WO2018212023A1 - Building method for building object identification apparatus, storage device, setting device and object identification method - Google Patents
Building method for building object identification apparatus, storage device, setting device and object identification method Download PDFInfo
- Publication number
- WO2018212023A1 WO2018212023A1 PCT/JP2018/017819 JP2018017819W WO2018212023A1 WO 2018212023 A1 WO2018212023 A1 WO 2018212023A1 JP 2018017819 W JP2018017819 W JP 2018017819W WO 2018212023 A1 WO2018212023 A1 WO 2018212023A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- position information
- image data
- image
- object identification
- construction method
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N5/00—Computing arrangements using knowledge-based models
- G06N5/02—Knowledge representation; Symbolic representation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N99/00—Subject matter not provided for in other groups of this subclass
Definitions
- Patent Document 1 Japanese Patent No. 5735071 discloses an information search apparatus that provides information on a facility where a mat is installed to a user based on image information of the mat provided in a store.
- image information of objects installed outside the room can also be obtained using an online map service.
- the online map service a group of image data with position information in which position information is associated with individual image information is provided.
- An object of the present invention is to identify image information of a specific object with high accuracy and high accuracy from an image data group having a huge amount of data.
- the construction method adjusts the setting conditions of a machine learning device that executes machine learning, and obtains predetermined characteristics from an image data group with position information in which position information is associated with individual image information.
- An object identification device for identifying a predetermined object is constructed.
- this construction method includes an extraction step, a setting step, and an adjustment step.
- the extraction step an image is extracted from a part of the image data group with position information based on a rule base related to an object having a predetermined feature.
- the setting step when an object having a predetermined feature is projected on the image extracted in the extraction step, a label indicating that the object has a predetermined feature is set.
- the adjustment step the image in which the label is set in the setting step is input to the machine learning device, and the setting condition is adjusted corresponding to the label based on the output result for the input.
- the above-described steps are executed to adjust the setting conditions of the machine learning device. Therefore, from a group of image data with position information having a huge amount of data, an object having a predetermined feature is detected.
- An object identification device that can be identified by an image can be constructed. In other words, by using the object identification device constructed by this construction method, it is possible to identify the image information of a specific object with high accuracy and high accuracy from a large amount of image data group.
- the construction method according to the second aspect of the present invention is the construction method according to the first aspect, wherein the setting conditions are readjusted by inputting image data with position information to the machine learning device in which the setting conditions are adjusted by the adjustment step.
- the readjustment step is further provided.
- the setting condition of the machine learning device can be further optimized.
- the image information of the object can be extracted with higher accuracy and accuracy.
- the construction method according to the third aspect of the present invention is an apparatus that constitutes at least a part of a refrigeration apparatus in which the object circulates the refrigerant in the refrigerant circuit in the construction method of the first aspect or the second aspect. Therefore, according to this construction method, it is possible to construct an object identification device that identifies equipment constituting at least a part of the refrigeration apparatus.
- the “refrigeration apparatus” means an arbitrary heat source machine that moves heat on the principle of a heat pump.
- a heat pump For example, an air conditioner etc. are mentioned as a freezing apparatus.
- the construction method according to the fourth aspect of the present invention is the construction method according to the third aspect, wherein the feature of the object indicates information on the type of refrigerant. Therefore, according to this construction method, it is possible to construct an object identification device that identifies equipment having information on the type of refrigerant.
- the construction method according to the fifth aspect of the present invention is a construction method according to the first aspect to the fourth aspect, in which the feature of the object indicates information on any one of the manufacturer, the model, the year, or any combination. is there. Therefore, according to this construction method, it is possible to construct an object identification device that identifies an object having characteristics relating to any one of the manufacturer, the model, the year, or any combination. In other words, according to the object identification device constructed by this construction method, any one or any combination of the manufacturer, model, and year of the air conditioner can be identified.
- the construction method according to the sixth aspect of the present invention is the construction method according to the first aspect to the fifth aspect, wherein the feature of the object relates to deterioration. Therefore, according to this construction method, it is possible to construct an object identification device that identifies an air conditioner having characteristics relating to deterioration. In other words, the feature relating to the deterioration of the air conditioner can be identified by the object identification device constructed by this construction method.
- the “feature relating to deterioration” is, for example, a feature indicating the degree of deterioration of the object and / or the type of deterioration of the object.
- “Deterioration types” include wear, cracks, damage, disconnection, loosening (such as screws), dropout (such as screws), deformation, scratches, poor contact, missing parts, rust, corrosion, dirt, etc. It is done.
- the construction method according to the seventh aspect of the present invention is the construction method according to the first aspect to the sixth aspect, wherein the image data group with position information is an image in which a landscape is photographed from the lateral direction and / or a landscape from above. It is composed of captured images. Therefore, according to this construction method, the object identification device can be constructed based on the image data group with position information composed of street view type photographs, ground photographs, aerial photographs, satellite photographs and the like.
- the construction method according to an eighth aspect of the present invention is the construction method according to the first aspect to the seventh aspect, in which the adjustment step is performed when each part of the image data group with position information is input to the machine learning device.
- the portion where the object is projected is specified using the coordinate information set in the image data with information.
- the portion where the object is copied is specified using the coordinate information, it is necessary to cut out and save the portion where the object is copied from the image data with position information in advance. There is no.
- learning by the machine learning device can be executed using the image data group with position information that is prohibited from storing data after processing.
- the storage device is used in the construction method according to the eighth aspect, and stores the coordinate information set in each piece of image data with position information in association with the image data with position information. .
- the storage device stores the coordinate information, it is possible to construct the object identification device from the machine learning device without saving the image data group with position information after processing.
- a setting device adjusts a setting condition of a machine learning device that executes machine learning, and obtains predetermined characteristics from an image data group with position information in which position information is associated with individual image information. It is used for constructing an object identification device for identifying an object having the object.
- the setting device includes an extraction unit, a setting unit, and an adjustment unit.
- the extraction unit extracts an image from a part of the image data group with position information based on a rule base related to an object having a predetermined feature.
- a label indicating that the object has the predetermined feature is set.
- the adjustment unit inputs the image with the label set by the setting unit to the machine learning device, and adjusts the setting condition corresponding to the label based on the output result with respect to the input.
- the object identification device can be constructed by adjusting the setting conditions of the machine learning device.
- image information of an object having a specific feature can be extracted with high accuracy and high accuracy from a group of image data with position information having an enormous amount of data.
- the object identification method according to the eleventh aspect of the present invention is to construct the first object identification device from the image data group with the first position information using any one of the construction methods from the first viewpoint to the eighth viewpoint, Using the construction method according to any one of the first aspect to the eighth aspect, the second object identification device is constructed from the image data group with the second position information different from the image data group with the first position information. . And this target object identification method identifies a target object using a 1st target object identification apparatus and a 2nd target object identification apparatus.
- the accuracy and accuracy of identifying the object can be increased.
- An object identification method is the object identification method according to the eleventh aspect, wherein one of the image data group with the first position information or the image data group with the second position information is the position information.
- one of the image data group with the first position information or the image data group with the second position information is the position information.
- an object identification device capable of identifying an image of an object having a predetermined feature from a group of image data with position information having a huge amount of data from a machine learning device.
- the setting conditions of the machine learning device can be further optimized.
- an object identification device that identifies equipment constituting at least a part of the refrigeration apparatus.
- an object identification device that identifies equipment having information on the type of refrigerant.
- an object identification device that identifies an object having characteristics relating to any combination of manufacturer, model, year, or any combination.
- an object identification device that identifies an air conditioner having characteristics relating to deterioration.
- the object identification device can be constructed based on the image data group with position information generated from street view type photographs, ground photographs, aerial photographs, satellite photographs and the like.
- learning by the machine learning device can be executed using an image data group with position information that is prohibited from storing data after processing.
- the storage device By using the storage device according to the ninth aspect, it is possible to construct the object identification device from the machine learning device without saving the image data group with position information after processing.
- an object identification device that can identify an image of an object having a predetermined feature from an image data group with position information having a huge amount of data from a machine learning device.
- the accuracy and accuracy of identifying the object can be increased.
- the accuracy and accuracy of identifying an object at a predetermined place can be improved.
- An object identification device 10 is constructed from a machine learning device 1 as shown in FIG. First, adjustment of the setting conditions of the machine learning device 1 will be described.
- FIG. 2 is a schematic diagram showing the concept of the machine learning device 1 according to an embodiment of the present invention.
- the machine learning device 1 executes machine learning by a neural network having a multilayer structure, and functions as a so-called deep learning machine.
- the neural network having a multilayer structure is formed of an input layer L1, a hidden layer L2, and an output layer L3.
- Each layer includes a plurality of units U11, U12,... Umn (m and n are natural numbers), and a parameter apq (p and q are natural numbers) is multiplied as a weight w by an output value x of a unit belonging to the previous layer. It is input as an input value z of a unit belonging to the later layer after the bias bp is applied.
- the following relational expressions (Formula 1 and Formula 2) are established between the previous layer La and the subsequent layer Lb.
- the input value z is converted by the activation function f.
- the activation function f is appropriately selected according to the purpose.
- the error E is calculated from the output data obtained by inputting the input data and the “teacher data” indicating the correct answer to the input data using a loss function.
