the resin sheet according to the invention (Invention 1), the first support sheet is provided with the support base and the pressure-sensitive adhesive layer, and the surface of the pressure-sensitive adhesive layer opposite to the support base is cured. By being in contact with the conductive resin composition layer, the first support sheet adheres well to the curable resin composition layer, whereby the interface between the curable resin composition layer and the first support sheet Even in the case where the first support sheet is peeled off from the cured layer formed by heat curing the curable resin composition layer, the peeling can be easily performed.
 上記発明(発明1)において、前記樹脂組成物層は、熱可塑性樹脂を含有し、前記熱可塑性樹脂の前記樹脂組成物中における含有量は、1.0質量%以上、30質量%以下であることが好ましい(発明2)。 In the above invention (Invention 1), the resin composition layer contains a thermoplastic resin, and the content of the thermoplastic resin in the resin composition is 1.0% by mass or more and 30% by mass or less Is preferable (invention 2).
 上記発明(発明1,2)において、前記粘着剤層は、アクリル系粘着剤から構成されていることが好ましい(発明3)。 In the said invention (invention 1 and 2), it is preferable that the said adhesive layer is comprised from the acrylic adhesive (invention 3).
 上記発明(発明1~3)において、前記粘着剤層は、活性エネルギー線硬化性粘着剤、熱発泡性粘着剤および熱硬化性粘着剤から選択される少なくとも1種の粘着剤から構成されていることが好ましい(発明4)。 In the above inventions (Inventions 1 to 3), the pressure-sensitive adhesive layer is composed of at least one pressure-sensitive adhesive selected from an active energy ray-curable pressure-sensitive adhesive, a thermally foamable pressure-sensitive adhesive and a thermosetting pressure-sensitive adhesive. Is preferred (invention 4).
 上記発明(発明1~4)において、前記樹脂シートを100℃で30分間加熱し、さらに180℃で60分間加熱した樹脂シートにおいて、前記樹脂組成物層が硬化してなる硬化層から前記第1の支持シートを剥離する際の剥離力(F12)は、0.5N/25mm以上、3.0N/25mm以下であることが好ましい(発明5)。 In the above inventions (Inventions 1 to 4), in the resin sheet obtained by heating the resin sheet at 100 ° C. for 30 minutes and further heating it at 180 ° C. for 60 minutes, the first cured layer is formed by curing the resin composition layer. It is preferable that peeling force (F12) at the time of peeling the support sheet of is 0.5 N / 25 mm or more and 3.0 N / 25 mm or less (invention 5).
 上記発明(発明1~5)において、前記第1の支持シートにおける前記粘着剤層は、100℃における、測定周波数を1Hzとしたときの貯蔵弾性率が1×10Pa以上であることが好ましい(発明6)。 In the above inventions (Inventions 1 to 5), the pressure-sensitive adhesive layer in the first support sheet preferably has a storage elastic modulus of 1 × 10 5 Pa or more at 100 ° C. and a measurement frequency of 1 Hz. (Invention 6).
 上記発明(発明1~6)において、前記第1の支持シートは、前記粘着剤層面を銅箔に貼着させ、100℃及び30分間の条件で加熱し、続いて180℃及び30分間の条件で加熱し、さらに190℃及び1時間の条件で加熱した後における、前記銅箔に対する室温での粘着力が、0.7N/25mm以上、2.0N/25mm以下であり、前記粘着剤層面をポリイミドフィルムに貼着させ、100℃及び30分間の条件で加熱し、続いて180℃及び30分間の条件で加熱し、さらに190℃及び1時間の条件で加熱した後における、前記ポリイミドフィルムに対する室温での粘着力が、0.7N/25mm以上、2.0N/25mm以下であることが好ましい(発明7)。 In the above inventions (Inventions 1 to 6), the first support sheet has the pressure-sensitive adhesive layer surface adhered to a copper foil, is heated at 100 ° C. for 30 minutes, and is subsequently heated to 180 ° C. for 30 minutes The adhesive strength at room temperature to the copper foil after heating at 190 ° C. for 1 hour is 0.7 N / 25 mm or more and 2.0 N / 25 mm or less, and the pressure-sensitive adhesive layer surface is It is attached to a polyimide film, heated under conditions of 100 ° C. and 30 minutes, subsequently heated under conditions of 180 ° C. and 30 minutes, and further heated under conditions of 190 ° C. and 1 hour, room temperature relative to the polyimide film It is preferable that the adhesive force in (7) is 0.7 N / 25 mm or more and 2.0 N / 25 mm or less.
 上記発明(発明1~7)において、前記第1の支持シートにおける前記粘着剤層は、5%重量減少温度が250℃以上であることが好ましい(発明8)。 In the above inventions (Inventions 1 to 7), the pressure-sensitive adhesive layer in the first support sheet preferably has a 5% weight loss temperature of 250 ° C. or more (Invention 8).
 上記発明(発明1~8)において、前記熱可塑性樹脂は、フェノキシ系樹脂、ポリビニルアセタール系樹脂およびポリビニルブチラール樹脂から選択される少なくとも1種であることが好ましい(発明9)。 In the above inventions (Inventions 1 to 8), the thermoplastic resin is preferably at least one selected from phenoxy resins, polyvinyl acetal resins and polyvinyl butyral resins (Invention 9).
 上記発明(発明1~9)において、前記無機微粒子は、表面処理剤により表面処理されていることが好ましい(発明10)。 In the above inventions (Inventions 1 to 9), the inorganic fine particles are preferably surface-treated with a surface treatment agent (Invention 10).
 上記発明(発明1~10)において、前記無機微粒子の平均粒径は、0.01μm以上、3.0μm以下であることが好ましい(発明11)。 In the above inventions (Inventions 1 to 10), the average particle diameter of the inorganic fine particles is preferably 0.01 μm or more and 3.0 μm or less (Invention 11).
 上記発明(発明1~11)において、前記樹脂組成物層の厚さは、5μm以上、80μm以下であることが好ましい(発明12)。 In the above inventions (Inventions 1 to 11), the thickness of the resin composition layer is preferably 5 μm or more and 80 μm or less (Invention 12).
 上記発明(発明1~12)において、前記支持基材は、ガラス転移温度(Tg)が50℃以上である樹脂製の支持基材であることが好ましい(発明13)。 In the above inventions (Inventions 1 to 12), the support substrate is preferably a resin support substrate having a glass transition temperature (Tg) of 50 ° C. or more (Invention 13).
 上記発明(発明1~13)において、前記樹脂シートは、前記樹脂組成物層における前記第1の支持シートとは反対側の面に積層された第2の支持シートを備えることが好ましい(発明14)。 In the above inventions (Inventions 1 to 13), the resin sheet preferably includes a second support sheet laminated on the surface of the resin composition layer opposite to the first support sheet (Invention 14) ).
 上記発明(発明1~14)においては、半導体装置における前記絶縁膜の形成に用いられることが好ましい(発明15)。 In the above inventions (Inventions 1 to 14), it is preferable to use for forming the insulating film in a semiconductor device (Invention 15).
 上記発明(発明15)において、前記絶縁膜は、前記半導体装置のビルドアップ層における絶縁膜であることが好ましい(発明16)。 In the above invention (Invention 15), the insulating film is preferably an insulation film in a buildup layer of the semiconductor device (Invention 16).
 上記発明(発明15,16)において、前記半導体装置は、部品内蔵基板、多層プリント配線板、ファンアウト型ウエハレベルパッケージおよびファンアウト型パネルレベルパッケージの少なくとも1種であることが好ましい(発明17)。 In the above inventions (Inventions 15 and 16), the semiconductor device is preferably at least one of a component built-in substrate, a multilayer printed wiring board, a fanout type wafer level package and a fanout type panel level package (Invention 17) .
 第2に本発明は、上記樹脂シート(発明1~17)における樹脂組成物層を硬化してなることを特徴とする絶縁膜を提供する(発明18)。 Second, the present invention provides an insulating film formed by curing the resin composition layer in the resin sheet (Inventions 1 to 17) (Invention 18).
 第3に本発明は、上記樹脂シート(発明1~17)における樹脂組成物層を硬化してなる硬化層を絶縁層として備えることを特徴とする半導体装置を提供する(発明19)。 Thirdly, the present invention provides a semiconductor device comprising a cured layer obtained by curing the resin composition layer in the above-mentioned resin sheet (inventions 1 to 17) as an insulating layer (invention 19).
 第4に本発明は、上記樹脂シート(発明1~17)の使用方法であって、前記樹脂組成物層を硬化して、硬化層を得る工程と、前記樹脂組成物層の硬化の後に、前記硬化層から前記第1の支持シートを剥離する工程とを備えることを特徴とする樹脂シートの使用方法を提供する(発明20)。 Fourth, the present invention is a method of using the resin sheet (inventions 1 to 17), wherein the step of curing the resin composition layer to obtain a cured layer, and after curing of the resin composition layer And removing the first support sheet from the cured layer. A method of using the resin sheet is provided (Invention 20).
 本発明の樹脂シートによれば、樹脂組成物層の表面におけるタックが小さい場合であっても、樹脂組成物層と支持シートとの界面における浮きが発生し難く、かつ、樹脂組成物層の熱硬化後に、形成された硬化層から支持シートを剥離する半導体装置の製造方法に使用する場合であっても、当該硬化層から支持シートを剥離しやすい。また、本発明の樹脂シートを使用することで、良好な品質を有する半導体装置を製造することができる。 According to the resin sheet of the present invention, even when the tack on the surface of the resin composition layer is small, it is difficult for the floating at the interface between the resin composition layer and the support sheet to occur, and the heat of the resin composition layer Even in the case of using the method for manufacturing a semiconductor device in which the supporting sheet is peeled off from the formed hardened layer after curing, the supporting sheet is easily peeled off from the hardened layer. Moreover, the semiconductor device which has favorable quality can be manufactured by using the resin sheet of this invention.
本発明の一実施形態に係る樹脂シートの断面図である。It is a sectional view of a resin sheet concerning one embodiment of the present invention. 本実施形態に係る樹脂シートの使用方法を説明する断面図である。It is sectional drawing explaining the usage method of the resin sheet which concerns on this embodiment. 本実施形態に係る樹脂シートの使用方法を説明する断面図である。It is sectional drawing explaining the usage method of the resin sheet which concerns on this embodiment.
 以下、本発明の実施形態について説明する。
〔樹脂シート〕
 図1には、本実施形態に係る樹脂シート1の断面図が示される。図1に示すように、本実施形態に係る樹脂シート1は、第1の支持シート11と、第1の支持シート11における片面に積層された硬化性樹脂組成物層10(以下、「樹脂組成物層10」ということがある。)とを備える。第1の支持シート11は、支持基材111と、支持基材111の片面側に積層された粘着剤層112とを備えており、樹脂組成物層10は、第1の支持シート11における粘着剤層112側の面上に積層されている。また、本実施形態に係る樹脂シート1は、図1に示されるように、樹脂組成物層10における第1の支持シート11とは反対側の面に積層された第2の支持シート12を備えることが好ましい。
Hereinafter, embodiments of the present invention will be described.
[Resin sheet]
FIG. 1 shows a cross-sectional view of the resin sheet 1 according to the present embodiment. As shown in FIG. 1, the resin sheet 1 according to the present embodiment includes a first support sheet 11 and a curable resin composition layer 10 laminated on one side of the first support sheet 11 (hereinafter referred to as “resin composition Object layer 10 "). The first support sheet 11 includes a support base 111 and an adhesive layer 112 laminated on one side of the support base 111, and the resin composition layer 10 has adhesion in the first support sheet 11. It is laminated on the surface on the agent layer 112 side. Moreover, the resin sheet 1 which concerns on this embodiment is provided with the 2nd support sheet 12 laminated | stacked on the surface on the opposite side to the 1st support sheet 11 in the resin composition layer 10, as FIG. 1 shows. Is preferred.
 本実施形態に係る樹脂シート1では、樹脂組成物層10が、第1の支持シート11における粘着剤層112側の面上に積層されているため、樹脂組成物層10と第1の支持シート11との界面における浮きが発生し難いものとなる。特に、樹脂組成物層10の表面におけるタックが小さい場合であっても、樹脂組成物層10と第1の支持シート11との界面における浮きを効果的に抑制することができる。それにより、本実施形態に係る樹脂シート1では、保管時や搬送時において樹脂組成物層10における欠けや割れの発生が抑制される。 In the resin sheet 1 according to the present embodiment, since the resin composition layer 10 is laminated on the surface of the first support sheet 11 on the pressure-sensitive adhesive layer 112 side, the resin composition layer 10 and the first support sheet Lifting at the interface with 11 is less likely to occur. In particular, even when the tack on the surface of the resin composition layer 10 is small, the floating at the interface between the resin composition layer 10 and the first support sheet 11 can be effectively suppressed. Thereby, in the resin sheet 1 which concerns on this embodiment, generation | occurrence | production of the chipping and the crack in the resin composition layer 10 is suppressed at the time of storage or conveyance.
 また、本実施形態に係る樹脂シート1では、樹脂組成物層10が、第1の支持シート11における粘着剤層112側の面上に積層されていることにより、樹脂組成物層10を熱硬化して、硬化層を形成した場合であっても、当該硬化層から第1の支持シート11を容易に剥離することが可能となる。 Further, in the resin sheet 1 according to the present embodiment, the resin composition layer 10 is laminated on the surface of the first support sheet 11 on the pressure-sensitive adhesive layer 112 side, so that the resin composition layer 10 is thermally cured. Thus, even when the hardened layer is formed, the first support sheet 11 can be easily peeled off from the hardened layer.
1.硬化性樹脂組成物層
 本実施形態における樹脂組成物層10は、熱硬化性樹脂、および無機微粒子を含有する樹脂組成物から形成されたものである。ここで、無機微粒子の樹脂組成物中における含有量は、50質量%以上、90質量%以下である。また、樹脂組成物層10は、硬化性を有するものであり、樹脂組成物層10を硬化することで硬化層を形成することができる。樹脂組成物層10を硬化してなる硬化層は、絶縁性を示す。絶縁性を示す硬化層を形成し易い観点から、樹脂組成物層10は、導電性材料を含有しないことが好ましい。また、当該硬化層は、表面抵抗率が1×1015Ω/□以上であることが好ましく、1×1016Ω/□以上であることがより好ましい。これにより、得られる半導体装置では、短絡等の不具合が抑制され、優れた性能を得ることができる。
1. Curable Resin Composition Layer The resin composition layer 10 in the present embodiment is formed of a thermosetting resin and a resin composition containing inorganic fine particles. Here, the content of the inorganic fine particles in the resin composition is 50% by mass or more and 90% by mass or less. In addition, the resin composition layer 10 has curability, and a cured layer can be formed by curing the resin composition layer 10. The cured layer formed by curing the resin composition layer 10 exhibits insulation. It is preferable that the resin composition layer 10 does not contain a conductive material from the viewpoint of easily forming a cured layer exhibiting an insulating property. In addition, the cured layer preferably has a surface resistivity of 1 × 10 15 Ω / □ or more, and more preferably 1 × 10 16 Ω / □ or more. Thereby, in the obtained semiconductor device, defects such as short circuit can be suppressed, and excellent performance can be obtained.
(1)熱硬化性樹脂
 熱硬化性樹脂としては、特に限定されず、例えば、エポキシ樹脂、フェノール樹脂、ナフトール系樹脂、活性エステル系樹脂、ベンゾオキサジン系樹脂、シアネートエステル系樹脂などが挙げられ、これらは1種を単独でまたは2種以上を組み合わせて用いることができる。
(1) Thermosetting resin The thermosetting resin is not particularly limited, and examples thereof include epoxy resin, phenol resin, naphthol resin, active ester resin, benzoxazine resin, cyanate ester resin, etc. These can be used singly or in combination of two or more.
 上記エポキシ樹脂としては、公知の種々のエポキシ樹脂が用いることができ、具体的には、ビスフェノールA、ビスフェノールF、レゾルシノール、フェニルノボラック、クレゾールノボラック等のフェノール類のグリシジルエーテル;ブタンジオール、ポリエチレングリコール、ポリプロピレングリコール等のアルコール類のグリシジルエーテル;フタル酸、イソフタル酸、テトラヒドロフタル酸等のカルボン酸のグリシジルエーテル;アニリンイソシアヌレート等の窒素原子に結合した活性水素をグリシジル基で置換したグリシジル型もしくはアルキルグリシジル型のエポキシ樹脂;ビニルシクロヘキサンジエポキシド、3,4-エポキシシクロヘキシルメチル-3,4-ジシクロヘキサンカルボキシレート、2-(3,4-エポキシ)シクロヘキシル-5,5-スピロ(3,4-エポキシ)シクロヘキサン-m-ジオキサン等のように、分子内の炭素-炭素二重結合を例えば酸化することによりエポキシが導入された、いわゆる脂環型エポキシドを挙げることができる。その他、ビフェニル骨格、トリフェニルメタン骨格、ジシクロヘキサジエン骨格、ナフタレン骨格等を有するエポキシ樹脂を用いることもできる。これらエポキシ樹脂は、1種を単独で、または2種以上を組み合わせて用いることができる。上述したエポキシ樹脂の中でも、ビスフェノールAのグリシジルエーテル(ビスフェノールA型エポキシ樹脂)、ビフェニル骨格を有するエポキシ樹脂(ビフェニル型エポキシ樹脂)、ナフタレン骨格を有するエポキシ樹脂(ナフタレン型エポキシ樹脂)またはこれらの組み合わせを使用することが好ましい。 As the epoxy resin, various known epoxy resins can be used. Specifically, glycidyl ethers of phenols such as bisphenol A, bisphenol F, resorcinol, phenyl novolac, cresol novolac; butanediol, polyethylene glycol, Glycidyl ethers of alcohols such as polypropylene glycol; Glycidyl ethers of carboxylic acids such as phthalic acid, isophthalic acid and tetrahydrophthalic acid; Glycidyl type or alkyl glycidyl in which active hydrogen bonded to a nitrogen atom such as aniline isocyanurate is substituted by glycidyl group Type epoxy resin; vinylcyclohexane diepoxide, 3,4-epoxycyclohexylmethyl-3,4-dicyclohexanecarboxylate, 2- (3,4-epoxy So-called cycloaliphatic epoxides, such as cyclohexyl-5,5-spiro (3,4-epoxy) cyclohexane-m-dioxane etc., in which an epoxy is introduced, eg by oxidation of the carbon-carbon double bond in the molecule Can be mentioned. In addition, an epoxy resin having a biphenyl skeleton, a triphenylmethane skeleton, a dicyclohexadiene skeleton, a naphthalene skeleton and the like can also be used. These epoxy resins can be used singly or in combination of two or more. Among the epoxy resins described above, glycidyl ether of bisphenol A (bisphenol A type epoxy resin), epoxy resin having biphenyl skeleton (biphenyl type epoxy resin), epoxy resin having naphthalene skeleton (naphthalene type epoxy resin), or a combination thereof It is preferred to use.
 上記フェノール樹脂としては、例えば、ビスフェノールA、テトラメチルビスフェノールA、ジアリルビスフェノールA、ビフェノール、ビスフェノールF、ジアリルビスフェノールF、トリフェニルメタン型フェノール、テトラキスフェノール、ノボラック型フェノール、クレゾールノボラック樹脂、ビフェニルアラルキル骨格を有するフェノール(ビフェニル型フェノール)等が挙げられ、これらの中でも、ビフェニル型フェノールを使用することが好ましい。これらのフェノール樹脂は、1種を単独でまたは2種以上を組み合わせて用いることができる。なお、硬化性樹脂としてエポキシ樹脂を使用する場合には、エポキシ樹脂との反応性等の観点から、フェノール樹脂を併用することが好ましい。 Examples of the phenolic resin include bisphenol A, tetramethyl bisphenol A, diallyl bisphenol A, biphenol, bisphenol F, diallyl bisphenol F, triphenylmethane-type phenol, tetrakisphenol, novolac-type phenol, cresol novolac resin, biphenylaralkyl skeleton The phenol which has (biphenyl type phenol) etc. is mentioned, It is preferable to use a biphenyl type phenol among these. These phenolic resins can be used singly or in combination of two or more. In addition, when using an epoxy resin as curable resin, it is preferable to use a phenol resin together from a viewpoint of the reactivity with an epoxy resin etc.
 樹脂組成物中における熱硬化性樹脂の含有量は、10質量%以上であることが好ましく、特に15質量%以上であることが好ましく、さらには、20質量%以上であることが好ましい。また、当該含有量は、60質量%以下であることが好ましく、特に50質量%以下であることが好ましく、さらには40質量%以下であることが好ましい。当該含有量が10質量%以上であることで、樹脂組成物層10の硬化がより十分なものとなり、より強固な絶縁膜を形成することができる。また、当該含有量が60質量%以下であることで、樹脂組成物層10の意図しない段階での硬化をより抑制することができ、保存安定性がより優れたものとなる。なお、熱硬化性樹脂の上記含有量は、固形分換算値である。 The content of the thermosetting resin in the resin composition is preferably 10% by mass or more, particularly preferably 15% by mass or more, and further preferably 20% by mass or more. In addition, the content is preferably 60% by mass or less, particularly preferably 50% by mass or less, and further preferably 40% by mass or less. When the content is 10% by mass or more, curing of the resin composition layer 10 becomes more sufficient, and a stronger insulating film can be formed. In addition, when the content is 60% by mass or less, curing of the resin composition layer 10 in an unintended stage can be further suppressed, and the storage stability becomes more excellent. In addition, the said content of a thermosetting resin is solid content conversion value.
(2)熱可塑性樹脂
 また、本実施形態における樹脂組成物は、熱可塑性樹脂を含有していてもよい。熱可塑性樹脂としては、例えば、フェノキシ系樹脂、オレフィン系樹脂、ポリエステル系樹脂、ポリウレタン系樹脂、ポリエステルウレタン系樹脂、アクリル系樹脂、アミド系樹脂、スチレン-イソブチレン-スチレン共重合体(SIS)等のスチレン系樹脂、シラン系樹脂、ゴム系樹脂、ポリビニルアセタール系樹脂、ポリビニルブチラール樹脂、ポリイミド系樹脂、ポリアミドイミド系樹脂、ポリエーテルスルホン系樹脂、ポリスルホン系樹脂、フッ素系樹脂等が挙げられ、これらは、1種を単独で、または2種以上を組み合わせて用いることができる。また、これらの熱可塑性樹脂は、硬化性の官能基を有するものであってもよい。
(2) Thermoplastic Resin In addition, the resin composition in the present embodiment may contain a thermoplastic resin. The thermoplastic resin includes, for example, phenoxy resin, olefin resin, polyester resin, polyurethane resin, polyester urethane resin, acrylic resin, amide resin, styrene-isobutylene-styrene copolymer (SIS), etc. Styrene resin, silane resin, rubber resin, polyvinyl acetal resin, polyvinyl butyral resin, polyimide resin, polyamide imide resin, polyether sulfone resin, polysulfone resin, fluorine resin and the like can be mentioned. These can be used alone or in combination of two or more. Moreover, these thermoplastic resins may have a curable functional group.
 ここで、半導体装置の小型化や配線の微細化のために、本実施形態に係る樹脂シート1を使用して半導体装置を製造する際には、樹脂組成物層10が硬化してなる硬化層上に電極を形成することにより、再配線層を設ける場合がある。特に、後述するセミアディティブ法により再配線層を設ける場合、デスミア処理のプロセスにおいて、硬化層は、アルカリ性溶液に晒される等の過酷な条件で処理されることとなる。この場合、熱可塑性樹脂の種類によっては、硬化層が溶解し、めっきのピール強度が低くなる等の配線形成性が悪い場合がある。そのため、硬化層への配線形成性の観点から、熱可塑性樹脂はアクリル系樹脂を含有しないことが好ましい。熱可塑性樹脂としては、上述した熱可塑性樹脂の中でもフェノキシ系樹脂、ポリビニルアセタール系樹脂、ポリビニルブチラール樹脂からなる群から選択される少なくとも1種を使用することが好ましい。 Here, in the case of manufacturing a semiconductor device using the resin sheet 1 according to the present embodiment in order to miniaturize the semiconductor device and to miniaturize the wiring, a cured layer formed by curing the resin composition layer 10 By forming an electrode on top, a rewiring layer may be provided. In particular, in the case of providing a redistribution layer by a semi-additive method described later, in the process of desmearing, the hardened layer is treated under severe conditions such as being exposed to an alkaline solution. In this case, depending on the type of the thermoplastic resin, the cured layer may be dissolved, and the wiring formability such as a decrease in plating peel strength may be poor. Therefore, it is preferable that the thermoplastic resin does not contain an acrylic resin from the viewpoint of the wiring formation to the cured layer. As the thermoplastic resin, it is preferable to use at least one selected from the group consisting of phenoxy resins, polyvinyl acetal resins, and polyvinyl butyral resins among the above-described thermoplastic resins.
