Nothing Special   »   [go: up one dir, main page]

WO2018214618A1 - 背光模组及液晶显示装置 - Google Patents

背光模组及液晶显示装置 Download PDF

Info

Publication number
WO2018214618A1
WO2018214618A1 PCT/CN2018/078874 CN2018078874W WO2018214618A1 WO 2018214618 A1 WO2018214618 A1 WO 2018214618A1 CN 2018078874 W CN2018078874 W CN 2018078874W WO 2018214618 A1 WO2018214618 A1 WO 2018214618A1
Authority
WO
WIPO (PCT)
Prior art keywords
backlight
angle
backlight module
liquid crystal
disposed
Prior art date
Application number
PCT/CN2018/078874
Other languages
English (en)
French (fr)
Inventor
李富琳
宋志成
Original Assignee
青岛海信电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海信电器股份有限公司 filed Critical 青岛海信电器股份有限公司
Publication of WO2018214618A1 publication Critical patent/WO2018214618A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133609Direct backlight including means for improving the color mixing, e.g. white
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133614Illuminating devices using photoluminescence, e.g. phosphors illuminated by UV or blue light

Definitions

  • the present disclosure relates to the field of liquid crystal display, and in particular, to a backlight module and a liquid crystal display device.
  • the liquid crystal display usually includes a backlight module and a liquid crystal panel which are sequentially disposed.
  • the liquid crystal panel is a passive light-emitting component, which does not emit light by itself, and requires a backlight module to provide a backlight with sufficient brightness to realize the display function of the liquid crystal display device.
  • Some embodiments of the present disclosure provide a backlight module including a plurality of light emitting components arranged along a predetermined direction, wherein at least one of the plurality of light emitting components includes:
  • the backlight unit including at least one backlight source for emitting a backlight
  • An angle selecting component corresponding to the backlight unit, wherein the angle selecting component is disposed above the backlight unit, and
  • the angle selecting member includes a plurality of through holes, and a radius of a bottom surface of the near light source side of at least one of the plurality of through holes is greater than or equal to a radius of a bottom surface of the far light source side.
  • Some embodiments of the present disclosure provide a liquid crystal display device including the backlight module and the liquid crystal panel described in the above embodiments, wherein
  • the liquid crystal panel includes a liquid crystal layer and a quantum dot color conversion layer, and the liquid crystal layer is disposed between the backlight module and the quantum dot color conversion layer;
  • the liquid crystal layer includes a plurality of liquid crystal cells arranged in sequence, and the quantum dot color conversion layer includes a plurality of quantum dot conversion groups arranged in sequence, and the quantum dot conversion group includes quantum dots capable of converting a backlight correspondingly into three primary colors. a unit, the quantum dot unit being disposed corresponding to the liquid crystal cell.
  • FIG. 1 is a schematic structural view of a liquid crystal display
  • FIG. 2 is a schematic structural diagram of a backlight module according to some embodiments of the present disclosure.
  • FIG. 3 is a schematic structural diagram of a light emitting component according to some embodiments of the present disclosure.
  • FIG. 4 is a schematic diagram of an optical path of a backlight light according to some embodiments of the present disclosure.
  • FIG. 5 is a schematic diagram of light intensity distribution of backlight light emitted by a backlight source according to some embodiments of the present disclosure
  • FIG. 6 is a schematic structural diagram of another light emitting component according to some embodiments of the present disclosure.
  • FIG. 7 is a schematic structural diagram of another light emitting component according to some embodiments of the present disclosure.
  • FIG. 8 is a schematic diagram of an optical path of another backlight according to some embodiments of the present disclosure.
  • FIG. 9 is a schematic diagram of an optical path of still another backlight according to some embodiments of the present disclosure.
  • FIG. 10 is a schematic structural diagram of another backlight module according to some embodiments of the present disclosure.
  • FIG. 11 is a schematic structural diagram of a liquid crystal display device according to an embodiment of the present disclosure.
  • the liquid crystal display includes a backlight module 10 and a liquid crystal panel 20.
  • the backlight module 10 includes a plurality of LED blue backlights 11 that are evenly distributed.
  • the liquid crystal panel 20 includes a liquid crystal layer 21 and a quantum dot color conversion layer 22.
  • the liquid crystal layer 21 includes a plurality of liquid crystal cells 211 arranged in order, and the quantum dot color conversion layer 22 includes a plurality of quantum dot conversion groups 221 arranged in order.
  • Each of the quantum dot conversion groups 221 is composed of a red quantum dot unit, a green quantum dot unit, and a blank quantum dot unit arranged in order, wherein each quantum dot unit is disposed corresponding to one liquid crystal cell 211.
  • the blue backlight enters the liquid crystal layer 21, and the liquid crystals in the respective liquid crystal cells 211 in the liquid crystal layer 21 are rearranged according to display requirements, thereby changing the luminous flux of the blue backlight through each liquid crystal cell 211.
  • the blue backlight passing through the liquid crystal layer 21 enters the quantum dot color conversion layer 22, and each of the quantum dot conversion groups 221 can receive the blue backlight and output the three primary colors corresponding to the respective quantum dot units.
  • the backlights of the three primary colors with different luminous fluxes are harmonized to obtain the color of a corresponding pixel, and the pixels of different colors on the display screen together constitute an image to be displayed.
  • the emission angle of the LED backlight is large, so that the backlight passing through the liquid crystal cell 211 easily enters into other quantum dot cells other than the corresponding quantum dot unit.
  • a large angle blue backlight may enter the adjacent red quantum dot unit and the blank quantum dot unit through the liquid crystal cell, and A small amount of red backlight and blue backlight are obtained accordingly. Therefore, the color purity of the green backlight corresponding to the green quantum dot unit may be lowered, and the color crosstalk between the three primary color backlights may be affected, thereby affecting the display effect of the liquid crystal display.
  • the backlight module includes a plurality of light emitting assemblies 100 arranged in a predetermined direction. At least one of the plurality of light emitting assemblies 100 includes at least one backlight unit 200, and a light collimating structure 300 disposed corresponding to the backlight unit 200.
  • the backlight unit 200 includes at least one backlight source 210.
  • the light collimating structure 300 includes at least one reflective light mixing component 310 and an angle selection component 320.
  • the at least one reflective light mixing component 310 is disposed around the backlight unit 200.
  • Each of the reflective light mixing components 310 includes a reflective surface 311 for reflecting the backlight.
  • the angle selection member 320 is fixed to the top of the reflective light mixing member 310.
  • the angle selecting member 320 is provided with a plurality of through holes 321 , and a radius of a bottom surface of the near light source 210 side of at least one of the plurality of through holes 321 is greater than or equal to a radius of a bottom surface of the far light source 210 side.
  • the reflecting surface 311 faces a region between the angle selecting member and the reflective light mixing member.
  • each of the at least one of the plurality of light emitting assemblies 100 includes a backlight unit 200 and a light collimating structure 300 disposed corresponding to the backlight unit 200.
  • each lighting assembly 100 includes a backlight unit 200 and a light collimating structure 300.
  • the distance from each point on the reflective surface 311 along the direction away from the backlight unit 200 to the plane of the lower surface of the backlight unit 200 varies continuously from small to large.
  • the top of the reflective light mixing member 310 refers to a position away from the backlight unit 200 in the reflective surface of the reflective light mixing member 310 for reflecting the backlight.
  • the backlight unit 200 is for providing a backlight with sufficient brightness to realize a display function of the liquid crystal display device.
  • only one backlight source for emitting backlights is included in the backlight unit 200.
  • the entire light collimating structure 300 is a circumferentially symmetric structure. In other embodiments of the present disclosure, the entire light collimating structure 300 is a square structure.
  • the at least one reflective light mixing component 310 includes two reflective light mixing components 310.
  • the reflective light mixing member 310 includes a reflective surface 311 for reflecting the backlight, and the reflective surface 311 is along various points away from the backlight unit 200 to the lower surface of the backlight unit 200. The distance of the plane is continuously changed from small to large.
  • An angle selecting member 320 having high reflection performance covers the top of the reflecting surface 311, and the angle selecting member 320 is provided with a plurality of through-holes 321 which are penetrated and smooth.
  • the radius of the bottom surface of the through hole 321 on the near light source side is greater than or equal to the radius of the bottom surface of the far light source side, the near light source side is a side close to the backlight unit 200, and the far light source side is a side away from the backlight unit 200.
