Nothing Special   »   [go: up one dir, main page]

WO2019043957A1 - Outboard motor raising/lowering device and control method for outboard motor raising/lowering device - Google Patents

Outboard motor raising/lowering device and control method for outboard motor raising/lowering device Download PDF

Info

Publication number
WO2019043957A1
WO2019043957A1 PCT/JP2017/033687 JP2017033687W WO2019043957A1 WO 2019043957 A1 WO2019043957 A1 WO 2019043957A1 JP 2017033687 W JP2017033687 W JP 2017033687W WO 2019043957 A1 WO2019043957 A1 WO 2019043957A1
Authority
WO
WIPO (PCT)
Prior art keywords
outboard motor
switching valve
chamber
trim
control unit
Prior art date
Application number
PCT/JP2017/033687
Other languages
French (fr)
Japanese (ja)
Inventor
貴彦 齋藤
Original Assignee
株式会社ショーワ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ショーワ filed Critical 株式会社ショーワ
Publication of WO2019043957A1 publication Critical patent/WO2019043957A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H20/00Outboard propulsion units, e.g. outboard motors or Z-drives; Arrangements thereof on vessels
    • B63H20/08Means enabling movement of the position of the propulsion element, e.g. for trim, tilt or steering; Control of trim or tilt
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/02Systems essentially incorporating special features for controlling the speed or actuating force of an output member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/08Servomotor systems without provision for follow-up action; Circuits therefor with only one servomotor

