Nothing Special   »   [go: up one dir, main page]

WO2019044145A1 - 空気処理装置 - Google Patents

空気処理装置 Download PDF

Info

Publication number
WO2019044145A1
WO2019044145A1 PCT/JP2018/024390 JP2018024390W WO2019044145A1 WO 2019044145 A1 WO2019044145 A1 WO 2019044145A1 JP 2018024390 W JP2018024390 W JP 2018024390W WO 2019044145 A1 WO2019044145 A1 WO 2019044145A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
camera
imaging
casing
drain pan
Prior art date
Application number
PCT/JP2018/024390
Other languages
English (en)
French (fr)
Inventor
孝則 鈴木
陽一 半田
慧太 北川
政弥 西村
義照 野内
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to CN201880055467.2A priority Critical patent/CN111033135A/zh
Priority to ES18851817T priority patent/ES2925459T3/es
Priority to AU2018324135A priority patent/AU2018324135B2/en
Priority to US16/639,847 priority patent/US11585562B2/en
Priority to EP18851817.9A priority patent/EP3663663B1/en
Publication of WO2019044145A1 publication Critical patent/WO2019044145A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/32Responding to malfunctions or emergencies
    • F24F11/38Failure diagnosis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0071Indoor units, e.g. fan coil units with means for purifying supplied air
    • F24F1/0073Indoor units, e.g. fan coil units with means for purifying supplied air characterised by the mounting or arrangement of filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/49Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring ensuring correct operation, e.g. by trial operation or configuration checks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/56Remote control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B15/00Systems controlled by a computer
    • G05B15/02Systems controlled by a computer electric
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/18Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast
    • H04N7/183Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast for receiving images from a single remote source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/20Casings or covers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/22Means for preventing condensation or evacuating condensate
    • F24F13/222Means for preventing condensation or evacuating condensate for evacuating condensate
    • F24F2013/227Condensate pipe for drainage of condensate from the evaporator
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/51Housings
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/54Mounting of pick-up tubes, electronic image sensors, deviation or focusing coils