  • the reflecting surface 311 gradually approaches the angle selecting member 320 in a direction away from the backlight unit 200 toward the backlight unit 200, and can gradually reduce the incident angle (reflection angle) of the backlight light.
  • the above varying characteristics of the reflecting surface facilitate the backlight light to reach a predetermined angle, thereby entering the liquid crystal panel through the angle selecting member 320.
  • the radius of the bottom surface of the light source side, h is the distance from the bottom surface of the through hole 321 on the far light source side to the plane of the upper surface of the backlight unit 200.
  • the through hole 321 is a cylindrical hole. In other embodiments of the present disclosure, the through holes 321 are rounded counter holes. Since the radius of the lower surface of the rounded hole is larger than the radius of the upper surface, the rounded through hole can allow more backlight light to enter when the radius of the upper surface of the rounded through hole is the same as the radius of the bottom surface of the cylindrical through hole.
  • the light ray angle is filtered in the through hole 321 , and a part of the backlight light that does not meet the preset angle is converted into a light that meets the angle requirement and passes through the through hole 321 after being reflected by the side wall of the through hole 321 , thereby reducing The number of reflections of the backlight light and the energy loss increase the efficiency of the angle selection component 320 for backlight light selection.
  • the plurality of through holes 321 include a through hole 321 disposed directly above the backlight unit 200, so that the backlight light emitted by the backlight unit 200 can directly enter the light.
  • the through hole 321 performs angle selection.
  • the reflective light mixing component 310 includes a protruding step structure 312 disposed at the top of the reflective surface 311.
  • the angle selection component 320 is clamped between the two symmetric light mixing components symmetrically disposed to enhance the angle selection component 320. The robustness on the reflective light mixing member 310.
  • FIG. 4 illustrates a schematic diagram of an optical path of a backlight module in accordance with some embodiments of the present disclosure.
  • a portion of the angled backlight light emitted by the backlight unit 200 can directly enter the through hole located above it.
  • the backlight light less than or equal to the preset angle can directly enter the liquid crystal panel through the through hole, and the backlight light larger than the preset angle is reflected by the through hole, and returns to the reflection by the through hole.
  • the face 311 and the lower surface of the angle selecting member 320 are enclosed in a light mixing cavity 330.
  • the light rays continue to adjust the emission angle under the reflection of the reflection light mixing member 310 and the angle selection member 320 until they meet the preset angle, and are emitted from the through holes 321 .
  • the other part of the backlight light emitted by the backlight unit 200 is reflected on the solid structure of the angle selecting component 320, returns to the light mixing cavity 330, and continues to adjust the emission angle.
  • the backlight light emitted by the backlight source can be converted into a small angle backlight that meets a preset angle by the light collimation structure 300.
  • the small angle backlight can completely enter the corresponding quantum dot unit. It can solve the problem of the color purity of the backlight and the color crosstalk between the three primary colors.
  • FIG. 5 is a schematic diagram showing light intensity distribution of backlight light emitted by a backlight source provided by some embodiments of the present disclosure.
  • the backlight light emitted by the backlight source is not uniformly distributed, but gradually decreases as the emission angle increases.
  • the backlight light emitted by the backlight source needs to have a certain uniformity.
  • the reflective surface 311 is a flat surface. In other embodiments, the reflective surface 311 is a curved surface, such as a spherical surface, an ellipsoidal surface, or a free curved surface. In the case where the reflecting surface 311 is set to a curved surface, the backlight light can be more uniform.
  • FIG. 6 is a schematic structural diagram of another light emitting component according to some embodiments of the present disclosure.
  • the reflecting surface 311 is a part of a spherical surface.
  • the spherical or ellipsoidal surface can facilitate the diffusion of the backlight light to both sides of the backlight source 210, thereby improving the intermediate density of the backlight light to a certain extent, and the problem of both sides being small. .
  • the distribution density of the through holes 321 in the angle selecting member 320 gradually increases in a direction away from the backlight unit 200. That is, the density of the through holes 321 in the central portion of the angle selecting member is smaller than the density of the through holes 321 in the peripheral regions of the angle selecting member, and the peripheral regions are located around the central portion and on the angle selecting member. At a position close to the center of the backlight unit 200, relatively few through holes 321 are provided to force a portion of the backlight light distributed at the center of the backlight unit 200 to be emitted on the solid portion of the angle selecting portion 320, thereby being directed to both sides of the backlight unit 200. diffusion.
  • the opening area of the central area through hole is smaller than the opening area of the through hole of the surrounding area on the same side.
  • the minimum distance of each point on the reflective surface 311 to the plane of the lower surface of the backlight source 210 is less than or equal to the height of the backlight source 210. That is, in the case where the backlight unit 200 and the corresponding reflective light mixing member 310 are on the same horizontal plane, the minimum thickness of the reflective light mixing member 310 (ie, the thickness near the side of the backlight unit 200) is less than or equal to that in the backlight unit 200. The thickness of the backlight source 210. The reason is that, as shown in FIG.
  • the distance d between the two reflective light mixing members 310 symmetrically disposed on both sides of the backlight unit 200 is small, if the minimum thickness of the reflective light mixing member 310 is much larger than the thickness of the backlight source 210. Then, the backlight light emitted by the backlight source 210 is likely to be reflected multiple times on the sidewall of the reflective light mixing member 310 before entering the light mixing chamber 330 for angle selection, thereby causing loss of light energy.
  • Some embodiments of the present disclosure also provide another backlight module to improve the uniformity of backlight light emitted by the backlight unit.
  • the backlight module includes a plurality of light emitting components arranged along a predetermined direction, and each of the light emitting components is arranged in a manner similar to the above embodiment.
  • At least one of the plurality of light emitting components includes a backlight unit 200 and a light collimating structure 400 disposed corresponding to the backlight unit 200.
  • the backlight unit 200 includes at least one backlight source for emitting a backlight.
  • the light collimating structure 400 includes a highly transmissive angular diverging component 410 and a highly reflective angular selection component 420.
  • the angle diverging member 410 includes a diverging body 411, and a concave surface structure 412 is disposed on a bottom surface of the diverging body 411.
  • the backlight unit is disposed in the concave structure 412, and the reflective layer 413 is attached to the side of the diverging body 411.
  • the angle selecting member 420 is disposed on the upper surface of the angle diverging member 410 (the upper surface is located in a direction in which the backlight unit 200 emits light).
  • the angle selecting member 420 is provided with a plurality of through holes 421, and a radius of a bottom surface of the near light source side of at least one of the plurality of through holes 421 is greater than or equal to a radius of a bottom surface of the far light source side.
  • each of the at least one of the plurality of light emitting components includes a backlight unit 200 and a light collimating structure 400 disposed corresponding to the backlight unit 200. In some embodiments, each of the plurality of light emitting components includes a backlight unit 200 and a light collimating structure 400 disposed corresponding to the backlight unit 200.
  • the diverging body 411 is a straight quadrangular cylinder
  • the concave structure 412 is disposed on any one of the straight quadrangular cylinders and is smooth.
  • the angle diverging member 410 and the backlight unit 200 are both disposed on a horizontal surface.
  • the surface of the concave structure 412 is located on the bottom surface of the angle diverging member 410, and is disposed above the backlight unit 200 (ie, the backlight unit 200). Provided inside the concave structure 412).
  • the reflective layer 413 is attached to each side of the diverging body 411.
  • the backlight module is placed on a PCB.
  • the PCB is coated with white oil and therefore has a reflective function. That is, the bottom surface of the diverging body 411 is directly in contact with the white oil on the PCB board, and therefore, the bottom surface of the diverging body 411 does not need to be attached with the reflective layer 413.