 フェノキシ系樹脂としては、特に限定されないものの、例えば、ビスフェノールA型、ビスフェノールF型、ビスフェノールA/ビスフェノールF共重合型、ビスフェノールS型、ビスフェノールアセトフェノン型、ノボラック型、フルオレン型、ジシクロペンタジエン型、ノルボルネン型、ナフタレン型、アントラセン型、アダマンタン型、テルペン型、トリメチルシクロヘキサン型、ビフェノール型、ビフェニル型のフェノキシ系樹脂等が例示され、これらの中でもビスフェノールA型フェノキシ樹脂を使用することが好ましい。フェノキシ系樹脂の末端は、フェノール性水酸基、エポキシ基等のいずれの官能基であってもよい。フェノキシ系樹脂は1種を単独で用いてもよく、又は2種以上を併用してもよい。 Although it does not specifically limit as a phenoxy resin, For example, bisphenol A type, bisphenol F type, bisphenol A / bisphenol F copolymer type, bisphenol S type, bisphenol acetophenone type, novolak type, fluorene type, dicyclopentadiene type, norbornene Of naphthalene type, naphthalene type, anthracene type, adamantane type, terpene type, trimethylcyclohexane type, biphenol type and biphenyl type phenoxy resins are exemplified, and among these, it is preferable to use bisphenol A type phenoxy resin. The terminal of the phenoxy resin may be any functional group such as phenolic hydroxyl group and epoxy group. A phenoxy resin may be used individually by 1 type, or may use 2 or more types together.
 なお、熱可塑性樹脂としてフェノキシ系樹脂を使用した場合には、樹脂組成物層10の表面におけるタックが小さくなる傾向がある。しかしながら、本実施形態に係る樹脂シート1では、このようにタックが小さくなる場合であっても、樹脂組成物層10が第1の支持シート11における粘着剤層112側の面上に積層されていることにより、樹脂組成物層10と第1の支持シート11との界面における浮きを効果的に抑制することができる。そのため、本実施形態に係る樹脂シート1は、熱可塑性樹脂としてフェノキシ系樹脂を使用する場合にも好適である。 When a phenoxy resin is used as the thermoplastic resin, the tack on the surface of the resin composition layer 10 tends to be small. However, in the resin sheet 1 according to the present embodiment, even when the tack is small as described above, the resin composition layer 10 is laminated on the surface of the first support sheet 11 on the pressure-sensitive adhesive layer 112 side. By being present, the floating at the interface between the resin composition layer 10 and the first support sheet 11 can be effectively suppressed. Therefore, the resin sheet 1 which concerns on this embodiment is suitable also when using a phenoxy type-resin as a thermoplastic resin.
 熱可塑性樹脂の重量平均分子量(Mw)は、100以上であることが好ましく、特に1000以上であることが好ましく、さらには1万以上であることが特に好ましい。また、熱可塑性樹脂の重量平均分子量(Mw)は、100万以下であることが好ましく、特に80万以下であることが好ましく、さらには10万以下であることが特に好ましい。熱可塑性樹脂の重量平均分子量(Mw)が上記範囲であれば、樹脂組成物層10をシート状に形成することがより容易となる。なお、本明細書における重量平均分子量は、ゲル・パーミエーション・クロマトグラフィー(GPC)法により測定される標準ポリスチレン換算値である。 The weight average molecular weight (Mw) of the thermoplastic resin is preferably 100 or more, particularly preferably 1000 or more, and particularly preferably 10,000 or more. The weight average molecular weight (Mw) of the thermoplastic resin is preferably 1,000,000 or less, particularly preferably 800,000 or less, and particularly preferably 100,000 or less. When the weight average molecular weight (Mw) of the thermoplastic resin is in the above range, it becomes easier to form the resin composition layer 10 into a sheet. In addition, the weight average molecular weight in this specification is a standard polystyrene conversion value measured by gel permeation chromatography (GPC) method.
 樹脂組成物中における熱可塑性樹脂の含有量は、1.0質量%以上であることが好ましく、特に3.0質量%以上であることが好ましく、さらには5.0質量%以上であることが好ましい。また、当該含有量は、30質量%以下であることが好ましく、特に20質量%以下であることが好ましく、さらには10質量%以下であることが好ましい。当該含有量が上記範囲であることで、造膜性が向上し、得られる樹脂シートのハンドリング性が効果的に向上する。なお、熱可塑性樹脂の上記含有量は、固形分換算値である。 The content of the thermoplastic resin in the resin composition is preferably 1.0% by mass or more, particularly preferably 3.0% by mass or more, and further preferably 5.0% by mass or more preferable. In addition, the content is preferably 30% by mass or less, particularly preferably 20% by mass or less, and further preferably 10% by mass or less. When the content is in the above range, the film forming property is improved, and the handleability of the obtained resin sheet is effectively improved. In addition, the said content of a thermoplastic resin is solid content conversion value.
(3)無機微粒子
 本実施形態における樹脂組成物は、50質量%以上、90質量%以下で無機微粒子を含有する。これにより、樹脂組成物層10が硬化されてなる硬化層の熱膨張係数および吸水率が比較的小さいものとなり、それにより、樹脂組成物層10が優れた柔軟性、流動性および接着性を発揮するものとなる。このような観点から、樹脂組成物中における無機微粒子の含有量は、55質量%以上であることが好ましく、特に60質量%以上であることが好ましい。また、樹脂組成物層10が硬化してなる硬化層に再配線層が形成される場合における、配線形成性の観点から当該含有量は、85質量%以下であることが好ましく、特に80質量%以下であることが好ましい。なお、無機微粒子の上記含有量は、固形分換算値である。
(3) Inorganic fine particle The resin composition in this embodiment contains an inorganic fine particle by 50 mass% or more and 90 mass% or less. As a result, the thermal expansion coefficient and the water absorption coefficient of the cured layer in which the resin composition layer 10 is cured become relatively small, whereby the resin composition layer 10 exhibits excellent flexibility, fluidity, and adhesiveness. It will be done. From such a viewpoint, the content of the inorganic fine particles in the resin composition is preferably 55% by mass or more, and particularly preferably 60% by mass or more. In addition, the content is preferably 85% by mass or less, particularly 80% by mass from the viewpoint of the wiring formability in the case where the rewiring layer is formed in the cured layer formed by curing of the resin composition layer 10 It is preferable that it is the following. In addition, the said content of inorganic fine particles is a solid content conversion value.
 無機微粒子としては、例えば、シリカ、アルミナ、ガラス、酸化チタン、水酸化アルミニウム、水酸化マグネシウム、炭酸カルシウム、炭酸マグネシウム、ケイ酸カルシウム、ケイ酸マグネシウム、酸化カルシウム、酸化マグネシウム、酸化アルミニウム、窒化アルミニウム、ほう酸アルミウイスカ、窒化ほう素、結晶性シリカ、非晶性シリカ、ムライト、コージェライト等の複合酸化物、モンモリロナイト、スメクタイト、ベーマイト、タルク、酸化鉄、炭化珪素、酸化ジルコニウム等を材料とする無機微粒子を例示することができ、これらは1種を単独でまたは2種以上を組み合わせて用いることができる。これらの中でもシリカ微粒子、アルミナ微粒子を使用することが好ましく、特にシリカ微粒子を使用することが好ましい。 As the inorganic fine particles, for example, silica, alumina, glass, titanium oxide, aluminum hydroxide, magnesium hydroxide, calcium carbonate, magnesium carbonate, calcium silicate, magnesium silicate, calcium oxide, magnesium oxide, magnesium oxide, aluminum oxide, aluminum nitride, Inorganic fine particles composed of aluminum borate, boron nitride, crystalline silica, amorphous silica, mullite, cordierite and other composite oxides, montmorillonite, smectite, boehmite, talc, iron oxide, silicon carbide, zirconium oxide, etc. These can be used alone or in combination of two or more. Among these, it is preferable to use silica fine particles and alumina fine particles, and it is particularly preferable to use silica fine particles.
 上記無機微粒子は、表面処理剤により表面処理されていることが好ましい。これにより、樹脂組成物中における無機微粒子の分散性や充填性が優れたものとなる。上記表面処理剤としては、エポキシシラン、ビニルシラン、シラザン化合物、アルコキシシラン、シランカップリング剤等が挙げられる。これらは単独で使用してもよく、組み合わせて使用してもよい。 The inorganic fine particles are preferably surface-treated with a surface treatment agent. Thereby, the dispersibility and the filling property of the inorganic fine particles in the resin composition become excellent. Examples of the surface treatment agent include epoxysilanes, vinylsilanes, silazane compounds, alkoxysilanes and silane coupling agents. These may be used alone or in combination.
 上記表面処理剤の最小被覆面積は、550m/g未満であることが好ましく、特に520m/g以下であることが好ましく、さらには450m/g以下であることが好ましい。一方、表面処理剤の最小被覆面積の下限値については、100m/g以上であることが好ましく、特に200m/g以上であることが好ましく、さらには300m/g以上であることが好ましい。最小被覆面積が上記範囲であることで、樹脂組成物中における無機微粒子の分散性および充填性が向上するとともに、樹脂組成物層10が硬化してなる硬化層に対する電極の形成性が向上する。 The minimum coating area of the surface treatment agent is preferably less than 550 m 2 / g, particularly preferably 520 m 2 / g or less, and further preferably 450 m 2 / g or less. On the other hand, the lower limit value of the minimum covering area of the surface treatment agent is preferably 100 m 2 / g or more, particularly preferably 200 m 2 / g or more, and further preferably 300 m 2 / g or more . While the dispersibility and filling property of the inorganic fine particle in a resin composition improve by the minimum covering area being the said range, the formation property of the electrode with respect to the hardened layer which the resin composition layer 10 hardens | cures improves.
 なお、表面処理剤における最小被覆面積(m/g)とは、1gの表面処理剤を用いて単分子膜を形成した際の当該単分子膜の面積(m)をいう。最小被覆面積は、表面処理剤の構造等から理論的に算出することができる。 The minimum coverage area (m 2 / g) of the surface treatment agent refers to the area (m 2 ) of the monomolecular film when the monomolecular film is formed using 1 g of the surface treatment agent. The minimum coverage area can be theoretically calculated from the structure of the surface treatment agent and the like.
 表面処理剤の好適な例としては、3-グリシドキシプロピルトリメトキシシラン等のエポキシシランおよびビニルトリメトキシシラン等のビニルシランが挙げられる。 Preferred examples of the surface treatment agent include epoxysilanes such as 3-glycidoxypropyltrimethoxysilane and vinylsilanes such as vinyltrimethoxysilane.
 上記無機微粒子の平均粒径は、0.01μm以上であることが好ましく、特に0.1μm以上であることが好ましく、さらには0.3μm以上であることが好ましい。また、上記無機微粒子の平均粒径は、3.0μm以下であることが好ましく、特に1.0μm以下であることが好ましい。上記無機微粒子の平均粒径がこのような範囲であれば、樹脂組成物層10の可撓性および柔軟性が優れたものとなり易くなるとともに、無機微粒子の含有量を、上述の範囲のような高い充填率に調整し易くなる。さらに、上述したように、樹脂組成物層10が硬化してなる硬化層に再配線層が形成される場合に、電極の形成性が向上しやすくなる。 The average particle diameter of the inorganic fine particles is preferably 0.01 μm or more, particularly preferably 0.1 μm or more, and further preferably 0.3 μm or more. The average particle diameter of the inorganic fine particles is preferably 3.0 μm or less, and particularly preferably 1.0 μm or less. When the average particle diameter of the inorganic fine particles is in such a range, the flexibility and flexibility of the resin composition layer 10 are likely to be excellent, and the content of the inorganic fine particles is in the range described above. It becomes easy to adjust to a high filling rate. Furthermore, as described above, when the rewiring layer is formed on the cured layer formed by curing of the resin composition layer 10, the formability of the electrode is likely to be improved.
 また、上記無機微粒子の最大粒径は、0.05μm以上であることが好ましく、特に0.5μm以上であることが好ましい。また、当該最大粒径は、5μm以下であることが好ましく、特に3μm以下であることが好ましい。無機微粒子の最大粒径が上記範囲であることで、樹脂組成物中に無機微粒子を充填し易くなり、硬化時の熱膨張率を低く抑えることができる。また、上述したように、樹脂組成物層10が硬化してなる硬化層に再配線層が形成される場合に、微細な配線が形成しやすくなる。なお、本明細書における無機微粒子の平均粒径および最大粒径は、粒度分布測定装置(日機装社製,製品名「ナノトラックWave-UT151」)を使用して、動的光散乱法により測定した値とする。 The maximum particle size of the inorganic fine particles is preferably 0.05 μm or more, and more preferably 0.5 μm or more. Further, the maximum particle size is preferably 5 μm or less, and particularly preferably 3 μm or less. When the maximum particle size of the inorganic fine particles is in the above range, the inorganic fine particles can be easily filled in the resin composition, and the coefficient of thermal expansion at the time of curing can be suppressed low. Further, as described above, when the rewiring layer is formed on the cured layer formed by curing of the resin composition layer 10, fine wiring is easily formed. The average particle size and the maximum particle size of the inorganic fine particles in the present specification were measured by a dynamic light scattering method using a particle size distribution measuring apparatus (manufactured by Nikkiso Co., Ltd., product name “Nanotrac Wave-UT 151”). It will be a value.
(4)硬化触媒
 本実施形態における樹脂組成物は、硬化触媒をさらに含有することが好ましい。これにより、熱硬化性樹脂の硬化反応を効果的に進行させることが可能となり、樹脂組成物層10を良好に硬化することが可能となる。硬化触媒としては、例えば、イミダゾール系硬化触媒、アミン系硬化触媒、リン系硬化触媒等が挙げられる。
(4) Curing Catalyst The resin composition in the present embodiment preferably further contains a curing catalyst. As a result, the curing reaction of the thermosetting resin can be effectively advanced, and the resin composition layer 10 can be favorably cured. Examples of the curing catalyst include imidazole curing catalysts, amine curing catalysts, phosphorus curing catalysts and the like.
 上述した硬化触媒は、1種を単独で使用してもよく、2種以上を併用してもよい。 The curing catalysts described above may be used alone or in combination of two or more.
 樹脂組成物中における硬化触媒の含有量は、0.01質量%以上であることが好ましく、特に0.05質量%以上であることが好ましく、さらには、0.1質量%以上であることが好ましい。また、当該含有量は、2.0質量%以下であることが好ましく、特に1.5質量%以下であることが好ましく、さらには1.0質量%以下であることが好ましい。当該含有量が上記範囲であることで、樹脂組成物層10をより良好に硬化することが可能となる。なお、硬化触媒の上記含有量は、固形分換算値である。 The content of the curing catalyst in the resin composition is preferably 0.01% by mass or more, particularly preferably 0.05% by mass or more, and further preferably 0.1% by mass or more preferable. The content is preferably 2.0% by mass or less, particularly preferably 1.5% by mass or less, and further preferably 1.0% by mass or less. When the content is in the above range, the resin composition layer 10 can be cured more favorably. In addition, the said content of a curing catalyst is a solid content conversion value.
(5)その他の成分
 本実施形態における樹脂組成物は、さらに、可塑剤、安定剤、粘着付与剤、着色剤、カップリング剤、帯電防止剤、酸化防止剤等を含有してもよい。
(5) Other Components The resin composition in the present embodiment may further contain a plasticizer, a stabilizer, a tackifier, a colorant, a coupling agent, an antistatic agent, an antioxidant, and the like.
(6)樹脂組成物層の厚さ
 樹脂組成物層10の厚さは、5μm以上であることが好ましく、特に10μm以上であることが好ましく、さらには15μm以上であることが好ましい。また、当該厚さは、80μm以下であることが好ましく、特に60μm以下であることが好ましく、さらには40μm以下であることが好ましい。
(6) Thickness of Resin Composition Layer The thickness of the resin composition layer 10 is preferably 5 μm or more, particularly preferably 10 μm or more, and further preferably 15 μm or more. Further, the thickness is preferably 80 μm or less, particularly preferably 60 μm or less, and further preferably 40 μm or less.
(7)硬化性樹脂組成物層の物性
 樹脂組成物層10の表面におけるタックは、直径25mmのプローブを用いて測定された25℃のプローブタックが5g未満であってもよい。本実施形態に係る樹脂シート1では、このように樹脂組成物層10の表面におけるタックが非常に小さい場合であっても、樹脂組成物層10が第1の支持シート11における粘着剤層112側の面上に積層されていることにより、樹脂組成物層10と第1の支持シート11との界面における浮きを効果的に抑制することができる。なお、上述した25℃のプローブタックの下限値については、特に制限されず、例えば0.00001gであってもよい。また、上述した25℃のプローブタックは、プローブタック試験により測定することができる。具体的には、25℃の環境下、樹脂組成物層10における第1の支持シート11側の表面に、直径25mmのステンレス製プローブを10秒間、接触荷重0.98N/cmで接触させた後、プローブを10mm/秒の速度で試験片から離し、その際の荷重の値として測定することができる。
(7) Physical Properties of Curable Resin Composition Layer The tack on the surface of the resin composition layer 10 may be less than 5 g of probe tack at 25 ° C. measured using a probe with a diameter of 25 mm. In the resin sheet 1 according to the present embodiment, even when the tack on the surface of the resin composition layer 10 is very small as described above, the resin composition layer 10 is on the pressure-sensitive adhesive layer 112 side of the first support sheet 11 By being laminated on the surface of the above, the floating at the interface between the resin composition layer 10 and the first support sheet 11 can be effectively suppressed. The lower limit value of the probe tack at 25 ° C. is not particularly limited, and may be, for example, 0.00001 g. Also, the probe tack at 25 ° C. described above can be measured by a probe tack test. Specifically, a stainless steel probe with a diameter of 25 mm was contacted for 10 seconds with a contact load of 0.98 N / cm 2 on the surface of the resin composition layer 10 on the first support sheet 11 side under an environment of 25 ° C. After that, the probe is released from the test piece at a speed of 10 mm / sec, and can be measured as the value of the load at that time.
2.第1の支持シート
 本実施形態における第1の支持シート11は、支持基材111と、支持基材111の片面側に積層された粘着剤層112とを備える。
2. First Support Sheet The first support sheet 11 in the present embodiment includes a support base 111 and a pressure-sensitive adhesive layer 112 laminated on one side of the support base 111.
(1)支持基材
 上記支持基材111は、特に限定されないが、例えば、支持基材111としては、樹脂フィルム、不織布、紙等を使用することが好ましい。当該樹脂フィルムの例としては、ポリエチレンテレフタレートフィルム、ポリブチレンテレフタレートフィルム、ポリエチレンナフタレートフィルム等のポリエステルフィルム;ポリエチレンフィルム、ポリプロピレンフィルム等のポリオレフィンフィルム;ポリイミドフィルム等が挙げられる。上記不織布の例としては、レーヨン、アクリル、ポリエステル等の繊維を用いた不織布が挙げられる。上記紙の例としては、上質紙、グラシン紙、含浸紙、コート紙等が挙げられる。これらは、2種以上の積層体として使用してもよい。
(1) Support base material Although the said support base material 111 is not specifically limited, For example, as the support base material 111, it is preferable to use a resin film, a nonwoven fabric, paper etc. Examples of the resin film include polyester films such as polyethylene terephthalate film, polybutylene terephthalate film and polyethylene naphthalate film; polyolefin films such as polyethylene film and polypropylene film; polyimide film and the like. Examples of the non-woven fabric include non-woven fabrics using fibers such as rayon, acrylic and polyester. Examples of the above-mentioned paper include high-quality paper, glassine paper, impregnated paper, coated paper and the like. You may use these as 2 or more types of laminated bodies.
 上記樹脂フィルムを構成する材料は、ガラス転移温度(Tg)が50℃以上であることが好ましく、特に55℃以上であることが好ましく、さらには60℃以上であることが好ましい。当該材料のガラス転移温度(Tg)が50℃以上であることで、樹脂組成物層10に第1の支持シート11が積層された状態で、樹脂組成物層10を熱硬化した場合であっても、第1の支持シート11が熱変形しにくく、これにより、硬化層から第1の支持シート11が剥離しやすくなる。なお、上記ガラス転移温度(Tg)の上限については、特に限定されないものの、通常500℃以下であることが好ましく、特に400℃以下であることが好ましい。なお、上記ガラス転移温度(Tg)は、示差走査熱量分析計を用いて測定した値である。 The material forming the resin film preferably has a glass transition temperature (Tg) of 50 ° C. or higher, particularly preferably 55 ° C. or higher, and more preferably 60 ° C. or higher. When the glass transition temperature (Tg) of the said material is 50 degreeC or more, in the state by which the 1st support sheet 11 was laminated | stacked on the resin composition layer 10, it is a case where the resin composition layer 10 is thermosetting. Also, the first support sheet 11 is unlikely to be thermally deformed, which makes it easy for the first support sheet 11 to be peeled off from the hardened layer. The upper limit of the glass transition temperature (Tg) is not particularly limited, but is preferably 500 ° C. or less, particularly preferably 400 ° C. or less. The glass transition temperature (Tg) is a value measured using a differential scanning calorimeter.
 また、第1の支持シート11を構成する支持基材111は、その表面に積層される粘着剤層112との密着性を向上させる目的で、所望により片面または両面に、プライマー処理、コロナ処理、プラズマ処理、酸化処理等の表面処理が施されていてもよい。 Further, the support base 111 constituting the first support sheet 11 is subjected to primer treatment, corona treatment, if desired, on one side or both sides, as desired, for the purpose of improving the adhesion with the pressure-sensitive adhesive layer 112 laminated on the surface. Surface treatment such as plasma treatment or oxidation treatment may be performed.
 上記支持基材111の厚さは、特に限定されないが、樹脂シート1のハンドリング性の観点から、10μm以上であることが好ましく、特に15μm以上であることが好ましく、さらには20μm以上であることが好ましい。また、当該厚さは、500μm以下であることが好ましく、特に100μm以下であることが好ましく、さらには75μm以下であることが好ましい。 The thickness of the support base 111 is not particularly limited, but is preferably 10 μm or more, particularly preferably 15 μm or more, and further preferably 20 μm or more from the viewpoint of the handling property of the resin sheet 1 preferable. In addition, the thickness is preferably 500 μm or less, particularly preferably 100 μm or less, and further preferably 75 μm or less.
 支持基材111は、150℃で30分間加熱した際の支持基材111のMD方向およびCD方向の熱収縮率が、2.0%以下であることが好ましく、特に1.5%以下であることが好ましい。支持基材111のMD方向の熱収縮率の下限値及びCD方向の熱収縮率の下限値については、小さいほど好ましく、通常0.01%以上であることが好ましい。 The heat shrinkage ratio of the support substrate 111 in the MD direction and the CD direction when heated for 30 minutes at 150 ° C. is preferably 2.0% or less, and particularly preferably 1.5% or less. Is preferred. The lower limit value of the thermal contraction rate in the MD direction of the support base 111 and the lower limit value of the thermal contraction rate in the CD direction are preferably as small as possible, and usually 0.01% or more is preferable.
 また、支持基材111のMD方向の熱収縮率及び支持基材111のCD方向の熱収縮率が上記の範囲を満たすとともに、MD方向の熱収縮率と、CD方向の熱収縮率との比(MD方向の熱収縮率/CD方向の熱収縮率)が、0.03以上、30以下の範囲となることが好ましく、特に0.5以上、5.0以下の範囲となることが好ましい。支持基材111がこれらを満たすことで、樹脂組成物層10の熱硬化後に、形成された硬化層から第1の支持シート11を剥離する場合に、得られる半導体装置の反りを防止することができる。 Further, the thermal contraction rate in the MD direction of the support base 111 and the thermal contraction rate in the CD direction of the support base 111 satisfy the above ranges, and the ratio of the thermal contraction rate in the MD direction and the thermal contraction rate in the CD direction (The thermal contraction rate in the MD direction / the thermal contraction rate in the CD direction) is preferably in the range of 0.03 or more and 30 or less, and particularly preferably in the range of 0.5 or more and 5.0 or less. When the support base material 111 fills these, when peeling the 1st support sheet 11 from the formed cured layer after thermosetting of the resin composition layer 10, the curvature of the semiconductor device obtained can be prevented. it can.
 上述のMD方向とは、支持基材111を長尺で製膜した場合における、支持基材111を搬送する方向と並行する方向であり、CD方向とは、支持基材111の同一面上においてMD方向と直交する方向である。 The above-mentioned MD direction is a direction parallel to the direction in which the support base 111 is transported when the support base 111 is formed into a long film, and the CD direction is on the same surface of the support base 111. It is a direction orthogonal to the MD direction.