Definitions

  • the present invention relates to an outboard motor lifting apparatus for lifting and lowering an outboard motor of a hull.
  • Japanese Patent Publication No. 58-028159 Japanese Patent Publication "Japanese Patent Application Laid-Open No. 2-99494"
  • An object of the present invention is to realize an outboard motor elevator device capable of executing a series of operations including raising and lowering of an outboard motor while suppressing the time and effort of the user.
  • the outboard motor elevator is an outboard motor elevator for raising and lowering an outboard motor, comprising: one or more tilt cylinders; one or more trim cylinders; Connecting a first oil passage connecting the oil storage tank, the hydraulic pressure source and the lower chamber of the one or more tilt cylinders, and connecting the first oil passage and the lower chamber of the one or more trim cylinders A second oil passage, a switching valve provided on the second oil passage, and a control unit configured to control lifting and lowering of the outboard motor and opening and closing of the switching valve, the control unit instructing by a user
  • a series of control operations including at least one of raising and lowering of the outboard motor and change of the open / close state of the switching valve are executed using as a trigger.
  • the outboard motor lifting device in the control method of an outboard motor lifting device for lifting an outboard motor, comprises one or a plurality of A tilt cylinder, one or more trim cylinders, a hydraulic pressure source, an oil storage tank, a first oil passage connecting the hydraulic pressure source and the lower chamber of the one or more tilt cylinders, the first oil A second oil passage connecting the passage and the lower chamber of the one or more trim cylinders, and a switching valve provided on the second oil passage, the control method triggering an instruction by the user And at least one of raising and lowering of the outboard motor, and a series of steps including changing the open / close state of the switching valve.
  • FIG. 1 is a block diagram showing a schematic configuration of an outboard motor elevator according to a first embodiment.
  • BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows the outboard motor raising / lowering apparatus which concerns on Embodiment 1, (a) is a usage example of an outboard motor, (b) is a schematic internal structure of an outboard motor, (c) is an outboard motor lifting apparatus It is a figure showing a drive switch of.
  • FIG. 1 is a front view showing an example of the configuration of an outboard motor elevator according to a first embodiment.
  • FIG. 1 is a side sectional view of an outboard motor elevator according to a first embodiment.
  • FIG. 2 is a diagram showing a hydraulic circuit of the outboard motor elevator according to Embodiment 1 together with a control unit.
  • FIG. 5 is a circuit diagram showing an exemplary configuration of a control unit according to the first embodiment.
  • FIG. 6 is a view showing an example of control of a switching valve by a control unit according to the first embodiment. It is a flowchart which shows the mooring control by the control part which concerns on Embodiment 1.
  • FIG. (A)-(f) is a figure which shows operation
  • FIG. It is a flowchart which shows another example of the mooring control by the control part which concerns on Embodiment 1.
  • FIG. (A)-(d) is a figure which shows operation
  • FIG. FIG. 7 is a block diagram showing the configuration of a control unit according to a second embodiment.
  • FIG. 13 is a block diagram showing the configuration of a control unit according to a third embodiment.
  • FIG. 13 is a diagram showing a hydraulic circuit of an outboard motor elevator according to a fourth embodiment together with a control unit.
  • FIG. 16 is a diagram showing a hydraulic circuit of an outboard motor elevator according to a fifth embodiment together with a control unit.
  • FIG. 16 is a diagram showing a hydraulic circuit of an outboard motor elevator according to a sixth embodiment together with a control unit.
  • FIG. 18 is a diagram showing a hydraulic circuit of an outboard motor elevator according to a seventh embodiment together with a control unit.
  • FIG. 18 is a diagram showing a hydraulic circuit of an outboard motor elevator according to an eighth embodiment together with a control unit.
  • FIG. 16 is a diagram showing a hydraulic circuit of an outboard motor elevator according to a ninth embodiment together with a control unit.
  • FIG. 21 is a diagram showing a hydraulic circuit of an outboard motor elevator according to a tenth embodiment together with a control unit.
  • FIG. 21 is a diagram showing a hydraulic circuit of an outboard motor elevator according to Embodiment 11 together with a control unit.
  • FIG. 12 is a view showing the configuration of the outboard motor and its surroundings according to the first to eleventh embodiments.
  • Embodiment 1 An outboard motor elevator 1 according to a first embodiment of the present invention will be described below with reference to FIGS. 1 to 7.
  • the outboard motor lifting device 1 is a device for lifting and lowering the outboard motor 300.
  • FIG. 1 is a block diagram showing a schematic configuration of a control system of the outboard motor elevator 1.
  • FIG. 2A is a view showing a usage example of the outboard motor lifting device 1, and shows the outboard motor lifting device 1 attached to the rear of the hull (main body) 200 and the outboard motor 300. .
  • the solid line in (a) of FIG. 2 indicates a state in which the outboard motor 300 is lowered, and the broken line in (a) of FIG. 2 indicates a state in which the outboard motor 300 is raised.
  • FIG. 2B is a schematic view schematically showing an internal configuration of the outboard motor 300.
  • the outboard motor 300 includes an engine 301, a propeller 303, and a power transmission mechanism 302 that transmits power from the engine 301 to the propeller 303.
  • the power transmission mechanism is constituted by, for example, a shaft or a gear.
  • FIG. 2 shows the control lever 400 for operating the outboard motor 300 and the outboard motor lifting device 1.
  • the control lever 400 includes a mooring switch 401, an exit port switch 402, and a hull manual switch 403.
  • the outboard motor lifting device 1 When the user presses the mooring switch 401 once, the outboard motor lifting device 1 performs mooring control described later on the outboard motor 300. Further, when the user presses the departure port switch 402 once, the outboard motor lifting device 1 performs departure port control described later on the outboard motor 300. In addition, when the user keeps pushing either “UP” or “DOWN” in the manual hull switch 403, the outboard motor lifting device 1 performs lifting control and lowering control on the outboard motor 300.
  • the operation lever 400 provided with the mooring switch 401 and the departure port switch 402 is only one mode for receiving the raising instruction, the lowering instruction, the mooring instruction, and the departure instruction of the outboard motor 300, and these instructions are It may be input through another device.
  • the outboard motor lifting device 1 is configured to receive at least any one of an instruction for raising, lowering and mooring and leaving of the outboard motor 300 by an input to a touch panel or the like provided in a steering room. It is also good.
  • the outboard motor lifting device 1 receives at least any one of an elevation instruction, a descent instruction, a mooring instruction, and a departure instruction of the outboard motor 300 according to an input to a terminal device configured to wirelessly communicate with the control unit 100 described later It may be configured to receive the As shown in FIG. 1, the outboard motor lifting apparatus 1 includes a control unit 100, a switching valve 60, and a motor 16. The control of the switching valve 60 and the motor 16, and the control of the switching valve 60 and the motor 16 by the control unit 100 will be described later, and the description thereof will be omitted here.
  • the control unit 100 is supplied with a hull state signal SIG_IN.
  • the hull state signal SIG_IN is, for example, a signal indicating the on / off state of the engine 301, and is supplied from the engine 301.
  • the hull state signal SIG_IN may be a gear signal indicating whether the outboard motor 300 is in a power transmittable state, that is, in an in-gear state.
  • control unit 100 is supplied with SIG_MOO, which is a signal indicating the on / off state of the mooring switch 401, from the mooring switch 401.
  • SIG_RET which is a signal indicating the on / off state of the departure port switch 402 is supplied from the departure port switch 402.
  • control unit 100 is supplied with SIG_UDB, which is a signal according to the user's up / down operation on the manual hull switch 403, from the manual hull switch 403.
  • control unit 100 is supplied with SIG_UDM, which is a signal according to the user's up / down operation on the outboard motor manual switch 404 provided in the outboard motor 300, from the outboard motor manual switch 404.
  • SIG_UDB and SIG_UDM may be collectively referred to as SIG_UD.
  • control unit 100 is supplied with SIG_ANG, which is a signal provided in the outboard motor 300 and indicates the measurement result of the angle sensor 405 that measures the angle of the outboard motor 300, from the angle sensor 405.
  • the control unit 100 controls the control signal SIG_CONT according to the input signal supplied from at least one of the engine 301, the mooring switch 401, the departure port switch 402, the hull manual switch 403, the outboard motor manual switch 404, and the angle sensor 405. And supplies the generated control signal SIG_CONT to the switching valve 60 and the motor 16.
  • FIG. 3 is a front view showing an example of the configuration of the outboard motor elevator 1
  • FIG. 4 is a side sectional view of the outboard motor elevator 1.
  • the outboard motor lifting device 1 includes a cylinder unit 10, a pair of stern brackets 70 attached to the rear of the hull 200, and a swivel bracket 80 attached to the outboard motor 300. .
  • the cylinder unit 10 includes, as an example, two trim cylinders 12, one tilt cylinder 14, a motor 16, a tank (oil storage tank) 18, an upper joint 22, and a base 24, as shown in FIG.
  • the trim cylinder 12 and the tilt cylinder 14 are provided so as not to move relative to the base 24.
  • the number of trim cylinders 12 and tilt cylinders 14 provided in the cylinder unit 10 does not limit the present embodiment, and the cylinder unit 10 including one or more trim cylinders 12 and one or more tilt cylinders 14 is also implemented in this embodiment. Included in the form. Also, the following description is true for the cylinder unit 10 having such an arbitrary number of trim cylinders 12 and tilt cylinders 14.
  • the trim cylinder 12 includes a cylinder 12a, a piston 12c (see FIG. 5) slidably provided in the cylinder 12a, and a piston rod 12b fixed to the piston 12c.
  • the tilt cylinder 14 also includes a cylinder 14a, a piston 14c (see FIG. 5) slidably provided in the cylinder 14a, and a piston rod 14b fixed to the piston 14c.
  • through holes are respectively formed in the base 24 and the stern bracket 70, and the base 24 and the stern bracket 70 are relative to each other through the undershaft 26 penetrating the through holes. It is rotatably connected.
  • an upper joint 22 is provided at the tip of the piston rod 14b, and a support member 28 is fixed to the swivel bracket 80.
  • a through hole is formed in each of the upper joint 22 and the support member 28, and the upper joint 22 and the swivel bracket 80 are connected so as to be relatively rotatable via the upper shaft 23 passing through the through holes of these. There is.
  • through holes are respectively formed in upper ends of the stern bracket 70 and the swivel bracket 80, and as shown in FIG. 4, the stern bracket 70 and the swivel bracket 80 are supported by the support shaft 32 penetrating the through holes. Are connected rotatably relative to each other.
  • the angular area of the outboard motor 300 adjusted by the upward and downward movement of the piston rod 14b of the tilt cylinder 14 is composed of the trim area and the tilt area shown in FIG. 2 (a).
  • the tilt area is an angle area where the tip of the piston rod 12 b of the trim cylinder 12 can not abut the swivel bracket 80, and the angle adjustment of the outboard motor 300 in the tilt area is performed by the piston rod 14 b of the tilt cylinder 14.
  • the trim area is an angle area where the tip of the piston rod 12b of the trim cylinder 12 can contact the swivel bracket 80, and the angle adjustment of the outboard motor 300 in the tilt area is performed by the piston rod 12b of the trim cylinder 12 and the tilt It can be done by both of the piston rods 14 b of the cylinder 14.
  • the angle adjustment of the outboard motor 300 may be performed only by the piston rod 14b of the tilt cylinder 14 even in the tilt region.
  • FIG. 5 is a diagram showing a hydraulic circuit of the outboard motor elevator 1 together with the control unit 100. As shown in FIG. In FIG. 5, the same members as those described above are denoted by the same reference numerals.
  • the outboard motor lifting device 1 includes a motor 16, a pump 42, a first check valve 44a, a second check valve 44b, an up blow valve 46a, a down blow valve 46b, and a main valve ( Pump port) 48, manual valve 52, thermal valve 54, tilt cylinder 14, trim cylinder 12, tank 18, filters F1 to F2, first flow path C1 to ninth flow path C9, and control unit 100 There is.
  • the pump 42 as a hydraulic pressure source driven by the motor 16 performs any one of “forward rotation”, “reverse”, and “stop” according to the elevation signal SIG_UD indicating the elevation instruction of the outboard motor by the driver.
  • the hydraulic oil is stored in the tank 18.
  • the main valve 48 includes a spool 48a, a first check valve 48b, and a second check valve 48c.
  • the main valve 48 is partitioned by the spool 48 a into a first shuttle chamber 48 d on the first check valve 48 b side and a second shuttle chamber 48 e on the second check valve 48 c side.
  • the first flow path C1 connects the pump 42 and the first shuttle chamber 48d, and also connects the pump 42 and the first check valve 44a. Further, the up blow valve 46a is connected to the first flow passage C1.
  • the second flow path C2 connects the pump 42 and the second shuttle chamber 48e, and also connects the pump 42 and the second check valve 44b. Further, the down blow valve 46 b is connected to the second flow path C2.
  • connection in the oil passage configuration described in the present specification is indirectly connected via the other oil passage element or directly connected by the flow passage without passing through another hydraulic element. Both cases are included.
  • other hydraulic elements include, for example, a valve, a cylinder, and a filter.
  • the tilt cylinder 14 is divided into an upper chamber 14f and a lower chamber 14g by a piston 14c, and the piston 14c of the tilt cylinder 14 is provided with a shock blow valve 14d and a return valve 14e as shown in FIG.
  • the trim cylinder 12 is divided into an upper chamber 12f and a lower chamber 12g by a piston 12c.
  • upper and “lower” in “upper chamber” and “lower chamber” are simply names for distinguishing each other, and the upper chamber is vertically above the lower chamber. It does not necessarily mean to be located in. Therefore, the "upper chamber” may be expressed as a first chamber, which is a chamber through which the rod connected to the piston passes, of the first chamber and the second chamber partitioned by the piston in the cylinder. The “lower chamber” may be expressed as a second chamber which is a chamber into which the rod connected to the piston does not penetrate, of the first chamber and the second chamber partitioned by the piston in the cylinder.
  • the first check valve 48b is connected to the lower chamber 14g of the tilt cylinder 14 via the filter F1 and the third flow passage C3.
  • the second check valve 48c is connected to the upper chamber 14f of the tilt cylinder 14 via the filter F2 and the fourth flow passage C4.
  • an upper chamber oil supply valve 56 is connected to the fourth flow path C4.
  • a manual valve 52 and a thermal valve 54 are connected to a fifth flow path C5 connecting the third flow path C3 and the fourth flow path C4.
  • the first channel C1 and the third channel C3 connecting the pump 42 and the lower chamber 14g of the tilt cylinder 14 via the main valve 48 and the filter F1 are collectively referred to as a first oil channel.
  • the sixth flow path C6 (also referred to as the flow path or the first oil path) connects the third flow path C3 and the lower chamber 12g of the trim cylinder 12.
  • the seventh flow passage C7 (also referred to as a third oil passage) connects the upper chambers 12f of the plurality of trim cylinders 12 to one another.
  • the presence of the seventh flow passage C7 equalizes the pressures in the upper chambers 12f of the plurality of trim cylinders 12 with each other.
  • An eighth flow passage C8 (also referred to as a second oil passage) connects one of the upper chambers 12f of the plurality of trim cylinders 12 to the tank 18.
  • the ninth flow path C9 connects the tank 18 with the first check valve 44a and the second check valve 44.
  • the first check valve 44a supplies the hydraulic fluid from the tank 18 to the pump 42 when the pump 42 tries to recover the hydraulic fluid even when the trim cylinder 12 and the tilt cylinder 14 contract and complete. Do.
  • the second check valve 44 b supplies hydraulic oil of the displacement volume of the piston rod 14 b from the tank 18 to the pump 42, and when the trim cylinder 12 extends, The hydraulic fluid of the displacement volume of the piston rod 12 b is supplied from the tank 18 to the pump 42.
  • the up blow valve 46 a returns excess hydraulic oil to the tank 18 when the pump 42 supplies hydraulic oil even when the trim cylinder 12 and the tilt cylinder 14 are extended.
  • the down blow valve 46b returns the hydraulic fluid of the approach volume of the piston rod 14b to the tank 18 when the tilt cylinder 14 contracts, and when the trim cylinder 12 contracts, the down blow valve 46b takes the approach volume of the piston rod 12b.
  • the hydraulic oil of the above is returned to the tank 18.
  • the manual valve 52 can be manually opened and closed, and the hydraulic oil is returned from the lower chamber 14 g of the tilt cylinder 14 to the tank 18 by opening the manual valve 52 at the time of maintenance of the outboard motor lifting apparatus 1 or the like. Be Thereby, the tilt cylinder 14 can be contracted manually.
  • the thermal valve 54 returns the surplus hydraulic oil to the tank 18 when the volume of the hydraulic oil increases due to the temperature rise.
  • switching valve 60 As shown in FIG. 5, the switching valve 60 provided on the eighth flow path C8 is driven by the solenoid 62 and the plunger 62 for driving the eighth flow path C8 in the blocking state or the open state, and Is equipped.
  • a control signal SIG_CONT is supplied to the solenoid 62 from the control unit 100 described later, and the ON / OFF of the solenoid 62 is switched based on the control signal SIG_CONT.
  • the switching valve 60 closes the eighth flow passage C8 by being closed when the solenoid 62 is off, and opens the eighth flow passage C8 by being opened when the solenoid 62 is on. It may be configured as a normally closed valve, or the eighth flow path C8 is opened by being open when the solenoid is off, and the eighth flow by being closed when the solenoid is on. It may be configured as a normally open valve that shuts off the passage C8.
  • the switching valve 60 When the switching valve 60 is configured as a normally open valve, even if the switching valve 60 does not operate, a state in which the eighth flow passage C8 is opened, that is, the upper chamber of the trim cylinder 12 Since the 12f and the tank 18 are maintained in communication with each other, the angle adjustment of the outboard motor 300 can be performed using both the tilt cylinder 14 and the trim cylinder 12.
  • the switching valve 60 when the switching valve 60 is configured as a normally closed valve, even if the switching valve 60 does not operate, the eighth channel C8 is shut off, that is, the trim cylinder 12 The upper chamber 12f and the tank 18 are maintained in a disconnected state. Therefore, since the hydraulic oil does not flow out from the upper chamber 12f of the trim cylinder 12, the angle adjustment of the outboard motor 300 can be performed with only the tilt cylinder 14, and the outboard motor 300 can be kept held.
  • the plunger 64 is provided with a valve 66 for stopping the outflow of the hydraulic oil from the upper chamber 12f of the trim cylinder 12 in the closed state of the eighth flow passage C8.
  • the solenoid 62 is the on / off solenoid, and the plunger 64 takes the eighth channel C8 in either the closed state or the open state as an example. It does not limit the form.
  • a proportional solenoid may be employed as the solenoid 62 so that the plunger 64 can be controlled to any position from the blocking position to the opening position. With such a configuration, the flow rate of the hydraulic oil passing through the eighth flow passage C8 can be finely controlled, so that the ascent and descent of the outboard motor 300 can be more finely controlled.
  • the outboard motor lifting apparatus 1 includes a control unit 100.
  • the control unit 100 refers to the ignition signal SIG_IG indicating the ignition on / off of the hull 200, the hull state signal SIG_IN, and the elevation signals SIG_MOO, SIG_RET, SIG_UDB, and SIG_UDM indicating the elevation instruction of the outboard motor 300 by the driver.
  • a control signal SIG_CONT for controlling the valve 60 is generated.
  • the generated control signal SIG_CONT is supplied to the switching valve 60.
  • the state signal which shows the state of the outboard motor 300 is mentioned as an example of ship state signal SIG_IN, the embodiment as described in this specification is not limited to this.
  • Various examples of hull condition signals are described below.
  • the outboard motor lifting device 1 can automatically change the speed of the outboard motor according to the state of the outboard motor 300.
  • FIG. 6 is a circuit diagram showing one configuration example of the control unit 100. As shown in FIG. In this example, the ignition signal SIG_IG, the hull state signal SIG_IN, and the elevation signal SIG_UD are all input to the control unit 100 as analog signals.
  • the control unit 100 is configured to include the first connector 101 to the fourth connector 104, the first switching element 121 to the fifth switching element 125, and the like.
  • the first switching element 121, the third switching element 123, and the fourth switching element 124 are, for example, transistors
  • the second switching elements are, for example, FETs (field effect transistors). It is done.
  • An ignition signal SIG_IG is input to the collector electrode of the first switching element 121, the collector electrode of the third switching element 123, and the drain electrode of the second switching element 122 via the first connector 101.
  • the hull state signal SIG_IN is input to the base electrode of the first switching element 121 via the second connector 102 and the diode 111, and the emitter of the first switching element 121 is input to the base electrode of the third switching element 123.
  • a current is input through the diode 112.
  • the elevation signal SIG_UD is input to the base electrode of the fourth switching element 124 via the third connector 103 and the diode 113, and the third connector 103 and the third electrode 103 are input to the base electrode of the fifth switching element 125.
  • An elevation signal SIG_UD is input via the diode 114.
  • a signal corresponding to the emitter current of the first switching element 121 is transmitted to the gate electrode of the second switching element 122 via the third switching element 123 and the fourth switching element, or the third switching element
  • the signal is input via the 123 and the fifth switching element. More specifically, the emitter current of the fourth switching element 124 and the emitter current of the fifth switching element 125 are input to the gate electrode of the second switching element 122 via the diode 115.
  • the control signal SIG_CONT is supplied from the source electrode of the second switching element 122 to the switching valve 60 via the fourth connector 104.
  • an engine signal indicating the state of the engine 301 provided in the outboard motor 300 can be given.
  • an engine signal is a signal which shows the number of rotations of engine 301, for example, and can be acquired from engine 301 as an example. Since the engine is off if the engine speed is 0 and the engine is on if the engine speed is not zero, the signal indicating the engine speed is also a signal indicating on / off of the engine.
  • the outboard motor elevator apparatus 1 automatically raises and lowers the speed of the outboard motor according to the state of the engine 301 provided in the outboard motor 300 as described below Can be changed to
  • the hull state signal SIG_IN there is a gear signal indicating whether the power transmission mechanism 302 provided in the outboard motor 300 is in a power transmittable state, that is, in an in-gear state.
  • the gear signal can be obtained from the power transmission mechanism 302 as an example.
  • the outboard motor lifting apparatus 1 moves the lifting speed of the outboard motor in accordance with the state of the power transmission mechanism 302 provided in the outboard motor 300 as will be seen below. It can be changed automatically.
  • the above-mentioned engine signal and in-gear signal are examples of the state signal indicating the state of the outboard motor 300.
  • FIG. 7 is a table illustrating the state of the outboard motor 300 indicated by the hull state signal SIG_IN, the elevation instruction of the outboard motor by the driver indicated by the elevation signal SIG_UD, and the state of the switching valve 60 controlled by the control unit 100. It is.
  • the hull state signal SIG_IN is a signal related to the engine rotation unit of the engine 301 provided in the outboard motor 300, and the control unit 100 navigates when the engine rotation speed is equal to or more than the first threshold value for the rotation speed. It determines with it being a state and makes the switching valve 60 an open state.
  • the first threshold relating to the rotational speed has a positive value set appropriately.
  • the control unit 100 may be configured to determine that the vehicle is in the navigation state and to set the switching valve 60 in the open state when the engine speed exceeds the second threshold related to the speed.
  • the second threshold regarding the rotational speed has a value of 0 or more set appropriately.
  • the control unit 100 refers to the ship state signal SIG_IN to determine the navigation state and the stop state, and controls the switching valve 60 to be in the open state when the navigation state is determined.
  • control unit 100 refers to the ship state signal SIG_IN to determine the navigation state and the stop state, and controls the switching valve 60 to be in the closed state when it is determined that the ship is in the stop state.
  • the outboard motor 300 is operated by the piston rod 14b of the tilt cylinder 14. Can be held firmly.
  • the control unit 100 sets the switching valve 60 in the open state. .
  • hydraulic oil is supplied from the lower chamber 14g of the tilt cylinder 14 to the lower chamber 12g of the trim cylinder 12.
  • the piston rod 12 b of the trim cylinder 12 is raised until it abuts on the swivel bracket 80.
  • the control of the switching valve 60 is not limited to the above-described example, and can be appropriately set in consideration of the user's convenience, the adaptability of the outboard motor lifting apparatus 1 to external force, and the like.
  • control unit 100 may set the switching valve 60 in the closed state.
  • control unit 100 may set the switching valve 60 in the closed state.
  • control unit 100 may select either the open state or the closed state by referring to a user instruction signal indicating an instruction from the user, or by referring to another signal, the open state or One of the closed states may be selected.
  • the switching valve 60 is disposed on the eighth flow passage C8 connected to the upper chamber (first chamber) 12f of the trim cylinder 12.
  • a configuration may be considered in which the switching valve 60 is provided on the sixth flow passage C6 connected to the lower chamber 12g of the trim cylinder 12.
  • the switching valve 60 When the switching valve 60 is provided on the sixth flow path C6, when a normally closed valve is used as the switching valve 60, an excessive pressure is applied to the switching valve 60 when an external force is applied to the piston rod 12b. Because of the possibility, it is necessary to provide a separate protection valve to relieve the excessive pressure.
  • the configuration in which the switching valve 60 is provided on the eighth flow passage C8 connected to the upper chamber (first chamber) 12f of the trim cylinder 12 is the same as the lower chamber 12g of the trim cylinder 12 Compared to the configuration in which the switching valve 60 is provided on the connected sixth flow path C6, there is an advantage that downsizing and weight reduction of the outboard motor lifting device can be achieved. In addition, there is an advantage of suppressing the manufacturing cost and improving the reliability.
  • the control unit 100 executes a series of control operations including at least one of raising and lowering of the outboard motor 300 and changing of the open / close state of the switching valve 60 using an instruction from the user as a trigger.
  • FIG. 8 is a flowchart showing the mooring control by the control unit 100, and shows mooring control in the case of controlling the elevation of the outboard motor 300 according to the motor current of the motor 16.
  • the motor 16 drives the pump 42 of the hydraulic circuit as described above.
  • the outboard motor 300 continues the rising control while it is fully lifted, or when the falling control is continued while it is completely lowered, the load on the motor 16 is increased, and the operating current is greater than the operating current.
  • a large blow current may be supplied to the motor 16 as a drive current.
  • the control unit 100 detects whether the outboard motor 300 has completely risen or falls based on whether the current value of the drive current flowing to the motor 16 is an operation current or a blow current.
  • Step S101 the control unit 100 determines whether the engine 301 is on according to the hull state signal SIG_IN supplied from the engine 301.
  • the process proceeds to step S102.
  • the control unit 100 determines that the engine 301 is off (NO in step S101)
  • the process proceeds to step S105. In this step, instead of determining whether the engine 301 is on, it may be determined whether the power transmission mechanism 302 of the outboard motor 300 is in gear.
  • Steps S102, S103, S104 When the control unit 100 determines that the engine 301 is on, the control unit 100 ends the mooring control without operating the outboard motor lifting device 1 regardless of whether the mooring switch 401 is on or off. That is, the control unit 100 ends the mooring control without performing the lifting and lowering control of the outboard motor 300 and the switching valve 60.
  • the control unit 100 first determines whether or not the mooring control is to be performed on the condition that the engine 301 of the outboard motor 300 is off (or not in the in-gear state). Therefore, even if the engine 301 is in the on state (or in the in-gear state), a series of mooring control is performed when the user unintentionally operates the operation lever 400. It can prevent.
  • Step S105 When the controller 100 determines that the engine 301 is off in step S101, the controller 100 determines whether the mooring switch 401 is on in step S105. If it is determined that the mooring switch 401 is off (NO in step S105), the control unit 100 proceeds to step S106.
  • step S105 When it is determined that the mooring switch 401 is on (YES in step S105), the control unit 100 proceeds to step S107. In this step, instead of determining whether or not the mooring switch 401 is on, it may be configured to determine whether or not the mooring instruction from the user has been received via another device.
  • Step S106 When it is determined as NO in step S105, the control unit 100 ends the mooring control without operating the outboard motor lifting device 1. That is, the control unit 100 ends the mooring control without performing the lifting and lowering control of the outboard motor 300 and the switching valve 60.
  • Step S107 When it is determined YES in step S105, the control unit 100 sets the switching valve 60 in an open state in step S107.
  • step S108 the control unit 100 controls the motor 16 of the outboard motor lifting device 1 to lower the outboard motor 300.
  • both the piston rod 14b of the tilt cylinder 14 and the piston rod 12b of the trim cylinder 12 are lowered.
  • Step S109 The control unit 100 monitors the motor current value of the motor 16 and determines whether the motor current value of the motor 16 is a blow current. While the motor current value of the motor 16 is not the blow current (in other words, it is the operation current) (NO in step S109), the control unit 100 returns to step S108 and the descent of the outboard motor 300 To continue. When control unit 100 detects that the motor current value of motor 16 has become the blow current (in other words, the state where outboard motor 300 has been completely lowered) (YES in step S109), the process proceeds to step S110. move on.
  • Step S110 When it determines with YES by step S109, the control part 100 makes the switching valve 60 a close state in step S110.
  • step S111 the control unit 100 controls the motor 16 of the outboard motor lifting device 1 to raise the outboard motor 300.
  • Step S112 The control unit 100 monitors the motor current value of the motor 16 and determines whether the motor current value of the motor 16 is a blow current. While the motor current value of the motor 16 is not the blow current (in other words, it is the operation current) (NO in step S112), the control unit 100 returns to step S111 and raises the outboard motor 300 To continue. When control unit 100 detects that the motor current value of motor 16 has become the blow current (in other words, the state where outboard motor 300 has been fully lifted) (YES in step S112), the process proceeds to step S113. move on.
  • Step S113 The control unit 100 stops the operation of the motor 16 of the outboard motor lifting device 1 and ends the mooring control for the outboard motor 300.
  • FIG. 9 (a) to 9 (f) are diagrams showing an operation example of the outboard motor elevator 1 through the mooring control.
  • the eighth channel C8 is blocked by being closed when the solenoid 62 is off, and the eighth channel C8 is opened by being opened when the solenoid 62 is on.
  • An example of the case where the switching valve 60 of the normally closed valve is used is shown.
  • the outboard motor 300 when the hull 200 is returned to the port and the engine 301 is turned off, the outboard motor 300 is in the angle region of the trim area where the propeller 303 is disposed below the water surface. It is held.
  • the control unit 100 first turns on the solenoid 62, triggered by an instruction from the user via the mooring switch 401 or another device.
  • the switching valve 60 is opened (corresponding to step S107 in FIG. 8).
  • the control unit 100 lowers the outboard motor 300 after setting the switching valve 60 in the open state (corresponding to step S108 in FIG. 8).
  • the control unit 100 causes the outboard motor 300 to move to the position where the outboard motor 300 has been lowered all the time, and causes the piston rod 12b of the trim cylinder 12 to be in a contracted state.
  • the control unit 100 turns off the solenoid 62 to bring the switching valve 60 into the closed state (corresponding to step S110 in FIG. 8). Then, the control unit 100 raises the outboard motor 300 until the piston rod 14b of the tilt cylinder 14 is in the extended state after the switching valve 60 is in the closed state (corresponding to step S111 in FIG. 8). ). As shown in FIG. 9 (f), when the outboard motor 300 moves up to the full position, the control unit 100 ends the mooring control.
  • the control unit 100 causes the switching valve 60 to be in the open state, triggered by the user's mooring instruction, and then lowers the outboard motor 300, and then the outboard motor 300 is completely lowered. After the switching valve 60 is closed, a series of control to raise the outboard motor 300 is performed. As a result, since the piston rod 12b of the trim cylinder 12 is not anchored in an extended state, the occurrence of rust on the piston rod 12b can be suppressed. As described above, the control unit 100 monitors the current value of the motor 16 and controls the elevation of the outboard motor 300 according to the current value of the motor 16.
  • the control unit 100 determines that the piston rod 12b of the trim cylinder 12 is contracted and the piston rod 14b of the tilt cylinder 14 is extended or not.
  • Conduct mooring control As described above, the control unit 100 preferably refers to the drive current for driving the hydraulic pressure source to determine whether the outboard motor 300 is in the up state or the down state. Can be detected. (The mooring control according to the signal from the angle sensor)
  • the outboard motor lifting device 1 includes an angle sensor 405 that detects a tilt trim angle of the outboard motor 300, and the control unit 100 is supplied from the angle sensor 405 as described below. It is good also as composition which performs mooring control according to a detection signal of angle sensor 405 which carries out.
  • FIG. 10 is a flowchart showing the mooring control by the control unit 100, and shows mooring control in the case of controlling the elevation of the outboard motor 300 according to the detection signal of the angle sensor 405.
  • Steps S201 to S208 are the same as steps S101 to S108 described with reference to FIG. 8, and thus the description thereof is omitted here.
  • Step S209 The control unit 100 refers to the detection signal indicating the tilt trim angle of the outboard motor 300 supplied from the angle sensor 405, and determines whether or not the outboard motor 300 is completely lowered. More specifically, the control unit 100 controls the outboard motor 300 based on whether or not the tilt trim angle of the outboard motor 300 is smaller than a preset first threshold Th1 (whether the angle is smaller than Th1). It is determined whether it has been lowered. While the trim angle of the outboard motor 300 is equal to or greater than the first threshold Th1 (NO in step S209), the control unit 100 returns to step S208 and continues the descent of the outboard motor 300.
  • the control unit 100 determines that the outboard motor 300 has been completely lowered, and proceeds to step S210.
  • the specific value of the threshold Th1 may be appropriately set according to the configurations of the outboard motor lifting device 1 and the outboard motor 300.
  • Step S210 In the case of YES at step S209, the control unit 100 sets the switching valve 60 in the closed state at step S210.
  • step S211 the control unit 100 controls the motor 16 of the outboard motor lifting device 1 so as to raise the outboard motor 300.
  • Step S212 The control unit 100 monitors the detection signal of the angle sensor 405 and refers to the detection signal indicating the tilt trim angle of the outboard motor 300 to determine whether the outboard motor 300 has been lifted.
  • the control unit 100 determines whether the outboard motor 300 is lifted based on whether or not the tilt trim angle of the outboard motor 300 is larger than the second threshold Th2 set in advance (whether or not angle> Th2). Determine Here, the second threshold Th2 is larger than the first threshold Th1. While the trim angle of the outboard motor 300 is less than or equal to the second threshold value Th2 (NO in step S212), the control unit 100 returns to step S211 and continues the ascent of the outboard motor 300.
  • control unit 100 detects that the trim angle of outboard motor 300 is larger than second threshold value Th2 (YES in step S212), the process proceeds to step S213.
  • the specific value of the threshold value Th2 may be appropriately set according to the configurations of the outboard motor lifting device 1 and the outboard motor 300.
  • Step S213 In the case of YES at step S212, the control unit 100 stops the operation of the motor 16 of the outboard motor lifting device 1, and ends the mooring control for the outboard motor 300.
  • control unit 100 can also detect the state in which the outboard motor 300 is completely lowered by referring to the detection result of the angle sensor 405 that detects the rising angle of the outboard motor 300.
  • Complex tilt trim control can be performed while suppressing the time and effort of the user.
  • FIG. 11 is a flowchart showing departure control by the control unit 100.
  • Step S301 the control unit 100 determines whether the engine 301 is on according to the hull state signal SIG_IN supplied from the engine 301.
  • the process proceeds to step S302.
  • the control unit 100 determines that the engine 301 is off (NO in step S301)
  • the control unit 100 proceeds to step S303. In this step, instead of determining whether the engine 301 is on, it may be determined whether the power transmission mechanism 302 of the outboard motor 300 is in gear.
  • Step S302 When it is determined that the engine 301 is on, the control unit 100 ends the port departure control without operating the lifting and lowering of the outboard motor 300 by the outboard motor lifting and lowering device 1. As described above, the control unit 100 first determines whether or not the mooring control is to be performed on the condition that the engine 301 of the outboard motor 300 is off (or not in the in-gear state). Therefore, if the user unintentionally operates the operation lever 400 despite the engine 301 being in the on state (or in the in-gear state), a series of port departure control is performed. It can prevent.
  • Step S303 When control unit 100 determines in step S301 that engine 301 is off (NO in step S301), control unit 100 determines whether or not departure switch 402 is on in step S303. When it is determined that the departure port switch 402 is off (NO in step S303), the control unit 100 proceeds to step S304. If the control unit 100 determines that the departure port switch 402 is on (YES in step S303), the process proceeds to step S305. In this step, instead of determining whether or not the departure switch 402 is on, it may be determined whether or not the user has received a departure instruction via another device.
  • Step S304 In the case of NO in step S303, the control unit 100 ends the departure control without operating the lifting and lowering of the outboard motor 300 by the outboard motor lifting and lowering device 1.
  • Step S305 In the case of YES at step S303, the control unit 100 sets the switching valve 60 in the closed state at step S305.
  • step S306 the control unit 100 controls the motor 16 of the outboard motor lifting device 1 to lower the outboard motor 300. As a result, both the piston rod 14b of the tilt cylinder 14 and the piston rod 12b of the trim cylinder 12 are lowered.
  • Step S307 The controller 100 monitors the motor current value of the motor 16 and determines whether the motor current value of the motor 16 is a blow current. While the motor current value of the motor 16 is not the blow current (in other words, it is the operation current) (NO in step S307), the control unit 100 returns to step S306 to lower the outboard motor 300 To continue. When control unit 100 detects that the motor current value of motor 16 has become the blow current (in other words, the state where outboard motor 300 has been completely lowered) (YES in step S307), the process proceeds to step S308. move on.
  • Step S308 Since the motor current value of the motor 16 has become the blow current, the control unit 100 determines that the outboard motor 300 has been completely lowered, and stops the operation of the motor 16 of the outboard motor lifting device 1.
  • Step S309 the control unit 100 causes the switching valve 60 to be in the open state, and ends the departure control for the outboard motor 300.
  • step S307 the detection signal of the angle sensor 405 is monitored instead of the motor current value of the motor 16, and the outboard motor 300 is lowered with reference to the detection signal indicating the tilt trim angle of the outboard motor 300. It may be determined whether or not it is.
  • the control unit 100 lowers the outboard motor 300 based on whether or not the tilt trim angle of the outboard motor 300 is smaller than a first threshold Th1 set in advance (whether or not the angle ⁇ Th1). It is determined whether or not it is.
  • FIG. 12 (a) to 12 (d) are diagrams showing an operation example of the outboard motor elevator 1 through the departure control.
  • the eighth channel C8 is shut off by being in the closed state when the solenoid 62 is off, and the eighth channel C8 is opened by being in the open state when the solenoid 62 is on.
  • the case where the switching valve 60 of the normally closed valve is used is shown as an example.
  • the outboard motor 300 when the user is aboard the hull 200 and the engine 301 is in the off state, the outboard motor 300 is held in the lifted state.
  • the control unit 100 causes the switching valve 60 to be closed by turning off the solenoid 62 as shown in FIG. 11), while keeping the piston rod 14b of the tilt cylinder 14 in the contracted and cut-off state, the outboard motor 300 is temporarily moved to the position of the lowered and cut-off state (corresponding to step S306 in FIG. 11) .
  • the control unit 100 turns on the solenoid 62 to open the switching valve 60 (corresponding to step S311 in FIG. 11), and the tilt cylinder 14 and trim cylinder
  • the outboard motor control is finished by setting the outboard motor 300 to be able to move up and down in the trim area by the step S12.
  • control unit 100 causes the switching valve 60 to be in the closed state by using the departure instruction from the user as a trigger, and then lowers the outboard motor 300, and then the outboard motor 300 is completely lowered.
  • a series of control is performed to open the switching valve 60. Therefore, it is possible to avoid supporting the outboard motor 300 with only the tilt cylinder 14 at the time of departure.
  • FIG. 7 is a block diagram showing the configuration of the control unit 100a according to the present embodiment.
  • the outboard motor elevator according to the present embodiment is provided with a control unit 100a shown in FIG. 13 in place of the control unit 100 in the outboard motor elevator 1 according to the first embodiment.
  • the other configuration of the outboard motor elevator according to the present embodiment is the same as that of the outboard motor elevator 1 described in the first embodiment.
  • the control unit 100a includes a hull state signal AD conversion circuit 131, elevation signal AD conversion circuits 132, 135, and 136, an operation unit 133, and a control signal generation circuit 134. Also in the present embodiment, the hull state signal SIG_IN, the elevation signal SIG_UD, the mooring switch signal SIG_MOO, and the departure port switch signal SIG_RET are input to the control unit 100a as analog signals. In FIG. 7, the ship state signal AD conversion circuit 131 is referred to as an input signal AD conversion circuit 131.
  • the hull state signal AD conversion circuit 131 is a conversion circuit that converts the hull state signal SIG_IN into a digital signal.
  • the hull state signal SIG_IN as the converted digital signal is supplied to the calculation unit 143.
  • the elevation signal AD conversion circuit 132 is a conversion circuit that converts the elevation signal SIG_UD into a digital signal.
  • the elevation signal SIG_UD as a converted digital signal is supplied to the calculation unit 143.
  • the elevation signal AD conversion circuit 135 is a conversion circuit that converts the mooring switch signal SIG_MOO into a digital signal.
  • the mooring switch signal SIG_MOO as a converted digital signal is supplied to the calculation unit 143.
  • the elevation signal AD conversion circuit 136 is a conversion circuit that converts the outgoing port switch signal SIG_RET into a digital signal.
  • the port switching signal SIG_RET as the converted digital signal is supplied to the calculation unit 143.
  • the operation unit 133 refers to the hull state signal SIG_IN and the elevation signal SIG_UD as digital signals, and determines which of the open state and the closed state the switching valve 60 should be in. A signal indicating the determination result is supplied to the control signal generation circuit 134.
  • the operation unit 133 refers to the ship state signal SIG_IN as a digital signal, the mooring switch signal SIG_MOO, and the departure port switch signal SIG_RET to determine whether the above-mentioned mooring control and departure control should be performed.
  • a signal indicating the determination result is supplied to the control signal generation circuit 134.
  • the control signal generation circuit 134 refers to the signal indicating the determination result, and generates the control signal SIG_CONT according to the determination result.
  • the generated control signal SIG_CONT is supplied to the switching valve 60 and the motor 16.
  • the relationship between the ship state signal SIG_IN and the elevation signal SIG_UD determined by the calculation unit 133 and the state of the switching valve 60 is not limited to this embodiment, but as an example, it is the same as FIG. 7 of the first embodiment. It can be configured to be determined. Further, as the control with reference to the hull state signal SIG_IN, the mooring switch signal SIG_MOO and the departure port switch signal SIG_RET, a series of controls described with reference to FIGS. 8 to 12 can be mentioned.
  • the outboard motor elevator since the outboard motor elevator according to the present embodiment includes the control unit 100a, the speed of raising and lowering the outboard motor can be automatically changed as in the first embodiment. Further, if the hull state signal SIG_IN is a state signal indicating the state of the outboard motor 300, the speed of raising and lowering the outboard motor can be automatically changed according to the state of the outboard motor. In addition, complicated tilt trim control can be performed while suppressing the time and effort of the user.
  • FIG. 8 is a block diagram showing the configuration of the control unit 100b according to the present embodiment.
  • the outboard motor elevator includes a controller 100b shown in FIG. 14 in place of the controller 100 in the outboard motor elevator 1 according to the first embodiment.
  • the same members as those described above are denoted by the same reference numerals, and the description thereof is omitted.
  • control unit 100b includes a digital signal transmission / reception circuit 141, elevation signal AD conversion circuits 132, 135, 136, an operation unit 143, and a control signal generation circuit 134.
  • the digital signal transmission / reception circuit 141 receives the digital signal D_SIG as a ship state signal, and supplies the received digital signal D_SIG to the calculation unit 143.
  • the digital signal D_SIG is a signal transmitted via a wired or wireless network configured on the hull 200, and includes input information INFO_IN.
  • the input information INFO_IN is information similar to the information indicated by the hull state signal SIG_IN described in the first and second embodiments.
  • the input information INFO_IN may include information equivalent to the state signal indicating the state of the outboard motor 300 described in the first and second embodiments.
  • Specific examples of the input information INFO_IN include, for example, a 1-bit flag indicating turning on and off of the engine 301, and a 1-bit flag indicating whether the power transmission mechanism 302 of the outboard motor 300 is in gear. .
  • the digital signal D_SIG may include various information on the hull 200 and various information obtained from outside the hull 200.
  • a specific standard for transmitting the digital signal D_SIG is not limited to this embodiment, but one example is NMEA 2000 (registered trademark) established by National Marine Electronics Association (NMEA).
  • the calculation unit 143 refers to the digital signal D_SIG supplied from the digital signal transmission / reception circuit 141 and the elevation signal SIG_UD as a digital signal supplied from the elevation signal AD conversion circuit 132, and opens the switching valve 60 in an open state. Decide which should be closed. A signal indicating the determination result is supplied to the control signal generation circuit 134.
  • the calculation unit 143 refers to the digital signal D_SIG, the mooring switch signal SIG_MOO, and the departure port switch signal SIG_RET to determine whether the above-mentioned mooring control and departure control should be performed.
  • a signal indicating the determination result is supplied to the control signal generation circuit 134.
  • the relationship between the input information INFO_IN and the elevation signal SIG_UD determined by the calculation unit 143 and the state of the switching valve 60 is not limited to the present embodiment, but is determined similarly to FIG. 6 of the first embodiment as an example. Can be configured. Further, as control performed with reference to the digital signal D_SIG, the mooring switch signal SIG_MOO, and the departure port switch signal SIG_RET, a series of controls described with reference to FIGS. 8 to 12 can be mentioned.
  • calculation unit 143 may be configured to determine whether the switching valve should be in the open state or in the closed state by further referring to other information included in the digital signal D_SIG.
  • the speed of raising and lowering the outboard motor can be automatically changed as in the first embodiment. Further, in the configuration in which the digital signal D_SIG includes information equivalent to the state signal indicating the state of the outboard motor 300, the speed of raising and lowering the outboard motor may be automatically changed according to the state of the outboard motor. it can. In addition, complicated tilt trim control can be performed while suppressing the time and effort of the user.
  • FIG. 15 is a diagram showing a hydraulic circuit of the outboard motor elevator 1a according to the present embodiment together with the control unit 100. As shown in FIG. In FIG. 15, the same members as those described above are denoted by the same reference numerals.
  • the outboard motor lifting apparatus 1a according to the present embodiment may be configured to include the control unit 100a according to the second embodiment instead of the control unit 100 described in the first embodiment, and the control according to the third embodiment. It may be configured to include the portion 100b.
  • the outboard motor elevator 1a according to the present embodiment is provided with two trim cylinders 12-1 and 12-2, and switching valves 60-1 are provided in the upper chambers of these trim cylinders. And 60-2 are connected.
  • the outboard motor elevator 1a according to the present embodiment includes the first switching valve 60-1 connected to the upper chamber (first chamber) 12f of the first trim cylinder 12-1, and the second trim cylinder. And a second switching valve 60-2 connected to the upper chamber (first chamber) 12f of 12-2.
  • first trim cylinder 12-1 and the second trim cylinder 12-2 have the same configuration as the trim cylinder 12 described in the first embodiment, and the first switching valve 60-1 and the second switching valve 60- A configuration 2 is similar to that of the switching valve 60 described in the first embodiment.
  • the outboard motor elevator 1a is provided with a tenth flow passage C10 connected to the upper chamber 12f of the second trim cylinder 12-2.
  • the first switching valve 60-1 is provided on an eighth flow path C8 connected to the upper chamber 12f of the first trim cylinder 12-1, and the second switching valve 60-2 is a tenth flow. It is provided on the road C10.
  • outboard motor lifting apparatus 1a does not have an oil passage connecting the upper chamber 12f of the first trim cylinder 12-1 and the upper chamber 12f of the second trim cylinder 12-2. .
  • the control unit 100 controls each of the motor 16, the first switching valve 60-1 and the second switching valve 60-2 in the mooring control and the departure control of the outboard motor elevator 1 as shown in FIGS. Control is performed as shown in the flowchart of FIG.
  • the outflow of hydraulic fluid from the upper chamber 12f of the first trim cylinder 12-1 and the outflow of hydraulic fluid from the upper chamber 12f of the second trim cylinder 12-2 can be reduced. Since the control can be performed individually using the first switching valve 60-1 and the second switching valve 60-2, more detailed control can be performed with respect to raising and lowering of the outboard motor.
  • FIG. 16 is a diagram showing a hydraulic circuit of the outboard motor elevator 1b according to the present embodiment together with the control unit 100. As shown in FIG. In FIG. 16, the same members as those described above are denoted by the same reference numerals.
  • the outboard motor lifting apparatus 1b according to the present embodiment may be configured to include the control unit 100a according to the second embodiment instead of the control unit 100 described in the first embodiment, and the control according to the third embodiment. It may be configured to include the portion 100b.
  • the outboard motor elevator 1b includes a first trim cylinder 12-1 and a second trim cylinder 12-2, and the first trim cylinder 12-1 and the second trim cylinder A switching valve 60 is directly connected to each upper chamber (first chamber) 12f of 12-2. More specifically, the outboard motor elevator 1b according to the present embodiment includes an eleventh flow passage C11 connected to the seventh flow passage C7, and is disposed above the first trim cylinder 12-1. The chamber 12f, the upper chamber 12f of the second trim cylinder 12-2, and the switching valve 60 are directly connected via the seventh channel C7 and the eleventh channel C11.
  • first trim cylinder 12-1 and the second trim cylinder 12-2 have the same configuration as the trim cylinder 12 described in the first embodiment, and the switching valve 60 has the switching valve 60 described in the first embodiment. Is the same as
  • the control unit 100 controls the motor 16 and the switching valve 60 as shown in the flowcharts of FIGS. 8, 10, and 11 in the mooring control and the departure control of the outboard motor elevator 1.
  • FIG. 17 is a diagram showing the hydraulic circuit of the outboard motor elevator 1c according to the present embodiment, together with the control unit 100. As shown in FIG. In FIG. 17, the same members as those described above are denoted by the same reference numerals.
  • the outboard motor elevator 1c according to the present embodiment may be configured to include the control unit 100a according to the second embodiment instead of the control unit 100 described in the first embodiment, and the control according to the third embodiment It may be configured to include the portion 100b.
  • the outboard motor elevator 1c includes a first trim cylinder 12-1 and a second trim cylinder 12-2, and the first trim cylinder 12-1 and the second trim cylinder.
  • a switching valve 60 is connected to the upper chamber 12f of the first trim cylinder 12-1, which is one of the ends 12-2. More specifically, an eighth channel C8 whose one end is connected to the tank 18 is connected to the upper chamber 12f of the first trim cylinder 12-1, and a switching valve is connected to the eighth channel C8. 60 are provided.
  • the outboard motor elevator 1c includes the tenth flow passage C10 whose one end is connected to the tank 18, and the upper chamber 12f of the second trim cylinder 12-2 Although the other end of the channel C10 of 10 is connected, the switching valve 60 is not provided on the tenth channel C10.
  • first trim cylinder 12-1 and the second trim cylinder 12-2 have the same configuration as the trim cylinder 12 described in the first embodiment.
  • the outboard motor elevator 1c according to the present embodiment does not have a flow path connecting the upper chamber 12f of the first trim cylinder 12-1 and the upper chamber 12f of the second trim cylinder 12-2.
  • the outboard motor elevator 1c according to the present embodiment only the first trim cylinder 12-1 can be controlled using the switching valve 60.
  • the hydraulic oil does not flow out of the upper chamber 12f of the first trim cylinder 12-1 or the hydraulic oil does not flow into the upper chamber 12f by bringing the switching valve 60 into the closed state. Therefore, the outboard motor 300 can be moved up and down using only the tilt cylinder 14 and the second trim cylinder 12-2.
  • the outboard motor 300 can be moved up and down more quickly than when the switching valve 60 is in the open state.
  • the control unit 100 controls the motor 16 and the switching valve 60 as shown in the flowcharts of FIGS. 8, 10, and 11 in the mooring control and the departure control of the outboard motor elevator 1.
  • the switching valve 60 is connected only to the upper chamber 12f of the first trim cylinder 12-1, which is one of the first trim cylinder 12-1 and the second trim cylinder 12-2.
  • the present embodiment is not limited to this.
  • N N is 3 or more
  • trim cylinders 12 are provided and the switching valve 60 is connected to at least one of the upper chambers 12f among the N trim cylinders is also included in the present embodiment.
  • FIG. 18 is a diagram showing a hydraulic circuit of the outboard motor elevator 1d according to the present embodiment together with the control unit 100. As shown in FIG. In FIG. 18, the same members as those described above are denoted by the same reference numerals.
  • the outboard motor lifting apparatus 1d according to the present embodiment may be configured to include the control unit 100a according to the second embodiment instead of the control unit 100 described in the first embodiment, and the control according to the third embodiment. It may be configured to include the portion 100b.
  • the eighth flow passage C8 is connected to the first shuttle chamber 48d and the second shuttle chamber 48e in the main valve 48 via the switching valve 60.
  • the second shuttle chamber 48e is connected to the upper chamber (first chamber) of the tilt cylinder 14 by the fourth flow passage C4 via the second check valve 48c and the filter F2. Therefore, in the present embodiment, the eighth flow passage C8 is connected to the first chamber of the tilt cylinder 14 among the first shuttle chamber 48d and the second shuttle chamber 48e in the main valve 48 via the switching valve 60. It is connected to the second shuttle room 48e.
  • the control unit 100 controls the motor 16 and the switching valve 60 as shown in the flowcharts of FIGS. 8, 10, and 11 in the mooring control and the departure control of the outboard motor elevator 1.
  • FIG. 19 is a diagram showing a hydraulic circuit of the outboard motor elevator 1e according to the present embodiment together with the control unit 100. As shown in FIG. In FIG. 19, the same members as those described above are denoted by the same reference numerals.
  • the outboard motor elevator 1e according to the present embodiment may be configured to include the control unit 100a according to the second embodiment instead of the control unit 100 described in the first embodiment, and the control according to the third embodiment. It may be configured to include the portion 100b.
  • the eighth flow passage C8 is connected to the fourth flow passage C4 via the switching valve 60.
  • the fourth flow passage C4 is connected to the upper chamber (first chamber) of the tilt cylinder 14. Therefore, in the present embodiment, the eighth flow passage C8 is connected to the upper chamber (first chamber) of the tilt cylinder 14 via the switching valve 60.
  • the control unit 100 controls the motor 16 and the switching valve 60 as shown in the flowcharts of FIGS. 8, 10, and 11 in the mooring control and the departure control of the outboard motor elevator 1.
  • FIG. 20 is a diagram showing a hydraulic circuit of the outboard motor elevator 1f according to the present embodiment together with the control unit 100. As shown in FIG. In FIG. 20, the same members as those described above are denoted by the same reference numerals.
  • the outboard motor lifting apparatus 1f according to the present embodiment may be configured to include the control unit 100a according to the second embodiment instead of the control unit 100 described in the first embodiment, and the control according to the third embodiment. It may be configured to include the portion 100b.
  • the outboard motor elevator 1f includes a twelfth channel C12 connected to an eighth channel C8. Further, in the outboard motor elevator 1f according to the present embodiment, one end of the protection valve 71 between the switching valve 60 and the trim cylinder 12 in the eighth channel C8 via the twelfth channel C12. Is connected. Further, the other end of the protective valve 71 is connected to the tank 18.
  • the control unit 100 controls the motor 16 and the switching valve 60 as shown in the flowcharts of FIGS. 8, 10, and 11 in the mooring control and the departure control of the outboard motor elevator 1.
  • the protective valve 71 provided in the outboard motor elevator according to the present embodiment is not limited to the oil path configuration shown in FIG.
  • the switching valve 60 and the trim cylinder 12 (12-1) in the eighth flow passage C8 are similarly provided.
  • One end of the protection valve 71 may be connected via the twelfth flow path C12 therebetween.
  • FIG. 21 is a diagram showing a hydraulic circuit of the outboard motor elevator 1g according to the present embodiment together with the control unit 100. As shown in FIG. In FIG. 21, the same members as those described above are denoted by the same reference numerals.
  • the outboard motor lifting apparatus 1g according to the present embodiment may be configured to include the control unit 100a according to the second embodiment instead of the control unit 100 described in the first embodiment, and the control according to the third embodiment. It may be configured to include the portion 100b.
  • the eighth flow passage C8 is connected to the tank 18 via the switching valve 60, and in the eighth flow passage C8, A protective valve (holding valve) 72 is provided between the switching valve 60 and the tank 18.
  • the above-described configuration of the outboard motor elevator 1g according to the present embodiment is suitable when the switching valve 60 is configured as a normally open valve.
  • the protection valve 72 is provided between the switching valve 60 and the tank 18, even if the switching valve 60 does not operate, the upper surface of the trim cylinder 12 The inflow of hydraulic oil to the chamber 12f is suppressed. For this reason, it can suppress that the outboard motor 300 descends unintentionally.
  • the control unit 100 controls the motor 16 and the switching valve 60 as shown in the flowcharts of FIGS. 8, 10, and 11 in the mooring control and the departure control of the outboard motor elevator 1.
  • the protection valve 72 provided in the outboard motor lifting device according to the present embodiment is not limited to the oil path configuration shown in FIG.
  • protection is provided between the switching valve 60 and the tank 18 in the eighth channel C8.
  • a valve (holding valve) 72 can be provided.
  • FIG. 22 is a diagram showing the hydraulic circuit of the outboard motor elevator 1h according to the present embodiment, together with the control unit 100. As shown in FIG. In FIG. 22, the same members as those described above are denoted by the same reference numerals.
  • the outboard motor elevator 1h according to the present embodiment may be configured to include the control unit 100a according to the second embodiment instead of the control unit 100 described in the first embodiment, and the control according to the third embodiment. It may be configured to include the portion 100b.
  • the outboard motor elevator 1h according to the present embodiment is connected to the pump 42 in addition to the main valve (first pump port) 48 connected to the pump (hydraulic pressure source) 42.
  • the main valve (second pump port) 49 of 2 is provided.
  • the outboard motor elevator 1h according to the present embodiment includes a thirteenth channel C13 and a fourteenth channel C14 that connect the pump 42 and the second main valve 49.
  • the second main valve 49 includes a spool 49a and a check valve 49b, as shown in FIG.
  • the second main valve 49 is partitioned by the spool 49a into a first shuttle chamber 49d on the check valve 49b side and a second shuttle chamber 49e on the opposite side of the check valve 49b as viewed from the spool 49a.
  • the first shuttle chamber 49 d of the second main valve 49 is also connected to the first shuttle chamber 48 d of the main valve 48 via the thirteenth channel C 13 and the first channel C 1.
  • the second shuttle chamber 49e in the main valve 49 is also connected to the second shuttle chamber 48e in the main valve 48 via the fourteenth channel C14 and the second channel.
  • the sixth flow passage C6 connected to the lower chamber 12g of the trim cylinder 12 is a check valve in the second main valve 49 Connected to 49b.
  • the sixth flow passage C6 is connected to the first shuttle chamber 49d of the second main valve 49 via the check valve 49.
  • the sixth flow passage C6 is also connected to the manual valve 52. Further, as shown in FIG. 22, a protection valve 82 is connected to the sixth flow path C6, and the sixth flow path C6 is connected to the tank 18 via the protection valve 82.
  • the outboard motor elevator 1h configured as described above operates as follows.
  • the hydraulic oil is also supplied to the lower chamber 12g of the trim cylinder 12 as in the above embodiment, so the piston rod 14b of the tilt cylinder 14 and the pistons of the trim cylinder 12 The rod 12b ascends together.
  • the hydraulic oil is not supplied to the lower chamber 12 g of the trim cylinder 12.
  • the amount of hydraulic oil supplied by the pump 42 per unit time does not change significantly whether the switching valve 60 is open or closed. Therefore, as in the above embodiment, the piston rod 14b of the tilt cylinder 14 ascends faster than when the switching valve 60 is in the open state.
  • the switching valve 60 is in the open state, the hydraulic oil is also recovered from the lower chamber 12g of the trim cylinder 12 as in the above embodiment, so the piston rod 14b of the tilt cylinder 14 and the pistons of the trim cylinder 12 The rod 12b is lowered together.
  • the switching valve 60 When the switching valve 60 is in the closed state, the hydraulic oil is not collected from the lower chamber 12g of the trim cylinder 12. Therefore, the piston rod 14b of the tilt cylinder 14 has the switching valve 60 in the open state as in the above embodiment. It descends faster than.
  • the control unit 100 controls the motor 16 and the switching valve 60 as shown in the flowcharts of FIGS. 8, 10, and 11 in the mooring control and the departure control of the outboard motor elevator 1.
  • connection mode of the second main valve 49 and the sixth flow path C6 provided in the outboard motor lifting apparatus 1h according to the present embodiment is not limited to the oil path configuration shown in FIG. .
  • the second main valve 49 is provided similarly, and the connection mode of the sixth flow path C6 is configured similarly to FIG. Can.
  • hull state signal SIG_IN described in the first and second embodiments
  • the hull state signal SIG_IN includes one or more of other specific examples described later, instead of the specific examples described in the first and second embodiments or in addition to the specific examples described in the first and second embodiments. can do.
  • the digital signal D_SIG according to the third embodiment includes information equivalent to the information included in the hull state signal SIG_IN. Therefore, the items described below regarding the hull state signal SIG_IN are applied not only to the first and second embodiments but also to the digital signal D_SIG according to the third embodiment.
  • the signals that may be included in the hull status signal SIG_IN are (A) Outboard motor performance signal obtainable from outboard motor 300 (B) It is classified into a hull (body) performance signal obtainable from the hull (body) 200.
  • An example of an outboard motor performance signal obtainable from the outboard motor 300 and an example of control by the control units 100, 100a and 100b (hereinafter also referred to simply as the control unit) with reference to the outboard motor performance signal are as follows. .
  • the ignition signal is a signal indicating on / off of the ignition of the outboard motor 300.
  • control unit when the ignition is on, the control unit performs the same control as the control of the "engine on or in gear” state in FIG. 6, and when the ignition is off, the "engine is not on or in gear” in FIG.
  • the control similar to the control of the state of may be performed.
  • the tilt / trim control signal is a signal for controlling the tilt and / or trim of the outboard motor 300.
  • the control unit switches the switching valve 60 in accordance with the tilt / trim control signal.
  • the engine neutral signal is a signal indicating whether or not the engine of the outboard motor 300 is neutral.
  • control unit when the engine is not neutral, the control unit performs the same control as the control of the "engine on or in gear” state in FIG. 7, and when the engine is neutral, the "engine off or in gear not in FIG. Control similar to the control of the state of "" may be performed.
  • the trim angle signal is a signal indicating the trim angle of the outboard motor 300.
  • the control unit when the trim angle of the outboard motor 300 is smaller than a predetermined value, the control unit performs control similar to the control of the “engine on or in gear” state in FIG.
  • the control similar to the control of the state of "engine off or not in gear” in FIG. 6 may be performed when the angle of is greater than or equal to a predetermined value.
  • the engine water temperature signal is a signal indicating the water temperature of the engine of the outboard motor 300.
  • control unit when the water temperature of the engine is equal to or higher than a predetermined value, the control unit performs the same control as the control of the “engine on or in gear” state in FIG. 6 and the water temperature of the engine is smaller than the predetermined value.
  • control similar to the control of the state of “engine off or not in gear” in FIG. 7 may be performed.
  • the engine water temperature signal is a signal indicating the oil temperature of the engine of the outboard motor 300.
  • the control unit when the oil temperature of the engine is equal to or higher than a predetermined value, the control unit performs the same control as the control of the "engine on or in gear” state in FIG. If smaller, the same control as the control of the state of "engine off or not in gear” in FIG. 7 may be performed.
  • the engine oil pressure signal is a signal indicating the oil pressure of the engine of the outboard motor 300.
  • the control unit when the hydraulic pressure of the engine is equal to or higher than a predetermined value, the control unit performs the same control as the control of the "engine on or in gear” state in FIG. In such a case, the same control as the control of the “engine off or not in gear” state in FIG. 7 may be performed.
  • the water level signal is a signal indicating the water level at the surface of the outboard motor 300.
  • the control unit switches the switching valve 60 according to the water level signal. For example, when the water level indicated by the water level signal is equal to or higher than a predetermined value, the control unit performs the same control as the control of the "engine on or in gear” state in FIG. 7, and the water level indicated by the water level signal is a predetermined value. If smaller, the same control as the control of the state of "engine off or not in gear” in FIG. 7 may be performed.
  • the throttle opening signal is a signal indicating the throttle opening of the engine of the outboard motor 300.
  • the control unit performs, for example, the same control as the control of the "engine on or in gear” state in FIG. 7 when the throttle opening is equal to or greater than a predetermined value, and the throttle opening is smaller than the predetermined value. In such a case, the same control as the control of the “engine off or not in gear” state in FIG. 7 may be performed.
  • Ship speed signal (water flow signal)
  • the boat speed signal is a signal indicating the boat speed.
  • the ship speed signal may be referred to as a water flow signal since the ship speed is identified with reference to the speed of the water flow.
  • the control unit performs control similar to the control of the "engine on or in gear” state in FIG. 7 when the boat speed is equal to or higher than a predetermined value, and in FIG. 7 when the boat speed is smaller than the predetermined value. It may be configured to perform the same control as the control of the state of "engine off or not in gear”.
  • the battery voltage signal is a signal indicating the voltage of the battery.
  • the control unit switches the switching valve 60 according to the voltage of the battery. For example, when the voltage of the battery is equal to or higher than a predetermined value, the control unit performs the same control as the control of the "engine on or in gear” state in FIG. Control similar to the control of the state of "engine off or not in gear” in FIG. 6 may be performed.
  • the atmospheric pressure signal is a signal indicating atmospheric pressure.
  • the control unit switches the switching valve 60 according to the atmospheric pressure.
  • the outboard motor 300 includes a generator connected to the engine 301 provided in the outboard motor 300.
  • FIG. 23 is a block diagram showing a configuration around the engine 301 of the outboard motor 300.
  • the outboard motor 300 includes an engine 301, a power transmission mechanism 302 for transmitting power from the engine 301 to the propeller 303, a generator (generator) 310 driven by the engine 301, and a main battery 311. ing.
  • the outboard motor 300 can also be equipped with a spare battery. As shown in FIG.
  • the conducting wire 310b is connected to the control units 100, 100a and 100b, and the potential of the conducting wire 310b is referred to by the control unit as an output voltage of the generator.
  • the control unit refers to the output voltage of the generator as the hull state signal SIG_IN, and determines that the navigation state is in the case where the output voltage of the generator is equal to or higher than the first threshold related to the voltage. Control similar to the control of the state of "engine on or in gear" is performed.
  • the first threshold value regarding voltage has, for example, a properly set positive value.
  • control unit refers to the output voltage of the generator as the hull state signal SIG_IN, and determines that the vehicle is in the navigation state when the output voltage of the generator exceeds the second threshold related to the voltage. Control similar to the control of the in-gear state may be performed.
  • the second threshold regarding the voltage has, for example, an appropriately set value of 0 or more.
  • (A-1) to (A-11) and (A-13) can also be regarded as a state signal indicating the state of the outboard motor 300.
  • a control example by the control unit with reference to a hull (main body) performance signal obtainable from the hull 200 and the hull (main body) performance signal is as follows.
  • the impact signal is a signal indicating an impact that the hull 200 is subjected to.
  • the control unit switches the switching valve 60 in response to the shock signal. More specifically, the control unit switches the switching valve 60 in accordance with the presence or absence of an impact received by the hull 200 or an impact signal itself.
  • the control unit performs, for example, the same control as the control of the “engine on or in gear” state in FIG. 7 when the impact is equal to or greater than a predetermined value, and when the impact is smaller than the predetermined value, or If not, it may be configured to perform the same control as the control of the state of "engine off or not in gear” in FIG.
  • the orientation signal is a signal indicating the traveling direction of the hull 200.
  • the control unit switches the switching valve 60 in accordance with the direction signal.
  • the sonar signal is a signal supplied from a sonar provided to the hull 200.
  • the control unit switches the switching valve 60 according to the sonar signal. More specifically, the control unit switches the switching valve 60 according to the presence or absence of an obstacle indicated by the sonar signal or the presence or absence of the sonar signal itself.
  • the control unit performs, for example, the same control as the control of the "engine on or in gear" state in FIG. 7 when there is an obstacle, and when there is no obstacle or there is no signal, in FIG. It may be configured to perform the same control as the control of the state of "engine off or not in gear".
  • the GPS signal is a signal supplied from a GPS (Global Positioning System) device included in the hull 200.
  • the GPS device may be on or near the hull.
  • the control unit When the ship speed indicated by the GPS signal is equal to or higher than a predetermined value, the control unit performs the same control as the control of the “engine on or in gear” state in FIG. If smaller, the same control as the control of the state of "engine off or not in gear” in FIG. 7 may be performed.
  • the transom vibration signal is a signal that indicates the vibration of a transom included in the hull 200.
  • the control unit switches the switching valve 60 according to the transom vibration signal. More specifically, the control unit switches the switching valve 60 in accordance with the vibration indicated by the transom vibration signal or the presence or absence of the transom vibration signal itself.
  • the control unit performs, for example, the same control as the control of the “engine on or in gear” state in FIG. 7 when the transom vibration is equal to or greater than a predetermined value, and when the transom vibration is smaller than the predetermined value Alternatively, when there is no signal, it may be configured to perform the same control as the control of the "engine off or not in gear” state in FIG.
  • the water temperature signal is a signal indicating the water temperature around the hull 200.
  • the control unit switches the switching valve 60 according to the water temperature signal.
  • the vibration signal is a signal indicating the vibration of the hull 200.
  • the control unit switches the switching valve 60 according to the vibration signal. More specifically, the control unit switches the switching valve 60 according to the vibration indicated by the vibration signal or the presence or absence of the vibration signal itself. For example, when the vibration indicated by the vibration signal is equal to or greater than a predetermined value, the control unit performs control similar to the control of the “engine on or in gear” state in FIG. 7 and the vibration indicated by the vibration signal has a predetermined value. In the case of a smaller value or in the absence of a signal, control similar to the control of the state of "engine off or not in gear” in FIG. 7 may be performed.
  • IP image signal is an image signal indicating the situation around the hull 200.
  • the control unit switches the switching valve 60 according to the IP image signal. More specifically, the control unit switches the switching valve 60 according to the presence or absence of an obstacle indicated by the IP image signal or the presence or absence of the IP image signal itself.
  • the control unit performs, for example, the same control as the control of the "engine on or in gear" state in FIG. 7 when there is an obstacle, and when there is no obstacle or there is no signal, in FIG. It may be configured to perform the same control as the control of the state of "engine off or not in gear".
  • the radar signal is a signal supplied from a radar provided to the hull 200.
  • the control unit switches the switching valve 60 according to the radar signal. More specifically, the control unit switches the switching valve 60 according to the presence or absence of the obstacle indicated by the radar signal or the presence or absence of the radar signal itself.
  • the control unit performs, for example, the same control as the control of the "engine on or in gear" state in FIG. 7 when there is an obstacle, and when there is no obstacle or there is no signal, in FIG. It may be configured to perform the same control as the control of the state of "engine off or not in gear".
  • the voice signal is a signal indicating the voice of the operator (user).
  • the control unit switches the switching valve 60 in accordance with the audio signal.
  • the control unit may be configured to perform the same control as the control in FIG. 7 with reference to, for example, an audio instruction included in the audio signal.
  • (B-1) to (B-9) can also be regarded as a state signal indicating the state of the hull (main body) 200.
  • control units 100, 100a, 100b may be realized by a logic circuit (hardware) formed in an integrated circuit (IC chip) or the like, or may be realized by software using a CPU (central processing unit) .
  • control units 100, 100a, and 100b are a CPU that executes instructions of a program that is software that implements each function, and a ROM (Read) in which the program and various data are readable by a computer (or CPU). It includes an Only Memory) or a storage device (these are referred to as a "recording medium"), a RAM (Random Access Memory) for developing the program, and the like.
  • the object of the present invention is achieved by the computer (or CPU) reading the program from the recording medium and executing the program.
  • the recording medium a “non-transitory tangible medium”, for example, a tape, a disk, a card, a semiconductor memory, a programmable logic circuit or the like can be used.
  • the program may be supplied to the computer via any transmission medium (communication network, broadcast wave, etc.) capable of transmitting the program.
  • the present invention can also be realized in the form of a data signal embedded in a carrier wave, in which the program is embodied by electronic transmission.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Ocean & Marine Engineering (AREA)
  • Fluid-Pressure Circuits (AREA)

