Nothing Special   »   [go: up one dir, main page]

WO2018219706A1 - Lidar sensor - Google Patents

Lidar sensor Download PDF

Info

Publication number
WO2018219706A1
WO2018219706A1 PCT/EP2018/063301 EP2018063301W WO2018219706A1 WO 2018219706 A1 WO2018219706 A1 WO 2018219706A1 EP 2018063301 W EP2018063301 W EP 2018063301W WO 2018219706 A1 WO2018219706 A1 WO 2018219706A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
lidar sensor
optics
directional filter
sensor
Prior art date
Application number
PCT/EP2018/063301
Other languages
German (de)
French (fr)
Inventor
Alexander Greiner
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Publication of WO2018219706A1 publication Critical patent/WO2018219706A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/32Systems determining position data of a target for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S17/34Systems determining position data of a target for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/42Simultaneous measurement of distance and other co-ordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • G01S17/931Lidar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4811Constructional features, e.g. arrangements of optical elements common to transmitter and receiver
    • G01S7/4812Constructional features, e.g. arrangements of optical elements common to transmitter and receiver transmitted and received beams following a coaxial path
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4814Constructional features, e.g. arrangements of optical elements of transmitters alone
    • G01S7/4815Constructional features, e.g. arrangements of optical elements of transmitters alone using multiple transmitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4816Constructional features, e.g. arrangements of optical elements of receivers alone
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/02Catoptric systems, e.g. image erecting and reversing system
    • G02B17/06Catoptric systems, e.g. image erecting and reversing system using mirrors only, i.e. having only one curved mirror
    • G02B17/0605Catoptric systems, e.g. image erecting and reversing system using mirrors only, i.e. having only one curved mirror using two curved mirrors
    • G02B17/061Catoptric systems, e.g. image erecting and reversing system using mirrors only, i.e. having only one curved mirror using two curved mirrors on-axis systems with at least one of the mirrors having a central aperture