 上述した熱収縮率は、JIS Z1712に準拠して以下の方法で測定したものとする。支持基材111を巾20mm、長さ200mmの大きさで、MD方向、TD方向にそれぞれカットし、150℃の熱風オーブン中に吊るして5分間加熱する。そして、加熱後の長さを測定し、元の長さに対する収縮した長さの割合(百分率)を熱収縮率とする。 The thermal contraction rate mentioned above shall be measured by the following method based on JISZ1712. The supporting substrate 111 is cut into a size of 20 mm wide and 200 mm long in the MD direction and the TD direction, suspended in a hot air oven at 150 ° C., and heated for 5 minutes. Then, the length after heating is measured, and the ratio (percentage) of the contracted length to the original length is taken as the thermal contraction rate.
 なお、支持基材111の熱収縮率は、例えば、所望の範囲を満たすような材料を選択することや、支持基材111をアニール処理することや、支持基材111の成膜方法を変更すること(例えば、延伸方法を変えること)等により調整することもできる。 In addition, the thermal contraction rate of the support base material 111 selects the material which satisfy | fills a desired range, carries out the annealing process of the support base material 111, and changes the film-forming method of the support base material 111, for example. It can also adjust by things (for example, changing the extending | stretching method) etc.
 また、支持基材111としては、低分子量成分(オリゴマー)が析出し難いものを選択することが好ましい。このような支持基材111を用いることで、樹脂組成物層10を硬化する際の加熱により支持基材111中に含まれるオリゴマーが析出し、硬化層に移行することを抑制し、より高品質の半導体装置を製造することができる。なお、上記低分子量成分の析出の程度は、樹脂シート1を100℃及び60分間の条件で加熱し、続いて170℃及び60分間の条件で加熱した後、樹脂組成物層10が硬化してなる硬化層から第1の支持シート11を剥離した後、露出した当該硬化層の表面を、デジタル顕微鏡(観察倍率500倍)にて観察し、低分子量成分に由来する残渣の有無を確認することで判断することができる。 Moreover, as the support base material 111, it is preferable to select the thing to which a low molecular-weight component (oligomer) does not precipitate easily. By using such a supporting substrate 111, it is possible to suppress precipitation of the oligomer contained in the supporting substrate 111 by heating at the time of curing of the resin composition layer 10 and transfer to the cured layer, thereby achieving higher quality. Semiconductor devices can be manufactured. The degree of precipitation of the low molecular weight component is as follows: the resin sheet 1 is heated at 100 ° C. for 60 minutes and then heated at 170 ° C. for 60 minutes, and then the resin composition layer 10 is cured. The first support sheet 11 is peeled off from the hardened layer, and the exposed surface of the hardened layer is observed with a digital microscope (500 × magnification) to confirm the presence or absence of residues derived from low molecular weight components. It can be judged by
(2)粘着剤層
 上記粘着剤層112を構成する粘着剤は、第1の支持シート11が樹脂組成物層10に対して所望の粘着性を示すものであれば特に限定されない。粘着剤層112を構成する粘着剤の例としては、アクリル系粘着剤、ゴム系粘着剤、シリコーン系粘着剤、ウレタン系粘着剤、ポリエステル系粘着剤、ポリビニルエーテル系粘着剤等を使用することができる。
(2) Pressure-Sensitive Adhesive Layer The pressure-sensitive adhesive constituting the pressure-sensitive adhesive layer 112 is not particularly limited as long as the first support sheet 11 exhibits desired adhesiveness to the resin composition layer 10. Examples of the pressure-sensitive adhesive constituting the pressure-sensitive adhesive layer 112 include acrylic pressure-sensitive adhesives, rubber-based pressure-sensitive adhesives, silicone-based pressure-sensitive adhesives, urethane-based pressure-sensitive adhesives, polyester-based pressure-sensitive adhesives, and polyvinyl ether-based pressure-sensitive adhesives. it can.
 また、粘着剤層112を構成する粘着剤は、活性エネルギー線硬化性粘着剤、熱発泡性粘着剤および熱硬化性粘着剤から選択される少なくとも1種の粘着剤から構成されることが好ましい。これにより、第1の支持シート11が樹脂組成物層10に対して所望の粘着性を示すものとなり、樹脂組成物層10と第1の支持シート11との間における浮きが抑制される。その一方で、上記粘着剤は、活性エネルギー線の照射や加熱によって粘着力を低下させることが可能であり、それによって、樹脂組成物層10を硬化してなる硬化層からの第1の支持シート11の剥離を容易に行うことが可能となり、硬化層の欠けや割れの発生を抑制することが可能となる。 The pressure-sensitive adhesive constituting the pressure-sensitive adhesive layer 112 is preferably composed of at least one pressure-sensitive adhesive selected from an active energy ray-curable pressure-sensitive adhesive, a thermally foamable pressure-sensitive adhesive, and a thermosetting pressure-sensitive adhesive. Thereby, the first support sheet 11 exhibits desired adhesiveness to the resin composition layer 10, and the floating between the resin composition layer 10 and the first support sheet 11 is suppressed. On the other hand, the above-mentioned adhesive can reduce the adhesive strength by irradiation or heating of active energy rays, whereby the first support sheet from the cured layer formed by curing the resin composition layer 10 It becomes possible to easily carry out peeling of 11, and it becomes possible to control the occurrence of chipping and cracking of the hardened layer.
(2-1)アクリル系粘着剤
 上記アクリル系粘着剤は、特に制限はないものの、(メタ)アクリル酸エステル重合体(A)を含む粘着性組成物Pを用いて作製される粘着剤であることが好ましい。なお、本明細書において、(メタ)アクリル酸エステルとは、アクリル酸エステル及びメタクリル酸エステルの両方を意味する。他の類似用語も同様である。
(2-1) Acrylic-Based Pressure-Sensitive Adhesive Although the above-mentioned acrylic-based pressure-sensitive adhesive is not particularly limited, it is a pressure-sensitive adhesive prepared using a pressure-sensitive adhesive composition P containing a (meth) acrylic acid ester polymer (A) Is preferred. In the present specification, (meth) acrylic acid ester means both acrylic acid ester and methacrylic acid ester. Other similar terms are also the same.
 上記(メタ)アクリル酸エステル重合体(A)は、当該重合体を構成するモノマーとして、アルキル基の炭素数が1~20の(メタ)アクリル酸アルキルエステルを含有することが好ましい。これにより、得られる粘着剤は、好ましい粘着性を発現することができる。 The (meth) acrylic acid ester polymer (A) preferably contains, as a monomer constituting the polymer, a (meth) acrylic acid alkyl ester having 1 to 20 carbon atoms in the alkyl group. Thereby, the obtained adhesive can express desirable adhesiveness.
 アルキル基の炭素数が1~20の(メタ)アクリル酸アルキルエステルは、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。上記(メタ)アクリル酸アルキルエステルとしては、耐熱性の観点から、アルキル基の炭素数が6~10である(メタ)アクリル酸アルキルエステルを使用することが好ましく、特に、(メタ)アクリル酸2-エチルヘキシルを使用することが好ましい。 The (meth) acrylic acid alkyl ester having 1 to 20 carbon atoms in the alkyl group may be used alone or in combination of two or more. From the viewpoint of heat resistance, it is preferable to use a (meth) acrylic acid alkyl ester having 6 to 10 carbon atoms in the alkyl group as the above (meth) acrylic acid alkyl ester, and in particular, (meth) acrylic acid 2 Preference is given to using ethylhexyl.
 (メタ)アクリル酸エステル重合体(A)は、当該重合体を構成するモノマー単位として、アルキル基の炭素数が1~20の(メタ)アクリル酸アルキルエステルを、10質量%以上含有することが好ましく、特に、50質量%以上含有することが好ましく、70質量%以上含有することがより好ましく、特に85質量%以上含有することが好ましく、さらには90質量%以上含有することが好ましい。また、(メタ)アクリル酸エステル重合体(A)は、当該重合体を構成するモノマー単位として、アルキル基の炭素数が1~20の(メタ)アクリル酸アルキルエステルを、99質量%以下で含有することが好ましく、特に98質量%以下で含有することが好ましく、さらには97質量%以下で含有することが好ましい。 The (meth) acrylic acid ester polymer (A) contains 10% by mass or more of (meth) acrylic acid alkyl ester having 1 to 20 carbon atoms in the alkyl group as a monomer unit constituting the polymer The content is preferably 50% by mass or more, more preferably 70% by mass or more, particularly preferably 85% by mass or more, and still more preferably 90% by mass or more. Further, the (meth) acrylic acid ester polymer (A) contains, as a monomer unit constituting the polymer, an (meth) acrylic acid alkyl ester having 1 to 20 carbon atoms in the alkyl group at 99% by mass or less In particular, the content is preferably 98% by mass or less, and more preferably 97% by mass or less.
 また、(メタ)アクリル酸エステル重合体(A)は、当該重合体を構成するモノマーとして、反応性の官能基を有するモノマー(反応性官能基含有モノマー)を含有することが好ましい。上記反応性官能基含有モノマーとしては、水酸基含有モノマー、カルボキシル基含有モノマー、アミノ基含有モノマーなどが好ましく挙げられる。これらの反応性官能基含有モノマーは、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 Moreover, it is preferable that the (meth) acrylic acid ester polymer (A) contains the monomer (reactive functional group containing monomer) which has a reactive functional group as a monomer which comprises the said polymer. As said reactive functional group containing monomer, a hydroxyl group containing monomer, a carboxyl group containing monomer, an amino group containing monomer etc. are mentioned preferably. One of these reactive functional group-containing monomers may be used alone, or two or more thereof may be used in combination.
 (メタ)アクリル酸エステル重合体(A)は、当該重合体を構成するモノマー単位として、反応性官能基含有モノマーを、1質量%以上含有することが好ましく、特に2質量%以上含有することが好ましく、さらには3質量%以上含有することが好ましい。また、(メタ)アクリル酸エステル重合体(A)は、当該重合体を構成するモノマー単位として、反応性官能基含有モノマーを、30質量%以下で含有することが好ましく、20質量%以下で含有することがより好ましく、特に10質量%以下で含有することが好ましく、さらには7質量%以下で含有することが好ましい。 The (meth) acrylic acid ester polymer (A) preferably contains 1% by mass or more of the reactive functional group-containing monomer as a monomer unit constituting the polymer, and particularly preferably 2% by mass or more It is preferable to contain 3 mass% or more preferably. Further, the (meth) acrylic acid ester polymer (A) preferably contains, as a monomer unit constituting the polymer, a reactive functional group-containing monomer at 30% by mass or less, and at 20% by mass or less It is more preferable that the content be 10% by mass or less, particularly preferably 7% by mass or less.
 また、前記(メタ)アクリル酸エステル重合体(A)は、当該重合体を構成するモノマーとして、他のモノマーをさらに含有してもよい。当該他のモノマーとしては、例えば、脂肪族環を有する(メタ)アクリル酸エステル、非架橋性のアクリルアミド、非架橋性の3級アミノ基を有する(メタ)アクリル酸エステル、酢酸ビニル、スチレンなどが挙げられる。これらは単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 Further, the (meth) acrylic acid ester polymer (A) may further contain another monomer as a monomer constituting the polymer. As the other monomer, for example, (meth) acrylic acid ester having aliphatic ring, non-crosslinkable acrylamide, (meth) acrylic acid ester having non-crosslinkable tertiary amino group, vinyl acetate, styrene and the like It can be mentioned. These may be used alone or in combination of two or more.
 なお、(メタ)アクリル酸エステル重合体(A)は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 In addition, a (meth) acrylic acid ester polymer (A) may be used individually by 1 type, and may be used combining 2 or more types.
 上記アクリル系粘着剤を作製するための粘着性組成物Pは、架橋剤(B)をさらに含むことが好ましく、上記アクリル系粘着剤は、前述した(メタ)アクリル酸エステル重合体(A)と架橋剤(B)とを含む粘着性組成物Pを架橋してなるものであることが好ましい。 It is preferable that the adhesive composition P for producing the said acrylic adhesive further contains a crosslinking agent (B), and the said acrylic adhesive is the (meth) acrylic acid ester polymer (A) mentioned above, It is preferable that it is what bridge | crosslinks the adhesive composition P containing a crosslinking agent (B).
 上記架橋剤(B)としては、(メタ)アクリル酸エステル重合体(A)が有する反応性官能基と反応するものであればよく、例えば、イソシアネート系架橋剤、エポキシ系架橋剤、アミン系架橋剤、メラミン系架橋剤、アジリジン系架橋剤、ヒドラジン系架橋剤、アルデヒド系架橋剤、オキサゾリン系架橋剤、金属アルコキシド系架橋剤、金属キレート系架橋剤、金属塩系架橋剤、アンモニウム塩系架橋剤等が挙げられる。なお、架橋剤(B)は、1種を単独で、または2種以上を組み合わせて使用することができる。 The crosslinker (B) may be any one that reacts with the reactive functional group possessed by the (meth) acrylic acid ester polymer (A). For example, an isocyanate crosslinker, an epoxy crosslinker, an amine crosslinker Agent, melamine based crosslinking agent, aziridine based crosslinking agent, hydrazine based crosslinking agent, aldehyde based crosslinking agent, oxazoline based crosslinking agent, metal alkoxide based crosslinking agent, metal chelate based crosslinking agent, metal salt based crosslinking agent, ammonium salt based crosslinking agent Etc. In addition, a crosslinking agent (B) can be used individually by 1 type or in combination of 2 or more types.
 粘着性組成物P中における架橋剤(B)の含有量は、(メタ)アクリル酸エステル重合体(A)100質量部に対して、0.1質量部以上であることが好ましく、1質量部以上であることがより好ましく、特に2質量部以上であることが好ましく、さらには3質量部以上であることが好ましい。また、当該含有量は、(メタ)アクリル酸エステル重合体(A)100質量部に対して、20質量部以下であることが好ましく、特に15質量部以下であることが好ましく、さらには10質量部以下であることが好ましい。 The content of the crosslinking agent (B) in the adhesive composition P is preferably 0.1 parts by mass or more, and 1 part by mass with respect to 100 parts by mass of the (meth) acrylic acid ester polymer (A). The content is more preferably 2 parts by mass or more, still more preferably 3 parts by mass or more. Further, the content is preferably 20 parts by mass or less, particularly preferably 15 parts by mass or less, and further 10 parts by mass with respect to 100 parts by mass of the (meth) acrylic acid ester polymer (A). It is preferable that it is less than part.
(2-2)シリコーン系粘着剤
 シリコーン系粘着剤は、特に制限はなく、例えば、ジメチルポリシロキサンを含有する粘着剤が挙げられる。シリコーン系粘着剤としては、例えば、ビニル基等の不飽和基を有するオルガノポリシロキサンと、架橋剤としての、SiH基を有するジメチルポリシロキサンと、白金系触媒とを含有する粘着剤組成物を硬化してなる付加重合型シリコーン系粘着剤や、オルガノポリシロキサンを過酸化ベンゾイル(BPO)等の有機過酸化物により硬化して得られるシリコーン系粘着剤等を使用することができる。耐熱性の観点から付加重合型シリコーン系粘着剤が好ましい。この場合、得られる粘着力を考慮して上記不飽和基の密度に応じて架橋密度を調整することが可能である。上記付加重合型シリコーン系粘着剤は、付加重合させるために加熱等を行うことで良好に形成することが可能である。
(2-2) Silicone-Based Pressure-Sensitive Adhesive The silicone-based pressure-sensitive adhesive is not particularly limited, and examples thereof include a pressure-sensitive adhesive containing dimethylpolysiloxane. As the silicone-based pressure-sensitive adhesive, for example, a pressure-sensitive adhesive composition containing an organopolysiloxane having an unsaturated group such as a vinyl group, a dimethylpolysiloxane having an SiH group as a crosslinking agent, and a platinum-based catalyst is cured. It is possible to use an addition polymerization type silicone-based pressure-sensitive adhesive or a silicone-based pressure-sensitive adhesive obtained by curing an organopolysiloxane with an organic peroxide such as benzoyl peroxide (BPO). From the viewpoint of heat resistance, addition polymerization type silicone pressure-sensitive adhesives are preferable. In this case, it is possible to adjust the crosslink density according to the density of the unsaturated group in consideration of the adhesive force obtained. The addition polymerization type silicone-based pressure-sensitive adhesive can be favorably formed by performing heating or the like for addition polymerization.
(2-3)活性エネルギー線硬化性粘着剤
 活性エネルギー線硬化性粘着剤は、活性エネルギー線の照射前において所定の粘着力を発揮しながらも、活性エネルギー線の照射により硬化して粘着力が十分に低下する粘着剤であれば特に限定されない。活性エネルギー線硬化性粘着剤は、活性エネルギー線硬化性を有するポリマーを含有するものであってもよく、活性エネルギー線非硬化性ポリマー(活性エネルギー線硬化性を有しないポリマー)と少なくとも1つ以上の活性エネルギー線硬化性基を有するモノマーおよび/またはオリゴマーとの混合物を含有するものであってもよい。
(2-3) Active Energy Ray-Curable Adhesive The active energy ray-curable adhesive cures by irradiation of active energy rays while exhibiting a predetermined adhesive power before irradiation of active energy rays. The pressure-sensitive adhesive is not particularly limited as long as it is sufficiently reduced. The active energy ray curable adhesive may contain an active energy ray curable polymer, and the active energy ray non-curable polymer (polymer having no active energy ray curable) and at least one or more polymers. Or a mixture of monomers and / or oligomers having an active energy ray-curable group of
(2-4)熱発泡性粘着剤
 熱発泡性粘着剤は、加熱前において所定の粘着力を発揮しながらも、加熱により発泡して粘着力が十分に低下する粘着剤であれば特に限定されず、例えば、マトリックスとしての粘着成分と、発泡剤とを含有する粘着剤であることが好ましい。なお、熱発泡性粘着剤については、特開2004-277749号公報、特開2012-117040号公報、特開2010-094834号公報等に詳細に記載されており、これらの熱発泡性粘着剤を、本実施形態における粘着剤として使用してもよい。
(2-4) Heat-foamable pressure-sensitive adhesive The heat-foamable pressure-sensitive adhesive is not particularly limited as long as it is a pressure-sensitive adhesive which is foamed by heating to sufficiently reduce the adhesiveness while exhibiting a predetermined adhesiveness before heating. For example, a pressure-sensitive adhesive containing a pressure-sensitive adhesive component as a matrix and a foaming agent is preferable. The heat-foamable pressure-sensitive adhesives are described in detail in JP-A-2004-277749, JP-A-2012-117040, JP-A-2010-094834, etc. Alternatively, it may be used as an adhesive in the present embodiment.
 なお、粘着剤層112が熱発泡性粘着剤から構成される第1の支持シート11は市販品を使用してもよく、その例としては、製品名「リバアルファ」(日東電工社製)等が好ましく挙げられる。 The first support sheet 11 in which the pressure-sensitive adhesive layer 112 is formed of a heat-foamable pressure-sensitive adhesive may be a commercially available product, and as an example, the product name "REVAALPHA" (manufactured by Nitto Denko Corporation) etc. Is preferably mentioned.
(2-5)熱硬化性粘着剤
 熱硬化性粘着剤は、加熱前において所定の粘着力を発揮しながらも、加熱により硬化して粘着力が十分に低下する粘着剤であれば特に限定されず、例えば、粘着成分と、熱硬化性樹脂とを含有する粘着剤等の従来公知ものを使用できる。
(2-5) Thermosetting adhesive The thermosetting adhesive is not particularly limited as long as it is a pressure-sensitive adhesive that cures by heating to sufficiently reduce the adhesion while exhibiting a predetermined adhesion before heating. For example, conventionally known materials such as a pressure-sensitive adhesive containing a pressure-sensitive adhesive component and a thermosetting resin can be used.
 上記粘着成分の例としては、アクリル系粘着剤、ゴム系粘着剤、シリコーン系粘着剤、ウレタン系粘着剤等が挙げられる。これらは1種を単独で使用してもよく、または2種以上を組み合わせて使用してもよい。 Examples of the pressure-sensitive adhesive component include acrylic pressure-sensitive adhesives, rubber pressure-sensitive adhesives, silicone pressure-sensitive adhesives, urethane pressure-sensitive adhesives and the like. One of these may be used alone, or two or more may be used in combination.
(2-6)添加剤
 上記粘着剤層112を構成する粘着剤には、所望により、通常使用されている各種添加剤、例えば屈折率調整剤、帯電防止剤、粘着付与剤、シランカップリング剤、酸化防止剤、紫外線吸収剤、光安定剤、軟化剤、充填剤、光硬化剤、光重合開始剤などを添加することができる。
(2-6) Additives In the pressure-sensitive adhesive constituting the pressure-sensitive adhesive layer 112, various additives which are usually used, for example, refractive index modifiers, antistatic agents, tackifiers, silane coupling agents Antioxidants, UV absorbers, light stabilizers, softeners, fillers, light curing agents, photopolymerization initiators and the like can be added.
 上記粘着剤層112を構成する粘着剤には、粘着付与剤として、反応性基を有するゴム系樹脂を含有することが好ましい。当該ゴム系樹脂としては、例えば、末端にカルボキシル基を有する水素添加型ポリブタジエン樹脂、末端に水酸基を有する水素添加型ポリブタジエン樹脂等が挙げられる。末端にカルボキシル基を有する水素添加型ポリブタジエン樹脂の具体例としては、日本曹達社製の製品名「CI1000」等が挙げられる。また、末端に水酸基を有する水素添加型ポリブタジエン樹脂の具体例としては、日本曹達社製の製品名「GI1000」、「GI2000」、「GI3000」等が挙げられる。 The pressure-sensitive adhesive constituting the pressure-sensitive adhesive layer 112 preferably contains, as a tackifier, a rubber-based resin having a reactive group. As said rubber-type resin, the hydrogenation type polybutadiene resin which has a carboxyl group at the terminal, the hydrogenation type polybutadiene resin which has a hydroxyl group at the terminal, etc. are mentioned, for example. As a specific example of the hydrogenation type polybutadiene resin which has a carboxyl group at the terminal, the product name "CI1000" by Nippon Soda Co., Ltd. etc. is mentioned. Moreover, as a specific example of hydrogenation type polybutadiene resin which has a hydroxyl group at the terminal, product names "GI1000", "GI2000", "GI3000" etc. made by Nippon Soda Co., Ltd. are mentioned.
 粘着剤層112を構成する粘着剤が、上述した粘着付与剤を含むことで、後述する剥離力(F11)および剥離力(F12)を所望の範囲に調整しやすくなり、さらに、樹脂組成物層10の熱硬化後に、硬化層から第1の支持シート11を剥離する場合に、硬化層に粘着剤残渣が残ることを抑制することができる。 It becomes easy to adjust the peeling force (F11) and peeling force (F12) mentioned later to a desired range by the adhesive which comprises the adhesive layer 112 including the tackifier mentioned above, and also a resin composition layer When the first support sheet 11 is peeled off from the cured layer after the thermal curing of 10, the adhesive residue can be prevented from remaining in the cured layer.
 粘着性組成物P中における粘着付与剤の含有量は、(メタ)アクリル酸エステル重合体(A)100質量部に対して、1質量部以上であることが好ましく、特に5質量部以上であることが好ましい。また、当該含有量は、(メタ)アクリル酸エステル重合体(A)100質量部に対して、30質量部以下であることが好ましく、特に15質量部以下であることが好ましい。 The content of the tackifier in the adhesive composition P is preferably 1 part by mass or more, particularly 5 parts by mass or more based on 100 parts by mass of the (meth) acrylic acid ester polymer (A). Is preferred. Further, the content is preferably 30 parts by mass or less, and particularly preferably 15 parts by mass or less, with respect to 100 parts by mass of the (meth) acrylic acid ester polymer (A).
(2-7)粘着剤層の物性等
 粘着剤層112の厚さは、1μm以上であることが好ましく、特に5μm以上であることが好ましく、さらには10μm以上であることが好ましい。また、当該厚さは、500μm以下であることが好ましく、特に100μm以下であることが好ましく、さらには50μm以下であることが好ましい。
(2-7) Physical Properties of Pressure-Sensitive Adhesive Layer, Etc. The thickness of the pressure-sensitive adhesive layer 112 is preferably 1 μm or more, particularly preferably 5 μm or more, and further preferably 10 μm or more. Further, the thickness is preferably 500 μm or less, particularly preferably 100 μm or less, and further preferably 50 μm or less.