  • the angle diverging member 410 has a diverging effect on the backlight light emitted by the backlight unit 200 due to the concave structure 412, which facilitates the diffusion of the backlight light concentrated at the center of the backlight unit 200 toward both sides of the backlight unit 200, thereby obtaining uniformity. Higher backlighting.
  • Fig. 8 is a view showing the optical path of the backlight light in the above embodiment.
  • the backlight light emitted by the backlight unit 200 first enters the inside of the angle diverging member 410. After the divergence of the angular diverging member 410, a portion of the backlight having a smaller angle can directly enter the through hole located above it. In the backlight light entering the through hole, the backlight light less than or equal to the preset angle can directly enter the liquid crystal panel through the through hole, and the backlight light greater than the preset angle is reflected by the through hole, and returns to the angle diverging member 410.
  • the backlight light reflected from the through hole usually has a large incident angle, so the reflection is mainly based on a small amount of refracted light in FIG. 8 It is not shown) that the emission angle is continuously adjusted until it meets the preset angle, and is emitted from the through hole 421.
  • the other part of the backlight light emitted by the backlight unit 200 is reflected on the solid structure of the angle selecting part 420, returns to the angle diverging part 410, and continues to adjust the emission angle.
  • the backlight light emitted by the backlight unit 200 can be diverged to a certain extent, which is advantageous for the backlight module 200. Improve the density of the backlight light in the middle, small problems on both sides.
  • the backlight light emitted by the backlight source can be converted into a small angle backlight conforming to a preset angle, and the small angle backlight can completely enter the corresponding quantum dot unit. It can solve the problem of the color purity of the backlight and the color crosstalk between the three primary colors.
  • the concave structure 412 is a spherical structure. In other embodiments of the present disclosure, the concave structure 412 is an ellipsoidal structure or other structure capable of achieving a scattering function.
  • the concave structure 412 is an ellipsoidal structure.
  • FIG. 9 is a schematic view showing the optical path of the backlight module provided by these embodiments.
  • the concave structure 412 in Fig. 8 is a spherical structure
  • the concave structure 412 in Fig. 9 is an ellipsoidal structure.
  • the spherical radius in Fig. 8 is equal to the long axis of the ellipsoid in Fig. 9. Compared with the optical paths shown in Fig. 8 and Fig.
  • the backlight of the same emission angle is more refracted on the ellipsoid than the refraction on the spherical surface.
  • the degree, that is, under the same circumstances, the ellipsoid faces the backlight to have a greater degree of divergence, which is beneficial to improve the uniformity of the backlight to a certain extent.
  • the plurality of through holes 421 are evenly distributed over the angle selection member 420. This arrangement facilitates batch processing of the angle selecting member 420.
  • the arrangement of the angle diverging member 410 and the adjustment of the dispersion density of the through holes 421 are all for the purpose of obtaining a more uniform backlight, and the two functions are the same. Therefore, the two measures can prevent the light at the center position from being excessive. Disperse to both sides.
  • the backlight module includes a plurality of backlight sources 210 arranged along a predetermined direction, and a light collimating structure 500 corresponding to the plurality of backlight sources 210 .
  • the light collimating structure 500 includes an angle diverging component 510 and an angle selecting component 520.
  • the angle diverging member 510 includes a diverging body 511, and a plurality of concave structures 512 are disposed on any one of the surfaces of the diverging body 511.
  • Each of the backlight sources 210 is disposed in the corresponding concave structure 512 to be connected to the surface on which the concave structure 512 is located.
  • a reflective layer 513 is attached to the surface.
  • the angle selecting member 520 is disposed on a surface of the angle diverging member 510 opposite to the concave structure 512.
  • the angle selecting member 520 is provided with a plurality of through holes, and a bottom surface radius of the near light source side of at least one of the plurality of through holes is greater than Or equal to the radius of the bottom surface of the far light source side.
  • the angle diverging member 510 is a material having high transmission performance
  • the angle selecting member 520 is a material having high reflection performance.
  • the diverging body 511 is a straight quadrangular prism.
  • the liquid crystal display device includes the backlight module 600 and the liquid crystal panel 700 described in the above embodiments.
  • the liquid crystal panel 700 includes a liquid crystal layer 710 and a quantum dot color conversion layer 720 disposed between the backlight module 600 and the quantum dot color conversion layer 720.
  • the liquid crystal layer 710 includes a plurality of liquid crystal cells 711 arranged in sequence
  • the quantum dot color conversion layer 720 includes a plurality of quantum dot conversion groups 721 arranged in sequence
  • the quantum dot conversion group 721 includes quantum dot units that can convert the backlight correspondingly into three primary colors.
  • a quantum dot unit 7211 is provided corresponding to the liquid crystal cell 711.
  • the light emitting assembly 100 includes a backlight unit 200 and a bracket disposed on the backlight unit 200.
  • the backlight unit 200 includes a circuit board and a backlight source disposed on the circuit board.
  • the bracket is provided with a hollow cavity body, and the bottom surface area of the hollow cavity body is smaller than the top surface area of the hollow cavity body.
  • the backlight source penetrates into the hollow cavity of the bracket through the bottom surface side of the hollow cavity.
  • the light emitting assembly 100 further includes a reflective substrate disposed on a side of a top surface of the hollow cavity, the bracket supporting the reflective substrate. A through hole is provided in the reflective substrate, and the light is reflected when reaching the position of the reflective substrate facing the first surface of the backlight unit 200 except the through hole.
  • the backlight unit 200 includes at least one backlight source.
  • the bracket corresponds to the reflective light mixing member described in the above embodiment.
  • the reflective substrate corresponds to the angle selecting member described in the above embodiment.
  • the sidewalls of the stent that form the hollow cavity can reflect light.
  • the lighting assembly 100 includes a backlight unit 200 and a transparent body that is disposed over the illuminating light source.
  • the backlight unit 200 includes a circuit board and a backlight source disposed on the circuit board.
  • the transparent body includes a bottom surface facing a plane of the circuit board, and the bottom surface is provided with a groove at a corresponding position of the backlight source.
  • a reflective substrate is disposed above the transparent body, and a through hole is disposed on the reflective substrate, and the light is reflected when reaching a position of the reflective substrate facing the first surface of the backlight unit 200 except the through hole.
  • the bracket corresponds to the angular diverging member described in the above embodiment.
  • the reflective substrate corresponds to the angle selecting member described in the above embodiment.
  • a reflective layer is disposed on a side of the transparent body, the side being an outer surface of the transparent body except the bottom surface and the top surface.
  • a top surface of the transparent body is a flat surface, and a first surface of the reflective substrate is in contact with the top surface.
  • a bottom surface of the transparent body is in contact with the circuit board, and the illuminating light source is located in the recess.
  • the diameter of the opening of the through hole on the first surface of the reflective substrate facing the backlight unit 200 is larger than the diameter of the opening of the through hole on the second surface of the reflective substrate facing away from the backlight unit 200.
  • the reflective substrate is made of a material having a high reflectivity.
  • a reflective layer is disposed on a first side of the reflective substrate.
  • the backlight unit is a light bar.
  • the backlight source is an LED lamp.
  • the backlight module is provided with a light collimating structure, and the light collimating structure includes an angle selecting component, wherein the light collimating structure further includes a reflection.
  • the light mixing component, the other two light collimating structures also include an angular diverging component.
  • the angle selection component is provided with a plurality of through holes, and the light corresponding to the preset angle among the light emitted by the backlight source can be directly dispersed through the angle selection component; the light that does not meet the preset angle is reflected in the light mixing component, the angle diverging component, and The angle of the selection component is changed by reflection or refraction to change the angle of propagation until it meets the preset angle.
  • the light emitted by the backlight source can be converted into a small angle backlight conforming to a preset angle by using a light collimating structure, and the small angle backlight can completely enter the corresponding quantum dot unit, which can solve the color purity degradation of the backlight. And the problem of color crosstalk between the three primary colors backlights.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Planar Illumination Modules (AREA)
  • Liquid Crystal (AREA)