- the weight w described above is adjusted based on the calculated error E. Such adjustment of the weight w is also referred to as “learning” in the following description.
- the machine learning device 1 is not limited to this, and may be a convolutional neural network or the like.
- the object identification device 10 displays an image in which an object having a predetermined feature is copied from a “image data group with position information” in which position information is associated with individual image information. To identify.
- the object identification device 10 identifies “air conditioner” as an example of the object.
- the target object identification device 10 cuts out a large number of candidate areas in each image, and calculates the existence probability of the target object in each candidate area, thereby identifying the image projected by the air conditioner.
- Such an object identification device 10 is constructed by inputting and learning image data on which various air conditioners are copied to the machine learning device 1 described above.
- the image data group with position information includes image data in which a landscape is photographed from the horizontal direction, image data in which a landscape is photographed from above, or the like.
- the image data in which the landscape is photographed from the horizontal direction includes not only an image in which the landscape is photographed from the horizontal direction but also an image in which the landscape is photographed from a viewpoint toward obliquely upward and obliquely downward.
- the image data obtained by photographing the landscape from above includes not only an image obtained by photographing the landscape directly below from above but also an image obtained by photographing the landscape obliquely downward from a high place.
- the image data group with position information includes a ground photograph, an aerial photograph, a satellite photograph, and the like. More specifically, the image data group with position information includes a street view type image data group including position information for each region and a landscape image corresponding to the position information.
- the object identification device 10 is constructed so as to identify the air conditioner according to the feature of any one of manufacturer, model, year, or any combination. Specifically, such an object identification device 10 uses image data on which an air conditioner capable of distinguishing appearance characteristics (the overall design, the design of parts, a logo, the shape and color of a fan, etc.) is displayed. It is constructed by inputting into the learning device 1 and learning.
- the object identification device 10 is constructed so as to identify an air conditioner having information on the type of refrigerant. Specifically, such an object identification device 10 machine-learns image data obtained by copying an air conditioner with a seal indicating the type of refrigerant (a seal printed with characters such as R410A, R407C, and R32). It is constructed by inputting to the device 1 and learning.
- the object identification device 10 is constructed so as to identify an air conditioner having characteristics relating to deterioration. Specifically, such an object identification device 10 is constructed by inputting image data on which an air conditioner capable of distinguishing a pattern related to deterioration is projected and learning the machine learning device 1. It should be noted that the characteristics relating to deterioration include characteristics indicating the degree of deterioration and / or the type of deterioration. “Degradation types” are subdivided into wear, cracks, breakage, disconnection, loosening (such as screws), dropout (such as screws), deformation, scratches, poor contact, missing parts, rust, corrosion, and dirt. Is done.
- the deterioration types may be subdivided into those caused by aging deterioration (gradual change over a long period of time) of the object and those caused by abnormality (change occurring in a short period of time) occurring in the object.
- abnormalities that occur in an object include ignition, overheating, physical impact due to an accident, and the like.
- the object identification device 10 classifies the image data to identify whether the air conditioner has a predetermined feature.
- the object identification device 10 can also reflect the position information associated with the image data obtained by projecting the air conditioner having a predetermined characteristic in the map information. For example, as shown in FIG. 5, the object identification device 10 can indicate the position information of the air conditioner for each “manufacturer” on a map. This makes it possible to provide useful information (such as the presence of a recall machine and a sales proposal for air-conditioning related equipment) to an air conditioner maintenance company.
- the storage device 5 stores the coordinate information of the portion where the object is projected in the image data with position information in association with the image data with position information.
- FIG. 6 is a schematic diagram showing the configuration of the setting device 20 according to this embodiment.
- the setting device 20 sets the setting conditions of the machine learning device 1 using the “image data group with position information”, and constructs the target object identification device 10 that identifies a target having a predetermined feature.
- the setting device 20 includes an input unit 21, an output unit 22, an acquisition unit 23, a storage unit 24, and a processing unit 25.
- the input unit 21 inputs information to the setting device 20.
- the input unit 21 includes a keyboard, a mouse, and / or a touch screen.
- Various commands are input to the setting device 20 via the input unit 21, and processing according to the commands is executed in the processing unit 25.
- the output unit 22 outputs various information from the setting device 20.
- the output unit 22 includes a display and a speaker.
- the acquisition unit 23 acquires an image data group with position information. For example, the acquisition unit 23 acquires the image data group with position information from the external server device 2 via the network. However, the acquisition unit 23 may acquire the image data group with position information stored in the storage medium by reading the storage medium or the like instead of via the network.
- the storage unit 24 stores information input to the setting device 20, information calculated by the setting device 20, and the like.
- the storage unit 24 includes a memory and a hard disk device.
- the storage unit 24 stores a program for realizing each function of the processing unit 25 described later.
- the storage unit 24 stores “rule information” for classifying the characteristics of the object on a rule basis.
- the rule information is related to a predetermined feature of the air conditioner, and “the overall shape is“ square ”and some shapes have“ circle ”. Yes, it is information indicating the content such as “the whole color is“ white ”and“ the fan part has a predetermined pattern ””. Then, by using this rule information, it is possible to extract an image in which an object matching these contents is copied from a large number of image data groups.
- the processing unit 25 executes information processing in the setting device 20.
- the processing unit 25 includes a CPU, a GPU, a cache memory, and the like.
- the processing unit 25 functions as an extraction unit 251, a setting unit 252, and an adjustment unit 253 by executing a program incorporated in the storage unit 24.
- the extraction unit 251 extracts, as “learning data”, an image that matches the rule information related to the object from a part of the image data group with position information acquired by the acquisition unit 23. For example, the extraction unit 251 projects an object that matches rule information such as ““ square ”,“ circle ”,“ white ”,“ a predetermined pattern on the fan ”, etc., from a large amount of image data group. Extract the image that is.
- the setting unit 252 classifies whether or not an object including the feature of the target object is projected in the “learning data” image. Then, when the setting unit 252 classifies that an object including the feature of the object is copied in the image extracted by the extraction unit 251, the setting unit 252 indicates that the image has the classified feature. Set “Teacher Label”. Note that the setting unit 252 does not copy the object including the feature of the object to the image when the object including the feature of the target is not copied in the image extracted by the extraction unit 251. Set.
- the setting unit 252 applies ““ square ”,“ circle ”,“ white ”,“ there is a predetermined pattern on the fan part ”, etc.
- a teacher label indicating that “the air conditioner has the characteristics of“ V-type model ”of“ 2010 model year ”whose manufacturer is“ Company D ”” is set.
- the correspondence relationship between the teacher label and the rule information is stored in the storage unit 24.
- the adjustment unit 253 inputs the image of the object for which the teacher label has been set by the setting unit 252 to the machine learning device 1 as “teacher data”, and sets the setting condition corresponding to the teacher label based on the output result for the input. adjust. Specifically, the setting condition is adjusted by the adjustment unit 253 based on the error back propagation method or the like.
- the adjustment unit 253 specifies the portion where the object is projected in the image data with position information as the teacher data, using the coordinate information.
- the part A of the air conditioner includes coordinate information P1 (x1, y1), P2 (x2, y1), P3 (x2, y2), P4 (x1 , Y2). These coordinate information P1 to P4 are stored in the storage device 5 together with the corresponding image data G with position information.
- FIG. 8 is a diagram for explaining a construction method for constructing the object identification device 10 according to the present embodiment.
- the object identification device 10 identifies an object having a predetermined characteristic.
- an object having a predetermined feature is “an air conditioner having a feature of“ V model ”of“ year model of 2010 ”where“ manufacturer is company D ””.
- a construction method for constructing the object identification device 10 capable of identifying such an object will be described.
- the object to be identified and its characteristics are determined. For example, it is determined that the object to be identified is “air conditioner”, and its feature is “2010 model” “V model” with “Manufacturer is company D”. It is determined.
- the operation of the extraction unit 251 of the setting device 20 extracts an image on a rule basis from a part of the image data group with position information based on the rule information related to the object having the above-described characteristics. (Step S1). For example, an object that matches the rule information such as ““ square ”,“ circle ”,“ white ”“ predetermined pattern on the fan ”, etc., from the large amount of image data group with position information by the extraction unit 251 An image in which is projected is extracted.
- step S2 it is classified by the operator 3 whether or not the object having the above-described features is projected on the image extracted by the extraction unit 251 via the setting unit 252. Then, a “teacher label” indicating that the object has the above-described feature is set via the setting unit 252 for the image classified as the object having the above-described feature is copied (step S2). . That is, for an image in which an object that matches the rule information of ““ square ”,“ circle ”,“ white ”,“ there is a predetermined pattern on the fan ”, A teacher label is set to indicate that the air conditioner has the feature of “V model” of a certain “2010 model”.
- the image of the object for which the teacher label is set by the setting unit 252 is input to the machine learning device 1 as “teacher data”.
- the teacher data includes image data with position information in which the object is copied, and coordinate information of an area in which the object in the image data with position information is copied.
- the machine learning device 1 learns, a portion where the object is projected is cut out from the image data with position information based on the coordinate information each time. As a result, the machine learning device 1 can be adjusted without processing and storing the image data with position information.
- the adjusting unit 253 adjusts the setting condition corresponding to the teacher label based on the input and output to the machine learning device 1. Specifically, the weight w of each layer in the machine learning device 1 is adjusted (step S3).