 粘着剤層112は、100℃における、測定周波数を1Hzとしたときの貯蔵弾性率が1×10Pa以上であることが好ましい。粘着剤層112がこのような貯蔵弾性率を有していれば、樹脂組成物層10を硬化し、硬化層を形成した後に、当該硬化層から第1の支持シート11をより容易に剥離することができ、かつ硬化層の表面に粘着剤が残るという不具合(いわゆる糊残り)を防止することができる。粘着剤層112の100℃における、測定周波数を1Hzとしたときの貯蔵弾性率の上限は、特に限定されないが、1×10Pa以下であることが好ましい。なお、上記貯蔵弾性率は、動的粘弾性測定装置を用いて、ねじりせん断法により測定した値であり、測定方法の詳細は、後述する実施例に記載の通りである。 The pressure-sensitive adhesive layer 112 preferably has a storage elastic modulus of 1 × 10 5 Pa or more at 100 ° C. and a measurement frequency of 1 Hz. If the pressure-sensitive adhesive layer 112 has such a storage elastic modulus, after curing the resin composition layer 10 and forming a cured layer, the first support sheet 11 is more easily peeled off from the cured layer. It is possible to prevent the problem that the pressure-sensitive adhesive remains on the surface of the cured layer (so-called adhesive residue). The upper limit of the storage elastic modulus when the measurement frequency is 1 Hz at 100 ° C. of the pressure-sensitive adhesive layer 112 is not particularly limited, but is preferably 1 × 10 7 Pa or less. The storage elastic modulus is a value measured by a torsional shear method using a dynamic viscoelasticity measuring apparatus, and the details of the measuring method are as described in the examples to be described later.
 第1の支持シート11は、粘着剤層112側の面を銅箔に貼着させ、100℃及び30分間の条件で加熱し、続いて180℃及び60分間の条件で加熱した後、銅箔に対する室温での粘着力が、0.7N/25mm以上、2.0N/25mm以下であることが好ましい。また、第1の支持シート11の粘着剤層112側の面をポリイミドフィルムに貼着させ、100℃及び30分間の条件で加熱し、続いて180℃及び60分間の条件で加熱した後、ポリイミドフィルムに対する室温での粘着力が、0.7N/25mm以上、2.0N/25mm以下であることが好ましい。このような加熱を行った後の粘着力が上記範囲であれば、樹脂組成物層10を熱硬化してなる硬化層から、第1の支持シート11をより剥離しやすい。なお、上記粘着力の測定方法の詳細は、後述する実施例に記載の通りとする。また、本明細書において室温とは、22℃以上、24℃以下の温度をいうものとする。 The first support sheet 11 has a surface on the adhesive layer 112 side adhered to a copper foil, is heated under conditions of 100 ° C. and 30 minutes, and is subsequently heated under conditions of 180 ° C. and 60 minutes, It is preferable that the adhesion at room temperature with respect to is 0.7 N / 25 mm or more and 2.0 N / 25 mm or less. The surface of the first support sheet 11 on the adhesive layer 112 side is attached to a polyimide film, heated at 100 ° C. for 30 minutes, and subsequently heated at 180 ° C. for 60 minutes. The adhesion at room temperature to the film is preferably 0.7 N / 25 mm or more and 2.0 N / 25 mm or less. If the adhesive force after such heating is in the above-mentioned range, the first support sheet 11 is more easily peeled off from the cured layer formed by heat curing the resin composition layer 10. In addition, the detail of the measuring method of the said adhesive force presupposes as it describes in the Example mentioned later. In the present specification, room temperature refers to a temperature of 22 ° C. or more and 24 ° C. or less.
 粘着剤層112は、第1の支持シート11が加熱された後に硬化層から剥離された際における、粘着剤層112の劣化に起因した糊残りを効果的に抑制する観点から、5%重量減少温度が250℃以上であることが好ましく、300℃以上であることがより好ましい。 The pressure-sensitive adhesive layer 112 is reduced by 5% from the viewpoint of effectively suppressing the adhesive residue caused by the deterioration of the pressure-sensitive adhesive layer 112 when the first support sheet 11 is peeled off from the cured layer after being heated. The temperature is preferably 250 ° C. or more, more preferably 300 ° C. or more.
3.第2の支持シート
 本実施形態に係る樹脂シート1は、樹脂組成物層10における第1の支持シート11とは反対側の面に積層された第2の支持シート12を備えることが好ましい。本実施形態に係る樹脂シート1が第2の支持シート12を備えることにより、第1の支持シート11と第2の支持シート12とにより、樹脂組成物層10を両面から保護することができる。それにより、外観上の問題や樹脂組成物層10の欠けや割れの発生が効果的に抑制される。
3. Second Support Sheet The resin sheet 1 according to the present embodiment preferably includes the second support sheet 12 laminated on the surface of the resin composition layer 10 opposite to the first support sheet 11. By providing the second support sheet 12 with the resin sheet 1 according to the present embodiment, the resin composition layer 10 can be protected from both sides by the first support sheet 11 and the second support sheet 12. As a result, appearance problems and the occurrence of chipping or cracking of the resin composition layer 10 are effectively suppressed.
 第2の支持シート12は、特に限定されず、例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステルフィルム、ポリプロピレン、ポリエチレン等のポリオレフィンフィルムなどのプラスチックフィルム、上質紙、グラシン紙、含浸紙、コート紙等の紙、不織布等が挙げられる。これらは、2種以上の積層体として使用してもよい。第2の支持シート12は、マッド処理、コロナ処理等の表面処理が施してあってもよい。 The second support sheet 12 is not particularly limited, and for example, a polyester film such as polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, a plastic film such as polyolefin film such as polypropylene or polyethylene, high quality paper, glassine paper, impregnated paper And paper such as coated paper, non-woven fabric and the like. You may use these as 2 or more types of laminated bodies. The second support sheet 12 may be subjected to surface treatment such as mud treatment or corona treatment.
 第2の支持シート12における樹脂組成物層10との接触面は、剥離剤によって剥離処理されていてもよい。当該剥離剤としては、シリコーン系剥離剤、アルキド系剥離剤、フッ素系剥離剤、長鎖アルキル系剥離剤、オレフィン樹脂系剥離剤、アクリル系剥離剤およびゴム系剥離剤等が挙げられる。これらの中でも、シリコーン系剥離剤、アルキド系剥離剤から選択される少なくとも1種を使用することが好ましく、特に、第2の支持シート12と樹脂組成物層10との間における浮きの発生を防止する観点から、アルキド系剥離剤を使用することがより好ましい。 The contact surface with the resin composition layer 10 in the 2nd support sheet 12 may be exfoliated by the exfoliation agent. Examples of the release agent include silicone release agents, alkyd release agents, fluorine release agents, long chain alkyl release agents, olefin resin release agents, acrylic release agents, rubber release agents, and the like. Among these, it is preferable to use at least one selected from silicone-based release agents and alkyd-based release agents, and in particular, generation of floating between the second support sheet 12 and the resin composition layer 10 is prevented. In view of the above, it is more preferable to use an alkyd release agent.
 また、第2の支持シート12は、樹脂組成物層10と接触する側の面に、粘着剤層を備えていてもよい。当該粘着剤層は、第1の支持シート11が備える粘着剤層112と同様のものであってもよい。 The second support sheet 12 may have a pressure-sensitive adhesive layer on the side in contact with the resin composition layer 10. The pressure-sensitive adhesive layer may be the same as the pressure-sensitive adhesive layer 112 included in the first support sheet 11.
 第2の支持シート12の厚さは、特に制限はないが、通常20μm以上、250μm以下である。 The thickness of the second support sheet 12 is not particularly limited, but is usually 20 μm or more and 250 μm or less.
4.樹脂シートの物性
 第1の支持シート11を硬化前の樹脂組成物層10から剥離する際の剥離力(F11)は、0.1N/25mm以上であることが好ましく、特に0.2N/25mm以上であることが好ましく、さらには0.3N/25mm以上であることが好ましい。上記剥離力(F11)が0.1N/25mm以上であることで、樹脂シート1の保管時(特に冷蔵保管時)や取り扱い時における第1の支持シート11と樹脂組成物層10との浮きの発生が効果的に抑制される。
4. Physical Properties of Resin Sheet The peeling force (F11) at the time of peeling the first support sheet 11 from the resin composition layer 10 before curing is preferably 0.1 N / 25 mm or more, particularly 0.2 N / 25 mm or more Is preferably 0.3 N / 25 mm or more. When the peeling force (F11) is 0.1 N / 25 mm or more, floating of the first support sheet 11 and the resin composition layer 10 during storage (particularly during cold storage) or handling of the resin sheet 1 The occurrence is effectively suppressed.
 また、上記剥離力(F11)の上限値については、粘着剤層112を構成する粘着剤が活性エネルギー線硬化性粘着剤、熱発泡性粘着剤および熱硬化性粘着剤のいずれでもない場合には、当該剥離力(F11)は、3.0N/25mm以下であることが好ましく、特に2.0N/25mm以下であることが好ましく、さらには0.5N/25mm以下であることが好ましい。粘着剤層112を構成する粘着剤が活性エネルギー線硬化性粘着剤、熱発泡性粘着剤および熱硬化性粘着剤の少なくとも1種である場合には、当該剥離力(F11)は、30N/25mm以下であることが好ましく、特に25N/25mm以下であることが好ましく、さらには20N/25mm以下であることが好ましい。上記剥離力(F11)の上限値がこれらの範囲であることで、第1の支持シート11を剥離する際に樹脂組成物層10の欠けや割れを効果的に抑制することが可能となる。  Moreover, about the upper limit of the said peeling force (F11), when the adhesive which comprises the adhesive layer 112 is neither an active energy ray-curable adhesive, a thermally foamable adhesive nor a thermosetting adhesive The peeling force (F11) is preferably 3.0 N / 25 mm or less, particularly preferably 2.0 N / 25 mm or less, and further preferably 0.5 N / 25 mm or less. When the pressure-sensitive adhesive forming the pressure-sensitive adhesive layer 112 is at least one of an active energy ray-curable pressure-sensitive adhesive, a heat-foamable pressure-sensitive adhesive and a thermosetting pressure-sensitive adhesive, the peeling force (F11) is 30 N / 25 mm. It is preferable that it is the following, It is preferable that it is especially 25 N / 25 mm or less, More preferably, it is 20 N / 25 mm or less. When the upper limit value of the peeling force (F11) is in these ranges, it is possible to effectively suppress chipping and cracking of the resin composition layer 10 when peeling the first support sheet 11.
 なお、上述した剥離力(F11)の測定方法は、後述する試験例に示す通りである。 In addition, the measuring method of the peeling force (F11) mentioned above is as showing to the test example mentioned later.
 また、樹脂シート1を100℃で30分間加熱し、さらに180℃で60分間加熱した樹脂シート1において、樹脂組成物層10を熱硬化してなる硬化層から、第1の支持シート11を剥離する際の剥離力(F12)は、0.5N/25mm以上であることが好ましく、特に0.7N/25mm以上であることが好ましく、さらには0.8N/25mm以上であることが好ましい。また、当該剥離力(F12)は、3.0N/25mm以下であることが好ましく、特に2.0N/25mm以下であることが好ましく、さらには1.5N/25mm以下であることが好ましい。上記剥離力(F12)が0.5N/25mm以上であることで、樹脂組成物層10の熱硬化前後における第1の支持シート11の意図しない剥離を抑制することができ、得られた硬化層の表面を第1の支持シート11によってより良好に保護することができる。また、上記剥離力(F12)が3.0N/25mm以下であることで、第1の支持シート11を加熱した後であっても、樹脂組成物層10を硬化してなる硬化層の表面から第1の支持シート11を良好に剥離し易く、樹脂組成物層10の欠けや割れを効果的に抑制することが可能となる。なお、上述した剥離力(F12)の測定方法は、後述する試験例に示す通りである。 Further, in the resin sheet 1 in which the resin sheet 1 is heated at 100 ° C. for 30 minutes and further heated at 180 ° C. for 60 minutes, the first support sheet 11 is peeled off from the cured layer formed by heat curing the resin composition layer 10 The peeling force (F12) at the time of carrying out is preferably 0.5 N / 25 mm or more, particularly preferably 0.7 N / 25 mm or more, and further preferably 0.8 N / 25 mm or more. Further, the peeling force (F12) is preferably 3.0 N / 25 mm or less, particularly preferably 2.0 N / 25 mm or less, and further preferably 1.5 N / 25 mm or less. By the said peeling force (F12) being 0.5 N / 25 mm or more, the unintended peeling of the 1st support sheet 11 before and behind thermosetting of the resin composition layer 10 can be suppressed, and the obtained hardened layer is obtained. Can be better protected by the first support sheet 11. Moreover, even after heating the first support sheet 11 because the peeling force (F12) is 3.0 N / 25 mm or less, from the surface of the cured layer formed by curing the resin composition layer 10 The first support sheet 11 can be easily peeled off, and chipping and cracking of the resin composition layer 10 can be effectively suppressed. In addition, the measuring method of the peeling force (F12) mentioned above is as showing to the test example mentioned later.
 また、本実施形態に係る樹脂シート1が第2の支持シート12を備える場合、第2の支持シート12を硬化前の樹脂組成物層10から剥離する際の剥離力(F2)は、下式(1)
   F11/F2>1 …(1)
を満たすものであることが好ましい。これにより、第1の支持シート11と樹脂組成物層10との間における浮きの発生を抑制しながら、第2の支持シート12を樹脂組成物層10から剥離し易いものとなる。なお、剥離力(F2)は、0.05N/100mm以上であることが好ましく、特に0.10N/100mm以上であることが好ましい。また、当該剥離力(F2)は、2.0N/100mm以下であることが好ましい。なお、上述した剥離力(F2)の測定方法は、後述する試験例に示す通りである。
Moreover, when the resin sheet 1 which concerns on this embodiment is equipped with the 2nd support sheet 12, the peeling force (F2) at the time of peeling the 2nd support sheet 12 from the resin composition layer 10 before hardening is a lower type. (1)
F11 / F2> 1 (1)
It is preferable that the Thereby, the second support sheet 12 can be easily peeled off from the resin composition layer 10 while suppressing the occurrence of floating between the first support sheet 11 and the resin composition layer 10. The peeling force (F2) is preferably 0.05 N / 100 mm or more, and particularly preferably 0.10 N / 100 mm or more. Moreover, it is preferable that the said peeling force (F2) is 2.0 N / 100 mm or less. In addition, the measuring method of the peeling force (F2) mentioned above is as showing to the test example mentioned later.
5.樹脂シートの製造方法
 本実施形態に係る樹脂シート1の製造方法は、特に限定されず、例えば、第2の支持シート12上に、上述した樹脂組成物、および所望によりさらに溶媒または分散媒を含有する塗工液を塗布し、乾燥させて(必要に応じて加熱架橋させて)、樹脂組成物層10を形成する。その後、当該樹脂組成物層10における第2の支持シート12とは反対側の面に、別途準備した第1の支持シート11における粘着剤層112側の面を貼り合わせることで製造することができる。なお、第1の支持シート11の製造方法も特に限定されず、公知の方法で製造することができる。
5. Method of Manufacturing Resin Sheet The method of manufacturing the resin sheet 1 according to the present embodiment is not particularly limited. For example, the second support sheet 12 contains the above-described resin composition and, if desired, further a solvent or dispersion medium. The coating liquid to be applied is applied, dried (or heat-crosslinked as necessary), and the resin composition layer 10 is formed. Then, it can manufacture by bonding together the surface at the side of the adhesive layer 112 in the 1st support sheet 11 prepared separately to the surface on the opposite side to the 2nd support sheet 12 in the said resin composition layer 10 . In addition, the manufacturing method of the 1st support sheet 11 is not specifically limited, either, It can manufacture by a well-known method.
 塗布方式としては、スピンコート法、スプレーコート法、バーコート法、ナイフコート法、ロールコート法、ロールナイフコート法、ブレードコート法、ダイコート法、グラビアコート法等の公知の方法が挙げられる。 Examples of the coating method include known methods such as spin coating method, spray coating method, bar coating method, knife coating method, roll coating method, roll knife coating method, blade coating method, die coating method and gravure coating method.
 また、上記溶媒としては、トルエン、酢酸エチル、メチルエチルケトンの有機溶媒等が挙げられる。 Further, examples of the solvent include organic solvents such as toluene, ethyl acetate and methyl ethyl ketone.
6.樹脂シートの用途
 本実施形態に係る樹脂シート1は、絶縁膜の形成に利用することができる。より具体的には、部品内蔵基板、多層プリント配線板、ファンアウト型ウエハレベルパッケージ、ファンアウト型パネルレベルパッケージ等の半導体装置において、絶縁膜の形成等に好適に利用することができる。さらに具体的には、本実施形態に係る樹脂シート1は、部品内蔵基板、多層プリント配線板、ファンアウト型ウエハレベルパッケージ、ファンアウト型パネルレベルパッケージ等の半導体装置のビルドアップ層における絶縁膜を形成するために好適に利用することができる。
6. Use of Resin Sheet The resin sheet 1 according to the present embodiment can be used to form an insulating film. More specifically, in a semiconductor device such as a component built-in substrate, a multilayer printed wiring board, a fan-out type wafer level package, a fan-out type panel level package, etc., it can be suitably used for forming an insulating film. More specifically, the resin sheet 1 according to the present embodiment includes an insulating film in a buildup layer of a semiconductor device such as a component built-in substrate, a multilayer printed wiring board, a fanout type wafer level package, and a fanout type panel level package. It can be suitably used to form.
〔半導体装置〕
 本実施形態に係る半導体装置は、本実施形態に係る樹脂シート1における樹脂組成物層10を硬化してなる硬化層を絶縁膜として備える。このような半導体装置の例としては、部品内蔵基板、多層プリント配線板等が挙げられる。これらの半導体装置は、本実施形態に係る樹脂シート1を用いて、後述する方法により製造することができる。
[Semiconductor device]
The semiconductor device according to the present embodiment includes a cured layer formed by curing the resin composition layer 10 in the resin sheet 1 according to the present embodiment as an insulating film. Examples of such semiconductor devices include component built-in boards, multilayer printed wiring boards and the like. These semiconductor devices can be manufactured by the method described later using the resin sheet 1 according to the present embodiment.
 本実施形態に係る樹脂シート1は、前述した通り、樹脂組成物層10と第1の支持シート11との界面における浮きが発生し難くいとともに、樹脂組成物層10を熱硬化してなる硬化層からの第1の支持シート11の剥離が容易である。そのため、当該樹脂シート1を用いて製造される、本実施形態に係る半導体装置は、前述した本実施形態に係る樹脂シート1を用いて製造されたものであることにより、良好な品質を有するものとなる。 As described above, the resin sheet 1 according to the present embodiment is hard to generate floating at the interface between the resin composition layer 10 and the first support sheet 11, and is cured by heat curing the resin composition layer 10. Peeling of the first support sheet 11 from the layer is easy. Therefore, the semiconductor device according to the present embodiment manufactured using the resin sheet 1 has a good quality by being manufactured using the resin sheet 1 according to the present embodiment described above. It becomes.
〔樹脂シートの使用方法〕
 本実施形態に係る樹脂シート1は、例えば、半導体装置の製造方法に使用することができる。以下には、実施形態に係る樹脂シート1における樹脂組成物層10を硬化してなる硬化層を絶縁膜として備える半導体装置の製造方法について説明する。図2および図3には、当該製造方法の一例を説明する断面図が示される。最初に、図2(a)に示されるように、準備工程として、仮固定材8の片面上に電子部品2を設ける。仮固定材8上に電子部品2を設ける手法は特に限定されず、一般的な手法を採用することができる。
[How to use resin sheet]
The resin sheet 1 which concerns on this embodiment can be used for the manufacturing method of a semiconductor device, for example. Below, the manufacturing method of the semiconductor device provided with the cured layer formed by hardening | curing the resin composition layer 10 in the resin sheet 1 which concerns on embodiment as an insulating film is demonstrated. 2 and 3 show cross-sectional views for explaining an example of the manufacturing method. First, as shown in FIG. 2A, the electronic component 2 is provided on one surface of the temporary fixing member 8 as a preparation step. The method of providing the electronic component 2 on the temporary fixing material 8 is not particularly limited, and a general method can be employed.
 上記仮固定材8としては、当該仮固定材8上に電子部品2を仮固定できるものであれば特に限定されず、基材と当該基材に積層された粘着剤層とからなる粘着シートであってよく、自己粘着性を有する基材であってもよく、硬質支持板であってもよく、または、硬質支持板と当該硬質支持板上に積層された粘着剤層とからなる積層部材であってもよい。あるいは、仮固定材8として、本実施形態に係る樹脂シート1を用いることもできる。この場合、硬化性樹脂組成物層10における第1の支持シート11とは反対側の面上に電子部品2を設ける。このように、仮固定材8として本実施形態に係る樹脂シート1を用いた場合、後述するような、封止樹脂層13’の形成のための加熱と、絶縁膜10’の形成のための加熱とを同時に行うことができ、工程を簡略化することができる。 The temporary fixing material 8 is not particularly limited as long as the electronic component 2 can be temporarily fixed on the temporary fixing material 8, and it is a pressure-sensitive adhesive sheet comprising a substrate and a pressure-sensitive adhesive layer laminated on the substrate A laminated member consisting of a hard support plate and a pressure-sensitive adhesive layer laminated on the hard support plate. It may be. Alternatively, the resin sheet 1 according to the present embodiment can be used as the temporary fixing material 8. In this case, the electronic component 2 is provided on the surface of the curable resin composition layer 10 opposite to the first support sheet 11. As described above, when the resin sheet 1 according to the present embodiment is used as the temporary fixing material 8, heating for forming the sealing resin layer 13 ′ and formation of the insulating film 10 ′ as described later Heating can be performed simultaneously, and the process can be simplified.
 上記電子部品2としては、一般的に封止の対象となる電子部品であれば特に限定されず、例えば、半導体チップ等が挙げられる。さらに、上記電子部品2は、インターポーザの所定の位置に半導体チップが載置されたものであってもよい。この場合、そのように載置された状態で、当該半導体チップ等とともに、インターポーザの少なくとも一部が封止される。上記インターポーザの例としては、リードフレーム、ポリイミドテープ、プリント基板等が挙げられる。さらに、仮固定材8上における電子部品2の周囲に、銅等の金属からなるフレーム、樹脂製フレーム等のフレーム(枠状部材ともいう)を設けてもよい。この場合、当該電子部品2とともに、当該枠状部材の少なくとも一部を封止してもよい。上記枠状部材は、通常、厚さ方向に貫通した孔からなる1以上の開口部と、銅等や樹脂等により構成される枠状部とからなる。 The electronic component 2 is not particularly limited as long as it is generally an electronic component to be sealed, and examples thereof include a semiconductor chip and the like. Furthermore, the electronic component 2 may be one in which a semiconductor chip is mounted at a predetermined position of the interposer. In this case, at least a part of the interposer is sealed together with the semiconductor chip and the like in the mounted state. As an example of the said interposer, a lead frame, a polyimide tape, a printed circuit board etc. are mentioned. Furthermore, a frame (also referred to as a frame-like member) such as a frame made of metal such as copper or a resin-made frame may be provided around the electronic component 2 on the temporary fixing material 8. In this case, at least a part of the frame-shaped member may be sealed together with the electronic component 2. The frame-like member usually comprises one or more openings consisting of holes penetrating in the thickness direction, and a frame-like part made of copper or the like, resin or the like.
 上記枠状部材を用いる場合、準備工程において、例えば、仮固定材8の片面上に、上記枠状部材を載置した後、上記枠状部材の開口部の位置に、電子部品2を載置する。これにより、その後の樹脂組成物層積層工程において、開口部の外への封止樹脂のしみ出しを抑制し、得られる半導体装置の厚さを均一にすることができ、さらに、封止樹脂層の反りの発生を抑制し、得られる半導体装置の反りを抑制することができる。 When using the frame-like member, after the frame-like member is placed on one side of the temporary fixing material 8 in the preparation step, for example, the electronic component 2 is placed at the position of the opening of the frame-like member Do. Thereby, in the subsequent resin composition layer laminating step, the exudation of the sealing resin to the outside of the opening can be suppressed, and the thickness of the obtained semiconductor device can be made uniform, and further, the sealing resin layer It is possible to suppress the occurrence of warpage and to suppress the warpage of the obtained semiconductor device.