Definitions

  • the present invention relates to an air treatment device.
  • Patent Document 1 discloses a technique for acquiring image data of a predetermined imaging target inside a casing of an air conditioner.
  • a camera (imaging device) is installed inside a casing of the indoor unit.
  • the camera is provided at a position where an imaging target (for example, a filter) can be imaged.
  • the image data of the imaging target imaged by the camera is output to the central monitoring device via the LAN.
  • the service provider or the like can grasp the state of the imaging target (for example, clogging of the filter, breakage, installation state, etc.).
  • An object of the present disclosure is to propose an air processing device capable of easily installing an imaging device inside a casing.
  • the first aspect includes a casing (20) and an imaging device (70) for acquiring image data of a predetermined imaging target (40, 43, 45, 60, 66) located inside the casing (20).
  • the main body (20a) of the casing (20) is provided with predetermined components (47, 49), and the imaging device (70) has the imaging target (40, 43, 45, 60, 66).
  • the imaging device (70) of the first aspect is attached to a predetermined component (47, 49) via an attachment (52). Since the mounting portion (52) is configured to be removable from the component (47, 49), the mounting operation of the imaging device (70) can be performed easily.
  • the mounting portion (52) is A pair of sandwiching members (53) opposed to sandwich the component (47, 49); And a pressing member (55) for pressing the holding member (53) so as to narrow the distance between the pair of holding members (53).
  • the sandwiching members (53) are pressed by the pressing member (55).
  • the imaging device (70) can be easily attached to the component.
  • a wireless communication unit (77) is provided for wirelessly transmitting image data acquired by the imaging device (70) to the outside of the casing (20).
  • the image data acquired by the imaging device (70) is transmitted to the outside of the casing (20) by the wireless communication unit (77). For this reason, it is not necessary to lead the wiring for transmitting the image data from the inside to the outside of the casing (20).
  • Air treatment device for transmitting image data acquired by the imaging device (70) to the outside of the casing (20) by wire; And a wireless communication unit (77) disposed outside the casing (20) and transmitting the output data of the transmission line (91) to a predetermined receiving unit (80) wirelessly.
  • the image data acquired by the imaging device (70) is sent to the outside of the casing (20) through the transmission line (91). Then, the image data is transmitted to the receiving unit (80) by the wireless communication unit (77) outside the casing (20).
  • the wireless communication unit (77) is provided inside the casing (20
  • transmission of image data from the inside of the casing (20) to the outside may be hindered by the casing (20).
  • the image data is wirelessly sent to the receiving unit (80). Therefore, the image data can be reliably sent to the receiving unit (80).
  • One end is connected to the imaging device (70), and a wire (56) is provided to the outside of the casing (20); The other end of the wire (56) is provided with a connector (56a) to which an external wire (86) is connected.
  • the wiring (56) connected to the imaging device (70) is disposed outside the casing (20), and is connected to the external wiring (86) through the connector (56a). Therefore, the wiring work of the imaging device (70) can be easily performed.
  • a sixth aspect is any one of the first to fifth aspects:
  • the imaging device (70) is an air processing device characterized by including a wide angle type or fish eye type lens (71).
  • the imaging device (70) of the sixth aspect captures an imaging object (40, 43, 45, 60, 66) with a wide-angle or fish-eye lens (71). As a result, the angle of view or imaging range of the imaging device (70) becomes wider.
  • the imaging device (70) is an air processing device characterized in that it comprises a lens (71) and a light source (72) positioned behind the lens (71) in the imaging direction.
  • the light source (72) since the light source (72) is located behind the lens (71), the light source (72) can be prevented from entering the imaging range of the imaging device (70).
  • the imaging target (40, 43, 45, 60, 66) includes at least one of a drain pan (60), a drain, a drain pump (66), a float switch, and a humidifying element (45). Air treatment device.
  • an imaging device (70) acquires at least one image data of a drain pan (60), a drain, a drain pump (66), a float switch, and a humidification element (45). Therefore, based on this image data, the dirt in the drain pan (60), the growth of bacteria and mold in the drain pan (60), the dirt and clogging of the drainage port, the failure of the drain pump (66), the humidifying element ( 45) It is possible to confirm the growth, breakage, etc. of dirt, fungus and mold.
  • the component is an air processing device characterized in that it is a pipe (47, 49).
  • the attachment portion (52) is configured to be detachable from the pipe (47, 49) as a component. That is, the pipes (47, 49) function as parts for supporting the imaging device (70).
  • a tenth aspect is any one of the first to ninth aspects: Assuming that the average flow velocity of the blown air blown out from the casing (20) is Va,
  • the imaging device (70) is an air processing device characterized in that it is disposed at a position where air of 30% or less of the average flow velocity Va of the blown air flows.
  • the flow velocity of the air at the location where the imaging device (70) is disposed is relatively small, it is possible to suppress that dust and the like in the air adhere to the lens of the imaging device (70) and become dirty.
  • An eleventh aspect is characterized in that, in any one of the first to tenth aspects, the lens (71) of the imaging device (70) faces the downstream side of the air flow.
  • the lens (71) of the imaging device (70) faces the downstream side of the air flow, dust and the like in the air can be prevented from adhering to the lens (71) and becoming dirty.
  • the imaging device (70) can be attached to the component (47, 49) provided on the main body (20a) of the casing (20) via the attachment portion (52), the imaging device (70) ) Can be performed easily.
  • the components (47, 49) function as members for supporting the imaging device (70), so the number of parts can be reduced.
  • FIG. 1 is a plan view showing the internal structure of the air conditioning apparatus according to the first embodiment.
  • FIG. 2 is a front view of the air conditioning apparatus according to the first embodiment.
  • FIG. 3 is a longitudinal cross-sectional view showing the internal structure of the air conditioning apparatus according to the first embodiment.
  • FIG. 4 is a perspective view showing a schematic configuration on the front panel side of the air conditioning apparatus according to the first embodiment.
  • FIG. 5 is a perspective view showing the structure of the imaging unit according to the first embodiment.
  • FIG. 6 is a block diagram showing a schematic configuration of the imaging system according to the first embodiment.
  • FIG. 7 is a plan view showing the internal structure of the air conditioning apparatus according to the second embodiment.
  • FIG. 8 is a cross-sectional view showing the internal structure of the air conditioning apparatus according to the second embodiment.
  • FIG. 9 is a perspective view showing the structure of an imaging unit according to a modification.
  • FIG. 10 is a perspective view showing the structure of the imaging unit according to the second embodiment.
  • FIG. 11 is a block diagram showing a schematic configuration of an imaging system according to the first modification.
  • FIG. 12 is a block diagram showing a schematic configuration of an imaging system according to the second modification.
  • FIG. 13 is a block diagram showing a schematic configuration of an imaging system according to the third modification.
  • FIG. 14 is a time chart showing the timing of the operation of each device according to the third modification.
  • FIG. 15 is a timing chart illustrating the operation timings of the devices according to another control example 1 of the third modification.
  • FIG. 16 is a time chart showing the operation timings of the devices according to another control example 2 of the third modification.
  • FIG. 17 is a time chart showing the operation timings of the devices according to another control example 3 of the third modification.
  • FIG. 18 is a timing chart illustrating operation timings of the devices according to another control example 4 of the third modification.
  • FIG. 19 is a block diagram showing a schematic configuration of an imaging system according to the fourth modification.
  • FIG. 20 is a schematic plan view enlarging the periphery of the imaging device according to the fifth modification.
  • FIG. 21 is a schematic plan view enlarging the periphery of the imaging device according to the seventh modification.
  • FIG. 22 is a schematic plan view enlarging the periphery of the imaging device according to the eighth modification.
  • FIG. 23 is a perspective view showing the positional relationship between the camera and the light source.
  • FIG. 24 is a longitudinal cross-sectional view of the air conditioning apparatus according to the third embodiment.
  • the air processing apparatus is an air conditioner (10).
  • An air conditioner (10) regulates at least the temperature of air. Specifically, the air conditioner (10) regulates the temperature of room air (RA) and supplies the temperature-controlled air to the room as supply air (SA).
  • the air conditioner (10) includes an indoor unit (11) installed in a space above the ceiling. The indoor unit (11) is connected to an outdoor unit (not shown) via a refrigerant pipe. Thus, in the air conditioner (10), a refrigerant circuit is configured. In the refrigerant circuit, a vapor compression refrigeration cycle is performed by circulating the filled refrigerant.
  • the outdoor unit is provided with a compressor and an outdoor heat exchanger connected to the refrigerant circuit, and an outdoor fan corresponding to the outdoor heat exchanger.
  • the indoor unit (11) includes a casing (20) installed on the ceiling and a fan (40) and an indoor heat exchanger (43) accommodated in the casing (20). Have. Inside the casing (20), a drain pan (60) for recovering condensed water generated from air in the casing (20), and a drain pump (66) for discharging water accumulated in the drain pan (60) And are provided.
  • the casing (20) is formed in the shape of a rectangular hollow box.
  • the casing (20) has a top plate (21), a bottom plate (22), and four side plates (23, 24, 25 and 26).
  • the four side plates are composed of a front panel (23), a rear panel (24), a first side panel (25), and a second side panel (26).
  • the front panel (23) and the rear panel (24) face each other.
  • the first side panel (25) and the second side panel (26) face each other.
  • the front panel (23) faces the maintenance space (15). On the front panel (23) side, an electrical component box (16), an inspection port (50), and an inspection lid (51) are provided.
  • a suction port (31) is formed in the first side panel (25).
  • a suction duct (not shown) is connected to the suction port (31). The inflow end of the suction duct is connected to the indoor space.
  • An outlet (32) is formed in the second side panel (26).
  • An outlet duct (not shown) is connected to the outlet (32). The outlet end of the outlet duct is connected to the indoor space.
  • an air flow path (33) is formed between the suction port (31) and the blowout port (32).
  • the fan (40) is disposed closer to the first side panel (25) in the air flow path (33).
  • the fan (40) conveys the air of the air flow path (33).
  • three sirocco fans (41) are driven by one motor (42) (see FIG. 1).
  • the indoor heat exchanger (43) is disposed closer to the second side panel (26) in the air flow path (33).
  • the indoor heat exchanger (43) is configured by, for example, a fin and tube type heat exchanger.
  • the indoor heat exchanger (43) of the present embodiment is disposed obliquely.
  • the indoor heat exchanger (43) serving as the evaporator constitutes a cooling unit that cools the air.
  • a header collecting pipe (47) which is a pipe (strictly speaking, a refrigerant pipe) is provided on the front side of the indoor heat exchanger (43).
  • the header collecting pipe (47) extends obliquely along the side edge of the indoor heat exchanger (43).
  • the header collecting pipe (47) is connected to the heat transfer pipe of the indoor heat exchanger (43) via a branch pipe (not shown).
  • the drain pan (60) is disposed below the indoor heat exchanger (43) along the bottom plate (22).
  • the drain pan (60) includes a first side wall (61), a second side wall (62), and a bottom (63).
  • the first side wall (61) is located upstream of the indoor heat exchanger (43).
  • the second side wall (62) is located downstream of the indoor heat exchanger (43).
  • the bottom portion (63) is formed across the first side wall (61) and the second side wall (62).
  • the bottom (63) is formed with a recess (64) having a substantially trapezoidal cross section near the center.
  • the height of the bottom of the recess (64) is the lowest. That is, the deepest deepest portion is formed in the recess (64).
  • the drain pump (66) is disposed inside the drain pan (60). Specifically, the suction portion (66a) of the drain pump (66) is disposed inside the recess (64) of the drain pan (60).
  • the inflow end of drain piping (67) is connected to the discharge part of drain pump (66).
  • the drain pipe (67) penetrates the front panel (23) of the casing (20) in the horizontal direction.
  • the electrical component box (16) is disposed closer to the fan (40) of the front panel (23). Inside the electrical component box (16), a printed circuit board (17) on which a power supply circuit, a control circuit and the like are mounted, a wire connected to each circuit, a high power side power supply unit, a low power side power supply unit and the like are accommodated.
  • the electrical component box (16) includes a box main body (16a) whose front side opens, and an electrical component cover (16b) which opens and closes an opening surface of the box main body (16a).
  • the electric component cover (16b) constitutes a part of the front panel (23). By removing the electrical component cover (16b), the inside of the electrical component box (16) is exposed to the maintenance space (15).
  • the inspection port (50) is disposed closer to the indoor heat exchanger (43) of the front panel (23).
  • the inspection port (50) is composed of a rectangular portion (50a) and a triangular portion (50b) continuous with one lower corner of the rectangular portion.
  • the triangular portion (50b) protrudes from the rectangular portion (50a) toward the second side panel (26).
  • the inspection port (50) is formed at a position corresponding to the drain pan (60). By removing the inspection lid (51) from the inspection port (50), the inside of the drain pan (60) can be inspected from the maintenance space (15) side.
  • the inspection lid (51) has a shape substantially similar to the inspection opening (50) and slightly larger than the inspection opening (50). At the outer edge of the inspection lid (51), a plurality of (three in this example) fastening holes for attaching the inspection lid (51) to the casing body (20a) are formed.
  • the inspection lid (51) is fixed to the casing body (20a) by a plurality of fastening members (for example, bolts) inserted through the fastening holes. With such a configuration, the inspection lid (51) is detachably attached to the casing main body (20a) so as to open and close the inspection opening (50).
  • the imaging system (S) includes an imaging unit including a camera (70) which is an imaging device, an adjustment mechanism (100), and a mounting portion (52).
  • the camera (70) of the present embodiment is attached to a header collecting pipe (47) which is a component via an attaching portion (52) (the details will be described later).
  • the camera (70) constitutes an imaging device for imaging the image data of the drain pan (60) to be imaged.
  • the camera (70) has a lens (71) and a light source (flash).
  • the lens (71) is formed of, for example, a super wide-angle lens.
  • the adjusting mechanism (100) includes a ball joint (101).
  • the ball joint (101) has a first joint (110) fixed to the mounting portion (52) side and a second joint (120) fixed to the camera (70) side.
  • the first joint (110) has a rod (111) and a socket (112) provided at the tip of the rod (111).
  • the socket (112) has a shape in which a part of a hollow sphere is cut away, and a substantially spherical fitting recess (113) is formed in its inside.
  • a plurality of notch grooves (114) (four in this example) are formed in the peripheral edge portion of the opening end of the fitting recess (113).
  • the plurality of notch grooves (114) are circumferentially arranged at equal intervals.
  • the number of notch grooves (114) is not limited to this, and the notch grooves (114) may be omitted.
  • the second joint (120) has a pivot (121) connected to the camera (70), and a ball (122) provided at the tip of the pivot (121).
  • the ball (122) fits inside the mating recess (113) of the socket (112).
  • the ball (122) is held in the socket (112) in spherical contact with the mating recess (113). That is, the ball (122) is configured to be rotatable inside the fitting recess (113).
  • the pivot shaft (121) is tiltable with the ball (122), and is configured to be rotatable about the axial center of the pivot shaft (121). Further, the pivot shaft (121) is engageable with each notch groove (114) of the socket (112).
  • the pivot shaft (121) can be positioned by engaging the pivot shaft (121) with the notch groove (114).
  • the camera (70) can change 360 ° direction about the axial center of the rod (111), and can change the inclination angle of the rod (111) with respect to the axial center .
  • the imaging direction of the camera (70) can be arbitrarily adjusted according to the position of the imaging target.
  • the attachment portion (52) of this example is configured by a clip type.
  • the mounting portion (52) has a pair of holding members (53) and an elastic member (for example, a spring, not shown) for urging the pair of holding members (53) inward.
  • Each holding member (53) has a substantially rectangular projecting plate portion (53a) and a gripping portion (53b) supported by the tip of the projecting plate portion (53a).
  • a support shaft (not shown) for rotatably supporting the projecting plate portions (53a) is provided.
  • the grip portion (53b) is formed in a substantially arc shape bulging outward.
  • the pair of grips (53b) are arranged to face each other.
  • the spring is disposed between the pair of holding members (53).
  • the spring constitutes a pressing member for pressing the holding member (53) so as to narrow the distance between the pair of holding members (53).
  • An imaging system (S) according to the present embodiment will be described with reference to FIG.
  • An imaging system (S) according to the present embodiment includes the camera (70) described above, a power supply unit (18), and a communication terminal (80).
  • the camera (70) described above is provided in the casing (20) of the indoor unit (11).
  • the camera (70) includes an imaging control unit (74), a storage unit (75), an ID assigning unit (76), and a wireless communication unit (77).
  • the imaging control unit (74) controls the imaging operation of the camera (70) according to an imaging command input from the outside. Specifically, in the present embodiment, when a signal indicating an imaging command is input from the communication terminal (80) to the wireless communication unit (77), an operation of imaging the imaging target by the camera (70) is executed. Thereby, with the camera (70), image data of an imaging target (in the present embodiment, drain pan (60)) is acquired.
  • the imaging control unit (74) is configured using a microcomputer and a memory device (specifically, a semiconductor memory) that stores software for operating the microcomputer.
  • the storage unit (75) stores the acquired image data.
  • the storage unit (75) is configured of various memory devices (semiconductor memories).
  • the ID assigning unit (76) associates ID information corresponding to image data with corresponding image data.
  • this ID information the date / time of imaging, the model / place of the air conditioner corresponding to the imaged drain pan (60), etc. may be mentioned. Therefore, the storage unit (75) stores image data including the ID information.
  • the wireless communication unit (77) is wirelessly connected to the communication terminal (80). It constitutes a wireless transmission means.
  • the wireless communication unit (77) is configured of, for example, a wireless router.
  • the wireless communication unit (77) is connected to a communication terminal (80) around the air conditioner (10) via a wireless LAN. This enables data exchange between the camera (70) and the communication terminal (80).
  • the wireless communication unit (77) wirelessly transmits the image data acquired by the camera (70) to the communication terminal (80).
  • the wireless communication unit (77) appropriately receives an imaging command from the communication terminal (80) (such as a service provider).
  • the wireless communication unit (77) may use, for example, a communication line of mobile high-speed communication technology (for example, LTE).
  • the power supply unit (18) is provided, for example, inside the electrical component box (16) of the air conditioner (10).
  • the power supply line (85) of the camera (70) is led to the outside of the casing (20) through, for example, the inspection port (50), and is drawn into the inside of the electric component box (16) from the outside.
  • the camera (70) in the casing (20) and the power supply unit (18) in the electrical component box (16) are connected via the power supply line (85).
  • the power supply unit (18) doubles as a power supply for other devices of the air conditioner (10).
  • the communication terminal (80) is configured of a smartphone, a tablet terminal, a mobile phone, a personal computer, etc. that can be connected to a wireless LAN or the like.
  • the communication terminal (80) includes a microcomputer, software for operating the microcomputer, a memory device as a storage unit, a receiving unit for receiving image data, and a transmitting unit for outputting a predetermined command. It contains.
  • the communication terminal (80) has an operation unit (81) and a display unit (82).
  • the service provider or the like operates predetermined application software using an operation unit (81) such as a keyboard or a touch panel. For example, on the application software displayed on the display unit (82), it is possible to transmit an instruction for performing imaging of the camera (70) or download image data acquired by the camera (70).
  • the air conditioner (10) is configured to be capable of performing a cooling operation and a heating operation.