Definitions

  • the invention relates to a LiDAR sensor.
  • the invention relates to a multi-beam LiDAR sensor.
  • a LiDAR sensor includes a light source, a light detector, and a processing device.
  • the light source emits light in a predetermined spatial area where an object can reflect the light toward the detector.
  • the processing device determines a distance between the LiDAR sensor and the object on the basis of a signal propagation time (Time of Flight, TOF) or on the basis of a Frequency Modulated Continuous Wave (FMCW) signal.
  • TOF Time of Flight
  • FMCW Frequency Modulated Continuous Wave
  • a single-beam system uses a laser as the light source
  • a multi-beam system includes a light source that emits multiple laser beams simultaneously.
  • a mechanical laser scanner is generally used in which the propagation direction of the laser beams is changed by means of a movable mirror.
  • An object underlying the present invention is to provide an improved LiDAR sensor.
  • the invention achieves this object by means of the subject matter of the independent claim. Subclaims give preferred embodiments again.
  • a LiDAR sensor comprises a multi-beam light source for emitting light rays; a receiving optics for collecting incident light rays; a directional filter; and a light detector having at least one sensor associated with one of the light sources.
  • the light detector comprises a plurality of sensors, each sensor being associated with one of the light sources.
  • each sensor being associated with one of the light sources.
  • as many sensors as light sources are provided.
  • the association between sensors and light sources can be bijective.
  • the receiving optics may have a large aperture in order to also receive a weak reflection of an emitted light beam on an object and to focus it in a focused manner onto the light detector.
  • the aperture can be chosen freely over a wide range and in particular more than about 800 mm 2 .
  • the receiving optics can be designed to be bright, in order to reliably detect even a faint or distant reflection of a light beam. A detection range can thereby be increased.
  • An accuracy of the LiDAR sensor in particular with regard to its image sharpness or resolution, can be improved.
  • the receiving optics comprise a reflective element.
  • the reflective element may in particular comprise a mirror system with one or more mirrors, a prism or another element in which a total reflection of light takes place.
  • the receiving optics may comprise a folded optics in which a light beam is deflected in such a way. is directed that an optical path through the receiving optics is significantly longer than their size.
  • a reflective receiving optics is usually limited in angle, so it may be poorly suited for a multi-beam LiDAR sensor, especially if this is to be used to cover a relatively large vertical angle range of up to about 8 ° or even more.
  • the directional filter In connection with the directional filter, however, despite the aberrations of the reflective element, it can be ensured that a light beam associated with a first sensor of the light detector does not fall, or falls only slightly, onto a second sensor which is adjacent to the first sensor. Losses in the light passing through the directional light amount can be compensated in particular by a large aperture of the receiving optics. Thus, an improved image sharpness or resolution can be realized.
  • the signal dynamics can be limited.
  • the receiving optics can be realized compactly and with only a few elements.
  • the reflective element can have a low temperature dependence, so that the receiving optics can be improved in terms of temperature stability.
  • the directional filter is integrated with the reflective element. As a result, a robust receiving optics, for example for use of the LiDAR sensor on a motor vehicle, can be provided.
  • the directional filter may be formed, for example, on or in a prism or a concave mirror element.
  • the directional filter may comprise a pinhole or a coating of a transparent element. Both variants can be easily integrated with the reflective element.
  • the directional filter can be arranged, in particular when a light beam emerges from a more dense optical medium than air.
  • the pinhole may, for example, comprise a plastic or metal part which carries as many recesses as light beams and sensors are provided.
  • the recesses may be introduced, for example by means of punching. The position of each recess defines the direction of an incident light beam. Light that does not fall from the predetermined direction through the recess does not hit the sensor of the associated one
  • the LiDAR sensor may further include imaging optics arranged to image the plane of the directional filter onto the light detector.
  • an aperture of the imaging optics may be small, in particular substantially smaller than the aperture of the receiving optics, as a result of which the imaging optics can be realized inexpensively and arranged in a space-saving manner.
  • the imaging optics have an imaging factor not equal to one. In other words, the imaging optics can be set up with little effort to realize an optical enlargement or reduction.
  • the optics can be improved so adapted to a predetermined light detector, the number and arrangement of light sensors usually can not be changed. This can be a great variety of existing
  • Light sensors with the optics described can be used to provide an improved Lidarsensor.
  • the imaging optics comprise a first and a second element, between which light beams can propagate.
  • the elements may be designed and arranged such that the light beams propagate between them substantially parallel to one another.
  • an optical filter can then easily be arranged which, for example, keeps unwanted extraneous light away from the light detector.
  • the optical filter may in particular be a narrow-band frequency filter. The interference immunity of the LiDAR sensor can thereby be improved.
  • FIG. 1 shows a multi-beam lidar sensor in a first embodiment
  • FIG. 2 shows a multi-beam lidar sensor in a second embodiment
  • FIG. 3 shows a schematic representation of a lidar sensor with an imaging optics
  • FIG. 4 shows exemplary directional filters for a multi-beam lidar sensor represents.
  • the LiDAR sensor 100 includes a multi-beam
  • a light source 105 adapted to emit a plurality of coherent light beams 110, a receiving optics 115 for collecting light beams 110 reflected at an object 120 (not shown), a directional filter 125, and a light detector 130 having a plurality of sensors 135 are preferred.
  • a processing device 140 is provided to determine the distance between the LiDAR sensor 100 and the object 120 based on emitted and received light.
  • the illustrated receiving optical system 1 15 is preferably designed as a folded optic and comprises in the illustrated embodiment one or more mirror elements 145 for collecting and directing the incident light.
  • a folded optics is configured to make the length of an optical path along which light travels through the optics longer than the distance along the optical axis of the optic Typically, the folded optic comprises at least one reflective surface Frequently, the light is reflected multiple times within the optic, being able to cover part of the path through the optic in the opposite direction from the entrance to the exit of the optic, exemplified by a receiving optic 15 having a primary and a secondary mirror element 145 respectively
  • at least one of the mirror elements 145 may be spherical or parabolic, and incident light is reflected at the surface of the primary mirror element 145 and falls back onto the secondary mirror element 145 where it is reflected again.
  • Both mirror elements 145 can bundle the incident light beams or direct the output side to a narrower area than an input area, through which they enter the optics.
  • a directional filter 125 which is adapted to selectively forward incident light beams on the basis of their direction of arrival in each case only one of the sensors 135.
  • Light that does not come from a predetermined direction is preferably absorbed or in one further embodiment completely or partially reflected.
  • sensors 135 are provided on the light detector 130 as light beams 1 10 can be emitted simultaneously by the light source 105.
  • the light detector 130 preferably has the same number of light sensors 135.
  • the number of light sensors 135 can also be different from the number of light beams 110, in particular fewer light sensors 135 can be used, which is illuminated successively by means of different light beams 110.
  • the arrangement of the light sensors 135 may correspond to the arrangement of the light rays emerging from the light source 105. This arrangement can be one or two-dimensional.
  • the sensors 135 are usually called photosensitive
  • the directional filter 125 can be used to compensate for an angle-related, relatively large error of the receiving optics 115. By retaining light which does not have a predetermined direction, the portions of the light which are due to an aberration of the receiving optical system 1 15 can be excluded from further processing. The attenuating effect of the directional filter 125 on the incident light can be compensated by selecting an aperture of the receiving optics 115 to be correspondingly large. As a result, it can nevertheless be ensured that sufficient light falls on the light sensors 135 in order to enable reliable detection.
  • the imaging optics 150 Before the received light from the directional filter 125 falls on the light detector 130, it may pass through imaging optics 150 to enhance focusing of the light beams onto the light detector 130.
  • the imaging optics can be made adjustable.
  • the imaging optics are arranged to enlarge or reduce an image of the light beams on the light detector 130.
  • the imaging optics 150 preferably comprises one or more refractive elements, in particular lenses.
  • Fig. 2 shows a multi-beam LiDAR sensor 100 in a second embodiment.
  • the optical system 115 is preferably made in one piece.
  • the optical system 1 15 may be formed in the manner of an inverted telescope and, for example, be made of glass or plastic.
  • a material having a high refractive index can be used to make the optical system 115 and therefore the entire LiDAR system 100 more compact.
  • the directional filter 125 can be attached directly to or in the receiving optical system 1 15, integrated with it or designed as one piece with it.
  • the directional filter 125 may be formed as a coating of the material from which the receiving optical system 15 is formed.
  • the directional filter 125 includes a pinhole attached to the receiving optics 115, such as by gluing, vapor deposition, or otherwise.
  • FIG 3 shows a schematic representation of a LiDAR sensor 100 in the manner of FIGS. 1 or 2, with imaging optics 150.
  • the imaging optics 150 comprises at least one refractive element 205, which may be designed in particular as a lens.
  • a first refractive element 205 and a second refractive element 210 are provided.
  • the refractive elements 205, 210 are preferably designed and arranged against one another such that incident light beams 110 run substantially parallel to one another between them. It is further preferred that in the space between the refractive elements 205,
  • an optical filter 215 is provided so as to allow as far as possible to pass only light which was originally emitted by the light source 105.
  • the optical filter can be designed in particular as a bandpass filter.
  • the light emitted by the light source 105 ideally has a very narrow wavelength range. Accordingly, the optical filter 215 can be made very narrow-band in order to transmit only light whose wavelength corresponds to the wavelength of the emitted light.
  • the illustrated directional filters 125 are designed as pinhole diaphragms.
  • An embodiment a is for three light beams, an embodiment b for nine light beams, one embodiment c for sixteen light beams, and one embodiment d for twenty-five light beams.
  • the directional filter 125 each includes an opaque material 405, such as a metal sheet, in which as many recesses 410 are provided as rays to be transmitted through the directional filter 125. A position of each recess
  • 410 corresponds to a direction from which light may fall through the directional filter 125. Light incident on the material 405 from another direction is absorbed or reflected thereby.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

The invention relates to a LiDAR sensor comprising a multibeam light source for emitting light beams; an optical receiving system for collecting incident light beams; a directional filter; and a light detector comprising at least one sensor which is paired with one of the light sources.