- an object identification device 10 that can identify an object having the above-described features is constructed from the machine learning device 1.
- image data on which an air conditioner capable of distinguishing external features (““ square ”,“ circle ”,“ white ”“ predetermined pattern on the fan part ”)” is projected to the machine learning device 1
- the object identification device 10 capable of identifying “an air conditioner having characteristics of a manufacturer (Company D), a model (V type), and a model year (2010)” is constructed.
- an example of identifying an air conditioner having one type of feature has been described.
- a plurality of objects having different features can be obtained. It is possible to construct an object identification device 10 that can be identified.
- the construction method for constructing the object identification device adjusts the setting conditions of the machine learning device 1 that executes machine learning, and the position in which position information is associated with individual image information.
- An object identification device 10 for identifying an object having a predetermined feature is constructed from the image data group with information.
- this construction method includes an extraction step, a setting step, and an adjustment step.
- the extraction step an image is extracted from a part of the image data group with position information based on a rule base related to an object having a predetermined feature.
- the setting step when an object having a predetermined feature is projected in the image extracted in the extraction step, a teacher label indicating that the object has a predetermined feature is set.
- the adjustment step the image in which the teacher label is set in the setting step is input to the machine learning device 1, and the setting condition is adjusted in accordance with the teacher label based on the output result for the input.
- the above-described steps are executed to adjust the setting conditions of the machine learning device 1, so that an image of an object having a predetermined feature is obtained from a group of image data with position information having an enormous amount of data.
- An object identification device that can extract information with high accuracy and high accuracy can be constructed.
- the object identification device 10 can detect an “air conditioner” as an object.
- air conditioner an air conditioner
- the object identification device that can identify an image in which an air conditioner having a feature related to any one of manufacturer, model, year, or any combination is imaged from image data with position information by the construction method according to the present embodiment. 10 can be built.
- any one or any combination of the manufacturer, model, and year of the air conditioner can be identified.
- an air conditioner having information on the type of refrigerant can be identified.
- the target object identification device 10 constructed by the construction method according to the present embodiment, it is possible to identify characteristics relating to deterioration of the air conditioner.
- the characteristics related to deterioration are characteristics indicating the degree of deterioration and / or the type of deterioration.
- the “degradation type” includes those caused by aging degradation of an object and those caused by an abnormality occurring in the object. Specifically, types of deterioration include wear, cracks, breakage, disconnection, loosening (such as screws), dropout (such as screws), deformation, scratches, poor contact, missing parts, rust, corrosion, dirt, etc. Is mentioned.
- a target object identification device 10 that handles a plurality of features as a set and classifies each feature for each set.
- the image data group with position information is generated from an image of a landscape photographed from the lateral direction and / or an image of a landscape photographed from above. Therefore, according to this method, the object identification apparatus 10 is based on a group of image data with position information that is composed of commonly used street view type photographs, ground photographs, aerial photographs, satellite photographs, and the like. Can be built.
- the object identification device 10 can be constructed using an image data group that is prohibited from processing and storing data.
- image data groups with location information generated from commonly used street view type photographs, ground photographs, aerial photographs, satellite photographs, etc. are prohibited from being saved after processing the data. There may be.
- the portion where the object is copied is specified using the coordinate information, so the portion where the object is copied from the image data with position information in advance There is no need to cut out and save.
- the learning of the machine learning device 1 can be performed using the image data group with position information that is prohibited from storing data after processing.
- the coordinate information and the image data with position information that is learning data are stored in the storage device 5.
- the information is not limited to this, and the information may be stored in the setting device 20 or the machine learning device 1.
- the setting device 20 adjusts the setting conditions of the machine learning device 1 that executes machine learning, and has predetermined characteristics from an image data group with position information in which the position information is associated with individual image information.
- the object identification device 10 for identifying the object having Specifically, the setting device 20 includes an extraction unit 251, a setting unit 252, and an adjustment unit 253.
- the extraction unit 251 extracts an image from a part of the image data group with position information based on a rule base corresponding to a predetermined feature.
- the setting unit 252 sets a label indicating that it has a predetermined feature when an object having the predetermined feature is projected in the image extracted by the extraction unit 251.
- the adjustment unit 253 the image in which the teacher label is set by the setting unit 252 is input to the machine learning device 1, and the setting condition is adjusted corresponding to the teacher label based on the output result with respect to the input.
- the object identification device 10 can be constructed by adjusting the setting conditions of the machine learning device 1.
- image information of an object having a specific feature can be extracted with high accuracy and high accuracy from a group of image data with position information having an enormous amount of data.
- the adjustment unit 253 may be capable of readjusting the setting conditions by inputting the image data with position information to the machine learning device 1 in which the setting conditions are adjusted.
- the operator 3 selects image data detected from the object identification device 10 (T1) and adds it as new teacher data (T2). Then, the machine learning device 1 learns anew including these new teacher data, and adjusts the weight w between the units of each layer (T3).
- the setting condition of the machine learning device 1 can be further optimized.
- the object identification device 10 that can extract the image information of the object with higher accuracy and accuracy.
- the “air conditioner” is taken as an example of the object, but the present invention is not limited to this. That is, the object identification device constructed by the construction method according to the present invention identifies an arbitrary object acquired from the image data group with position information. For example, an arbitrary device constituting a part of a refrigeration apparatus that circulates a refrigerant in a refrigerant circuit can be identified as an object. Specifically, in addition to an air conditioner for cooling and heating, an air conditioner dedicated to cooling or heating, a floor heater, a hot water supply device, a dehumidifier, and the like can be given. Furthermore, the object is not limited to the refrigeration apparatus, and an apparatus such as a vending machine installed on the road, a satellite antenna installed on the roof of a building, a veranda, or the like can be identified.
- an object identification system including a plurality of object identification devices is constructed using the construction method according to the present embodiment, and an object identification method for identifying an object using the object identification system is provided. Can be provided.
- FIG. 10 is a schematic diagram showing a concept of an object identification system according to an application example of the present embodiment.
- the first object identification device 10A is constructed by causing the machine learning device 1 to learn the image data group with the first position information using the construction method described above.
- the “first image data group with position information” is an image data group in which a landscape is photographed from a lateral direction in which position information is individually associated. Then, the first object identification device 10A acquires an arbitrary first image data group with position information, and identifies image data with position information in which an image of the object is projected. The identification result by the first object identification device 10A is sent to the determination device 15 described later.
- the second object identification device 10B is constructed by causing the machine learning device 1 to learn the image data group with the second position information using the construction method described above.
- the “second image data group with position information” is an image data group in which a landscape is photographed from above in which position information is individually associated. Then, the second object identification device 10B acquires an arbitrary image data group with position information, and identifies image data with position information in which an image of the object is copied. The identification result by the second object identification device 10B is sent to the determination device 15 described later.
- the determination device 15 collates the identification result received from the first object identification device 10A and the identification result received from the second object identification device 10B, and the position information of the image data with position information included therein matches. If it is determined that the target object exists in the matched position information. That is, the determination device 15 identifies an object based on the logical product of the identification result of the first object identification device 10A and the identification result of the second object identification device 10B. Further, the determination device 15 reflects the matched position information on the map information, and displays the place where the object exists on the map (see FIG. 5).
- assembled based on the image data group with a different positional information Therefore, the accuracy and accuracy of identifying the object can be improved. Furthermore, here, both the image data group in which the landscape is imaged from the lateral direction as the image data group with the first position information, and the image data group in which the landscape is imaged from above as the image data group with the second position information are included. Since the object is identified by using it, the accuracy and accuracy of identifying the object can be increased.
- the determination device 15 may identify an object based on a logical sum instead of a logical product of the identification result of the first object identification device 10A and the identification result of the second object identification device 10B. That is, the determination device 15 collates the identification result received from the first object identification device 10A and the identification result received from the second object identification device 10B, and the position information corresponding to any of the identification results. May be reflected on the map information, and the place where the object exists may be displayed on the map. In this case, the completeness of the detection position of the object can be improved.
- the present invention is not limited to the above embodiments as they are.
- the present invention can be embodied by modifying the components without departing from the scope of the invention in the implementation stage. Further, the present invention can form various inventions by appropriately combining a plurality of constituent elements disclosed in the above embodiments. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, constituent elements may be appropriately combined in different embodiments.
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Computing Systems (AREA)
- Software Systems (AREA)
- Mathematical Physics (AREA)
- Data Mining & Analysis (AREA)
- Artificial Intelligence (AREA)
- Computational Linguistics (AREA)
- Evolutionary Computation (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- General Health & Medical Sciences (AREA)
- Biophysics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Databases & Information Systems (AREA)
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
- Image Analysis (AREA)
- Air Conditioning Control Device (AREA)
Abstract
The purpose of this invention is to identify, with a high degree of accuracy and a high degree of certainty, image information of a specific object, from a group of image data having a huge amount of data. Provided is a building method in which setting conditions of a machine learning apparatus (1) which performs machine learning are adjusted, and an object identification device (10) is built, said object identification device (10) identifying an object having predetermined characteristics from a group of image data with position information, obtained by associating position information with individual image information. This building method comprises an extraction step, a setting step and an adjustment step. In the extraction step, an image is extracted on the basis of a rule base related to an object having predetermined characteristics, from part of a group of image data with position information. The setting step sets a label to the extracted image, if an object having predetermined characteristics is shown. The adjustment step inputs an image to which a label has been set to a machine learning apparatus, and adjusts setting conditions in accordance with the label, on the basis of output results with respect to the input.