  • the refrigerant compressed by the compressor of the outdoor unit is released (condensed) by the outdoor heat exchanger and decompressed by the expansion valve.
  • the decompressed refrigerant is evaporated in the indoor heat exchanger (43) of the indoor unit (11) and compressed again in the compressor.
  • the air when the air is cooled to the dew point temperature or less by the indoor heat exchanger (43), the moisture in the air is condensed.
  • the condensed water generated in this manner is suitably recovered to the drain pan (60).
  • the condensed water collected in the drain pan (60) is discharged to the outside of the casing (20) by the drain pump (66).
  • the refrigerant compressed by the compressor of the outdoor unit is released (condensed) by the indoor heat exchanger (43) of the indoor unit (11) and decompressed by the expansion valve.
  • the decompressed refrigerant is evaporated by the outdoor heat exchanger of the outdoor unit and compressed again by the compressor. Therefore, in the indoor heat exchanger (43), the refrigerant releases heat to the air, and the air is heated.
  • the camera (70) of the present embodiment is attached to the header collecting pipe (47) via the attaching part (52). Specifically, when the inspection port (50) is removed from the casing main body (20a), the header manifold (47) is exposed to the outside of the casing (20). In this state, the mounting portion (52) is attached to the header collecting pipe (47). When the header collecting pipe (47) is sandwiched between the pair of holding members (53), the header collecting pipe (47) is held by the biased holding portion (53b). As a result, the camera (70) is supported by the header collecting pipe (47) through the mounting portion (52). In this state, the lens (71) of the camera (70) faces obliquely downward. Next, the imaging mechanism of the camera (70) is finely adjusted by the adjustment mechanism (100). As a result, the drain pan (60) can be easily positioned within the imaging range of the camera (70).
  • the state of the drain pan (60) described above can be appropriately confirmed by the imaging system (S).
  • the lens (71) of the camera (70) is directed to the inside of the drain pan (60).
  • the service provider or the like operates the communication terminal (80) and inputs an imaging command on the application software.
  • an imaging command is output from the communication terminal (80) to the camera (70).
  • imaging of the camera (70) is executed by the imaging control unit (74).
  • the inside of the drain pan (60) is illuminated by operating the light source (72). By such imaging, the image data inside the drain pan (60) can be acquired at the timing required by the service provider or the like.
  • the image data stored in the camera (70) in this manner is output to the communication terminal (80) together with the ID information. Therefore, the service provider or the like can confirm this image data by the display unit (82), and can appropriately grasp the state of the drain pan (60). Specifically, the service provider or the like checks the image data to check the degree of decay, mold, dirt, etc. of the condensed water in the drain pan (60), check the water level in the drain pan (60), drain piping ( 67) clogging, and failure of the drain pump (66) can be grasped.
  • Embodiment 1- since the image data inside the drain pan (60) can be appropriately acquired by the camera (70), the service provider etc. can not enter the space on the ceiling and the inside state of the drain pan (60). Can understand Here, the image data acquired by the camera (70) is transmitted to a communication terminal (80) outside the casing (20) by wireless. Therefore, image data can be easily sent to the communication terminal (80) relatively distant from the camera (70) without providing a transmission line or the like.
  • the camera (70) is attached to a header collecting pipe (47) which is a component via an attaching portion (52).
  • the attachment portion (52) can be easily attached to and detached from the header manifold (47) by the pair of holding members (53). Therefore, the camera (70) can be easily attached within the casing (20).
  • the header manifold (47) functions as a support member for the camera (70), the number of parts can be reduced.
  • the header manifold (47) which is a component is arranged in the vicinity of the inspection port (50), the camera (70) can be attached from the outside of the casing (20).
  • the camera (70) can arbitrarily adjust the angle in the imaging direction by the adjustment mechanism (100). Therefore, the drain pan (60) to be imaged can be easily positioned in the imaging range of the camera (70).
  • the air conditioner (10) according to the second embodiment differs from the first embodiment in the basic configuration.
  • the air conditioner (10) of the second embodiment takes in outdoor air (OA) and adjusts the temperature and humidity of this air.
  • the air conditioner (10) supplies the air thus treated into the room as supply air (SA). That is, the air conditioner (10) is an outside air treatment system.
  • the air conditioner (10) also includes a humidifying element (45) for humidifying air, for example, in winter.
  • the air conditioner (10) is installed, for example, in a space above the ceiling. Further, the air conditioner (10) has an outdoor unit (not shown) and an indoor unit (11) as in the first embodiment, and these are connected by a refrigerant pipe, whereby a refrigerant circuit is obtained. Configured
  • the indoor unit (11) includes a casing (20) installed on the ceiling, an air supply fan (40a), an exhaust fan (40b), and an indoor heat exchanger (43). And a total heat exchanger (44) and a humidifying element (45). Further, a drain pan (60) for collecting condensed water generated in the indoor heat exchanger (43) and a drain port for discharging water accumulated in the drain pan (60) are provided in the casing (20).
  • the casing (20) is formed in the shape of a rectangular hollow box.
  • the casing (20) of the second embodiment is, similarly to the first embodiment, a top plate (21), a bottom plate (22), a front panel (23), a rear panel (24), a first side panel (25), and a second It has a side panel (26).
  • the front panel (23) faces the maintenance space (15).
  • An electrical component box (16), an inspection port (50), and an inspection lid (51) are provided on the front panel (23) side (the details will be described later).
  • An inner air port (34) and an air supply port (35) are formed in the first side panel (25).
  • An inside air duct (not shown) is connected to the inside air port (34). The inflow end of the inside air duct is connected to the indoor space.
  • An air supply duct (not shown) is connected to the air supply port (35). The outlet end of the air supply duct is connected to the indoor space.
  • An exhaust port (36) and an open air port (37) are formed in the second side panel (26).
  • An exhaust duct (not shown) is connected to the exhaust port (36). The outflow end of the exhaust duct is connected to the outdoor space.
  • An outside air duct (not shown) is connected to the outside air port (37). The inflow end of the outside air duct is connected to the outdoor space.
  • the air supply flow path (33A) is a flow path from the outside air port (37) to the air supply port (35).
  • the exhaust flow path (33B) is a flow path from the inside air port (34) to the exhaust port (36).
  • the total heat exchanger (44) is formed in a horizontally long square pole.
  • the total heat exchanger (44) is configured, for example, by alternately stacking two types of sheets in the horizontal direction.
  • a first passage (44a) communicating with the air supply flow passage (33A) is formed in one of the two types of sheets.
  • a second passage (44b) communicating with the exhaust passage (33B) is formed in the other of the two types of sheets.
  • Each sheet is made of a material having heat conductivity and hygroscopicity. For this reason, in the total heat exchanger (44), latent heat and sensible heat are exchanged between the air flowing through the first passage (44a) and the air flowing through the second passage (44b).
  • the air supply fan (40a) is disposed in the air supply channel (33A) and conveys the air of the air supply channel (33A). More specifically, the air supply fan (40a) is disposed in the air supply channel (33A) between the first passage (44a) of the total heat exchanger (44) and the indoor heat exchanger (43) .
  • Exhaust fan The exhaust fan (40b) is disposed in the exhaust flow path (33B) and conveys the air in the exhaust flow path (33B). More specifically, the exhaust fan (40b) is disposed downstream of the second passage (44b) of the total heat exchanger (44) in the exhaust passage (33B).
  • the indoor heat exchanger (43) is disposed closer to the front panel (23) in the air supply passage (33A).
  • the indoor heat exchanger (43) is configured by, for example, a fin and tube type heat exchanger.
  • the humidifying element (45) is disposed closer to the front panel (23) in the air supply passage (33A).
  • the humidifying element (45) is disposed downstream of the indoor heat exchanger (43) in the air supply flow path (33A).
  • the humidifying element (45) is configured by horizontally arranging a plurality of hygroscopic materials extending vertically. Water from the water supply tank (48) is supplied to these hygroscopic materials. In the humidifying element (45), the evaporated air is applied to the air flowing around the hygroscopic material. Thus, the air flowing through the air supply passage (33A) is humidified.
  • the water supply tank (48) is formed of a rectangular container extending back and forth along the humidifying element (45).
  • a water pipe (49) for supplying humidified water to the water supply tank (48) is connected to the water supply tank (48) (see FIG. 7).
  • the water pipe (49) extends in the front-rear direction along the humidifying element (45) and the water supply tank (48).
  • the water pipe (49) is a pipe (component) to which the mounting portion (52) of the camera (70) is attached.
  • the drain pan (60) is installed below the indoor heat exchanger (43), and collects condensed water generated in the indoor heat exchanger (43). Moreover, the drain pan (60) of Embodiment 2 is arrange
  • the electrical component box (16) is provided on the front of the front panel (23) and substantially in the center.
  • the same electrical components as in the first embodiment are accommodated in the electrical component box (16).
  • the inspection port (50) is disposed in the vicinity of the indoor heat exchanger (43) and the humidifying element (45) of the front panel (23).
  • the inspection port (50) is formed at a position corresponding to the drain pan (60) and the humidifying element (45).
  • the inspection lid (51) is attached to the casing body (20a) via a plurality of fastening members.
  • the camera (70) of the present embodiment is connected to, for example, a water pipe (49) which is a component via the same attachment portion (52) as that of the first embodiment. That is, the water pipe (49) is sandwiched by the pair of clamping members (53) of the mounting portion (52). At this time, the mounting position of the camera (70) is adjusted such that the camera (70) faces the inside of the drain pan (60). Furthermore, fine adjustment of the imaging direction of the camera (70) is performed by the adjustment mechanism (100). As a result, the drain pan (60) can be easily positioned within the imaging range of the camera (70).
  • the basic configuration of the imaging system (S) is the same as that of Embodiment 1 (see FIG. 6).
  • the air conditioner (10) is configured to be capable of performing a cooling operation and a heating operation.
  • the indoor heat exchanger (43) in the cooling operation, is an evaporator, and in the heating operation, the indoor heat exchanger (43) is a condenser (dissipator). Also, in the heating operation, the humidifying element (45) operates to humidify the air. Further, in the cooling operation and the heating operation, when the air supply fan (40a) and the exhaust fan (40b) are operated, outdoor air (OA) is taken into the air supply flow path (33A) from the outdoor air port (37) and Air (RA) is taken into the exhaust flow path (33B) from the inside air port (34). Thereby, ventilation of indoor space is performed.
  • the outdoor air (OA) taken into the air supply flow path (33A) flows through the first passage (44a) of the total heat exchanger (44).
  • the room air (RA) taken into the exhaust flow path (33B) flows through the second passage (44b) of the total heat exchanger (44).
  • outdoor air (OA) has a higher temperature and humidity than room air (RA). Therefore, in the total heat exchanger (44), the latent heat and the sensible heat of the outdoor air (OA) are applied to the indoor air (RA). As a result, the air is cooled and dehumidified in the first passage (44a).
  • the air to which the latent heat and the sensible heat are applied passes through the exhaust port (36) and is discharged to the outdoor space as exhaust air (EA).
  • the air cooled and dehumidified in the first passage (44a) passes through the humidifying element (45) in a stopped state after being cooled by the indoor heat exchanger (43). Thereafter, this air passes through the air supply port (35) and is supplied to the indoor space as supply air (SA).
  • the outdoor air (OA) taken into the air supply passage (33A) flows through the first passage (44a) of the total heat exchanger (44).
  • the room air (RA) taken into the exhaust flow path (33B) flows through the second passage (44b) of the total heat exchanger (44).
  • outdoor air (OA) has lower temperature and humidity than room air (RA). Therefore, in the total heat exchanger (44), the latent heat and the sensible heat of the room air (RA) are applied to the outdoor air (OA). As a result, heating and humidification of air are performed in the first passage (44a).
  • the second passage (44b) the air from which the latent heat and the sensible heat have been removed passes through the exhaust port (36) and is discharged to the outdoor space as exhaust air (EA).
  • the air heated and humidified in the first passage (44a) passes through the humidifying element (45) after being heated in the indoor heat exchanger (43).
  • the humidifying element (45) the moisture vaporized by the hygroscopic material is applied to the air, and the air is further humidified.
  • the air that has passed through the humidification element (45) passes through the air supply port (35) and is supplied to the indoor space as supply air (SA).
  • the state of the drain pan (60) can be confirmed in the same manner as the first embodiment. That is, when an imaging command from the communication terminal (80) is input to the wireless communication unit (77) of the camera (70), the camera (70) executes imaging. Thereby, for example, in summer, image data inside the drain pan (60) can be acquired, and the state of the drain pan (60) can be grasped.
  • the humidifying element (45) when the humidifying element (45) operates with the heating operation, scale, mold, etc. may be generated on the surface of the hygroscopic material.
  • the image data of the humidifying element (45) can also be acquired by the camera (70), the state of such a humidifying element (45) can be easily grasped.
  • the mounting portion (52) includes a mounting member (54) having a U-shaped cross section, and a fastening member (55) (for example, a bolt and a nut) to be fastened to the mounting member (54).
  • the mounting member (54) includes a substrate (54a) to which the rod (111) is connected, and a pair of holding plates (54b) extending from both ends in the width direction of the substrate (54a) to the side opposite to the rod (111). And.
  • the substrate (54 a) and the holding plate (54 b) are made of a metal material or resin material having elasticity.
  • the holding plate (54 b) constitutes a pair of holding members facing each other so as to hold the component.
  • the fastening member (55) constitutes a pressing member for pressing the holding plate (54b) so as to narrow the distance between the pair of support plates (73).
  • the attaching part (52) of the example of FIG. 10 has two fastening members (55), it may be one or three or more.
  • the fastening member (55) is fastened in a state where a predetermined component is positioned inside the attachment member (54).
  • the component is held inside the mounting member (54), and the camera (70) is supported by the component.
  • an imaging system (S) according to the following modification may be adopted.
  • the imaging system (S) of the modification 1 shown in FIG. 11 includes a communication unit (90) separate from the camera (70).
  • the communication unit (90) is disposed outside the casing (20) and connected to the camera (70) via the transmission line (91).
  • the transmission line (91) is inserted into, for example, a through hole for wiring formed in the inspection lid (51).
  • the transmission line (91) is connected to a first transmission / reception unit (78) on the camera (70) side and a second transmission / reception unit (92) on the communication unit (90) side. This enables transmission and reception of image data and signals between the camera (70) and the communication unit (90).
  • the storage unit (75), the ID assigning unit (76), and the wireless communication unit (77) are provided in the camera (70).
  • the storage unit (75), the ID assigning unit (76), and the wireless communication unit (77) are provided in the communication unit (90).
  • the communication terminal (80) is wirelessly connected to the wireless communication unit (77) of the communication unit (90).
  • an imaging command from the communication terminal (80) is sent to the communication unit (90) by wireless.
  • This imaging command is input to the camera (70) via the transmission line (91).
  • imaging of the camera (70) is performed.
  • the image data acquired by the camera (70) is input to the communication unit (90) through the transmission line (91), and is appropriately stored in the storage unit (75).
  • the ID assigning unit (76) associates ID information corresponding to the image data with the image data.
  • the image data to which the ID information is assigned is appropriately transmitted to the communication terminal (80) by wireless.
  • a communication unit (90) that wirelessly exchanges data with the communication terminal (80) is provided outside the casing (20). For this reason, radio waves between the communication terminal (80) and the communication unit (90) are less likely to interfere, and data transmission is stabilized.
  • the communication unit (90) and the communication terminal (80) are connected to the cloud server (95) via the network (N).
  • image data on the communication unit (90) side is sent to the cloud server (95) via the network (N) and stored in the cloud server (95).
  • the communication terminal (80) can acquire image data from the cloud server (95).
  • the imaging system (S) of the third modification shown in FIG. 13 is configured to control the camera (70) in conjunction with the operation of each device of the air conditioner (10). This point will be described in detail.
  • the air conditioning control unit (19) is provided in the electrical component box (16).
  • the air conditioning control unit (19) is configured to appropriately control each component of the fan (40), the drain pump (66), the refrigerant circuit, and the like in the cooling operation and the heating operation described above.
  • the camera (70) of the third modification is provided with an input unit (79).
  • a signal (X) corresponding to the operation command from the air conditioning control unit (19) is input to the input unit (79).
  • the imaging control unit (74) causes the camera (70) to perform imaging in synchronization with the input of the signal (X) to the input unit (79).
  • the imaging timing of the camera (70) of the imaging system (S) of the modification 3 will be described with reference to the timing chart of FIG.
  • the air conditioner (10) according to the first embodiment is targeted.
  • the imaging of the camera (70) of this example is performed before the start of the operation of the fan (40) and the start of the cooling operation of the indoor heat exchanger (43).
  • the cooling operation of the indoor heat exchanger (43) is an operation of cooling air by the refrigerant flowing in the indoor heat exchanger (43) which is to be an evaporator. Therefore, the stop state of the indoor heat exchanger (43) means that the refrigerant does not substantially flow through the indoor heat exchanger (43) and the air is not cooled.
  • the air conditioner (10) for example, the compressor is stopped or the flow of the refrigerant in the indoor heat exchanger (43) is restricted, whereby the indoor heat exchanger (43) is stopped.
  • the air conditioning control unit (19) when the cooling operation start command is input to the air conditioning control unit (19) at time t1, the air conditioning control unit (19) generates a fan (at time t2 after ⁇ Ta from this time t1. 40) and the control to start the cooling operation of the indoor heat exchanger (43). Thereby, the cooling operation is started from time t2.
  • the air conditioning control unit (19) outputs a signal (X) for performing imaging of the camera (70) to the camera (70) simultaneously with the time t1 when the cooling operation start command is input.
  • the imaging control unit (74) causes the camera (70) to perform imaging.
  • the camera (70) acquires the image data of the drain pan (60) at substantially the same timing as the cooling operation start command.
  • imaging of the camera (70) is performed immediately before the start of the operation of the fan (40) and immediately before the start of the cooling operation of the indoor heat exchanger (43). In other words, imaging of the camera (70) is performed immediately before the start of the cooling operation.
  • the fan (40) and the indoor heat exchanger (43) are stopped. Therefore, at time point t1, the overall power consumption of the air conditioner (10) is reduced. Therefore, the power supplied from the power supply unit (18) to the camera (70) can be sufficiently secured.
  • the surface of the condensed water inside the drain pan (60) becomes unstable due to the air flow of the drain pan (60) and the influence of vibration.
  • the fan (40) since the fan (40) is in the stopped state at time t1, the water surface of the condensed water inside the drain pan (60) is also stabilized. Therefore, it is possible to prevent the image data of the drain pan (60) from being unclear due to the water surface of the condensed water becoming unstable.
  • the indoor heat exchanger (43) When the indoor heat exchanger (43) performs a cooling operation, condensed water is likely to be generated from the air cooled by the indoor heat exchanger (43). For this reason, the water surface in drain pan (60) tends to rise.
  • the indoor heat exchanger (43) is in a stopped state at time t1. Therefore, the water surface in the drain pan (60) does not rise due to the cooling operation of the indoor heat exchanger (43). Therefore, it is possible to prevent the image data of the drain pan (60) from being unclear due to the rise of the water surface of the condensed water.