Abstract

一种背光模组(10,600),包括沿预设方向排布的多个发光组件(100)。多个发光组件(100)中的至少一个包括背光单元(200)和与背光单元(200)对应设置的角度选择部件(320,420,520)。背光单元(200)包括至少一个用于发出背光的背光光源(210)。角度选择部件(320,420,520)设置于背光单元的上方且包括多个通孔(321,421)。多个通孔(321,421)中至少一个通孔(321,421)的近光源(210)侧的底面半径大于或者等于远光源(210)侧的底面半径。

Description

背光模组及液晶显示装置
本申请要求于2017年5月22日提交中国专利局、申请号为201710361468.7、发明名称为“一种背光模组及液晶显示装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及液晶显示领域,尤其涉及一种背光模组及液晶显示装置。
背景技术
液晶显示器通常包括顺序设置的背光模组和液晶面板。液晶面板是一种被动发光元件,其本身并不发光,需要背光模组提供亮度充分的背光,以实现液晶显示装置的显示功能。
发明内容
本公开一些实施例提供了一种背光模组,包括沿预设方向排布的多个发光组件,其中,所述多个发光组件中的至少一个包括:
背光单元,所述背光单元包括至少一个用于发出背光的背光光源;和
与所述背光单元对应设置的角度选择部件,其中,所述角度选择部件设置于所述背光单元的上方,且
所述角度选择部件包括多个通孔,所述多个通孔中至少一个通孔的近光源侧的底面半径大于或者等于远光源侧的底面半径。
本公开一些实施例提供了一种液晶显示装置,所述液晶显示装置包括上述实施例所述的背光模组和液晶面板,其中,
所述液晶面板包括液晶层和量子点颜色转换层,所述液晶层设置于所述背光模组和所述量子点颜色转换层之间;
所述液晶层包括依次排布的多个液晶单元,所述量子点颜色转换层包括依次排布的多个量子点转换组,所述量子点转换组包括可将背光对应转换为三原色的量子点单元,所述量子点单元与所述液晶单 元对应设置。
附图说明
为了更清楚地说明本公开的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员而言,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为一种液晶显示器的结构示意图;
图2为本公开一些实施例提供的一种背光模组的结构示意图;
图3为本公开一些实施例提供的一种发光组件的结构示意图;
图4为本公开一些实施例提供的一种背光光线的光路示意图;
图5为本公开一些实施例提供的背光光源发射的背光光线的光强分布示意图;
图6为本公开一些实施例提供的另一种发光组件的结构示意图;
图7为本公开一些实施例提供的另一种发光组件的结构示意图;
图8为本公开一些实施例提供的另一种背光光线的光路示意图;
图9为本公开一些实施例提供的再一种背光光线的光路示意图;
图10为本公开一些实施例提供的另一种背光模组的结构示意图;以及
图11为本公开实施例提供的一种液晶显示装置的结构示意图。
具体实施方式
为使本公开的目的、特征和优点能够更加明显易懂,下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动的前提下所获得的所有其它实施例,均属于本公 开保护的范围。
图1是发明人已知的一种液晶显示器的结构示意图。如图1所示,液晶显示器包括背光模组10和液晶面板20。背光模组10包括均匀分布的多个LED蓝色背光源11。液晶面板20包括液晶层21和量子点颜色转换层22。液晶层21包括依次排布的多个液晶单元211,量子点颜色转换层22包括依次排布的多个量子点转换组221。每一个量子点转换组221由顺序排布的一个红色量子点单元、一个绿色量子点单元和一个空白量子点单元组成,其中,每一个量子点单元均与一个液晶单元211对应设置。当液晶显示器显示图像时,蓝色背光进入液晶层21,液晶层21中各个液晶单元211内的液晶根据显示需求重新排列,从而改变蓝色背光透过各液晶单元211的光通量。经过液晶层21的蓝色背光进入量子点颜色转换层22,量子点颜色转换层22中每一个量子点转换组221均可以接受蓝色背光并输出各量子点单元对应的三原色光。光通量不同的三原色背光经过调和后即获得一个对应像素的颜色,显示屏幕上各个不同颜色的像素即共同构成需要显示的图像。
通常,LED背光源的发射角度较大,因此经过液晶单元211的背光容易进入到除对应量子点单元以外的其他量子点单元中。例如,如图1所示,当开启一个绿色量子点单元对应的液晶单元时,大角度的蓝色背光可能会经过该液晶单元进入到相邻的红色量子点单元和空白量子点单元中,并相应地得到少量的红色背光和蓝色背光。因此,可能会导致绿色量子点单元对应的绿色背光的颜色纯度下降,以及三原色背光之间的颜色串扰,从而影响液晶显示器的显示效果。
为改善上述问题,本公开的一些实施例提供了一种背光模组。如图2和图3所示,该背光模组包括沿预设方向排布的多个发光组件100。所述多个发光组件100中的至少一个包括至少一个背光单元200,以及,与背光单元200对应设置的光线准直结构300。背光单元200包括至少一个背光光源210。光线准直结构300包括至少一个反射混光部件310和角度选择部件320。该至少一个反射混光部件310 设置于背光单元200的四周。每个反射混光部件310包括用于反射背光的反射面311。角度选择部件320固定于反射混光部件310的顶部。角度选择部件320中设有多个通孔321,所述多个通孔321中至少一个通孔的近光源210侧的底面半径大于或者等于远光源210侧的底面半径。反射面311朝向所述角度选择部件和所述反射混光部件之间的区域。
在一些实施例中,角度选择部件320的材质为高反射性能材质。在一些实施例中,所述多个发光组件100中的至少一个中的每个包括背光单元200以及,与背光单元200对应设置的光线准直结构300。在一些实施例中,每个发光组件100包括背光单元200以及光线准直结构300。在一些实施例中,反射面311上沿远离背光单元200方向的各个点到背光单元200下表面所在平面的距离由小到大连续变化。
将说明的是,反射混光部件310的顶部指的是反射混光部件310中用于反射背光的反射面中远离背光单元200的位置。背光单元200用于提供亮度充足的背光,以实现液晶显示装置的显示功能。
在本公开的一些实施例中,为了避免多个背光光源210发射的背光之间产生干扰,背光单元200内仅包括一个用于发出背光的背光光源。
在本公开的一些实施例中,整个光线准直结构300为圆周对称结构。在本公开的另一些实施例中,整个光线准直结构300为方形结构。
在本公开的一些实施例中,如图3所示,至少一个反射混光部件310包括两个反射混光部件310。
在本公开的一些实施例中,如图3所示,反射混光部件310包括一个用于反射背光的反射面311,反射面311上沿远离背光单元200方向的各个点到背光单元200下表面所在平面的距离由小到大连续变化。具有高反射性能的角度选择部件320覆盖于反射面311的顶部,角度选择部件320设有多个贯穿的、光面光滑的通孔321。通孔321近光源侧的底面半径大于或者等于远光源侧的底面半径,近光源侧为 靠近背光单元200的一侧,远光源侧为远离背光单元200的一侧。