Description
従来、室外に設置されている対象物の画像情報を入手して、その画像情報に基づいて有用情報を提供することが検討されている。例えば、特許文献1(特許第5735071号)には、店舗に備えられているマットの画像情報に基づいて、マットが設置された施設の情報をユーザに提供する情報検索装置が開示されている。
Conventionally, it has been studied to obtain image information of an object installed outdoors and provide useful information based on the image information. For example, Patent Document 1 (Japanese Patent No. 5735071) discloses an information search apparatus that provides information on a facility where a mat is installed to a user based on image information of the mat provided in a store.
ところで、室外に設置されている対象物の画像情報は、オンラインマップサービスを利用して入手することもできる。オンラインマップサービスでは、個別の画像情報に位置情報が関連付けられた位置情報付き画像データ群が提供される。
By the way, image information of objects installed outside the room can also be obtained using an online map service. In the online map service, a group of image data with position information in which position information is associated with individual image information is provided.
しかしながら、オンラインマップサービスにより提供される画像データ群には、対象物以外の多くの物体が写し出される。そのため、このような画像データ群からは、対象物を高精度及び高確度に抽出できないことがある。
However, many objects other than the target object are projected in the image data group provided by the online map service. For this reason, there is a case where an object cannot be extracted with high accuracy and high accuracy from such an image data group.
本発明の課題は、膨大なデータ量の画像データ群から、特定の対象物の画像情報を高精度及び高確度に識別することである。
An object of the present invention is to identify image information of a specific object with high accuracy and high accuracy from an image data group having a huge amount of data.
本発明の第1観点に係る構築方法は、機械学習を実行する機械学習装置の設定条件を調整し、個別の画像情報に位置情報が関連付けられた位置情報付き画像データ群から、所定の特徴を有する所定の対象物を識別する対象物識別装置を構築する。具体的に、この構築方法では、抽出ステップと、設定ステップと、調整ステップと、を備える。抽出ステップでは、位置情報付き画像データ群の一部から、所定の特徴を有する対象物に関連するルールベースに基づいて画像を抽出する。設定ステップでは、抽出ステップにより抽出された画像に、所定の特徴を有する対象物が写し出されている場合に、所定の特徴を有する対象物であることを示すラベルを設定する。調整ステップでは、設定ステップによりラベルが設定された画像を機械学習装置に入力し、入力に対する出力結果に基づいて、前記ラベルに対応させて設定条件を調整する。
The construction method according to the first aspect of the present invention adjusts the setting conditions of a machine learning device that executes machine learning, and obtains predetermined characteristics from an image data group with position information in which position information is associated with individual image information. An object identification device for identifying a predetermined object is constructed. Specifically, this construction method includes an extraction step, a setting step, and an adjustment step. In the extraction step, an image is extracted from a part of the image data group with position information based on a rule base related to an object having a predetermined feature. In the setting step, when an object having a predetermined feature is projected on the image extracted in the extraction step, a label indicating that the object has a predetermined feature is set. In the adjustment step, the image in which the label is set in the setting step is input to the machine learning device, and the setting condition is adjusted corresponding to the label based on the output result for the input.
第1観点に係る構築方法では、上述した各ステップを実行して、機械学習装置の設定条件を調整するので、膨大なデータ量の位置情報付き画像データ群から、所定の特徴を有する対象物の画像に識別し得る対象物識別装置を構築できる。換言すると、この構築方法により構築される対象物識別装置を用いることで、膨大なデータ量の画像データ群から、特定の対象物の画像情報を高精度及び高確度に識別することができる。
In the construction method according to the first aspect, the above-described steps are executed to adjust the setting conditions of the machine learning device. Therefore, from a group of image data with position information having a huge amount of data, an object having a predetermined feature is detected. An object identification device that can be identified by an image can be constructed. In other words, by using the object identification device constructed by this construction method, it is possible to identify the image information of a specific object with high accuracy and high accuracy from a large amount of image data group.
本発明の第2観点に係る構築方法は、第1観点の構築方法において、調整ステップにより設定条件が調整された機械学習装置に、位置情報付き画像データを入力することにより、設定条件を再調整する再調整ステップをさらに備える。
The construction method according to the second aspect of the present invention is the construction method according to the first aspect, wherein the setting conditions are readjusted by inputting image data with position information to the machine learning device in which the setting conditions are adjusted by the adjustment step. The readjustment step is further provided.
第2観点に係る方法では、設定条件が調整された機械学習装置を用いて、設定条件を再調整するので、機械学習装置の設定条件をさらに最適化することができる。結果として、対象物の画像情報をさらに高精度及び高確度に抽出できる。
In the method according to the second aspect, since the setting condition is readjusted using the machine learning device in which the setting condition is adjusted, the setting condition of the machine learning device can be further optimized. As a result, the image information of the object can be extracted with higher accuracy and accuracy.
本発明の第3観点に係る構築方法は、第1観点又は第2観点の構築方法において、対象物が、冷媒回路内で冷媒を循環させる冷凍装置の少なくとも一部を構成する機器である。したがって、この構築方法によれば、冷凍装置の少なくとも一部を構成する機器を識別する対象物識別装置を構築することができる。
The construction method according to the third aspect of the present invention is an apparatus that constitutes at least a part of a refrigeration apparatus in which the object circulates the refrigerant in the refrigerant circuit in the construction method of the first aspect or the second aspect. Therefore, according to this construction method, it is possible to construct an object identification device that identifies equipment constituting at least a part of the refrigeration apparatus.
なお、本発明でいう「冷凍装置」とは、ヒートポンプの原理で熱を移動させる任意の熱源機械を意味する。例えば、冷凍装置としては空調機などが挙げられる。
In the present invention, the “refrigeration apparatus” means an arbitrary heat source machine that moves heat on the principle of a heat pump. For example, an air conditioner etc. are mentioned as a freezing apparatus.
本発明の第4観点に係る構築方法は、第3観点の構築方法において、対象物の有する特徴が、冷媒の種類の情報を示すものである。したがって、この構築方法によれば、冷媒の種類の情報を有する機器を識別する対象物識別装置を構築することができる。
The construction method according to the fourth aspect of the present invention is the construction method according to the third aspect, wherein the feature of the object indicates information on the type of refrigerant. Therefore, according to this construction method, it is possible to construct an object identification device that identifies equipment having information on the type of refrigerant.
本発明の第5観点に係る構築方法は、第1観点から第4観点の構築方法において、対象物の有する特徴が、メーカー、機種、年式のいずれか又は任意の組み合わせに関する情報を示すものである。したがって、この構築方法によれば、メーカー、機種、年式のいずれか又は任意の組み合わせに関する特徴を有する対象物を識別する対象物識別装置を構築することができる。換言すると、この構築方法により構築される対象物識別装置によれば、空調機のメーカー、機種、年式のいずれか又は任意の組み合わせを識別することができる。
The construction method according to the fifth aspect of the present invention is a construction method according to the first aspect to the fourth aspect, in which the feature of the object indicates information on any one of the manufacturer, the model, the year, or any combination. is there. Therefore, according to this construction method, it is possible to construct an object identification device that identifies an object having characteristics relating to any one of the manufacturer, the model, the year, or any combination. In other words, according to the object identification device constructed by this construction method, any one or any combination of the manufacturer, model, and year of the air conditioner can be identified.
本発明の第6観点に係る構築方法は、第1観点から第5観点の構築方法において、対象物の有する特徴が、劣化に関するものである。したがって、この構築方法によれば、劣化に関する特徴を有する空調機を識別する対象物識別装置を構築することができる。換言すると、この構築方法により構築される対象物識別装置により、空調機の劣化に関する特徴を識別することができる。
The construction method according to the sixth aspect of the present invention is the construction method according to the first aspect to the fifth aspect, wherein the feature of the object relates to deterioration. Therefore, according to this construction method, it is possible to construct an object identification device that identifies an air conditioner having characteristics relating to deterioration. In other words, the feature relating to the deterioration of the air conditioner can be identified by the object identification device constructed by this construction method.
なお、「劣化に関する特徴」とは、例えば、対象物の劣化度合い、及び/又は、対象物の劣化種類を示す特徴である。また、「劣化種類」としては、摩耗、亀裂、破損、断線、(ネジ等の)緩み、(ネジ等の)脱落、変形、傷、接触不良、部品欠品、錆、腐食、汚れ等が挙げられる。
It should be noted that the “feature relating to deterioration” is, for example, a feature indicating the degree of deterioration of the object and / or the type of deterioration of the object. “Deterioration types” include wear, cracks, damage, disconnection, loosening (such as screws), dropout (such as screws), deformation, scratches, poor contact, missing parts, rust, corrosion, dirt, etc. It is done.