 続いて、仮固定材8における電子部品2が設けられた面側を封止する。封止する方法としては、従来公知の方法にて行うことができるが、一例として、封止材からなる封止シートを用いて封止する場合について説明する。図2(b)に示されるように、仮固定材8における電子部品2が設けられた面側に、封止シート13を積層する。これにより、仮固定材8上に設けられた電子部品2は、封止シート13により覆われる。封止シート13を積層する際には、電子部品2の周囲に空間が生じないように積層することが好ましい。封止シート13は、従来公知のラミネート装置を用いて、従来公知の積層条件にて積層することができる。 Subsequently, the surface of the temporary fixing material 8 on which the electronic component 2 is provided is sealed. Although it can carry out by the conventionally well-known method as a method to seal | block, the case where it seals using the sealing sheet which consists of sealing materials as an example is demonstrated. As shown in FIG. 2 (b), the sealing sheet 13 is laminated on the side of the temporary fixing material 8 on which the electronic component 2 is provided. Thereby, the electronic component 2 provided on the temporary fixing material 8 is covered by the sealing sheet 13. When laminating the sealing sheet 13, it is preferable to laminate so that no space is generated around the electronic component 2. The sealing sheet 13 can be laminated | stacked on conventionally well-known lamination conditions using a conventionally well-known laminating apparatus.
 次に、図2(c)に示されるように、硬化工程として、封止シート13を硬化して、封止樹脂層13’を形成する。当該硬化は、封止シート13を加熱することにより行うことが好ましい。当該硬化により、封止樹脂層13’と、封止樹脂層13’により封止された電子部品2とを備える封止体4が得られる。封止シート13の硬化は、例えば、100℃~240℃で、15分間~300分間加熱することで行うことが好ましい。 Next, as shown in FIG. 2C, as a curing step, the sealing sheet 13 is cured to form a sealing resin layer 13 '. The curing is preferably performed by heating the sealing sheet 13. By the curing, a sealing body 4 including the sealing resin layer 13 ′ and the electronic component 2 sealed by the sealing resin layer 13 ′ is obtained. Curing of the sealing sheet 13 is preferably performed, for example, by heating at 100 ° C. to 240 ° C. for 15 minutes to 300 minutes.
 次に、図2(d)に示されるように、封止体4から仮固定材8を剥離する。 Next, as shown in FIG. 2D, the temporary fixing material 8 is peeled off from the sealing body 4.
 次に、図3(a)および図3(b)に示されるように、絶縁膜形成工程を行う。まず、図3(a)に示されるように、仮固定材8の剥離により露出した封止体4の露出面に、本実施形態に係る樹脂シート1の樹脂組成物層10における第1の支持シート11とは反対側の面を積層する。続いて、図3(b)に示されるように、当該樹脂組成物層10を硬化することで、硬化層を絶縁膜10’として形成する。当該硬化は、加熱することにより行うことが好ましく、加熱処理は、例えば、温度100℃~240℃で、15分間~300分間の加熱とすることが好ましい。また、上述した加熱による樹脂組成物層10の硬化は、複数回の加熱処理により段階的に行うことが好ましい。 Next, as shown in FIGS. 3A and 3B, an insulating film formation step is performed. First, as shown in FIG. 3A, the first support of the resin composition layer 10 of the resin sheet 1 according to the present embodiment is applied to the exposed surface of the sealing body 4 exposed by the peeling of the temporary fixing material 8. The surface opposite to the sheet 11 is laminated. Subsequently, as shown in FIG. 3B, the resin composition layer 10 is cured to form a cured layer as an insulating film 10 '. The curing is preferably performed by heating, and the heat treatment is preferably performed, for example, at a temperature of 100 ° C. to 240 ° C. for 15 minutes to 300 minutes. Moreover, it is preferable to perform hardening of the resin composition layer 10 by the heating mentioned above in multiple steps by heat processing.
 次に、図3(c)に示されるように、絶縁膜10’から第1の支持シート11を剥離する。 Next, as shown in FIG. 3C, the first support sheet 11 is peeled off from the insulating film 10 '.
 ここで、粘着剤層112を構成する粘着剤が前述した活性エネルギー線硬化性粘着剤を含む場合、粘着剤層112に活性エネルギー線を照射することで、粘着剤層112を硬化させることが好ましい。これにより、第1の支持シート11の絶縁膜10’に対する粘着力が低減し、容易に第1の支持シート11を剥離することが可能となる。活性エネルギー線としては、紫外線、電子線等を使用することができる。紫外線を照射する場合、高圧水銀ランプ、フュージョンHランプ、キセノンランプ等によって行うことができ、紫外線の照射量は、照度50mW/cm以上、1000mW/cm以下、光量50mJ/cm以上、1000mJ/cm以下とすることが好ましい。電子線を照射する場合、電子線加速器等によって行うことができ、電子線の照射量は、10krad以上、1000krad以下とすることが好ましい。なお、粘着剤層112を構成する粘着剤として活性エネルギー線硬化性粘着剤を含む場合、支持基材111は活性エネルギー線を透過可能であることが好ましい。これにより、活性エネルギー線を、支持基材111越しに粘着剤層112に照射することが可能となる。 Here, when the pressure-sensitive adhesive constituting the pressure-sensitive adhesive layer 112 includes the above-described active energy ray-curable pressure-sensitive adhesive, it is preferable to cure the pressure-sensitive adhesive layer 112 by irradiating the pressure-sensitive adhesive layer 112 with active energy rays. . As a result, the adhesion of the first support sheet 11 to the insulating film 10 ′ is reduced, and the first support sheet 11 can be easily peeled off. As an active energy ray, an ultraviolet ray, an electron beam or the like can be used. Case of irradiation with ultraviolet rays, a high-pressure mercury lamp, a fusion H lamp, can be carried out by a xenon lamp or the like, the dose of ultraviolet ray is illuminance 50 mW / cm 2 or more, 1000 mW / cm 2 or less, the amount of light 50 mJ / cm 2 or more, 1000 mJ It is preferable to set it as / cm < 2 > or less. When irradiating an electron beam, it can be performed by an electron beam accelerator or the like, and the irradiation amount of the electron beam is preferably 10 krad or more and 1000 krad or less. In addition, when an active energy ray curable adhesive is included as an adhesive which comprises the adhesive layer 112, it is preferable that the support base material 111 can permeate | transmit an active energy ray. Thus, active energy rays can be applied to the pressure-sensitive adhesive layer 112 through the support base 111.
 粘着剤層112を構成する粘着剤が前述した熱発泡性粘着剤を含む場合、第1の支持シート11を加熱することで、粘着剤層112において発泡を生じさせることが好ましい。これにより、第1の支持シート11の絶縁膜10’に対する粘着力が低減し、容易に第1の支持シート11を剥離することが可能となる。加熱を行う手段としては、例えば、ホットプレート、熱風乾燥機、近赤外線ランプ、エアードライヤー、赤外線ランプ、加熱水等の加熱手段を使用することができる。加熱条件は、発泡剤の種類、支持基材111や絶縁膜10’等の耐熱性、加熱方法(熱容量、加熱手段等)などにより適宜設定できるが、特に、加熱温度は、粘着剤層112中の発泡剤(熱膨張性微小球等)の発泡開始温度(熱膨張開始温度)以上となる温度とすることが好ましい。一般的な加熱条件では、温度としては100℃以上、250℃以下であり、ホットプレート等を使用する場合の加熱時間としては1秒以上、90秒以下であり、熱風乾燥機等を使用する場合の加熱時間としては5分以上、15分以下である。なお、粘着剤層112において発泡を生じさせるための加熱処理は、使用目的に応じて所望の段階で行ってもよく、例えば、樹脂組成物層10の硬化のための加熱処理とともに行ってもよい。 When the pressure-sensitive adhesive constituting the pressure-sensitive adhesive layer 112 includes the thermally foamable pressure-sensitive adhesive, it is preferable to cause the pressure-sensitive adhesive layer 112 to foam by heating the first support sheet 11. As a result, the adhesion of the first support sheet 11 to the insulating film 10 ′ is reduced, and the first support sheet 11 can be easily peeled off. As a means to heat, heating means, such as a hot plate, a hot-air dryer, a near-infrared lamp, an air dryer, an infrared lamp, heating water, can be used, for example. The heating conditions can be appropriately set depending on the type of the foaming agent, the heat resistance of the supporting substrate 111, the insulating film 10 ', etc., the heating method (heat capacity, heating means, etc.), but in particular, the heating temperature is in the adhesive layer 112. It is preferable to set it as the temperature which becomes more than the foaming start temperature (thermal expansion start temperature) of the foaming agent (thermal expansion microsphere etc.). Under general heating conditions, the temperature is 100 ° C. or more and 250 ° C. or less, and the heating time in the case of using a hot plate or the like is 1 second or more and 90 seconds or less, and a hot air drier or the like is used The heating time is 5 minutes or more and 15 minutes or less. The heat treatment for causing foaming in the pressure-sensitive adhesive layer 112 may be performed at a desired stage depending on the purpose of use, and may be performed together with the heat treatment for curing the resin composition layer 10, for example. .
 粘着剤層112を構成する粘着剤が前述した熱硬化性粘着剤を含む場合、粘着剤層112を加熱することで、粘着剤層112を硬化させることが好ましい。これにより、第1の支持シート11の絶縁膜10’に対する粘着力が低減し、容易に第1の支持シート11を剥離することが可能となる。この場合の加熱手段および加熱条件としては、粘着剤層112を構成する粘着剤として熱発泡性粘着剤を含む場合の加熱手段および加熱条件として上述したものを使用することが好ましい。 When the pressure-sensitive adhesive that constitutes the pressure-sensitive adhesive layer 112 includes the thermosetting pressure-sensitive adhesive described above, it is preferable to cure the pressure-sensitive adhesive layer 112 by heating the pressure-sensitive adhesive layer 112. As a result, the adhesion of the first support sheet 11 to the insulating film 10 ′ is reduced, and the first support sheet 11 can be easily peeled off. As the heating means and heating conditions in this case, it is preferable to use the heating means and heating conditions in the case where the heat-expandable pressure-sensitive adhesive is included as the pressure-sensitive adhesive constituting the pressure-sensitive adhesive layer 112.
 絶縁膜10’からの第1の支持シート11の剥離に続き、絶縁膜10’に対して、従来公知の任意な方法により電極を形成する。以下では、セミアディティブ法により形成する例を説明する。 Following peeling of the first support sheet 11 from the insulating film 10 ', an electrode is formed on the insulating film 10' by any method known in the art. Below, the example formed by the semi-additive method is demonstrated.
 図3(d)に示されるように、絶縁膜10’を貫通する孔5を形成する。具体的には、絶縁膜10’における電子部品2とは反対側の面から、絶縁膜10’と電子部品2との界面までを貫通する孔5を形成する。図3(d)の断面図では、1つの電子部品2に対して2つの孔5が形成された様子が示されている。孔5の形成は、一般的な方法で行うことができる。 As shown in FIG. 3D, the holes 5 penetrating the insulating film 10 'are formed. Specifically, a hole 5 penetrating from the surface of the insulating film 10 ′ opposite to the electronic component 2 to the interface between the insulating film 10 ′ and the electronic component 2 is formed. The cross-sectional view of FIG. 3D shows that two holes 5 are formed in one electronic component 2. The formation of the holes 5 can be carried out in a conventional manner.
 次に、デスミア処理工程として、孔5が形成された絶縁膜10’が積層された封止体4をアルカリ性溶液に晒す。当該工程は、従来公知の一般的な手法により行うことができる。 Next, in the desmearing process, the sealing body 4 on which the insulating film 10 ′ in which the holes 5 are formed is stacked is exposed to an alkaline solution. The said process can be performed by the conventionally well-known general method.
 最後に、図3(e)に示されるように、電極形成工程として、孔5内に電極6を形成する。当該電極6は、孔5を通じて電子部品2に電気的に接続されている。電極6の形成は、一般的な手法により行うことができる。以上により、本実施形態に係る樹脂シート1における樹脂組成物層10が硬化してなる絶縁膜10’を備える半導体装置を得ることができる。 Finally, as shown in FIG. 3E, the electrode 6 is formed in the hole 5 as an electrode forming step. The electrode 6 is electrically connected to the electronic component 2 through the hole 5. The formation of the electrode 6 can be performed by a general method. By the above, it is possible to obtain a semiconductor device provided with the insulating film 10 ′ formed by curing of the resin composition layer 10 in the resin sheet 1 according to the present embodiment.
 なお、図3(d)および図3(e)においては、絶縁膜10’に電極を形成する例を説明したが、封止樹脂層13’および絶縁膜10’のどちらに対して孔形成および電極形成を行ってもよく、または封止樹脂層13’および絶縁膜10’の両方に対して孔形成および電極形成を行ってもよい。 In FIGS. 3D and 3E, the example in which the electrode is formed on the insulating film 10 ′ has been described, but the hole formation and the formation on either of the sealing resin layer 13 ′ and the insulating film 10 ′ are described. Electrode formation may be performed, or hole formation and electrode formation may be performed on both of the sealing resin layer 13 ′ and the insulating film 10 ′.
 本実施態様に係る樹脂シート1の使用方法によれば、樹脂シート1が冷蔵保管されていた場合でも、樹脂組成物層10と支持シートとの界面における浮きの発生が効果的に抑制されるとともに、絶縁膜10’からの第1の支持シート11の剥離を容易に行うことができ、その結果、歩留まりを向上させ、高品質の部品内蔵基板、多層プリント配線板、ファンアウト型ウエハレベルパッケージ、ファンアウト型パネルレベルパッケージ等の半導体装置を製造することが可能となる。 According to the method of using the resin sheet 1 according to the present embodiment, even when the resin sheet 1 is stored under refrigeration, occurrence of floating at the interface between the resin composition layer 10 and the support sheet is effectively suppressed. , Peeling of the first support sheet 11 from the insulating film 10 ′ can be easily performed, as a result, the yield can be improved, and a high quality component built-in substrate, multilayer printed wiring board, fan-out type wafer level package, It becomes possible to manufacture semiconductor devices such as fan-out type panel level packages.
 以上説明した実施形態は、本発明の理解を容易にするために記載されたものであって、本発明を限定するために記載されたものではない。したがって、上記実施形態に開示された各要素は、本発明の技術的範囲に属する全ての設計変更や均等物をも含む趣旨である。 The embodiments described above are described to facilitate the understanding of the present invention, and are not described to limit the present invention. Therefore, each element disclosed in the above embodiment is intended to include all design changes and equivalents that fall within the technical scope of the present invention.
 以下、実施例および試験例等を示すことにより本発明をさらに詳細に説明するが、本発明は下記の試験例等に何ら限定されるものではない。 Hereinafter, the present invention will be described in more detail by showing Examples and Test Examples, but the present invention is not limited to the following Test Examples and the like.
〔実施例1〕
(1)第1の支持シートの作製
 アクリル酸エステル共重合体(アクリル酸2-エチルヘキシル92.8質量%と、アクリル酸2-ヒドロキシエチル7.0質量%と、アクリル酸0.2質量%との共重合体)40質量部と、粘着付与剤としての両末端水酸基水素化ポリブタジエン(日本曹達社製,製品名「GI-1000」)5質量部と、架橋剤としてのヘキサメチレンジイソシアネートを有する脂肪族系イソシアネート(日本ポリウレタン工業社製,製品名「コロネートHX」)3.5質量部とを、メチルエチルケトン中にて混合し、固形分濃度が30質量%である粘着剤組成物の塗工液を調製した。
Example 1
(1) Preparation of first support sheet Acrylic acid ester copolymer (92.8 mass% of 2-ethylhexyl acrylate, 7.0 mass% of 2-hydroxyethyl acrylate, 0.2 mass% of acrylic acid, Copolymers), 50 parts by mass of hydrogenated hydroxyl-terminated polybutadiene as a tackifier (product name “GI-1000” manufactured by Nippon Soda Co., Ltd.), and fat having hexamethylene diisocyanate as a crosslinking agent A mixed solution of a pressure-sensitive adhesive composition having a solid content concentration of 30% by mass was mixed with methyl ethyl ketone-based isocyanate (manufactured by Nippon Polyurethane Industry Co., Ltd., product name "Coronato HX") and 3.5 parts by mass in methyl ethyl ketone Prepared.
 次いで、調製した粘着剤組成物の塗工液を、ロールコーターを用いて、ポリエチレンテレフタレートフィルムの一方の面をシリコーン系剥離層により剥離処理した剥離フィルム(リンテック社製,製品名「SP-PET382150」,厚さ:38μm)の剥離処理面に塗布し、90℃及び90秒間の加熱を行い、続いて115℃及び90秒間の加熱を行うことで塗膜を乾燥させた後、支持基材としての透明ポリエチレンテレフタレートフィルム(東洋紡社製,製品名「PET50A-4300」,厚さ:50μm,ガラス転移温度Tg:67℃,MD方向熱収縮率:1.2%,CD方向熱収縮率:0.6%)の片面に貼り合わせることで、厚さ50μmのアクリル系粘着剤からなる粘着剤層と支持基材とからなる第1の支持シートを、当該粘着剤層側の面に剥離フィルムが積層された状態で作製した。 Next, a release film obtained by release-treating one side of a polyethylene terephthalate film with a silicone release layer using a roll coater with a coating solution of the prepared pressure-sensitive adhesive composition (product name “SP-PET 382150, manufactured by Lintec Co., Ltd.) (Thickness: 38 μm), coated on a release-treated surface, heated at 90 ° C. for 90 seconds, subsequently dried at 115 ° C. for 90 seconds, and then dried as a supporting substrate Transparent polyethylene terephthalate film (Toyobo Co., Ltd., product name “PET 50A-4300”, thickness: 50 μm, glass transition temperature Tg: 67 ° C., thermal shrinkage in MD): 1.2%, thermal shrinkage in CD: 0.6 A first support sheet comprising a pressure-sensitive adhesive layer composed of an acrylic pressure-sensitive adhesive having a thickness of 50 μm and a supporting substrate by bonding the first support sheet to It was prepared in a state in which the release film is laminated on the surface of the destination agent layer side.
 なお、得られた粘着剤層の100℃における、測定周波数を1Hzとしたときの貯蔵弾性率は、2.36×10Paであった。また、得られた第1の支持シートの銅箔に対する粘着力は、1.2N/25mmであった。また、第1の支持シートのポリイミドフィルムに対する粘着力は、1.1N/25mmであった。また、粘着剤層の5%重量減少温度は、304℃であった。これらの物性値は、以下の方法により測定したものである。 In addition, the storage elastic modulus at a measurement frequency of 1 Hz at 100 ° C. of the obtained pressure-sensitive adhesive layer was 2.36 × 10 5 Pa. Moreover, the adhesive force with respect to the copper foil of the obtained 1st support sheet was 1.2 N / 25 mm. Moreover, the adhesive force with respect to the polyimide film of a 1st support sheet was 1.1 N / 25 mm. The 5% weight loss temperature of the pressure-sensitive adhesive layer was 304.degree. These physical property values are measured by the following methods.
(貯蔵弾性率の測定)
 厚さの合計が3mmとなるまで積層した粘着剤層について、直径8mmの円柱体(厚さ3mm)を打ち抜き、これをサンプルとした。当該サンプルについて、JIS K7244-6:1999に準拠し、粘弾性測定器(REOMETRIC社製,製品名「DYNAMIC ANALYZER」)を用いてねじりせん断法により、測定周波数:1Hzおよび測定温度:100℃の条件で貯蔵弾性率(Pa)を測定した。
(Measurement of storage modulus)
About the adhesive layer laminated | stacked until the sum total of thickness will be set to 3 mm, the cylinder (3 mm in thickness) of diameter 8 mm is pierced and this is made into the sample. Regarding the sample, according to JIS K7244-4: 1999, the condition of measurement frequency: 1 Hz and measurement temperature: 100 ° C. by a torsional shear method using a visco-elasticity measuring device (product name “DYNAMIC ANALYZER” manufactured by REOMETRICH) Storage elastic modulus (Pa) was measured.
(銅箔およびポリイミドフィルムに対する粘着力)
 第1の支持シートを長さ100mm、幅25mmに裁断し、剥離フィルムを剥離したものを試験片とし、銅箔に対し0.5MPa、50℃で20分加圧して貼付した後、100℃及び30分間の条件で加熱し、続いて180℃及び60分間の条件で加熱し、その後、標準環境下(23℃,50%RH)にて24時間放置した。その後、標準環境下(23℃,50%RH)にて、引張試験機(島津製作所社製,製品名「オートグラフAG-IS」)を用いて180°の剥離角度、300mm/分の剥離速度で第1の支持シートを銅箔から剥離し、粘着力(mN/25mm)を測定した。また、上述したポリイミドフィルムに対する粘着力は、第1の支持シートの貼付する対象を、銅箔からポリイミドフィルムに変更する以外、上記と同様の粘着力の測定方法により測定した。
(Adhesion to copper foil and polyimide film)
The first support sheet is cut into a length of 100 mm and a width of 25 mm, and the peelable film is peeled to form a test piece, which is applied to the copper foil at 0.5 MPa and 50 ° C. for 20 minutes for application. Heating was performed for 30 minutes, followed by heating at 180 ° C. and 60 minutes, and then left for 24 hours in a standard environment (23 ° C., 50% RH). Thereafter, using a tensile tester (product name “Autograph AG-IS” manufactured by Shimadzu Corporation) under a standard environment (23 ° C., 50% RH), a peeling angle of 180 ° and a peeling speed of 300 mm / min. The first support sheet was peeled off from the copper foil and the adhesion (mN / 25 mm) was measured. Moreover, the adhesive force with respect to the polyimide film mentioned above measured the measuring method of the adhesive force similar to the above except changing the object which the 1st support sheet sticks to a polyimide film from copper foil.
(5%重量減少温度の測定)
 粘着剤層について、示差熱・熱重量同時測定装置(島津製作所社製,製品名「DTG-60」)を用い、流入ガスを窒素として、ガス流入速度100ml/min、昇温速度20℃/minで、40℃から550℃まで昇温させて熱重量測定を行った(JIS K7120「プラスチックの熱重量測定方法」に準拠)。得られた熱重量曲線に基づいて、温度100℃での質量に対して質量が5%減少する温度(5%重量減少温度)を求めた。
(Measurement of 5% weight loss temperature)
For the pressure-sensitive adhesive layer, using a differential heat / thermogravimetry simultaneous measurement device (manufactured by Shimadzu Corporation, product name “DTG-60”), using an inflowing gas as nitrogen, the gas inflow rate 100 ml / min, the temperature rising rate 20 ° C./min Then, the thermogravimetric measurement was performed by raising the temperature from 40 ° C. to 550 ° C. (based on JIS K 7120 “Thermogravimetric measurement method of plastic”). Based on the obtained thermal weight curve, a temperature (5% weight loss temperature) at which the weight decreases by 5% with respect to the weight at a temperature of 100 ° C. was determined.
(2)硬化性樹脂組成物層の形成
 熱可塑性樹脂としてのビスフェノールA型フェノキシ樹脂(三菱化学社製,製品名「jER1256」)5.1質量部(固形分換算,以下同じ)と、熱硬化性樹脂としてのビスフェノールA型エポキシ樹脂(三菱化学社製,製品名「jER828」)5.7質量部と、熱硬化性樹脂としてのビフェニル型エポキシ樹脂(日本化薬社製,製品名「NC-3000-L」)5.7質量部と、熱硬化性樹脂としてのナフタレン型エポキシ樹脂(DIC社製,製品名「HP-4700」)4.1質量部と、熱硬化性樹脂としてのビフェニル型フェノール(明和化成社製,製品名「MEHC-7851-SS」)14.1質量部と、イミダゾール系硬化触媒としての2-エチル-4-メチルイミダゾール(四国化成社製,製品名「2E4MZ」)0.1質量部と、無機微粒子としてのエポキシシラン処理シリカフィラー〔シリカフィラー(アドマテックス社製,製品名「SO-C2」,平均粒径:0.5μm,最大粒径:2μm,形状:球状)を3-グリシドキシプロピルトリメトキシシラン(信越化学社製,製品名「KBM-403」,最小被覆面積:330m/g)を用いて表面処理したもの〕65質量部とを、メチルエチルケトン中にて混合して、固形分濃度が40質量%である樹脂組成物の塗工液を得た。
(2) Formation of a curable resin composition layer 5.1 parts by mass (solids conversion, the same applies hereinafter) of a bisphenol A-type phenoxy resin (made by Mitsubishi Chemical Corporation, product name “jER1256”) as a thermoplastic resin Of bisphenol A epoxy resin (Mitsubishi Chemical Co., Ltd., product name "jER 828") as a reactive resin, and biphenyl epoxy resin (Nippon Kayaku Co., Ltd., product name "NC-" as a thermosetting resin "3000-L") 5.7 parts by mass, 4.1 parts by mass of a naphthalene type epoxy resin (made by DIC, product name "HP-4700") as a thermosetting resin, and biphenyl type as a thermosetting resin 14.1 parts by mass of phenol (manufactured by Meiwa Kasei Co., Ltd., product name "MEHC-7851-SS") and 2-ethyl-4-methylimidazole (manufactured by Shikoku Kasei Co., Ltd.) as an imidazole-based curing catalyst , Product name "2E4MZ") 0.1 parts by mass, and epoxy silane-treated silica filler as inorganic fine particles [Silica filler (manufactured by Admatex Co., product name "SO-C2", average particle size: 0.5 μm, maximum particle size Diameter: 2 μm, shape: spherical, 3-glycidoxypropyltrimethoxysilane (Shin-Etsu Chemical Co., Ltd., product name “KBM-403, minimum coverage area: 330 m 2 / g)) 65 A mass part was mixed in methyl ethyl ketone, and the coating liquid of the resin composition whose solid content concentration is 40 mass% was obtained.