  • the drain pan (60) is imaged at time t1 immediately before the start of the next cooling operation. For this reason, rot of condensed water and generation of mold in image data become remarkable, and it is possible to grasp the degree of dirt of the drain pan (60) more clearly.
  • the drain pan (60) may be imaged at the following timing.
  • each timing of the above-mentioned example and the example described below can also be combined.
  • Control Example 1 Imaging of the camera (70) is performed after the operation of the fan (40) is stopped and after the cooling operation of the indoor heat exchanger (43) is stopped.
  • the air conditioning control unit (19) when the air conditioning control unit (19) receives a cooling operation stop command at time t3, the air conditioning control unit (19) controls the fan (40) to stop, and the indoor heat exchanger Control to stop the cooling operation of (43) is performed. Thereby, the cooling operation is stopped from time t3.
  • the air conditioning control unit (19) outputs a signal (X) for performing imaging of the camera (70) to the camera (70) at time t4 which is ⁇ Tb after time t3.
  • the imaging control unit (74) causes the camera (70) to perform imaging.
  • the camera (70) acquires the image data of the drain pan (60) at a timing slightly later than the end of the cooling operation.
  • imaging of the camera (70) is performed immediately after the end of the operation of the fan (40) and immediately after the end of the cooling operation of the indoor heat exchanger (43). In other words, imaging of the camera (70) is performed immediately after the cooling operation is stopped.
  • Control Example 2 imaging of the camera (70) is performed after the operation of the drain pump (66) is stopped.
  • the drain pump (66) is operated, for example, simultaneously with the start of the cooling operation, and is stopped immediately after the cooling operation is stopped.
  • the drain pump (66) may be operated intermittently by a timer or the like, or may be executed when the water level in the drain pan (60) exceeds a predetermined level.
  • the air conditioning control unit (19) performs control to stop the drain pump (66) at time t5.
  • the air conditioning control unit (19) outputs the signal (X) to the input unit (79) of the camera (70) at time t6 after ⁇ Tc from time t5.
  • imaging of the camera (70) is executed at time t6 immediately after the stop of the drain pump (66).
  • the drain pump (66) is in the stop state. For this reason, the total power consumption of the air conditioner (10) is reduced as in the above embodiment. Therefore, the power supplied from the power supply unit (18) to the camera (70) can be sufficiently secured.
  • the drain pump (66) When the drain pump (66) is in operation, the water surface of the condensed water inside the drain pan (60) due to the drain pump (66) sucking in the condensed water or the vibration of the drain pump (66). becomes unstable. On the other hand, at time t6, the drain pump (66) is stopped, and the water surface of the condensed water inside the drain pan (60) is also stabilized. Therefore, it is possible to prevent the image of the acquired data from being unclear due to the instability of the water surface of the condensed water.
  • Condensed water in the drain pan (60) is drained until just before the stop of the operation of the drain pump (66). Therefore, immediately after the operation of the drain pump (66) is stopped, there should normally be no much condensed water accumulated inside the drain pan (60). Nevertheless, in the case where a relatively large amount of condensed water is present inside the drain pan (60), it can be assumed that the drain pump (66) is defective or that a drainage pipe is clogged. Therefore, by imaging the inside of the drain pan (60) at time t6, the above-mentioned problems relating to the drainage structure of condensed water can be discovered.
  • Control Example 3 imaging of the camera (70) is performed before the start of operation of the drain pump (66).
  • the air conditioning control unit (19) causes the drain pump (66) to be drain pump at time t8 after ⁇ Td from time t7. Control to operate (66) is performed.
  • the air conditioning control unit (19) outputs the signal (X) to the input unit (79) of the camera (70). Thereby, imaging of the camera (70) is performed at time t7 immediately before the operation of the drain pump (66).
  • the drain pump (66) is in the stop state. For this reason, the total power consumption of the air conditioner (10) is reduced as in the above embodiment. Therefore, the power supplied from the power supply unit (18) to the camera (70) can be sufficiently secured. In addition, the surface of the condensed water of the drain pan (60) is also stabilized.
  • control example 4 is applied to the heating operation of the second embodiment described above.
  • the imaging of the camera (70) of the second embodiment is performed before the start of the operation of the fans (the air supply fan (40a) and the exhaust fan (40b)) and before the start of the heating operation of the indoor heat exchanger (43) It is performed before the start of operation of the element (45).
  • the air conditioning control unit (19) charges the air at time t10 after ⁇ Te after time t9.
  • Control for operating the fan (40a) and the exhaust fan (40b), control for starting the heating operation of the indoor heat exchanger (43), and control for operating the humidifying element (45) are performed. Thereby, the heating operation is started from time t10.
  • the air conditioning control unit (19) outputs a signal (X) for performing imaging of the camera (70) to the camera (70) simultaneously with the time t9 when the start command of the heating operation is input.
  • the imaging control unit (74) causes the camera (70) to perform imaging.
  • the camera (70) acquires the image data of the drain pan (60) and the humidifying element (45) at substantially the same timing as the start command of the heating operation.
  • the air supply fan (40a), the exhaust fan (40b), the indoor heat exchanger (43), and the humidifying element (45) are stopped. Therefore, at time t9, the overall power consumption of the air conditioner (10) is reduced. Therefore, the power supplied from the power supply unit (18) to the camera (70) can be sufficiently secured. At time t9, the surface of the humidified water in the drain pan (60) is also stabilized.
  • the humidification element (45) is imaged at time t9 immediately before the start of the next heating operation. For this reason, the occurrence of scale and mold in the image data of the humidifying element (45) becomes remarkable, and it is possible to grasp the degree of the soiling of the humidifying element (45) more clearly.
  • a determination unit (96) is provided in the cloud server (95) of the imaging system (S) according to the modification 3.
  • the determination unit (96) automatically determines the state of the imaging target based on the image data acquired by the camera (70).
  • the determination unit (96) may be provided in the communication unit (90), the camera (70), or the communication terminal (80).
  • the image data is acquired interlockingly with the driving operation (including the stopping operation) of the air conditioning apparatus (10).
  • the determination unit (96) of the cloud server (95) determines the state of the imaging target based on the image data.
  • the determination unit (96) is realized, for example, by using AI (Artificial Intelligence) deep learning. Thereby, the determination unit (96) can determine, for example, the degree of contamination of the drain pan (60), the humidifying element (45), and the like. In addition, the determination unit (96) may determine the degree of contamination of the drain pan (60) or the humidifying element (45) in the future.
  • the determination result of the determination unit (96) is transmitted to, for example, the communication terminal (80).
  • the service provider or the like can grasp the current or future state of the imaging target via the communication terminal (80). Therefore, based on such information, a schedule of maintenance can be planned.
  • the image data determined by the determination unit (96) is acquired at a regular timing interlocked with the air conditioner (10). For this reason, an error factor of the image data used for AI can be removed, and the determination accuracy can be improved.
  • the determination accuracy can be improved.
  • by acquiring image data in the presentation state of each device described above it is possible to reliably remove an error factor of the image data caused by the flow or vibration of air.
  • the wiring (internal wiring (56)) on the camera (imaging device (70)) side is connected to the external wiring (86) via the first connector (56a) and the second connector (86a).
  • one end of the internal wiring (56) is connected to the camera (70).
  • the internal wiring (56) is disposed to the outside of the casing (20) through the insertion hole (27) provided in the casing (20).
  • the insertion hole (27) is formed in the inspection lid (51).
  • the casing (20) may be provided with a member such as a lid for closing a gap between the inner edge of the insertion hole (27) and the internal wiring (56).
  • the other end of the internal wiring (56) of the camera (70) of the present example is disposed outside the casing (20).
  • a first connector (56a) is provided at the other end of the casing (20).
  • one end of the external wiring (86) is connected to the power supply unit (18) inside the electrical component box (16).
  • the external wiring (86) is disposed to the outside of the electrical component box (16).
  • the other end of the external wiring (86) is disposed outside the electrical component box (16).
  • a second connector (86a) is provided at the other end of the external wiring (86).
  • the first connector (56a) and the second connector (86a) are connected outside the casing (20).
  • the internal wiring (56) of the camera (70) and the external wiring (86) are connected to each other, and power can be supplied to the camera (70).
  • the internal wiring (56) and the external wiring (86) may be transmission lines for exchanging image data and various signals, or may be cables capable of both power supply and transmission.
  • a wireless communication unit (77) (for example, a wireless LAN adapter) is disposed inside the electrical component box (16). ) And the external wiring (86).
  • image data and various signals can be exchanged between the camera (70) and the wireless communication unit (77) by wire connection.
  • the wireless communication unit (77) exchanges image data and various signals with the communication terminal (80) by wireless connection.
  • the internal wiring (56) of the camera (70) is disposed to the outside of the casing (20), and the other end of the internal wiring (56) is provided with the first connector (56a). ing. Therefore, connection and removal of the internal wiring (56) can be easily performed without accessing the inside of the casing (20).
  • the first connector (56a) of the internal wiring (56) and the second connector (86a) of the external wiring (86) may be connected inside the electrical component box (16).
  • the air conditioner (10) of the modified example 7 includes a mirror (57) that forms a mirror image of an imaging target toward the camera (70).
  • the drain pan (60) is an imaging target.
  • another part (C) is interposed between the lens (71) of the camera (70) and the drain pan (60). For this reason, this part (C) becomes an obstacle of the camera (70), and the camera (70) can not directly image the drain pan (60).
  • the mirror (57) is disposed forward in the imaging direction of the camera (70), and the mirror (57) forms a mirror image of the drain pan (60).
  • the camera (70), the object to be imaged, and the mirror (57) are formed in the mirror (57) and the relative position of each other is such that the mirror image of the drain pan (60) is formed toward the camera (70). It is set.
  • the direction in which light directed from the camera (70) to the mirror (57) is reflected by the mirror (57) is directed to the drain pan (60). Therefore, even if a predetermined part (C) intervenes between the camera (70) and the drain pan (60), the camera (70) indirectly connects the drain pan (60) through the mirror (57). It can be imaged.
  • the mirror (57) may be a general mirror in which a metal such as aluminum or silver is vapor-deposited on the surface of glass, or a so-called metal mirror in which a metal is polished to form a mirror surface.
  • the relative position between the camera (70) and the reflecting portion (R) is set so as to reduce the influence of the reflected light of the light source (72) of the camera (70).
  • the drain pan (60) is an imaging target.
  • the reflecting portion (R) is located on the back side of the drain pan (60).
  • the reflective portion (R) is made of, for example, a metal material that easily reflects light, such as a stainless steel plate. In this example, an angle ( ⁇ a in FIG.
  • ⁇ a when ⁇ a is larger than 10 °, the reflected light can be prevented from entering the imaging range of the camera (70), and the above-mentioned problems can be avoided. It is preferable that ⁇ a be larger than 0 ° and smaller than 80 °.
  • the camera (70) of the above embodiment may have the following configuration.
  • a vibration isolation member is preferably interposed between the camera (70) and the component (for example, the inspection lid (51)) to which the camera (70) is attached. Thereby, it can suppress that the vibration by the side of a casing (20) propagates to a camera (70). As a result, it is possible to prevent the image data acquired by the camera (70) from being unclear due to the influence of the vibration.
  • the camera (70) has a waterproof structure for suppressing water immersion to the inside.
  • the periphery of the camera (70) is covered with a waterproofing member.
  • water for example, condensed water, humidified water, etc.
  • the lens (71) of the camera (70) is preferably a wide-angle lens or a fisheye lens.
  • the wide-angle lens referred to here also includes a so-called super-wide-angle lens having a wider angle of view than a general wide-angle lens.
  • the fisheye lens has a field angle of 180 ° or more, preferably 220 ° or more.
  • a wide-angle lens or a fisheye lens has a wider angle of view than a normal lens, so that even if the distance between the lens (71) and the imaging target is relatively short, the imaging target can be imaged over a wide range.
  • the camera (70) preferably has an automatic processing unit for performing various types of automatic processing.
  • the automatic processing unit is configured to be able to execute at least one of an autofocus function, an automatic exposure adjustment function, and a white balance adjustment function.
  • the camera (70) has a light source (72) (flash) for illuminating the object to be imaged.
  • the light source (72) is provided behind the lens (71) of the camera (70) in the imaging direction.
  • the light source (72) in the imaging range of the camera (70) may enter directly, and image data may become unclear due to the influence of light.
  • image data may become unclear due to the influence of light.
  • the light source (72) behind the lens (71) it is possible to prevent the light source (72) from directly entering the imaging range of the camera (70). As a result, it is possible to prevent the image data from being unclear due to the influence of the light source (72).
  • a translucent material such as frosted glass (clouded glass) can also be used.
  • the air conditioning apparatus (10) is a ceiling-hanging or ceiling-embedding air conditioning apparatus.
  • the air conditioner (10) has an outdoor unit (not shown) and an indoor unit (11), and a refrigerant circuit is configured by connecting these by refrigerant piping.
  • the indoor unit (11) includes a casing (20) installed on the ceiling.
  • the casing (20) is a rectangular box-like casing main body (20a) having an opening on the lower side, and a panel (130) (detachably provided on the casing main body (20a) so as to close the opening. And a casing member).
  • the panel (130) includes a rectangular frame-shaped panel body (131) and a suction grill (132) provided at the center of the panel body (131).
  • One suction port (31) is formed at the center of the panel body (131).
  • the suction grille (132) is attached to the suction port (31).
  • One outlet (32) is formed at each of the four side edges of the panel body (131). Each outlet (32) extends along four side edges.
  • Wind direction adjusting blades (133) are respectively provided in the insides of the respective air outlets (32).
  • a bell mouth (134), an indoor fan (40), an indoor heat exchanger (43), and a drain pan (60) are provided inside the casing body (20a).
  • the bellmouth (134) and the indoor fan (40) are located above the suction grille (132).
  • the indoor heat exchanger (43) is disposed to surround the indoor fan (40).
  • the indoor heat exchanger (43) is composed of a fin-and-tube type heat exchanger.
  • the drain pan (60) is disposed below the indoor heat exchanger (43).
  • the camera (70) is attached to the indoor heat exchanger (43) via the attachment (52).
  • the attachment portion (52) is attached to the heat transfer tube or tube sheet of the indoor heat exchanger (43) which is a component. Since the mounting portion (52) is configured to be removable from the indoor heat exchanger (43), mounting work of the camera (70) is simplified.
  • the lens (71) of the camera (70) preferably faces the downwind side (downstream of the air flow). By doing so, dust and the like in the air are less likely to adhere to the surface of the lens (71), so that the contamination of the lens (71) can be suppressed.
  • the flow velocity of air around the lens 71 is more preferably 30% or less.
  • the lens (71) of the camera (70) may be arranged to face the windward side (upstream side of the air flow). In this case, it is preferable to use a fisheye lens (spherical lens) as the lens (71) of the camera (70).
  • a fisheye lens spherical lens
  • the water level of the drain pan (60) can also be detected using halation as described above. That is, when the water level of the drain pan (60) reaches a predetermined value (for example, the upper limit water level), the relative positions of the camera (70) and the drain pan (60) are set such that halation occurs. Thereby, it can be determined that the water level of the drain pan (60) has reached a predetermined height based on the image data in which halation has occurred.
  • a predetermined value for example, the upper limit water level
  • a float or the like may be provided inside the drain pan (60), or a scale or a mark may be attached to the inner wall of the drain pan (60). This makes it easy to determine the water level of the drain pan (60) in the image data.
  • the inner wall of the drain pan (60) may be coated with a light emitting paint that emits light by ultraviolet light, and the light emitting paint may be irradiated with a UV (ultraviolet) lamp or the like.
  • a UV (ultraviolet) lamp or the like.
  • the camera (70) may be arranged to bring the lens (71) of the camera (70) to a predetermined water level in the drain pan (60). In this case, when the water level of the drain pan (60) reaches a predetermined height, the lens (71) is flooded, and image data of this state is acquired. Based on the image data, it can be determined that the water level of the drain pan (60) has reached a predetermined height.
  • the component in which the imaging device (70) is provided is not limited to the refrigerant pipe (header collecting pipe (47) or water pipe (49)) described above.
  • the component may be a plate-like member such as a pipe solid plate for supporting the pipe, a tube plate of the heat exchanger, or a pressure plate of the heat exchanger.
  • the component may be a motor base supporting the motor of the fan (40), a water tank (for example, the above-described water supply tank), a connection port (a blower outlet, a suction port) of a duct, or the like. These components are parts that are not usually removed during maintenance or the like.
  • the attaching part (52) can be attached to a part which is removed from the casing main body (20a), and the camera (70) can be supported.
  • the humidification element (45), the lid of the water supply tank, and the like can be mentioned.
  • the electrical component box installed in the casing (20), the panel (130) (panel main body (131), suction grill (132)) and the like can be mentioned.
  • the imaging target of the imaging device (70) may be other than the drain pan (60) and the humidifying element (45).
  • the imaging target includes a drain pump (66), an air filter, a heat exchanger (eg, an indoor heat exchanger (43)), a fan (40), a drain (including a drain in the drain pan (60)), a drain pan ( 60) It may be the surface (water level) of water within.
  • the water (humidified water) flowing out of the humidifying element (45) is recovered.
  • the humidifying element (45) does not operate normally, the surplus humidified water does not flow through the drain of the drain pan (60). Therefore, it can be determined whether the humidifying element (45) is operating normally by determining the presence or absence of water near the drain port of the drain pan (60) from the image data.
  • the mounting portion (52) described above does not necessarily have to be a method for sandwiching the component (C).
  • the attachment portion (52) may be a fastening member that is removably wound around the component (C), such as a binding band or a surface fastener.
  • the imaging device (70) is not limited to a camera, and may be, for example, an optical sensor or the like.
  • the imaging control unit (74) of the imaging device (70) may not necessarily be provided on the camera (70) side, and may be provided on the communication unit (90) side shown in FIG. 11, for example.
  • the camera (70) may start an imaging operation by being turned on (energized). In this case, the camera (70) may be controlled to be energized at the timing of starting the imaging operation.
  • the imaging device (70) is applied to the casing (20) of the indoor unit (11) installed in the ceiling, it is applied to the casing of a floor-mounted, wall-mounted, ceiling-hung, etc. indoor unit May be In addition, the imaging device (70) may be applied to the casing of the outdoor unit.
  • the imaging device (70) may be applied to an air processing device other than the air conditioner (10).
  • air treatment devices include a humidity control device that regulates the humidity of air, a ventilation device that ventilates a room, and an air purification device that purifies air.
  • the present invention is useful for air treatment devices.
  • Air conditioner air processing device 20 casing 20a casing main body (main body) 40 fans (target for imaging) 43 Indoor heat exchanger (target for imaging) 45 Humidification element (target for imaging) 51a inner wall 52 mounting portion 53 clamping member 55 fastening member (pressing member) 56 Wiring (internal wiring) 56a 1st connector (connector) 60 drain pan (target for imaging) 66 Drain pump (target for imaging) 70 Camera (imaging device) 71 lens 72 light source 77 wireless communication unit 80 reception unit 86 external wiring 91 transmission line