Abstract

The present invention makes it possible to perform complicated tilt trim control while reducing user labor. The present invention comprises a control unit (100) that controls the raising/lowering of an outboard motor (300) and the opening/closing of a switching valve (60). Triggered by a command from a user, the control unit (100) executes sequential control that includes raising and/or lowering the outboard motor (300) and changing the open/closed state of the switching valve (60).

Description

船外機昇降装置、および、船外機昇降装置の制御方法Outboard motor lifting device and control method of outboard motor lifting device
 本発明は、船体の船外機を昇降させる船外機昇降装置に関する。 The present invention relates to an outboard motor lifting apparatus for lifting and lowering an outboard motor of a hull.
 船体の分野において、主として船外機を水面上に上昇させたり水面下に下降させたりするためのチルトシリンダと、主として水面下における船外機の角度を変更するためのトリムシリンダとを有する船外機昇降装置が知られている(例えば特許文献1及び2)。 In the field of hulls, an outboard having a tilt cylinder, mainly for raising and lowering an outboard motor above the water surface, and a trim cylinder, mainly for changing the angle of the outboard motor below the water surface Machine lifters are known (for example, Patent Documents 1 and 2).
日本国公告特許公報「特公昭58-028159号公報」Japanese Patent Publication No. 58-028159 日本国公開特許公報「特開平2-99494号公報」Japanese Patent Publication "Japanese Patent Application Laid-Open No. 2-99494"
 ところで、船体の出港時、係留時、及びその他のシーンにおいて、船外機に対して、上昇及び下降を含む一連の動作を実行させるという状況が生じ得る。このような状況において、ユーザの手間を抑制することが好ましい。 By the way, at the time of departure of the hull, at the time of mooring, and other scenes, a situation may occur in which the outboard motor is caused to execute a series of operations including raising and lowering. In such a situation, it is preferable to reduce the effort of the user.
 本発明は、ユーザの手間を抑制しつつ、船外機の上昇及び下降を含む一連の動作を実行させることができる船外機昇降装置を実現することを目的とする。 An object of the present invention is to realize an outboard motor elevator device capable of executing a series of operations including raising and lowering of an outboard motor while suppressing the time and effort of the user.
 かかる目的のもと、本発明に係る船外機昇降装置は、船外機を昇降させる船外機昇降装置において、1又は複数のチルトシリンダと、1又は複数のトリムシリンダと、油圧源と、貯油タンクと、前記油圧源と前記1又は複数のチルトシリンダの下室とを接続する第1の油路と、前記第1の油路と前記1又は複数のトリムシリンダの下室とを接続する第2の油路と、前記第2の油路上に設けられた切替弁と、前記船外機の昇降及び前記切替弁の開閉を制御する制御部とを備え、前記制御部は、ユーザによる指示をトリガーとして、前記船外機の上昇及び下降の少なくとも何れか、並びに、前記切替弁の開閉状態の変更を含む一連の制御を実行する。 To this end, the outboard motor elevator according to the present invention is an outboard motor elevator for raising and lowering an outboard motor, comprising: one or more tilt cylinders; one or more trim cylinders; Connecting a first oil passage connecting the oil storage tank, the hydraulic pressure source and the lower chamber of the one or more tilt cylinders, and connecting the first oil passage and the lower chamber of the one or more trim cylinders A second oil passage, a switching valve provided on the second oil passage, and a control unit configured to control lifting and lowering of the outboard motor and opening and closing of the switching valve, the control unit instructing by a user A series of control operations including at least one of raising and lowering of the outboard motor and change of the open / close state of the switching valve are executed using as a trigger.
 また、かかる目的のもと、本発明に係る船外機昇降装置の制御方法は、船外機を昇降させる船外機昇降装置の制御方法において、前記船外機昇降装置は、1又は複数のチルトシリンダと、1又は複数のトリムシリンダと、油圧源と、貯油タンクと、前記油圧源と前記1又は複数のチルトシリンダの下室とを接続する第1の油路と、前記第1の油路と前記1又は複数のトリムシリンダの下室とを接続する第2の油路と、前記第2の油路上に設けられた切替弁と、を備え、当該制御方法は、ユーザによる指示をトリガーとした、前記船外機の上昇及び下降の少なくとも何れか、並びに、前記切替弁の開閉状態の変更を含む一連の工程を含んでいる。 Further, with such an object, in the control method of an outboard motor lifting device according to the present invention, in the control method of an outboard motor lifting device for lifting an outboard motor, the outboard motor lifting device comprises one or a plurality of A tilt cylinder, one or more trim cylinders, a hydraulic pressure source, an oil storage tank, a first oil passage connecting the hydraulic pressure source and the lower chamber of the one or more tilt cylinders, the first oil A second oil passage connecting the passage and the lower chamber of the one or more trim cylinders, and a switching valve provided on the second oil passage, the control method triggering an instruction by the user And at least one of raising and lowering of the outboard motor, and a series of steps including changing the open / close state of the switching valve.
 本発明によれば、ユーザの手間を抑制しつつ、船外機の上昇及び下降を含む一連の動作を実行させることができる。 According to the present invention, it is possible to execute a series of operations including raising and lowering of the outboard motor while suppressing the time and effort of the user.
実施形態1に係る船外機昇降装置の概略構成を示すブロック図である。FIG. 1 is a block diagram showing a schematic configuration of an outboard motor elevator according to a first embodiment. 実施形態1に係る船外機昇降装置を示す図であり、(a)は船外機の使用例、(b)は船外機の概略的な内部構成、(c)は船外機昇降装置の駆動スイッチを示す図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows the outboard motor raising / lowering apparatus which concerns on Embodiment 1, (a) is a usage example of an outboard motor, (b) is a schematic internal structure of an outboard motor, (c) is an outboard motor lifting apparatus It is a figure showing a drive switch of. 実施形態1に係る船外機昇降装置の構成の一例を示す正面図である。FIG. 1 is a front view showing an example of the configuration of an outboard motor elevator according to a first embodiment. 実施形態1に係る船外機昇降装置の側断面図である。FIG. 1 is a side sectional view of an outboard motor elevator according to a first embodiment. 実施形態1に係る船外機昇降装置の油圧回路を制御部と共に示す図である。FIG. 2 is a diagram showing a hydraulic circuit of the outboard motor elevator according to Embodiment 1 together with a control unit. 実施形態1に係る制御部の一構成例を示す回路図である。FIG. 5 is a circuit diagram showing an exemplary configuration of a control unit according to the first embodiment. 実施形態1に係る制御部による切替弁の制御の一例を示す図である。FIG. 6 is a view showing an example of control of a switching valve by a control unit according to the first embodiment. 実施形態1に係る制御部による係留制御を示すフローチャートである。It is a flowchart which shows the mooring control by the control part which concerns on Embodiment 1. FIG. (a)~(f)は実施形態1に係る制御部の係留制御による船外機昇降装置の動作を示す図である。(A)-(f) is a figure which shows operation | movement of the outboard motor raising / lowering apparatus by mooring control of the control part which concerns on Embodiment 1. FIG. 実施形態1に係る制御部による係留制御の別の例を示すフローチャートである。It is a flowchart which shows another example of the mooring control by the control part which concerns on Embodiment 1. FIG. 実施形態1に係る制御部による出港制御を示すフローチャートである。It is a flowchart which shows the departure control by the control part which concerns on Embodiment 1. FIG. (a)~(d)は実施形態1に係る制御部の出港制御による船外機昇降装置の動作を示す図である。(A)-(d) is a figure which shows operation | movement of the outboard motor raising / lowering apparatus by departure control of the control part which concerns on Embodiment 1. FIG. 実施形態2に係る制御部の構成を示すブロック図である。FIG. 7 is a block diagram showing the configuration of a control unit according to a second embodiment. 実施形態3に係る制御部の構成を示すブロック図である。FIG. 13 is a block diagram showing the configuration of a control unit according to a third embodiment. 実施形態4に係る船外機昇降装置の油圧回路を制御部と共に示す図である。FIG. 13 is a diagram showing a hydraulic circuit of an outboard motor elevator according to a fourth embodiment together with a control unit. 実施形態5に係る船外機昇降装置の油圧回路を制御部と共に示す図である。FIG. 16 is a diagram showing a hydraulic circuit of an outboard motor elevator according to a fifth embodiment together with a control unit. 実施形態6に係る船外機昇降装置の油圧回路を制御部と共に示す図である。FIG. 16 is a diagram showing a hydraulic circuit of an outboard motor elevator according to a sixth embodiment together with a control unit. 実施形態7に係る船外機昇降装置の油圧回路を制御部と共に示す図である。FIG. 18 is a diagram showing a hydraulic circuit of an outboard motor elevator according to a seventh embodiment together with a control unit. 実施形態8に係る船外機昇降装置の油圧回路を制御部と共に示す図である。FIG. 18 is a diagram showing a hydraulic circuit of an outboard motor elevator according to an eighth embodiment together with a control unit. 実施形態9に係る船外機昇降装置の油圧回路を制御部と共に示す図である。FIG. 16 is a diagram showing a hydraulic circuit of an outboard motor elevator according to a ninth embodiment together with a control unit. 実施形態10に係る船外機昇降装置の油圧回路を制御部と共に示す図である。FIG. 21 is a diagram showing a hydraulic circuit of an outboard motor elevator according to a tenth embodiment together with a control unit. 実施形態11に係る船外機昇降装置の油圧回路を制御部と共に示す図である。FIG. 21 is a diagram showing a hydraulic circuit of an outboard motor elevator according to Embodiment 11 together with a control unit. 実施形態1~11係る船外機のエンジン周辺の構成を示す図である。FIG. 12 is a view showing the configuration of the outboard motor and its surroundings according to the first to eleventh embodiments.
 〔実施形態1〕
 以下、本発明の第1の実施形態に係る船外機昇降装置1について、図1~図7を参照して説明する。
Embodiment 1
An outboard motor elevator 1 according to a first embodiment of the present invention will be described below with reference to FIGS. 1 to 7.
 船外機昇降装置1は、船外機300を昇降させるための装置である。図1は、船外機昇降装置1の制御系の概略構成を示すブロック図である。 The outboard motor lifting device 1 is a device for lifting and lowering the outboard motor 300. FIG. 1 is a block diagram showing a schematic configuration of a control system of the outboard motor elevator 1.
 図2の(a)は、船外機昇降装置1の使用例を示す図であり、船体(本体)200の後部と船外機300とに取り付けられた船外機昇降装置1を示している。図2の(a)における実線は、船外機300が下降した状態を示し、図2の(a)における破線は、船外機300が上昇した状態を示している。 FIG. 2A is a view showing a usage example of the outboard motor lifting device 1, and shows the outboard motor lifting device 1 attached to the rear of the hull (main body) 200 and the outboard motor 300. . The solid line in (a) of FIG. 2 indicates a state in which the outboard motor 300 is lowered, and the broken line in (a) of FIG. 2 indicates a state in which the outboard motor 300 is raised.
 図2の(b)は、船外機300の内部構成を概略的に示す模式図である。図2の(b)に示すように、船外機300は、エンジン301と、プロペラ303と、エンジン301からプロペラ303に動力を伝達する動力伝達機構302とを備えている。ここで、動力伝達機構は、例えば、シャフトやギヤによって構成される。 FIG. 2B is a schematic view schematically showing an internal configuration of the outboard motor 300. As shown in FIG. As shown in (b) of FIG. 2, the outboard motor 300 includes an engine 301, a propeller 303, and a power transmission mechanism 302 that transmits power from the engine 301 to the propeller 303. Here, the power transmission mechanism is constituted by, for example, a shaft or a gear.
 図2の(c)は、船外機300及び船外機昇降装置1を操作するための操作レバー400を示している。図2の(c)に示すように、操作レバー400は、係留スイッチ401、出港スイッチ402、及び、船体手動スイッチ403を備えている。 (C) of FIG. 2 shows the control lever 400 for operating the outboard motor 300 and the outboard motor lifting device 1. As shown in (c) of FIG. 2, the control lever 400 includes a mooring switch 401, an exit port switch 402, and a hull manual switch 403.
 ユーザが係留スイッチ401を1度押すことにより、船外機昇降装置1は、船外機300に対して後述する係留制御を行う。また、ユーザが出港スイッチ402を1度押すことにより、船外機昇降装置1は、船外機300に対して後述する出港制御を行う。また、ユーザが船体手動スイッチ403における「UP」及び「DOWN」の何れかを押し続けることにより、船外機昇降装置1は、船外機300に対して上昇制御及び下降制御を行う。 When the user presses the mooring switch 401 once, the outboard motor lifting device 1 performs mooring control described later on the outboard motor 300. Further, when the user presses the departure port switch 402 once, the outboard motor lifting device 1 performs departure port control described later on the outboard motor 300. In addition, when the user keeps pushing either “UP” or “DOWN” in the manual hull switch 403, the outboard motor lifting device 1 performs lifting control and lowering control on the outboard motor 300.
 なお、係留スイッチ401及び出港スイッチ402が設けられた操作レバー400は、船外機300の上昇指示、下降指示、係留指示、及び出港指示を受け付けるための一形態に過ぎず、これらの指示は、他のデバイスを介して入力されたものであってもよい。例えば、船外機昇降装置1は、操舵室に備えられたタッチパネル等への入力によって、船外機300の上昇指示、下降指示、係留指示、及び出港指示の少なくとも何れかを受け付ける構成であってもよい。また、船外機昇降装置1は、後述の制御部100と無線通信可能に構成された端末装置への入力によって、船外機300の上昇指示、下降指示、係留指示、及び出港指示の少なくとも何れかを受け付ける構成であってもよい。
 図1に示すように、船外機昇降装置1は、制御部100、切替弁60、及びモータ16を備えている。切替弁60及びモータ16、並びに、制御部100による切替弁60及びモータ16の制御については後述するためここでは説明を省略する。
In addition, the operation lever 400 provided with the mooring switch 401 and the departure port switch 402 is only one mode for receiving the raising instruction, the lowering instruction, the mooring instruction, and the departure instruction of the outboard motor 300, and these instructions are It may be input through another device. For example, the outboard motor lifting device 1 is configured to receive at least any one of an instruction for raising, lowering and mooring and leaving of the outboard motor 300 by an input to a touch panel or the like provided in a steering room. It is also good. Further, the outboard motor lifting device 1 receives at least any one of an elevation instruction, a descent instruction, a mooring instruction, and a departure instruction of the outboard motor 300 according to an input to a terminal device configured to wirelessly communicate with the control unit 100 described later It may be configured to receive the
As shown in FIG. 1, the outboard motor lifting apparatus 1 includes a control unit 100, a switching valve 60, and a motor 16. The control of the switching valve 60 and the motor 16, and the control of the switching valve 60 and the motor 16 by the control unit 100 will be described later, and the description thereof will be omitted here.
 制御部100には、船体状態信号SIG_INが供給される。船体状態信号SIG_INは、例えば、エンジン301のオンオフの状態を示す信号であり、エンジン301から供給される。なお、船体状態信号SIG_INは、船外機300が、動力伝達可能な状態、すなわちインギヤの状態にあるのか否かを示すギヤ信号であってもよい。 The control unit 100 is supplied with a hull state signal SIG_IN. The hull state signal SIG_IN is, for example, a signal indicating the on / off state of the engine 301, and is supplied from the engine 301. The hull state signal SIG_IN may be a gear signal indicating whether the outboard motor 300 is in a power transmittable state, that is, in an in-gear state.
 また、制御部100には、係留スイッチ401のオンオフの状態を示す信号であるSIG_MOOが係留スイッチ401から供給される。 Further, the control unit 100 is supplied with SIG_MOO, which is a signal indicating the on / off state of the mooring switch 401, from the mooring switch 401.
 また、制御部100には、出港スイッチ402のオンオフの状態を示す信号であるSIG_RETが出港スイッチ402から供給される。 Further, to the control unit 100, SIG_RET which is a signal indicating the on / off state of the departure port switch 402 is supplied from the departure port switch 402.
 また、制御部100には、船体手動スイッチ403に対するユーザのアップダウン操作に応じた信号であるSIG_UDBが船体手動スイッチ403から供給される。 Further, the control unit 100 is supplied with SIG_UDB, which is a signal according to the user's up / down operation on the manual hull switch 403, from the manual hull switch 403.
 また、制御部100には、船外機300に設けられた船外機手動スイッチ404に対するユーザのアップダウン操作に応じた信号であるSIG_UDMが船外機手動スイッチ404から供給される。なお、SIG_UDBとSIG_UDMとを合わせて、SIG_UDと呼称することもある。
 また、制御部100には、船外機300に設けられ、船外機300の角度を測る角度センサ405の計測結果を示す信号であるSIG_ANGが角度センサ405から供給される。
Further, the control unit 100 is supplied with SIG_UDM, which is a signal according to the user's up / down operation on the outboard motor manual switch 404 provided in the outboard motor 300, from the outboard motor manual switch 404. Note that SIG_UDB and SIG_UDM may be collectively referred to as SIG_UD.
Further, the control unit 100 is supplied with SIG_ANG, which is a signal provided in the outboard motor 300 and indicates the measurement result of the angle sensor 405 that measures the angle of the outboard motor 300, from the angle sensor 405.
 制御部100は、エンジン301、係留スイッチ401、出港スイッチ402、船体手動スイッチ403、船外機手動スイッチ404、および角度センサ405の少なくとも何れか一つから供給された入力信号に応じた制御信号SIG_CONTを生成し、生成した制御信号SIG_CONTを切替弁60及びモータ16に供給する。 The control unit 100 controls the control signal SIG_CONT according to the input signal supplied from at least one of the engine 301, the mooring switch 401, the departure port switch 402, the hull manual switch 403, the outboard motor manual switch 404, and the angle sensor 405. And supplies the generated control signal SIG_CONT to the switching valve 60 and the motor 16.
 図3は、船外機昇降装置1の構成の一例を示す正面図であり、図4は、船外機昇降装置1の側断面図である。図3に示すように、船外機昇降装置1は、シリンダユニット10と、船体200の後部に取り付けられる1対のスターンブラケット70と、船外機300に取り付けられるスイベルブラケット80とを備えている。 FIG. 3 is a front view showing an example of the configuration of the outboard motor elevator 1, and FIG. 4 is a side sectional view of the outboard motor elevator 1. As shown in FIG. 3, the outboard motor lifting device 1 includes a cylinder unit 10, a pair of stern brackets 70 attached to the rear of the hull 200, and a swivel bracket 80 attached to the outboard motor 300. .
 シリンダユニット10は、一例として、図3に示すように、2本のトリムシリンダ12、1本のチルトシリンダ14、モータ16、タンク(貯油タンク)18、上部ジョイント22、基部24を備えている。トリムシリンダ12及びチルトシリンダ14は、基部24に対して相対移動不能に設けられている。 The cylinder unit 10 includes, as an example, two trim cylinders 12, one tilt cylinder 14, a motor 16, a tank (oil storage tank) 18, an upper joint 22, and a base 24, as shown in FIG. The trim cylinder 12 and the tilt cylinder 14 are provided so as not to move relative to the base 24.
 なお、シリンダユニット10が備えるトリムシリンダ12及びチルトシリンダ14の数は本実施形態を限定するものではなく、1又は複数のトリムシリンダ12及び1又は複数のチルトシリンダ14を備えるシリンダユニット10も本実施形態に含まれる。また、そのように任意の数のトリムシリンダ12及びチルトシリンダ14を有するシリンダユニット10に対しても以下の説明が成り立つ。 The number of trim cylinders 12 and tilt cylinders 14 provided in the cylinder unit 10 does not limit the present embodiment, and the cylinder unit 10 including one or more trim cylinders 12 and one or more tilt cylinders 14 is also implemented in this embodiment. Included in the form. Also, the following description is true for the cylinder unit 10 having such an arbitrary number of trim cylinders 12 and tilt cylinders 14.
 トリムシリンダ12は、シリンダ12aと、シリンダ12a内に摺動可能に設けられたピストン12c(図5参照)と、ピストン12cに固定されたピストンロッド12bとを備えている。また、チルトシリンダ14は、シリンダ14aと、シリンダ14a内に摺動可能に設けられたピストン14c(図5参照)と、ピストン14cに固定されたピストンロッド14bとを備えている。 The trim cylinder 12 includes a cylinder 12a, a piston 12c (see FIG. 5) slidably provided in the cylinder 12a, and a piston rod 12b fixed to the piston 12c. The tilt cylinder 14 also includes a cylinder 14a, a piston 14c (see FIG. 5) slidably provided in the cylinder 14a, and a piston rod 14b fixed to the piston 14c.
 また、図3に示すように、基部24とスターンブラケット70には、それぞれ貫通孔が形成されており、これらの貫通孔を貫通するアンダーシャフト26を介して、基部24とスターンブラケット70とが相対回転可能に接続されている。 Further, as shown in FIG. 3, through holes are respectively formed in the base 24 and the stern bracket 70, and the base 24 and the stern bracket 70 are relative to each other through the undershaft 26 penetrating the through holes. It is rotatably connected.
 また、図3に示すように、ピストンロッド14bの先端には、上部ジョイント22が設けられており、スイベルブラケット80には、支持部材28が固定されている。上部ジョイント22及び支持部材28には、それぞれ貫通孔が形成されており、こられの貫通孔を貫通するアッパーシャフト23を介して、上部ジョイント22とスイベルブラケット80とが相対回転可能に接続されている。 Further, as shown in FIG. 3, an upper joint 22 is provided at the tip of the piston rod 14b, and a support member 28 is fixed to the swivel bracket 80. A through hole is formed in each of the upper joint 22 and the support member 28, and the upper joint 22 and the swivel bracket 80 are connected so as to be relatively rotatable via the upper shaft 23 passing through the through holes of these. There is.
 また、スターンブラケット70及びスイベルブラケット80の上部一端にはそれぞれ貫通孔が形成されており、図4に示すように、これらの貫通孔を貫通する支持軸32によって、スターンブラケット70とスイベルブラケット80とが相対回転可能に接続されている。 Further, through holes are respectively formed in upper ends of the stern bracket 70 and the swivel bracket 80, and as shown in FIG. 4, the stern bracket 70 and the swivel bracket 80 are supported by the support shaft 32 penetrating the through holes. Are connected rotatably relative to each other.
 (トリム域及びチルト域)
 チルトシリンダ14のピストンロッド14bが上昇及び下降することにより、スイベルブラケット80が上昇及び下降するので、船外機300が上昇及び下降する。
(Trim area and tilt area)
As the piston rod 14b of the tilt cylinder 14 ascends and descends, the swivel bracket 80 ascends and descends, so the outboard motor 300 ascends and descends.
 チルトシリンダ14のピストンロッド14bの上昇及び下降によって調整される船外機300の角度領域は、図2の(a)に示したトリム域とチルト域とから構成される。チルト域は、トリムシリンダ12のピストンロッド12bの先端がスイベルブラケット80に当接不能な角度領域であり、チルト域での船外機300の角度調整はチルトシリンダ14のピストンロッド14bによって行われる。 The angular area of the outboard motor 300 adjusted by the upward and downward movement of the piston rod 14b of the tilt cylinder 14 is composed of the trim area and the tilt area shown in FIG. 2 (a). The tilt area is an angle area where the tip of the piston rod 12 b of the trim cylinder 12 can not abut the swivel bracket 80, and the angle adjustment of the outboard motor 300 in the tilt area is performed by the piston rod 14 b of the tilt cylinder 14.
 一方、トリム域は、トリムシリンダ12のピストンロッド12bの先端がスイベルブラケット80に当接可能な角度領域であり、チルト域での船外機300の角度調整はトリムシリンダ12のピストンロッド12b及びチルトシリンダ14のピストンロッド14bの双方によって行われ得る。ただし、後述するように、本実施形態では、チルト域においても、船外機300の角度調整がチルトシリンダ14のピストンロッド14bのみによって行われることもある。 On the other hand, the trim area is an angle area where the tip of the piston rod 12b of the trim cylinder 12 can contact the swivel bracket 80, and the angle adjustment of the outboard motor 300 in the tilt area is performed by the piston rod 12b of the trim cylinder 12 and the tilt It can be done by both of the piston rods 14 b of the cylinder 14. However, as described later, in the present embodiment, the angle adjustment of the outboard motor 300 may be performed only by the piston rod 14b of the tilt cylinder 14 even in the tilt region.
 (油圧回路)
 次に、船外機昇降装置1の油圧回路について説明する。図5は、船外機昇降装置1の油圧回路を制御部100と共に示す図である。図5では、すでに説明した部材と同じ部材には同じ符号を付している。
(Hydraulic circuit)
Next, the hydraulic circuit of the outboard motor lifting apparatus 1 will be described. FIG. 5 is a diagram showing a hydraulic circuit of the outboard motor elevator 1 together with the control unit 100. As shown in FIG. In FIG. 5, the same members as those described above are denoted by the same reference numerals.
 図5に示すように、船外機昇降装置1は、モータ16、ポンプ42、第1の逆止弁44a、第2の逆止弁44b、アップブローバルブ46a、ダウンブローバルブ46b、メインバルブ(ポンプポート)48、マニュアルバルブ52、サーマルバルブ54、チルトシリンダ14、トリムシリンダ12、タンク18、フィルタF1~F2、第1の流路C1~第9の流路C9、及び制御部100を備えている。 As shown in FIG. 5, the outboard motor lifting device 1 includes a motor 16, a pump 42, a first check valve 44a, a second check valve 44b, an up blow valve 46a, a down blow valve 46b, and a main valve ( Pump port) 48, manual valve 52, thermal valve 54, tilt cylinder 14, trim cylinder 12, tank 18, filters F1 to F2, first flow path C1 to ninth flow path C9, and control unit 100 There is.
 モータ16によって駆動される油圧源としてのポンプ42は、運転者による船外機の昇降指示を示す昇降信号SIG_UDに応じて、「正転」「反転」「停止」の何れかの動作を行う。タンク18には作動油が貯えられている。 The pump 42 as a hydraulic pressure source driven by the motor 16 performs any one of “forward rotation”, “reverse”, and “stop” according to the elevation signal SIG_UD indicating the elevation instruction of the outboard motor by the driver. The hydraulic oil is stored in the tank 18.
 メインバルブ48は、図5に示すように、スプール48a、第1チェック弁48b、及び第2チェック弁48cを備えている。メインバルブ48は、スプール48aによって、第1チェック弁48b側の第1シャトル室48dと、第2チェック弁48c側の第2シャトル室48eとに仕切られている。 As shown in FIG. 5, the main valve 48 includes a spool 48a, a first check valve 48b, and a second check valve 48c. The main valve 48 is partitioned by the spool 48 a into a first shuttle chamber 48 d on the first check valve 48 b side and a second shuttle chamber 48 e on the second check valve 48 c side.
 第1の流路C1は、ポンプ42と第1シャトル室48dとを接続すると共に、ポンプ42と第1の逆止弁44aとを接続している。また、第1の流路C1には、アップブローバルブ46aが接続されている。第2の流路C2は、ポンプ42と第2シャトル室48eとを接続すると共に、ポンプ42と第2の逆止弁44bとを接続している。また、第2の流路C2には、ダウンブローバルブ46bが接続されている。 The first flow path C1 connects the pump 42 and the first shuttle chamber 48d, and also connects the pump 42 and the first check valve 44a. Further, the up blow valve 46a is connected to the first flow passage C1. The second flow path C2 connects the pump 42 and the second shuttle chamber 48e, and also connects the pump 42 and the second check valve 44b. Further, the down blow valve 46 b is connected to the second flow path C2.
 なお、本明明細書に記載の油路構成における「接続」には、他の油圧エレメントを介さずに流路によって直接接続されている場合と、他の油路エレメントを介して間接的に接続されている場合の双方が含まれる。ここで、他の油圧エレメントには、例えば、バルブ(弁)、シリンダ、及びフィルタ等が含まれる。 Note that the “connection” in the oil passage configuration described in the present specification is indirectly connected via the other oil passage element or directly connected by the flow passage without passing through another hydraulic element. Both cases are included. Here, other hydraulic elements include, for example, a valve, a cylinder, and a filter.
 チルトシリンダ14は、ピストン14cによって上室14fと下室14gとに仕切られており、チルトシリンダ14のピストン14cは、図5に示すように、ショックブローバルブ14d及びリターンバルブ14eを備えている。 The tilt cylinder 14 is divided into an upper chamber 14f and a lower chamber 14g by a piston 14c, and the piston 14c of the tilt cylinder 14 is provided with a shock blow valve 14d and a return valve 14e as shown in FIG.
 トリムシリンダ12は、ピストン12cによって上室12fと下室12gとに仕切られている。 The trim cylinder 12 is divided into an upper chamber 12f and a lower chamber 12g by a piston 12c.
 なお、本明細書において、「上室」及び「下室」における「上」及び「下」とは、単に互いを区別するための名称であり、当該上室が当該下室よりも鉛直方向上側に位置することを必ずしも意味するものではない。このため、「上室」とは、シリンダにおいてピストンによって仕切られる第1室及び第2室のうち、ピストンに接続されたロッドが貫通する方の室である第1室と表現してもよいし、「下室」とは、シリンダにおいてピストンによって仕切られる第1室及び第2室のうち、ピストンに接続されたロッドが貫通しない方の室である第2室と表現してもよい。 In the present specification, “upper” and “lower” in “upper chamber” and “lower chamber” are simply names for distinguishing each other, and the upper chamber is vertically above the lower chamber. It does not necessarily mean to be located in. Therefore, the "upper chamber" may be expressed as a first chamber, which is a chamber through which the rod connected to the piston passes, of the first chamber and the second chamber partitioned by the piston in the cylinder. The "lower chamber" may be expressed as a second chamber which is a chamber into which the rod connected to the piston does not penetrate, of the first chamber and the second chamber partitioned by the piston in the cylinder.
 本明細書では、特に混乱がない限り「上室」「下室」との表現も用いるが、上記の点に留意すべきである。 In the present specification, the expressions “upper chamber” and “lower chamber” are also used unless there is a particular confusion, but it should be noted that the above points.
 第1チェック弁48bは、チルトシリンダ14の下室14gに、フィルタF1及び第3の流路C3を介して接続されている。一方、第2チェック弁48cは、チルトシリンダ14の上室14fに、フィルタF2及び第4の流路C4を介して接続されている。また、図5に示すように、第4の流路C4には、上室給油バルブ56が接続されている。 The first check valve 48b is connected to the lower chamber 14g of the tilt cylinder 14 via the filter F1 and the third flow passage C3. On the other hand, the second check valve 48c is connected to the upper chamber 14f of the tilt cylinder 14 via the filter F2 and the fourth flow passage C4. Further, as shown in FIG. 5, an upper chamber oil supply valve 56 is connected to the fourth flow path C4.
 第3の流路C3と第4の流路C4とを接続する第5の流路C5にはマニュアルバルブ52及びサーマルバルブ54が接続されている。 A manual valve 52 and a thermal valve 54 are connected to a fifth flow path C5 connecting the third flow path C3 and the fourth flow path C4.
 なお、メインバルブ48及びフィルタF1を介してポンプ42とチルトシリンダ14の下室14gとを接続する第1の流路C1及び第3の流路C3を、纏めて第1の油路とも呼ぶ。 The first channel C1 and the third channel C3 connecting the pump 42 and the lower chamber 14g of the tilt cylinder 14 via the main valve 48 and the filter F1 are collectively referred to as a first oil channel.
 第6の流路C6(当該流路も第1の油路とも呼ぶ)は、第3の流路C3とトリムシリンダ12の下室12gとを接続する。 The sixth flow path C6 (also referred to as the flow path or the first oil path) connects the third flow path C3 and the lower chamber 12g of the trim cylinder 12.
 第7の流路C7(第3の油路とも呼ぶ)は、複数のトリムシリンダ12の上室12fを互いに接続している。第7の流路C7の存在により、複数のトリムシリンダ12の上室12fの圧力が互いに均等化される。 The seventh flow passage C7 (also referred to as a third oil passage) connects the upper chambers 12f of the plurality of trim cylinders 12 to one another. The presence of the seventh flow passage C7 equalizes the pressures in the upper chambers 12f of the plurality of trim cylinders 12 with each other.
 第8の流路C8(第2の油路とも呼ぶ)は、複数のトリムシリンダ12の上室12fの一つとタンク18とを接続している。第9の流路C9は、第1の逆止弁44a及び第2の逆止弁44とタンク18とを接続している。 An eighth flow passage C8 (also referred to as a second oil passage) connects one of the upper chambers 12f of the plurality of trim cylinders 12 to the tank 18. The ninth flow path C9 connects the tank 18 with the first check valve 44a and the second check valve 44.
 第1の逆止弁44aは、トリムシリンダ12及びチルトシリンダ14が収縮し切った状態になってもなおポンプ42が作動油を回収しようとする場合に、タンク18からポンプ42に作動油を供給する。 The first check valve 44a supplies the hydraulic fluid from the tank 18 to the pump 42 when the pump 42 tries to recover the hydraulic fluid even when the trim cylinder 12 and the tilt cylinder 14 contract and complete. Do.
 第2の逆止弁44bは、チルトシリンダ14が伸長する際に、ピストンロッド14bの退出容積分の作動油をタンク18からポンプ42に供給し、また、トリムシリンダ12が伸長する際には、ピストンロッド12bの退出容積分の作動油をタンク18からポンプ42に供給する。 When the tilt cylinder 14 extends, the second check valve 44 b supplies hydraulic oil of the displacement volume of the piston rod 14 b from the tank 18 to the pump 42, and when the trim cylinder 12 extends, The hydraulic fluid of the displacement volume of the piston rod 12 b is supplied from the tank 18 to the pump 42.
 アップブローバルブ46aは、トリムシリンダ12及びチルトシリンダ14が伸長し切った状態になってもなおポンプ42が作動油を供給する場合に、余剰の作動油をタンク18に戻す。 The up blow valve 46 a returns excess hydraulic oil to the tank 18 when the pump 42 supplies hydraulic oil even when the trim cylinder 12 and the tilt cylinder 14 are extended.
 ダウンブローバルブ46bは、チルトシリンダ14が収縮する際に、ピストンロッド14bの進入容積分の作動油をタンク18に戻し、また、トリムシリンダ12が収縮する際には、ピストンロッド12bの進入容積分の作動油をタンク18に戻す。 The down blow valve 46b returns the hydraulic fluid of the approach volume of the piston rod 14b to the tank 18 when the tilt cylinder 14 contracts, and when the trim cylinder 12 contracts, the down blow valve 46b takes the approach volume of the piston rod 12b. The hydraulic oil of the above is returned to the tank 18.
 マニュアルバルブ52は、手動による開閉が可能であり、船外機昇降装置1のメンテナンス時等においてマニュアルバルブ52を開状態とすることによって、作動油がチルトシリンダ14の下室14gからタンク18に戻される。これにより、チルトシリンダ14が手動で収縮可能となる。 The manual valve 52 can be manually opened and closed, and the hydraulic oil is returned from the lower chamber 14 g of the tilt cylinder 14 to the tank 18 by opening the manual valve 52 at the time of maintenance of the outboard motor lifting apparatus 1 or the like. Be Thereby, the tilt cylinder 14 can be contracted manually.
 サーマルバルブ54は、温度上昇により作動油の体積が増大した場合に、余剰分の作動油をタンク18に戻す。 The thermal valve 54 returns the surplus hydraulic oil to the tank 18 when the volume of the hydraulic oil increases due to the temperature rise.
 (切替弁60)
 第8の流路C8上に設けられた切替弁60は、図5に示すように、ソレノイド62と、ソレノイド62によって駆動され、第8の流路C8を遮断状態又は開放状態とするプランジャ64とを備えている。ソレノイド62には、後述する制御部100から制御信号SIG_CONTが供給され、制御信号SIG_CONTに基づき、ソレノイド62のON/OFFが切り替えられる。
(Switching valve 60)
As shown in FIG. 5, the switching valve 60 provided on the eighth flow path C8 is driven by the solenoid 62 and the plunger 62 for driving the eighth flow path C8 in the blocking state or the open state, and Is equipped. A control signal SIG_CONT is supplied to the solenoid 62 from the control unit 100 described later, and the ON / OFF of the solenoid 62 is switched based on the control signal SIG_CONT.
 切替弁60は、ソレノイド62がOFFの場合にクローズ状態となることによって第8の流路C8を遮断し、ソレノイド62がONの場合にオープン状態となることによって第8の流路C8を開放するノーマリークローズ弁として構成してもよいし、ソレノイドがOFFの場合にオープン状態となることによって第8の流路C8を開放し、ソレノイドがONの場合にクローズ状態となることによって第8の流路C8を遮断するノーマリーオープン弁として構成してもよい。 The switching valve 60 closes the eighth flow passage C8 by being closed when the solenoid 62 is off, and opens the eighth flow passage C8 by being opened when the solenoid 62 is on. It may be configured as a normally closed valve, or the eighth flow path C8 is opened by being open when the solenoid is off, and the eighth flow by being closed when the solenoid is on. It may be configured as a normally open valve that shuts off the passage C8.
 切替弁60をノーマリーオープン弁として構成した場合、万一、切替弁60が作動しなくなった場合であっても、第8の流路C8が開放された状態、すなわち、トリムシリンダ12の上室12fとタンク18とが連通した状態で維持されるので、チルトシリンダ14及びトリムシリンダ12の双方を用いて船外機300の角度調整を行うことができる。 When the switching valve 60 is configured as a normally open valve, even if the switching valve 60 does not operate, a state in which the eighth flow passage C8 is opened, that is, the upper chamber of the trim cylinder 12 Since the 12f and the tank 18 are maintained in communication with each other, the angle adjustment of the outboard motor 300 can be performed using both the tilt cylinder 14 and the trim cylinder 12.
 一方で、切替弁60をノーマリークローズ弁として構成した場合、万一、切替弁60が作動しなくなった場合であっても、第8の流路C8が遮断された状態、すなわち、トリムシリンダ12の上室12fとタンク18とが非連通状態で維持される。このため、トリムシリンダ12の上室12fから作動油が流出しないので、チルトシリンダ14のみで船外機300の角度調整を行ったり、船外機300を保持し続けたりすることができる。 On the other hand, when the switching valve 60 is configured as a normally closed valve, even if the switching valve 60 does not operate, the eighth channel C8 is shut off, that is, the trim cylinder 12 The upper chamber 12f and the tank 18 are maintained in a disconnected state. Therefore, since the hydraulic oil does not flow out from the upper chamber 12f of the trim cylinder 12, the angle adjustment of the outboard motor 300 can be performed with only the tilt cylinder 14, and the outboard motor 300 can be kept held.
 なお、本実施形態では、プランジャ64には、第8の流路C8の遮断状態においてトリムシリンダ12の上室12fからの作動油の流出を止めるためのバルブ66が設けられている。 In the present embodiment, the plunger 64 is provided with a valve 66 for stopping the outflow of the hydraulic oil from the upper chamber 12f of the trim cylinder 12 in the closed state of the eighth flow passage C8.
 また、上記の説明では、ソレノイド62がオンオフソレノイドであり、プランジャ64が第8の流路C8を遮断状態及び開放状態の何れか一方の状態とする構成を例に挙げたが、これは本実施形態を限定するものではない。ソレノイド62として比例ソレノイドを採用し、プランジャ64を遮断状態位置から開放状態位置までの任意の位置に制御可能な構成としてもよい。このような構成とすることにより、第8の流路C8を通過する作動油の流量をきめ細かく制御することができるので、船外機300の上昇及び下降をよりきめ細かく制御することができる。 In the above description, the solenoid 62 is the on / off solenoid, and the plunger 64 takes the eighth channel C8 in either the closed state or the open state as an example. It does not limit the form. A proportional solenoid may be employed as the solenoid 62 so that the plunger 64 can be controlled to any position from the blocking position to the opening position. With such a configuration, the flow rate of the hydraulic oil passing through the eighth flow passage C8 can be finely controlled, so that the ascent and descent of the outboard motor 300 can be more finely controlled.
 (制御部100)
 図5に示すように、船外機昇降装置1は制御部100を備えている。制御部100は、船体200のイグニッションのオンオフを示すイグニッション信号SIG_IG、船体状態信号SIG_IN、及び、運転者による船外機300の昇降指示を示す昇降信号SIG_MOO、SIG_RET、SIG_UDB、SIG_UDMを参照し、切替弁60を制御するための制御信号SIG_CONTを生成する。生成した制御信号SIG_CONTは切替弁60に供給される。なお、船体状態信号SIG_INの一例として、船外機300の状態を示す状態信号が挙げられるが、本明細書に記載の実施形態はこれに限定されるものではない。船体状態信号の様々な例については後述する。
(Control unit 100)
As shown in FIG. 5, the outboard motor lifting apparatus 1 includes a control unit 100. The control unit 100 refers to the ignition signal SIG_IG indicating the ignition on / off of the hull 200, the hull state signal SIG_IN, and the elevation signals SIG_MOO, SIG_RET, SIG_UDB, and SIG_UDM indicating the elevation instruction of the outboard motor 300 by the driver. A control signal SIG_CONT for controlling the valve 60 is generated. The generated control signal SIG_CONT is supplied to the switching valve 60. In addition, although the state signal which shows the state of the outboard motor 300 is mentioned as an example of ship state signal SIG_IN, the embodiment as described in this specification is not limited to this. Various examples of hull condition signals are described below.
 制御部100を備えることにより、船外機昇降装置1は、船外機300の状態に応じて船外機の速さを自動的に変更することができる。 By providing the control unit 100, the outboard motor lifting device 1 can automatically change the speed of the outboard motor according to the state of the outboard motor 300.
 (制御部100の構成例)
 以下では、制御部100の具体的な構成例について参照する図面を替えて説明する。
(Example of Configuration of Control Unit 100)
Hereinafter, the specific configuration example of the control unit 100 will be described with reference to the drawings.
 図6は、制御部100の一構成例を示す回路図である。本例では、イグニッション信号SIG_IG、船体状態信号SIG_IN、昇降信号SIG_UDは、すべてアナログ信号として制御部100に入力される。 FIG. 6 is a circuit diagram showing one configuration example of the control unit 100. As shown in FIG. In this example, the ignition signal SIG_IG, the hull state signal SIG_IN, and the elevation signal SIG_UD are all input to the control unit 100 as analog signals.
 図6に示すように、本例に係る制御部100は、第1のコネクタ101~第4のコネクタ104、及び、第1のスイッチング素子121~第5のスイッチング素子125等を備えて構成される。ここで、第1のスイッチング素子121、第3のスイッチング素子123、及び第4のスイッチング素子124は、例えばトランジスタによって構成されており、第2のスイッチング素子は、例えばFET(電界効果トランジスタ)によって構成されている。 As shown in FIG. 6, the control unit 100 according to the present embodiment is configured to include the first connector 101 to the fourth connector 104, the first switching element 121 to the fifth switching element 125, and the like. . Here, the first switching element 121, the third switching element 123, and the fourth switching element 124 are, for example, transistors, and the second switching elements are, for example, FETs (field effect transistors). It is done.
 第1のスイッチング素子121のコレクタ電極及び第3のスイッチング素子123のコレクタ電極、並びに、第2のスイッチング素子122のドレイン電極には、第1のコネクタ101を介してイグニッション信号SIG_IGが入力される。 An ignition signal SIG_IG is input to the collector electrode of the first switching element 121, the collector electrode of the third switching element 123, and the drain electrode of the second switching element 122 via the first connector 101.
 第1のスイッチング素子121のベース電極には、第2のコネクタ102及びダイオード111を介して船体状態信号SIG_INが入力され、第3のスイッチング素子123のベース電極には第1のスイッチング素子121のエミッタ電流がダイオード112を介して入力される。また、第4のスイッチング素子124のベース電極には、第3のコネクタ103及びダイオード113を介して昇降信号SIG_UDが入力され、第5のスイッチング素子125のベース電極には、第3のコネクタ103及びダイオード114を介して昇降信号SIG_UDが入力される。 The hull state signal SIG_IN is input to the base electrode of the first switching element 121 via the second connector 102 and the diode 111, and the emitter of the first switching element 121 is input to the base electrode of the third switching element 123. A current is input through the diode 112. Further, the elevation signal SIG_UD is input to the base electrode of the fourth switching element 124 via the third connector 103 and the diode 113, and the third connector 103 and the third electrode 103 are input to the base electrode of the fifth switching element 125. An elevation signal SIG_UD is input via the diode 114.
 第2のスイッチング素子122のゲート電極には、第1のスイッチング素子121のエミッタ電流に応じた信号が、第3のスイッチング素子123及び第4のスイッチング素子を介して、又は、第3のスイッチング素子123及び第5のスイッチング素子を介して入力される。より具体的には、第2のスイッチング素子122のゲート電極には、ダイオード115を介して、第4のスイッチング素子124のエミッタ電流及び第5のスイッチング素子125のエミッタ電流が入力される。 A signal corresponding to the emitter current of the first switching element 121 is transmitted to the gate electrode of the second switching element 122 via the third switching element 123 and the fourth switching element, or the third switching element The signal is input via the 123 and the fifth switching element. More specifically, the emitter current of the fourth switching element 124 and the emitter current of the fifth switching element 125 are input to the gate electrode of the second switching element 122 via the diode 115.
 第2のスイッチング素子122のソース電極からは、第4のコネクタ104を介して、制御信号SIG_CONTが切替弁60に供給される。 The control signal SIG_CONT is supplied from the source electrode of the second switching element 122 to the switching valve 60 via the fourth connector 104.
 (船体状態信号SIG_INの具体例)
 上述した船体状態信号SIG_INの一例として、船外機300が備えるエンジン301の状態を示すエンジン信号が挙げられる。ここで、エンジン信号とは、例えば、エンジン301の回転数を示す信号であり、一例としてエンジン301から取得することができる。なお、エンジンの回転数が0であればエンジンはオフであり、エンジンの回転数がゼロでなければエンジンはオンであるので、エンジンの回転数を示す信号はエンジンのオンオフを示す信号でもある。
(Specific example of ship state signal SIG_IN)