Description

Beschreibung  description
Titel title
Lidarsensor Die Erfindung betrifft einen LiDAR-Sensor. Insbesondere betrifft die Erfindung einen mehrstrahligen LiDAR-Sensor.  Lidar sensor The invention relates to a LiDAR sensor. In particular, the invention relates to a multi-beam LiDAR sensor.
Stand der Technik Ein LiDAR-Sensor umfasst eine Lichtquelle, einen Lichtdetektor und eine Verarbeitungseinrichtung. Die Lichtquelle sendet Licht in einen vorbestimmten räumlichen Bereich aus, wo ein Objekt das Licht in Richtung des Detektors reflektieren kann. Die Verarbeitungseinrichtung bestimmt einen Abstand zwischen dem LiDAR-Sensor und dem Objekt auf der Basis einer Signallaufzeit (Time of Flight, TOF) oder auf der Basis eines frequenzmodulierten Dauerstrich-Signals (Fre- quency Modulated Continuous Wave, FMCW). Ein einstrahliges System verwendet einen Laser als Lichtquelle, ein mehrstrahliges System umfasst eine Lichtquelle, die mehrere Laserstrahlen gleichzeitig aussendet. Zur Abdeckung großer horizontaler Erfassungswinkel zwischen 150° und 360° wird im Allgemeinen ein mechanischer Laserscanner verwendet, bei dem die Ausbreitungsrichtung der Laserstrahlen mittels eines beweglichen Spiegels verändert wird. Bei einem Drehspiegel-Laserscanner, dessen maximaler Erfassungswinkel auf etwa 150° beschränkt ist, dreht sich nur ein motorbetriebener Ablenkspiegel. Für größere Erfassungsbereiche bis zu 360° befinden sich alle elektrooptischen Komponenten des LiDAR-Sensors auf einem motorbetriebenen Drehteller oder Rotor. Background Art A LiDAR sensor includes a light source, a light detector, and a processing device. The light source emits light in a predetermined spatial area where an object can reflect the light toward the detector. The processing device determines a distance between the LiDAR sensor and the object on the basis of a signal propagation time (Time of Flight, TOF) or on the basis of a Frequency Modulated Continuous Wave (FMCW) signal. A single-beam system uses a laser as the light source, a multi-beam system includes a light source that emits multiple laser beams simultaneously. To cover large horizontal detection angles between 150 ° and 360 °, a mechanical laser scanner is generally used in which the propagation direction of the laser beams is changed by means of a movable mirror. In a rotating mirror laser scanner whose maximum detection angle is limited to about 150 °, only a motor-driven deflection mirror rotates. For larger detection ranges up to 360 °, all electro-optical components of the LiDAR sensor are mounted on a motor-driven turntable or rotor.
Zum Abbilden eines einfallenden Laserstrahls auf den Lichtdetektor werden typi- scherweise einfache Optiken mit wenigen Linsen verwendet, welche typischerweise eine ungenügende Abbildungseigenschaft besitzen, um auf der Detektor- seite eine ausreichende Abbildung zu generieren. Außerdem ist die Apertur eines solchen Systems technisch und abbildungsbedingt begrenzt, weshalb eine Apertur von mehr als ca. 800 mm2 kaum erreichbar ist. For imaging an incident laser beam onto the light detector, simple optics with few lenses are typically used, which typically have insufficient imaging property to be focused on the detector beam. side to generate a sufficient figure. In addition, the aperture of such a system is limited technically and due to the image, which is why an aperture of more than about 800 mm 2 is hardly achievable.
Eine der vorliegenden Erfindung zugrundeliegende Aufgabe besteht darin, einen verbesserten LiDAR-Sensor anzugeben. Die Erfindung löst diese Aufgabe mittels des Gegenstands des unabhängigen Anspruchs. Unteransprüche geben bevorzugte Ausführungsformen wieder. An object underlying the present invention is to provide an improved LiDAR sensor. The invention achieves this object by means of the subject matter of the independent claim. Subclaims give preferred embodiments again.
Offenbarung der Erfindung Disclosure of the invention
Ein LiDAR-Sensor umfasst eine mehrstrahlige Lichtquelle zum Aussenden von Lichtstrahlen; eine Empfangsoptik zum Sammeln einfallender Lichtstrahlen; einen Richtungsfilter; und einen Lichtdetektor mit wenigstens einem Sensor, der einer der Lichtquellen zugeordnet ist. A LiDAR sensor comprises a multi-beam light source for emitting light rays; a receiving optics for collecting incident light rays; a directional filter; and a light detector having at least one sensor associated with one of the light sources.
Üblicherweise umfasst der Lichtdetektor mehrere Sensoren, wobei jeder Sensor einer der Lichtquellen zugeordnet ist. Bevorzugt sind so viele Sensoren wie Lichtquellen vorgesehen. Die Zuordnung zwischen Sensoren und Lichtquellen kann bijektiv sein. Usually, the light detector comprises a plurality of sensors, each sensor being associated with one of the light sources. Preferably, as many sensors as light sources are provided. The association between sensors and light sources can be bijective.
Die Empfangsoptik kann insbesondere eine große Apertur aufweisen, um auch eine schwache Reflexion eines ausgesandten Lichtstrahls an einem Objekt zu empfangen und gebündelt auf den Lichtdetektor zu richten. Die Apertur kann in einem großen Bereich frei gewählt werden und insbesondere mehr als ca. 800 mm2 betragen. Dadurch kann die Empfangsoptik lichtstark ausgeführt sein, um auch eine schwache oder weit entfernte Reflektion eines Lichtstrahls noch sicher zu detektieren. Ein Erfassungsbereich kann dadurch vergrößert sein. Eine Genauigkeit des LiDAR-Sensors, insbesondere bezüglich seiner Abbildungsschärfe oder Auflösung, kann verbessert sein. In particular, the receiving optics may have a large aperture in order to also receive a weak reflection of an emitted light beam on an object and to focus it in a focused manner onto the light detector. The aperture can be chosen freely over a wide range and in particular more than about 800 mm 2 . As a result, the receiving optics can be designed to be bright, in order to reliably detect even a faint or distant reflection of a light beam. A detection range can thereby be increased. An accuracy of the LiDAR sensor, in particular with regard to its image sharpness or resolution, can be improved.
Es ist besonders bevorzugt, dass die Empfangsoptik ein reflektives Element umfasst. Das reflektive Element kann insbesondere ein Spiegelsystem mit einem oder mehreren Spiegeln, ein Prisma oder ein anderes Element umfassen, bei dem eine Totalreflexion von Licht erfolgt. Insbesondere kann die Empfangsoptik eine gefaltete Optik (folded optics) umfassen, bei der ein Lichtstrahl derart abge- lenkt wird, dass ein optischer Pfad durch die Empfangsoptik deutlich länger als ihre Größe ist. It is particularly preferred that the receiving optics comprise a reflective element. The reflective element may in particular comprise a mirror system with one or more mirrors, a prism or another element in which a total reflection of light takes place. In particular, the receiving optics may comprise a folded optics in which a light beam is deflected in such a way. is directed that an optical path through the receiving optics is significantly longer than their size.