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Human Computer Interaction (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Automation & Control Theory (AREA)
  • Multimedia (AREA)
  • Air Conditioning Control Device (AREA)
  • Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)
  • Devices For Blowing Cold Air, Devices For Blowing Warm Air, And Means For Preventing Water Condensation In Air Conditioning Units (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Accommodation For Nursing Or Treatment Tables (AREA)
  • Endoscopes (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

ケーシング(20)の本体(20a)には、所定の構成部品(47,49)が設けられる。撮像装置(70)は、撮像対象(40,43,45,60,66)を撮像可能な位置となるように構成部品(47,49)に着脱可能に取り付けられる取付部(52)を有する。

Description

空気処理装置
  本発明は、空気処理装置に関する。
  従来より、空気調和装置等の空気処理装置が広く知られている。特許文献1には、空気調和装置のケーシングの内部において、所定の撮像対象の画像データを取得する技術が開示されている。
  特許文献1の空気調和装置では、室内ユニットのケーシングの内部にカメラ(撮像装置)が設置される。カメラは、撮像対象(例えばフィルタ)を撮像できる位置に設けられる。カメラで撮像された撮像対象の画像データは、LANを介して集中監視装置に出力される。サービス業者等は、集中監視装置に伝送された画像データを確認することで、撮像対象の状態(例えばフィルタの目詰まり、破れ、設置状況等)を把握することができる。
特開2007-46864号公報
  上述した空気処理装置において、カメラによって撮像対象の画像データを撮像するためには、カメラをケーシングの内部の所定箇所に据え付ける必要がある。特許文献1では、このようなカメラの取り付けについて何ら考慮されていなかった。
  本開示の目的は、ケーシングの内部に撮像装置を簡便に据え付けることができる空気処理装置を提案することである。
  第1の態様は、ケーシング(20)と、前記ケーシング(20)の内部に位置する所定の撮像対象(40,43,45,60,66)の画像データを取得する撮像装置(70)とを備え、前記ケーシング(20)の本体(20a)には、所定の構成部品(47,49)が設けられ、前記撮像装置(70)には、該撮像対象(40,43,45,60,66)を撮像可能な位置となるように前記構成部品(47,49)に着脱可能に取り付けられる取付部(52)が設けられることを特徴とする空気処理装置である。
   第1の態様の撮像装置(70)は、取付部(52)を介して所定の構成部品(47,49)に取り付けられる。取付部(52)は、構成部品(47,49)に着脱可能に構成されるため、撮像装置(70)の取り付け作業を簡便に行うことができる。
  第2の態様は、第1の態様において、
  前記取付部(52)は、
  前記構成部品(47,49)を挟むように対向する一対の挟持部材(53)と、
  前記一対の挟持部材(53)の間隔を狭めるように該挟持部材(53)を押し付ける押付部材(55)とを備えていることを特徴とする空気処理装置である。
  第2の態様では、構成部品(47,49)を一対の挟持部材(53)に挟み込んだ状態で、これらの挟持部材(53)を押付部材(55)により押し付ける。この結果、撮像装置(70)を構成部品に簡便に取り付けることができる。
  第3の態様は、第1又は2の態様において、
  前記撮像装置(70)で取得した画像データを無線により前記ケーシング(20)の外部へ伝送する無線通信部(77)を備えていることを特徴とする空気処理装置である。
  第3の態様では、撮像装置(70)で取得した画像データが、無線通信部(77)によって、ケーシング(20)の外部へ伝送される。このため、画像データの伝送用の配線をケーシング(20)の内部から外部へ引き回す必要がなくなる。
  第4の態様は、第1乃至3の態様のいずれか1つにおいて、
  前記撮像装置(70)で取得した画像データを有線によりケーシング(20)の外部へ伝送する伝送線(91)と、
  前記ケーシング(20)の外部に配置されるとともに、前記伝送線(91)の出力データを無線により所定の受信部(80)へ伝送する無線通信部(77)とを備えていることを特徴とする空気処理装置である。
  第4の態様では、撮像装置(70)で取得した画像データが、伝送線(91)を介してケーシング(20)の外部へ送られる。そして、ケーシング(20)の外部の無線通信部(77)により、画像データが受信部(80)へ伝送される。ケーシング(20)の内部に無線通信部(77)を設けた場合、ケーシング(20)の内部から外部への画像データの伝送が、ケーシング(20)により阻害される可能性がある。これに対し、本発明では、画像データをケーシング(20)の外部へ有線により伝送した後、この画像データを無線により受信部(80)へ送るようにしている。このため、画像データを確実に受信部(80)へ送ることができる。
  第5の態様は、第1乃至4の態様のいずれか1つにおいて、
  一端が前記撮像装置(70)に接続するとともに、前記ケーシング(20)の外部まで配設される配線(56)を備え、
  前記配線(56)の前記他端には、外部配線(86)が連結されるコネクタ(56a)が設けられることを特徴とする空気処理装置である。
  第5の態様では、撮像装置(70)に接続する配線(56)が、ケーシング(20)の外部に配設され、コネクタ(56a)を介して外部配線(86)と連結される。このため、撮像装置(70)の配線作業を簡便に行うことできる。
  第6の態様は、第1乃至5の態様のいずれか1つにおいて、
 前記撮像装置(70)は、広角式又は魚眼式のレンズ(71)を備えていることを特徴とする空気処理装置である。
  第6の態様の撮像装置(70)は、広角式又は魚眼式のレンズ(71)により、撮像対象(40,43,45,60,66)を撮像する。これにより、撮像装置(70)の画角ないし撮像範囲が広くなる。
  第7の態様は、第1乃至6の態様のいずれか1つにおいて、
  前記撮像装置(70)は、レンズ(71)と、該レンズ(71)よりも撮像方向における後方に位置する光源(72)とを備えていることを特徴とする空気処理装置である。
  第7の態様では、光源(72)がレンズ(71)の後方に位置するため、撮像装置(70)の撮像範囲に光源(72)が入り込むことを回避できる。
  第8の態様は、第1乃至7の態様のいずれか1つにおいて、
  前記撮像対象(40,43,45,60,66)は、ドレンパン(60)、排水口、ドレンポンプ(66)、フロートスイッチ、及び加湿エレメント(45)の少なくとも1つを含んでいることを特徴とする空気処理装置である。
  第8の態様では、撮像装置(70)が、ドレンパン(60)、排水口、ドレンポンプ(66)、フロートスイッチ、及び加湿エレメント(45)の少なくとも1つの画像データを取得する。このため、この画像データに基づき、ドレンパン(60)の内部の汚れ、ドレンパン(60)の内部での菌やカビの繁殖、排水口の汚れや詰まり、ドレンポンプ(66)の故障、加湿エレメント(45)の汚れ・菌やカビの繁殖・破損などを確認することができる。
  第9の態様は、第1乃至8の態様のいずれか1つにおいて、
  前記構成部品は、配管(47,49)であることを特徴とする空気処理装置である。
  第9の態様では、構成部品としての配管(47,49)に取付部(52)が着脱可能に構成される。つまり、配管(47,49)が撮像装置(70)を支持する部品として機能する。
  第10の態様は、第1乃至9の態様のいずれか1つにおいて、
  ケーシング(20)から吹き出される吹出空気の平均流速をVaとすると、
  前記撮像装置(70)は、前記吹出空気の平均流速Vaの30%以下の空気が流れる位置に配置されることを特徴とする空気処理装置である。
  第10の態様では、撮像装置(70)が配置される箇所の空気の流速が比較的小さいため、空気中の塵埃等が撮像装置(70)のレンズなどに付着して汚れるのを抑制できる。
  第11の態様は、第1乃至10のいずれか1つの態様において、前記撮像装置(70)のレンズ(71)は、空気流れの下流側を向いていることを特徴とする。
  第11の態様では、撮像装置(70)のレンズ(71)が空気流れの下流側を向いているため、該レンズ(71)に空気中の塵埃等が付着して汚れるのを抑制できる。
  本態様によれば、ケーシング(20)の本体(20a)に設けられる構成部品(47,49)に取付部(52)を介して撮像装置(70)を取り付け可能となるため、撮像装置(70)の据え付け作業を簡便に行うことができる。構成部品(47,49)は、撮像装置(70)を支持する部材として機能するため、部品点数を削減できる。
図1は、実施形態1に係る空気調和装置の内部構造を示す平面図である。 図2は、実施形態1に係る空気調和装置の正面図である。 図3は、実施形態1に係る空気調和装置の内部構造を示す縦断面図である。 図4は、実施形態1に係る空気調和装置の正面パネル側の概略構成を示す斜視図である。 図5は、実施形態1に係る撮像ユニットの構造を示す斜視図である。 図6は、実施形態1に係る撮像システムの概略構成を示すブロック図である。 図7は、実施形態2に係る空気調和装置の内部構造を示す平面図である。 図8は、実施形態2に係る空気調和装置の内部構造を示す断面図である。 図9は、変形例に係る撮像ユニットの構造を示す斜視図である。 図10は、実施形態2に係る撮像ユニットの構造を示す斜視図である。 図11は、変形例1に係る撮像システムの概略構成を示すブロック図である。 図12は、変形例2に係る撮像システムの概略構成を示すブロック図である。 図13は、変形例3に係る撮像システムの概略構成を示すブロック図である。 図14は、変形例3に係る各機器の動作のタイミングを示すタイムチャートである。 図15は、変形例3の他の制御例1に係る各機器の動作のタイミングを示すタイムチャートである。 図16は、変形例3の他の制御例2に係る各機器の動作のタイミングを示すタイムチャートである。 図17は、変形例3の他の制御例3に係る各機器の動作のタイミングを示すタイムチャートである。 図18は、変形例3の他の制御例4に係る各機器の動作のタイミングを示すタイムチャートである。 図19は、変形例4に係る撮像システムの概略構成を示すブロック図である。 図20は、変形例5に係る撮像装置の周囲を拡大した概略の平面図である。 図21は、変形例7に係る撮像装置の周囲を拡大した概略の平面図である。 図22は、変形例8に係る撮像装置の周囲を拡大した概略の平面図である。 図23は、カメラと光源の位置関係を示した斜視図である。 図24は、実施形態3に係る空気調和装置の縦断面図である。
  以下、本開示の実施形態について図面を参照しながら説明する。なお、以下の実施形態は、本質的に好ましい例示であって、本発明、その適用物、あるいはその用途の範囲を制限することを意図するものではない。
 《実施形態1》
  実施形態1に係る空気処理装置は、空気調和装置(10)である。空気調和装置(10)は、空気の少なくとも温度を調節する。具体的に、空気調和装置(10)は、室内空気(RA)の温度を調節し、温度を調節した空気を供給空気(SA)として室内へ供給する。空気調和装置(10)は、天井裏の空間に設置される室内ユニット(11)を備えている。室内ユニット(11)は、冷媒配管を介して室外ユニット(図示省略)に接続される。これにより、空気調和装置(10)では、冷媒回路が構成される。冷媒回路では、充填された冷媒が循環することで蒸気圧縮式の冷凍サイクルが行われる。なお、室外ユニットには、冷媒回路に接続される圧縮機及び室外熱交換器と、室外熱交換器に対応する室外ファンが設けられる。
 〈室内ユニット〉
  図1~図3に示すように、室内ユニット(11)は、天井裏に設置されるケーシング(20)と、ケーシング(20)に収容されるファン(40)及び室内熱交換器(43)を備えている。ケーシング(20)の内部には、該ケーシング(20)内の空気中から発生した凝縮水を回収するドレンパン(60)と、ドレンパン(60)に溜まった水を排出するためのドレンポンプ(66)とが設けられる。
 〈ケーシング〉
  ケーシング(20)は、直方体の中空箱形に形成されている。ケーシング(20)は、天板(21)、底板(22)、及び4つの側板(23,24,25,26)を有している。4つの側板は、前面パネル(23)、後面パネル(24)、第1側面パネル(25)、及び第2側面パネル(26)で構成される。前面パネル(23)及び後面パネル(24)は、互いに対向している。第1側面パネル(25)及び第2側面パネル(26)は互いに対向している。
  前面パネル(23)は、メンテナンス用空間(15)に面している。前面パネル(23)側には、電装品箱(16)、点検口(50)、及び点検蓋(51)が設けられる。第1側面パネル(25)には、吸込口(31)が形成される。吸込口(31)には、吸込ダクト(図示省略)が接続される。吸込ダクトの流入端は、室内空間に繋がっている。第2側面パネル(26)には、吹出口(32)が形成される。吹出口(32)には、吹出ダクト(図示省略)が接続される。吹出ダクトの流出端は、室内空間に繋がっている。ケーシング(20)の内部には、吸込口(31)から吹出口(32)までの間に空気流路(33)が形成される。
 〈ファン〉
  ファン(40)は、空気流路(33)における第1側面パネル(25)寄りに配置される。ファン(40)は、空気流路(33)の空気を搬送する。本実施形態では、3台のシロッコ型ファン(41)が、1つのモータ(42)に駆動される(図1を参照)。
 〈室内熱交換器〉
  室内熱交換器(43)は、空気流路(33)における第2側面パネル(26)寄りに配置される。室内熱交換器(43)は、例えばフィンアンドチューブ式の熱交換器で構成される。本実施形態の室内熱交換器(43)は、斜め置きの配置となる。蒸発器となる室内熱交換器(43)は、空気を冷却する冷却部を構成する。
  図3に示すように、室内熱交換器(43)の前側には、配管(厳密には冷媒配管)であるヘッダ集合管(47)が設けられる。ヘッダ集合管(47)は、室内熱交換器(43)の側縁に沿うように斜めに延びている。ヘッダ集合管(47)は、分岐管(図示省略)を介して室内熱交換器(43)の伝熱管に接続される。
 〈ドレンパン〉
  図3に模式的に示すように、ドレンパン(60)は、底板(22)に沿うように、室内熱交換器(43)の下側に配置される。ドレンパン(60)は、第1側壁(61)、第2側壁(62)、及び底部(63)を含んでいる。第1側壁(61)は、室内熱交換器(43)の上流側に位置する。第2側壁(62)は、室内熱交換器(43)の下流側に位置する。底部(63)は、第1側壁(61)と第2側壁(62)とに亘って形成される。底部(63)には、中央寄りに略台形状の断面を有する凹部(64)が形成される。ドレンパン(60)では、この凹部(64)の底面の高さが、最も低くなる。つまり、凹部(64)には、最も深い最深部が構成されている。
 〈ドレンポンプ〉
  ドレンポンプ(66)は、ドレンパン(60)の内部に配置される。具体的に、ドレンポンプ(66)の吸込部(66a)は、ドレンパン(60)の凹部(64)の内部に配置される。ドレンポンプ(66)の吐出部には、ドレン配管(67)の流入端が接続される。ドレン配管(67)は、ケーシング(20)の前面パネル(23)を水平方向に貫通している。ドレンポンプ(66)が運転されると、ドレンパン(60)に溜まった凝縮水が汲み上げられる。汲み上げられた水は、ドレン配管(67)を介してケーシング(20)の外部へ排出される。
 〈電装品箱〉
  図1に示すように、電装品箱(16)は、前面パネル(23)のファン(40)寄りに配置される。電装品箱(16)の内部には、電源回路や制御回路等が搭載されたプリント基板(17)、各回路に接続される配線、強電側電源部、弱電側電源部などが収容される。電装品箱(16)は、前側が開口する箱本体(16a)と、箱本体(16a)の開口面を開閉する電装品蓋(16b)とを含んでいる。電装品蓋(16b)は、前面パネル(23)の一部を構成している。電装品蓋(16b)を取り外すことで、電装品箱(16)の内部がメンテナンス用空間(15)に露出される。
 〈点検口及び点検蓋〉
  図1に示すように、点検口(50)は、前面パネル(23)の室内熱交換器(43)寄りに配置される。図2及び図4に示すように、点検口(50)は、長方形部分(50a)と、該長方形部分の下側の一方の角部と連続する三角形部分(50b)とで構成される。三角形部分(50b)は、長方形部分(50a)から第2側面パネル(26)側に突出している。点検口(50)は、ドレンパン(60)に対応する位置に形成される。点検口(50)から点検蓋(51)を取り外すことで、メンテナンス用空間(15)側からドレンパン(60)の内部を点検することができる。
  点検蓋(51)は、点検口(50)と略相似形で、且つ点検口(50)よりもやや大きな形状をしている。点検蓋(51)の外縁部には、点検蓋(51)をケーシング本体(20a)に取り付けるための複数(本例では3つ)の締結穴が形成される。点検蓋(51)は、これらの締結穴に挿通される複数の締結部材(例えばボルト)によって、ケーシング本体(20a)に固定される。このような構成により、点検蓋(51)は、点検口(50)を開閉するようにケーシング本体(20a)に着脱可能に取り付けられる。
 〈取付部及びカメラ〉
  図5に示すように、撮像システム(S)は、撮像装置であるカメラ(70)、調整機構(100)、及び取付部(52)を含む撮像ユニットを備えている。本実施形態のカメラ(70)は、構成部品であるヘッダ集合管(47)に取付部(52)を介して取り付けられる(詳細は後述する)。
  カメラ(70)は、撮像対象となるドレンパン(60)の画像データを撮像する撮像装置を構成している。カメラ(70)は、レンズ(71)と光源(フラッシュ)とを有している。レンズ(71)は、例えば超広角レンズで構成される。
  調整機構(100)は、ボールジョイント(101)を備えている。ボールジョイント(101)は、取付部(52)側に固定される第1継手(110)と、カメラ(70)側に固定される第2継手(120)とを有する。
  第1継手(110)は、ロッド(111)と、該ロッド(111)の先端に設けられるソケット(112)とを有する。ソケット(112)は、中空状の球体の一部が切除された形状であり、その内部に略球状の嵌合凹部(113)が形成される。嵌合凹部(113)の開口端の周縁部には、複数の切り欠き溝(114)(本例では4つ)が形成される。複数の切り欠き溝(114)は、等間隔置きに周方向に配列される。切り欠き溝(114)の数量はこれに限られず、この切り欠き溝(114)を省略することもできる。
  第2継手(120)は、カメラ(70)に連結される回動軸(121)と、回動軸(121)の先端に設けられるボール(122)とを有する。ボール(122)は、ソケット(112)の嵌合凹部(113)に内嵌する。ボール(122)は、嵌合凹部(113)と球面接触するように該ソケット(112)に保持される。つまり、ボール(122)は、嵌合凹部(113)の内部で回転自在に構成される。回動軸(121)は、ボール(122)とともに傾動可能で、且つ回動軸(121)の軸心を中心として回転可能に構成される。更に、回動軸(121)は、ソケット(112)の各切り欠き溝(114)に係合可能である。回動軸(121)を切り欠き溝(114)に係合させることで、回動軸(121)の位置決めを行うことができる。
  以上のような構成により、カメラ(70)は、ロッド(111)の軸心を中心として360°向きを変えることができ、且つロッド(111)の軸心に対する傾斜角度を変更可能に構成される。これにより、撮像対象の位置に応じて、カメラ(70)の撮像方向を任意に調整できる。
  本例の取付部(52)は、クリップ式で構成される。取付部(52)は、一対の挟持部材(53)と、該一対の挟持部材(53)を内方へ付勢する弾性部材(例えばスプリング、図示省略)とを有する。各挟持部材(53)は、略矩形状の突板部(53a)と、該突板部(53a)の先端に支持される把持部(53b)とを有する。一対の突板部(53a)の基端側には、該突板部(53a)を互いに回動可能に支持する支持軸(図示省略)が設けられる。把持部(53b)は、外側に向かって膨出する略円弧状に形成される。一対の把持部(53b)は、互いに対向するように配置される。スプリングは、一対の挟持部材(53)の間に配置される。スプリングは、一対の挟持部材(53)の間隔を狭めるように該挟持部材(53)を押し付ける押付部材を構成する。
 〈撮像システム〉
  本実施形態に係る撮像システム(S)について、図6を参照しながら説明する。本実施形態に係る撮像システム(S)は、上述したカメラ(70)と、電源部(18)と、通信端末(80)とを含んでいる。
  上述したカメラ(70)は、室内ユニット(11)のケーシング(20)内に設けられる。カメラ(70)は、撮像制御部(74)と、記憶部(75)と、ID付与部(76)と、無線通信部(77)とを有している。
  撮像制御部(74)は、外部から入力された撮像指令に応じて、カメラ(70)の撮像の動作を制御する。具体的に、本実施形態では、通信端末(80)から無線通信部(77)に撮像指令を示す信号が入力されると、カメラ(70)によって撮像対象を撮像する動作を実行させる。これにより、カメラ(70)では、撮像対象(本実施形態では、ドレンパン(60))の画像データが取得される。撮像制御部(74)は、マイクロコンピュータと、該マイクロコンピュータを動作させるためのソフトウエアを格納するメモリディバイス(具体的には半導体メモリ)とを用いて構成されている。
  記憶部(75)は、取得された画像データを記憶していく。記憶部(75)は、種々のメモリディバイス(半導体メモリ)によって構成される。
  ID付与部(76)は、画像データに対応するID情報を、対応する画像データに関連付ける。このID情報としては、撮像した日付/時間、撮像したドレンパン(60)に対応する空気調和装置の機種/場所などが挙げられる。従って、記憶部(75)には、これらのID情報を含む画像データが記憶されていく。
  無線通信部(77)は、無線によって通信端末(80)と接続される。無線式の伝送手段を構成している。無線通信部(77)は、例えば無線式のルータで構成される。無線通信部(77)は、空気調和装置(10)の周辺の通信端末(80)と無線LANを経由して接続される。これにより、カメラ(70)と通信端末(80)との間でデータの授受が可能となる。具体的には、無線通信部(77)は、カメラ(70)で取得した画像データを無線により通信端末(80)へ伝送する。また、無線通信部(77)には、通信端末(80)(サービス業者等)からの撮像指令が適宜受信される。なお、無線通信部(77)は、例えば携帯高速通信技術(例えばLTE)の通信回線を利用するものであってもよい。
  電源部(18)は、例えば空気調和装置(10)の電装品箱(16)の内部に設けられる。カメラ(70)の電源線(85)は、例えば点検口(50)を介してケーシング(20)の外部へ導かれ、該外部から電装品箱(16)の内部へ引き込まれる。このような配線により、ケーシング(20)内のカメラ(70)と電装品箱(16)内の電源部(18)とが電源線(85)を介して接続される。これにより、電源部(18)からカメラ(70)に電力が供給される。この電源部(18)は、空気調和装置(10)の他の機器の電源を兼用している。
  通信端末(80)は、無線LAN等と接続可能なスマートフォン、タブレット端末、携帯電話、パーソナルコンピュータ等で構成される。通信端末(80)は、マイクロコンピュータと、該マイクロコンピュータを動作させるためのソフトウエア、記憶部としてのメモリディバイス、画像データを受信するための受信部、所定の指令を出力するための送信部を含んでいる。
  また、通信端末(80)は、操作部(81)と表示部(82)とを有する。サービス業者等は、キーボードやタッチパネル等の操作部(81)により、所定のアプリケーションソフトを操作する。表示部(82)に表示されたアプリケーションソフト上では、例えばカメラ(70)の撮像を実行するための指令を送信したり、カメラ(70)で取得した画像データをダウンロードしたりできる。
 -運転動作-
  実施形態1に係る空気調和装置(10)の基本的な運転動作について図1及び図3を参照しながら説明する。空気調和装置(10)は、冷房運転と暖房運転とを実行可能に構成される。