该反射面311按照由靠近背光单元200向远离背光单元200的方向,逐渐靠近角度选择部件320,并且能够逐渐缩小背光光线的入射角度(反射角度)。在角度选择部件320上的所述多个通孔321的形状和分布位置均相同的情况下,反射面的以上变化特征利于背光光线达到预设角度,从而穿过角度选择部件320进入液晶面板。
通常,只有符合预设角度的背光光线才能够穿过该通孔321发散出去。在一些实施例中,预设角度与通孔321远光源侧的底面半径之间的关系式表示为:θ=arctan(a/h),其中,θ为预设角度,a为通孔321远光源侧的底面半径,h为通孔321远光源侧的底面到背光单元200上表面所在平面的距离。当背光光线的发射角度小于或者等于预设角度θ时,背光光线则会直接透过角度选择部320。当背光光线的发射角度大于预设角度θ时,背光光线则会在角度选择部件320上发生反射。
在本公开的一些实施例中,通孔321为圆柱孔。在本公开的另一些实施例中,通孔321为倒圆台孔。由于倒圆台孔的下表面半径大于上表面半径,因此,在倒圆台形通孔的上表面半径与圆柱形通孔底面半径相同的情况下,倒圆台形通孔能够允许更多的背光光线进入通孔321内进行光线角度的筛选,其中一部分不符合预设角度的背光光线,在经过通孔321侧壁的反射作用后,有可能转化为符合角度要求的光线而通过通孔321,从而降低背光光线的反射次数和能量损耗,提高角度选择部件320对背光光线选择的效率。
在一些实施例中,为了能够尽可能的提高光能利用率,所述多个通孔321包括设置在背光单元200的正上方的通孔321,以便背光单元200发出的背光光线能够直接进入该通孔321进行角度选择。
在一些实施例中,反射混光部件310包括设置在反射面311的顶部处的一个突出的台阶结构312。在所述至少一个反射混光部件210包括两个对称设置的反射混光部件310的情况下,角度选择部件320卡固于对称设置的两个反射混光部件之间,以增强角度选择部件320 在反射混光部件310上的牢固性。
图4示出了根据本公开一些实施例的背光模组的光路示意图。由图4可见,背光单元200发射的一部分角度较小的背光光线能够直接进入位于其上方的通孔。在进入该通孔的背光光线中,小于或者等于预设角度的背光光线能够直接穿过该通孔进入液晶面板,而大于预设角度的背光光线则会被该通孔反射,返回到由反射面311和角度选择部件320的下表面共同围成的混光腔330内。这些光线在反射混光部件310和角度选择部件320的反射作用下,继续调整发射角度,直至符合预设角度后,自通孔321射出。背光单元200发射的另外一部分角度偏大的背光光线则会在角度选择部件320实体结构上发生反射作用,返回到混光腔330内,继续调整发射角度。
在本公开实施例的背光模组中,通过光线准直结构300,能够将背光光源发射的背光光线转化为符合预设角度的小角度背光.该小角度背光能够完全进入对应的量子点单元中,可以解决背光的颜色纯度下降,以及三原色背光之间颜色串扰的问题。
图5示出了本公开一些实施例提供的背光光源发射的背光光线的光强分布示意图。由图5可见,越靠近背光光源的中心位置(视角为零),背光光源的光通量越大,背光光线越集中。可见,背光光源发射的背光光线并不是均匀分布的,而是随着发射角度的增大而逐渐减少。为了保证液晶显示装置的显示效果,背光光源发射的背光光线需要具有一定的均匀性。
在一些实施例中,反射面311为平面。在另一些实施例中,反射面311为曲面,比如球面、椭球面或者自由曲面。在将反射面311设置为曲面的情况下,背光光线可更均匀。
图6示出了本公开一些实施例提供的另一种发光组件的结构示意图。由图6可见,反射面311为球面的一部分。在通孔321的形状和分布位置均相同的情况下,球面或椭球面可有利于背光光线向背光光源210的两侧扩散,从而在一定程度上改善背光光线中间密度大,两侧小的问题。
为了进一步提高背光光线的均匀性,本公开的一些实施例中,角度选择部件320上通孔321的分布密度沿远离背光单元200的方向逐渐升高。也即,在角度选择部件中心区域的通孔321的密度小于角度选择部件四周区域的通孔321的密度,四周区域位于所述中心区域四周并位于角度选择部件上。在靠近背光单元200中心的位置,设置相对较少的通孔321,以迫使一部分分布于背光单元200中心的背光光线在角度选择部件320的实体部分上发生发射,从而向背光单元200的两侧扩散。可见,通过改变通孔321分布的疏密程度,可配合背光光线的光强分布特性,有利于提高背光单元200发射的背光光线的均匀性。在本公开的一些实施例中,在同一侧面上,中心区域通孔的开口面积小于四周区域的通孔的开口面积。
在本公开的一些实施例中,反射面311上各个点到背光光源210下表面所在平面的最小距离小于或者等于背光光源210的高度。也就是说,在背光单元200以及对应的反射混光部件310处于同一水平面上的情况下,反射混光部件310的最小厚度(即靠近背光单元200一侧的厚度)小于或者等于背光单元200中背光光源210的厚度。其原因为,如图6所示,对称设置于背光单元200两侧的两个反射混光部件310之间的距离d较小,如果反射混光部件310的最小厚度远大于背光光源210的厚度,则背光光源210发射出来的背光光线很可能会在反射混光部件310的侧壁上发生多次反射以后,才能进入混光腔330进行角度选择,从而造成光能损失。
本公开的一些实施例还提供了另外一种背光模组,以提高背光单元发射的背光光线的均匀性。该背光模组包括沿预设方向排布的多个发光组件,各个发光组件的排布方式与上述实施例类似。
如图7所示,所述多个发光组件中的至少一个包括背光单元200和与背光单元200对应设置的光线准直结构400。背光单元200包括至少一个用于发出背光的背光光源。光线准直结构400包括高透射性的角度发散部件410和高反射性的角度选择部件420。角度发散部件410包括发散本体411,在发散本体411的底面设有一凹面结构412。 背光单元设置于该凹面结构412内,且发散本体411的侧面贴附有反射层413。角度选择部件420设置于角度发散部件410的上表面(上表面位于背光单元200发射光线的方向)。角度选择部件420设有多个通孔421,所述多个通孔421中的至少一个的近光源侧的底面半径大于或者等于远光源侧的底面半径。
在一些实施例中,所述多个发光组件中的至少一个中的每个包括背光单元200和与背光单元200对应设置的光线准直结构400。在一些实施例中,所述多个发光组件中的每个包括背光单元200和与背光单元200对应设置的光线准直结构400。
在一些实施例中,发散本体411为直四棱柱体,凹面结构412设置在直四棱柱体中任意的一个表面上,且是光滑的。在一些实施例中,角度发散部件410和背光单元200均设置于水平面上,此时,凹面结构412所在的面作为角度发散部件410的底面,扣设于背光单元200的上方(即背光单元200设置于凹面结构412的内部)。
在一些实施例中,发散本体411的各个侧面均贴附有反射层413。