 上述の通り得られた塗工液を、第2の支持シートとしての、ポリエチレンテレフタレートフィルムの一方の面をアルキド系剥離剤により剥離処理した剥離フィルム(リンテック社製,製品名「PET38AL-5」,厚さ:38μm)の剥離処理面に塗布し、得られた塗膜を乾燥することで、厚さ20μmの硬化性樹脂組成物層と第2の支持シートとの積層体を得た。 A release film obtained by release-treating one side of a polyethylene terephthalate film as a second support sheet with an alkyd release agent as a second support sheet (Lintec Corporation, product name “PET 38 AL-5”, It apply | coated to the peeling process surface of thickness: 38 micrometers, and the obtained coating film was dried, and the laminated body of a 20 micrometers thick curable resin composition layer and a 2nd support sheet was obtained.
(3)樹脂シートの作製
 上記工程(1)において作製した第1の支持シートから剥離フィルムを剥離し、露出した粘着剤層の露出面と、上記工程(2)において作製した積層体における硬化性樹脂組成物層側の面とを貼り合わせることで、第1の支持シートと、硬化性樹脂組成物層と、第2の支持シートとが順に積層されてなる樹脂シートを得た。
(3) Preparation of resin sheet The release film is peeled off from the first support sheet produced in the above step (1), and the exposed surface of the exposed pressure-sensitive adhesive layer and the curability in the laminate produced in the above step (2) By bonding the surface on the resin composition layer side, a resin sheet in which the first support sheet, the curable resin composition layer, and the second support sheet are sequentially laminated is obtained.
〔実施例2〕
 第2の支持シートとして、ポリエチレンテレフタレートフィルムの一方の面を非シリコーン系剥離層により剥離処理した剥離フィルム(リンテック社製,製品名「SP-PET38X」,厚さ:38μm)を使用した以外は、実施例1と同様にして樹脂シートを得た。
Example 2
As a second support sheet, a release film (made by Lintec Co., Ltd., product name “SP-PET 38X, thickness: 38 μm) was used, in which one surface of a polyethylene terephthalate film was release-treated with a non-silicone release layer, In the same manner as Example 1, a resin sheet was obtained.
〔実施例3〕
 第1の支持シートとして、ポリエチレンテレフタレートフィルムの片面に熱発泡性粘着剤から構成される粘着剤層が積層されてなるシート(日東電工社製,製品名「リバアルファ」)を使用した以外は、実施例1と同様にして樹脂シートを得た。
[Example 3]
As a first support sheet, a sheet (a product name “River Alpha” manufactured by Nitto Denko Corporation) is used, in which a pressure-sensitive adhesive layer composed of a heat-expandable pressure-sensitive adhesive is laminated on one side of a polyethylene terephthalate film. In the same manner as Example 1, a resin sheet was obtained.
〔実施例4〕
 アクリル酸-2-エチルヘキシル86質量%と、アクリル酸-2-ヒドロキシエチル14質量%とを反応させて得られたアクリル系共重合体100質量部と、2-メタクリロイルオキシエチルイソシアネート15質量部とを反応させて、活性エネルギー線硬化性を有するポリマーを得た。当該活性エネルギー線硬化性を有するポリマー100質量部と、架橋剤としてのトリレンジイソシアネート系架橋剤(日本ポリウレタン工業社製,製品名「コロネートL」)8質量部と、光重合開始剤としての2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン(チバ・スペシャルティ・ケミカルズ社製,製品名「イルガキュア651」)5質量部とを、メチルエチルケトン中で混合し、粘着剤組成物の塗工液を得た。
Example 4
100 parts by mass of an acrylic copolymer obtained by reacting 86% by mass of 2-ethylhexyl acrylate and 14% by mass of 2-hydroxyethyl acrylate and 15 parts by mass of 2-methacryloyloxyethyl isocyanate It was made to react and obtained the polymer which has active energy ray curability. 100 parts by mass of the polymer having the active energy ray curability, 8 parts by mass of a tolylene diisocyanate based crosslinking agent as a crosslinking agent (Nippon Polyurethane Industry Co., Ltd., product name "Corronate L"), 2 as a photopolymerization initiator 5 parts by mass of 2, 2-dimethoxy-1, 2-diphenylethane-1-one (manufactured by Ciba Specialty Chemicals, product name “IRGACURE 651”) in methyl ethyl ketone and coating of the adhesive composition I got a liquid.
 当該塗工液を、ポリエチレンテレフタレートフィルムの一方の面をシリコーン系剥離層により剥離処理した剥離フィルム(リンテック社製,製品名「SP-PET382150」,厚さ:38μm)における剥離処理面上に塗工し、それによって得られた塗膜を乾燥させた。その後、当該塗膜における剥離フィルムとは反対側の面と、支持基材としての透明ポリエチレンテレフタレートフィルム(東洋紡社製,製品名「PET50A-4300」,厚さ:50μm,ガラス転移温度:67℃,MD方向の熱収縮率:1.2%,CD方向の熱収縮率:0.6%)の片面とを貼り合せた。これにより、支持基材と、粘着剤層と、剥離フィルムとが順に積層されてなる積層体を得た。さらに、当該積層体から剥離フィルムを剥離することで、支持基材と、当該支持基材の片面に積層された、活性エネルギー線硬化性粘着剤から構成される粘着剤層とを備える第1の支持シートを得た。 The coating solution is coated on a release-treated surface of a release film (Lintec Co., Ltd., product name “SP-PET 382150”, thickness: 38 μm) obtained by release-treating one surface of a polyethylene terephthalate film with a silicone-based release layer And the coating obtained thereby was dried. After that, a transparent polyethylene terephthalate film (made by Toyobo Co., Ltd., product name “PET 50A-4300”, thickness: 50 μm, glass transition temperature: 67 ° C., as a supporting substrate, and the surface opposite to the peeling film in the coating film. The thermal contraction rate in the MD direction: 1.2%, and the thermal contraction rate in the CD direction: 0.6%. Thereby, the laminated body in which a support base material, an adhesive layer, and a peeling film were laminated | stacked in order was obtained. Furthermore, a first supporting substrate and a pressure-sensitive adhesive layer composed of an active energy ray-curable pressure-sensitive adhesive laminated on one side of the supporting substrate by peeling a peeling film from the laminate. I got a support sheet.
 上記第1の支持シートを使用した以外は、実施例1と同様にして樹脂シートを得た。 A resin sheet was obtained in the same manner as in Example 1 except that the first support sheet was used.
〔比較例1〕
 第1の支持シートとして、ポリエチレンテレフタレートフィルムの一方の面をシリコーン系剥離剤により剥離処理した剥離フィルム(リンテック社製,製品名「SP-PET3811」,厚さ:38μm)を使用し、第2の支持シートとして、ポリエチレンテレフタレートフィルムの一方の面をシリコーン系剥離剤により剥離処理した剥離フィルム(リンテック社製,製品名「SP-PET381031」,厚さ:38μm)を使用した以外は、実施例1と同様にして樹脂シートを得た。
Comparative Example 1
As a first support sheet, a release film (made by Lintec Co., Ltd., product name “SP-PET 3811”, thickness: 38 μm) in which one surface of a polyethylene terephthalate film is release-treated with a silicone release agent is used. Example 1 and Example 1 were used except that a release film (made by Lintec Co., Ltd., product name “SP-PET 381031”, thickness: 38 μm) was used as the support sheet, one side of the polyethylene terephthalate film being release treated with a silicone release agent. A resin sheet was obtained in the same manner.
〔比較例2〕
 第1の支持シートとして、両面が剥離剤により剥離処理されていないポリエチレンテレフタレート(PET)フィルム(厚さ:38μm)を使用するとともに、第2の支持シートとして、ポリエチレンテレフタレートフィルムの一方の面をシリコーン系剥離剤により剥離処理した剥離フィルム(リンテック社製,製品名「SP-PET381031」,厚さ:38μm)を使用した以外は、実施例1と同様にして樹脂シートを得た。
Comparative Example 2
A polyethylene terephthalate (PET) film (thickness: 38 μm) whose both surfaces are not release-treated with a release agent is used as the first support sheet, and one side of the polyethylene terephthalate film is silicone as the second support sheet. A resin sheet was obtained in the same manner as in Example 1 except that a release film release-treated with a release agent (manufactured by Lintec Corporation, product name "SP-PET 381031", thickness: 38 μm) was used.
〔試験例1〕(熱硬化後の剥離性の評価)
 実施例および比較例で製造した樹脂シートを、500mm×400mmのサイズに裁断した。その後、樹脂シートから第2の支持シートを剥離し、露出した硬化性樹脂組成物層を、銅板に積層した後、100℃で30分間加熱し、さらに180℃で60分間加熱することで硬化性樹脂組成物層を硬化した。その後、硬化性樹脂組成物層が硬化してなる硬化層を室温まで冷却した。
[Test Example 1] (Evaluation of peelability after heat curing)
The resin sheet manufactured by the Example and the comparative example was cut | judged to the size of 500 mm x 400 mm. Thereafter, the second support sheet is peeled off from the resin sheet, and the exposed curable resin composition layer is laminated on a copper plate, heated at 100 ° C. for 30 minutes, and further heated at 180 ° C. for 60 minutes. The resin composition layer was cured. Thereafter, the cured layer formed by curing of the curable resin composition layer was cooled to room temperature.
 硬化層の冷却が完了した後、実施例3の樹脂シートについては、オーブンを用いて200℃で20秒間加熱することで、第1の支持シートにおける粘着剤層を構成する粘着剤を加熱して発泡させた。次いで、樹脂シートを室温まで冷却した後に、硬化層から第1の支持シートを剥離した。 After cooling of the cured layer is completed, the adhesive constituting the adhesive layer in the first support sheet is heated by heating the resin sheet of Example 3 at 200 ° C. for 20 seconds using an oven. It was foamed. Subsequently, after cooling a resin sheet to room temperature, the 1st support sheet was exfoliated from a hardening layer.
 また、実施例4の樹脂シートについては、第1の支持シートの粘着剤層に対して、紫外線を照射することで、当該粘着剤層を硬化させた。その後、硬化層から第1の支持シートを剥離した。 Moreover, about the resin sheet of Example 4, the said adhesive layer was hardened by irradiating an ultraviolet-ray with respect to the adhesive layer of a 1st support sheet. Thereafter, the first support sheet was peeled off from the cured layer.
 実施例1および2ならびに比較例1および2の樹脂シートについては、硬化層の冷却が完了した後、加熱や紫外線照射といった処理を行うことなく、硬化層から第1の支持シートを剥離した。 About the resin sheet of Examples 1 and 2 and Comparative Examples 1 and 2, after cooling of a hardened layer was completed, the 1st support sheet was exfoliated from a hardened layer, without performing processings, such as heating and ultraviolet irradiation.
 以上のように硬化層から第1の支持シートを剥離したときの状況について、以下の基準に基づいて熱硬化後の剥離性を評価した。結果を、表1に示す。
 A:第1の支持シートを剥離できた。
 B:第1の支持シートを剥離できなかった。
About the condition when the 1st support sheet was exfoliated from a hardening layer as mentioned above, the exfoliation after thermosetting was evaluated based on the following standard. The results are shown in Table 1.
A: The first support sheet could be peeled off.
B: The first support sheet could not be peeled off.
〔試験例2〕(保管時の浮きの評価)
 実施例および比較例で製造した樹脂シートを、500mm×400mmのサイズに裁断し、5℃の環境下で1週間保管した後、硬化性樹脂組成物層と第1の支持シートとの界面における浮きの発生、および硬化性樹脂組成物層と第2の支持シートとの界面における浮きの発生を確認し、以下の基準に基づいて保管時の浮きを評価した。結果を、表1に示す。
 A:硬化性樹脂組成物層と第1の支持シートとの界面、および硬化性樹脂組成物層と第2の支持シートとの界面の両方において浮きが発生していない。
 AB:硬化性樹脂組成物層と第1の支持シートとの界面における浮きは発生していないが、硬化性樹脂組成物層と第2の支持シートとの界面に浮きが発生している。
 B:硬化性樹脂組成物層と第1の支持シートとの界面、および硬化性樹脂組成物層と第2の支持シートとの界面の両方に浮きが発生している。
[Test Example 2] (Evaluation of floating during storage)
The resin sheets produced in Examples and Comparative Examples are cut into a size of 500 mm × 400 mm, stored for 1 week in an environment of 5 ° C., and then floated at the interface between the curable resin composition layer and the first support sheet. And the occurrence of floating at the interface between the curable resin composition layer and the second support sheet were evaluated, and the floating during storage was evaluated based on the following criteria. The results are shown in Table 1.
A: Lifting does not occur both at the interface between the curable resin composition layer and the first support sheet and at the interface between the curable resin composition layer and the second support sheet.
AB: Lifting does not occur at the interface between the curable resin composition layer and the first support sheet, but lifting occurs at the interface between the curable resin composition layer and the second support sheet.
B: Lifting occurs both at the interface between the curable resin composition layer and the first support sheet and at the interface between the curable resin composition layer and the second support sheet.
〔試験例3〕(剥離力の測定)
 実施例1および2で製造した樹脂シートについて、下記の方法で、第1の支持シートを硬化前の樹脂組成物層から剥離する際の剥離力(F11)、および第1の支持シートを、樹脂組成物層を熱硬化してなる硬化層から剥離する際の剥離力(F12)を測定した。また、実施例1~4で製造した樹脂シートについて、第2の支持シートを硬化前の樹脂組成物層から剥離する際の剥離力(F2)を測定した。結果を表1に示す。
[Test Example 3] (Measurement of Peeling Force)
About the resin sheet manufactured in Example 1 and 2, peeling force (F11) at the time of peeling a 1st support sheet from the resin composition layer before hardening by the following method, and a 1st support sheet Peeling force (F12) at the time of peeling from the cured layer formed by thermosetting the composition layer was measured. Further, with respect to the resin sheets manufactured in Examples 1 to 4, the peeling force (F2) at the time of peeling the second support sheet from the resin composition layer before curing was measured. The results are shown in Table 1.
(1)剥離力(F11)の測定
 実施例1および2で製造した樹脂シートを幅25mm、長さ250mmにカットした。次いで、第2の支持シートを剥離し、露出した硬化性樹脂組成物層の露出面をステンレススチール板に両面テープで貼り合わせて測定サンプルを作製した。次いで、JIS Z 0237;2009に基づき、万能引張試験機(島津製作所社製オートグラフ)を用いて、23℃、相対湿度50%の環境下において、剥離速度300mm/分、剥離角度180°にて第1の支持シートを硬化性樹脂組成物層から剥離して、その剥離力(N/25mm)を測定し、剥離力(F11)とした。
(1) Measurement of Peeling Force (F11) The resin sheets produced in Examples 1 and 2 were cut into a width of 25 mm and a length of 250 mm. Next, the second support sheet was peeled off, and the exposed surface of the exposed curable resin composition layer was bonded to a stainless steel plate with a double-sided tape to prepare a measurement sample. Then, based on JIS Z 0237; 2009, using an all-purpose tensile tester (Autograph manufactured by Shimadzu Corporation), peeling speed 300 mm / min, peeling angle 180 ° under an environment of 23 ° C. and 50% relative humidity. The first support sheet was peeled off from the curable resin composition layer, and the peeling force (N / 25 mm) was measured to obtain a peeling force (F11).
(2)剥離力(F12)の測定
 上記(1)と同様にして作製した測定サンプルを、100℃で30分間加熱し、さらに180℃で60分間加熱することで硬化性樹脂組成物層を硬化した。その後、硬化性樹脂組成物層が硬化してなる硬化層を室温まで冷却した。冷却後の測定サンプルについて、上記(1)と同様にして剥離力(N/25mm)を測定し、剥離力(F12)とした。
(2) Measurement of Peeling Force (F12) The measurement sample prepared in the same manner as the above (1) is heated at 100 ° C. for 30 minutes and further heated at 180 ° C. for 60 minutes to cure the curable resin composition layer. did. Thereafter, the cured layer formed by curing of the curable resin composition layer was cooled to room temperature. The peel strength (N / 25 mm) of the measurement sample after cooling was measured in the same manner as the above (1) to obtain a peel strength (F12).
(3)剥離力(F2)の測定
 実施例1~4で製造した樹脂シートを幅100mm、長さ100mmにカットした。次いで、JIS K6854-3:1999に基づき、23℃、相対湿度50%の環境下において、剥離速度300mm/分でT形剥離にて、第2の支持シートを硬化性樹脂組成物層から剥離し、その際の剥離力(N/100mm)を測定し、剥離力(F2)とした。
(3) Measurement of Peeling Force (F2) The resin sheets produced in Examples 1 to 4 were cut into a width of 100 mm and a length of 100 mm. Next, the second support sheet is peeled off from the curable resin composition layer by T-peel peeling at a peeling speed of 300 mm / min under an environment of 23 ° C. and a relative humidity of 50% based on JIS K6854-3: 1999. Peeling force (N / 100 mm) at that time was measured, and it was set as peeling force (F2).
〔試験例4〕(電極の形成性の評価)
 実施例1~4で作製した樹脂シートから第2の支持シートを剥離し、露出した硬化性樹脂組成物層面を、コア材(日立化成社製,製品名「MCL-E-679FG」)の片面に、真空ラミネーター(ニッコー・マテリアルズ社製,製品名「V130」)を使用して、90℃および0.3MPaの条件にて積層した。その後、100℃で30分間加熱し、さらに180℃で60分間加熱することにより、硬化性樹脂組成物層を硬化した。
[Test Example 4] (Evaluation of Formability of Electrode)
The second support sheet was peeled off from the resin sheet produced in Examples 1 to 4, and the exposed surface of the curable resin composition layer was formed on one side of the core material (manufactured by Hitachi Chemical Co., Ltd., product name "MCL-E-679FG"). Then, using a vacuum laminator (manufactured by Nikko Materials, product name "V130"), lamination was performed under conditions of 90 ° C and 0.3 MPa. Thereafter, the curable resin composition layer was cured by heating at 100 ° C. for 30 minutes and further heating at 180 ° C. for 60 minutes.
 次いで、実施例3については、オーブンを用いて200℃で20秒間加熱することで、第1の支持シートにおける粘着剤層を構成する粘着剤を加熱して発泡させた。また、実施例4については、第1の支持シートの粘着剤層に対して、紫外線を照射することで、当該粘着剤層を硬化させた。これらの後、それぞれの例について、硬化層から第1の支持シートを剥離した。これにより、コア材と、絶縁層としての硬化層とからなる積層体を得た。 Then, about Example 3, the adhesive which comprises the adhesive layer in a 1st support sheet was heated, and it was made to foam by heating for 20 seconds at 200 degreeC using oven. Moreover, about Example 4, the said adhesive layer was hardened by irradiating an ultraviolet-ray with respect to the adhesive layer of a 1st support sheet. After these, the first support sheet was peeled off from the cured layer for each example. Thereby, the laminated body which consists of a core material and the hardened layer as an insulating layer was obtained.
 次いで、得られた積層体における絶縁層側の面に対して、COレーザー加工機を使用してレーザーを照射して、絶縁層表面における直径が100μmのビアホールを形成した。 Next, a laser was irradiated to the surface on the insulating layer side in the obtained laminate using a CO 2 laser processing machine to form a via hole having a diameter of 100 μm on the surface of the insulating layer.
 その後、積層体を、グリコールエーテル系溶媒とエチレングリコールモノブチルエーテルとが混合されてなるアルカリ性の膨潤液中に、60℃で5分間浸漬した。続いて、当該積層体を粗化液(アルカリ性過マンガン酸水溶液)に80℃で15分間浸漬した。さらに、当該積層体を硫酸の水溶液に40℃で5分間浸漬することで中和した。最後に、当該積層体を80℃で5分間乾燥することで、デスミア処理を完了した。 Thereafter, the laminate was immersed at 60 ° C. for 5 minutes in an alkaline swelling solution in which a glycol ether solvent and ethylene glycol monobutyl ether were mixed. Subsequently, the laminate was immersed in a roughening solution (alkaline permanganic acid aqueous solution) at 80 ° C. for 15 minutes. Furthermore, the laminate was neutralized by immersing in an aqueous solution of sulfuric acid at 40 ° C. for 5 minutes. Finally, the desmear treatment was completed by drying the laminate at 80 ° C. for 5 minutes.
 続いて、デスミア処理を行った積層体を、無電解メッキ用溶液に40℃で6分間浸漬し、さらに無電解銅メッキ液に25℃で18分間浸漬した後、150℃にて30分間アニール処理を行った。その後、ビアホールが形成された面にめっき用レジスト層を貼り合わせ、露光、現像により、当該めっき用レジスト層における所定のパターン(配線幅(L):50μm,配線間隔(S):50μm)を有する領域を除去した。次いで、硫酸銅電解めっきを行って、上記除去した領域に、10μmの厚さの銅からなる層を形成した。そして、残っためっき用レジスト層を剥離し、フラッシュエッチングにより不要な無電解銅めっき部分を除去し、最後に、アニール処理を190℃にて60分間行った。 Subsequently, the laminate subjected to the desmear treatment is immersed in the solution for electroless plating at 40 ° C. for 6 minutes, and further immersed in the electroless copper plating solution at 25 ° C. for 18 minutes, and then annealed for 30 minutes at 150 ° C. Did. Thereafter, a plating resist layer is attached to the surface on which the via hole is formed, and a predetermined pattern (wiring width (L): 50 μm, wiring spacing (S): 50 μm) in the plating resist layer is obtained by exposure and development. The area was removed. Subsequently, copper sulfate electrolytic plating was performed to form a layer of copper having a thickness of 10 μm in the removed area. Then, the remaining plating resist layer was peeled off, unnecessary portions of electroless copper plating were removed by flash etching, and finally, annealing was performed at 190 ° C. for 60 minutes.
 以上のようにして形成された電極を観察し、以下の基準に基づいて、電極の形成性を評価した。結果を表1に示す。
 〇:意図した通りの配線パターン(配線幅(L):50μm,配線間隔(S):50μm)を有する電極を形成することができた。
 ×:意図した通りの配線パターンを有する電極を形成することができなかった。
The electrode formed as described above was observed, and the formability of the electrode was evaluated based on the following criteria. The results are shown in Table 1.
:: It was possible to form an electrode having the intended wiring pattern (wiring width (L): 50 μm, wiring spacing (S): 50 μm).
X: The electrode having the intended wiring pattern could not be formed.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示されるように、実施例に係る樹脂シートでは、熱硬化後においても、硬化層から第1の支持シートを良好に剥離することができた。また、実施例に係る樹脂シートでは、保管時における第1の支持シートと硬化性樹脂組成物層の間の浮きの発生が抑制された。一方、比較例1に係る樹脂シートは、保管時に浮きが発生していた。また、比較例2に係る樹脂シートは、樹脂組成物層の熱硬化後に、形成された硬化層から支持シートを剥離できなかった。 As shown in Table 1, in the resin sheet according to the example, even after heat curing, the first support sheet could be peeled well from the cured layer. Moreover, in the resin sheet which concerns on an Example, generation | occurrence | production of the float between the 1st support sheet and curable resin composition layer at the time of storage was suppressed. On the other hand, the resin sheet which concerns on the comparative example 1 had floating generate | occur | produced at the time of storage. Moreover, the resin sheet which concerns on the comparative example 2 was not able to peel a support sheet from the formed cured layer after thermosetting of a resin composition layer.
 本発明に係る樹脂シートは、部品内蔵基板、多層プリント配線板、ファンアウト型ウエハレベルパッケージ、ファンアウト型パネルレベルパッケージ等の半導体装置の製造に好適に利用することができる。 The resin sheet according to the present invention can be suitably used for the production of semiconductor devices such as component built-in substrates, multilayer printed wiring boards, fan-out type wafer level packages, and fan-out type panel level packages.
1…樹脂シート
 10…硬化性樹脂組成物層
 10’…絶縁膜
 11…第1の支持シート
  111…支持基材
  112…粘着剤層
 12…第2の支持シート
2…電子部品
4…封止体
5…孔
6…電極
8…仮固定材
13…封止シート
13’…封止樹脂層
DESCRIPTION OF SYMBOLS 1 ... Resin sheet 10 ... Curable resin composition layer 10 '... Insulating film 11 ... 1st support sheet 111 ... Support base material 112 ... Adhesive layer 12 ... 2nd support sheet 2 ... Electronic component 4 ... Sealing body 5 ... hole 6 ... electrode 8 ... temporary fixing material 13 ... sealing sheet 13 '... sealing resin layer