  冷房運転では、室外ユニットの圧縮機で圧縮された冷媒が、室外熱交換器で放熱(凝縮)し、膨張弁で減圧される。減圧された冷媒は、室内ユニット(11)の室内熱交換器(43)で蒸発し、圧縮機で再び圧縮される。
  ファン(40)が運転されると、室内空間の室内空気(RA)が吸込口(31)から空気流路(33)に吸い込まれる。空気流路(33)の空気は、室内熱交換器(43)を通過する。室内熱交換器(43)では、冷媒が空気から吸熱することでこの空気が冷却される。冷却された空気は、吹出口(32)を通過した後、供給空気(SA)として室内空間へ供給される。
  ここで、室内熱交換器(43)で空気が露点温度以下にまで冷却されると、空気中の水分が凝縮する。このようにして発生した凝縮水は、ドレンパン(60)へ適宜回収される。ドレンパン(60)に回収された凝縮水は、ドレンポンプ(66)によってケーシング(20)の外部へ排出される。
  一方、暖房運転では、室外ユニットの圧縮機で圧縮された冷媒が、室内ユニット(11)の室内熱交換器(43)で放熱(凝縮)し、膨張弁で減圧される。減圧された冷媒は、室外ユニットの室外熱交換器で蒸発し、圧縮機で再び圧縮される。このため、室内熱交換器(43)では、冷媒が空気に放熱し、該空気が加熱される。
 〈カメラの取付作業〉
  本実施形態のカメラ(70)は、取付部(52)を介してヘッダ集合管(47)に取り付けられる。具体的に、ケーシング本体(20a)から点検口(50)を取り外すと、ケーシング(20)の外部にヘッダ集合管(47)が露出する状態となる。この状態で、ヘッダ集合管(47)に取付部(52)を取り付ける。ヘッダ集合管(47)を一対の挟持部材(53)で挟み込むと、付勢された把持部(53b)によりヘッダ集合管(47)が保持される。この結果、カメラ(70)は、取付部(52)を介してヘッダ集合管(47)に支持される。この状態では、カメラ(70)のレンズ(71)が斜め下を向く状態になる。次いで、調整機構(100)により、カメラ(70)の撮像方向を微調整する。この結果、カメラ(70)の撮像範囲内にドレンパン(60)を容易に位置付けることができる。
 〈ドレンパンの状態の確認作業〉
  本実施形態では、上述したドレンパン(60)の状態を、撮像システム(S)により適宜確認することができる。
  具体的には、上述した点検蓋(51)の取り付け状態では、カメラ(70)のレンズ(71)がドレンパン(60)の内部を指向している。この状態において、サービス業者等が通信端末(80)を操作し、アプリケーションソフト上で撮像のコマンドを入力する。これにより、通信端末(80)からカメラ(70)へ撮像指令が出力される。カメラ(70)の無線通信部(77)に、この撮像指令が入力されると、撮像制御部(74)により、カメラ(70)の撮像が実行される。この撮像の際には、光源(72)が動作することで、ドレンパン(60)の内部が照らされる。このような撮像により、サービス業者等が要求するタイミングで、ドレンパン(60)の内部の画像データを取得することができる。
  このようにしてカメラ(70)に記憶された画像データは、ID情報とともに通信端末(80)へ出力される。従って、サービス業者等は、この画像データを表示部(82)により確認でき、ドレンパン(60)の状態を適宜把握することができる。具体的に、サービス業者等は、この画像データを確認することで、ドレンパン(60)内の凝縮水の腐敗、カビ、汚れ等の度合いや、ドレンパン(60)内の水位の確認、ドレン配管(67)の詰まりの有無、ドレンポンプ(66)の故障の有無などを把握することができる。
 -実施形態1の効果-
  上記実施形態1によれば、カメラ(70)によりドレンパン(60)の内部の画像データを適宜取得できるため、サービス業者等は、天井裏の空間に入り込むことなく、ドレンパン(60)の内部の状態を把握できる。ここで、カメラ(70)で取得した画像データは、無線により、ケーシング(20)の外部の通信端末(80)へ伝送される。このため、伝送線等を設けずとも、カメラ(70)から比較的離れた通信端末(80)に対して、容易に画像データを送ることができる。
  図3に示すように、カメラ(70)は、構成部品であるヘッダ集合管(47)に取付部(52)を介して取り付けられる。取付部(52)は、一対の挟持部材(53)によりヘッダ集合管(47)に簡単に取り付け/取り外しができる。このため、ケーシング(20)の内部において、カメラ(70)の取り付け作業を容易に行うことができる。また、ヘッダ集合管(47)は、カメラ(70)の支持部材として機能するため、部品点数を削減できる。
  本実施形態では、構成部品であるヘッダ集合管(47)が点検口(50)の近傍に配置されるため、ケーシング(20)の外部からカメラ(70)の取り付け作業を行うことができる。
  カメラ(70)は、調整機構(100)により撮像方向の角度を任意に調整できる。このため、撮像対象であるドレンパン(60)をカメラ(70)の撮像範囲に容易に位置付けることができる。
 《実施形態2》
  実施形態2に係る空気調和装置(10)は、上記実施形態1と基本的な構成が異なる。実施形態2の空気調和装置(10)は、室外空気(OA)を取り込み、この空気の温度及び湿度を調節する。そして、空気調和装置(10)は、このように処理した空気を供給空気(SA)として室内へ供給する。つまり、空気調和装置(10)は、外気処理方式である。また、空気調和装置(10)は、例えば冬場等において、空気を加湿するための加湿エレメント(45)を備えている。
  空気調和装置(10)は、例えば天井裏の空間に設置される。また、空気調和装置(10)は、実施形態1と同様にして、室外ユニット(図示省略)と、室内ユニット(11)とを有し、これらが冷媒配管で接続されることで、冷媒回路が構成される。
 〈室内ユニット〉
  図7及び図8に示すように、室内ユニット(11)は、天井裏に設置されるケーシング(20)と、給気ファン(40a)と、排気ファン(40b)と、室内熱交換器(43)と、全熱交換器(44)と、加湿エレメント(45)とを備えている。また、ケーシング(20)の内部には、室内熱交換器(43)で発生した凝縮水を回収するドレンパン(60)と、ドレンパン(60)に溜まった水を排出するための排水口とが設けられる。
 〈ケーシング〉
  ケーシング(20)は、直方体の中空箱形に形成されている。実施形態2のケーシング(20)は、実施形態1と同様、天板(21)、底板(22)、前面パネル(23)、後面パネル(24)、第1側面パネル(25)、及び第2側面パネル(26)を備えている。
  前面パネル(23)は、メンテナンス用空間(15)に面している。前面パネル(23)側には、電装品箱(16)、点検口(50)、及び点検蓋(51)が設けられる(詳細は後述する)。第1側面パネル(25)には、内気口(34)及び給気口(35)が形成される。内気口(34)には、内気ダクト(図示省略)が接続される。内気ダクトの流入端は、室内空間に繋がっている。給気口(35)には、給気ダクト(図示省略)が接続される。給気ダクトの流出端は、室内空間に繋がっている。第2側面パネル(26)には、排気口(36)及び外気口(37)が形成される。排気口(36)には、排気ダクト(図示省略)が接続される。排気ダクトの流出端は、室外空間に繋がっている。外気口(37)には、外気ダクト(図示省略)が接続される。外気ダクトの流入端は、室外空間に繋がっている。
  ケーシング(20)の内部には、給気流路(33A)と、排気流路(33B)とが形成される。給気流路(33A)は、外気口(37)から給気口(35)に亘るまでの流路である。排気流路(33B)は、内気口(34)から排気口(36)に亘るまでの流路である。
 〈全熱交換器〉
  全熱交換器(44)は、横長の四角柱状に形成される。全熱交換器(44)は、例えば2種類のシートが水平方向に交互に積み重なって構成される。2種類のシートのうちの一方には、給気流路(33A)に連通する第1通路(44a)が形成される。2種類のシートのうちの他方のシートには、排気流路(33B)に連通する第2通路(44b)が形成される。各シートは、伝熱性及び吸湿性を有する材料で構成される。このため、全熱交換器(44)では、第1通路(44a)を流れる空気と、第2通路(44b)を流れる空気との間で潜熱及び顕熱の交換が行われる。
 〈給気ファン〉
  給気ファン(40a)は、給気流路(33A)に配置され、給気流路(33A)の空気を搬送する。より詳細には、給気ファン(40a)は、給気流路(33A)において、全熱交換器(44)の第1通路(44a)と室内熱交換器(43)との間に配置される。
 〈排気ファン〉
  排気ファン(40b)は、排気流路(33B)に配置され、排気流路(33B)の空気を搬送する。より詳細には、排気ファン(40b)は、排気流路(33B)において、全熱交換器(44)の第2通路(44b)の下流側に配置される。
 〈室内熱交換器〉
  室内熱交換器(43)は、給気流路(33A)における前面パネル(23)寄りに配置される。室内熱交換器(43)は、例えばフィンアンドチューブ式の熱交換器で構成される。
 〈加湿エレメント〉
  加湿エレメント(45)は、給気流路(33A)における前面パネル(23)寄りに配置される。加湿エレメント(45)は、給気流路(33A)における室内熱交換器(43)の下流側に配置される。加湿エレメント(45)は、上下に延びる複数の吸湿材料が水平方向に配列されて構成される。これらの吸湿材料には、給水タンク(48)からの水が供給される。加湿エレメント(45)では、吸湿材料の周囲を流れる空気中に、蒸発した空気が付与される。これにより、給気流路(33A)を流れる空気が加湿される。
  給水タンク(48)は、加湿エレメント(45)に沿うように前後に延びる角型の容器で構成される。給水タンク(48)には、該給水タンク(48)に加湿水を供給するための水配管(49)が接続される(図7を参照)。水配管(49)は、加湿エレメント(45)及び給水タンク(48)に沿うように前後方向に延びている。水配管(49)は、カメラ(70)の取付部(52)が取り付けられる配管(構成部品)である。
 〈ドレンパン〉
  図8に模式的に示すように、ドレンパン(60)は、室内熱交換器(43)の下側に設置され、室内熱交換器(43)で発生した凝縮水を回収する。また、実施形態2のドレンパン(60)は、加湿エレメント(45)の下側に配置される。このため、ドレンパン(60)は、加湿エレメント(45)から流出した水(加湿水)も回収可能となっている。
 〈電装品箱〉
  図7及び図9に示すように、電装品箱(16)は、前面パネル(23)の前面、且つ略中央部に設けられる。電装品箱(16)の内部には、実施形態1と同様の電装品が収容される。
 〈点検口及び点検蓋〉
  図7に示すように、点検口(50)は、前面パネル(23)のうち室内熱交換器(43)及び加湿エレメント(45)の近傍に配置される。点検口(50)は、ドレンパン(60)及び加湿エレメント(45)に対応する位置に形成される。点検口(50)から点検蓋(51)を取り外すことで、メンテナンス用空間(15)側から、ドレンパン(60)の内部や加湿エレメント(45)を点検することができる。点検蓋(51)は、複数の締結部材を介してケーシング本体(20a)に取り付けられる。
 〈カメラの取付位置〉
  図7に示すように、本実施形態のカメラ(70)は、上記実施形態1と同様の取付部(52)を介して、例えば構成部品である水配管(49)に接続される。つまり、取付部(52)の一対の挟持部材(53)により水配管(49)が挟み込まれる。この際、カメラ(70)がドレンパン(60)の内部を向くように、カメラ(70)の取り付け位置が調整される。更に、調整機構(100)により、カメラ(70)の撮像方向の微調整が行われる。この結果、カメラ(70)の撮像範囲内にドレンパン(60)を容易に位置付けることができる。
  撮像システム(S)の基本構成は、実施形態1(図6を参照)と同じである。
 -運転動作-
  実施形態2に係る空気調和装置(10)の運転動作について図7及び図8を参照しながら説明する。空気調和装置(10)は、冷房運転と暖房運転とを実行可能に構成される。
  上記実施形態1と同様、冷房運転では、室内熱交換器(43)が蒸発器となり、暖房運転では、室内熱交換器(43)が凝縮器(放熱器)となる。また、暖房運転では、空気を加湿するために加湿エレメント(45)が作動する。また、冷房運転及び暖房運転では、給気ファン(40a)及び排気ファン(40b)が作動すると、室外空気(OA)が外気口(37)から給気流路(33A)に取り込まれると同時に、室内空気(RA)が内気口(34)から排気流路(33B)に取り込まれる。これにより、室内空間の換気が行われる。
  冷房運転において、給気流路(33A)に取り込まれた室外空気(OA)は、全熱交換器(44)の第1通路(44a)を流れる。一方、排気流路(33B)に取り込まれた室内空気(RA)は、全熱交換器(44)の第2通路(44b)を流れる。例えば夏季においては、室外空気(OA)は、室内空気(RA)よりも温度及び湿度が高い。このため、全熱交換器(44)では、室外空気(OA)の潜熱及び顕熱が、室内空気(RA)へ付与される。この結果、第1通路(44a)では、空気の冷却及び除湿が行われる。第2通路(44b)において、潜熱及び顕熱が付与された空気は、排気口(36)を通過し、排出空気(EA)として室外空間へ排出される。
  第1通路(44a)で冷却及び除湿された空気は、室内熱交換器(43)で冷却された後、停止状態の加湿エレメント(45)を通過する。その後、この空気は、給気口(35)を通過し、供給空気(SA)として室内空間へ供給される。
  暖房運転において、給気流路(33A)に取り込まれた室外空気(OA)は、全熱交換器(44)の第1通路(44a)を流れる。一方、排気流路(33B)に取り込まれた室内空気(RA)は、全熱交換器(44)の第2通路(44b)を流れる。例えば冬季においては、室外空気(OA)は、室内空気(RA)よりも温度及び湿度が低い。このため、全熱交換器(44)では、室内空気(RA)の潜熱及び顕熱が、室外空気(OA)へ付与される。この結果、第1通路(44a)では、空気の加熱及び加湿が行われる。第2通路(44b)において、潜熱及び顕熱が奪われた空気は、排気口(36)を通過し、排出空気(EA)として室外空間へ排出される。
  第1通路(44a)で加熱及び加湿された空気は、室内熱交換器(43)で加熱された後、加湿エレメント(45)を通過する。加湿エレメント(45)では、吸湿材料で気化した水分が空気に付与され、この空気が更に加湿される。加湿エレメント(45)を通過した空気は、給気口(35)を通過し、供給空気(SA)として室内空間へ供給される。
 〈ドレンパン及び加湿エレメントの状態の確認作業〉
  実施形態2においても、実施形態1と同様にして、ドレンパン(60)の状態を確認できる。つまり、通信端末(80)からの撮像指令がカメラ(70)の無線通信部(77)に入力されると、カメラ(70)が撮像を実行する。これにより、例えば夏季において、ドレンパン(60)の内部の画像データを取得でき、ドレンパン(60)の状態を把握することができる。
  また、暖房運転に伴い加湿エレメント(45)が作動すると、吸湿材料の表面にスケールやカビ等が発生する可能性がある。実施形態2では、カメラ(70)により加湿エレメント(45)の画像データも取得できるため、このような加湿エレメント(45)の状態を簡便に把握することができる。
  それ以外の作用効果は、上記実施形態1と同様である。
 《取付部の変形例》
  図10に示す変形例は、上記実施形態と取付部(52)の構成が異なる。具体的に、取付部(52)は、断面コの字状の取付部材(54)と、該取付部材(54)に締結される締結部材(55)(例えばボルトナット)とを有する。取付部材(54)は、ロッド(111)が連結される基板(54a)と、該基板(54a)の幅方向の両端からロッド(111)と逆側に延出する一対の挟持板(54b)とを有する。基板(54a)及び挟持板(54b)は、弾性を有する金属材料あるいは樹脂材料で構成される。挟持板(54b)は、構成部品を挟むように対向する一対の挟持部材を構成する。締結部材(55)は、一対の支持板(73)の間隔を狭めるように該挟持板(54b)を押し付ける押付部材を構成している。図10の例の取付部(52)は、2本の締結部材(55)を有するが、1本、又は3本以上であってもよい。
  変形例の取付部(52)では、取付部材(54)の内部に所定の構成部品を位置付けた状態で、締結部材(55)を締結する。これにより、取付部材(54)の内部に構成部品が保持され、カメラ(70)が構成部品に支持される。
 《撮像システムの変形例》
  各実施形態(詳細は後述する実施形態3も含む)に係る空気調和装置(10)においては、以下に挙げる変形例に係る撮像システム(S)を採用してもよい。
 〈変形例1〉
  図11に示す変形例1の撮像システム(S)は、カメラ(70)と別体の通信ユニット(90)を備えている。通信ユニット(90)は、ケーシング(20)の外部に配置され、伝送線(91)を介してカメラ(70)と接続される。伝送線(91)は、例えば点検蓋(51)に形成した配線用の貫通穴に挿通される。伝送線(91)は、カメラ(70)側の第1送受信部(78)と、通信ユニット(90)側の第2送受信部(92)とに接続される。これにより、カメラ(70)と通信ユニット(90)との間で画像データや信号の授受が可能となっている。
  上記実施形態1や2では、記憶部(75)、ID付与部(76)、及び無線通信部(77)がカメラ(70)に設けられる。これに対し、変形例1では、記憶部(75)、ID付与部(76)、及び無線通信部(77)が通信ユニット(90)に設けられる。通信端末(80)は、無線により、通信ユニット(90)の無線通信部(77)と接続される。
  変形例1では、通信端末(80)からの撮像指令が、無線により通信ユニット(90)に送られる。この撮像指令は、伝送線(91)を経由してカメラ(70)側に入力される。この結果、カメラ(70)の撮像が実行される。
  カメラ(70)で取得した画像データは、伝送線(91)を介して通信ユニット(90)へ入力され、記憶部(75)に適宜記憶される。この際、ID付与部(76)は、画像データに対応するID情報を、該画像データに関連付ける。ID情報が付与された画像データは、無線により、通信端末(80)へ適宜送信される。
  変形例1では、通信端末(80)と無線によりデータの授受を行う通信ユニット(90)がケーシング(20)の外部に設けられる。このため、通信端末(80)と通信ユニット(90)との間の電波が干渉しにくくなり、データの伝送が安定する。
 〈変形例2〉
  図12に示す変形例2の撮像システム(S)では、通信ユニット(90)及び通信端末(80)がネットワーク(N)を介してクラウドサーバ(95)に接続される。例えば通信ユニット(90)側の画像データは、ネットワーク(N)を経由してクラウドサーバ(95)に送られ、該クラウドサーバ(95)に記憶されていく。通信端末(80)は、クラウドサーバ(95)から画像データを取得することができる。
 〈変形例3〉
  図13に示す変形例3の撮像システム(S)は、空気調和装置(10)の各機器の動作に連動してカメラ(70)を制御するように構成される。この点について詳細に説明する。
  変形例3では、電装品箱(16)に空調制御部(19)が設けられる。空調制御部(19)は、上述した冷房運転や暖房運転において、ファン(40)、ドレンポンプ(66)、冷媒回路の各構成機器等を適宜制御するように構成される。
  一方、変形例3のカメラ(70)には、入力部(79)が設けられる。入力部(79)には、空調制御部(19)からの運転指令に相当する信号(X)が入力される。撮像制御部(74)は、入力部(79)に信号(X)が入力されることに同期してカメラ(70)の撮像を実行させる。
  まず、変形例3の撮像システム(S)のカメラ(70)の撮像のタイミングについて、図14のタイミングチャートを参照しながら説明する。ここでは、実施形態1に係る空気調和装置(10)を対象とする。本例のカメラ(70)の撮像は、ファン(40)の運転の開始前で且つ室内熱交換器(43)の冷却動作の開始前に実行される。
  ここで、室内熱交換器(43)の冷却動作とは、蒸発器となる室内熱交換器(43)を流れる冷媒によって空気を冷却する動作である。従って、室内熱交換器(43)の停止状態とは、室内熱交換器(43)を実質的に冷媒が流れず、空気が冷却されない状態を意味する。空気調和装置(10)では、例えば圧縮機が停止する、あるいは室内熱交換器(43)の冷媒の流通が制限されることで、室内熱交換器(43)が停止状態となる。
  図14に示すように、空調制御部(19)に冷房運転の開始指令が時点t1に入力されると、空調制御部(19)は、この時点t1よりもΔTa後の時点t2に、ファン(40)を運転させる制御と、室内熱交換器(43)の冷却動作を開始させる制御とを行う。これにより、時点t2から冷房運転が開始される。
  一方、空調制御部(19)は、冷房運転の開始指令が入力される時点t1と同時に、カメラ(70)の撮像を実行させるための信号(X)をカメラ(70)へ出力する。カメラ(70)の入力部(79)にこの信号(X)が入力されると、撮像制御部(74)は、カメラ(70)の撮像を実行させる。これにより、カメラ(70)は、冷房運転の開始指令とほぼ同じタイミングでドレンパン(60)の画像データを取得することになる。以上により、本実施形態では、ファン(40)の運転の開始直前、且つ室内熱交換器(43)の冷却動作の開始直前に、カメラ(70)の撮像が実行される。換言すると、冷房運転の開始直前にカメラ(70)の撮像が実行される。
  撮像の時点t1では、ファン(40)及び室内熱交換器(43)が停止状態となる。このため、時点t1では、空気調和装置(10)の全体の消費電力が小さくなる。従って、電源部(18)からカメラ(70)へ送られる供給電力を十分に確保できる。
  ファン(40)が運転状態であると、ドレンパン(60)の空気流れ、及び振動の影響により、ドレンパン(60)の内部の凝縮水の水面が不安定となる。これに対し、本実施形態では、時点t1において、ファン(40)が停止状態であるため、ドレンパン(60)の内部の凝縮水の水面も安定する。従って、凝縮水の水面が不安定となることに起因して、ドレンパン(60)の画像データが不鮮明となってしまうことを回避できる。
  室内熱交換器(43)が冷却動作を行う状態では、室内熱交換器(43)で冷却された空気中から凝縮水が発生し易い。このため、ドレンパン(60)内の水面が上昇し易い。これに対し、本例では、時点t1において、室内熱交換器(43)が停止状態である。このため、室内熱交換器(43)の冷却動作に起因してドレンパン(60)内の水面が上昇することもない。従って、凝縮水の水面が上昇することに起因して、ドレンパン(60)の画像データが不鮮明となってしまうことを回避できる。
  前回の冷房運転から次の冷房運転までの間の期間(つまり、空気調和装置(10)の停止期間)では、ドレンパン(60)内に溜まった凝縮水の腐敗や、カビの発生が徐々に進行していく。従って、冷房運転の開始直前には、このような凝縮水の腐敗や、カビの発生の度合いが顕著になり易い。本実施形態では、次の冷房運転の開始直前である時点t1において、ドレンパン(60)を撮像する。このため、画像データにおける凝縮水の腐敗やカビの発生が顕著となり、ドレンパン(60)の汚れの度合いをより明確に把握できる。
 〈撮像の動作のタイミングの他の制御例〉
  上記実施形態においては、以下のようなタイミングでドレンパン(60)を撮像してもよい。なお、上記の例や、以下に説明する例の各タイミングを組み合わせることもできる。
 -制御例1-
  制御例1では、カメラ(70)の撮像が、ファン(40)の運転の停止後で且つ室内熱交換器(43)の冷却動作の停止後に実行される。
  図15に示すように、空調制御部(19)に冷房運転の停止指令が時点t3に入力されると、空調制御部(19)は、ファン(40)を停止させる制御と、室内熱交換器(43)の冷却動作を停止させる制御とを行う。これにより、時点t3から冷房運転が停止される。
  一方、空調制御部(19)は、この時点t3よりもΔTb後の時点t4にカメラ(70)の撮像を実行させるための信号(X)をカメラ(70)へ出力する。カメラ(70)の入力部(79)にこの信号(X)が入力されると、撮像制御部(74)は、カメラ(70)の撮像を実行させる。これにより、カメラ(70)は、冷房運転の終了よりやや遅れたタイミングでドレンパン(60)の画像データを取得することになる。以上により、本実施形態では、ファン(40)の運転の終了直後、且つ室内熱交換器(43)の冷却動作の終了直後に、カメラ(70)の撮像が実行される。換言すると、冷房運転の停止直後にカメラ(70)の撮像が実行される。
  他の制御例1に係る撮像の時点t4では、ファン(40)及び室内熱交換器(43)が停止状態となる。このため、上記実施形態と同様、空気調和装置(10)の全体の消費電力が小さくなる。従って、電源部(18)からカメラ(70)へ送られる供給電力を十分に確保できる。また、ファン(40)や室内熱交換器(43)が停止状態となることで、撮像時おけるドレンパン(60)の水面も安定する。