在一些实施例中,背光模组放置于PCB板上。PCB板上涂有白油,并因此具有反射功能。即,发散本体411的底面直接与PCB板上的白油接触,因而,发散本体411的底面无需贴附反射层413。
根据凹透镜原理,角度发散部件410因凹面结构412而对背光单元200发射的背光光线具有发散作用,有利于集中在背光单元200中心位置的背光光线向背光单元200的两侧扩散,从而可获得均匀度更高的背光。
图8示出了以上实施例中的背光光线的光路示意图。
由图8可见,背光单元200发射的背光光线首先进入角度发散部件410内部。经过角度发散部件410的发散作用后,一部分角度较小的背光光线能够直接进入位于其上方的通孔。进入该通孔的背光光线中,小于或者等于预设角度的背光光线能够直接穿过该通孔进入液晶面板,大于预设角度的背光光线则会被该通孔反射,返回到角度发 散部件410内部,并在角度发散部件410的侧壁和角度选择部件420的反射作用下,(自通孔反射出来的背光光线通常入射角度较大,因此多以反射为主,少量的折射光线在图8中未示出)继续调整发射角度,直至符合预设角度后,自通孔421射出。背光单元200发射的另外一部分角度偏大的背光光线则会在角度选择部件420实体结构上发生反射作用,返回到角度发散部件410内,继续调整发射角度。
在本公开实施例提供的背光模组中,通过在背光单元200和角度选择部件420之间设置角度发散部件410,能够在一定程度上对背光单元200发射的背光光线起到发散作用,有利于改善背光光线中间密度大,两侧小的问题。通过由角度发散部件410和角度选择部件420组成的光线准直结构,能够将背光光源发射的背光光线转化为符合预设角度的小角度背光,该小角度背光能够完全进入对应的量子点单元中,可以解决背光的颜色纯度下降,以及三原色背光之间颜色串扰的问题。
在本公开的一些实施例中,凹面结构412为球面结构。在本公开的另一些实施例中,凹面结构412为椭球面结构或者能够实现散射功能的其他结构。
为了进一步提高角度发散部件410对背光的发散能力,本公开一些实施例提供了另外一种发光组件。在该发光组件中,凹面结构412为椭球面结构。图9示出了这些实施例提供的背光模组的光路示意图。图8中的凹面结构412为球面结构,图9中的凹面结构412为椭球面结构。实图8中的球面半径与图9中的椭球面的长轴相等,对比图8和图9所示的光路可见,相同发射角度的背光光线在椭球面上的折射程度大于在球面上的折射程度,即相同情况下,椭球面对背光的发散程度更大,有利于在一定程度上提高背光的均匀性。
在一些实施例中,所述多个通孔421均匀地分布在角度选择部件420上。如此设置,有利于角度选择部件420的批量加工。此外,角度发散部件410的设置和通孔421分散密度的调整均是为了获得更为均匀的背光,二者作用相同,因此,两种措施选其一可防止位于中 心位置的光线被过多的分散到两侧。
为了便于背光模组的一体化加工,以及光线准直结构和背光光源的装配,本公开的一些实施例还提供了一种背光模组。如图10所示,该背光模组包括沿预设方向排布的多个背光光源210,以及与所述多个背光光源210对应设置的光线准直结构500。光线准直结构500包括角度发散部件510和角度选择部件520。角度发散部件510包括发散本体511,在发散本体511中任意的一个表面上设有多个凹面结构512,每一个背光光源210设置在相应的凹面结构512内,与凹面结构512所在的表面相连接的表面上贴附有反射层513。角度选择部件520设置于角度发散部件510中与凹面结构512相对的表面上,角度选择部件520设有多个通孔,所述多个通孔中至少一个通孔的近光源侧的底面半径大于或者等于远光源侧的底面半径。所述角度发散部件510为具有高透射性能的材质,所述角度选择部件520为具有高反射性能的材质。
在一些实施例中,发散本体511为直四棱柱体。
此外,本公开一些实施例还提供了一种液晶显示装置。如图11所示,该液晶显示装置包括以上实施例所述的背光模组600和液晶面板700。液晶面板700包括液晶层710和量子点颜色转换层720,所述液晶层710设置于背光模组600和所述量子点颜色转换层720之间。液晶层710包括依次排布的多个液晶单元711,量子点颜色转换层720包括依次排布的多个量子点转换组721,量子点转换组721包括可将背光对应转换为三原色的量子点单元7211,量子点单元7211与所述液晶单元711对应设置。
在一些实施例中,发光组件100包括背光单元200以及设置在背光单元200上的支架。背光单元200包括电路板和设置在电路板上的背光光源。该支架设置有一中空腔体,中空腔体的底面面积小于中空腔体的顶面面积。背光光源通过中空腔体的底面一侧探入所述支架的中空腔体内。发光组件100还包括设置在中空腔体的顶面一侧的反射基板,支架支撑反射基板。反射基板上设置有通孔,光线在到达反 射基板的朝向背光单元200的第一面的除所述通孔之外的位置时被反射。背光单元200包括至少一个背光光源。支架对应于上述实施例中所述的反射混光部件。反射基板对应于上述实施例所述的角度选择部件。
在一些实施例中,支架的形成所述中空腔体的侧壁可以反射光线。
在一些实施例中,发光组件100包括背光单元200,以及罩设在所述发光光源上方的透明本体。背光单元200包括电路板和设置在电路板上的背光光源。所述透明本体包括朝向所述电路板所在平面的底面,所述底面上在背光光源对应位置处设置有凹槽。在透明本体的上方设置有反射基板,反射基板上设置有通孔,光线在到达反射基板的朝向背光单元200的第一面的除所述通孔之外的位置时被反射。支架对应于上述实施例中所述的角度发散部件。反射基板对应于上述实施例所述的角度选择部件。
在一些实施例中,所述透明本体的侧面上设置有反射层,所述侧面是指所述透明本体上除所述底面和所述顶面之外的外表面。
在一些实施例中,所述透明本体的顶面为平面,所述反射基板的第一面与所述顶面相接。
在一些实施例中,所述透明本体的底面与所述电路板相接,所述发光光源位于所述凹槽内。
在一些实施例中,通孔在反射基板的朝向背光单元200的第一面上的开口直径大于通孔在反射基板的背离背光单元200的第二面上的开口直径。
在一些实施例中,反射基板的材质为高反射率的材料。
在一些实施例中,反射基板的第一面上设置有反射层。
在一些实施例中,所述背光单元为灯条。所述背光光源是LED灯。
本公开实施例提供的背光模组及对应的液晶显示装置中,背光模组中均设有光线准直结构,光线准直结构中均包括角度选择部件, 其中一种光线准直结构还包括反射混光部件,另外两种光线准直结构还包括角度发散部件。角度选择部件上设有多个通孔,背光光源发射的光线中符合预设角度的光线可以直接经过角度选择部件发散出去;不符合预设角度的光线则在反射混光部件、角度发散部件以及角度选择部件的反射或者折射作用下改变传播角度,直至符合预设角度为止。本公开实施例中通过光线准直结构,能够将背光光源发射的光线转化为符合预设角度的小角度背光,该小角度背光能够完全进入对应的量子点单元中,可以解决背光的颜色纯度下降,以及三原色背光之间颜色串扰的问题。
本说明书中各个实施例之间相同相似的部分互相参见即可。以上所述的本发明实施方式并不构成对本发明保护范围的限定。