As an example of the above-described hull state signal SIG_IN, an engine signal indicating the state of the engine 301 provided in the outboard motor 300 can be given. Here, an engine signal is a signal which shows the number of rotations of engine 301, for example, and can be acquired from engine 301 as an example. Since the engine is off if the engine speed is 0 and the engine is on if the engine speed is not zero, the signal indicating the engine speed is also a signal indicating on / off of the engine.
 船体状態信号SIG_INをエンジン信号とすることにより、以下に見るように、船外機昇降装置1は、船外機300が備えるエンジン301の状態に応じて船外機の昇降の速さを自動的に変更することができる。 By using the hull state signal SIG_IN as an engine signal, the outboard motor elevator apparatus 1 automatically raises and lowers the speed of the outboard motor according to the state of the engine 301 provided in the outboard motor 300 as described below Can be changed to
 また、船体状態信号SIG_INの他の一例として、船外機300の備える動力伝達機構302が、動力伝達可能な状態、すなわちインギヤの状態にあるのか否かを示すギヤ信号が挙げられる。ギヤ信号は、一例として動力伝達機構302から取得することができる。 Further, as another example of the hull state signal SIG_IN, there is a gear signal indicating whether the power transmission mechanism 302 provided in the outboard motor 300 is in a power transmittable state, that is, in an in-gear state. The gear signal can be obtained from the power transmission mechanism 302 as an example.
 船体状態信号SIG_INをギヤ信号とすることにより、以下に見るように、船外機昇降装置1は、船外機300が備える動力伝達機構302の状態に応じて船外機の昇降の速さを自動的に変更することができる。 By using the hull state signal SIG_IN as a gear signal, the outboard motor lifting apparatus 1 moves the lifting speed of the outboard motor in accordance with the state of the power transmission mechanism 302 provided in the outboard motor 300 as will be seen below. It can be changed automatically.
 なお、上述のエンジン信号、及びインギヤ信号は、船外機300の状態を示す状態信号の一例である。 The above-mentioned engine signal and in-gear signal are examples of the state signal indicating the state of the outboard motor 300.
 (船外機昇降装置1の動作例)
 (上昇動作)
 昇降信号SIG_UDが「上昇」を示している場合、ポンプ42が正転し、作動油がポンプ42からメインバルブ48の第1シャトル室48dに圧送される。これにより、第1チェック弁48bが開くと共に、スプール48aが第1チェック弁48b側に移動し、第2チェック弁48cが開く。その結果、作動油がチルトシリンダ14の下室14gに供給されると共に、チルトシリンダ14の上室14fから作動油が回収される。
(Operation Example of Outboard Motor Lifting Device 1)
(Rise movement)
When the elevation signal SIG_UD indicates “rising”, the pump 42 rotates forward, and hydraulic fluid is pumped from the pump 42 to the first shuttle chamber 48 d of the main valve 48. As a result, the first check valve 48b is opened, the spool 48a is moved to the first check valve 48b side, and the second check valve 48c is opened. As a result, the hydraulic oil is supplied to the lower chamber 14 g of the tilt cylinder 14, and the hydraulic oil is recovered from the upper chamber 14 f of the tilt cylinder 14.
 ここで、切替弁60がオープン状態であれば、作動油はトリムシリンダ12の下室12gにも供給されるので、チルトシリンダ14のピストンロッド14bとトリムシリンダ12のピストンロッド12bとが共に上昇する。 Here, if the switching valve 60 is in the open state, the hydraulic oil is also supplied to the lower chamber 12g of the trim cylinder 12, so both the piston rod 14b of the tilt cylinder 14 and the piston rod 12b of the trim cylinder 12 rise. .
 一方、切替弁60がクローズ状態であれば、作動油はトリムシリンダ12の下室12gには供給されないので、チルトシリンダ14のピストンロッド14bは上昇するが、トリムシリンダ12のピストンロッド12bは上昇しない。 On the other hand, when the switching valve 60 is in the closed state, the hydraulic oil is not supplied to the lower chamber 12g of the trim cylinder 12, so the piston rod 14b of the tilt cylinder 14 rises, but the piston rod 12b of the trim cylinder 12 does not rise. .
 切替弁60がクローズ状態の場合、作動油がトリムシリンダ12の下室12gに供給されない。ポンプ42によって供給される単位時間当たりの作動油量は、切替弁60がオープン状態であっても、クローズ状態であっても大きな変化はない。このため、チルトシリンダ14のピストンロッド14bは、切替弁60がオープン状態である場合に比べて、速く上昇する。 When the switching valve 60 is in the closed state, the hydraulic oil is not supplied to the lower chamber 12 g of the trim cylinder 12. The amount of hydraulic oil supplied by the pump 42 per unit time does not change significantly whether the switching valve 60 is open or closed. Therefore, the piston rod 14b of the tilt cylinder 14 ascends faster than when the switching valve 60 is in the open state.
 (下降動作)
 昇降信号SIG_UDが「下降」を示している場合、ポンプ42が逆転し、作動油がポンプ42からメインバルブ48の第2シャトル室48eに圧送される。これにより、第2チェック弁48cが開くと共に、スプール48aが第2チェック弁48c側に移動し、第1チェック弁48bが開く。その結果、作動油がチルトシリンダ14の上室14fに供給されると共に、チルトシリンダ14の下室14gから作動油が回収される。
(Descent operation)
When the elevation signal SIG_UD indicates “down”, the pump 42 is reversely rotated, and hydraulic fluid is pumped from the pump 42 to the second shuttle chamber 48 e of the main valve 48. As a result, the second check valve 48 c is opened, the spool 48 a is moved to the second check valve 48 c side, and the first check valve 48 b is opened. As a result, the hydraulic oil is supplied to the upper chamber 14 f of the tilt cylinder 14, and the hydraulic oil is recovered from the lower chamber 14 g of the tilt cylinder 14.
 ここで、切替弁60がオープン状態であれば、作動油はトリムシリンダ12の下室12gからも回収されるので、チルトシリンダ14のピストンロッド14bとトリムシリンダ12のピストンロッド12bとが共に下降する。 Here, if the switching valve 60 is in the open state, the hydraulic oil is also recovered from the lower chamber 12g of the trim cylinder 12, so both the piston rod 14b of the tilt cylinder 14 and the piston rod 12b of the trim cylinder 12 descend. .
 一方、切替弁60がクローズ状態であれば、作動油はトリムシリンダ12の下室12gからは回収されないので、チルトシリンダ14のピストンロッド14bは下降するが、トリムシリンダ12のピストンロッド12bは下降しない。 On the other hand, when the switching valve 60 is in the closed state, the hydraulic oil is not recovered from the lower chamber 12g of the trim cylinder 12, so the piston rod 14b of the tilt cylinder 14 descends, but the piston rod 12b of the trim cylinder 12 does not descend .
 切替弁60がクローズ状態の場合、作動油がトリムシリンダ12の下室12gからは回収されないので、チルトシリンダ14のピストンロッド14bは、切替弁60がオープン状態である場合に比べて、速く下降する。 When the switching valve 60 is in the closed state, the hydraulic oil is not collected from the lower chamber 12g of the trim cylinder 12, so the piston rod 14b of the tilt cylinder 14 descends faster than when the switching valve 60 is in the open state. .
 (保持状態)
 昇降信号SIG_UDが「上昇」及び「下降」の何れも示していない場合、ポンプ42が停止する。ポンプ42が停止すると、船外機昇降装置1の油圧回路内の動作油の移動が収束した状態において、船外機300が保持される。なお、本明細書では、昇降信号SIG_UDが「上昇」及び「下降」の何れも示していない場合を、便宜的に、昇降信号SIG_UDが「保持」を示している場合と表現することもある。
(Holding state)
When the elevation signal SIG_UD indicates neither “rising” nor “falling”, the pump 42 is stopped. When the pump 42 stops, the outboard motor 300 is held in a state in which the movement of the working oil in the hydraulic circuit of the outboard motor lifting device 1 has converged. In the present specification, the case where the raising and lowering signal SIG_UD does not indicate either “rising” or “falling” may be expressed as the case where the raising / lowering signal SIG_UD indicates “holding” for convenience.
 (切替弁60の制御例)
 以下では、図7を参照して、制御部100による切替弁60の制御例について説明する。
(Example of control of switching valve 60)
Below, with reference to FIG. 7, the example of control of the switching valve 60 by the control part 100 is demonstrated.
 図7は、船体状態信号SIG_INが示す船外機300の状態、昇降信号SIG_UDが示す運転者による船外機の昇降指示、及び、制御部100によって制御された切替弁60の状態を例示する表である。 FIG. 7 is a table illustrating the state of the outboard motor 300 indicated by the hull state signal SIG_IN, the elevation instruction of the outboard motor by the driver indicated by the elevation signal SIG_UD, and the state of the switching valve 60 controlled by the control unit 100. It is.
 図7に示す例では、船体状態信号SIG_INが「エンジンオン」又は「インギヤ」を示している場合、昇降信号SIG_UDが「上昇」「下降」「保持」の何れを示しているのかに関わらず、制御部100は切替弁60をオープン状態とする。 In the example shown in FIG. 7, when the ship state signal SIG_IN indicates “engine on” or “in gear”, regardless of which of “rising”, “falling”, and “holding” the raising and lowering signal SIG_UD indicates. The control unit 100 brings the switching valve 60 into the open state.
 一例として、船体状態信号SIG_INは、船外機300が備えるエンジン301のエンジン回転部に関連する信号であり、制御部100は、エンジン回転数が回転数に関する第1閾値以上である場合に、航行状態と判定し、切替弁60をオープン状態とする。ここで、回転数に関する第1閾値は、適宜設定された正の値を有している。また、制御部100は、エンジン回転数が回転数に関する第2閾値を超える場合に、航行状態と判定し、切替弁60をオープン状態とする構成でもよい。ここで、回転数に関する第2閾値は、適宜設定された0以上の値を有している。
 このように、制御部100は、船体状態信号SIG_INを参照して、航行状態及び停船状態を判定し、航行状態と判定した場合に、切替弁60をオープン状態となるように制御する。
As an example, the hull state signal SIG_IN is a signal related to the engine rotation unit of the engine 301 provided in the outboard motor 300, and the control unit 100 navigates when the engine rotation speed is equal to or more than the first threshold value for the rotation speed. It determines with it being a state and makes the switching valve 60 an open state. Here, the first threshold relating to the rotational speed has a positive value set appropriately. In addition, the control unit 100 may be configured to determine that the vehicle is in the navigation state and to set the switching valve 60 in the open state when the engine speed exceeds the second threshold related to the speed. Here, the second threshold regarding the rotational speed has a value of 0 or more set appropriately.
As described above, the control unit 100 refers to the ship state signal SIG_IN to determine the navigation state and the stop state, and controls the switching valve 60 to be in the open state when the navigation state is determined.
 したがって、エンジン301がオンであるか又は動力伝達機構302がインギヤの状態では、トリム域において、チルトシリンダ14のピストンロッド14bとトリムシリンダ12のピストンロッド12bとが共に上昇及び下降することによって船外機300の角度調整が行われる。また、船外機300の保持状態において、外力によりトリムシリンダ12の下室12gの内圧が上昇した場合であっても、当該内圧は、チルトシリンダの下室14gに分散される。 Therefore, when engine 301 is on or power transmission mechanism 302 is in the in-gear state, the piston rod 14b of the tilt cylinder 14 and the piston rod 12b of the trim cylinder 12 move up and down together in the trim area. The angle adjustment of the machine 300 is performed. Further, even when the internal pressure of the lower chamber 12g of the trim cylinder 12 is increased by an external force in the holding state of the outboard motor 300, the internal pressure is dispersed in the lower chamber 14g of the tilt cylinder.
 一方で、図7に示す例では、船体状態信号SIG_INが「エンジンオフ」又は「インギヤでない」を示し、昇降信号SIG_UDが「上昇」又は「保持」を示す場合に、制御部100は切替弁60をクローズ状態とする。 On the other hand, in the example shown in FIG. 7, when the hull state signal SIG_IN indicates “engine off” or “not in gear” and the elevation signal SIG_UD indicates “rising” or “holding”, the control unit 100 switches the switching valve 60. Is closed.
 このように、制御部100は、船体状態信号SIG_INを参照して、航行状態及び停船状態を判定し、停船状態と判定した場合に、切替弁60をクローズ状態となるように制御する。 As described above, the control unit 100 refers to the ship state signal SIG_IN to determine the navigation state and the stop state, and controls the switching valve 60 to be in the closed state when it is determined that the ship is in the stop state.
 したがって、エンジン301がオフであるか又は動力伝達機構302がインギヤでない状態において、船外機300を上昇させる場合、トリム域においても、チルトシリンダ14のピストンロッド14bのみが上昇する。このため、エンジン301がオフであるか又は動力伝達機構302がインギヤでない状態では、エンジン301がオンであるか又は動力伝達機構302がインギヤである状態に比べて、船外機300を早く上昇させることができる。 Therefore, when raising the outboard motor 300 while the engine 301 is off or the power transmission mechanism 302 is not in gear, only the piston rod 14b of the tilt cylinder 14 also rises in the trim area. Therefore, when the engine 301 is off or the power transmission mechanism 302 is not in gear, the outboard motor 300 is raised faster than the engine 301 is on or the power transmission mechanism 302 is in gear. be able to.
 また、船外機300の保持状態において、作動油がチルトシリンダ14の下室14gからトリムシリンダ12の下室12gに供給されることがないので、チルトシリンダ14のピストンロッド14bによって船外機300をしっかりと保持することができる。 Further, since the hydraulic oil is not supplied from the lower chamber 14g of the tilt cylinder 14 to the lower chamber 12g of the trim cylinder 12 when the outboard motor 300 is held, the outboard motor 300 is operated by the piston rod 14b of the tilt cylinder 14. Can be held firmly.
 また、図7に示す例では、船体状態信号SIG_INが「エンジンオフ」又は「インギヤでない」を示し、昇降信号SIG_UDが「下降」を示す場合に、制御部100は切替弁60をオープン状態とする。 Further, in the example illustrated in FIG. 7, when the hull state signal SIG_IN indicates “engine off” or “not in gear” and the elevation signal SIG_UD indicates “down”, the control unit 100 sets the switching valve 60 in the open state. .
 したがって、エンジン301がオフであるか又は動力伝達機構302がインギヤでない状態において、船外機300を下降させる場合、作動油がチルトシリンダ14の下室14gからトリムシリンダ12の下室12gに供給され、トリムシリンダ12のピストンロッド12bが、スイベルブラケット80に当接するまで上昇する。 Therefore, when lowering the outboard motor 300 while the engine 301 is off or the power transmission mechanism 302 is not in gear, hydraulic oil is supplied from the lower chamber 14g of the tilt cylinder 14 to the lower chamber 12g of the trim cylinder 12. The piston rod 12 b of the trim cylinder 12 is raised until it abuts on the swivel bracket 80.
 なお、切替弁60の制御は、上記の例に限定されるものではなく、ユーザの使い勝手や外力に対する船外機昇降装置1の適応性等を鑑みて、適宜設定することができる。 The control of the switching valve 60 is not limited to the above-described example, and can be appropriately set in consideration of the user's convenience, the adaptability of the outboard motor lifting apparatus 1 to external force, and the like.
 例えば、船体状態信号SIG_INが「エンジンオン」又は「インギヤ」を示し、昇降信号SIG_UDが「保持」を示す場合に、制御部100は切替弁60をクローズ状態としてもよい。 For example, when the hull state signal SIG_IN indicates "engine on" or "in gear" and the elevation signal SIG_UD indicates "hold", the control unit 100 may set the switching valve 60 in the closed state.
 船外機300の保持状態において、通常、トリムシリンダ12の上室12fから作動油が流出することも、トリムシリンダ12の上室12fに作動油が流入することもない。換言すれば、船外機300の保持状態においては、通常、トリムシリンダ12の上室12fには余分な圧力が印加されることはない。このような状況では、切替弁60をオープン状態としてもクローズ状態としても好適な動作が得られる。 In the holding state of the outboard motor 300, normally, no hydraulic fluid flows out of the upper chamber 12f of the trim cylinder 12 or hydraulic fluid flows into the upper chamber 12f of the trim cylinder 12. In other words, in the holding state of the outboard motor 300, normally, no excess pressure is applied to the upper chamber 12f of the trim cylinder 12. In such a situation, a suitable operation can be obtained whether the switching valve 60 is open or closed.
 また、例えば、船体状態信号SIG_INが「エンジンオフ」又は「インギヤでない」を示し、昇降信号SIG_UDが「下降」を示す場合に、制御部100は切替弁60をクローズ状態としてもよい。 Also, for example, when the hull state signal SIG_IN indicates “engine off” or “not in gear” and the elevation signal SIG_UD indicates “down”, the control unit 100 may set the switching valve 60 in the closed state.
 この場合、エンジン301がオフであるか又は動力伝達機構302がインギヤでない状態において、船外機300を下降させる場合、作動油がチルトシリンダ14の下室14gからトリムシリンダ12の下室12gに供給されないので、エンジン301がオンであるか又は動力伝達機構302がインギヤである状態に比べて、船外機300を早く下降させることができる。 In this case, when the outboard motor 300 is lowered with the engine 301 off or the power transmission mechanism 302 not in gear, hydraulic oil is supplied from the lower chamber 14g of the tilt cylinder 14 to the lower chamber 12g of the trim cylinder 12. Therefore, the outboard motor 300 can be lowered earlier than when the engine 301 is on or the power transmission mechanism 302 is in gear.
 なお、船体状態信号SIG_INが「エンジンオフ」又は「インギヤでない」を示し、昇降信号SIG_UDが「下降」を示す場合に、切替弁60をオープン状態とするのかクローズ状態とするのかの選択は、制御部100によって行われる構成としてもよい。このような構成の場合、制御部100はユーザからの指示を示すユーザ指示信号を参照してオープン状態及びクローズ状態の何れかを選択してもよいし、他の信号を参照してオープン状態及びクローズ状態の何れかを選択してもよい。 When the hull state signal SIG_IN indicates "engine off" or "not in gear" and the elevation signal SIG_UD indicates "down", the selection of whether the switching valve 60 is open or closed is controlled. The configuration may be performed by the unit 100. In such a configuration, control unit 100 may select either the open state or the closed state by referring to a user instruction signal indicating an instruction from the user, or by referring to another signal, the open state or One of the closed states may be selected.
 <切替弁60を第8の流路上に配置することの効果>
 以上説明したように、本実施形態では、切替弁60を、トリムシリンダ12の上室(第1室)12fに接続された第8の流路C8上に配置した。一方で、比較例としては、トリムシリンダ12の下室12gに接続された第6の流路C6上に切替弁60を設けるという構成も考えられる。
<Effect of disposing switching valve 60 on eighth flow path>
As described above, in the present embodiment, the switching valve 60 is disposed on the eighth flow passage C8 connected to the upper chamber (first chamber) 12f of the trim cylinder 12. On the other hand, as a comparative example, a configuration may be considered in which the switching valve 60 is provided on the sixth flow passage C6 connected to the lower chamber 12g of the trim cylinder 12.
 しかしながら、一般に、シリンダの下室には上室に比べて高い油圧が印加され、その油圧の値は一例として25MPa程度に達する。このため、トリムシリンダ12の下室12gに接続された第6の流路C6上に切替弁60を設ける場合、切替弁60に対して高い耐圧性及びシール性が要求されるので、切替弁60の大型化及び重量化を招来してしまう。 However, in general, a higher oil pressure is applied to the lower chamber of the cylinder compared to the upper chamber, and the value of the oil pressure reaches about 25 MPa as an example. For this reason, when the switching valve 60 is provided on the sixth flow path C6 connected to the lower chamber 12g of the trim cylinder 12, high switching pressure and high sealing performance are required of the switching valve 60. Increase the size and weight of the
 また、第6の流路C6上に切替弁60を設ける場合、切替弁60としてノーマリークローズ弁を用いた場合、ピストンロッド12bに外力が印加された場合、切替弁60に過度な圧力がかかる可能性があるので、当該過度な圧力を逃がすための保護バルブを別途設ける必要がある。 When the switching valve 60 is provided on the sixth flow path C6, when a normally closed valve is used as the switching valve 60, an excessive pressure is applied to the switching valve 60 when an external force is applied to the piston rod 12b. Because of the possibility, it is necessary to provide a separate protection valve to relieve the excessive pressure.
 一方で、本実施形態のように、切替弁60を、トリムシリンダ12の上室(第1室)12fに接続された第8の流路C8上に設ける構成では、切替弁60に対して上記のような高い耐圧性及びシール性が要求されることはない。また、切替弁60を第8の流路C8上に設ける構成では、上述のような保護バルブを設けることは必須ではない。 On the other hand, in the configuration in which the switching valve 60 is provided on the eighth flow path C8 connected to the upper chamber (first chamber) 12f of the trim cylinder 12 as in the present embodiment, Such high pressure resistance and sealability are not required. Moreover, in the structure which provides the switching valve 60 on the 8th flow path C8, it is not essential to provide the above-mentioned protection valve.
 したがって、本実施形態のように、切替弁60を、トリムシリンダ12の上室(第1室)12fに接続された第8の流路C8上に設ける構成は、トリムシリンダ12の下室12gに接続された第6の流路C6上に切替弁60を設ける構成に比べて、船外機昇降装置の小型化や軽量化を図ることができるというメリットがある。また、製造コストの抑制及び信頼度の向上というメリットがある。
 (制御部100による船外機昇降装置1の一連の制御)
 制御部100は、ユーザによる指示をトリガーとして、船外機300の上昇および下降の少なくとも何れか、並びに、切替弁60の開閉状態の変更を含む一連の制御を実行する。これにより、船体の出港時、係留時に、及びその他のシーンにおいて、ユーザの手間を抑制しつつ、複雑なチルトトリム制御を行うことができる。以下では、係留時の制御部100による船外機昇降装置1の係留制御、出港制御について、図8~図12を参照しつつ説明を行う。
 (係留時の制御部100による船外機昇降装置1の係留制御)
 まず、制御部100による船外機昇降装置1の係留制御について説明する。船外機昇降装置1は、係留スイッチ401又は他のデバイスを介したユーザによる係留指示をトリガーとして、船外機昇降装置1の係留制御を行う。
Therefore, as in the present embodiment, the configuration in which the switching valve 60 is provided on the eighth flow passage C8 connected to the upper chamber (first chamber) 12f of the trim cylinder 12 is the same as the lower chamber 12g of the trim cylinder 12 Compared to the configuration in which the switching valve 60 is provided on the connected sixth flow path C6, there is an advantage that downsizing and weight reduction of the outboard motor lifting device can be achieved. In addition, there is an advantage of suppressing the manufacturing cost and improving the reliability.
(A series of control of the outboard motor lifting device 1 by the control unit 100)
The control unit 100 executes a series of control operations including at least one of raising and lowering of the outboard motor 300 and changing of the open / close state of the switching valve 60 using an instruction from the user as a trigger. As a result, complex tilt trim control can be performed while suppressing the time and effort of the user at the time of departure from the hull, at the time of mooring, and in other scenes. In the following, the mooring control and the port control of the outboard motor elevator 1 by the control unit 100 at the time of mooring will be described with reference to FIGS. 8 to 12.
(The mooring control of the outboard motor elevator 1 by the control unit 100 at the time of mooring)
First, the mooring control of the outboard motor elevator 1 by the control unit 100 will be described. The outboard motor elevator 1 performs mooring control of the outboard motor elevator 1 by using a mooring instruction by the user via the mooring switch 401 or another device as a trigger.
 (モータ電流に応じた係留制御)
 図8は制御部100による係留制御を示すフローチャートであり、モータ16のモータ電流に応じて船外機300の昇降を制御する場合の係留制御を示している。モータ16は、上述したように、油圧回路のポンプ42を駆動させる。船外機300が、上昇し切っている状態で上昇制御を継続した場合、もしくは、下降し切っている状態で下降制御を継続した場合には、モータ16に係る負荷が大きくなり、作動電流よりも大きいブロー電流が駆動電流としてモータ16に供給さえる。制御部100は、このモータ16に流れる駆動電流の電流値が作動電流であるのか、ブロー電流であるのかに基づいて、船外機300が上昇し切ったか、あるいは、下降し切ったかを検出することができるように構成されている。
 (ステップS101)
 まず、ステップS101において、制御部100は、エンジン301から供給される船体状態信号SIG_INに応じて、エンジン301がオンであるか否かを判定する。制御部100は、エンジン301がオンであると判定した場合(ステップS101でYES)、ステップS102に進む。また、制御部100は、エンジン301がオフであると判定した場合(ステップS101でNO)、ステップS105に進む。なお、本ステップでは、エンジン301がオンであるか否かを判定することに代えて、船外機300の備える動力伝達機構302がインギヤの状態であるか否かを判定する処理としてもよい。
(Mooring control according to motor current)
FIG. 8 is a flowchart showing the mooring control by the control unit 100, and shows mooring control in the case of controlling the elevation of the outboard motor 300 according to the motor current of the motor 16. The motor 16 drives the pump 42 of the hydraulic circuit as described above. When the outboard motor 300 continues the rising control while it is fully lifted, or when the falling control is continued while it is completely lowered, the load on the motor 16 is increased, and the operating current is greater than the operating current. A large blow current may be supplied to the motor 16 as a drive current. The control unit 100 detects whether the outboard motor 300 has completely risen or falls based on whether the current value of the drive current flowing to the motor 16 is an operation current or a blow current. It is configured to be able to.
(Step S101)
First, in step S101, the control unit 100 determines whether the engine 301 is on according to the hull state signal SIG_IN supplied from the engine 301. When control unit 100 determines that engine 301 is on (YES in step S101), the process proceeds to step S102. In addition, when the control unit 100 determines that the engine 301 is off (NO in step S101), the process proceeds to step S105. In this step, instead of determining whether the engine 301 is on, it may be determined whether the power transmission mechanism 302 of the outboard motor 300 is in gear.
 (ステップS102、S103、S104)
 制御部100は、エンジン301がオンであると判定した場合には、係留スイッチ401がオンであるかオフであるかに関わらず、船外機昇降装置1を作動させないで係留制御を終了する。つまり、制御部100は、船外機300の昇降、および、切替弁60の開閉制御を行うことなく、係留制御を終了する。
(Steps S102, S103, S104)
When the control unit 100 determines that the engine 301 is on, the control unit 100 ends the mooring control without operating the outboard motor lifting device 1 regardless of whether the mooring switch 401 is on or off. That is, the control unit 100 ends the mooring control without performing the lifting and lowering control of the outboard motor 300 and the switching valve 60.
 このように、制御部100は、まず、船外機300のエンジン301がオフである(又は、インギヤの状態ではない)ことを条件として、係留制御を行うか否かを判定する。このため、エンジン301がオンの状態(又は、インギヤの状態)であるにも関わらず、ユーザが意図せず操作レバー400を操作してしまった場合に、一連の係留制御が実行されることを防ぐことができる。
 (ステップS105)
 制御部100は、ステップS101においてエンジン301がオフであると判定すると、ステップS105において、係留スイッチ401がオンであるか否かを判定する。制御部100は、係留スイッチ401がオフであると判定した場合には(ステップS105でNO)、ステップS106に進む。制御部100は、係留スイッチ401がオンであると判定した場合には(ステップS105でYES)、ステップS107に進む。なお、本ステップでは、係留スイッチ401がオンであるか否かを判定することに代えて、他のデバイスを介してユーザによる係留指示を受け付けたか否かを判定する構成としてもよい。
As described above, the control unit 100 first determines whether or not the mooring control is to be performed on the condition that the engine 301 of the outboard motor 300 is off (or not in the in-gear state). Therefore, even if the engine 301 is in the on state (or in the in-gear state), a series of mooring control is performed when the user unintentionally operates the operation lever 400. It can prevent.
(Step S105)
When the controller 100 determines that the engine 301 is off in step S101, the controller 100 determines whether the mooring switch 401 is on in step S105. If it is determined that the mooring switch 401 is off (NO in step S105), the control unit 100 proceeds to step S106. When it is determined that the mooring switch 401 is on (YES in step S105), the control unit 100 proceeds to step S107. In this step, instead of determining whether or not the mooring switch 401 is on, it may be configured to determine whether or not the mooring instruction from the user has been received via another device.
 (ステップS106)
 ステップS105でNOと判定された場合、制御部100は、船外機昇降装置1を作動させないで係留制御を終了する。つまり、制御部100は、船外機300の昇降、および、切替弁60の開閉制御を行うことなく、係留制御を終了する。
(Step S106)
When it is determined as NO in step S105, the control unit 100 ends the mooring control without operating the outboard motor lifting device 1. That is, the control unit 100 ends the mooring control without performing the lifting and lowering control of the outboard motor 300 and the switching valve 60.
 (ステップS107)
 ステップS105でYESと判定された場合、制御部100は、ステップS107において切替弁60をオープン状態とする。
(Step S107)
When it is determined YES in step S105, the control unit 100 sets the switching valve 60 in an open state in step S107.
 (ステップS108)
 続いて、ステップS108において、制御部100は、船外機300を下降させるように船外機昇降装置1のモータ16を制御する。これにより、チルトシリンダ14のピストンロッド14b、及びトリムシリンダ12のピストンロッド12bが共に下降する。
(Step S108)
Subsequently, in step S108, the control unit 100 controls the motor 16 of the outboard motor lifting device 1 to lower the outboard motor 300. As a result, both the piston rod 14b of the tilt cylinder 14 and the piston rod 12b of the trim cylinder 12 are lowered.
 (ステップS109)
 制御部100は、モータ16のモータ電流値を監視し、モータ16のモータ電流値がブロー電流になっているか否かを判定する。制御部100は、モータ16のモータ電流値がブロー電流になっていない(換言すれば、作動電流になっている)間は(ステップS109でNO)、ステップS108に戻り、船外機300の下降を継続する。制御部100は、モータ16のモータ電流値がブロー電流となった(換言すれば、船外機300が下降し切った状態となった)ことを検出すると(ステップS109でYES)、ステップS110に進む。
(Step S109)
The control unit 100 monitors the motor current value of the motor 16 and determines whether the motor current value of the motor 16 is a blow current. While the motor current value of the motor 16 is not the blow current (in other words, it is the operation current) (NO in step S109), the control unit 100 returns to step S108 and the descent of the outboard motor 300 To continue. When control unit 100 detects that the motor current value of motor 16 has become the blow current (in other words, the state where outboard motor 300 has been completely lowered) (YES in step S109), the process proceeds to step S110. move on.
 (ステップS110)
 ステップS109でYESと判定された場合、ステップS110において制御部100は、切替弁60をクローズ状態とする。
(Step S110)
When it determines with YES by step S109, the control part 100 makes the switching valve 60 a close state in step S110.
 (ステップS111)
 続いて、ステップS111において、制御部100は、船外機300を上昇させるように船外機昇降装置1のモータ16を制御する。
(Step S111)
Subsequently, in step S111, the control unit 100 controls the motor 16 of the outboard motor lifting device 1 to raise the outboard motor 300.
 (ステップS112)
 制御部100は、モータ16のモータ電流値を監視し、モータ16のモータ電流値がブロー電流になっているか否かを判定する。制御部100は、モータ16のモータ電流値がブロー電流になっていない(換言すれば、作動電流になっている)間は(ステップS112でNO)、ステップS111に戻り、船外機300の上昇を継続する。制御部100は、モータ16のモータ電流値がブロー電流となった(換言すれば、船外機300が上昇し切った状態となった)ことを検出すると(ステップS112でYES)、ステップS113に進む。
(Step S112)
The control unit 100 monitors the motor current value of the motor 16 and determines whether the motor current value of the motor 16 is a blow current. While the motor current value of the motor 16 is not the blow current (in other words, it is the operation current) (NO in step S112), the control unit 100 returns to step S111 and raises the outboard motor 300 To continue. When control unit 100 detects that the motor current value of motor 16 has become the blow current (in other words, the state where outboard motor 300 has been fully lifted) (YES in step S112), the process proceeds to step S113. move on.
 (ステップS113)
 制御部100は、船外機昇降装置1のモータ16の作動を停止し、船外機300に対する係留制御を終了する。
(Step S113)
The control unit 100 stops the operation of the motor 16 of the outboard motor lifting device 1 and ends the mooring control for the outboard motor 300.
 図9(a)~(f)は、係留制御を通しての船外機昇降装置1の動作例を示す図である。なお、図9は、ソレノイド62がオフの場合にクローズ状態となることによって第8の流路C8を遮断し、ソレノイド62がオンの場合にオープン状態となることによって第8の流路C8を開放するノーマリークローズ弁の切替弁60を用いた場合の例に示している。 9 (a) to 9 (f) are diagrams showing an operation example of the outboard motor elevator 1 through the mooring control. In FIG. 9, the eighth channel C8 is blocked by being closed when the solenoid 62 is off, and the eighth channel C8 is opened by being opened when the solenoid 62 is on. An example of the case where the switching valve 60 of the normally closed valve is used is shown.
 図9(a)、(b)に示す例では、船体200が帰港し、エンジン301がオフにされた時、船外機300は、プロペラ303が水面下に配置されるトリム域の角度領域で保持されている。図9(c)、(d)に示すように、エンジンがオフにされた後、係留スイッチ401又は他のデバイスを介したユーザによる指示をトリガーとして、制御部100は、まず、ソレノイド62をオンにすることにより切替弁60をオープン状態とする(図8のステップS107に対応)。そして、制御部100は、切替弁60をオープン状態としたうえで、船外機300を下降させる(図8のステップS108に対応)。制御部100は、船外機300を一旦、下降し切った位置まで移動させ、トリムシリンダ12のピストンロッド12bを縮み切りの状態とする。 In the example shown in FIGS. 9 (a) and 9 (b), when the hull 200 is returned to the port and the engine 301 is turned off, the outboard motor 300 is in the angle region of the trim area where the propeller 303 is disposed below the water surface. It is held. As shown in FIGS. 9C and 9D, after the engine is turned off, the control unit 100 first turns on the solenoid 62, triggered by an instruction from the user via the mooring switch 401 or another device. The switching valve 60 is opened (corresponding to step S107 in FIG. 8). Then, the control unit 100 lowers the outboard motor 300 after setting the switching valve 60 in the open state (corresponding to step S108 in FIG. 8). The control unit 100 causes the outboard motor 300 to move to the position where the outboard motor 300 has been lowered all the time, and causes the piston rod 12b of the trim cylinder 12 to be in a contracted state.
 次に、制御部100は、図9(e)に示すように、ソレノイド62をオフにすることで切替弁60をクローズ状態とする(図8のステップS110に対応)。そして、制御部100は、切替弁60をクローズ状態としたうえで、チルトシリンダ14のピストンロッド14bが伸長し切った状態になるまで、船外機300を上昇させる(図8のステップS111に対応)。図9(f)に示すように、船外機300が上昇し切った位置まで移動すると、制御部100は、係留制御を終了する。 Next, as shown in FIG. 9E, the control unit 100 turns off the solenoid 62 to bring the switching valve 60 into the closed state (corresponding to step S110 in FIG. 8). Then, the control unit 100 raises the outboard motor 300 until the piston rod 14b of the tilt cylinder 14 is in the extended state after the switching valve 60 is in the closed state (corresponding to step S111 in FIG. 8). ). As shown in FIG. 9 (f), when the outboard motor 300 moves up to the full position, the control unit 100 ends the mooring control.
 上述のように、制御部100は、ユーザによる係留指示をトリガーとして、切替弁60をオープン状態としたうえで、船外機300を下降させ、その後、船外機300が下降し切った状態において、切替弁60をクローズ状態としたうえで、船外機300を上昇させる一連の制御を行う。これにより、トリムシリンダ12のピストンロッド12bが伸びたままの状態で係留されることがないので、ピストンロッド12bにおける錆の発生を抑制することができる。
 なお、制御部100は、上述したように、モータ16の電流値を監視して、モータ16の電流値に応じて、船外機300の昇降を制御する。そして、制御部100は、モータ電流がブロー電流となったことを検出することで、トリムシリンダ12のピストンロッド12bの縮み切り、および、チルトシリンダ14のピストンロッド14bの伸び切りを、判定し、係留制御を行う。このように、制御部100は、油圧源を駆動するための駆動電流を参照することによって、船外機300が上昇し切った状態であるか、又は、下降し切った状態であるかを好適に検出することができる。
 (角度センサからの信号に応じた係留制御)
 係留制御の他の例として、船外機昇降装置1が、船外機300のチルトトリム角度を検出する角度センサ405を備え、以下に説明するように、制御部100が、角度センサ405から供給される角度センサ405の検出信号に応じて、係留制御を行う構成としてもよい。
As described above, the control unit 100 causes the switching valve 60 to be in the open state, triggered by the user's mooring instruction, and then lowers the outboard motor 300, and then the outboard motor 300 is completely lowered. After the switching valve 60 is closed, a series of control to raise the outboard motor 300 is performed. As a result, since the piston rod 12b of the trim cylinder 12 is not anchored in an extended state, the occurrence of rust on the piston rod 12b can be suppressed.
As described above, the control unit 100 monitors the current value of the motor 16 and controls the elevation of the outboard motor 300 according to the current value of the motor 16. Then, by detecting that the motor current has become the blow current, the control unit 100 determines that the piston rod 12b of the trim cylinder 12 is contracted and the piston rod 14b of the tilt cylinder 14 is extended or not. Conduct mooring control. As described above, the control unit 100 preferably refers to the drive current for driving the hydraulic pressure source to determine whether the outboard motor 300 is in the up state or the down state. Can be detected.
(The mooring control according to the signal from the angle sensor)
As another example of mooring control, the outboard motor lifting device 1 includes an angle sensor 405 that detects a tilt trim angle of the outboard motor 300, and the control unit 100 is supplied from the angle sensor 405 as described below. It is good also as composition which performs mooring control according to a detection signal of angle sensor 405 which carries out.
 図10は制御部100による係留制御を示すフローチャートであり、角度センサ405の検出信号に応じて船外機300の昇降を制御する場合の係留制御について示している。ステップS201~S208は、図8を参照して説明したステップS101~S108と同様であるのでここでは説明を省略する。 FIG. 10 is a flowchart showing the mooring control by the control unit 100, and shows mooring control in the case of controlling the elevation of the outboard motor 300 according to the detection signal of the angle sensor 405. Steps S201 to S208 are the same as steps S101 to S108 described with reference to FIG. 8, and thus the description thereof is omitted here.
 (ステップS209)
 制御部100は、角度センサ405から供給される、船外機300のチルトトリム角度を示す検出信号を参照して、船外機300が下降し切った状態であるか否かを判定する。より具体的には、制御部100は、船外機300のチルトトリム角度が予め設定された第1の閾値Th1よりも小さいか否か(角度<Th1か否か)に基づいて船外機300が下降し切ったか否かを判定する。制御部100は、船外機300のトリム角が第1の閾値Th1以上である間は(ステップS209でNO)、ステップS208に戻り、船外機300の下降を継続する。制御部100は、船外機300のトリム角が第1の閾値Th1よりも小さくなったことを検出すると(ステップS209でYES)、船外機300が下降し切ったと判定し、ステップS210に進む。なお、閾値Th1の具体的な値は、船外機昇降装置1及び船外機300の構成に応じて適宜設定すればよい。
(Step S209)
The control unit 100 refers to the detection signal indicating the tilt trim angle of the outboard motor 300 supplied from the angle sensor 405, and determines whether or not the outboard motor 300 is completely lowered. More specifically, the control unit 100 controls the outboard motor 300 based on whether or not the tilt trim angle of the outboard motor 300 is smaller than a preset first threshold Th1 (whether the angle is smaller than Th1). It is determined whether it has been lowered. While the trim angle of the outboard motor 300 is equal to or greater than the first threshold Th1 (NO in step S209), the control unit 100 returns to step S208 and continues the descent of the outboard motor 300. When detecting that the trim angle of the outboard motor 300 has become smaller than the first threshold Th1 (YES in step S209), the control unit 100 determines that the outboard motor 300 has been completely lowered, and proceeds to step S210. . The specific value of the threshold Th1 may be appropriately set according to the configurations of the outboard motor lifting device 1 and the outboard motor 300.
 (ステップS210)
 ステップS209でYESの場合、ステップS210において、制御部100は、切替弁60をクローズ状態とする。
(Step S210)
In the case of YES at step S209, the control unit 100 sets the switching valve 60 in the closed state at step S210.
 (ステップS211)
 続いて、ステップS211において、制御部100は、船外機300を上昇させるように船外機昇降装置1のモータ16を制御する。
(Step S211)
Subsequently, in step S211, the control unit 100 controls the motor 16 of the outboard motor lifting device 1 so as to raise the outboard motor 300.
 (ステップS212)
 制御部100は、角度センサ405の検出信号を監視し、船外機300のチルトトリム角度を示す検出信号を参照して、船外機300が上昇し切ったか否かを判定する。制御部100は、船外機300のチルトトリム角度が予め設定された第2の閾値Th2よりも大きいか否か(角度>Th2か否か)に基づいて船外機300が上昇し切ったか否かを判定する。ここで、第2の閾値Th2は第1の閾値Th1よりも大きい。制御部100は、船外機300のトリム角が第2の閾値Th2以下である間は(ステップS212でNO)、ステップS211に戻り、船外機300の上昇を継続する。制御部100は、船外機300のトリム角が第2の閾値Th2よりも大きくなったことを検出すると(ステップS212でYES)、ステップS213に進む。なお、閾値Th2の具体的な値は、船外機昇降装置1及び船外機300の構成に応じて適宜設定すればよい。
(Step S212)
The control unit 100 monitors the detection signal of the angle sensor 405 and refers to the detection signal indicating the tilt trim angle of the outboard motor 300 to determine whether the outboard motor 300 has been lifted. The control unit 100 determines whether the outboard motor 300 is lifted based on whether or not the tilt trim angle of the outboard motor 300 is larger than the second threshold Th2 set in advance (whether or not angle> Th2). Determine Here, the second threshold Th2 is larger than the first threshold Th1. While the trim angle of the outboard motor 300 is less than or equal to the second threshold value Th2 (NO in step S212), the control unit 100 returns to step S211 and continues the ascent of the outboard motor 300. When control unit 100 detects that the trim angle of outboard motor 300 is larger than second threshold value Th2 (YES in step S212), the process proceeds to step S213. The specific value of the threshold value Th2 may be appropriately set according to the configurations of the outboard motor lifting device 1 and the outboard motor 300.
 (ステップS213)
 ステップS212でYESの場合、制御部100は、船外機昇降装置1のモータ16の作動を停止し、船外機300に対する係留制御を終了する。
(Step S213)
In the case of YES at step S212, the control unit 100 stops the operation of the motor 16 of the outboard motor lifting device 1, and ends the mooring control for the outboard motor 300.
 このように、制御部100は、船外機300の上昇角度を検出する角度センサ405による検出結果を参照することによっても、船外機300が下降し切った状態を検出することができるので、ユーザの手間を抑制しつつ、複雑なチルトトリム制御を行うことができる。 As described above, the control unit 100 can also detect the state in which the outboard motor 300 is completely lowered by referring to the detection result of the angle sensor 405 that detects the rising angle of the outboard motor 300. Complex tilt trim control can be performed while suppressing the time and effort of the user.
 (出港時の制御部100による船外機昇降装置1の出港制御)
 続いて、図11~図12を参照して、出港時の制御部100による船外機昇降装置1の出港制御について説明する。図11は制御部100による出港制御を示すフローチャートである。
(Departure control of outboard motor lifting device 1 by control unit 100 at departure)
Subsequently, the departure control of the outboard motor elevator 1 by the control unit 100 at the time of departure will be described with reference to FIGS. FIG. 11 is a flowchart showing departure control by the control unit 100.
 (ステップS301)
 まず、ステップS301において、制御部100は、エンジン301から供給される船体状態信号SIG_INに応じて、エンジン301がオンであるか否かを判定する。制御部100は、エンジン301がオンであると判定した場合(ステップS301でYES)、ステップS302に進む。また、制御部100は、エンジン301がオフであると判定した場合(ステップS301でNO)、ステップS303に進む。なお、本ステップでは、エンジン301がオンであるか否かを判定することに代えて、船外機300の備える動力伝達機構302がインギヤの状態であるか否かを判定する処理としてもよい。
(Step S301)
First, in step S301, the control unit 100 determines whether the engine 301 is on according to the hull state signal SIG_IN supplied from the engine 301. When control unit 100 determines that engine 301 is on (YES in step S301), the process proceeds to step S302. Further, when the control unit 100 determines that the engine 301 is off (NO in step S301), the control unit 100 proceeds to step S303. In this step, instead of determining whether the engine 301 is on, it may be determined whether the power transmission mechanism 302 of the outboard motor 300 is in gear.
 (ステップS302)
 制御部100は、エンジン301がオンであると判定した場合には、船外機昇降装置1による船外機300の昇降を作動さないで、出港制御を終了する。このように、制御部100は、まず、船外機300のエンジン301がオフである(又は、インギヤではない)ことを条件として、係留制御を行うか否かを判定する。このため、エンジン301がオンの状態(又は、インギヤの状態)であるにも関わらず、ユーザが意図せず操作レバー400を操作してしまった場合に、一連の出港制御が実行されることを防ぐことができる。