  時点t4の直前までは、室内熱交換器(43)が冷却動作を行っており、空気中から凝縮水が発生する可能性が高い。このため、時点t4においては、基本的には、ドレンパン(60)の内部に凝縮水が溜まっている。従って、時点t4において、ドレンパン(60)の画像データを取得することで、ドレンパン(60)の内部の凝縮水の状態を確認することができる。
 -制御例2-
  制御例2では、カメラ(70)の撮像が、ドレンポンプ(66)の運転の停止後に実行される。ここで、ドレンポンプ(66)は、例えば冷房運転の開始と同時に運転され、冷房運転の停止直後に停止される。あるいは、ドレンポンプ(66)は、タイマー等により間欠的に運転されるものであってもよし、ドレンパン(60)の水位が所定レベルを越えると実行されるものであってもよい。
  図16に示すように、例えば時点t5においてドレンポンプ(66)を停止させる指令があると、空調制御部(19)は、ドレンポンプ(66)を時点t5において停止させる制御を行う。この場合、空調制御部(19)は、時点t5からΔTc後の時点t6において、信号(X)をカメラ(70)の入力部(79)に出力する。これにより、ドレンポンプ(66)の停止直後の時点t6において、カメラ(70)の撮像が実行される。
  他の制御例2に係る撮像の時点t6では、ドレンポンプ(66)が停止状態となる。このため、上記実施形態と同様、空気調和装置(10)の全体の消費電力が小さくなる。従って、電源部(18)からカメラ(70)へ送られる供給電力を十分に確保できる。
  ドレンポンプ(66)が運転状態であると、ドレンポンプ(66)が凝縮水を吸入することや、該ドレンポンプ(66)の振動に起因して、ドレンパン(60)の内部の凝縮水の水面が不安定となる。これに対し、時点t6では、ドレンポンプ(66)が停止状態であり、ドレンパン(60)の内部の凝縮水の水面も安定する。従って、凝縮水の水面が不安定となることに起因して、取得したデータの画像が不鮮明となってしまうことを回避できる。
  ドレンポンプ(66)の運転の停止直前までは、ドレンパン(60)の内部の凝縮水が排水される。従って、ドレンポンプ(66)の運転の停止直後は、通常であれば、ドレンパン(60)の内部に凝縮水がさほど溜まっていないはずである。それにも拘わらず、ドレンパン(60)の内部に比較的多くの凝縮水が存在する場合、ドレンポンプ(66)が故障していたり、排水用の配管が詰まっていたりする不具合が想定できる。従って、時点t6においてドレンパン(60)の内部を撮像することで、凝縮水の排水構造に係る上記のような不具合を発見できる。
 -制御例3-
  制御例3では、カメラ(70)の撮像が、ドレンポンプ(66)の運転の開始前に実行される。図17に示すように、例えば時点t7においてドレンポンプ(66)を運転させる指令があると、空調制御部(19)は、ドレンポンプ(66)を時点t7からΔTd後の時点t8において、ドレンポンプ(66)を運転させる制御を行う。一方、空調制御部(19)は、時点t7において、信号(X)をカメラ(70)の入力部(79)に出力する。これにより、ドレンポンプ(66)の運転直前の時点t7において、カメラ(70)の撮像が実行される。
  他の制御例3に係る撮像の時点t7では、ドレンポンプ(66)が停止状態となる。このため、上記実施形態と同様、空気調和装置(10)の全体の消費電力が小さくなる。従って、電源部(18)からカメラ(70)へ送られる供給電力を十分に確保できる。また、ドレンパン(60)の凝縮水の水面も安定する。
  ドレンポンプ(66)の運転の開始前までは、ドレンパン(60)の内部に凝縮水が溜まっていく。従って、時点t7においてカメラ(70)の撮像を実行させることで、ドレンパン(60)の内部の凝縮水の状態を把握し易くなる。
 -制御例4-
  制御例4は、上述した実施形態2の暖房運転に適用される。実施形態2のカメラ(70)の撮像は、ファン(給気ファン(40a)及び排気ファン(40b))の運転の開始前、且つ室内熱交換器(43)の加熱動作の開始前、且つ加湿エレメント(45)の運転の開始前に実行される。
  図18に示すように、空調制御部(19)に暖房運転の開始指令が時点t9に入力されると、空調制御部(19)は、この時点t9よりもΔTe後の時点t10に、給気ファン(40a)及び排気ファン(40b)を運転させる制御と、室内熱交換器(43)の加熱動作を開始させる制御と、加湿エレメント(45)を運転させる制御とを行う。これにより、時点t10から暖房運転が開始される。
  一方、空調制御部(19)は、暖房運転の開始指令が入力される時点t9と同時に、カメラ(70)の撮像を実行させるための信号(X)をカメラ(70)へ出力する。カメラ(70)の入力部(79)にこの信号(X)が入力されると、撮像制御部(74)は、カメラ(70)の撮像を実行させる。これにより、カメラ(70)は、暖房運転の開始指令とほぼ同じタイミングでドレンパン(60)及び加湿エレメント(45)の画像データを取得することになる。
  時点t9では、給気ファン(40a)、排気ファン(40b)、室内熱交換器(43)、及び加湿エレメント(45)が停止状態となる。このため、時点t9では、空気調和装置(10)の全体の消費電力が小さくなる。従って、電源部(18)からカメラ(70)へ送られる供給電力を十分に確保できる。また、時点t9では、ドレンパン(60)の内部の加湿水の水面も安定する。
  前回の暖房運転から次の暖房運転までの間の期間(つまり、空気調和装置(10)の停止期間)では、加湿エレメント(45)の吸湿部材において、スケールやカビの発生が進行していく。従って、暖房運転の開始直前には、このようスケールやカビの発生の度合いが顕著になり易い。実施形態2では、次の暖房運転の開始直前である時点t9において、加湿エレメント(45)を撮像する。このため、加湿エレメント(45)の画像データにおけるスケールやカビの発生が顕著となり、加湿エレメント(45)の汚れの度合いをより明確に把握できる。
 〈変形例4〉
  図19に示す変形例4は、変形例3に係る撮像システム(S)のクラウドサーバ(95)に判定部(96)が設けられる。判定部(96)は、カメラ(70)で取得した画像データに基づき、撮像対象の状態を自動的に判定する。なお、判定部(96)を通信ユニット(90)やカメラ(70)や通信端末(80)に設けることもできる。また、変形例4では、上述した変形例3と同様、空気調和装置(10)の運転動作(停止動作も含む)に連動して画像データが取得される。
  空気調和装置(10)の運転に連動してカメラ(70)が撮像対象の内部の画像データを取得すると、この画像データは、通信ユニット(90)を経由してクラウドサーバ(95)に送られる。クラウドサーバ(95)の判定部(96)では、これらの画像データに基づき、撮像対象の状態を判定する。ここで、判定部(96)は、例えばAI(人工知能)のディープラーニングを用いることで実現される。これにより、判定部(96)では、例えばドレンパン(60)や加湿エレメント(45)などの汚れの度合いを判定できる。また、判定部(96)は、将来における、ドレンパン(60)や加湿エレメント(45)の汚れの度合いを判定するものであってもよい。判定部(96)の判定結果は、例えば通信端末(80)に送信される。これにより、サービス業者等は、通信端末(80)を介して撮像対象の現在、又は将来の状態を把握できる。従って、このような情報に基づき、メンテナンスの予定を計画できる。
  判定部(96)で判定される画像データは、上述したように、空気調和装置(10)に連動した定期的なタイミングで取得される。このため、AIに利用される画像データの誤差要因を取り除くことができ、判定精度を向上できる。特に上述した各機器の提示状態において、画像データを取得することで、空気の流れや振動に起因する画像データの誤差要因を確実に取り除くこができる。
 〈変形例5〉
  変形例5は、カメラ(撮像装置(70))側の配線(内部配線(56))が第1コネクタ(56a)及び第2コネクタ(86a)を介して外部配線(86)と接続される。図20に模式的に示すように、カメラ(70)には、内部配線(56)の一端が接続される。内部配線(56)は、ケーシング(20)に設けられた挿通穴(27)を介してケーシング(20)の外部まで配設される。本例では、挿通穴(27)が点検蓋(51)に形成される。ケーシング(20)には、該挿通穴(27)の内縁と内部配線(56)との間の隙間を塞ぐための蓋などの部材が設けられてもよい。
  本例のカメラ(70)の内部配線(56)の他端は、ケーシング(20)の外部に配置される。ケーシング(20)の他端には、第1コネクタ(56a)が設けられる。例えば外部配線(86)の一端は、電装品箱(16)の内部の電源部(18)に接続される。外部配線(86)は、電装品箱(16)の外部まで配設される。外部配線(86)の他端は、電装品箱(16)の外部に配置される。外部配線(86)の他端には、第2コネクタ(86a)が設けられる。
  変形例5では、第1コネクタ(56a)と第2コネクタ(86a)とがケーシング(20)の外部で連結される。これにより、カメラ(70)の内部配線(56)と外部配線(86)とが互いに接続され、カメラ(70)への給電が可能となる。なお、内部配線(56)及び外部配線(86)は、画像データや各種の信号の授受を行う伝送線であってもよいし、給電と伝送との双方が可能なケーブルであってよい。
  内部配線(56)及び外部配線(86)が伝送用に用いられる場合、例えば電装品箱(16)の内部に無線通信部(77)(例えば無線LANアダプタ)を配置し、無線通信部(77)と外部配線(86)とを接続する。これにより、カメラ(70)と無線通信部(77)との間では、有線接続により、画像データや各種の信号の授受を行うことができる。上述したように、無線通信部(77)は、無線接続により、通信端末(80)との間で画像データや各種の信号の授受を行う。
  以上のように、変形例5では、カメラ(70)の内部配線(56)をケーシング(20)の外部まで配設するとともに、内部配線(56)の他端に第1コネクタ(56a)を設けている。このため、ケーシング(20)の内部にアクセスせずとも、内部配線(56)の接続及び取り外しを簡便に行うことができる。なお、内部配線(56)の第1コネクタ(56a)と、外部配線(86)の第2コネクタ(86a)とを電装品箱(16)の内部で連結してもよい。
 〈変形例6〉
  ケーシング本体(20a)に点検蓋(51)(ケーシング部材)を装着すると、内部配線(56)の接点と、外部配線(86)の接点とが繋がる構成としてもよい。具体的には、例えば内部配線(56)の他端側と接続する第1接点部を点検蓋(51)の外縁部に設ける。点検口(50)の開口縁部に外部配線(86)の他端と接続する第2接点部を設ける。点検口(50)に点検蓋(51)を装着すると、点検蓋(51)側の第1接点部と、ケーシング本体(20a)側の第2接点部とが接触する。これにより、点検蓋(51)の装着に伴い、カメラ(70)側の内部配線(56)と外部配線(86)とを電気的に接続できる。従って、内部配線(56)と外部配線(86)とを接続する作業を省略できる。
 〈変形例7〉
  変形例7の空気調和装置(10)は、カメラ(70)に向かって撮像対象の鏡像を形成する鏡(57)を備えている。図21に模式的に示す例では、ドレンパン(60)が撮像対象となっている。本例では、カメラ(70)のレンズ(71)とドレンパン(60)との間に他の部品(C)が介在している。このため、この部品(C)がカメラ(70)の障害物となり、カメラ(70)は、ドレンパン(60)を直接的に撮像できない。これに対し、本例では、カメラ(70)の撮像方向における前方に鏡(57)が配置され、この鏡(57)にドレンパン(60)の鏡像が形成される。つまり、カメラ(70)、撮像対象、及び鏡(57)は、鏡(57)に形成されドレンパン(60)の鏡像が、カメラ(70)に向かって形成されるように、互いの相対位置が設定される。換言すると、カメラ(70)から鏡(57)に向かう光が鏡(57)によって反射する方向が、ドレンパン(60)を向いている。従って、カメラ(70)とドレンパン(60)との間に所定の部品(C)が介在していたとしても、カメラ(70)は、鏡(57)を介してドレンパン(60)を間接的に撮像できる。
  なお、鏡(57)は、ガラスの表面にアルミニウムや銀などの金属を蒸着した一般的な鏡であってもよいし、金属を磨いて鏡面を形成したいわゆる金属鏡であってもよい。
 〈変形例8〉
  変形例8の空気調和装置(10)は、カメラ(70)の光源(72)の反射光の影響を軽減するように、カメラ(70)と反射部(R)との相対位置が設定される。図22に模式的に示す例では、ドレンパン(60)が撮像対象となっている。カメラ(70)の撮像方向において、ドレンパン(60)の裏側には反射部(R)が位置している。反射部(R)は、例えばステンレス鋼板のような、光が反射し易い金属材料で構成される。本例では、カメラ(70)の撮像方向と、反射部(R)の反射面の垂線(p)とが成す角度(図22のθa)が所定角度に設定される。θaが10°以下であると、撮像時において、カメラ(70)の光源(72)から発する光が反射部(R)に反射した際、反射光がカメラ(70)の撮像範囲に入ってしまい、画像データが不鮮明になる可能性がある。特に、カメラ(70)が自動露出調整などの光に応じた処理を行う場合、画像データが反射光の影響を強く受け、画像データが不鮮明になり易い。これに対し、θaを10°より大きくすると、反射光がカメラ(70)の撮像範囲に入り込むことを抑制でき、上記の不具合を回避できる。θaは0°より大きく80°より小さいことが好ましい。 
 《カメラの他の構成》
  上記実施形態のカメラ(70)は、以下のような構成であってもよい。
 〈防振部材〉
  カメラ(70)と、該カメラ(70)が取り付けられる構成部品(例えば点検蓋(51))との間には、防振部材を介設するのが好ましい。これにより、ケーシング(20)側の振動がカメラ(70)に伝播するのを抑制できる。この結果、カメラ(70)で取得した画像データが振動の影響により不鮮明となることを回避できる。
 〈防水構造〉
  カメラ(70)は、その内部への浸水を抑制するための防水構造を有しているのが好ましい。例えばカメラ(70)の周囲を防水用の部材で覆う。これにより、ケーシング(20)内の水(例えば凝縮水、加湿水など)の影響により、カメラ(70)が故障してしまうことを回避できる。
 〈レンズの種類〉
  カメラ(70)のレンズ(71)は、広角レンズ、又は魚眼レンズであることが好ましい。なお、ここでいう広角レンズは、一般的な広角レンズに対して、画角が更に広い、いわゆる超広角レンズも含む。魚眼レンズは、180°以上の画角を有し、好ましくは220°以上の画角を有する。広角レンズや魚眼レンズは、通常のレンズと比べて、画角が広いため、レンズ(71)と撮像対象との距離が比較的短くても撮像対象を広範囲に亘って撮像できる。
 〈自動処理〉
  カメラ(70)は、各種の自動処理を行うための自動処理部を有しているのが好ましい。具体的には、自動処理部は、オートフォーカス機能、自動露出調整機能、及びホワイトバランス調整機能の少なくとも1つの機能を実行可能に構成される。
 〈光源〉
  図23に示すように、カメラ(70)は、撮像対象を照らすための光源(72)(フラッシュ)を有する。光源(72)は、カメラ(70)のレンズ(71)よりも撮像方向における後方に設けられる。光源(72)がレンズ(71)の前方に位置すると、カメラ(70)の撮像範囲の光源(72)が直接入ってしまい、光の影響に起因して画像データが不鮮明になってしまう可能性がある。これに対し、光源(72)をレンズ(71)よりも後方に設けることで、カメラ(70)の撮像範囲に光源(72)が直接入り込んでしまうことを回避できる。この結果、光源(72)の影響に起因して画像データが不鮮明になることを回避できる。
  光源(72)の光が強すぎると、レンズ(71)に入射する反射光も強くなり、いわゆるハレーションにより、画像データが不鮮明になる可能性がある。そこで、光源(72)の発光体を覆うガラスとして、磨りガラス(曇りガラス)等の半透明の材料を用いることもできる。
 《実施形態3》
  実施形態3に係る空気調和装置(10)は、天井吊り式ないし天井埋め込み式の空気調和装置である。空気調和装置(10)は、室外ユニット(図示省略)と、室内ユニット(11)とを有し、これらが冷媒配管で接続されることで、冷媒回路が構成される。
  図24に示すように、室内ユニット(11)は、天井裏に設置されるケーシング(20)を備えている。ケーシング(20)は、下側に開口面が形成される矩形箱状のケーシング本体(20a)と、該開放面を塞ぐように該ケーシング本体(20a)に着脱可能に設けられるパネル(130)(ケーシング部材)とを備える。パネル(130)は、矩形枠状のパネル本体(131)と、パネル本体(131)の中央に設けられる吸込グリル(132)とを備えている。
  パネル本体(131)の中央には1つの吸込口(31)が形成される。吸込グリル(132)は、吸込口(31)に取り付けられる。パネル本体(131)の4つの側縁部には、それぞれ吹出口(32)が1つずつ形成される。各吹出口(32)は、4つの側縁に沿うように延びている。各吹出口(32)の内部には、風向調節羽根(133)がそれぞれ設けられる。
  ケーシング本体(20a)の内部には、ベルマウス(134)と、室内ファン(40)と、室内熱交換器(43)と、ドレンパン(60)とが設けられる。ベルマウス(134)及び室内ファン(40)は、吸込グリル(132)の上方に配置される。室内熱交換器(43)は、室内ファン(40)の周囲を囲むように配置される。室内熱交換器(43)は、フィンアンドチューブ式の熱交換器で構成される。ドレンパン(60)は、室内熱交換器(43)の下側に配置される。
  図24の例では、カメラ(70)が、取付部(52)を介して室内熱交換器(43)に取り付けられる。具体的には、取付部(52)は、構成部品である室内熱交換器(43)の伝熱管や管板に取り付けられる。取付部(52)は、室内熱交換器(43)に着脱可能に構成されるため、カメラ(70)の取り付け作業が簡便となる。
 《空気流れを考慮した撮像装置の配置》
  撮像装置であるカメラ(70)は、ケーシング(20)の内部において、その周囲の空気の流速が比較的小さいのが好ましい。具体的に、空気調和装置(10)の吹出口(32)から吹き出される空気の平均流速をVaとすると、カメラ(70)は、吹出空気の平均流速Vaの30%以下の空気が流れる位置に配置される。カメラ(70)の周囲の空気の流速が大きすぎると、空気中の塵埃などがカメラ(70)のレンズ(71)の表面に付着し易くなり、レンズ(71)が汚れ易くなる。これに対し、カメラ(70)の周囲の空気の流速を、吹出空気の平均流速Vaの30%以下とすると、このようなレンズ(71)の汚れを抑制できる。
  カメラ(70)のレンズ(71)は、風下側(空気流れの下流側)を向いているのが好ましい。このようにすると、空気中の塵埃等がレンズ(71)の表面に付着しにくくなるため、レンズ(71)の汚れを抑制できる。レンズ(71)を風下側に向ける構成とする場合、レンズ(71)の周囲の空気の流速は、30%以下とするのがより好ましい。
  カメラ(70)のレンズ(71)は、風上側(空気流れの上流側)を向くように配置してもよい。この場合、カメラ(70)のレンズ(71)は、魚眼レンズ(球面状のレンズ)を用いるのが好ましい。
 《ドレンパンに係る他の変形例》
  上述したようなハレーションを利用して、ドレンパン(60)の水位を検出することもできる。つまり、ドレンパン(60)の水位が所定値(例えば上限の水位)に達すると、ハレーションが生じるように、カメラ(70)及びドレンパン(60)の相対位置を設定する。これにより、ハレーションが生じた画像データに基づき、ドレンパン(60)の水位が所定高さに至ったことを判定できる。
  ドレンパン(60)の内部に浮きなどを設けたり、ドレンパン(60)の内壁に目盛りやマークを付したりしてもよい。こうすると、画像データにおけるドレンパン(60)の水位を判定し易くなる。
  ドレンパン(60)の内壁に、紫外線により発光する発光塗料を塗るとともに、UV(紫外線)ランプ等で、この発光塗料を照射するようにしてもよい。発光塗料が白く光る状態で、ドレンパン(60)を撮像すると、ドレンパン(60)の汚れやバイオフィルムが黒く際立つ。これにより、画像データ中において、ドレンパン(60)の汚れやバイオフィルムを確認し易くなる。
  カメラ(70)のレンズ(71)をドレンパン(60)内の所定の水位に合わせるようにカメラ(70)を配置してもよい。この場合、ドレンパン(60)の水位が所定高さになると、レンズ(71)が浸水し、この状態の画像データが取得される。この画像データに基づき、ドレンパン(60)の水位が所定高さに至ったことを判定できる。
 《撮像装置が設けられる構成部品の変形例》
  撮像装置(70)が設けられる構成部品は、上述した冷媒配管(ヘッダ集合管(47)や水配管(49))に限られない。例えば構成部品は、配管を支持するための配管固体板、熱交換器の管板、熱交換器の押さえ板などの板状の部材であってもよい。構成部品は、ファン(40)のモータを支持するモータ台、水槽(例えば上述した給水タンク)、ダクトの接続口(吹出口、吸込口)などであってもよい。これらの構成部品は、メンテナンスの際などは通常、取り外しが行われない部品である。
  なお、構成部品として、メンテナンス時において、ケーシング本体(20a)から取り外されるような部品に取付部(52)を取り付け、カメラ(70)を支持させることもできる。このような部品としては、例えば点検蓋(51)、ドレンポンプ(66)、水配管に接続される弁(電磁弁)、冷媒配管に接続される弁(例えば電磁弁や膨張弁)、フロートスイッチなどが挙げられる。実施形態2であれば、加湿エレメント(45)、給水タンクの蓋などが挙げられる。実施形態3であれば、ケーシング(20)内に設置される電装品箱、パネル(130)(パネル本体(131)及び吸込グリル(132))などが挙げられる。
 《撮像対象の変形例》
  撮像装置(70)の撮像対象は、ドレンパン(60)及び加湿エレメント(45)以外であってもよい。例えば撮像対象は、ドレンポンプ(66)、エアフィルタ、熱交換器(例えば室内熱交換器(43))、ファン(40)、排水口(ドレンパン(60)内の排水口も含む)、ドレンパン(60)内の水の表面(水位)であってもよい。
  上述したように、実施形態2のドレンパン(60)には、加湿エレメント(45)から流出した水(加湿水)が回収される。加湿エレメント(45)が正常に動作しない場合、ドレンパン(60)の排水口を余剰の加湿水が流れない状態となる。従って、ドレンパン(60)の排水口近傍の水の有無を画像データから判定することで、加湿エレメント(45)が正常に動作しているか否かを判定できる。
 《取付部の変形例》
  上述した取付部(52)は、必ずしも構成部品(C)を挟み込む方式でなくてもよい。例えば取付部(52)は、例えば結束バンドや面ファスナーなど、構成部品(C)に着脱可能に巻き付けられる締付部材であってもよい。
 《その他の実施形態》
  上述した全ての形態においては、以下のような構成としてもよい。
  撮像装置(70)は、カメラに限定されず、例えば光学センサ等であってもよい。
  撮像装置(70)の撮像制御部(74)は、必ずしもカメラ(70)側に設けられていなくてもよく、例えば図11に示す通信ユニット(90)側に設けてもよい。また、カメラ(70)は、ONされる(通電される)ことで撮像動作を開始するものであってもよい。この場合、撮像動作を開始させるタイミングでカメラ(70)に通電するように制御すればよい。
  撮像装置(70)は、天井裏に設置される室内ユニット(11)のケーシング(20)に適用されているが、床置き式、壁掛け式、天井吊り下げ式等の室内ユニットのケーシングに適用されてもよい。また、撮像装置(70)は、室外ユニットのケーシングに適用されてもよい。
  上述した冷房運転及び暖房運転で示した種々の撮像タイミングを、実施可能な範囲において、如何なるパターンで組み合わせてもよい。
  撮像装置(70)は、空気調和装置(10)以外の空気処理装置に適用されてもよい。他の空気処理装置としては、例えば空気の湿度を調節する調湿装置、室内の換気を行う換気装置、空気を浄化する空気浄化装置などが挙げられる。
  本発明は、空気処理装置について有用である。
   10   空気調和装置(空気処理装置)
   20   ケーシング
   20a  ケーシング本体(本体)
   40   ファン(撮像対象)
   43   室内熱交換器(撮像対象)
   45   加湿エレメント(撮像対象)
   51a  内壁
   52   取付部
   53   挟持部材
   55   締結部材(押付部材)
   56   配線(内部配線)
   56a  第1コネクタ(コネクタ)
   60   ドレンパン(撮像対象)
   66   ドレンポンプ(撮像対象)
   70   カメラ(撮像装置)
   71   レンズ
   72   光源
   77   無線通信部
   80   受信部
   86   外部配線
   91   伝送線