Claims (17)

  1. 一种背光模组,包括沿预设方向排布的多个发光组件,其中,所述多个发光组件中的至少一个包括:
    背光单元,所述背光单元包括至少一个用于发出背光的背光光源;和
    与所述背光单元对应设置的角度选择部件,其中,所述角度选择部件设置于所述背光单元的上方,且
    所述角度选择部件包括多个通孔,所述多个通孔中至少一个通孔的近光源侧的底面半径大于或者等于远光源侧的底面半径。
  2. 根据权利要求1所述的背光模组,其中,所述多个发光组件中的至少一个还包括:
    与所述背光单元对应设置的反射混光部件,所述反射混光部件设置于所述背光单元的四周,且所述角度选择部件固定于所述反射混光部件的顶部。
  3. 根据权利要求2所述的背光模组,其中,所述反射混光部件包括一个用于反射所述背光的反射面,且所述角度选择部件固定于所述反射面的顶部。
  4. 根据权利要求1所述的背光模组,其中,所述角度选择部件的材质为高反射性材料。
  5. 根据权利要求2所述的背光模组,其中,每一个发光组件均包括所述背光单元、所述角度选择部件和所述反射混光部件。
  6. 根据权利要求3所述的背光模组,其中,所述反射面上沿远离所述背光单元方向的各个点到所述背光单元下表面所在平面的距离由小到大连续变化。
  7. 根据权利要求3所述的背光模组,其中,所述反射面为球面的一部分。
  8. 根据权利要求1所述的背光模组,其中,所述多个通孔的分布密度沿远离所述背光单元的方向逐渐升高。
  9. 根据权利要求1所述的背光模组,其中,所述多个通孔包括设置在所述背光单元的正上方的通孔。
  10. 根据权利要求3所述的背光模组,其中,所述反射混光部件包括设置在所述反射面的顶部处的突出的台阶结构。
  11. 根据权利要求3-10中任意一项所述的背光模组,其中,所述反射面上各个点到所述背光光源下表面所在平面的最小距离小于或者等于所述背光光源的高度。
  12. 根据权利要求1所述的背光模组,其中,所述多个发光组件中的至少一个还包括角度发散部件,
    所述角度发散部件包括透明本体,在所述透明本体的底面设有至少一个内凹的曲面结构,所述背光单元设置于所述至少一个内凹的曲面结构内,所述角度发散部件还包括设置在透明本体的侧面的反射层;
    所述角度选择部件设置于所述角度发散部件的上表面,所述上表面与所述底面相对设置在所述透明本体的两侧。
  13. 根据权利要求12所述的背光模组,其中,所述内凹的曲面为椭球面的一部分。
  14. 根据权利要求12所述的背光模组,其中,所述多个通孔均匀分布在所述角度选择部件上。
  15. 根据权利要求12所述的背光模组,其中,所述至少一个内凹的曲面结构包括多个曲面结构,每一个背光光源设置在所述多个凹面结构中相应的凹面结构内。
  16. 根据权利要求12所述的背光模组,其中,所述角度发散部件的材质为高透射性能的材质,所述角度选择部件的材质为高反射性能的材质。
  17. 一种液晶显示装置,包括如权利要求1-16中任意一项所述的背光模组和液晶面板,其中,
    所述液晶面板包括液晶层和量子点颜色转换层,所述液晶层设置于所述背光模组和所述量子点颜色转换层之间;
    所述液晶层包括依次排布的多个液晶单元,所述量子点颜色转换 层包括依次排布的多个量子点转换组,所述量子点转换组包括可将背光对应转换为三原色的量子点单元,所述量子点单元与所述液晶单元对应设置。
PCT/CN2018/078874 2017-05-22 2018-03-13 背光模组及液晶显示装置 WO2018214618A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710361468.7 2017-05-22
CN201710361468.7A CN107102473A (zh) 2017-05-22 2017-05-22 一种背光模组及液晶显示装置

Publications (1)

Publication Number Publication Date
WO2018214618A1 true WO2018214618A1 (zh) 2018-11-29

Family

ID=59670169

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/078874 WO2018214618A1 (zh) 2017-05-22 2018-03-13 背光模组及液晶显示装置

Country Status (2)

Country Link
CN (1) CN107102473A (zh)
WO (1) WO2018214618A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107102473A (zh) * 2017-05-22 2017-08-29 青岛海信电器股份有限公司 一种背光模组及液晶显示装置
CN107643632A (zh) * 2017-10-30 2018-01-30 青岛海信电器股份有限公司 一种液晶显示装置
CN109946875A (zh) * 2017-12-20 2019-06-28 鸿富锦精密工业(深圳)有限公司 背光模组
CN108303822A (zh) * 2018-01-23 2018-07-20 青岛海信电器股份有限公司 一种背光模组、显示装置及液晶电视
CN110456558B (zh) * 2018-05-08 2022-08-19 京东方科技集团股份有限公司 光学膜材、背光源及显示装置
CN108873126B (zh) * 2018-06-26 2021-04-30 武汉华星光电技术有限公司 一种光学膜片、背光模组及显示装置
CN113031341B (zh) * 2021-03-12 2023-01-20 业成科技(成都)有限公司 发光二极管光源组件及其反射结构、显示结构