本発明の第7観点に係る構築方法は、第1観点から第6観点の構築方法において、位置情報付き画像データ群は、横方向から景観が撮影された画像、及び/又は、上方から景観が撮影された画像から構成されるものである。したがって、この構築方法によれば、ストリートビュー型の写真、地上写真、航空写真、及び衛星写真等から構成される位置情報付き画像データ群に基づいて、対象物識別装置を構築できる。
The construction method according to the seventh aspect of the present invention is the construction method according to the first aspect to the sixth aspect, wherein the image data group with position information is an image in which a landscape is photographed from the lateral direction and / or a landscape from above. It is composed of captured images. Therefore, according to this construction method, the object identification device can be constructed based on the image data group with position information composed of street view type photographs, ground photographs, aerial photographs, satellite photographs and the like.
本発明の第8観点に係る構築方法は、第1観点から第7観点の構築方法において、調整ステップが、機械学習装置に位置情報付き画像データ群の一部を入力する際に、個々の位置情報付き画像データに設定された座標情報を用いて対象物が写し出された部分を特定する。
The construction method according to an eighth aspect of the present invention is the construction method according to the first aspect to the seventh aspect, in which the adjustment step is performed when each part of the image data group with position information is input to the machine learning device. The portion where the object is projected is specified using the coordinate information set in the image data with information.
第8観点に係る構築方法では、座標情報を用いて対象物が写し出された部分を指定するので、事前に、位置情報付き画像データから対象物が写し出された部分を切り出して保存しておく必要がない。換言すると、この構築方法では、データを加工後に保存することが禁止されている位置情報付き画像データ群を利用して、機械学習装置の学習を実行することができる。
In the construction method according to the eighth aspect, since the portion where the object is copied is specified using the coordinate information, it is necessary to cut out and save the portion where the object is copied from the image data with position information in advance. There is no. In other words, in this construction method, learning by the machine learning device can be executed using the image data group with position information that is prohibited from storing data after processing.
本発明の第9観点に係る記憶装置は、第8観点の構築方法に用いられるものであり、個々の位置情報付き画像データに設定された座標情報を、位置情報付き画像データに関連付けて記憶する。
The storage device according to the ninth aspect of the present invention is used in the construction method according to the eighth aspect, and stores the coordinate information set in each piece of image data with position information in association with the image data with position information. .
第9観点に係る記憶装置が座標情報を記憶するので、位置情報付き画像データ群を加工後に保存することなく、機械学習装置から対象物識別装置を構築することが可能となる。
Since the storage device according to the ninth aspect stores the coordinate information, it is possible to construct the object identification device from the machine learning device without saving the image data group with position information after processing.
本発明の第10観点に係る設定装置は、機械学習を実行する機械学習装置の設定条件を調整し、個別の画像情報に位置情報が関連付けられた位置情報付き画像データ群から、所定の特徴を有する対象物を識別する対象物識別装置を構築するために用いられるものである。具体的に、設定装置は、抽出部と、設定部と、調整部と、を備える。抽出部では、位置情報付き画像データ群の一部から、所定の特徴を有する対象物に関連するルールベースに基づいて画像を抽出する。設定部では、抽出部により抽出された画像に、所定の特徴を有する対象物が写し出されている場合に、当該所定の特徴を有する対象物であることを示すラベルを設定する。調整部では、設定部によりラベルが設定された画像を機械学習装置に入力し、入力に対する出力結果に基づいて、前記ラベルに対応させて設定条件を調整する。
A setting device according to a tenth aspect of the present invention adjusts a setting condition of a machine learning device that executes machine learning, and obtains predetermined characteristics from an image data group with position information in which position information is associated with individual image information. It is used for constructing an object identification device for identifying an object having the object. Specifically, the setting device includes an extraction unit, a setting unit, and an adjustment unit. The extraction unit extracts an image from a part of the image data group with position information based on a rule base related to an object having a predetermined feature. In the setting unit, when an object having a predetermined feature is projected on the image extracted by the extraction unit, a label indicating that the object has the predetermined feature is set. The adjustment unit inputs the image with the label set by the setting unit to the machine learning device, and adjusts the setting condition corresponding to the label based on the output result with respect to the input.
第10観点に係る設定装置では、機械学習装置の設定条件を調整して対象物識別装置を構築できる。そして、このような対象物識別装置を用いることで、膨大なデータ量の位置情報付き画像データ群から、特定の特徴を有する対象物の画像情報を高精度及び高確度に抽出できる。
In the setting device according to the tenth aspect, the object identification device can be constructed by adjusting the setting conditions of the machine learning device. By using such an object identification device, image information of an object having a specific feature can be extracted with high accuracy and high accuracy from a group of image data with position information having an enormous amount of data.
本発明の第11観点に係る対象物識別方法は、第1観点から第8観点のいずれかの構築方法を用いて、第1位置情報付き画像データ群から第1対象物識別装置を構築し、第1観点から第8観点のいずれか1項に記載の構築方法を用いて、第1位置情報付き画像データ群とは異なる第2位置情報付き画像データ群から第2対象物識別装置を構築する。そして、この対象物識別方法は、第1対象物識別装置及び第2対象物識別装置を用いて、対象物を識別する。
The object identification method according to the eleventh aspect of the present invention is to construct the first object identification device from the image data group with the first position information using any one of the construction methods from the first viewpoint to the eighth viewpoint, Using the construction method according to any one of the first aspect to the eighth aspect, the second object identification device is constructed from the image data group with the second position information different from the image data group with the first position information. . And this target object identification method identifies a target object using a 1st target object identification apparatus and a 2nd target object identification apparatus.
第11観点に係る対象物識別方法では、異なる位置情報付き画像データ群に基づいて構築された対象物識別装置のそれぞれの結果に基づいて対象物を認識するので、対象物を識別する確度及び精度を高めることができる。
In the object identification method according to the eleventh aspect, since the object is recognized based on the respective results of the object identification apparatus constructed based on the image data groups with different position information, the accuracy and accuracy of identifying the object Can be increased.
本発明の第12観点に係る対象物識別方法は、第11観点の対象物識別方法において、第1位置情報付き画像データ群又は第2位置情報付き画像データ群のいずれかの一方が、位置情報が個別に関連付けられた、横方向から景観が撮影された画像データ群であり、他方が、位置情報が個別に関連付けられた、上方から景観が撮影された画像データ群である。したがって、このような対象物識別方法によれば、ストリートビュー型の写真、地上写真、航空写真、及び衛星写真等から構成される位置情報付き画像データ群の組み合わせに基づいて対象物を識別することができ、所定の場所における対象物を識別する精度及び確度を高めることができる。
An object identification method according to a twelfth aspect of the present invention is the object identification method according to the eleventh aspect, wherein one of the image data group with the first position information or the image data group with the second position information is the position information. Is an image data group in which a landscape is photographed from the lateral direction, and the other is an image data group in which a landscape is photographed from above, in which position information is individually associated. Therefore, according to such an object identification method, an object is identified based on a combination of image data groups with position information composed of street view type photographs, ground photographs, aerial photographs, satellite photographs, and the like. It is possible to improve accuracy and accuracy of identifying an object in a predetermined place.
第1観点に係る構築方法では、機械学習装置から、膨大なデータ量の位置情報付き画像データ群から、所定の特徴を有する対象物の画像に識別し得る対象物識別装置を構築できる。
In the construction method according to the first aspect, it is possible to construct an object identification device capable of identifying an image of an object having a predetermined feature from a group of image data with position information having a huge amount of data from a machine learning device.
第2観点に係る構築方法では、機械学習装置の設定条件をさらに最適化することができる。
In the construction method according to the second aspect, the setting conditions of the machine learning device can be further optimized.
第3観点に係る構築方法では、冷凍装置の少なくとも一部を構成する機器を識別する対象物識別装置を構築することができる。
In the construction method according to the third aspect, it is possible to construct an object identification device that identifies equipment constituting at least a part of the refrigeration apparatus.
第4観点に係る構築方法では、冷媒の種類の情報を有する機器を識別する対象物識別装置を構築することができる。
In the construction method according to the fourth aspect, it is possible to construct an object identification device that identifies equipment having information on the type of refrigerant.
第5観点に係る構築方法では、メーカー、機種、年式のいずれか又は任意の組み合わせに関する特徴を有する対象物を識別する対象物識別装置を構築することができる。
In the construction method according to the fifth aspect, it is possible to construct an object identification device that identifies an object having characteristics relating to any combination of manufacturer, model, year, or any combination.
第6観点に係る構築方法では、劣化に関する特徴を有する空調機を識別する対象物識別装置を構築することができる。
In the construction method according to the sixth aspect, it is possible to construct an object identification device that identifies an air conditioner having characteristics relating to deterioration.
第7観点に係る構築方法では、ストリートビュー型の写真、地上写真、航空写真、及び衛星写真等から生成される位置情報付き画像データ群に基づいて、対象物識別装置を構築できる。
In the construction method according to the seventh aspect, the object identification device can be constructed based on the image data group with position information generated from street view type photographs, ground photographs, aerial photographs, satellite photographs and the like.
第8観点に係る構築方法では、データを加工後に保存することが禁止されている位置情報付き画像データ群を利用して、機械学習装置の学習を実行することができる。
In the construction method according to the eighth aspect, learning by the machine learning device can be executed using an image data group with position information that is prohibited from storing data after processing.
第9観点に係る記憶装置を用いることで、位置情報付き画像データ群を加工後に保存することなく、機械学習装置から対象物識別装置を構築することが可能となる。
By using the storage device according to the ninth aspect, it is possible to construct the object identification device from the machine learning device without saving the image data group with position information after processing.