 (ステップS303)
 制御部100は、ステップS301においてエンジン301がオフであると判定すると(ステップS301でNO)、ステップS303において、出港スイッチ402がオンであるか否かを判定する。制御部100は、出港スイッチ402がオフであると判定した場合には(ステップS303でNO)、ステップS304に進む。制御部100は、出港スイッチ402がオンであると判定した場合には(ステップS303でYES)、ステップS305に進む。なお、本ステップでは、出港スイッチ402がオンであるか否かを判定することに代えて、他のデバイスを介してユーザによる出港指示を受け付けたか否かを判定する構成としてもよい。
(Step S302)
When it is determined that the engine 301 is on, the control unit 100 ends the port departure control without operating the lifting and lowering of the outboard motor 300 by the outboard motor lifting and lowering device 1. As described above, the control unit 100 first determines whether or not the mooring control is to be performed on the condition that the engine 301 of the outboard motor 300 is off (or not in the in-gear state). Therefore, if the user unintentionally operates the operation lever 400 despite the engine 301 being in the on state (or in the in-gear state), a series of port departure control is performed. It can prevent.
(Step S303)
When control unit 100 determines in step S301 that engine 301 is off (NO in step S301), control unit 100 determines whether or not departure switch 402 is on in step S303. When it is determined that the departure port switch 402 is off (NO in step S303), the control unit 100 proceeds to step S304. If the control unit 100 determines that the departure port switch 402 is on (YES in step S303), the process proceeds to step S305. In this step, instead of determining whether or not the departure switch 402 is on, it may be determined whether or not the user has received a departure instruction via another device.
 (ステップS304)
 ステップS303でNOの場合、制御部100は、船外機昇降装置1による船外機300の昇降を作動さないで、出港制御を終了する。
(Step S304)
In the case of NO in step S303, the control unit 100 ends the departure control without operating the lifting and lowering of the outboard motor 300 by the outboard motor lifting and lowering device 1.
 (ステップS305)
 ステップS303でYESの場合、ステップS305において、制御部100は、切替弁60をクローズ状態とする。
(Step S305)
In the case of YES at step S303, the control unit 100 sets the switching valve 60 in the closed state at step S305.
 (ステップS306)
 続いて、ステップS306において、制御部100は、船外機300を下降させるように船外機昇降装置1のモータ16を制御する。これにより、チルトシリンダ14のピストンロッド14b、及びトリムシリンダ12のピストンロッド12bが共に下降する。
(Step S306)
Subsequently, in step S306, the control unit 100 controls the motor 16 of the outboard motor lifting device 1 to lower the outboard motor 300. As a result, both the piston rod 14b of the tilt cylinder 14 and the piston rod 12b of the trim cylinder 12 are lowered.
 (ステップS307)
 制御部100は、モータ16のモータ電流値を監視し、モータ16のモータ電流値がブロー電流であるか否かを判定する。制御部100は、モータ16のモータ電流値がブロー電流になっていない(換言すれば、作動電流になっている)間は(ステップS307でNO)、ステップS306に戻り、船外機300の下降を継続する。制御部100は、モータ16のモータ電流値がブロー電流となった(換言すれば、船外機300が下降し切った状態となった)ことを検出すると(ステップS307でYES)、ステップS308に進む。
(Step S307)
The controller 100 monitors the motor current value of the motor 16 and determines whether the motor current value of the motor 16 is a blow current. While the motor current value of the motor 16 is not the blow current (in other words, it is the operation current) (NO in step S307), the control unit 100 returns to step S306 to lower the outboard motor 300 To continue. When control unit 100 detects that the motor current value of motor 16 has become the blow current (in other words, the state where outboard motor 300 has been completely lowered) (YES in step S307), the process proceeds to step S308. move on.
 (ステップS308)
 制御部100は、モータ16のモータ電流値がブロー電流になったことから、船外機300が下降し切ったと判断し、船外機昇降装置1のモータ16の作動を停止する。
(Step S308)
Since the motor current value of the motor 16 has become the blow current, the control unit 100 determines that the outboard motor 300 has been completely lowered, and stops the operation of the motor 16 of the outboard motor lifting device 1.
 (ステップS309)
 続いて、制御部100は、切替弁60をオープン状態とし、船外機300に対する出港制御を終了する。
(Step S309)
Subsequently, the control unit 100 causes the switching valve 60 to be in the open state, and ends the departure control for the outboard motor 300.
 なお、ステップS307では、モータ16のモータ電流値に代えて、角度センサ405の検出信号を監視し、船外機300のチルトトリム角度を示す検出信号を参照して、船外機300が下降し切ったか否かを判定してもよい。この場合、制御部100は、船外機300のチルトトリム角度が予め設定された第1の閾値Th1よりも小さいか否か(角度<Th1か否か)に基づいて船外機300が下降し切ったか否かを判定する。 In step S307, the detection signal of the angle sensor 405 is monitored instead of the motor current value of the motor 16, and the outboard motor 300 is lowered with reference to the detection signal indicating the tilt trim angle of the outboard motor 300. It may be determined whether or not it is. In this case, the control unit 100 lowers the outboard motor 300 based on whether or not the tilt trim angle of the outboard motor 300 is smaller than a first threshold Th1 set in advance (whether or not the angle <Th1). It is determined whether or not it is.
 図12(a)~(d)は、出港制御を通しての船外機昇降装置1の動作例を示す図である。なお図12は、ソレノイド62がオフの場合にクローズ状態となることによって第8の流路C8を遮断し、ソレノイド62がオンの場合にオープン状態となることによって第8の流路C8を開放するノーマリークローズ弁の切替弁60を用いた場合を例に示している。 12 (a) to 12 (d) are diagrams showing an operation example of the outboard motor elevator 1 through the departure control. In FIG. 12, the eighth channel C8 is shut off by being in the closed state when the solenoid 62 is off, and the eighth channel C8 is opened by being in the open state when the solenoid 62 is on. The case where the switching valve 60 of the normally closed valve is used is shown as an example.
 図12(a)、(b)に示す例では、船体200にユーザが乗船し、エンジン301がオフの状態であるとき、船外機300は上昇し切った状態で保持されている。出港スイッチ402又は他のデバイスを介したユーザによる出港指示をトリガーとして、制御部100は、図12(c)に示すように、ソレノイド62をオフにすることで切替弁60をクローズ状態とし(図11のステップS305に対応)、チルトシリンダ14のピストンロッド14bを縮み切りの状態に保ちつつ、船外機300を一旦、下降し切った状態の位置まで移動させる(図11のステップS306に対応)。 In the example shown in FIGS. 12 (a) and 12 (b), when the user is aboard the hull 200 and the engine 301 is in the off state, the outboard motor 300 is held in the lifted state. In response to a departure instruction by the user via the departure switch 402 or another device as a trigger, the control unit 100 causes the switching valve 60 to be closed by turning off the solenoid 62 as shown in FIG. 11), while keeping the piston rod 14b of the tilt cylinder 14 in the contracted and cut-off state, the outboard motor 300 is temporarily moved to the position of the lowered and cut-off state (corresponding to step S306 in FIG. 11) .
 次に、制御部100は、図12(d)に示すように、ソレノイド62をオンにすることにより切替弁60をオープン状態とし(図11のステップS311に対応)、チルトシリンダ14および、トリムシリンダ12によって船外機300をトリム領域で昇降可能な状態として、出港制御を終了する。 Next, as shown in FIG. 12D, the control unit 100 turns on the solenoid 62 to open the switching valve 60 (corresponding to step S311 in FIG. 11), and the tilt cylinder 14 and trim cylinder The outboard motor control is finished by setting the outboard motor 300 to be able to move up and down in the trim area by the step S12.
 このように、制御部100は、ユーザによる出港指示をトリガーとして、切替弁60をクローズ状態としたうえで、船外機300を下降させ、その後、船外機300が下降し切った状態において、切替弁60を開放状態とする一連の制御を行う。したがって、出港時に、チルトシリンダ14のみで船外機300を支えることを回避することができる。また、ユーザの手間を抑制しつつ、船外機の上昇及び下降を含む一連の出港動作を実行させることができる。 In this manner, the control unit 100 causes the switching valve 60 to be in the closed state by using the departure instruction from the user as a trigger, and then lowers the outboard motor 300, and then the outboard motor 300 is completely lowered. A series of control is performed to open the switching valve 60. Therefore, it is possible to avoid supporting the outboard motor 300 with only the tilt cylinder 14 at the time of departure. In addition, it is possible to execute a series of porting operations including raising and lowering of the outboard motor while suppressing the time and effort of the user.
 〔実施形態2〕
 以下では、図13を参照して実施形態2に係る制御部100aについて説明する。図7は本実施形態に係る制御部100aの構成を示すブロック図である。
Second Embodiment
The control unit 100a according to the second embodiment will be described below with reference to FIG. FIG. 7 is a block diagram showing the configuration of the control unit 100a according to the present embodiment.
 本実施形態に係る船外機昇降装置は、実施形態1係る船外機昇降装置1において、制御部100に代えて、図13に示す制御部100aを備えたものである。本実施形態に係る船外機昇降装置のその他の構成は実施形態1において説明した船外機昇降装置1と同様である。 The outboard motor elevator according to the present embodiment is provided with a control unit 100a shown in FIG. 13 in place of the control unit 100 in the outboard motor elevator 1 according to the first embodiment. The other configuration of the outboard motor elevator according to the present embodiment is the same as that of the outboard motor elevator 1 described in the first embodiment.
 制御部100aは、船体状態信号A-D変換回路131、昇降信号A-D変換回路132、135、136、演算部133、及び制御信号生成回路134を備えている。本実施形態においても、船体状態信号SIG_IN、昇降信号SIG_UD、係留スイッチ信号SIG_MOO、及び出港スイッチ信号SIG_RETは、アナログ信号として制御部100aに入力される。なお、図7では、船体状態信号A-D変換回路131のことを入力信号A-D変換回路131と表記している。 The control unit 100a includes a hull state signal AD conversion circuit 131, elevation signal AD conversion circuits 132, 135, and 136, an operation unit 133, and a control signal generation circuit 134. Also in the present embodiment, the hull state signal SIG_IN, the elevation signal SIG_UD, the mooring switch signal SIG_MOO, and the departure port switch signal SIG_RET are input to the control unit 100a as analog signals. In FIG. 7, the ship state signal AD conversion circuit 131 is referred to as an input signal AD conversion circuit 131.
 船体状態信号A-D変換回路131は、船体状態信号SIG_INをデジタル信号に変換する変換回路である。変換されたデジタル信号としての船体状態信号SIG_INは、演算部143に供給される。 The hull state signal AD conversion circuit 131 is a conversion circuit that converts the hull state signal SIG_IN into a digital signal. The hull state signal SIG_IN as the converted digital signal is supplied to the calculation unit 143.
 昇降信号A-D変換回路132は、昇降信号SIG_UDをデジタル信号に変換する変換回路である。変換されたデジタル信号としての昇降信号SIG_UDは、演算部143に供給される。 The elevation signal AD conversion circuit 132 is a conversion circuit that converts the elevation signal SIG_UD into a digital signal. The elevation signal SIG_UD as a converted digital signal is supplied to the calculation unit 143.
 昇降信号A-D変換回路135は、係留スイッチ信号SIG_MOOをデジタル信号に変換する変換回路である。変換されたデジタル信号としての係留スイッチ信号SIG_MOOは、演算部143に供給される。 The elevation signal AD conversion circuit 135 is a conversion circuit that converts the mooring switch signal SIG_MOO into a digital signal. The mooring switch signal SIG_MOO as a converted digital signal is supplied to the calculation unit 143.
 昇降信号A-D変換回路136は、出港スイッチ信号SIG_RETをデジタル信号に変換する変換回路である。変換されたデジタル信号としての出港スイッチ信号SIG_RETは、演算部143に供給される。 The elevation signal AD conversion circuit 136 is a conversion circuit that converts the outgoing port switch signal SIG_RET into a digital signal. The port switching signal SIG_RET as the converted digital signal is supplied to the calculation unit 143.
 演算部133は、デジタル信号としての船体状態信号SIG_IN及び昇降信号SIG_UDを参照し、切替弁60をオープン状態及びクローズ状態の何れにすべきかを決定する。決定結果を示す信号は制御信号生成回路134に供給される。 The operation unit 133 refers to the hull state signal SIG_IN and the elevation signal SIG_UD as digital signals, and determines which of the open state and the closed state the switching valve 60 should be in. A signal indicating the determination result is supplied to the control signal generation circuit 134.
 また、演算部133は、デジタル信号としての船体状態信号SIG_IN、係留スイッチ信号SIG_MOO及び出港スイッチ信号SIG_RETを参照し、上述した係留制御及び出港制御を行うべきかを決定する。決定結果を示す信号は制御信号生成回路134に供給される。 In addition, the operation unit 133 refers to the ship state signal SIG_IN as a digital signal, the mooring switch signal SIG_MOO, and the departure port switch signal SIG_RET to determine whether the above-mentioned mooring control and departure control should be performed. A signal indicating the determination result is supplied to the control signal generation circuit 134.
 制御信号生成回路134は、上記決定結果を示す信号を参照し、上記決定結果に応じた制御信号SIG_CONTを生成する。生成された制御信号SIG_CONTは、切替弁60、及びモータ16に供給される。 The control signal generation circuit 134 refers to the signal indicating the determination result, and generates the control signal SIG_CONT according to the determination result. The generated control signal SIG_CONT is supplied to the switching valve 60 and the motor 16.
 演算部133において決定される、船体状態信号SIG_IN及び昇降信号SIG_UDと切替弁60の状態との関係は、本実施形態を限定するものではないが、一例として、実施形態1の図7と同様に決定する構成とすることができる。また、船体状態信号SIG_IN、係留スイッチ信号SIG_MOO及び出港スイッチ信号SIG_RETを参照した制御として、図8~図12を用いて説明した一連の制御を挙げることができる。 The relationship between the ship state signal SIG_IN and the elevation signal SIG_UD determined by the calculation unit 133 and the state of the switching valve 60 is not limited to this embodiment, but as an example, it is the same as FIG. 7 of the first embodiment. It can be configured to be determined. Further, as the control with reference to the hull state signal SIG_IN, the mooring switch signal SIG_MOO and the departure port switch signal SIG_RET, a series of controls described with reference to FIGS. 8 to 12 can be mentioned.
 本実施形態に係る船外機昇降装置は、制御部100aを備えているので、実施形態1と同様に、船外機の昇降の速さを自動的に変更することができる。また、船体状態信号SIG_INを、船外機300の状態を示す状態信号とすれば、船外機の状態に応じて船外機の昇降の速さを自動的に変更することができる。また、ユーザの手間を抑制しつつ、複雑なチルトトリム制御を行うことができる。 Since the outboard motor elevator according to the present embodiment includes the control unit 100a, the speed of raising and lowering the outboard motor can be automatically changed as in the first embodiment. Further, if the hull state signal SIG_IN is a state signal indicating the state of the outboard motor 300, the speed of raising and lowering the outboard motor can be automatically changed according to the state of the outboard motor. In addition, complicated tilt trim control can be performed while suppressing the time and effort of the user.
 〔実施形態3〕
 以下では、図14を参照して実施形態3に係る制御部100bについて説明する。図8は本実施形態に係る制御部100bの構成を示すブロック図である。
Third Embodiment
The control unit 100b according to the third embodiment will be described below with reference to FIG. FIG. 8 is a block diagram showing the configuration of the control unit 100b according to the present embodiment.
 本実施形態に係る船外機昇降装置は、実施形態1に係る船外機昇降装置1において、制御部100に代えて、図14に示す制御部100bを備えたものである。以下の説明では、すでに説明した部材と同様の部材には同じ符号を付してその説明を省略する。 The outboard motor elevator according to the present embodiment includes a controller 100b shown in FIG. 14 in place of the controller 100 in the outboard motor elevator 1 according to the first embodiment. In the following description, the same members as those described above are denoted by the same reference numerals, and the description thereof is omitted.
 制御部100bは、図14に示すように、デジタル信号送受信回路141、昇降信号A-D変換回路132、135、136、演算部143、及び制御信号生成回路134を備えている。 As shown in FIG. 14, the control unit 100b includes a digital signal transmission / reception circuit 141, elevation signal AD conversion circuits 132, 135, 136, an operation unit 143, and a control signal generation circuit 134.
 デジタル信号送受信回路141は、船体状態信号としてデジタル信号D_SIGを受信し、受信したデジタル信号D_SIGを演算部143に供給する。 The digital signal transmission / reception circuit 141 receives the digital signal D_SIG as a ship state signal, and supplies the received digital signal D_SIG to the calculation unit 143.
 デジタル信号D_SIGは、船体200上に構成された有線又は無線ネットワークを介して伝送される信号であり、入力情報INFO_INを含んでいる。ここで、入力情報INFO_INとは、実施形態1及び2において説明した船体状態信号SIG_INによって示される情報と同様の情報である。一例として、入力情報INFO_INには、実施形態1及び2において説明した、船外機300の状態を示す状態信号と同等の情報が含まれ得る。入力情報INFO_INの具体例として、例えば、エンジン301のオンオフを示す1ビットのフラグ、船外機300の備える動力伝達機構302がインギヤの状態にあるのか否かを示す1ビットのフラグ等が挙げられる。 The digital signal D_SIG is a signal transmitted via a wired or wireless network configured on the hull 200, and includes input information INFO_IN. Here, the input information INFO_IN is information similar to the information indicated by the hull state signal SIG_IN described in the first and second embodiments. As an example, the input information INFO_IN may include information equivalent to the state signal indicating the state of the outboard motor 300 described in the first and second embodiments. Specific examples of the input information INFO_IN include, for example, a 1-bit flag indicating turning on and off of the engine 301, and a 1-bit flag indicating whether the power transmission mechanism 302 of the outboard motor 300 is in gear. .
 デジタル信号D_SIGは、船体200に関する様々な情報及び船体200外から取得した様々な情報を含み得る。デジタル信号D_SIGを伝送するための具体的な規格は本実施形態を限定するものではないが、一例として、NMEA(National Marine Electronics Association)によって制定されたNMEA2000(登録商標)が挙げられる。 The digital signal D_SIG may include various information on the hull 200 and various information obtained from outside the hull 200. A specific standard for transmitting the digital signal D_SIG is not limited to this embodiment, but one example is NMEA 2000 (registered trademark) established by National Marine Electronics Association (NMEA).
 演算部143は、デジタル信号送受信回路141から供給されるデジタル信号D_SIG、及び、昇降信号A-D変換回路132から供給されるデジタル信号としての昇降信号SIG_UDを参照し、切替弁60をオープン状態及びクローズ状態の何れにすべきかを決定する。決定結果を示す信号は制御信号生成回路134に供給される。 The calculation unit 143 refers to the digital signal D_SIG supplied from the digital signal transmission / reception circuit 141 and the elevation signal SIG_UD as a digital signal supplied from the elevation signal AD conversion circuit 132, and opens the switching valve 60 in an open state. Decide which should be closed. A signal indicating the determination result is supplied to the control signal generation circuit 134.
 また、演算部143は、デジタル信号D_SIG、係留スイッチ信号SIG_MOO及び出港スイッチ信号SIG_RETを参照し、上述した係留制御及び出港制御を行うべきかを決定する。決定結果を示す信号は制御信号生成回路134に供給される。 Further, the calculation unit 143 refers to the digital signal D_SIG, the mooring switch signal SIG_MOO, and the departure port switch signal SIG_RET to determine whether the above-mentioned mooring control and departure control should be performed. A signal indicating the determination result is supplied to the control signal generation circuit 134.
 演算部143において決定される、入力情報INFO_IN及び昇降信号SIG_UDと切替弁60の状態との関係は、本実施形態を限定するものではないが、一例として、実施形態1の図6と同様に決定する構成とすることができる。また、デジタル信号D_SIG、係留スイッチ信号SIG_MOO及び出港スイッチ信号SIG_RETを参照した制御として、図8~図12を用いて説明した一連の制御を挙げることができる。 The relationship between the input information INFO_IN and the elevation signal SIG_UD determined by the calculation unit 143 and the state of the switching valve 60 is not limited to the present embodiment, but is determined similarly to FIG. 6 of the first embodiment as an example. Can be configured. Further, as control performed with reference to the digital signal D_SIG, the mooring switch signal SIG_MOO, and the departure port switch signal SIG_RET, a series of controls described with reference to FIGS. 8 to 12 can be mentioned.
 また、演算部143は、デジタル信号D_SIGに含まれる他の情報を更に参照して、切替弁をオープン状態及びクローズ状態の何れにすべきかを決定する構成としてもよい。 In addition, the calculation unit 143 may be configured to determine whether the switching valve should be in the open state or in the closed state by further referring to other information included in the digital signal D_SIG.
 本実施形態に係る船外機昇降装置は、制御部100bを備えているので、実施形態1と同様に、船外機の昇降の速さを自動的に変更することができる。また、デジタル信号D_SIGが、船外機300の状態を示す状態信号と同等の情報を含む構成では、船外機の状態に応じて船外機の昇降の速さを自動的に変更することができる。また、ユーザの手間を抑制しつつ、複雑なチルトトリム制御を行うことができる。 Since the outboard motor elevator according to the present embodiment includes the control unit 100b, the speed of raising and lowering the outboard motor can be automatically changed as in the first embodiment. Further, in the configuration in which the digital signal D_SIG includes information equivalent to the state signal indicating the state of the outboard motor 300, the speed of raising and lowering the outboard motor may be automatically changed according to the state of the outboard motor. it can. In addition, complicated tilt trim control can be performed while suppressing the time and effort of the user.
 〔実施形態4〕
 以下では、実施形態4に係る船外機昇降装置1aの構成について、図15を参照して説明する。図15は、本実施形態に係る船外機昇降装置1aの油圧回路を制御部100と共に示す図である。図15では、すでに説明した部材と同じ部材には同じ符号を付している。
Embodiment 4
Hereinafter, the configuration of the outboard motor elevator 1a according to the fourth embodiment will be described with reference to FIG. FIG. 15 is a diagram showing a hydraulic circuit of the outboard motor elevator 1a according to the present embodiment together with the control unit 100. As shown in FIG. In FIG. 15, the same members as those described above are denoted by the same reference numerals.
 なお、本実施形態に係る船外機昇降装置1aは、実施形態1において説明した制御部100に代えて、実施形態2に係る制御部100aを備える構成としてもよいし、実施形態3に係る制御部100bを備える構成としてもよい。 The outboard motor lifting apparatus 1a according to the present embodiment may be configured to include the control unit 100a according to the second embodiment instead of the control unit 100 described in the first embodiment, and the control according to the third embodiment. It may be configured to include the portion 100b.
 図15に示すように、本実施形態に係る船外機昇降装置1aでは、2つのトリムシリンダ12-1及び12-2を備え、これらのトリムシリンダの上室には、それぞれ切替弁60-1及び60-2が接続されている。換言すれば、本実施形態に係る船外機昇降装置1aは、第1トリムシリンダ12-1の上室(第1室)12fに接続された第1切替弁60-1と、第2トリムシリンダ12-2の上室(第1室)12fに接続された第2切替弁60-2とを備えている。 As shown in FIG. 15, the outboard motor elevator 1a according to the present embodiment is provided with two trim cylinders 12-1 and 12-2, and switching valves 60-1 are provided in the upper chambers of these trim cylinders. And 60-2 are connected. In other words, the outboard motor elevator 1a according to the present embodiment includes the first switching valve 60-1 connected to the upper chamber (first chamber) 12f of the first trim cylinder 12-1, and the second trim cylinder. And a second switching valve 60-2 connected to the upper chamber (first chamber) 12f of 12-2.
 ここで、第1トリムシリンダ12-1及び第2トリムシリンダ12-2は、実施形態1において説明したトリムシリンダ12と同様の構成であり、第1切替弁60-1及び第2切替弁60-2は、実施形態1において説明した切替弁60と同様の構成である。 Here, the first trim cylinder 12-1 and the second trim cylinder 12-2 have the same configuration as the trim cylinder 12 described in the first embodiment, and the first switching valve 60-1 and the second switching valve 60- A configuration 2 is similar to that of the switching valve 60 described in the first embodiment.
 また、図15に示すように、本実施形態に係る船外機昇降装置1aは、第2トリムシリンダ12-2の上室12fに接続された第10の流路C10を備えている。第1切替弁60-1は、第1トリムシリンダ12-1の上室12fに接続された第8の流路C8上に設けられており、第2切替弁60-2は、第10の流路C10上に設けられている。 Further, as shown in FIG. 15, the outboard motor elevator 1a according to the present embodiment is provided with a tenth flow passage C10 connected to the upper chamber 12f of the second trim cylinder 12-2. The first switching valve 60-1 is provided on an eighth flow path C8 connected to the upper chamber 12f of the first trim cylinder 12-1, and the second switching valve 60-2 is a tenth flow. It is provided on the road C10.
 また、本実施形態に係る船外機昇降装置1aは、第1トリムシリンダ12-1の上室12fと、第2トリムシリンダ12-2の上室12fとを接続する油路を有していない。 Further, the outboard motor lifting apparatus 1a according to the present embodiment does not have an oil passage connecting the upper chamber 12f of the first trim cylinder 12-1 and the upper chamber 12f of the second trim cylinder 12-2. .
 制御部100は、船外機昇降装置1の係留制御および出港制御において、モータ16と、第1切替弁60-1および第2切替弁60-2とのそれぞれを、図8、図10、図11のフローチャートに示したように制御する。 The control unit 100 controls each of the motor 16, the first switching valve 60-1 and the second switching valve 60-2 in the mooring control and the departure control of the outboard motor elevator 1 as shown in FIGS. Control is performed as shown in the flowchart of FIG.
 上記のような構成とすることによっても、実施形態1~3において説明した船外機昇降装置と同様の効果を奏することができる。 With the above-described configuration, the same advantages as those of the outboard motor lifting device described in the first to third embodiments can be obtained.
 また、上記のような構成とすることにより、第1トリムシリンダ12-1の上室12fからの作動油の流出と、第2トリムシリンダ12-2の上室12fからの作動油の流出とを、第1切替弁60-1と第2切替弁60-2とを用いて個別に制御することができるので、船外機の昇降に関し、よりきめ細かい制御を行うことができる。 Further, with the above configuration, the outflow of hydraulic fluid from the upper chamber 12f of the first trim cylinder 12-1 and the outflow of hydraulic fluid from the upper chamber 12f of the second trim cylinder 12-2 can be reduced. Since the control can be performed individually using the first switching valve 60-1 and the second switching valve 60-2, more detailed control can be performed with respect to raising and lowering of the outboard motor.
 なお、上記の説明では、船外機昇降装置1aが2つのトリムシリンダ12を備える場合を例に挙げたが、本実施形態はこれに限定されるものではない。例えば、3つ以上のトリムシリンダ12を備え、これら3つ以上のトリムシリンダ12の上室12fにそれぞれ接続された切替弁60を有する構成も本実施形態に含まれる。
 〔実施形態5〕
 以下では、実施形態5に係る船外機昇降装置1bの構成について、図16を参照して説明する。図16は、本実施形態に係る船外機昇降装置1bの油圧回路を制御部100と共に示す図である。図16では、すでに説明した部材と同じ部材には同じ符号を付している。
In the above description, although the case where the outboard motor lifting apparatus 1a includes the two trim cylinders 12 is taken as an example, the present embodiment is not limited to this. For example, a configuration having three or more trim cylinders 12 and having a switching valve 60 connected to the upper chamber 12 f of these three or more trim cylinders 12 is also included in this embodiment.
Fifth Embodiment
Hereinafter, the configuration of the outboard motor elevator 1b according to the fifth embodiment will be described with reference to FIG. FIG. 16 is a diagram showing a hydraulic circuit of the outboard motor elevator 1b according to the present embodiment together with the control unit 100. As shown in FIG. In FIG. 16, the same members as those described above are denoted by the same reference numerals.
 なお、本実施形態に係る船外機昇降装置1bは、実施形態1において説明した制御部100に代えて、実施形態2に係る制御部100aを備える構成としてもよいし、実施形態3に係る制御部100bを備える構成としてもよい。 The outboard motor lifting apparatus 1b according to the present embodiment may be configured to include the control unit 100a according to the second embodiment instead of the control unit 100 described in the first embodiment, and the control according to the third embodiment. It may be configured to include the portion 100b.
 図16に示すように、本実施形態に係る船外機昇降装置1bは、第1トリムシリンダ12-1及び第2トリムシリンダ12-2を備え、第1トリムシリンダ12-1及び第2トリムシリンダ12-2のそれぞれの上室(第1室)12fに、切替弁60が直接接続されている。より具体的に言えば、本実施形態に係る船外機昇降装置1bは、第7の流路C7に接続された第11の流路C11を備えており、第1トリムシリンダ12-1の上室12fと、第2トリムシリンダ12-2の上室12fと、切替弁60とが、第7の流路C7及び第11の流路C11とを介して直接接続されている。 As shown in FIG. 16, the outboard motor elevator 1b according to the present embodiment includes a first trim cylinder 12-1 and a second trim cylinder 12-2, and the first trim cylinder 12-1 and the second trim cylinder A switching valve 60 is directly connected to each upper chamber (first chamber) 12f of 12-2. More specifically, the outboard motor elevator 1b according to the present embodiment includes an eleventh flow passage C11 connected to the seventh flow passage C7, and is disposed above the first trim cylinder 12-1. The chamber 12f, the upper chamber 12f of the second trim cylinder 12-2, and the switching valve 60 are directly connected via the seventh channel C7 and the eleventh channel C11.
 ここで、第1トリムシリンダ12-1及び第2トリムシリンダ12-2は、実施形態1において説明したトリムシリンダ12と同様の構成であり、切替弁60は、実施形態1において説明した切替弁60と同様の構成である。 Here, the first trim cylinder 12-1 and the second trim cylinder 12-2 have the same configuration as the trim cylinder 12 described in the first embodiment, and the switching valve 60 has the switching valve 60 described in the first embodiment. Is the same as
 制御部100は、船外機昇降装置1の係留制御および出港制御において、モータ16と、切替弁60とを、図8、図10、図11のフローチャートに示したように制御する。 The control unit 100 controls the motor 16 and the switching valve 60 as shown in the flowcharts of FIGS. 8, 10, and 11 in the mooring control and the departure control of the outboard motor elevator 1.
 上記のような構成とすることによっても、実施形態1~3において説明した船外機昇降装置と同様の効果を奏することができる。
 〔実施形態6〕
 以下では、実施形態6に係る船外機昇降装置1cの構成について、図17を参照して説明する。図17は、本実施形態に係る船外機昇降装置1cの油圧回路を制御部100と共に示す図である。図17では、すでに説明した部材と同じ部材には同じ符号を付している。
With the above-described configuration, the same advantages as those of the outboard motor lifting device described in the first to third embodiments can be obtained.
Sixth Embodiment
Hereinafter, the configuration of the outboard motor elevator 1c according to the sixth embodiment will be described with reference to FIG. FIG. 17 is a diagram showing the hydraulic circuit of the outboard motor elevator 1c according to the present embodiment, together with the control unit 100. As shown in FIG. In FIG. 17, the same members as those described above are denoted by the same reference numerals.
 なお、本実施形態に係る船外機昇降装置1cは、実施形態1において説明した制御部100に代えて、実施形態2に係る制御部100aを備える構成としてもよいし、実施形態3に係る制御部100bを備える構成としてもよい。 The outboard motor elevator 1c according to the present embodiment may be configured to include the control unit 100a according to the second embodiment instead of the control unit 100 described in the first embodiment, and the control according to the third embodiment It may be configured to include the portion 100b.
 図17に示すように、本実施形態に係る船外機昇降装置1cは、第1トリムシリンダ12-1及び第2トリムシリンダ12-2を備え、第1トリムシリンダ12-1及び第2トリムシリンダ12-2の一方である第1トリムシリンダ12-1の上室12fに切替弁60が接続されている。より具体的に言えば、第1トリムシリンダ12-1の上室12fには、一端がタンク18に接続された第8の流路C8が接続され、当該第8の流路C8上に切替弁60が設けられている。一方で、本実施形態に係る船外機昇降装置1cは、一端がタンク18に接続された第10の流路C10を備えており、第2トリムシリンダ12-2の上室12fには、第10の流路C10の他端が接続されているが、当該第10の流路C10上には切替弁60が設けられていない。 As shown in FIG. 17, the outboard motor elevator 1c according to the present embodiment includes a first trim cylinder 12-1 and a second trim cylinder 12-2, and the first trim cylinder 12-1 and the second trim cylinder. A switching valve 60 is connected to the upper chamber 12f of the first trim cylinder 12-1, which is one of the ends 12-2. More specifically, an eighth channel C8 whose one end is connected to the tank 18 is connected to the upper chamber 12f of the first trim cylinder 12-1, and a switching valve is connected to the eighth channel C8. 60 are provided. On the other hand, the outboard motor elevator 1c according to the present embodiment includes the tenth flow passage C10 whose one end is connected to the tank 18, and the upper chamber 12f of the second trim cylinder 12-2 Although the other end of the channel C10 of 10 is connected, the switching valve 60 is not provided on the tenth channel C10.
 ここで、第1トリムシリンダ12-1及び第2トリムシリンダ12-2は、実施形態1において説明したトリムシリンダ12と同様の構成である。 Here, the first trim cylinder 12-1 and the second trim cylinder 12-2 have the same configuration as the trim cylinder 12 described in the first embodiment.
 また、本実施形態に係る船外機昇降装置1cは、第1トリムシリンダ12-1の上室12fと第2トリムシリンダ12-2の上室12fとを接続する流路を備えていない。これにより、本実施形態に係る船外機昇降装置1cでは、第1トリムシリンダ12-1のみを切替弁60を用いて制御することができる。 Further, the outboard motor elevator 1c according to the present embodiment does not have a flow path connecting the upper chamber 12f of the first trim cylinder 12-1 and the upper chamber 12f of the second trim cylinder 12-2. Thus, in the outboard motor elevator 1c according to the present embodiment, only the first trim cylinder 12-1 can be controlled using the switching valve 60.
 上記の構成によれば、切替弁60をクローズ状態とすることにより、第1トリムシリンダ12-1の上室12fから作動油が流出したり、当該上室12fに作動油が流入することがないので、チルトシリンダ14及び第2トリムシリンダ12-2のみを用いて船外機300の昇降を行うことが可能となる。 According to the above configuration, the hydraulic oil does not flow out of the upper chamber 12f of the first trim cylinder 12-1 or the hydraulic oil does not flow into the upper chamber 12f by bringing the switching valve 60 into the closed state. Therefore, the outboard motor 300 can be moved up and down using only the tilt cylinder 14 and the second trim cylinder 12-2.
 このように切替弁60をクローズ状態とすることにより、切替弁60をオープン状態とした場合に比べて、船外機300の昇降を速く行うことができる。
 制御部100は、船外機昇降装置1の係留制御および出港制御において、モータ16と、切替弁60とを、図8、図10、図11のフローチャートに示したように制御する。
By setting the switching valve 60 in the closed state as described above, the outboard motor 300 can be moved up and down more quickly than when the switching valve 60 is in the open state.
The control unit 100 controls the motor 16 and the switching valve 60 as shown in the flowcharts of FIGS. 8, 10, and 11 in the mooring control and the departure control of the outboard motor elevator 1.
 なお、上記の説明では、第1トリムシリンダ12-1及び第2トリムシリンダ12-2の一方である第1トリムシリンダ12-1の上室12fのみに切替弁60が接続されている構成を例に挙げたが、本実施形態はこれに限定されるものではない。例えば、N本(Nは3以上)のトリムシリンダ12を備え、これらN本のトリムシリンダのうち、少なくとも何れかの上室12fに切替弁60が接続されている構成も本実施形態に含まれる。
 〔実施形態7〕
 以下では、実施形態7に係る船外機昇降装置1dの構成について、図18を参照して説明する。図18は、本実施形態に係る船外機昇降装置1dの油圧回路を制御部100と共に示す図である。図18では、すでに説明した部材と同じ部材には同じ符号を付している。
In the above description, the switching valve 60 is connected only to the upper chamber 12f of the first trim cylinder 12-1, which is one of the first trim cylinder 12-1 and the second trim cylinder 12-2. However, the present embodiment is not limited to this. For example, a configuration in which N (N is 3 or more) trim cylinders 12 are provided and the switching valve 60 is connected to at least one of the upper chambers 12f among the N trim cylinders is also included in the present embodiment. .
Seventh Embodiment
The configuration of the outboard motor elevator 1d according to the seventh embodiment will be described below with reference to FIG. FIG. 18 is a diagram showing a hydraulic circuit of the outboard motor elevator 1d according to the present embodiment together with the control unit 100. As shown in FIG. In FIG. 18, the same members as those described above are denoted by the same reference numerals.
 なお、本実施形態に係る船外機昇降装置1dは、実施形態1において説明した制御部100に代えて、実施形態2に係る制御部100aを備える構成としてもよいし、実施形態3に係る制御部100bを備える構成としてもよい。 The outboard motor lifting apparatus 1d according to the present embodiment may be configured to include the control unit 100a according to the second embodiment instead of the control unit 100 described in the first embodiment, and the control according to the third embodiment. It may be configured to include the portion 100b.
 図18に示すように、本実施形態に係る船外機昇降装置1dでは、第8の流路C8が、切替弁60を介して、メインバルブ48における第1シャトル室48d及び第2シャトル室48eのうち、第2シャトル室48eに接続されている。ここで、第2シャトル室48eは、第2チェック弁48c及びフィルタF2を介して、第4の流路C4によりチルトシリンダ14の上室(第1室)に接続されている。したがって、本実施形態では、第8の流路C8は、切替弁60を介して、メインバルブ48における第1シャトル室48d及び第2シャトル室48eのうち、チルトシリンダ14の第1室に接続された第2シャトル室48eに接続されている。 As shown in FIG. 18, in the outboard motor elevator 1d according to the present embodiment, the eighth flow passage C8 is connected to the first shuttle chamber 48d and the second shuttle chamber 48e in the main valve 48 via the switching valve 60. , The second shuttle chamber 48e. Here, the second shuttle chamber 48e is connected to the upper chamber (first chamber) of the tilt cylinder 14 by the fourth flow passage C4 via the second check valve 48c and the filter F2. Therefore, in the present embodiment, the eighth flow passage C8 is connected to the first chamber of the tilt cylinder 14 among the first shuttle chamber 48d and the second shuttle chamber 48e in the main valve 48 via the switching valve 60. It is connected to the second shuttle room 48e.
 制御部100は、船外機昇降装置1の係留制御および出港制御において、モータ16と、切替弁60とを、図8、図10、図11のフローチャートに示したように制御する。 The control unit 100 controls the motor 16 and the switching valve 60 as shown in the flowcharts of FIGS. 8, 10, and 11 in the mooring control and the departure control of the outboard motor elevator 1.
 このような構成によっても、実施形態1~3において説明した船外機昇降装置と同様の効果を奏することができる。また、第8の流路C8をタンク18まで引き回す必要がないので船外機昇降装置1dにおける各構成要素の配置如何によっては油路構成を簡素化することができる。また、後述する実施形態8のように第8の流路C8を第4の流路C4に接続する場合に比べて、チルトシリンダ14の上室14fの油圧の変動の影響を受けにくくすることができる。
 〔実施形態8〕
 以下では、実施形態8に係る船外機昇降装置1eの構成について、図19を参照して説明する。図19は、本実施形態に係る船外機昇降装置1eの油圧回路を制御部100と共に示す図である。図19では、すでに説明した部材と同じ部材には同じ符号を付している。
According to such a configuration, the same effect as that of the outboard motor lifting device described in the first to third embodiments can be obtained. Further, since it is not necessary to draw the eighth flow path C8 to the tank 18, the oil path configuration can be simplified depending on the arrangement of each component in the outboard motor lifting apparatus 1d. Further, compared to the case where the eighth flow path C8 is connected to the fourth flow path C4 as in the eighth embodiment described later, the influence of the change in the hydraulic pressure of the upper chamber 14f of the tilt cylinder 14 is less likely to occur. it can.
[Embodiment 8]
Hereinafter, the configuration of the outboard motor elevator 1e according to the eighth embodiment will be described with reference to FIG. FIG. 19 is a diagram showing a hydraulic circuit of the outboard motor elevator 1e according to the present embodiment together with the control unit 100. As shown in FIG. In FIG. 19, the same members as those described above are denoted by the same reference numerals.
 なお、本実施形態に係る船外機昇降装置1eは、実施形態1において説明した制御部100に代えて、実施形態2に係る制御部100aを備える構成としてもよいし、実施形態3に係る制御部100bを備える構成としてもよい。 The outboard motor elevator 1e according to the present embodiment may be configured to include the control unit 100a according to the second embodiment instead of the control unit 100 described in the first embodiment, and the control according to the third embodiment. It may be configured to include the portion 100b.
 図19に示すように、本実施形態に係る船外機昇降装置1eでは、第8の流路C8が、切替弁60を介して、第4の流路C4に接続されている。ここで、第4の流路C4は、チルトシリンダ14の上室(第1室)に接続されている。しがたって、本実施形態では、第8の流路C8は、切替弁60を介してチルトシリンダ14の上室(第1室)に接続されている。 As shown in FIG. 19, in the outboard motor elevator 1e according to the present embodiment, the eighth flow passage C8 is connected to the fourth flow passage C4 via the switching valve 60. Here, the fourth flow passage C4 is connected to the upper chamber (first chamber) of the tilt cylinder 14. Therefore, in the present embodiment, the eighth flow passage C8 is connected to the upper chamber (first chamber) of the tilt cylinder 14 via the switching valve 60.
 制御部100は、船外機昇降装置1の係留制御および出港制御において、モータ16と、切替弁60とを、図8、図10、図11のフローチャートに示したように制御する。 The control unit 100 controls the motor 16 and the switching valve 60 as shown in the flowcharts of FIGS. 8, 10, and 11 in the mooring control and the departure control of the outboard motor elevator 1.
 このような構成によっても、実施形態1~3において説明した船外機昇降装置と同様の効果を奏することができる。また、第8の流路C8をタンク18まで引き回す必要がないので船外機昇降装置1dにおける各構成要素の配置如何によっては油路構成を簡素化することができる。また、メインバルブ48に第8の流路C8を接続する実施形態7に比べて、加工コストを低減することができる。
〔実施形態9〕
 以下では、実施形態9に係る船外機昇降装置1fの構成について、図20を参照して説明する。図20は、本実施形態に係る船外機昇降装置1fの油圧回路を制御部100と共に示す図である。図20では、すでに説明した部材と同じ部材には同じ符号を付している。
According to such a configuration, the same effect as that of the outboard motor lifting device described in the first to third embodiments can be obtained. Further, since it is not necessary to draw the eighth flow path C8 to the tank 18, the oil path configuration can be simplified depending on the arrangement of each component in the outboard motor lifting apparatus 1d. Further, compared to the seventh embodiment in which the eighth flow path C8 is connected to the main valve 48, the processing cost can be reduced.
[Embodiment 9]
Hereinafter, the configuration of the outboard motor elevator 1f according to the ninth embodiment will be described with reference to FIG. FIG. 20 is a diagram showing a hydraulic circuit of the outboard motor elevator 1f according to the present embodiment together with the control unit 100. As shown in FIG. In FIG. 20, the same members as those described above are denoted by the same reference numerals.
 なお、本実施形態に係る船外機昇降装置1fは、実施形態1において説明した制御部100に代えて、実施形態2に係る制御部100aを備える構成としてもよいし、実施形態3に係る制御部100bを備える構成としてもよい。 The outboard motor lifting apparatus 1f according to the present embodiment may be configured to include the control unit 100a according to the second embodiment instead of the control unit 100 described in the first embodiment, and the control according to the third embodiment. It may be configured to include the portion 100b.