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8789961B2 (en) * 2012-10-18 2014-07-29 Hon Hai Precision Industry Co., Ltd. Direct-type LED backlight module
CN103986926A (zh) * 2014-05-26 2014-08-13 四川大学 一种无串扰的集成成像3d显示装置
CN104617197A (zh) * 2015-01-08 2015-05-13 青岛海信电器股份有限公司 一种显示模组用led发光器件及显示模组
CN105093643A (zh) * 2015-08-04 2015-11-25 深圳市华星光电技术有限公司 彩色发光元件及液晶显示装置
CN106383420A (zh) * 2016-08-31 2017-02-08 张家港康得新光电材料有限公司 一种量子点发光器件及背光模组
CN106526973A (zh) * 2016-12-30 2017-03-22 深圳Tcl新技术有限公司 直下式背光模组和液晶显示装置
CN107102473A (zh) * 2017-05-22 2017-08-29 青岛海信电器股份有限公司 一种背光模组及液晶显示装置

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2358512A (en) * 2000-01-18 2001-07-25 Screen Technology Ltd Production of a collimated beam
CN2588411Y (zh) * 2002-12-20 2003-11-26 鸿富锦精密工业(深圳)有限公司 面光源装置
CN1297849C (zh) * 2003-02-19 2007-01-31 明基电通股份有限公司 发光二极管背光模块
JP2006171700A (ja) * 2004-11-18 2006-06-29 Dainippon Printing Co Ltd 視野角制御シート及びこれを用いた液晶表示装置
CN101382698B (zh) * 2007-09-06 2012-01-11 富士迈半导体精密工业(上海)有限公司 背光模组
JP4538675B2 (ja) * 2007-10-26 2010-09-08 株式会社オプトデザイン 面照明ユニット、面照明光源装置、および面照明装置
KR101007079B1 (ko) * 2009-03-23 2011-01-10 영남대학교 산학협력단 직하형 백라이트 유닛
CN101555997A (zh) * 2009-05-14 2009-10-14 上海广电光电子有限公司 Led光源装置
KR101597574B1 (ko) * 2009-06-15 2016-02-25 엘지전자 주식회사 Led 백라이트 유닛 및 이를 이용한 액정표시장치
KR20110009962A (ko) * 2009-07-23 2011-01-31 엘지이노텍 주식회사 라이트 유닛 및 이를 구비한 표시장치
JP5656055B2 (ja) * 2009-09-29 2015-01-21 Nltテクノロジー株式会社 光学素子の製造方法、光学素子用露光装置、光学素子、照明光学装置、表示装置、および電子機器
CN102142502B (zh) * 2010-01-28 2014-06-25 海洋王照明科技股份有限公司 Led封装结构
TW201133040A (en) * 2010-03-29 2011-10-01 Hon Hai Prec Ind Co Ltd Light concentrating device and backlight module
CN102155685A (zh) * 2011-02-18 2011-08-17 深圳市华星光电技术有限公司 背光模块
JP2012174634A (ja) * 2011-02-24 2012-09-10 Sharp Corp 光源モジュールおよび光学部材
CN202109303U (zh) * 2011-03-30 2012-01-11 京东方科技集团股份有限公司 背光源及使用该背光源的显示设备
KR101664422B1 (ko) * 2013-01-23 2016-10-10 엘지전자 주식회사 평면 조명 장치
KR102049854B1 (ko) * 2013-01-23 2019-11-28 엘지전자 주식회사 평면 조명 장치
JP2015069014A (ja) * 2013-09-30 2015-04-13 大日本印刷株式会社 光制御シートおよび表示装置
CN103591514B (zh) * 2013-11-22 2016-03-02 京东方科技集团股份有限公司 一种背光模组及液晶显示装置
TWI526748B (zh) * 2014-09-16 2016-03-21 友達光電股份有限公司 具光學調控膜之背光模組
TWI539209B (zh) * 2015-04-09 2016-06-21 友達光電股份有限公司 背光模組
WO2016185805A1 (ja) * 2015-05-15 2016-11-24 ソニー株式会社 発光装置、表示装置および照明装置
TWI542929B (zh) * 2015-08-24 2016-07-21 友達光電股份有限公司 光源模組
KR102425442B1 (ko) * 2015-10-30 2022-07-25 엘지디스플레이 주식회사 표시 장치
CN106200118B (zh) * 2016-07-06 2020-03-31 青岛海信电器股份有限公司 量子点光源组件、背光模组及液晶显示装置
CN106980210A (zh) * 2017-06-07 2017-07-25 青岛海信电器股份有限公司 一种液晶显示装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8789961B2 (en) * 2012-10-18 2014-07-29 Hon Hai Precision Industry Co., Ltd. Direct-type LED backlight module
CN103986926A (zh) * 2014-05-26 2014-08-13 四川大学 一种无串扰的集成成像3d显示装置
CN104617197A (zh) * 2015-01-08 2015-05-13 青岛海信电器股份有限公司 一种显示模组用led发光器件及显示模组
CN105093643A (zh) * 2015-08-04 2015-11-25 深圳市华星光电技术有限公司 彩色发光元件及液晶显示装置
CN106383420A (zh) * 2016-08-31 2017-02-08 张家港康得新光电材料有限公司 一种量子点发光器件及背光模组
CN106526973A (zh) * 2016-12-30 2017-03-22 深圳Tcl新技术有限公司 直下式背光模组和液晶显示装置
CN107102473A (zh) * 2017-05-22 2017-08-29 青岛海信电器股份有限公司 一种背光模组及液晶显示装置

Also Published As

Publication number Publication date
CN107102473A (zh) 2017-08-29

Similar Documents

Publication Publication Date Title
WO2018214618A1 (zh) 背光模组及液晶显示装置
TWI541472B (zh) 背光模組
JP4589361B2 (ja) 光源キューブ及びこれを利用した平面光源ユニット及び液晶表示装置
US7560745B2 (en) LED package and backlight assembly for LCD comprising the same
JP3923867B2 (ja) 面状光源装置及びそれを用いた液晶表示装置
JP5384347B2 (ja) 照明システム、照明器具および表示デバイス
CN106773315B (zh) 背光模组及液晶显示器
RU2508563C2 (ru) Низкопрофильная линза полного внутреннего отражения с боковым излучением для светодиода
CN101295042B (zh) 背光模组及其光学板
JP2008542994A (ja) バックライトアセンブリ及びこれを備えたディスプレイ装置
US7543965B2 (en) Side light-emitting device, backlight unit having the side light-emitting device, and liquid crystal display apparatus employing the backlight unit
TWM580691U (zh) Direct type backlight
CN113835267A (zh) 一种背光模组和显示装置
TWM565322U (zh) Direct type backlight module and display device
JP2011517040A (ja) 照明システム、バックライトシステム及び表示装置
TWI392931B (zh) 發光裝置
JP2011228078A (ja) バックライト装置および液晶表示装置
JP2023552154A (ja) バックライトモジュール及びディスプレイ画面
WO2018214611A1 (zh) 背光模组及液晶显示装置
JP2006344409A (ja) 照明装置及びこれを備える表示装置
WO2019056985A1 (zh) 导光板、背光模组及显示装置
TWI666478B (zh) 直下式背光裝置
US7857489B2 (en) Mixed light apparatus
US20140177273A1 (en) Backlight module using laser emitters as light source
CN203744119U (zh) 光学透镜及使用其的背光模组

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18805071

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18805071

Country of ref document: EP

Kind code of ref document: A1