Eine reflektive Empfangsoptik ist üblicherweise winkelbeschränkt, sodass sie für einen mehrstrahligen LiDAR-Sensor nur schlecht geeignet sein kann, insbesondere wenn dieser zur Abdeckung eines relativ großen vertikalen Winkelbereichs von bis zu ca. 8° oder noch mehr verwendbar sein soll. In Verbindung mit dem Richtungsfilter kann jedoch trotz der Abbildungsfehler des reflektiven Elements dafür gesorgt werden, dass ein Lichtstrahl, der einem ersten Sensor des Lichtde- tektors zugeordnet ist, nicht oder nur vermindert auf einen zweiten Sensor fällt, der zum ersten Sensor benachbart ist. Verluste in der durch den Richtungsfilter tretenden Lichtmenge können insbesondere durch eine große Apertur der Empfangsoptik ausgeglichen werden. So kann eine verbesserte Abbildungsschärfe oder Auflösung realisiert werden. Durch ein entsprechendes optisches Design der Empfangsoptik kann die Signaldynamik eingeschränkt werden. Die Empfangsoptik kann kompakt und mit nur wenigen Elementen realisiert werden. Das reflektive Element kann eine geringe Temperaturabhängigkeit aufweisen, sodass die Empfangsoptik verbessert temperaturstabil sein kann. In einer besonders bevorzugten Ausführungsform ist der Richtungsfilter integriert mit dem reflektiven Element ausgeführt. Dadurch kann eine robuste Empfangsoptik, beispielsweise zum Einsatz des LiDAR-Sensors an einem Kraftfahrzeug, bereitgestellt sein. Der Richtungsfilter kann beispielsweise an oder in einem Prisma oder einem Hohlspiegelelement ausgebildet sein. A reflective receiving optics is usually limited in angle, so it may be poorly suited for a multi-beam LiDAR sensor, especially if this is to be used to cover a relatively large vertical angle range of up to about 8 ° or even more. In connection with the directional filter, however, despite the aberrations of the reflective element, it can be ensured that a light beam associated with a first sensor of the light detector does not fall, or falls only slightly, onto a second sensor which is adjacent to the first sensor. Losses in the light passing through the directional light amount can be compensated in particular by a large aperture of the receiving optics. Thus, an improved image sharpness or resolution can be realized. By a corresponding optical design of the receiving optics, the signal dynamics can be limited. The receiving optics can be realized compactly and with only a few elements. The reflective element can have a low temperature dependence, so that the receiving optics can be improved in terms of temperature stability. In a particularly preferred embodiment, the directional filter is integrated with the reflective element. As a result, a robust receiving optics, for example for use of the LiDAR sensor on a motor vehicle, can be provided. The directional filter may be formed, for example, on or in a prism or a concave mirror element.
Im Allgemeinen kann der Richtungsfilter eine Lochblende oder eine Beschichtung eines transparenten Elements umfassen. Beide Varianten können leicht mit dem reflektiven Element integriert ausgeführt werden. Dazu kann der Richtungsfilter insbesondere beim Austreten eines Lichtstrahls aus einem optisch dichteren Me- dium als Luft angeordnet sein. Die Lochblende kann beispielsweise ein Kunststoff- oder Metallteil umfassen, das so viele Aussparungen trägt, wie Lichtstrahlen und Sensoren vorgesehen sind. Die Aussparungen können beispielsweise mittels Stanzen eingebracht sein. Die Position jeder Aussparung definiert dabei die Richtung eines einfallenden Lichtstrahls. Licht, das nicht aus der vorbestimm- ten Richtung durch die Aussparung fällt, trifft nicht den Sensor des zugeordnetenIn general, the directional filter may comprise a pinhole or a coating of a transparent element. Both variants can be easily integrated with the reflective element. For this purpose, the directional filter can be arranged, in particular when a light beam emerges from a more dense optical medium than air. The pinhole may, for example, comprise a plastic or metal part which carries as many recesses as light beams and sensors are provided. The recesses may be introduced, for example by means of punching. The position of each recess defines the direction of an incident light beam. Light that does not fall from the predetermined direction through the recess does not hit the sensor of the associated one
Lichtdetektors. Der LiDAR-Sensor kann ferner eine Abbildungsoptik umfassen, die zum Abbilden der Ebene des Richtungsfilters auf den Lichtdetektor eingerichtet ist. Dabei kann eine Apertur der Abbildungsoptik klein sein, insbesondere wesentliche kleiner als die Apertur der Empfangsoptik, wodurch die Abbildungsoptik kostengünstig realisierbar sein und raumsparend angeordnet werden kann. In einer bevorzugten Ausführungsform weist die Abbildungsoptik einen Abbildungsfaktor ungleich eins auf. Anders ausgedrückt kann die Abbildungsoptik mit geringem Aufwand dazu eingerichtet sein, eine optische Vergrößerung oder Verkleinerung zu realisieren. Die Optik kann so verbessert an einen vorbestimmten Lichtdetektor angepasst werden, dessen Anzahl und Anordnung von Lichtsensoren üblicherweise nicht verändert werden kann. Dadurch kann eine große Vielfalt bestehender Light detector. The LiDAR sensor may further include imaging optics arranged to image the plane of the directional filter onto the light detector. In this case, an aperture of the imaging optics may be small, in particular substantially smaller than the aperture of the receiving optics, as a result of which the imaging optics can be realized inexpensively and arranged in a space-saving manner. In a preferred embodiment, the imaging optics have an imaging factor not equal to one. In other words, the imaging optics can be set up with little effort to realize an optical enlargement or reduction. The optics can be improved so adapted to a predetermined light detector, the number and arrangement of light sensors usually can not be changed. This can be a great variety of existing
Lichtsensoren mit der beschriebenen Optik verwendet werden, um einen verbesserten Lidarsensor bereitzustellen. Light sensors with the optics described can be used to provide an improved Lidarsensor.
Es ist besonders bevorzugt, dass die Abbildungsoptik ein erstes und ein zweites Element umfasst, zwischen denen sich Lichtstrahlen ausbreiten können. Die Zweiteilung erlaubt es, Abbildungseigenschaften der Abbildungsoptik verbessert zu kontrollieren. Insbesondere können die Elemente so gestaltet und angeordnet sein, dass sich die Lichtstrahlen zwischen ihnen im Wesentlichen parallel zueinander ausbreiten. Im Bereich zwischen den beiden Elementen der Abbildungsoptik kann dann leicht ein optischer Filter angeordnet werden, der beispielsweise unerwünschtes Fremdlicht vom Lichtdetektor fernhält. Der optische Filter kann insbesondere ein schmalbandiger Frequenzfilter sein. Die Störsicherheit des LiDAR-Sensors kann dadurch verbessert sein. It is particularly preferred that the imaging optics comprise a first and a second element, between which light beams can propagate. The division into two parts makes it possible to better control imaging properties of the imaging optics. In particular, the elements may be designed and arranged such that the light beams propagate between them substantially parallel to one another. In the area between the two elements of the imaging optics, an optical filter can then easily be arranged which, for example, keeps unwanted extraneous light away from the light detector. The optical filter may in particular be a narrow-band frequency filter. The interference immunity of the LiDAR sensor can thereby be improved.
Kurze Beschreibung der Figuren Brief description of the figures
Die Erfindung wird nun mit Bezug auf die beigefügten Figuren genauer beschrieben, in denen: The invention will now be described in more detail with reference to the attached figures, in which:
Fig. 1 einen mehrstrahligen Lidarsensor in einer ersten Ausführungsform; Fig. 2 einen mehrstrahligen Lidarsensor in einer zweiten Ausführungsform; Fig. 3 eine schematische Darstellung eines Lidarsensors mit einer Abbildungsoptik; und 1 shows a multi-beam lidar sensor in a first embodiment; FIG. 2 shows a multi-beam lidar sensor in a second embodiment; FIG. 3 shows a schematic representation of a lidar sensor with an imaging optics; and
Fig. 4 beispielhafte Richtungsfilter für einen mehrstrahligen Lidarsensor darstellt. 4 shows exemplary directional filters for a multi-beam lidar sensor represents.
Fig. 1 zeigt einen mehrstrahligen LiDAR-Sensor (oder: Lidarsensor) 100 in einer ersten Ausführungsform. Der LiDAR-Sensor 100 umfasst eine mehrstrahlige1 shows a multi-beam LiDAR sensor (or lidar sensor) 100 in a first embodiment. The LiDAR sensor 100 includes a multi-beam
Lichtquelle 105, die zum Aussenden mehrerer kohärenter Lichtstrahlen 1 10 eingerichtet ist, eine Empfangsoptik 115 zum Sammeln von Lichtstrahlen 110, die an einem Objekt 120 (nicht dargestellt) reflektiert wurden, einen Richtungsfilter 125 und einen Lichtdetektor 130 mit mehreren Sensoren 135. Bevorzugt ist zu- sätzlich eine Verarbeitungseinrichtung 140 vorgesehen, um auf der Basis ausgesandten und empfangenen Lichts die Entfernung zwischen dem LiDAR-Sensor 100 und dem Objekt 120 zu bestimmen. A light source 105 adapted to emit a plurality of coherent light beams 110, a receiving optics 115 for collecting light beams 110 reflected at an object 120 (not shown), a directional filter 125, and a light detector 130 having a plurality of sensors 135 are preferred In addition, a processing device 140 is provided to determine the distance between the LiDAR sensor 100 and the object 120 based on emitted and received light.
Die dargestellte Empfangsoptik 1 15 ist bevorzugt als gefaltete Optik ausgebildet und umfasst in der dargestellten Ausführungsform eines oder mehrere Spiegelelemente 145 zum Sammeln und Richten des einfallenden Lichts. Eine gefaltete Optik („folded optics") ist dazu eingerichtet, die Länge eines optischen Pfades, entlang dem sich Licht durch die Optik bewegt, länger zu gestalten als der Weg entlang der optischen Achse der Optik. Üblicherweise umfasst die gefaltete Optik mindestens eine reflektierende Oberfläche. Häufig wird das Licht innerhalb der Optik mehrfach reflektiert, wobei sie einen Teil des Wegs durch die Optik entgegen der Richtung vom Eingang zum Ausgang der Optik zurücklegen kann. Dargestellt ist beispielhaft eine Empfangsoptik 1 15 mit einem primären und einem sekundären Spiegelelement 145, die jeweils so geformt sein können, dass eine vorbestimmte optische Abbildung erfolgt. Beispielsweise kann wenigstens eines der Spiegelelemente 145 sphärisch oder parabolisch sein. Einfallendes Licht wird an der Oberfläche des primären Spiegelelements 145 reflektiert und fällt zurück auf das sekundäre Spiegelelement 145, wo es erneut reflektiert wird. Beide Spiegelelemente 145 können die einfallenden Lichtstrahlen bündeln oder ausgangsseitig auf einen engeren Bereich lenken als ein Eingangsbereich, durch den sie in die Optik einfallen. The illustrated receiving optical system 1 15 is preferably designed as a folded optic and comprises in the illustrated embodiment one or more mirror elements 145 for collecting and directing the incident light. A folded optics is configured to make the length of an optical path along which light travels through the optics longer than the distance along the optical axis of the optic Typically, the folded optic comprises at least one reflective surface Frequently, the light is reflected multiple times within the optic, being able to cover part of the path through the optic in the opposite direction from the entrance to the exit of the optic, exemplified by a receiving optic 15 having a primary and a secondary mirror element 145 respectively For example, at least one of the mirror elements 145 may be spherical or parabolic, and incident light is reflected at the surface of the primary mirror element 145 and falls back onto the secondary mirror element 145 where it is reflected again. Both mirror elements 145 can bundle the incident light beams or direct the output side to a narrower area than an input area, through which they enter the optics.
Im Strahlengang nach der Empfangsoptik 1 15 liegt ein Richtungsfilter 125, der dazu eingerichtet ist, einfallende Lichtstrahlen auf der Basis ihrer Einfallsrichtung selektiv jeweils auf nur einen der Sensoren 135 weiterzuleiten. Licht, das nicht aus einer vorbestimmten Richtung einfällt, wird bevorzugt absorbiert oder in einer weiteren Ausführungsform ganz oder teilweise reflektiert. Bevorzugt sind ebenso viele Sensoren 135 am Lichtdetektor 130 vorgesehen wie Lichtstrahlen 1 10 gleichzeitig von der Lichtquelle 105 ausgesandt werden können. Am Lichtdetektor 130 sind bevorzugt genauso viele Lichtsensoren 135 ausgebildet. Die Zahl der Lichtsensoren 135 kann auch verschieden von der Zahl der Lichtstrahlen 1 10 sein, insbesondere können weniger Lichtsensoren 135 verwendet werden, der nacheinander mittels unterschiedlicher Lichtstrahlen 110 beleuchtet wird. Die Anordnung der Lichtsensoren 135 kann der Anordnung der aus der Lichtquelle 105 austretenden Lichtstrahlen entsprechen. Diese Anordnung kann ein- oder zweidimensional sein. Die Sensoren 135 sind üblicherweise als lichtempfindlicheIn the beam path after the receiving optical system 1 15 is a directional filter 125, which is adapted to selectively forward incident light beams on the basis of their direction of arrival in each case only one of the sensors 135. Light that does not come from a predetermined direction is preferably absorbed or in one further embodiment completely or partially reflected. Preferably as many sensors 135 are provided on the light detector 130 as light beams 1 10 can be emitted simultaneously by the light source 105. The light detector 130 preferably has the same number of light sensors 135. The number of light sensors 135 can also be different from the number of light beams 110, in particular fewer light sensors 135 can be used, which is illuminated successively by means of different light beams 110. The arrangement of the light sensors 135 may correspond to the arrangement of the light rays emerging from the light source 105. This arrangement can be one or two-dimensional. The sensors 135 are usually called photosensitive
Halbleiter ausgebildet und können zur Detektion von Licht eines vorbestimmten Wellenlängenbereichs, in welchem die von der Lichtquelle ausgesandte Wellenlänge liegt, eingerichtet sein. Der Richtungsfilter 125 kann dazu verwendet werden, einen winkelbezogenen, relativ großen Fehler der Empfangsoptik 115 zu kompensieren. Durch das Zurückhalten von Licht, das nicht eine vorbestimmte Richtung aufweist, können die Anteile des Lichts, die auf einen Abbildungsfehler der Empfangsoptik 1 15 zurückgehen, von der weiteren Verarbeitung ausgeschlossen werden. Die ab- schwächende Wrkung des Richtungsfilters 125 auf das einfallende Licht kann dadurch kompensiert werden, dass eine Apertur der Empfangsoptik 115 entsprechend groß gewählt wird. Dadurch kann trotzdem sichergestellt werden, dass ausreichend Licht auf die Lichtsensoren 135 fällt, um einen sicheren Nachweis zu ermöglichen. Semiconductor formed and can be configured to detect light of a predetermined wavelength range in which the wavelength emitted by the light source wavelength. The directional filter 125 can be used to compensate for an angle-related, relatively large error of the receiving optics 115. By retaining light which does not have a predetermined direction, the portions of the light which are due to an aberration of the receiving optical system 1 15 can be excluded from further processing. The attenuating effect of the directional filter 125 on the incident light can be compensated by selecting an aperture of the receiving optics 115 to be correspondingly large. As a result, it can nevertheless be ensured that sufficient light falls on the light sensors 135 in order to enable reliable detection.