Claims (11)

  1.  ケーシング(20)と、
     前記ケーシング(20)の内部に位置する所定の撮像対象(40,43,45,60,66)の画像データを取得する撮像装置(70)とを備え、
     前記ケーシング(20)の本体(20a)には、所定の構成部品(47,49)が設けられ、
     前記撮像装置(70)は、該撮像対象(40,43,45,60,66)を撮像可能な位置となるように前記構成部品(47,49)に着脱可能に取り付けられる取付部(52)を有することを特徴とする空気処理装置。
  2.  請求項1において、
     前記取付部(52)は、
      前記構成部品(47,49)を挟むように対向する一対の挟持部材(53)と、
      前記一対の挟持部材(53)の間隔を狭めるように該挟持部材(53)を押し付ける押付部材(55)とを備えていることを特徴とする空気処理装置。
  3.  請求項1又は2において、
     前記撮像装置(70)で取得した画像データを無線により前記ケーシング(20)の外部へ伝送する無線通信部(77)を備えていることを特徴とする空気処理装置。
  4.  請求項1乃至3のいずれか1つにおいて、
     前記撮像装置(70)で取得した画像データを有線によりケーシング(20)の外部へ伝送する伝送線(91)と、
     前記ケーシング(20)の外部に配置されるとともに、前記伝送線(91)の出力データを無線により所定の受信部(80)へ伝送する無線通信部(77)とを備えていることを特徴とする空気処理装置。
  5.  請求項1乃至4のいずれか1つにおいて、
     一端が前記撮像装置(70)に接続するとともに、前記ケーシング(20)の外部まで配設される配線(56)を備え、
     前記配線(56)の他端には、外部配線(86)が接続されるコネクタ(56a)が設けられることを特徴とする空気処理装置。
  6.  請求項1乃至5のいずれか1つにおいて、
     前記撮像装置(70)は、広角式又は魚眼式のレンズ(71)を備えていることを特徴とする空気処理装置。
  7.  請求項1乃至6のいずれか1つにおいて、
     前記撮像装置(70)は、レンズ(71)と、該レンズ(71)よりも撮像方向における後方に位置する光源(72)とを備えていることを特徴とする空気処理装置。
  8.  請求項1乃至7のいずれか1つにおいて、
     前記撮像対象(40,43,45,60,66)は、ドレンパン(60)、排水口、ドレンポンプ(66)、フロートスイッチ、及び加湿エレメント(45)の少なくとも1つを含んでいることを特徴とする空気処理装置。
  9.  請求項1乃至8のいずれか1つにおいて、
     前記構成部品(47,49)は、配管(47,49)であることを特徴とする空気処理装置。
  10.  請求項1乃至9のいずれか1つにおいて、
     ケーシング(20)から吹き出される吹出空気の平均流速をVaとすると、
     前記撮像装置(70)は、前記吹出空気の平均流速Vaの30%以下の空気が流れる位置に配置されることを特徴とする空気処理装置。
  11.  請求項1乃至10のいずれか1つにおいて、
     前記撮像装置(70)のレンズ(71)は、空気流れの下流側を向いていることを特徴とする空気処理装置。
PCT/JP2018/024390 2017-08-28 2018-06-27 空気処理装置 WO2019044145A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201880055467.2A CN111033135A (zh) 2017-08-28 2018-06-27 空气处理装置
ES18851817T ES2925459T3 (es) 2017-08-28 2018-06-27 Dispositivo de procesamiento de aire
AU2018324135A AU2018324135B2 (en) 2017-08-28 2018-06-27 Air processing device
US16/639,847 US11585562B2 (en) 2017-08-28 2018-06-27 Air processing device
EP18851817.9A EP3663663B1 (en) 2017-08-28 2018-06-27 Air processing device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017163414 2017-08-28
JP2017-163414 2017-08-28

Publications (1)

Publication Number Publication Date
WO2019044145A1 true WO2019044145A1 (ja) 2019-03-07

Family

ID=65525140

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2018/024390 WO2019044145A1 (ja) 2017-08-28 2018-06-27 空気処理装置
PCT/JP2018/024387 WO2019044144A1 (ja) 2017-08-28 2018-06-27 空気処理装置

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/024387 WO2019044144A1 (ja) 2017-08-28 2018-06-27 空気処理装置

Country Status (7)

Country Link
US (2) US11585562B2 (ja)
EP (3) EP3663663B1 (ja)
JP (4) JP6562126B2 (ja)
CN (2) CN111033142A (ja)
AU (2) AU2018324135B2 (ja)
ES (3) ES2957791T3 (ja)
WO (2) WO2019044145A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021033385A1 (ja) * 2019-08-21 2021-02-25 ダイキン工業株式会社 空気処理装置
EP4130598A4 (en) * 2020-03-26 2023-08-30 Daikin Industries, Ltd. DRAIN PUMP OBSTRUCTION PREDICTION DEVICE, AIR CONDITIONER AND DRAIN PUMP OBSTRUCTION PREDICTION METHOD

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019097613A1 (ja) * 2017-11-15 2020-07-09 三菱電機株式会社 空調管理システム、空調機器、空調管理装置、空調管理方法及びプログラム
CN111433520B (zh) * 2017-12-13 2021-07-06 三菱电机株式会社 热交换单元以及搭载热交换单元的空调装置
JP6791284B2 (ja) * 2019-02-22 2020-11-25 ダイキン工業株式会社 ドレンパン、ドレンパンユニット、及び空気調和装置
JP7355993B2 (ja) * 2019-03-28 2023-10-04 ダイキン工業株式会社 電装品箱
JP7425549B2 (ja) * 2019-06-26 2024-01-31 三菱電機ビルソリューションズ株式会社 ドレンパンの清掃装置、及び空気調和機
JP7502590B2 (ja) * 2019-08-21 2024-06-19 ダイキン工業株式会社 空気処理装置および汚れ推定システムならびに汚れ推定方法
JP2021103041A (ja) * 2019-12-25 2021-07-15 株式会社富士通ゼネラル 天井埋込型空気調和機
JP7436627B2 (ja) 2020-03-05 2024-02-21 ファナック株式会社 画像処理装置、作業指示作成システム、作業指示作成方法
JP7108204B2 (ja) * 2020-06-17 2022-07-28 ダイキン工業株式会社 付加装置及び空気調和装置の室内ユニット
JP7014983B1 (ja) * 2020-07-14 2022-02-15 ダイキン工業株式会社 撮像ユニット及び空気処理ユニット
TWI765722B (zh) * 2020-07-14 2022-05-21 禾聯碩股份有限公司 簡易置換之空氣轉換裝置
KR102450497B1 (ko) * 2020-09-03 2022-10-06 한국전자기술연구원 세척 기능을 가지는 건물용 살균 공조 장치 및 이의 이용방법
JP7348887B2 (ja) * 2020-09-24 2023-09-21 ダイキン工業株式会社 エアハンドリングユニット
JP7054264B1 (ja) 2020-11-10 2022-04-13 日本ウイントン株式会社 ダクト汚れ監視システム
JP7570254B2 (ja) 2021-03-03 2024-10-21 三菱電機ビルソリューションズ株式会社 空気調和機の室内機
CN113284325A (zh) * 2021-04-19 2021-08-20 深圳市伟昊净化设备有限公司 一种压缩气体过滤安全预警装置
US12031742B2 (en) * 2021-04-28 2024-07-09 Mitsubishi Electric Corporation Contaminant detector and refrigeration cycle apparatus

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002267989A (ja) * 2001-03-09 2002-09-18 Canon Inc 光偏向走査装置
JP2007046864A (ja) 2005-08-11 2007-02-22 Daikin Ind Ltd 保守支援システム
JP2007255840A (ja) * 2006-03-24 2007-10-04 Mitsubishi Electric Building Techno Service Co Ltd 空調機内部観察装置
JP2012032071A (ja) * 2010-07-30 2012-02-16 Panasonic Corp 空気調和機
JP2014031957A (ja) * 2012-08-03 2014-02-20 Panasonic Corp 空気調和機
JP2015111025A (ja) * 2013-03-12 2015-06-18 株式会社東芝 冷蔵庫、カメラ装置
JP2015124976A (ja) * 2013-12-27 2015-07-06 ダイキン工業株式会社 室内機
JP2016030478A (ja) * 2014-07-28 2016-03-07 ポップニート株式会社 車内情報処理装置、車内情報処理方法、プログラム、及びカメラ

Family Cites Families (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3280577A (en) * 1963-11-20 1966-10-25 Matsushita Electric Ind Co Ltd Automatic defrosting control device
US4074987A (en) * 1977-01-03 1978-02-21 General Electric Company Defrost sensing system for freezer compartment
US4578959A (en) * 1977-10-28 1986-04-01 Alsenz Richard H Method and apparatus for detecting and controlling the formation of ice or frost
NO154708C (no) * 1984-06-28 1986-12-03 Paul Tengesdal Ventilasjonsapparat med varmegjenvinning.
US4831833A (en) * 1987-07-13 1989-05-23 Parker Hannifin Corporation Frost detection system for refrigeration apparatus
JP3054538B2 (ja) 1993-11-29 2000-06-19 三洋電機株式会社 空気調和装置
US5664750A (en) * 1995-11-14 1997-09-09 Cohen; Edward Camera Mount
JPH1154265A (ja) 1997-08-05 1999-02-26 Nemic Lambda Kk 電子機器の電磁波漏洩防止構造
US5965814A (en) * 1997-10-21 1999-10-12 French; Arnold E. Freeze/overflow detector with deactivating mechanism
JP2002101321A (ja) * 2000-09-22 2002-04-05 Kato Denko:Kk 空気調和機の内部観察装置及び内部観察方法
US6792820B2 (en) * 2001-03-29 2004-09-21 Earth Tool Company, L.L.C. Method and accessories for pipe replacement
US20080047329A1 (en) * 2002-06-11 2008-02-28 Intelligent Technologies International, Inc. Remote Monitoring of Fluid Reservoirs
JP2005197789A (ja) * 2003-12-26 2005-07-21 Sharp Corp カメラ付通信装置
JP4937032B2 (ja) * 2007-02-19 2012-05-23 三菱電機株式会社 冷却装置及びそれを備えた冷蔵庫
US8701746B2 (en) * 2008-03-13 2014-04-22 Schneider Electric It Corporation Optically detected liquid depth information in a climate control unit
KR101563487B1 (ko) * 2009-05-11 2015-10-27 엘지전자 주식회사 가전기기를 제어하는 휴대 단말기
JP5453982B2 (ja) 2009-07-27 2014-03-26 ダイキン工業株式会社 ガイド部材
EP2541174B1 (en) * 2010-02-23 2020-10-14 LG Electronics Inc. Refrigerator
KR101240947B1 (ko) * 2010-12-30 2013-03-18 주식회사 미르기술 비전검사장치
CN202253971U (zh) 2011-07-01 2012-05-30 苏州三星电子有限公司 便捷维护式中央空调用室内机装置
CN203106182U (zh) * 2012-11-15 2013-08-07 苏州风马商用科技有限公司 一种线孔盖
CA2797041A1 (en) 2012-11-26 2014-05-26 Boychuk, Garry N. Suspension device for supporting a still or video camera or other personal electronic equipment
CN203182326U (zh) * 2013-02-01 2013-09-11 杨仲辉 一种新型办公桌线孔盖
JP6411753B2 (ja) 2013-03-12 2018-10-24 東芝ライフスタイル株式会社 冷蔵庫、及びカメラ装置
JP6229142B2 (ja) 2013-03-29 2017-11-15 パナソニックIpマネジメント株式会社 冷蔵庫及び冷蔵庫システム
JP2014239394A (ja) * 2013-06-10 2014-12-18 キヤノン株式会社 撮像装置
KR20150043573A (ko) * 2013-10-11 2015-04-23 엘지전자 주식회사 공기조화기의 실내기
WO2015080169A1 (ja) * 2013-11-26 2015-06-04 ダイキン工業株式会社 室内機
CN105142375B (zh) * 2014-06-09 2018-08-24 建准电机工业股份有限公司 通风系统及其换气扇的外壳
KR102269043B1 (ko) * 2014-08-05 2021-06-24 삼성전자주식회사 공기정화장치
JP6516988B2 (ja) 2014-08-25 2019-05-22 株式会社J−オイルミルズ 飼料タンクの管理装置
CN204090041U (zh) * 2014-10-16 2015-01-07 许乐群 空调过滤器可视污染监控装置
CN104596051B (zh) 2015-01-29 2018-08-10 皓庭(唐山)环境科技有限公司 空气净化装置滤网图像检测系统
DE102015203704B4 (de) * 2015-03-02 2019-07-25 Conti Temic Microelectronic Gmbh Testaufbau und Verfahren für Fischaugenkameras zur Driftanalyse einer MTF und/oder Farbwiedergabe in Abhängigkeit der Temperatur
CN105162728B (zh) * 2015-07-31 2018-07-31 小米科技有限责任公司 网络接入方法、设备及系统
WO2017023205A1 (en) * 2015-08-02 2017-02-09 Mobiair Pte.Ltd. A combined briquetting and cyclonic separation device and process capable of removing particles from a fluid stream and converting directly into briquettes
JP6690158B2 (ja) * 2015-09-11 2020-04-28 日本電産トーソク株式会社 内面検査装置および位置決め方法
JP6549993B2 (ja) 2016-01-06 2019-07-24 三菱マヒンドラ農機株式会社 コンバイン
JP2017141967A (ja) 2016-02-08 2017-08-17 株式会社日立空調Se 空気調和機
CN106288158A (zh) * 2016-08-05 2017-01-04 珠海格力电器股份有限公司 空调及其化霜方法和装置
US20180050229A1 (en) * 2016-08-16 2018-02-22 Gary Abernathy Real Time Damper Visual Verification Device and System
CN106871253B (zh) 2017-02-18 2019-08-23 马鞍山市新桥工业设计有限公司 一种易于安装拆卸且具有可视化功能的空气净化器
CN107036389A (zh) 2017-05-10 2017-08-11 江苏新安电器有限公司 一种智能化的冰箱内置摄像头监控系统
CN111635616B (zh) 2019-03-01 2021-07-30 广东生益科技股份有限公司 无卤阻燃热固性树脂组合物、印刷电路用预浸料及覆金属层压板

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002267989A (ja) * 2001-03-09 2002-09-18 Canon Inc 光偏向走査装置
JP2007046864A (ja) 2005-08-11 2007-02-22 Daikin Ind Ltd 保守支援システム
JP2007255840A (ja) * 2006-03-24 2007-10-04 Mitsubishi Electric Building Techno Service Co Ltd 空調機内部観察装置
JP2012032071A (ja) * 2010-07-30 2012-02-16 Panasonic Corp 空気調和機
JP2014031957A (ja) * 2012-08-03 2014-02-20 Panasonic Corp 空気調和機
JP2015111025A (ja) * 2013-03-12 2015-06-18 株式会社東芝 冷蔵庫、カメラ装置
JP2015124976A (ja) * 2013-12-27 2015-07-06 ダイキン工業株式会社 室内機
JP2016030478A (ja) * 2014-07-28 2016-03-07 ポップニート株式会社 車内情報処理装置、車内情報処理方法、プログラム、及びカメラ

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021033385A1 (ja) * 2019-08-21 2021-02-25 ダイキン工業株式会社 空気処理装置
JP2021032450A (ja) * 2019-08-21 2021-03-01 ダイキン工業株式会社 空気処理装置
US11549892B2 (en) 2019-08-21 2023-01-10 Daikin Industries, Ltd. Air treatment device
EP4130598A4 (en) * 2020-03-26 2023-08-30 Daikin Industries, Ltd. DRAIN PUMP OBSTRUCTION PREDICTION DEVICE, AIR CONDITIONER AND DRAIN PUMP OBSTRUCTION PREDICTION METHOD

Also Published As

Publication number Publication date
JP6562126B2 (ja) 2019-08-21
JP2021152446A (ja) 2021-09-30
EP3951277B1 (en) 2023-06-28
JP2019039657A (ja) 2019-03-14
ES2957791T3 (es) 2024-01-25
EP3663663B1 (en) 2022-05-18
EP3663666A4 (en) 2020-08-19
JP2019039656A (ja) 2019-03-14
ES2901702T3 (es) 2022-03-23
WO2019044144A1 (ja) 2019-03-07
US20210131690A1 (en) 2021-05-06
JP2019196903A (ja) 2019-11-14
JP6767435B2 (ja) 2020-10-14
EP3663666B1 (en) 2021-11-10
US11585562B2 (en) 2023-02-21
EP3663663A4 (en) 2020-08-19
JP7467381B2 (ja) 2024-04-15
CN111033142A (zh) 2020-04-17
EP3663663A1 (en) 2020-06-10
AU2018324135A1 (en) 2020-03-12
EP3663666A1 (en) 2020-06-10
ES2925459T3 (es) 2022-10-18
JP7346161B2 (ja) 2023-09-19
US20200248924A1 (en) 2020-08-06
AU2018324135B2 (en) 2021-05-13
CN111033135A (zh) 2020-04-17
EP3951277A1 (en) 2022-02-09
AU2018324134A1 (en) 2020-03-12
AU2018324134B2 (en) 2021-05-27

Similar Documents

Publication Publication Date Title
JP6562126B2 (ja) 空気処理装置
JP2019196903A5 (ja)
JP6547881B2 (ja) 空気調和装置
JP2019190822A5 (ja)
US11480357B2 (en) Air treatment device
JP2020139666A (ja) 空気調和機
CN114270256A (zh) 空气处理装置
JP7089185B2 (ja) 空気処理装置用の付加ユニット、及び空気処理ユニット

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18851817

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018324135

Country of ref document: AU

Date of ref document: 20180627

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018851817

Country of ref document: EP

Effective date: 20200302