第10観点に係る設定装置を用いることで、機械学習装置から、膨大なデータ量の位置情報付き画像データ群から、所定の特徴を有する対象物の画像に識別し得る対象物識別装置を構築できる。
By using the setting device according to the tenth aspect, it is possible to construct an object identification device that can identify an image of an object having a predetermined feature from an image data group with position information having a huge amount of data from a machine learning device. .
第11観点に係る対象物識別方法では、対象物を識別する確度及び精度を高めることができる。
In the object identification method according to the eleventh aspect, the accuracy and accuracy of identifying the object can be increased.
第12観点に係る対象物識別方法では、所定の場所における対象物を識別する精度及び確度を高めることができる。
In the object identification method according to the twelfth aspect, the accuracy and accuracy of identifying an object at a predetermined place can be improved.
(1)対象物識別装置の概要
本発明の一実施形態に係る対象物識別装置10は、図1に概念を示すように、機械学習装置1から構築される。そこで、まず、機械学習装置1の設定条件の調整について説明する。 (1) Overview of Object Identification Device An objectidentification device 10 according to an embodiment of the present invention is constructed from a machine learning device 1 as shown in FIG. First, adjustment of the setting conditions of the machine learning device 1 will be described.
本発明の一実施形態に係る対象物識別装置10は、図1に概念を示すように、機械学習装置1から構築される。そこで、まず、機械学習装置1の設定条件の調整について説明する。 (1) Overview of Object Identification Device An object
(1-1)機械学習装置
図2は本発明の一実施形態に係る機械学習装置1の概念を示す模式図である。 (1-1) Machine Learning Device FIG. 2 is a schematic diagram showing the concept of themachine learning device 1 according to an embodiment of the present invention.
図2は本発明の一実施形態に係る機械学習装置1の概念を示す模式図である。 (1-1) Machine Learning Device FIG. 2 is a schematic diagram showing the concept of the
機械学習装置1は、多層構造のニューラルネットワークにより機械学習を実行するものであり、いわゆるディープラーニング機として機能するものである。多層構造のニューラルネットワークは、入力層L1、隠れ層L2、出力層L3から形成される。各層は複数のユニットU11,U12,・・・Umn(m,nは自然数)を含み、前の層に属するユニットの出力値xに重みwとしてパラメータapq(p,qは自然数)が掛け合わされ、バイアスbpが加えられてから後の層に属するユニットの入力値zとして入力される。例えば、図3に示す例では、前の層Laと後の層Lbとの間には、以下の関係式(式1,式2)が成立する。
The machine learning device 1 executes machine learning by a neural network having a multilayer structure, and functions as a so-called deep learning machine. The neural network having a multilayer structure is formed of an input layer L1, a hidden layer L2, and an output layer L3. Each layer includes a plurality of units U11, U12,... Umn (m and n are natural numbers), and a parameter apq (p and q are natural numbers) is multiplied as a weight w by an output value x of a unit belonging to the previous layer. It is input as an input value z of a unit belonging to the later layer after the bias bp is applied. For example, in the example shown in FIG. 3, the following relational expressions (Formula 1 and Formula 2) are established between the previous layer La and the subsequent layer Lb.
また、後の層Lbでは、入力値zが活性化関数fにより変換される。活性化関数fは目的に応じて適宜選択される。
In the later layer Lb, the input value z is converted by the activation function f. The activation function f is appropriately selected according to the purpose.
そして、機械学習装置1では、図4に概念を示すように、入力データの入力により得た出力データと、その入力データに対する正解を示す「教師データ」とから、損失関数を用いて誤差Eを算出し、算出した誤差Eに基づいて上述した重みwを調整する。このような重みwの調整を、以下の説明では「学習」とも言う。
Then, in the machine learning device 1, as shown in FIG. 4, the error E is calculated from the output data obtained by inputting the input data and the “teacher data” indicating the correct answer to the input data using a loss function. The weight w described above is adjusted based on the calculated error E. Such adjustment of the weight w is also referred to as “learning” in the following description.
なお、上述した各層のユニット数及び隠れ層の数は単なる例示であり、これらは任意の個数を採り得るものである。また、ここでは全結合ニューラルネットワークを示しているが、本実施形態に係る機械学習装置1はこれに限らず、畳み込みニューラルネットワーク等であってもよい。
Note that the number of units in each layer and the number of hidden layers described above are merely examples, and any number can be adopted. Although a fully connected neural network is shown here, the machine learning device 1 according to the present embodiment is not limited to this, and may be a convolutional neural network or the like.
(1-2)対象物識別装置
対象物識別装置10は、個別の画像情報に位置情報が関連付けられた「位置情報付き画像データ群」から、所定の特徴を有する対象物が写し出された画像を識別するものである。ここでは、対象物識別装置10は、対象物の一例として「空調機」を識別する。具体的には、対象物識別装置10は、個々の画像において、多数の候補領域を切り出し、各候補領域における対象物の存在確率を算出することで、空調機が写し出された画像を識別する。このような対象物識別装置10は、上述の機械学習装置1に対して、種々の空調機が写し出された画像データを入力して学習させることで構築される。 (1-2) Object Identification Device Theobject identification device 10 displays an image in which an object having a predetermined feature is copied from a “image data group with position information” in which position information is associated with individual image information. To identify. Here, the object identification device 10 identifies “air conditioner” as an example of the object. Specifically, the target object identification device 10 cuts out a large number of candidate areas in each image, and calculates the existence probability of the target object in each candidate area, thereby identifying the image projected by the air conditioner. Such an object identification device 10 is constructed by inputting and learning image data on which various air conditioners are copied to the machine learning device 1 described above.
対象物識別装置10は、個別の画像情報に位置情報が関連付けられた「位置情報付き画像データ群」から、所定の特徴を有する対象物が写し出された画像を識別するものである。ここでは、対象物識別装置10は、対象物の一例として「空調機」を識別する。具体的には、対象物識別装置10は、個々の画像において、多数の候補領域を切り出し、各候補領域における対象物の存在確率を算出することで、空調機が写し出された画像を識別する。このような対象物識別装置10は、上述の機械学習装置1に対して、種々の空調機が写し出された画像データを入力して学習させることで構築される。 (1-2) Object Identification Device The
なお、位置情報付き画像データ群は、横方向から景観が撮影された画像データ、又は、上方から景観が撮影された画像データ等から構成される。ここで、横方向から景観が撮影された画像データは、水平方向から景観を撮影した画像だけでなく、斜め上方及び斜め下方に向かう視点で景観を撮影した画像を含むものである。また、上方から景観が撮影された画像データは、上方から真下の景観を撮影した画像だけでなく、高所から斜め下向きに景観を撮影した画像を含むものである。例えば、位置情報付き画像データ群は、地上写真、航空写真及び衛星写真等から構成される。さらに具体的には、位置情報付き画像データ群は、地域毎の位置情報と、その位置情報に対応する景観画像とを含むストリートビュー型の画像データ群から構成される。
It should be noted that the image data group with position information includes image data in which a landscape is photographed from the horizontal direction, image data in which a landscape is photographed from above, or the like. Here, the image data in which the landscape is photographed from the horizontal direction includes not only an image in which the landscape is photographed from the horizontal direction but also an image in which the landscape is photographed from a viewpoint toward obliquely upward and obliquely downward. Further, the image data obtained by photographing the landscape from above includes not only an image obtained by photographing the landscape directly below from above but also an image obtained by photographing the landscape obliquely downward from a high place. For example, the image data group with position information includes a ground photograph, an aerial photograph, a satellite photograph, and the like. More specifically, the image data group with position information includes a street view type image data group including position information for each region and a landscape image corresponding to the position information.
また、対象物識別装置10は、メーカー、機種、年式のいずれか又は任意の組み合わせの特徴に応じて空調機を識別するように構築される。具体的に、このような対象物識別装置10は、外観上の特徴(全体のデザインや部品のデザイン、ロゴ及びファンの形状及び色彩等)を区別可能な空調機が写し出された画像データを機械学習装置1に入力して学習させることで構築される。
Also, the object identification device 10 is constructed so as to identify the air conditioner according to the feature of any one of manufacturer, model, year, or any combination. Specifically, such an object identification device 10 uses image data on which an air conditioner capable of distinguishing appearance characteristics (the overall design, the design of parts, a logo, the shape and color of a fan, etc.) is displayed. It is constructed by inputting into the learning device 1 and learning.
また、対象物識別装置10は、冷媒の種類の情報を有する空調機を識別するように構築される。具体的に、このような対象物識別装置10は、冷媒の種類を示すシール(R410A、R407C、R32等の文字が印字されたシール)が付された空調機が写し出された画像データを機械学習装置1に入力して学習させることで構築される。
Also, the object identification device 10 is constructed so as to identify an air conditioner having information on the type of refrigerant. Specifically, such an object identification device 10 machine-learns image data obtained by copying an air conditioner with a seal indicating the type of refrigerant (a seal printed with characters such as R410A, R407C, and R32). It is constructed by inputting to the device 1 and learning.