Bevor das empfangene Licht aus dem Richtungsfilter 125 auf den Lichtdetektor 130 fällt, kann es eine Abbildungsoptik 150 durchlaufen, um eine Fokussierung der Lichtstrahlen auf den Lichtdetektor 130 zu verbessern. Die Abbildungsoptik kann verstellbar ausgeführt sein. Optional ist die Abbildungsoptik dazu eingerich- tet ein Abbild der Lichtstrahlen auf dem Lichtdetektor 130 zu vergrößern oder zu verkleinern. Wie unten mit Bezug auf Fig. 3 noch genauer ausgeführt wird, um- fasst die Abbildungsoptik 150 bevorzugt eines oder mehrere refraktive Elemente, insbesondere Linsen. Before the received light from the directional filter 125 falls on the light detector 130, it may pass through imaging optics 150 to enhance focusing of the light beams onto the light detector 130. The imaging optics can be made adjustable. Optionally, the imaging optics are arranged to enlarge or reduce an image of the light beams on the light detector 130. As will be explained in more detail below with reference to FIG. 3, the imaging optics 150 preferably comprises one or more refractive elements, in particular lenses.
Fig. 2 zeigt einen mehrstrahligen LiDAR-Sensor 100 in einer zweiten Ausführungsform. Im Unterschied zu der in Fig. 1 dargestellten Ausführungsform ist hi das optische System 115 bevorzugt einstückig ausgeführt. Insbesondere kann das optische System 1 15 nach Art eines inversen Teleskops ausgebildet und beispielsweise aus Glas oder Kunststoff herstellbar sein. Dabei kann ein Material mit hohem Brechungsindex verwendet werden, um das optische System 115 und damit das gesamte LiDAR-System 100 verbessert kompakt aufzubauen. Fig. 2 shows a multi-beam LiDAR sensor 100 in a second embodiment. In contrast to the embodiment shown in FIG. 1, hi the optical system 115 is preferably made in one piece. In particular, the optical system 1 15 may be formed in the manner of an inverted telescope and, for example, be made of glass or plastic. In this case, a material having a high refractive index can be used to make the optical system 115 and therefore the entire LiDAR system 100 more compact.
In einer weiteren Variante kann der Richtungsfilter 125 unmittelbar an oder in der Empfangsoptik 1 15 angebracht, mit ihr integriert oder einstückig mit ihr ausgeführt sein. Beispielsweise kann der Richtungsfilter 125 als Beschichtung des Ma- terials ausgebildet sein, aus dem die Empfangsoptik 1 15 gebildet ist. In einer bevorzugten Ausführungsform umfasst der Richtungsfilter 125, wie unten mit Bezug auf Fig. 4 noch genauer beschrieben wird, eine Lochblende, die beispielsweise mittels Kleben, Aufdampfen oder auf eine andere Weise an der Empfangsoptik 115 angebracht ist. In a further variant, the directional filter 125 can be attached directly to or in the receiving optical system 1 15, integrated with it or designed as one piece with it. For example, the directional filter 125 may be formed as a coating of the material from which the receiving optical system 15 is formed. In a preferred embodiment, as will be described in more detail below with respect to FIG. 4, the directional filter 125 includes a pinhole attached to the receiving optics 115, such as by gluing, vapor deposition, or otherwise.
Fig. 3 zeigt eine schematische Darstellung eines LiDAR-Sensors 100 nach Art der Figuren 1 oder 2, mit einer Abbildungsoptik 150. Die Abbildungsoptik 150 umfasst wenigstens ein refraktives Element 205, das insbesondere als Linse ausgebildet sein kann. In der dargestellten, bevorzugten Ausführungsform sind ein erstes refraktives Element 205 und ein zweites refraktives Element 210 vorgesehen. Die refraktiven Elemente 205, 210 sind bevorzugt so gestaltet und gegeneinander angeordnet, dass einfallende Lichtstrahlen 110 zwischen ihnen im Wesentlichen parallel zueinander laufen. Es ist weiter bevorzugt, dass im Raum zwischen den refraktiven Elementen 205,3 shows a schematic representation of a LiDAR sensor 100 in the manner of FIGS. 1 or 2, with imaging optics 150. The imaging optics 150 comprises at least one refractive element 205, which may be designed in particular as a lens. In the illustrated preferred embodiment, a first refractive element 205 and a second refractive element 210 are provided. The refractive elements 205, 210 are preferably designed and arranged against one another such that incident light beams 110 run substantially parallel to one another between them. It is further preferred that in the space between the refractive elements 205,
210 ein optischer Filter 215 vorgesehen ist, um möglichst nur solches Licht passieren zu lassen, welches ursprünglich von der Lichtquelle 105 ausgesandt wurde. Dazu kann der optische Filter insbesondere als Bandpassfilter ausgebildet sein. Das von der Lichtquelle 105 ausgesandte Licht hat idealerweise einen sehr schmalen Wellenlängenbereich. Das optische Filter 215 kann dementsprechend sehr schmalbandig ausgeführt sein, um nur solches Licht durchzulassen, dessen Wellenlänge der Wellenlänge des ausgesandten Lichts entspricht. 210, an optical filter 215 is provided so as to allow as far as possible to pass only light which was originally emitted by the light source 105. For this purpose, the optical filter can be designed in particular as a bandpass filter. The light emitted by the light source 105 ideally has a very narrow wavelength range. Accordingly, the optical filter 215 can be made very narrow-band in order to transmit only light whose wavelength corresponds to the wavelength of the emitted light.
Fig. 4 zeigt beispielhafte Richtungsfilter 125 für einen mehrstrahligen LiDAR- Sensor 100. Die dargestellten Richtungsfilter 125 sind als Lochblenden ausgebildet. Eine Ausführungsform a ist für drei Lichtstrahlen, eine Ausführungsform b für neun Lichtstrahlen, eine Ausführungsform c für sechzehn Lichtstrahlen und eine Ausführungsform d für fünfundzwanzig Lichtstrahlen eingerichtet. Der Richtungsfilter 125 umfasst jeweils ein opakes Material 405, beispielsweise ein Metallblech, in dem so viele Aussparungen 410 vorgesehen sind, wie Strahlen durch den Richtungsfilter 125 durchgelassen werden sollen. Eine Position jeder Aussparung4 shows exemplary directional filters 125 for a multi-beam LiDAR sensor 100. The illustrated directional filters 125 are designed as pinhole diaphragms. An embodiment a is for three light beams, an embodiment b for nine light beams, one embodiment c for sixteen light beams, and one embodiment d for twenty-five light beams. The directional filter 125 each includes an opaque material 405, such as a metal sheet, in which as many recesses 410 are provided as rays to be transmitted through the directional filter 125. A position of each recess
410 korrespondiert zu einer Richtung, aus der Licht durch den Richtungsfilter 125 fallen kann. Licht, das aus einer anderen Richtung auf das Material 405 einfällt, wird von diesem absorbiert oder reflektiert. 410 corresponds to a direction from which light may fall through the directional filter 125. Light incident on the material 405 from another direction is absorbed or reflected thereby.