Claims (20)

  1.  絶縁膜の形成に用いられる樹脂シートであって、
     前記樹脂シートが、第1の支持シートと、前記第1の支持シートにおける片面に積層された硬化性樹脂組成物層とを備え、
     前記樹脂組成物層が、熱硬化性樹脂および無機微粒子を含有する樹脂組成物から形成されたものであり、
     前記無機微粒子の前記樹脂組成物中における含有量が、50質量%以上、90質量%以下であり、
     前記第1の支持シートが、支持基材と、前記支持基材の片面側に積層された粘着剤層とを備え、
     前記樹脂組成物層が、前記第1の支持シートにおける前記粘着剤層側の面上に積層されている
    ことを特徴とする樹脂シート。
    A resin sheet used to form an insulating film,
    The resin sheet includes a first support sheet, and a curable resin composition layer laminated on one side of the first support sheet.
    The resin composition layer is formed of a resin composition containing a thermosetting resin and inorganic fine particles,
    The content of the inorganic fine particles in the resin composition is 50% by mass or more and 90% by mass or less,
    The first support sheet includes a support base and an adhesive layer laminated on one side of the support base,
    A resin sheet, wherein the resin composition layer is laminated on the surface of the first support sheet on the pressure-sensitive adhesive layer side.
  2.  前記樹脂組成物層は、熱可塑性樹脂を含有し、
     前記熱可塑性樹脂の前記樹脂組成物中における含有量は、1.0質量%以上、30質量%以下であることを特徴とする請求項1に記載の樹脂シート。
    The resin composition layer contains a thermoplastic resin,
    Content of the said thermoplastic resin in the said resin composition is 1.0 mass% or more and 30 mass% or less, The resin sheet of Claim 1 characterized by the above-mentioned.
  3.  前記粘着剤層は、アクリル系粘着剤から構成されていることを特徴とする請求項1または2に記載の樹脂シート。 The said adhesive layer is comprised from the acrylic adhesive, The resin sheet of Claim 1 or 2 characterized by the above-mentioned.
  4.  前記粘着剤層は、活性エネルギー線硬化性粘着剤、熱発泡性粘着剤および熱硬化性粘着剤から選択される少なくとも1種の粘着剤から構成されていることを特徴とする請求項1~3のいずれか一項に記載の樹脂シート。 The pressure-sensitive adhesive layer is composed of at least one pressure-sensitive adhesive selected from an active energy ray-curable pressure-sensitive adhesive, a thermally foamable pressure-sensitive adhesive and a thermosetting pressure-sensitive adhesive. The resin sheet as described in any one of the above.
  5.  前記樹脂シートを100℃で30分間加熱し、さらに180℃で60分間加熱した樹脂シートにおいて、前記樹脂組成物層が硬化してなる硬化層から前記第1の支持シートを剥離する際の剥離力(F12)は、0.5N/25mm以上、3.0N/25mm以下であることを特徴とする請求項1~4のいずれか一項に記載の樹脂シート。 The resin sheet which heated the said resin sheet for 30 minutes at 100 degreeC, and also heated for 60 minutes at 180 degreeC, Peeling force at the time of peeling said 1st support sheet from the cured layer which the said resin composition layer hardens | cures The resin sheet according to any one of claims 1 to 4, wherein (F12) is 0.5 N / 25 mm or more and 3.0 N / 25 mm or less.
  6.  前記第1の支持シートにおける前記粘着剤層は、100℃における、測定周波数を1Hzとしたときの貯蔵弾性率が1×10Pa以上であることを特徴とする請求項1~5のいずれか一項に記載の樹脂シート。 The pressure-sensitive adhesive layer in the first support sheet has a storage elastic modulus of 1 × 10 5 Pa or more at 100 ° C. and a measurement frequency of 1 Hz. The resin sheet as described in one item.
  7.  前記第1の支持シートは、
     前記粘着剤層面を銅箔に貼着させ、100℃及び30分間の条件で加熱し、続いて180℃及び30分間の条件で加熱し、さらに190℃及び1時間の条件で加熱した後における、前記銅箔に対する室温での粘着力が、0.7N/25mm以上、2.0N/25mm以下であり、
     前記粘着剤層面をポリイミドフィルムに貼着させ、100℃及び30分間の条件で加熱し、続いて180℃及び30分間の条件で加熱し、さらに190℃及び1時間の条件で加熱した後における、前記ポリイミドフィルムに対する室温での粘着力が、0.7N/25mm以上、2.0N/25mm以下である
    ことを特徴とする請求項1~6のいずれか一項に記載の樹脂シート。
    The first support sheet is
    The pressure-sensitive adhesive layer is attached to a copper foil, heated at 100 ° C. for 30 minutes, subsequently heated at 180 ° C. for 30 minutes, and further heated at 190 ° C. for 1 hour, The adhesion at room temperature to the copper foil is 0.7 N / 25 mm or more and 2.0 N / 25 mm or less,
    The pressure-sensitive adhesive layer surface is adhered to a polyimide film, heated at 100 ° C. for 30 minutes, subsequently heated at 180 ° C. for 30 minutes, and further heated at 190 ° C. for 1 hour, The resin sheet according to any one of claims 1 to 6, wherein the adhesion at room temperature to the polyimide film is 0.7 N / 25 mm or more and 2.0 N / 25 mm or less.
  8.  前記第1の支持シートにおける前記粘着剤層は、5%重量減少温度が250℃以上であることを特徴とする請求項1~7のいずれか一項に記載の樹脂シート。 The resin sheet according to any one of claims 1 to 7, wherein the pressure-sensitive adhesive layer in the first support sheet has a 5% weight loss temperature of 250 属 C or more.
  9.  前記熱可塑性樹脂は、フェノキシ系樹脂、ポリビニルアセタール系樹脂およびポリビニルブチラール樹脂から選択される少なくとも1種であることを特徴とする請求項1~8のいずれか一項に記載の樹脂シート。 The resin sheet according to any one of claims 1 to 8, wherein the thermoplastic resin is at least one selected from phenoxy resins, polyvinyl acetal resins and polyvinyl butyral resins.
  10.  前記無機微粒子は、表面処理剤により表面処理されていることを特徴とする請求項1~9のいずれか一項に記載の樹脂シート。 The resin sheet according to any one of claims 1 to 9, wherein the inorganic fine particles are surface-treated with a surface treatment agent.
  11.  前記無機微粒子の平均粒径は、0.01μm以上、3.0μm以下であることを特徴とする請求項1~10のいずれか一項に記載の樹脂シート。 The resin sheet according to any one of claims 1 to 10, wherein an average particle diameter of the inorganic fine particles is 0.01 μm or more and 3.0 μm or less.
  12.  前記樹脂組成物層の厚さは、5μm以上、80μm以下であることを特徴とする請求項1~11のいずれか一項に記載の樹脂シート。 The resin sheet according to any one of claims 1 to 11, wherein a thickness of the resin composition layer is 5 μm or more and 80 μm or less.
  13.  前記支持基材は、ガラス転移温度(Tg)が50℃以上である樹脂製の支持基材であることを特徴とする請求項1~12のいずれか一項に記載の樹脂シート。 The resin sheet according to any one of claims 1 to 12, wherein the support base is a resin support base having a glass transition temperature (Tg) of 50 属 C or higher.
  14.  前記樹脂シートは、前記樹脂組成物層における前記第1の支持シートとは反対側の面に積層された第2の支持シートを備えることを特徴とする請求項1~13のいずれか一項に記載の樹脂シート。 The said resin sheet is provided with the 2nd support sheet laminated | stacked on the surface on the opposite side to the said 1st support sheet in the said resin composition layer, The any one of the Claims 1-13 characterized by the above-mentioned. Resin sheet as described.
  15.  半導体装置における前記絶縁膜の形成に用いられることを特徴とする請求項1~14のいずれか一項に記載の樹脂シート。 The resin sheet according to any one of claims 1 to 14, which is used for forming the insulating film in a semiconductor device.
  16.  前記絶縁膜は、前記半導体装置のビルドアップ層における絶縁膜であることを特徴とする請求項15に記載の樹脂シート。 The resin sheet according to claim 15, wherein the insulating film is an insulating film in a buildup layer of the semiconductor device.
  17.  前記半導体装置は、部品内蔵基板、多層プリント配線板、ファンアウト型ウエハレベルパッケージおよびファンアウト型パネルレベルパッケージの少なくとも1種であることを特徴とする請求項15または16に記載の樹脂シート。 17. The resin sheet according to claim 15, wherein the semiconductor device is at least one of a component built-in substrate, a multilayer printed wiring board, a fan-out type wafer level package and a fan-out type panel level package.
  18.  請求項1~17のいずれか一項に記載の樹脂シートにおける樹脂組成物層を硬化してなることを特徴とする絶縁膜。 An insulating film formed by curing the resin composition layer in the resin sheet according to any one of claims 1 to 17.
  19.  請求項1~17のいずれか一項に記載の樹脂シートにおける樹脂組成物層を硬化してなる硬化層を絶縁層として備えることを特徴とする半導体装置。 A semiconductor device comprising, as an insulating layer, a cured layer obtained by curing the resin composition layer in the resin sheet according to any one of claims 1 to 17.
  20.  請求項1~17のいずれか一項に記載の樹脂シートの使用方法であって、
     前記樹脂組成物層を硬化して、硬化層を得る工程と、
     前記樹脂組成物層の硬化の後に、前記硬化層から前記第1の支持シートを剥離する工程と
    を備えることを特徴とする樹脂シートの使用方法。
    It is a usage method of the resin sheet as described in any one of Claims 1-17, Comprising:
    Curing the resin composition layer to obtain a cured layer;
    And exfoliating the first support sheet from the cured layer after curing the resin composition layer.
PCT/JP2018/029431 2017-08-31 2018-08-06 Resin sheet, semiconductor device and method for using resin sheet WO2019044398A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880026660.3A CN110536796A (en) 2017-08-31 2018-08-06 The application method of resin sheet, semiconductor device and resin sheet
KR1020197032509A KR20200047447A (en) 2017-08-31 2018-08-06 Resin sheet, semiconductor device, and method of using resin sheet
JP2019539121A JPWO2019044398A1 (en) 2017-08-31 2018-08-06 Resin sheet, semiconductor device, and method of using resin sheet