また、対象物識別装置10は、劣化に関する特徴を有する空調機を識別するように構築される。具体的に、このような対象物識別装置10は、劣化に関するパターンを区別し得る空調機が写し出された画像データを機械学習装置1に入力して学習させることで構築される。なお、劣化に関する特徴は、劣化度合い、及び/又は、劣化種類を示す特徴を含むものである。また、「劣化種類」は、摩耗、亀裂、破損、断線、(ネジ等の)緩み、(ネジ等の)脱落、変形、傷、接触不良、部品欠品、錆、腐食、汚れ等に細分化される。また、劣化種類は、対象物の経年劣化(長期間にわたる緩やかな変化)に起因するものと、対象物に生じた異常(短期間に起こる変化)に起因するものとに細分化してもよい。例えば、対象物に生じた異常としては、発火、過熱、事故による物理的衝撃等が挙げられる。
Also, the object identification device 10 is constructed so as to identify an air conditioner having characteristics relating to deterioration. Specifically, such an object identification device 10 is constructed by inputting image data on which an air conditioner capable of distinguishing a pattern related to deterioration is projected and learning the machine learning device 1. It should be noted that the characteristics relating to deterioration include characteristics indicating the degree of deterioration and / or the type of deterioration. “Degradation types” are subdivided into wear, cracks, breakage, disconnection, loosening (such as screws), dropout (such as screws), deformation, scratches, poor contact, missing parts, rust, corrosion, and dirt. Is done. Further, the deterioration types may be subdivided into those caused by aging deterioration (gradual change over a long period of time) of the object and those caused by abnormality (change occurring in a short period of time) occurring in the object. For example, abnormalities that occur in an object include ignition, overheating, physical impact due to an accident, and the like.
そして、対象物識別装置10は、空調機の写し出された画像データが入力されると、それをクラス分類することで、所定の特徴を有する空調機であるか否かを識別する。
Then, when the image data copied from the air conditioner is input, the object identification device 10 classifies the image data to identify whether the air conditioner has a predetermined feature.
さらに、対象物識別装置10は、所定の特徴を有する空調機が写し出された画像データに関連付けられた位置情報を地図情報に反映させることもできる。例えば、対象物識別装置10は、図5に示すように、「メーカー」別に空調機の位置情報を地図に示すことができる。これにより、空調機のメンテナンス業者等に有用情報(リコール機の存在、空調関連機器の販売提案等)を提供することができる。
Furthermore, the object identification device 10 can also reflect the position information associated with the image data obtained by projecting the air conditioner having a predetermined characteristic in the map information. For example, as shown in FIG. 5, the object identification device 10 can indicate the position information of the air conditioner for each “manufacturer” on a map. This makes it possible to provide useful information (such as the presence of a recall machine and a sales proposal for air-conditioning related equipment) to an air conditioner maintenance company.
なお、機械学習装置1を学習させるための情報は、記憶装置5に記憶される。記憶装置5は、位置情報付き画像データにおいて対象物が写し出されている部分の座標情報を、当該位置情報付き画像データに関連付けて記憶する。
Note that information for causing the machine learning device 1 to learn is stored in the storage device 5. The storage device 5 stores the coordinate information of the portion where the object is projected in the image data with position information in association with the image data with position information.
(2)対象物識別装置を構築するための設定装置及び構築方法
本実施形態では、上述した対象物識別装置10を構築するために、設定装置20を用いて機械学習装置1の設定条件を調整する。 (2) Setting Device and Construction Method for Constructing Object Identification Device In this embodiment, the setting conditions ofmachine learning device 1 are adjusted using setting device 20 in order to construct object identification device 10 described above. To do.
本実施形態では、上述した対象物識別装置10を構築するために、設定装置20を用いて機械学習装置1の設定条件を調整する。 (2) Setting Device and Construction Method for Constructing Object Identification Device In this embodiment, the setting conditions of
(2-1)設定装置
図6は本実施形態に係る設定装置20の構成を示す模式図である。 (2-1) Setting Device FIG. 6 is a schematic diagram showing the configuration of thesetting device 20 according to this embodiment.
図6は本実施形態に係る設定装置20の構成を示す模式図である。 (2-1) Setting Device FIG. 6 is a schematic diagram showing the configuration of the
設定装置20は、「位置情報付き画像データ群」を用いて機械学習装置1の設定条件を設定し、所定の特徴を有する対象物を識別する対象物識別装置10を構築する。ここでは、設定装置20は、入力部21、出力部22、取得部23、記憶部24、及び処理部25を有する。
The setting device 20 sets the setting conditions of the machine learning device 1 using the “image data group with position information”, and constructs the target object identification device 10 that identifies a target having a predetermined feature. Here, the setting device 20 includes an input unit 21, an output unit 22, an acquisition unit 23, a storage unit 24, and a processing unit 25.
入力部21は、設定装置20に情報を入力するものである。例えば入力部21は、キーボード、マウス、及び/又はタッチスクリーン等により構成される。この入力部21を介して、設定装置20に各種命令が入力され、処理部25において命令に応じた処理が実行される。
The input unit 21 inputs information to the setting device 20. For example, the input unit 21 includes a keyboard, a mouse, and / or a touch screen. Various commands are input to the setting device 20 via the input unit 21, and processing according to the commands is executed in the processing unit 25.
出力部22は、設定装置20からの各種情報を出力するものである。例えば出力部22は、ディスプレイ及びスピーカー等により構成される。
The output unit 22 outputs various information from the setting device 20. For example, the output unit 22 includes a display and a speaker.
取得部23は、位置情報付き画像データ群を取得するものである。例えば、取得部23は、外部のサーバ装置2からネットワークを経由して位置情報付き画像データ群を取得する。ただし、取得部23は、ネットワーク経由ではなく、記憶媒体等を読み込むことにより、その記憶媒体に記憶された位置情報付き画像データ群を取得するものでもよい。
The acquisition unit 23 acquires an image data group with position information. For example, the acquisition unit 23 acquires the image data group with position information from the external server device 2 via the network. However, the acquisition unit 23 may acquire the image data group with position information stored in the storage medium by reading the storage medium or the like instead of via the network.
記憶部24は、設定装置20に入力される情報、及び、設定装置20で計算される情報等を記憶するものである。例えば記憶部24は、メモリ及びハードディスク装置等により構成される。また記憶部24は、後述する処理部25の各機能を実現するためのプログラムを記憶する。
The storage unit 24 stores information input to the setting device 20, information calculated by the setting device 20, and the like. For example, the storage unit 24 includes a memory and a hard disk device. The storage unit 24 stores a program for realizing each function of the processing unit 25 described later.
また、記憶部24は、対象物の特徴をルールベースで分類するための「ルール情報」を記憶する。例えば、対象物が空調機である場合、ルール情報は、当該空調機が有する所定に特徴に関連付けて、『全体形状が「四角い」ものであり、一部の形状に「円がある」ものであり、全体の色彩が「白い」ものであり、「ファン部分に所定の模様」があるものである』等の内容を示す情報である。そして、このルール情報を用いることで、多数の画像データ群から、これらの内容に一致する物体が写し出されている画像を抽出することが可能となる。
In addition, the storage unit 24 stores “rule information” for classifying the characteristics of the object on a rule basis. For example, when the object is an air conditioner, the rule information is related to a predetermined feature of the air conditioner, and “the overall shape is“ square ”and some shapes have“ circle ”. Yes, it is information indicating the content such as “the whole color is“ white ”and“ the fan part has a predetermined pattern ””. Then, by using this rule information, it is possible to extract an image in which an object matching these contents is copied from a large number of image data groups.
処理部25は、設定装置20における情報処理を実行するものである。具体的には、処理部25は、CPU、GPU及びキャッシュメモリ等により構成される。処理部25は、記憶部24に組み込まれたプログラムが実行されることで、抽出部251、設定部252、調整部253として機能する。
The processing unit 25 executes information processing in the setting device 20. Specifically, the processing unit 25 includes a CPU, a GPU, a cache memory, and the like. The processing unit 25 functions as an extraction unit 251, a setting unit 252, and an adjustment unit 253 by executing a program incorporated in the storage unit 24.
抽出部251は、取得部23により取得された位置情報付き画像データ群の一部から、対象物に関連するルール情報に一致する画像を「学習データ」として抽出する。例えば、抽出部251は、大量の画像データ群の中から、『「四角い」「円がある」「白い」「ファン部分に所定の模様がある」』等のルール情報に一致する物体が写し出されている画像を抽出する。
The extraction unit 251 extracts, as “learning data”, an image that matches the rule information related to the object from a part of the image data group with position information acquired by the acquisition unit 23. For example, the extraction unit 251 projects an object that matches rule information such as ““ square ”,“ circle ”,“ white ”,“ a predetermined pattern on the fan ”, etc., from a large amount of image data group. Extract the image that is.
設定部252は、「学習データ」の画像に、対象物の特徴を含む物体が写し出されているか否かを分類する。そして、設定部252は、抽出部251により抽出された画像に、対象物の特徴を含む物体が写し出されていると分類する場合は、その画像に対して、分類された特徴を有することを示す「教師ラベル」を設定する。なお、設定部252は、抽出部251により抽出された画像に対象物の特徴を含む物体が写されていない場合は、その画像に対して、対象物の特徴を含む物体を写すものではないと設定する。
The setting unit 252 classifies whether or not an object including the feature of the target object is projected in the “learning data” image. Then, when the setting unit 252 classifies that an object including the feature of the object is copied in the image extracted by the extraction unit 251, the setting unit 252 indicates that the image has the classified feature. Set “Teacher Label”. Note that the setting unit 252 does not copy the object including the feature of the object to the image when the object including the feature of the target is not copied in the image extracted by the extraction unit 251. Set.