Claims

Ansprüche claims
Lidarsensor (100), umfassend: Lidar sensor (100) comprising:
- eine mehrstrahlige Lichtquelle (105) zum Aussenden von Lichtstrahlen (1 10);  - A multi-beam light source (105) for emitting light beams (1 10);
- eine Empfangsoptik (115) zum Sammeln einfallender Lichtstrahlen (110); - Receiving optics (115) for collecting incident light beams (110);
- einen Richtungsfilter (125); und a directional filter (125); and
- einen Lichtdetektor (130) mit wenigstens einem Sensor, der einer der Lichtquellen (105) zugeordnet ist.  - A light detector (130) with at least one sensor associated with one of the light sources (105).
Lidarsensor (100) nach Anspruch 1 , wobei die Empfangsoptik (115) ein re- flektives Element umfasst. The lidar sensor (100) of claim 1, wherein the receiving optic (115) comprises a reflective element.
Lidarsensor (100) nach Anspruch 2, wobei der Richtungsfilter (125) mit dem reflektiven Element integriert ausgeführt ist. The lidar sensor (100) of claim 2, wherein the directional filter (125) is integral with the reflective element.
Lidarsensor (100) nach einem der vorangehenden Ansprüche, wobei der Richtungsfilter (125) eine Lochblende umfasst. The lidar sensor (100) of any one of the preceding claims, wherein the directional filter (125) comprises a pinhole.
Lidarsensor (100) nach einem der vorangehenden Ansprüche, ferner umfassend eine Abbildungsoptik (150), die zum Abbilden der Ebene des Richtungsfilters (125) auf den Lichtdetektor (130) eingerichtet ist. The lidar sensor (100) of any one of the preceding claims, further comprising imaging optics (150) arranged to image the plane of the directional filter (125) onto the light detector (130).
Lidarsensor (100) nach Anspruch 5, wobei die Abbildungsoptik (150) einen Abbildungsfaktor ungleich eins aufweist. The lidar sensor (100) of claim 5, wherein the imaging optics (150) has a non-unity imaging factor.
Lidarsensor (100) nach Anspruch 5 oder 6, wobei die Abbildungsoptik (150) ein erstes (205) und ein zweites Element (210) umfasst, zwischen denen sich Lichtstrahlen (110) ausbreiten können. A lidar sensor (100) according to claim 5 or 6, wherein the imaging optics (150) comprises a first (205) and a second element (210) between which light rays (110) can propagate.
8. Lidarsensor (100) nach Anspruch 7, wobei sich die Lichtstrahlen (1 10) zwischen den beiden Elementen (205, 210) im Wesentlichen parallel zueinander ausbreiten und in diesem Bereich ein optischer Filter (215) angeordnet ist. 8. Lidarsensor (100) according to claim 7, wherein the light beams (1 10) between the two elements (205, 210) substantially parallel to each other propagate and in this area an optical filter (215) is arranged.
PCT/EP2018/063301 2017-06-01 2018-05-22 Lidar sensor WO2018219706A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102017209294.7 2017-06-01
DE102017209294.7A DE102017209294A1 (en) 2017-06-01 2017-06-01 lidar