 図20に示すように、本実施形態に係る船外機昇降装置1fは、第8の流路C8に接続された第12の流路C12を備えている。また、本実施形態に係る船外機昇降装置1fでは、第8の流路C8における切替弁60とトリムシリンダ12との間には、第12の流路C12を介して、保護バルブ71の一端が接続されている。また、保護バルブ71の他端は、タンク18に接続されている。 As shown in FIG. 20, the outboard motor elevator 1f according to the present embodiment includes a twelfth channel C12 connected to an eighth channel C8. Further, in the outboard motor elevator 1f according to the present embodiment, one end of the protection valve 71 between the switching valve 60 and the trim cylinder 12 in the eighth channel C8 via the twelfth channel C12. Is connected. Further, the other end of the protective valve 71 is connected to the tank 18.
 制御部100は、船外機昇降装置1の係留制御および出港制御において、モータ16と、切替弁60とを、図8、図10、図11のフローチャートに示したように制御する。 The control unit 100 controls the motor 16 and the switching valve 60 as shown in the flowcharts of FIGS. 8, 10, and 11 in the mooring control and the departure control of the outboard motor elevator 1.
 本実施形態に係る船外機昇降装置1fは、トリムシリンダ12の上室12fの油圧が過度に上昇した場合であっても、保護バルブ71を介して過度な油圧が解放されるので、切替弁60に過度な油圧が印加されることを抑制しつつ、実施形態1~3と同様の効果を奏することができる。 In the outboard motor lifting device 1f according to the present embodiment, even when the hydraulic pressure in the upper chamber 12f of the trim cylinder 12 is excessively increased, the excessive hydraulic pressure is released through the protective valve 71, so the switching valve The same effects as in Embodiments 1 to 3 can be achieved while suppressing application of excessive hydraulic pressure to 60.
 なお、本実施形態に係る船外機昇降装置が備える保護バルブ71は、図20に示す油路構成に限定して適用されるものではない。例えば、図15~図19、及び後述する図21~図22に示す各船外機昇降装置においても同様に、第8の流路C8における切替弁60とトリムシリンダ12(12-1)との間に、第12の流路C12を介して、保護バルブ71の一端が接続される構成とすることができる。
 〔実施形態10〕
 以下では、実施形態10に係る船外機昇降装置1gの構成について、図21を参照して説明する。図21は、本実施形態に係る船外機昇降装置1gの油圧回路を制御部100と共に示す図である。図21では、すでに説明した部材と同じ部材には同じ符号を付している。
The protective valve 71 provided in the outboard motor elevator according to the present embodiment is not limited to the oil path configuration shown in FIG. For example, in each of the outboard motor elevators shown in FIGS. 15 to 19 and FIGS. 21 to 22 described later, for example, the switching valve 60 and the trim cylinder 12 (12-1) in the eighth flow passage C8 are similarly provided. One end of the protection valve 71 may be connected via the twelfth flow path C12 therebetween.
[Embodiment 10]
Hereinafter, the configuration of the outboard motor elevator 1g according to the tenth embodiment will be described with reference to FIG. FIG. 21 is a diagram showing a hydraulic circuit of the outboard motor elevator 1g according to the present embodiment together with the control unit 100. As shown in FIG. In FIG. 21, the same members as those described above are denoted by the same reference numerals.
 なお、本実施形態に係る船外機昇降装置1gは、実施形態1において説明した制御部100に代えて、実施形態2に係る制御部100aを備える構成としてもよいし、実施形態3に係る制御部100bを備える構成としてもよい。 The outboard motor lifting apparatus 1g according to the present embodiment may be configured to include the control unit 100a according to the second embodiment instead of the control unit 100 described in the first embodiment, and the control according to the third embodiment. It may be configured to include the portion 100b.
 図21に示すように、本実施形態に係る船外機昇降装置1gでは、第8の流路C8は、切替弁60を介してタンク18に接続されており、第8の流路C8において、切替弁60とタンク18との間には、保護バルブ(保持バルブ)72が設けられている。 As shown in FIG. 21, in the outboard motor elevator 1g according to the present embodiment, the eighth flow passage C8 is connected to the tank 18 via the switching valve 60, and in the eighth flow passage C8, A protective valve (holding valve) 72 is provided between the switching valve 60 and the tank 18.
 本実施形態に係る船外機昇降装置1gにおける上記の構成は、切替弁60をノーマリーオープン弁として構成する場合に好適である。第8の流路C8において、切替弁60とタンク18との間に保護バルブ72が設けられているので、万一、切替弁60が作動しなくなった場合であっても、トリムシリンダ12の上室12fへの作動油の流入が抑制される。このため、船外機300が意図せずに下降してしまうことを抑制することができる。 The above-described configuration of the outboard motor elevator 1g according to the present embodiment is suitable when the switching valve 60 is configured as a normally open valve. In the eighth flow path C8, since the protection valve 72 is provided between the switching valve 60 and the tank 18, even if the switching valve 60 does not operate, the upper surface of the trim cylinder 12 The inflow of hydraulic oil to the chamber 12f is suppressed. For this reason, it can suppress that the outboard motor 300 descends unintentionally.
 制御部100は、船外機昇降装置1の係留制御および出港制御において、モータ16と、切替弁60とを、図8、図10、図11のフローチャートに示したように制御する。 The control unit 100 controls the motor 16 and the switching valve 60 as shown in the flowcharts of FIGS. 8, 10, and 11 in the mooring control and the departure control of the outboard motor elevator 1.
 なお、本実施形態に係る船外機昇降装置が備える保護バルブ72は、図21に示す油路構成に限定して適用されるものではない。例えば、図15~図17、図20、及び、後述する図22に示す各船外機昇降装置においても同様に、第8の流路C8において、切替弁60とタンク18との間に、保護バルブ(保持バルブ)72が設ける構成をすることができる。
 〔実施形態11〕
 以下では、実施形態11に係る船外機昇降装置1hの構成について、図22を参照して説明する。図22は、本実施形態に係る船外機昇降装置1hの油圧回路を制御部100と共に示す図である。図22では、すでに説明した部材と同じ部材には同じ符号を付している。
The protection valve 72 provided in the outboard motor lifting device according to the present embodiment is not limited to the oil path configuration shown in FIG. For example, also in each outboard motor lifting apparatus shown in FIGS. 15 to 17, 20, and FIG. 22 described later, protection is provided between the switching valve 60 and the tank 18 in the eighth channel C8. A valve (holding valve) 72 can be provided.
[Embodiment 11]
The configuration of the outboard motor elevator 1h according to the eleventh embodiment will be described below with reference to FIG. FIG. 22 is a diagram showing the hydraulic circuit of the outboard motor elevator 1h according to the present embodiment, together with the control unit 100. As shown in FIG. In FIG. 22, the same members as those described above are denoted by the same reference numerals.
 なお、本実施形態に係る船外機昇降装置1hは、実施形態1において説明した制御部100に代えて、実施形態2に係る制御部100aを備える構成としてもよいし、実施形態3に係る制御部100bを備える構成としてもよい。 The outboard motor elevator 1h according to the present embodiment may be configured to include the control unit 100a according to the second embodiment instead of the control unit 100 described in the first embodiment, and the control according to the third embodiment. It may be configured to include the portion 100b.
 図22に示すように、本実施形態に係る船外機昇降装置1hは、ポンプ(油圧源)42に接続されたメインバルブ(第1のポンプポート)48に加え、ポンプ42に接続された第2のメインバルブ(第2のポンプポート)49を備えている。また、本実施形態に係る船外機昇降装置1hは、ポンプ42と第2のメインバルブ49とを接続する第13の流路C13及び第14の流路C14を備えている。 As shown in FIG. 22, the outboard motor elevator 1h according to the present embodiment is connected to the pump 42 in addition to the main valve (first pump port) 48 connected to the pump (hydraulic pressure source) 42. The main valve (second pump port) 49 of 2 is provided. Further, the outboard motor elevator 1h according to the present embodiment includes a thirteenth channel C13 and a fourteenth channel C14 that connect the pump 42 and the second main valve 49.
 第2のメインバルブ49は、図22に示すように、スプール49a、及びチェック弁49bを備えている。第2のメインバルブ49は、スプール49aによって、チェック弁49b側の第1シャトル室49dと、スプール49aから見てチェック弁49bとは反対側の第2シャトル室49eとに仕切られている。 The second main valve 49 includes a spool 49a and a check valve 49b, as shown in FIG. The second main valve 49 is partitioned by the spool 49a into a first shuttle chamber 49d on the check valve 49b side and a second shuttle chamber 49e on the opposite side of the check valve 49b as viewed from the spool 49a.
 第2のメインバルブ49における第1のシャトル室49dは、第13の流路C13及び第1の流路C1を介してメインバルブ48における第1のシャトル室48dにも接続されており、第2のメインバルブ49における第2のシャトル室49eは、第14の流路C14及び第2の流路を介してメインバルブ48における第2のシャトル室48eにも接続さされている。 The first shuttle chamber 49 d of the second main valve 49 is also connected to the first shuttle chamber 48 d of the main valve 48 via the thirteenth channel C 13 and the first channel C 1. The second shuttle chamber 49e in the main valve 49 is also connected to the second shuttle chamber 48e in the main valve 48 via the fourteenth channel C14 and the second channel.
 また、図22に示すように、本実施形態に係る船外機昇降装置1hでは、トリムシリンダ12の下室12gに接続された第6の流路C6は、第2のメインバルブ49におけるチェック弁49bに接続されている。換言すれば、第6の流路C6は、チェック弁49を介して、第2のメインバルブ49における第1のシャトル室49dに接続されている。 Further, as shown in FIG. 22, in the outboard motor elevator 1h according to the present embodiment, the sixth flow passage C6 connected to the lower chamber 12g of the trim cylinder 12 is a check valve in the second main valve 49 Connected to 49b. In other words, the sixth flow passage C6 is connected to the first shuttle chamber 49d of the second main valve 49 via the check valve 49.
 また、図22に示すように、本実施形態に係る船外機昇降装置1hでは、第6の流路C6は、マニュアルバルブ52にも接続されている。また、図22に示すように、第6の流路C6には、保護バルブ82接続されており、当該第6の流路C6は、当該保護バルブ82を介してタンク18に接続されている。 Further, as shown in FIG. 22, in the outboard motor elevator 1h according to the present embodiment, the sixth flow passage C6 is also connected to the manual valve 52. Further, as shown in FIG. 22, a protection valve 82 is connected to the sixth flow path C6, and the sixth flow path C6 is connected to the tank 18 via the protection valve 82.
 上記のように構成された船外機昇降装置1hは以下のように動作する。 The outboard motor elevator 1h configured as described above operates as follows.
 (上昇動作)
 ポンプ42が正転すると、作動油がポンプ42からメインバルブ48の第1シャトル室48d、及び第2のメインバルブ49の第1シャトル室49dに圧送される。これにより、メインバルブ48の第1チェック弁48bが開くと共に、スプール48aが第1チェック弁48b側に移動し、第2チェック弁48cが開く。また、第2メインバルブ49のチェック弁49bが開く。その結果、メインバルブ48から作動油がチルトシリンダ14の下室14gに供給されると共に、チルトシリンダ14の上室14fから作動油が回収される。また、第2のメインバルブ49から作動油がトリムシリンダ12の下室12gに供給される。
(Rise movement)
When the pump 42 rotates forward, hydraulic oil is pressure-fed from the pump 42 to the first shuttle chamber 48 d of the main valve 48 and the first shuttle chamber 49 d of the second main valve 49. As a result, the first check valve 48b of the main valve 48 is opened, the spool 48a is moved to the first check valve 48b side, and the second check valve 48c is opened. Further, the check valve 49 b of the second main valve 49 is opened. As a result, the hydraulic oil is supplied from the main valve 48 to the lower chamber 14 g of the tilt cylinder 14, and the hydraulic oil is recovered from the upper chamber 14 f of the tilt cylinder 14. Also, hydraulic oil is supplied from the second main valve 49 to the lower chamber 12 g of the trim cylinder 12.
 ここで、切替弁60がオープン状態であれば、上記実施形態と同様に、作動油はトリムシリンダ12の下室12gにも供給されるので、チルトシリンダ14のピストンロッド14bとトリムシリンダ12のピストンロッド12bとが共に上昇する。 Here, if the switching valve 60 is in the open state, the hydraulic oil is also supplied to the lower chamber 12g of the trim cylinder 12 as in the above embodiment, so the piston rod 14b of the tilt cylinder 14 and the pistons of the trim cylinder 12 The rod 12b ascends together.
 一方、切替弁60がクローズ状態であれば、上記実施形態と同様に、作動油はトリムシリンダ12の下室12gには供給されないので、チルトシリンダ14のピストンロッド14bは上昇するが、トリムシリンダ12のピストンロッド12bは上昇しない。 On the other hand, if the switching valve 60 is in the closed state, the hydraulic oil is not supplied to the lower chamber 12g of the trim cylinder 12 as in the above embodiment, so the piston rod 14b of the tilt cylinder 14 is raised. Piston rod 12b does not rise.
 切替弁60がクローズ状態の場合、作動油がトリムシリンダ12の下室12gに供給されない。ポンプ42によって供給される単位時間当たりの作動油量は、切替弁60がオープン状態であっても、クローズ状態であっても大きな変化はない。このため、上記実施形態と同様に、チルトシリンダ14のピストンロッド14bは、切替弁60がオープン状態である場合に比べて、速く上昇する。 When the switching valve 60 is in the closed state, the hydraulic oil is not supplied to the lower chamber 12 g of the trim cylinder 12. The amount of hydraulic oil supplied by the pump 42 per unit time does not change significantly whether the switching valve 60 is open or closed. Therefore, as in the above embodiment, the piston rod 14b of the tilt cylinder 14 ascends faster than when the switching valve 60 is in the open state.
 (下降動作)
 ポンプ42が逆転すると、作動油がポンプ42からメインバルブ48の第2シャトル室48e、及び第2のメインバルブ49の第2シャトル室49eに圧送される。これにより、第2チェック弁48cが開くと共に、スプール48aが第2チェック弁48c側に移動し、第1チェック弁48bが開く。また、第2のメインバルブ49のスプール49aがチェック弁49b側に移動し、チェック弁49bが開く。その結果、作動油がチルトシリンダ14の上室14fに供給されると共に、チルトシリンダ14の下室14gから作動油が回収される。また、トリムシリンダ12の下室12gから作動油が回収される。
(Descent operation)
When the pump 42 reverses, hydraulic fluid is pumped from the pump 42 to the second shuttle chamber 48 e of the main valve 48 and the second shuttle chamber 49 e of the second main valve 49. As a result, the second check valve 48 c is opened, the spool 48 a is moved to the second check valve 48 c side, and the first check valve 48 b is opened. Further, the spool 49a of the second main valve 49 moves to the check valve 49b side, and the check valve 49b is opened. As a result, the hydraulic oil is supplied to the upper chamber 14 f of the tilt cylinder 14, and the hydraulic oil is recovered from the lower chamber 14 g of the tilt cylinder 14. Further, the hydraulic oil is recovered from the lower chamber 12g of the trim cylinder 12.
 ここで、切替弁60がオープン状態であれば、上記実施形態と同様に、作動油はトリムシリンダ12の下室12gからも回収されるので、チルトシリンダ14のピストンロッド14bとトリムシリンダ12のピストンロッド12bとが共に下降する。 Here, if the switching valve 60 is in the open state, the hydraulic oil is also recovered from the lower chamber 12g of the trim cylinder 12 as in the above embodiment, so the piston rod 14b of the tilt cylinder 14 and the pistons of the trim cylinder 12 The rod 12b is lowered together.
 一方、切替弁60がクローズ状態であれば、上記実施形態と同様に、作動油はトリムシリンダ12の下室12gからは回収されないので、チルトシリンダ14のピストンロッド14bは下降するが、トリムシリンダ12のピストンロッド12bは下降しない。 On the other hand, if the switching valve 60 is in the closed state, the hydraulic oil is not recovered from the lower chamber 12g of the trim cylinder 12 as in the above embodiment, so the piston rod 14b of the tilt cylinder 14 is lowered. Piston rod 12b does not descend.
 切替弁60がクローズ状態の場合、作動油がトリムシリンダ12の下室12gからは回収されないので、上記実施形態と同様に、チルトシリンダ14のピストンロッド14bは、切替弁60がオープン状態である場合に比べて、速く下降する。 When the switching valve 60 is in the closed state, the hydraulic oil is not collected from the lower chamber 12g of the trim cylinder 12. Therefore, the piston rod 14b of the tilt cylinder 14 has the switching valve 60 in the open state as in the above embodiment. It descends faster than.
 制御部100は、船外機昇降装置1の係留制御および出港制御において、モータ16と、切替弁60とを、図8、図10、図11のフローチャートに示したように制御する。 The control unit 100 controls the motor 16 and the switching valve 60 as shown in the flowcharts of FIGS. 8, 10, and 11 in the mooring control and the departure control of the outboard motor elevator 1.
 なお、本実施形態に係る船外機昇降装置1hが備える第2のメインバルブ49及び第6の流路C6の接続態様は、図16に示す油路構成に限定して適用されるものではない。例えば、図9~図15に示した各船外機昇降装置においても同様に、第2のメインバルブ49を備える構成とし、第6の流路C6の接続態様を図16と同様に構成することができる。 The connection mode of the second main valve 49 and the sixth flow path C6 provided in the outboard motor lifting apparatus 1h according to the present embodiment is not limited to the oil path configuration shown in FIG. . For example, also in each outboard motor lifting apparatus shown in FIGS. 9 to 15, the second main valve 49 is provided similarly, and the connection mode of the sixth flow path C6 is configured similarly to FIG. Can.
 〔実施形態12〕
 以下では、実施形態12として、実施形態1及び2において説明した船体状態信号SIG_INの他の具体例について説明する。船体状態信号SIG_INは、実施形態1及び2において説明した具体例に代えて、又は、実施形態1及び2において説明した具体例に加えて、後述する他の具体例の1又は複数を含む構成とすることができる。
[Embodiment 12]
Hereinafter, another specific example of the hull state signal SIG_IN described in the first and second embodiments will be described as the twelfth embodiment. The hull state signal SIG_IN includes one or more of other specific examples described later, instead of the specific examples described in the first and second embodiments or in addition to the specific examples described in the first and second embodiments. can do.
 なお、実施形態3において説明したように、実施形態3に係るデジタル信号D_SIGは、船体状態信号SIG_INが含む情報と同等の情報を含む。従って、以下において、船体状態信号SIG_INに関し説明する事項は実施形態1及び2のみならず、実施形態3に係るデジタル信号D_SIGに対しても適用されるものである。 As described in the third embodiment, the digital signal D_SIG according to the third embodiment includes information equivalent to the information included in the hull state signal SIG_IN. Therefore, the items described below regarding the hull state signal SIG_IN are applied not only to the first and second embodiments but also to the digital signal D_SIG according to the third embodiment.
 船体状態信号SIG_INに含まれ得る信号は、
 (A)船外機300から取得可能な船外機性能信号
 (B)船体(本体)200から取得可能な船体(本体)性能信号
に分類される。
The signals that may be included in the hull status signal SIG_IN are
(A) Outboard motor performance signal obtainable from outboard motor 300 (B) It is classified into a hull (body) performance signal obtainable from the hull (body) 200.
 船外機300から取得可能な船外機性能信号、及び、当該船外機性能信号を参照した制御部100、100a、100b(以下単に制御部とも記載する)による制御例は以下の通りである。 An example of an outboard motor performance signal obtainable from the outboard motor 300 and an example of control by the control units 100, 100a and 100b (hereinafter also referred to simply as the control unit) with reference to the outboard motor performance signal are as follows. .
 (A-1)イグニッション信号
 イグニッション信号は、船外機300のイグニッションのオンオフを示す信号である。
(A-1) Ignition Signal The ignition signal is a signal indicating on / off of the ignition of the outboard motor 300.
 制御部は、例えば、イグニッションオンである場合に、図6における「エンジンオン又はインギヤ」の状態の制御と同様の制御を行い、イグニッションオフである場合に、図6における「エンジンオフ又はインギヤでない」の状態の制御と同様の制御を行う構成とすればよい。 For example, when the ignition is on, the control unit performs the same control as the control of the "engine on or in gear" state in FIG. 6, and when the ignition is off, the "engine is not on or in gear" in FIG. The control similar to the control of the state of may be performed.
 (A-2)チルト/トリム制御信号
 チルト/トリム制御信号は船外機300のチルト及び/又はトリムを制御するための信号である。
(A-2) Tilt / Trim Control Signal The tilt / trim control signal is a signal for controlling the tilt and / or trim of the outboard motor 300.
 制御部は、チルト/トリム制御信号に応じて、切替弁60を切り替える。 The control unit switches the switching valve 60 in accordance with the tilt / trim control signal.
 (A-3)エンジンニュートラル信号
 エンジンニュートラル信号は、船外機300のエンジンがニュートラルであるか否かを示す信号である。
(A-3) Engine Neutral Signal The engine neutral signal is a signal indicating whether or not the engine of the outboard motor 300 is neutral.
 制御部は、例えば、エンジンがニュートラルでない場合に、図7における「エンジンオン又はインギヤ」の状態の制御と同様の制御を行い、エンジンがニュートラルである場合に、図7における「エンジンオフ又はインギヤでない」の状態の制御と同様の制御を行う構成とすればよい。 For example, when the engine is not neutral, the control unit performs the same control as the control of the "engine on or in gear" state in FIG. 7, and when the engine is neutral, the "engine off or in gear not in FIG. Control similar to the control of the state of "" may be performed.
 (A-4)トリム角度信号
 トリム角度信号は、船外機300のトリムの角度を示す信号である。
(A-4) Trim Angle Signal The trim angle signal is a signal indicating the trim angle of the outboard motor 300.
 制御部は、例えば、船外機300のトリムの角度が所定の値よりも小さい場合に、図6における「エンジンオン又はインギヤ」の状態の制御と同様の制御を行い、船外機300のトリムの角度が所定の値以上である場合に、図6における「エンジンオフ又はインギヤでない」の状態の制御と同様の制御を行う構成とすればよい。 For example, when the trim angle of the outboard motor 300 is smaller than a predetermined value, the control unit performs control similar to the control of the “engine on or in gear” state in FIG. The control similar to the control of the state of "engine off or not in gear" in FIG. 6 may be performed when the angle of is greater than or equal to a predetermined value.
 (A-5)エンジン水温信号
 エンジン水温信号は、船外機300のエンジンの水温を示す信号である。
(A-5) Engine Water Temperature Signal The engine water temperature signal is a signal indicating the water temperature of the engine of the outboard motor 300.
 制御部は、例えば、エンジンの水温が所定の値以上である場合に、図6における「エンジンオン又はインギヤ」の状態の制御と同様の制御を行い、エンジンの水温が所定の値よりも小さい場合に、図7における「エンジンオフ又はインギヤでない」の状態の制御と同様の制御を行う構成とすればよい。 For example, when the water temperature of the engine is equal to or higher than a predetermined value, the control unit performs the same control as the control of the “engine on or in gear” state in FIG. 6 and the water temperature of the engine is smaller than the predetermined value. In addition, control similar to the control of the state of “engine off or not in gear” in FIG. 7 may be performed.
 (A-6)エンジン油温信号
 エンジン水温信号は、船外機300のエンジンの油温を示す信号である。
(A-6) Engine Oil Temperature Signal The engine water temperature signal is a signal indicating the oil temperature of the engine of the outboard motor 300.
 制御部は、例えば、エンジンの油温が所定の値以上である場合に、図6における「エンジンオン又はインギヤ」の状態の制御と同様の制御を行い、エンジンの油温が所定の値よりも小さい場合に、図7における「エンジンオフ又はインギヤでない」の状態の制御と同様の制御を行う構成とすればよい。 For example, when the oil temperature of the engine is equal to or higher than a predetermined value, the control unit performs the same control as the control of the "engine on or in gear" state in FIG. If smaller, the same control as the control of the state of "engine off or not in gear" in FIG. 7 may be performed.
 (A-7)エンジン油圧信号
 エンジン油圧信号は、船外機300のエンジンの油圧を示す信号である。
(A-7) Engine Oil Pressure Signal The engine oil pressure signal is a signal indicating the oil pressure of the engine of the outboard motor 300.
 制御部は、例えば、エンジンの油圧が所定の値以上である場合に、図6における「エンジンオン又はインギヤ」の状態の制御と同様の制御を行い、エンジンの油温が所定の値よりも小さい場合に、図7における「エンジンオフ又はインギヤでない」の状態の制御と同様の制御を行う構成とすればよい。 For example, when the hydraulic pressure of the engine is equal to or higher than a predetermined value, the control unit performs the same control as the control of the "engine on or in gear" state in FIG. In such a case, the same control as the control of the “engine off or not in gear” state in FIG. 7 may be performed.
 (A-8)水位信号
 水位信号は、船外機300における水面の水位を示す信号である。
(A-8) Water Level Signal The water level signal is a signal indicating the water level at the surface of the outboard motor 300.
 制御部は、水位信号に応じて、切替弁60を切り替える。制御部は、例えば、水位信号の示す水位が所定の値以上である場合に、図7における「エンジンオン又はインギヤ」の状態の制御と同様の制御を行い、水位信号の示す水位が所定の値より小さい場合に、図7における「エンジンオフ又はインギヤでない」の状態の制御と同様の制御を行う構成とすればよい。 The control unit switches the switching valve 60 according to the water level signal. For example, when the water level indicated by the water level signal is equal to or higher than a predetermined value, the control unit performs the same control as the control of the "engine on or in gear" state in FIG. 7, and the water level indicated by the water level signal is a predetermined value. If smaller, the same control as the control of the state of "engine off or not in gear" in FIG. 7 may be performed.
 (A-9)スロットル開度信号
 スロットル開度信号は、船外機300のエンジンのスロットルの開度を示す信号である。
(A-9) Throttle Opening Signal The throttle opening signal is a signal indicating the throttle opening of the engine of the outboard motor 300.
 制御部は、例えば、スロットルの開度が所定の値以上である場合に、図7における「エンジンオン又はインギヤ」の状態の制御と同様の制御を行い、スロットルの開度が所定の値より小さい場合に、図7における「エンジンオフ又はインギヤでない」の状態の制御と同様の制御を行う構成とすればよい。 The control unit performs, for example, the same control as the control of the "engine on or in gear" state in FIG. 7 when the throttle opening is equal to or greater than a predetermined value, and the throttle opening is smaller than the predetermined value. In such a case, the same control as the control of the “engine off or not in gear” state in FIG. 7 may be performed.
 (A-10)船速信号(水流信号)
 船速信号は、船速を示す信号である。船速は水流の速さを参照して特定されるので、船速信号は、水流信号と呼んでもよい。
(A-10) Ship speed signal (water flow signal)
The boat speed signal is a signal indicating the boat speed. The ship speed signal may be referred to as a water flow signal since the ship speed is identified with reference to the speed of the water flow.
 制御部は、船速が所定の値以上である場合に、図7における「エンジンオン又はインギヤ」の状態の制御と同様の制御を行い、船速が所定の値より小さい場合に、図7における「エンジンオフ又はインギヤでない」の状態の制御と同様の制御を行う構成とすればよい。 The control unit performs control similar to the control of the "engine on or in gear" state in FIG. 7 when the boat speed is equal to or higher than a predetermined value, and in FIG. 7 when the boat speed is smaller than the predetermined value. It may be configured to perform the same control as the control of the state of "engine off or not in gear".
 (A-11)バッテリー電圧信号
 バッテリー電圧信号はバッテリーの電圧を示す信号である。
(A-11) Battery Voltage Signal The battery voltage signal is a signal indicating the voltage of the battery.
 制御部は、バッテリーの電圧に応じて、切替弁60を切り替える。制御部は、例えば、バッテリーの電圧が所定の値以上である場合に、図7における「エンジンオン又はインギヤ」の状態の制御と同様の制御を行い、バッテリーの電圧が所定の値より小さい場合に、図6における「エンジンオフ又はインギヤでない」の状態の制御と同様の制御を行う構成とすればよい。 The control unit switches the switching valve 60 according to the voltage of the battery. For example, when the voltage of the battery is equal to or higher than a predetermined value, the control unit performs the same control as the control of the "engine on or in gear" state in FIG. Control similar to the control of the state of "engine off or not in gear" in FIG. 6 may be performed.
 (A-12)大気圧信号
 大気圧信号は、大気圧を示す信号である。制御部は、大気圧に応じて、切替弁60を切り替える。
(A-12) Atmospheric pressure signal The atmospheric pressure signal is a signal indicating atmospheric pressure. The control unit switches the switching valve 60 according to the atmospheric pressure.
 (A-13)ジェネレータ出力電圧
 上述した実施形態1~11及び本実施形態に係る船外機300は、当該船外機300が備えるエンジン301に接続されたジェネレータを備えている。
 図23は、船外機300のエンジン301周辺の構成を示すブロック図である。図23に示すように、船外機300は、エンジン301、エンジン301からプロペラ303に動力を伝達する動力伝達機構302、エンジン301により駆動されるジェネレータ(発電機)310、及びメインバッテリー311を備えている。また、一例として船外機300は、メインバッテリー311に加え、予備バッテリーも搭載可能に構成されている。
 図23に示すように、ジェネレータ310からは、メインバッテリー310aへの導線310aに加え、予備バッテリーへの導線310bが引き出されている。当該導線310bは制御部100、100a、100bに接続され、当該導線310bの電位は、制御部によりジェネレータの出力電圧として参照される。
(A-13) Generator Output Voltage The outboard motor 300 according to the above-described first to eleventh embodiments and the present embodiment includes a generator connected to the engine 301 provided in the outboard motor 300.
FIG. 23 is a block diagram showing a configuration around the engine 301 of the outboard motor 300. As shown in FIG. As shown in FIG. 23, the outboard motor 300 includes an engine 301, a power transmission mechanism 302 for transmitting power from the engine 301 to the propeller 303, a generator (generator) 310 driven by the engine 301, and a main battery 311. ing. In addition to the main battery 311, for example, the outboard motor 300 can also be equipped with a spare battery.
As shown in FIG. 23, from the generator 310, in addition to the conductor 310a to the main battery 310a, the conductor 310b to the spare battery is drawn out. The conducting wire 310b is connected to the control units 100, 100a and 100b, and the potential of the conducting wire 310b is referred to by the control unit as an output voltage of the generator.
 本例に係る制御部は、船体状態信号SIG_INとして、ジェネレータの出力電圧を参照し、当該ジェネレータの出力電圧が、電圧に関する第1閾値以上である場合に、航行状態と判定し、図7における「エンジンオン又はインギヤ」の状態の制御と同様の制御を行う。ここで、電圧に関する上記第1閾値は、例えば、適宜設定された正の値を有する。 The control unit according to the present embodiment refers to the output voltage of the generator as the hull state signal SIG_IN, and determines that the navigation state is in the case where the output voltage of the generator is equal to or higher than the first threshold related to the voltage. Control similar to the control of the state of "engine on or in gear" is performed. Here, the first threshold value regarding voltage has, for example, a properly set positive value.
 また、制御部は、船体状態信号SIG_INとして、ジェネレータの出力電圧を参照し、当該ジェネレータの出力電圧が、電圧に関する第2閾値を超える場合に、航行状態と判定し、図7における「エンジンオン又はインギヤ」の状態の制御と同様の制御を行う構成としてもよい。ここで、電圧に関する上記第2閾値は、例えば、適宜設定された0以上の値を有する。 Further, the control unit refers to the output voltage of the generator as the hull state signal SIG_IN, and determines that the vehicle is in the navigation state when the output voltage of the generator exceeds the second threshold related to the voltage. Control similar to the control of the in-gear state may be performed. Here, the second threshold regarding the voltage has, for example, an appropriately set value of 0 or more.
 なお、以上例示した信号のうち、(A-1)~(A-11)、及び(A-13)は、船外機300の状態を示す状態信号と捉えることもできる。 Among the signals exemplified above, (A-1) to (A-11) and (A-13) can also be regarded as a state signal indicating the state of the outboard motor 300.
 続いて、船体200から取得可能な船体(本体)性能信号、及び、当該船体(本体)性能信号を参照した制御部による制御例は以下の通りである。 Subsequently, a control example by the control unit with reference to a hull (main body) performance signal obtainable from the hull 200 and the hull (main body) performance signal is as follows.
 (B-1)衝撃信号
 衝撃信号は、船体200が受ける衝撃を示す信号である。
(B-1) Impact Signal The impact signal is a signal indicating an impact that the hull 200 is subjected to.
 制御部は、衝撃信号に応じて切替弁60を切り替える。より具体的には、制御部は、船体200が受ける衝撃、又は衝撃信号自体の有無に応じて、切替弁60を切り替える。制御部は、例えば、衝撃が所定の値以上である場合に、図7における「エンジンオン又はインギヤ」の状態の制御と同様の制御を行い、衝撃が所定の値より小さい場合、または、信号が無い場合に、図6における「エンジンオフ又はインギヤでない」の状態の制御と同様の制御を行う構成とすればよい。 The control unit switches the switching valve 60 in response to the shock signal. More specifically, the control unit switches the switching valve 60 in accordance with the presence or absence of an impact received by the hull 200 or an impact signal itself. The control unit performs, for example, the same control as the control of the “engine on or in gear” state in FIG. 7 when the impact is equal to or greater than a predetermined value, and when the impact is smaller than the predetermined value, or If not, it may be configured to perform the same control as the control of the state of "engine off or not in gear" in FIG.
 (B-2)方位信号
 方位信号は、船体200の進行方向を示す信号である。制御部は、方位信号に応じて、切替弁60を切り替える。
(B-2) Orientation Signal The orientation signal is a signal indicating the traveling direction of the hull 200. The control unit switches the switching valve 60 in accordance with the direction signal.
 (B-3)ソナー信号
 ソナー信号は、船体200が備えるソナーから供給される信号である。
(B-3) Sonar Signal The sonar signal is a signal supplied from a sonar provided to the hull 200.
 制御部は、ソナー信号に応じて、切替弁60を切り替える。より具体的には、制御部は、ソナー信号が示す障害物の有無、又は、ソナー信号自体の有無に応じて、切替弁60を切り替える。制御部は、例えば、障害物がある場合に、図7における「エンジンオン又はインギヤ」の状態の制御と同様の制御を行い、障害物がない場合、または、信号が無い場合に、図6における「エンジンオフ又はインギヤでない」の状態の制御と同様の制御を行う構成とすればよい。 The control unit switches the switching valve 60 according to the sonar signal. More specifically, the control unit switches the switching valve 60 according to the presence or absence of an obstacle indicated by the sonar signal or the presence or absence of the sonar signal itself. The control unit performs, for example, the same control as the control of the "engine on or in gear" state in FIG. 7 when there is an obstacle, and when there is no obstacle or there is no signal, in FIG. It may be configured to perform the same control as the control of the state of "engine off or not in gear".
 (B-4)GPS信号
 GPS信号は、船体200が備えるGPS(Global PositioningSystem)装置から供給される信号である。なお、GPS装置は船体の上または近辺にあっても良い。
(B-4) GPS Signal The GPS signal is a signal supplied from a GPS (Global Positioning System) device included in the hull 200. The GPS device may be on or near the hull.
 制御部は、GPS信号が示す船速が所定の値以上である場合に、図7における「エンジンオン又はインギヤ」の状態の制御と同様の制御を行い、GPS信号が示す船速が所定の値より小さい場合に、図7における「エンジンオフ又はインギヤでない」の状態の制御と同様の制御を行う構成とすればよい。 When the ship speed indicated by the GPS signal is equal to or higher than a predetermined value, the control unit performs the same control as the control of the “engine on or in gear” state in FIG. If smaller, the same control as the control of the state of "engine off or not in gear" in FIG. 7 may be performed.
 (B-5)トランサム振動信号
 トランサム振動信号は、船体200が備えるトランサムの振動を示す信号である。
(B-5) Transom Vibration Signal The transom vibration signal is a signal that indicates the vibration of a transom included in the hull 200.
 制御部は、トランサム振動信号に応じて、切替弁60を切り替える。より具体的には、制御部は、トランサム振動信号の示す振動、又は、トランサム振動信号自体の有無に応じて、切替弁60を切り替える。制御部は、例えば、トランサムの振動が所定の値以上である場合に、図7における「エンジンオン又はインギヤ」の状態の制御と同様の制御を行い、トランサムの振動が所定の値より小さい場合、または、信号が無い場合に、図6における「エンジンオフ又はインギヤでない」の状態の制御と同様の制御を行う構成とすればよい。 The control unit switches the switching valve 60 according to the transom vibration signal. More specifically, the control unit switches the switching valve 60 in accordance with the vibration indicated by the transom vibration signal or the presence or absence of the transom vibration signal itself. The control unit performs, for example, the same control as the control of the “engine on or in gear” state in FIG. 7 when the transom vibration is equal to or greater than a predetermined value, and when the transom vibration is smaller than the predetermined value Alternatively, when there is no signal, it may be configured to perform the same control as the control of the "engine off or not in gear" state in FIG.
 (B-6)水温信号
 水温信号は、船体200の周囲の水温を示す信号である。制御部は、水温信号に応じて、切替弁60を切り替える。
(B-6) Water Temperature Signal The water temperature signal is a signal indicating the water temperature around the hull 200. The control unit switches the switching valve 60 according to the water temperature signal.
 (B-7)振動信号
 振動信号は、船体200の振動を示す信号である。
(B-7) Vibration Signal The vibration signal is a signal indicating the vibration of the hull 200.
 制御部は、振動信号に応じて、切替弁60を切り替える。より具体的には、制御部は、振動信号の示す振動、又は振動信号自体の有無に応じて切替弁60を切り替える。制御部は、例えば、振動信号の示す振動が所定の値以上である場合に、図7における「エンジンオン又はインギヤ」の状態の制御と同様の制御を行い、振動信号の示す振動が所定の値より小さい場合、または、信号が無い場合に、図7における「エンジンオフ又はインギヤでない」の状態の制御と同様の制御を行う構成とすればよい。 The control unit switches the switching valve 60 according to the vibration signal. More specifically, the control unit switches the switching valve 60 according to the vibration indicated by the vibration signal or the presence or absence of the vibration signal itself. For example, when the vibration indicated by the vibration signal is equal to or greater than a predetermined value, the control unit performs control similar to the control of the “engine on or in gear” state in FIG. 7 and the vibration indicated by the vibration signal has a predetermined value. In the case of a smaller value or in the absence of a signal, control similar to the control of the state of "engine off or not in gear" in FIG. 7 may be performed.
 (B-8)IP画像信号
 IP画像信号は、船体200の周辺の状況を示す画像信号である。
(B-8) IP Image Signal The IP image signal is an image signal indicating the situation around the hull 200.
 制御部は、IP画像信号に応じて、切替弁60を切り替える。より具体的には、制御部は、IP画像信号の示す障害物の有無、または、IP画像信号自体の有無に応じて切替弁60を切り替える。制御部は、例えば、障害物がある場合に、図7における「エンジンオン又はインギヤ」の状態の制御と同様の制御を行い、障害物がない場合、または、信号が無い場合に、図7における「エンジンオフ又はインギヤでない」の状態の制御と同様の制御を行う構成とすればよい。 The control unit switches the switching valve 60 according to the IP image signal. More specifically, the control unit switches the switching valve 60 according to the presence or absence of an obstacle indicated by the IP image signal or the presence or absence of the IP image signal itself. The control unit performs, for example, the same control as the control of the "engine on or in gear" state in FIG. 7 when there is an obstacle, and when there is no obstacle or there is no signal, in FIG. It may be configured to perform the same control as the control of the state of "engine off or not in gear".
 (B-9)レーダー信号
 レーダー信号は、船体200が備えるレーダーから供給される信号である。
(B-9) Radar Signal The radar signal is a signal supplied from a radar provided to the hull 200.
 制御部は、レーダー信号に応じて、切替弁60を切り替える。より具体的には、制御部は、レーダー信号が示の障害物の有無、または、レーダー信号自体の有無に応じて切替弁60を切り替える。制御部は、例えば、障害物がある場合に、図7における「エンジンオン又はインギヤ」の状態の制御と同様の制御を行い、障害物がない場合、または、信号が無い場合に、図7における「エンジンオフ又はインギヤでない」の状態の制御と同様の制御を行う構成とすればよい。 The control unit switches the switching valve 60 according to the radar signal. More specifically, the control unit switches the switching valve 60 according to the presence or absence of the obstacle indicated by the radar signal or the presence or absence of the radar signal itself. The control unit performs, for example, the same control as the control of the "engine on or in gear" state in FIG. 7 when there is an obstacle, and when there is no obstacle or there is no signal, in FIG. It may be configured to perform the same control as the control of the state of "engine off or not in gear".
 (B-10)音声信号
 音声信号は、操船者(ユーザ)の音声を示す信号である。
(B-10) Voice Signal The voice signal is a signal indicating the voice of the operator (user).
 制御部は、音声信号に応じて、切替弁60を切り替える。制御部は、例えば、音声信号に含まれる音声指示を参照して、図7の制御と同様の制御を行う構成とすればよい。 The control unit switches the switching valve 60 in accordance with the audio signal. The control unit may be configured to perform the same control as the control in FIG. 7 with reference to, for example, an audio instruction included in the audio signal.
 なお、以上例示した信号のうち、(B-1)~(B-9)は、船体(本体)200の状態を示す状態信号と捉えることもできる。 Among the signals exemplified above, (B-1) to (B-9) can also be regarded as a state signal indicating the state of the hull (main body) 200.
 〔ソフトウェアによる実現例〕
 制御部100、100a、100bは、集積回路(ICチップ)等に形成された論理回路(ハードウェア)によって実現してもよいし、CPU(Central Processing Unit)を用いてソフトウェアによって実現してもよい。
[Example of software implementation]
The control units 100, 100a, 100b may be realized by a logic circuit (hardware) formed in an integrated circuit (IC chip) or the like, or may be realized by software using a CPU (central processing unit) .
 後者の場合、制御部100、100a、100bは、各機能を実現するソフトウェアであるプログラムの命令を実行するCPU、上記プログラムおよび各種データがコンピュータ(またはCPU)で読み取り可能に記録されたROM(Read Only Memory)または記憶装置(これらを「記録媒体」と称する)、上記プログラムを展開するRAM(Random Access Memory)などを備えている。そして、コンピュータ(またはCPU)が上記プログラムを上記記録媒体から読み取って実行することにより、本発明の目的が達成される。上記記録媒体としては、「一時的でない有形の媒体」、例えば、テープ、ディスク、カード、半導体メモリ、プログラマブルな論理回路などを用いることができる。また、上記プログラムは、該プログラムを伝送可能な任意の伝送媒体(通信ネットワークや放送波等)を介して上記コンピュータに供給されてもよい。なお、本発明は、上記プログラムが電子的な伝送によって具現化された、搬送波に埋め込まれたデータ信号の形態でも実現され得る。 In the latter case, the control units 100, 100a, and 100b are a CPU that executes instructions of a program that is software that implements each function, and a ROM (Read) in which the program and various data are readable by a computer (or CPU). It includes an Only Memory) or a storage device (these are referred to as a "recording medium"), a RAM (Random Access Memory) for developing the program, and the like. The object of the present invention is achieved by the computer (or CPU) reading the program from the recording medium and executing the program. As the recording medium, a “non-transitory tangible medium”, for example, a tape, a disk, a card, a semiconductor memory, a programmable logic circuit or the like can be used. The program may be supplied to the computer via any transmission medium (communication network, broadcast wave, etc.) capable of transmitting the program. The present invention can also be realized in the form of a data signal embedded in a carrier wave, in which the program is embodied by electronic transmission.
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。 The present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of the claims, and embodiments obtained by appropriately combining the technical means disclosed in the different embodiments. Is also included in the technical scope of the present invention.
1、1a、1b、1c、1d、1e、1f、1g、1h 船外機昇降装置
12、12-1、12-2 トリムシリンダ
14 チルトシリンダ
42 ポンプ(油圧源)
60 切替弁
100、100a、100b 制御部
200 船体(本体)
300 船外機
301 エンジン
302 動力伝達機構
303 プロペラ
310 ジェネレータ
C1 第1の流路(第1の油路)
C2 第2の流路
C3 第3の流路(第1の油路)
C4 第4の流路
C5 第5の流路
C6 第6の流路(第1の油路)
C7 第7の流路(第3の油路)
C8 第8の流路(第2の油路)
C9 第9の流路
C10 第10の流路
C11 第11の流路
C12 第12の流路
C13 第13の流路
C14 第14の流路
1, 1a, 1b, 1c, 1d, 1e, 1f, 1g, 1h Outboard motor lifting device 12, 12-1, 12-2 Trim cylinder 14 Tilt cylinder 42 Pump (hydraulic source)
60 switching valve 100, 100a, 100b control unit 200 hull (body)
300 Outboard motor 301 engine 302 power transmission mechanism 303 propeller 310 generator C1 first flow path (first oil path)
C2 second flow path C3 third flow path (first oil path)
C4 fourth flow path C5 fifth flow path C6 sixth flow path (first oil path)
C7 Seventh flow path (third oil path)
C8 eighth flow path (second oil path)
C9 ninth flow channel C10 tenth flow channel C11 eleventh flow channel C12 twelfth flow channel C13 thirteenth flow channel C14 fourteenth flow channel