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-166583 2017-08-31
JP2017166583 2017-08-31
JP2017232800 2017-12-04
JP2017-232800 2017-12-04

Publications (1)

Publication Number Publication Date
WO2019044398A1 true WO2019044398A1 (en) 2019-03-07

Family

ID=65526326

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/029431 WO2019044398A1 (en) 2017-08-31 2018-08-06 Resin sheet, semiconductor device and method for using resin sheet

Country Status (5)

Country Link
JP (1) JPWO2019044398A1 (en)
KR (1) KR20200047447A (en)
CN (1) CN110536796A (en)
TW (1) TW201919873A (en)
WO (1) WO2019044398A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021010232A1 (en) * 2019-07-16 2021-01-21 パナソニックIpマネジメント株式会社 Method for manufacturing laminate member

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102516292B1 (en) * 2020-06-30 2023-03-31 (주)이녹스첨단소재 Insulation film for electronic device manufacturing

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006281488A (en) * 2005-03-31 2006-10-19 Lintec Corp Process film for manufacturing laminated circuit board
JP2007053240A (en) * 2005-08-18 2007-03-01 Lintec Corp Sheet shared by dicing and die bonding, and manufacturing method of semiconductor device using the same
JP2017088759A (en) * 2015-11-11 2017-05-25 リンテック株式会社 Adhesive sheet
JP2017088758A (en) * 2015-11-11 2017-05-25 リンテック株式会社 Adhesive sheet

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008117879A1 (en) * 2007-03-27 2008-10-02 Lintec Corporation Circuit board resin sheet, circuit board sheet and display circuit board
CN103459149B (en) * 2011-03-28 2015-08-26 日立化成株式会社 Multi-layer resinous, resin sheet laminated body, multi-layer resinous solidfied material and manufacture method thereof, multi-layer resinous and semiconductor device with metal forming
TWI657730B (en) 2012-05-31 2019-04-21 日商味之素股份有限公司 Multilayer printed wiring board manufacturing method
JP6171604B2 (en) 2013-06-17 2017-08-02 味の素株式会社 Manufacturing method of component built-in circuit board and semiconductor device
KR102367513B1 (en) * 2015-05-29 2022-02-24 린텍 가부시키가이샤 Adhesive sheet

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006281488A (en) * 2005-03-31 2006-10-19 Lintec Corp Process film for manufacturing laminated circuit board
JP2007053240A (en) * 2005-08-18 2007-03-01 Lintec Corp Sheet shared by dicing and die bonding, and manufacturing method of semiconductor device using the same
JP2017088759A (en) * 2015-11-11 2017-05-25 リンテック株式会社 Adhesive sheet
JP2017088758A (en) * 2015-11-11 2017-05-25 リンテック株式会社 Adhesive sheet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021010232A1 (en) * 2019-07-16 2021-01-21 パナソニックIpマネジメント株式会社 Method for manufacturing laminate member
JP2021014102A (en) * 2019-07-16 2021-02-12 パナソニックIpマネジメント株式会社 Method for manufacturing laminate member

Also Published As

Publication number Publication date
CN110536796A (en) 2019-12-03
JPWO2019044398A1 (en) 2020-08-13
KR20200047447A (en) 2020-05-07
TW201919873A (en) 2019-06-01

Similar Documents

Publication Publication Date Title
JP5473262B2 (en) Adhesive composition, adhesive sheet and method for producing semiconductor device
KR20020075426A (en) Adhesive Composition, Process for Producing the Same, Adhesive Film Made with the Same, Substrate for Semiconductor Mounting, and Semiconductor Device
CN109148350B (en) Dicing tape-integrated adhesive sheet
JP2008247936A (en) Sticky adhesive composition, sticky adhesive sheet and method for producing semiconductor device
KR102346224B1 (en) Adhesive composition, adhesive sheet, and method for producing semiconductor device
JP6960276B2 (en) How to use resin sheets, semiconductor devices, and resin sheets
TW202035605A (en) Adhesive film, adhesive film with dicing tape and method for manufacturing semiconductor device
KR102689603B1 (en) A method of manufacturing an adhesive laminate, a processing object with a resin film formed thereon, and a method of manufacturing a cured encapsulant with a cured resin film formed thereon.
KR101284978B1 (en) Adhesive compositons, adhesive films, dicing die bonding films, semiconductor wafers and semiconductor devices comprising the same
WO2019044398A1 (en) Resin sheet, semiconductor device and method for using resin sheet
KR102602545B1 (en) Resin sheet and semiconductor device
JP5566141B2 (en) Adhesive composition, adhesive sheet and method for producing semiconductor device
JP5513734B2 (en) Adhesive composition, adhesive sheet, and method for manufacturing semiconductor device
KR101266217B1 (en) Pressure-sensitive adhesive films dicing die bonding films semiconductor wafers and method for semiconductor packing
TW202100690A (en) Dicing and die attach film including a dicing tape and an adhesive layer
JP2009124133A (en) Bonding member, support member for mounting semiconductor device and semiconductor device
TWI843808B (en) Die cutting film
JP5426831B2 (en) Adhesive composition, adhesive sheet and method for producing semiconductor device
JP6960459B2 (en) Manufacturing method of semiconductor devices
JP7022133B2 (en) Manufacturing method of semiconductor devices and laminated sheets
WO2019130539A1 (en) Adhesive sheet and method for producing semiconductor device
TW202045660A (en) Dicing tape and dicing tape with adhesive film
JP2008247937A (en) Sticky adhesive composition, sticky adhesive sheet and method for producing semiconductor device
JP2019135753A (en) Adhesive sheet and method for manufacturing semiconductor device
KR20140086221A (en) Semiconductor adhesive film for raser dicing and dicing die bonding film comprising the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18851223

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019539121

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18851223

Country of ref document: EP

Kind code of ref document: A1