Publications (1)

Publication Number Publication Date
WO2018219706A1 true WO2018219706A1 (en) 2018-12-06

Family

ID=62222687

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2018/063301 WO2018219706A1 (en) 2017-06-01 2018-05-22 Lidar sensor

Country Status (2)

Country Link
DE (1) DE102017209294A1 (en)
WO (1) WO2018219706A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110109127A (en) * 2019-04-02 2019-08-09 中山大学 A kind of device and method increasing laser radar point cloud consistency
WO2020225187A1 (en) * 2019-05-09 2020-11-12 Imec Vzw A phase difference detection system and a method for detecting a phase difference
EP4375702A1 (en) * 2022-11-23 2024-05-29 Scantinel Photonics GmbH Device for scanning fmcw lidar range measurement

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021235778A1 (en) * 2020-05-22 2021-11-25 주식회사 에스오에스랩 Lidar device
EP4071504B1 (en) 2021-04-09 2023-03-22 Sick Ag Optoelectronic sensor and method for detecting objects
EP4105682B1 (en) 2021-06-18 2023-08-02 Sick Ag Optoelectronic sensor and method for detecting objects

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1674886A1 (en) * 2004-12-23 2006-06-28 Thales Device for detecting atmospheric turbulence
EP2957926A1 (en) * 2013-02-13 2015-12-23 Universitat Politècnica De Catalunya System and method for scanning a surface and computer program implementing the method
US20160182846A1 (en) * 2014-12-22 2016-06-23 Google Inc. Monolithically integrated rgb pixel array and z pixel array

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL125659A (en) * 1998-08-05 2002-09-12 Cadent Ltd Method and apparatus for imaging three-dimensional structure
US20080002176A1 (en) * 2005-07-08 2008-01-03 Lockheed Martin Corporation Lookdown and loitering ladar system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1674886A1 (en) * 2004-12-23 2006-06-28 Thales Device for detecting atmospheric turbulence
EP2957926A1 (en) * 2013-02-13 2015-12-23 Universitat Politècnica De Catalunya System and method for scanning a surface and computer program implementing the method
US20160182846A1 (en) * 2014-12-22 2016-06-23 Google Inc. Monolithically integrated rgb pixel array and z pixel array

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110109127A (en) * 2019-04-02 2019-08-09 中山大学 A kind of device and method increasing laser radar point cloud consistency
WO2020225187A1 (en) * 2019-05-09 2020-11-12 Imec Vzw A phase difference detection system and a method for detecting a phase difference
EP4375702A1 (en) * 2022-11-23 2024-05-29 Scantinel Photonics GmbH Device for scanning fmcw lidar range measurement

Also Published As

Publication number Publication date
DE102017209294A1 (en) 2018-12-06

Similar Documents

Publication Publication Date Title
WO2018219706A1 (en) Lidar sensor
EP3350615B1 (en) Lidar sensor
EP2936193B1 (en) Optical object-detection device having a mems and motor vehicle having such a detection device
DE102016213446B4 (en) Optical system for the detection of a scanning field
DE102017200692A1 (en) Omnidirectional lighting device and method for scanning a solid angle range
EP3168642B1 (en) Optoelectronic sensor and method for detecting an object
WO2018197246A1 (en) Laser scanner, for example, for a lidar system of a driver assistance system
DE102019103965A1 (en) TARGETING DEVICE
DE102007030880B4 (en) Device for detecting an object scene
EP3596506A1 (en) Optical emission device for laser pulses with selective optical system
DE10141363B4 (en) Device for scanning a scene
DE102013200657B4 (en) Device for generating an optical dot pattern
DE102010003544A1 (en) Three-dimensional time-of-flight camera i.e. photonic mixer device, for use with car, has receiver optics arranged in such manner that pixel line of pixel array detects equal or larger portion of monitored area in spatial direction
DE102012111199A1 (en) Optical device for camera of vehicle for detecting images of two different distance ranges, has two image acquisition elements that are arranged in different image planes of imaging system
DE4222659C2 (en) Scanning obstacle warning device
EP3349042B1 (en) Surveillance sensor and floor-bound vehicle
DE102017202018A1 (en) Scanner system with a beam source, a mirror and a prismatic element
EP3489715B1 (en) Optical device for detecting a light beam reflected on a distant target
DE102009025368A1 (en) Optical system and sensor for testing value documents with such an optical system
DE102016118481A1 (en) Scanning unit of an optical transmitting and receiving device of an optical detection device of a vehicle
EP3914926A1 (en) Optical system, in particular lidar system, and vehicle
EP3631498A1 (en) Lidar device for scanning a scanning region with minimised installation space requirements
DE102016112557A1 (en) Optical steel forming unit, distance measuring device and laser illuminator
EP3942332A1 (en) Lidar system with holographic imaging optics
DE102022213941A1 (en) LIDAR sensor for optically detecting a field of view and method for optically detecting a field of view

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18726457

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18726457

Country of ref document: EP

Kind code of ref document: A1