Claims (17)

  1.  船外機を昇降させる船外機昇降装置において、
     1又は複数のチルトシリンダと、
     1又は複数のトリムシリンダと、
    を備え、
     前記各トリムシリンダは、
      当該トリムシリンダを第1室と第2室とに仕切るピストンと、
      前記ピストンに接続され、当該トリムシリンダの第1室を貫通するロッドとを備え、
     前記各チルトシリンダは、
      当該チルトシリンダを第1室と第2室とに仕切るピストンと、
      前記ピストンに接続され、当該チルトシリンダの第1室を貫通するロッドとを備え、
     当該船外機昇降装置は、
     油圧源と、
     貯油タンクと、
     前記油圧源と前記1又は複数のチルトシリンダの第2室と、前記1又は複数のトリムシリンダの第2室とを接続する第1の油路と、
     前記1又は複数のトリムシリンダの少なくとも何れかの第1室に接続された第2の油路と、
     前記第2の油路上に設けられた切替弁と、
     前記船外機の昇降及び前記切替弁の開閉を制御する制御部と
    を備え、
     前記制御部は、ユーザによる指示をトリガーとして、前記船外機の上昇及び下降の少なくとも何れか、並びに、前記切替弁の開閉状態の変更を含む一連の制御を実行する
    ことを特徴とする船外機昇降装置。
    In the outboard motor lifting device for raising and lowering the outboard motor,
    One or more tilt cylinders,
    One or more trim cylinders,
    Equipped with
    Each trim cylinder is
    A piston that divides the trim cylinder into a first chamber and a second chamber;
    A rod connected to the piston and passing through a first chamber of the trim cylinder;
    Each of the tilt cylinders is
    A piston that divides the tilt cylinder into a first chamber and a second chamber;
    A rod connected to the piston and penetrating a first chamber of the tilt cylinder;
    The outboard motor lifting device
    A hydraulic source,
    Oil storage tank,
    A first oil passage connecting the hydraulic pressure source, the second chamber of the one or more tilt cylinders, and the second chamber of the one or more trim cylinders;
    A second oil passage connected to the first chamber of at least one of the one or more trim cylinders;
    A switching valve provided on the second oil path,
    A control unit configured to control raising and lowering of the outboard motor and opening and closing of the switching valve;
    The control unit executes a series of control including at least one of raising and lowering of the outboard motor and change of an open / close state of the switching valve, triggered by an instruction from a user. Machine lifting device.
  2.  前記トリムシリンダは、少なくとも第1トリムシリンダ及び第2トリムシリンダを備え、
     前記切替弁は、前記第1トリムシリンダ及び前記第2トリムシリンダの少なくとも何れかに接続されている
    ことを特徴とする、請求項1に記載の船外機昇降装置。
    The trim cylinder comprises at least a first trim cylinder and a second trim cylinder,
    The outboard motor elevator according to claim 1, wherein the switching valve is connected to at least one of the first trim cylinder and the second trim cylinder.
  3.  前記切替弁は、前記第1トリムシリンダ及び前記第2トリムシリンダの何れか一方のみに接続されている
    ことを特徴とする、請求項2に記載の船外機昇降装置。
    The outboard motor elevator according to claim 2, wherein the switching valve is connected only to any one of the first trim cylinder and the second trim cylinder.
  4.  前記トリムシリンダは、少なくとも第1トリムシリンダ及び第2トリムシリンダを備え、
     前記切替弁として、
     前記第1トリムシリンダの第1室に接続された第1切替弁と、
     前記第2トリムシリンダの第1室に接続された第2切替弁と、
    を備えていることを特徴とする、請求項1に記載の船外機昇降装置。
    The trim cylinder comprises at least a first trim cylinder and a second trim cylinder,
    As the switching valve,
    A first switching valve connected to a first chamber of the first trim cylinder;
    A second switching valve connected to the first chamber of the second trim cylinder;
    An outboard motor elevator apparatus according to claim 1, comprising:
  5.  前記トリムシリンダは、少なくとも第1トリムシリンダ及び第2トリムシリンダを備え、
     前記切替弁は、前記第1トリムシリンダ及び前記第2トリムシリンダに直接接続されている
    ことを特徴とする、請求項1に記載の船外機昇降装置。
    The trim cylinder comprises at least a first trim cylinder and a second trim cylinder,
    The outboard motor elevator according to claim 1, wherein the switching valve is directly connected to the first trim cylinder and the second trim cylinder.
  6.  前記油圧源に接続されたポンプポートを更に備え、
     前記第2の油路は、前記切替弁を介して、前記ポンプポートにおける2つのシャトル室のうち、前記チルトシリンダの第1室に接続されたシャトル室に接続されている
    ことを特徴とする、請求項1から5の何れか1項に記載の船外機昇降装置。
    Further comprising a pump port connected to the hydraulic pressure source;
    The second oil passage is connected to a shuttle chamber connected to a first chamber of the tilt cylinder, of the two shuttle chambers in the pump port, via the switching valve. The outboard motor elevator according to any one of claims 1 to 5.
  7.  前記第2の油路は、前記切替弁を介して、前記チルトシリンダの第1室に接続されている
    ことを特徴とする、請求項1から5の何れか1項に記載の船外機昇降装置。
    The outboard motor elevator according to any one of claims 1 to 5, wherein the second oil passage is connected to the first chamber of the tilt cylinder via the switching valve. apparatus.
  8.  前記第2の油路において、前記切替弁と前記トリムシリンダとの間には保護バルブの一端が接続されている
    ことを特徴とする請求項1から7の何れか1項に記載の船外機昇降装置。
    The outboard motor according to any one of claims 1 to 7, wherein one end of a protection valve is connected between the switching valve and the trim cylinder in the second oil passage. lift device.
  9.  前記第2の油路は、前記切替弁を介して貯油タンクに接続されており、
     前記第2の油路において、前記切替弁と貯油タンクとの間には保護バルブが設けられている
    ことを特徴とする請求項1から5の何れか1項に記載の船外機昇降装置。
    The second oil passage is connected to an oil storage tank via the switching valve,
    The outboard motor elevator according to any one of claims 1 to 5, wherein a protection valve is provided between the switching valve and the oil storage tank in the second oil passage.
  10.  前記油圧源に接続された第1のポンプポート及び第2のポンプポートを更に備え、
     前記第1のポンプポートは、前記チルトシリンダの前記第1室及び前記第2室に対して、それぞれチェック弁を介して接続された第2及び第1のシャトル室を有しており、
     前記第2のポンプポートは、前記第1のポンプポートの前記第1のシャトル室に接続されたシャトル室を有しており、
     前記第1の油路は、前記第2のポンプポートの前記シャトル室に対してチェック弁を介して接続されている
    ことを特徴とする、請求項1から9の何れか1項に記載の船外機昇降装置。
    The system further comprises a first pump port and a second pump port connected to the hydraulic pressure source,
    The first pump port includes second and first shuttle chambers connected to the first chamber and the second chamber of the tilt cylinder via check valves, respectively.
    The second pump port has a shuttle chamber connected to the first shuttle chamber of the first pump port,
    The ship according to any one of claims 1 to 9, wherein the first oil passage is connected to the shuttle chamber of the second pump port via a check valve. External machine lifting device.
  11.  前記制御部は、ユーザによる係留指示をトリガーとして、前記一連の制御として、
      前記切替弁を開放状態としたうえで、前記船外機を下降させ、その後、
      前記船外機が下降し切った状態において、前記切替弁を遮断状態としたうえで、前記船外機を上昇させる
    ことを特徴とする請求項1から10の何れか1項に記載の船外機昇降装置。
    The control unit is triggered by a user's mooring instruction as a series of control steps.
    After the switching valve is opened, the outboard motor is lowered, and
    The outboard motor according to any one of claims 1 to 10, wherein the outboard motor is raised after the switching valve is in a closed state in a state where the outboard motor is completely lowered. Machine lifting device.
  12.  前記制御部は、ユーザによる出港指示をトリガーとして、前記一連の制御として、
      前記切替弁を遮断状態としたうえで、前記船外機を下降させ、その後、
      前記船外機が下降し切った状態において、前記切替弁を開放状態とする
    請求項1から11の何れか1項に記載の船外機昇降装置。
    The control unit is triggered by a user's departure instruction from the user as the series of controls.
    After the switching valve is closed, the outboard motor is lowered, and
    The outboard motor elevator according to any one of claims 1 to 11, wherein the switching valve is opened when the outboard motor is fully lowered.
  13.  前記制御部は、前記油圧源を駆動するための駆動電流を参照することによって、前記船外機が下降し切った状態を検出することを特徴とする請求項1から12の何れか1項に記載の船外機昇降装置。 The controller according to any one of claims 1 to 12, wherein the controller detects a state in which the outboard motor has been completely lowered by referring to a drive current for driving the hydraulic pressure source. Outboard motor lifting device as described.
  14.  前記制御部は、前記船外機の上昇角度を検出する角度センサによる検出結果を参照して、前記船外機が下降し切った状態を検出することを特徴とする請求項1から12の何れか1項に記載の船外機昇降装置。 The controller according to any one of claims 1 to 12, wherein the control unit detects a state in which the outboard motor is completely lowered by referring to a detection result by an angle sensor that detects a rising angle of the outboard motor. An outboard motor lifting device according to any one of the preceding claims.
  15.  前記制御部は、前記船外機のエンジンがオフであることを条件として、前記一連の処理を実行する請求項1から12の何れか1項に記載の船外機昇降装置。 The outboard motor elevator according to any one of claims 1 to 12, wherein the control unit executes the series of processes on condition that the engine of the outboard motor is off.
  16.  前記トリムシリンダは複数であり、
     複数のトリムシリンダの第1室を互いに接続する第4の油路を更に備えている請求項1から15の何れか1項に記載の船外機昇降装置。
    The trim cylinder is plural,
    The outboard motor elevator according to any one of claims 1 to 15, further comprising a fourth oil passage connecting the first chambers of the plurality of trim cylinders to each other.
  17.  船外機を昇降させる船外機昇降装置の制御方法において、
     前記船外機昇降装置は、
     1又は複数のチルトシリンダと、
     1又は複数のトリムシリンダと、
    を備え、
     前記各トリムシリンダは、
      当該トリムシリンダを第1室と第2室とに仕切るピストンと、
      前記ピストンに接続され、当該トリムシリンダの第1室を貫通するロッドとを備え、
     前記各チルトシリンダは、
      当該チルトシリンダを第1室と第2室とに仕切るピストンと、
      前記ピストンに接続され、当該チルトシリンダの第1室を貫通するロッドとを備え、
     当該船外機昇降装置は、
     油圧源と、
     貯油タンクと、
     前記油圧源と前記1又は複数のチルトシリンダの第2室、前記1又は複数のトリムシリンダの第2室とを接続する第1の油路と、
     前記1又は複数のトリムシリンダの少なくとも何れかの第1室に接続された第2の油路と、
     前記第2の油路上に設けられた切替弁と、
    を備え、
     当該制御方法は、ユーザによる指示をトリガーとした、前記船外機の上昇及び下降の少なくとも何れか、並びに、前記切替弁の開閉状態の変更を含む一連の工程を含んでいる
    ことを特徴とする制御方法。
    In a control method of an outboard motor lifting device for raising and lowering an outboard motor,
    The outboard motor lifting device
    One or more tilt cylinders,
    One or more trim cylinders,
    Equipped with
    Each trim cylinder is
    A piston that divides the trim cylinder into a first chamber and a second chamber;
    A rod connected to the piston and passing through a first chamber of the trim cylinder;
    Each of the tilt cylinders is
    A piston that divides the tilt cylinder into a first chamber and a second chamber;
    A rod connected to the piston and penetrating a first chamber of the tilt cylinder;
    The outboard motor lifting device
    A hydraulic source,
    Oil storage tank,
    A first oil passage connecting the hydraulic pressure source, the second chamber of the one or more tilt cylinders, and the second chamber of the one or more trim cylinders;
    A second oil passage connected to the first chamber of at least one of the one or more trim cylinders;
    A switching valve provided on the second oil path,
    Equipped with
    The control method includes a series of steps including at least one of raising and lowering of the outboard motor, triggered by an instruction by a user, and a change in the open / close state of the switching valve. Control method.
PCT/JP2017/033687 2017-09-01 2017-09-19 Outboard motor raising/lowering device and control method for outboard motor raising/lowering device WO2019043957A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-168520 2017-09-01
JP2017168520A JP6294550B1 (en) 2017-09-01 2017-09-01 Outboard motor lifting apparatus and control method for outboard motor lifting apparatus

Publications (1)

Publication Number Publication Date
WO2019043957A1 true WO2019043957A1 (en) 2019-03-07

Family

ID=61628693

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/033687 WO2019043957A1 (en) 2017-09-01 2017-09-19 Outboard motor raising/lowering device and control method for outboard motor raising/lowering device

Country Status (2)

Country Link
JP (1) JP6294550B1 (en)
WO (1) WO2019043957A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60234096A (en) * 1984-05-01 1985-11-20 Sanshin Ind Co Ltd Tilt apparatus for vessel propulsion machine
JPS6283298A (en) * 1985-10-07 1987-04-16 Yamaha Motor Co Ltd Hydraulic type tilt device for outboard propeller
JPS6428095A (en) * 1987-07-21 1989-01-30 Sanshin Kogyo Kk Tilting device for ship propeller
JPH02102892A (en) * 1988-10-12 1990-04-16 Sanshin Ind Co Ltd Trimming and tilting device for marine propulsive unit
JPH04163292A (en) * 1990-10-24 1992-06-08 Soqi Inc Ship propeller elevating device
JPH04368295A (en) * 1991-06-18 1992-12-21 Sanshin Ind Co Ltd Support angle adjusting device for marine vessel propeller
JPH0911987A (en) * 1995-06-28 1997-01-14 Showa:Kk Trim-tilt apparatus of propeller for ship
US8046122B1 (en) * 2008-08-04 2011-10-25 Brunswick Corporation Control system for a marine vessel hydraulic steering cylinder

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60234096A (en) * 1984-05-01 1985-11-20 Sanshin Ind Co Ltd Tilt apparatus for vessel propulsion machine
JPS6283298A (en) * 1985-10-07 1987-04-16 Yamaha Motor Co Ltd Hydraulic type tilt device for outboard propeller
JPS6428095A (en) * 1987-07-21 1989-01-30 Sanshin Kogyo Kk Tilting device for ship propeller
JPH02102892A (en) * 1988-10-12 1990-04-16 Sanshin Ind Co Ltd Trimming and tilting device for marine propulsive unit
JPH04163292A (en) * 1990-10-24 1992-06-08 Soqi Inc Ship propeller elevating device
JPH04368295A (en) * 1991-06-18 1992-12-21 Sanshin Ind Co Ltd Support angle adjusting device for marine vessel propeller
JPH0911987A (en) * 1995-06-28 1997-01-14 Showa:Kk Trim-tilt apparatus of propeller for ship
US8046122B1 (en) * 2008-08-04 2011-10-25 Brunswick Corporation Control system for a marine vessel hydraulic steering cylinder

Also Published As

Publication number Publication date
JP2019043349A (en) 2019-03-22
JP6294550B1 (en) 2018-03-14

Similar Documents

Publication Publication Date Title
US10272813B2 (en) Hoist device for dump truck
JP6911018B2 (en) Excavator
US6015318A (en) Hydraulic tilt and trim unit for marine drive
WO2019043957A1 (en) Outboard motor raising/lowering device and control method for outboard motor raising/lowering device
WO2018138959A1 (en) Outboard motor raising/lowering device
US4687449A (en) Staged hydraulic trim-tilt system
WO2019021495A1 (en) Outboard motor hoist
JP6313891B1 (en) Terminal device, outboard motor lifting system, program, and recording medium.
JP6224798B1 (en) Outboard motor lifting device
WO2019038931A1 (en) Outboard motor lifting device
WO2019064611A1 (en) Outboard motor raising/lowering device
JP6243571B1 (en) Outboard motor lifting device
WO2019043958A1 (en) Outboard motor raising/lowering device
WO2019102625A1 (en) Outboard motor hoist
JP2005299450A (en) Pump control device
KR102723547B1 (en) Shovel
JP6151052B2 (en) Inclination angle adjustment device, ship propulsion device
JPH03139497A (en) Lifting-lowering device for outboard motor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17922963

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17922963

Country of ref document: EP

Kind code of ref document: A1