具体的には、設定部252は、『「四角い」「円がある」「白い」「ファン部分に所定の模様がある」』等のルール情報に一致する空調機の画像に対して、『「メーカーがD社」である「2010年の年式」の「V型の機種」の特徴を有する空調機である』ことを示す教師ラベルを設定する。なお、教師ラベルとルール情報との対応関係は記憶部24に記憶される。
Specifically, the setting unit 252 applies ““ square ”,“ circle ”,“ white ”,“ there is a predetermined pattern on the fan part ”, etc. A teacher label indicating that “the air conditioner has the characteristics of“ V-type model ”of“ 2010 model year ”whose manufacturer is“ Company D ”” is set. The correspondence relationship between the teacher label and the rule information is stored in the storage unit 24.
調整部253は、設定部252により教師ラベルが設定された対象物の画像を「教師データ」として機械学習装置1に入力し、入力に対する出力結果に基づいて、教師ラベルに対応させて設定条件を調整する。具体的には、調整部253により、誤差逆伝播法などに基づいて設定条件が調整される。
The adjustment unit 253 inputs the image of the object for which the teacher label has been set by the setting unit 252 to the machine learning device 1 as “teacher data”, and sets the setting condition corresponding to the teacher label based on the output result for the input. adjust. Specifically, the setting condition is adjusted by the adjustment unit 253 based on the error back propagation method or the like.
なお、調整部253は、教師データとしての位置情報付き画像データにおいて、対象物が写し出されている部分を座標情報を用いて特定する。例えば、図7に示す例では、位置情報付き画像データGにおいて、空調機の部分Aは、座標情報P1(x1,y1),P2(x2,y1),P3(x2,y2),P4(x1,y2)を用いて特定される。これらの座標情報P1~P4は、対応する位置情報付き画像データGとともに記憶装置5に記憶される。
Note that the adjustment unit 253 specifies the portion where the object is projected in the image data with position information as the teacher data, using the coordinate information. For example, in the example shown in FIG. 7, in the image data with position information G, the part A of the air conditioner includes coordinate information P1 (x1, y1), P2 (x2, y1), P3 (x2, y2), P4 (x1 , Y2). These coordinate information P1 to P4 are stored in the storage device 5 together with the corresponding image data G with position information.
(2-2)構築方法
図8は本実施形態に係る対象物識別装置10を構築する構築方法を説明するための図である。 (2-2) Construction Method FIG. 8 is a diagram for explaining a construction method for constructing theobject identification device 10 according to the present embodiment.
図8は本実施形態に係る対象物識別装置10を構築する構築方法を説明するための図である。 (2-2) Construction Method FIG. 8 is a diagram for explaining a construction method for constructing the
対象物識別装置10は、所定の特徴を有する対象物を識別するものである。ここでは、一例として、所定の特徴を有する対象物が、『「メーカーがD社」である「2010年の年式」の「V型の機種」の特徴を有する空調機である』とする。以下、このような対象物を識別し得る対象物識別装置10を構築するため構築方法について説明する。
The object identification device 10 identifies an object having a predetermined characteristic. Here, as an example, it is assumed that an object having a predetermined feature is “an air conditioner having a feature of“ V model ”of“ year model of 2010 ”where“ manufacturer is company D ””. Hereinafter, a construction method for constructing the object identification device 10 capable of identifying such an object will be described.
まず、識別対象の対象物及びその特徴が決定される。例えば、識別対象の対象物として「空調機」であることが決定され、その特徴として『「メーカーがD社」である「2010年の年式」の「V型の機種」』であることが決定される。
First, the object to be identified and its characteristics are determined. For example, it is determined that the object to be identified is “air conditioner”, and its feature is “2010 model” “V model” with “Manufacturer is company D”. It is determined.
これに応じて、設定装置20の抽出部251の動作により、上述の特徴を有する対象物に関連するルール情報に基づいて、位置情報付き画像データ群の一部からルールベースで画像が抽出される(ステップS1)。例えば、抽出部251により、大量の位置情報付き画像データ群の中から、『「四角い」「円がある」「白い」「ファン部分に所定の模様がある」』等のルール情報に一致する物体が写し出されている画像が抽出される。
Accordingly, the operation of the extraction unit 251 of the setting device 20 extracts an image on a rule basis from a part of the image data group with position information based on the rule information related to the object having the above-described characteristics. (Step S1). For example, an object that matches the rule information such as ““ square ”,“ circle ”,“ white ”“ predetermined pattern on the fan ”, etc., from the large amount of image data group with position information by the extraction unit 251 An image in which is projected is extracted.
次に、作業者3により設定部252を介して、抽出部251により抽出された画像に、上述の特徴を有する対象物が写し出されているか否かが分類される。そして、上述の特徴を有する対象物が写し出されていると分類された画像に対して、設定部252を介して、上述の特徴を有することを示す「教師ラベル」が設定される(ステップS2)。すなわち、『「四角い」「円がある」「白い」「ファン部分に所定の模様がある」』のルール情報に一致する物体が写し出されている画像に対して、『「メーカーがD社」である「2010年の年式」の「V型の機種」の特徴を有する空調機である』ことを示す教師ラベルが設定される。
Next, it is classified by the operator 3 whether or not the object having the above-described features is projected on the image extracted by the extraction unit 251 via the setting unit 252. Then, a “teacher label” indicating that the object has the above-described feature is set via the setting unit 252 for the image classified as the object having the above-described feature is copied (step S2). . That is, for an image in which an object that matches the rule information of ““ square ”,“ circle ”,“ white ”,“ there is a predetermined pattern on the fan ”, A teacher label is set to indicate that the air conditioner has the feature of “V model” of a certain “2010 model”.
続いて、設定部252により教師ラベルが設定された対象物の画像が「教師データ」として機械学習装置1に入力される。ここで、教師データは、対象物が写し出されている位置情報付き画像データと、その位置情報付き画像データにおける対象物が写し出されている領域の座標情報とにより構成される。要するに、機械学習装置1に学習させる際には、位置情報付き画像データから、座標情報に基づいて、対象物が写し出されている部分が都度切り出される。これにより、位置情報付き画像データを加工して保管せずに、機械学習装置1の調整が可能となる。
Subsequently, the image of the object for which the teacher label is set by the setting unit 252 is input to the machine learning device 1 as “teacher data”. Here, the teacher data includes image data with position information in which the object is copied, and coordinate information of an area in which the object in the image data with position information is copied. In short, when the machine learning device 1 learns, a portion where the object is projected is cut out from the image data with position information based on the coordinate information each time. As a result, the machine learning device 1 can be adjusted without processing and storing the image data with position information.
そして、調整部253により、機械学習装置1への入力及び出力に基づいて、教師ラベルに対応する設定条件が調整される。具体的には、機械学習装置1における各層の重みwが調整される(ステップS3)。
Then, the adjusting unit 253 adjusts the setting condition corresponding to the teacher label based on the input and output to the machine learning device 1. Specifically, the weight w of each layer in the machine learning device 1 is adjusted (step S3).
これにより、機械学習装置1から、上述の特徴を有する対象物を識別し得る対象物識別装置10が構築される。換言すると、外観上の特徴(『「四角い」「円がある」「白い」「ファン部分に所定の模様がある」』)を区別可能な空調機が写し出された画像データを機械学習装置1に入力して学習させることで、『メーカー(D社)、機種(V型)、年式(2010年)の特徴を有する空調機』を識別し得る対象物識別装置10が構築される。
Thereby, an object identification device 10 that can identify an object having the above-described features is constructed from the machine learning device 1. In other words, image data on which an air conditioner capable of distinguishing external features (““ square ”,“ circle ”,“ white ”“ predetermined pattern on the fan part ”)” is projected to the machine learning device 1 By inputting and learning, the object identification device 10 capable of identifying “an air conditioner having characteristics of a manufacturer (Company D), a model (V type), and a model year (2010)” is constructed.
なお、ここでは、便宜上、一種類の特徴を有する空調機を識別する例について説明したが、同様の手法で機械学習装置1の設定条件を調整することにより、異なる特徴を有する複数の対象物を識別し得る対象物識別装置10を構築することが可能である。
Here, for the sake of convenience, an example of identifying an air conditioner having one type of feature has been described. However, by adjusting the setting conditions of the machine learning device 1 in the same manner, a plurality of objects having different features can be obtained. It is possible to construct an object identification device 10 that can be identified.
(3)特徴
(3-1)
以上説明したように、本実施形態に係る対象物識別装置を構築する構築方法は、機械学習を実行する機械学習装置1の設定条件を調整し、個別の画像情報に位置情報が関連付けられた位置情報付き画像データ群から、所定の特徴を有する対象物を識別する対象物識別装置10を構築する。具体的に、この構築方法では、抽出ステップと、設定ステップと、調整ステップと、を備える。抽出ステップでは、位置情報付き画像データ群の一部から、所定の特徴を有する対象物に関連するルールベースに基づいて画像を抽出する。設定ステップでは、抽出ステップにより抽出された画像に所定の特徴を有する対象物が写し出されている場合に、所定の特徴を有する対象物であることを示す教師ラベルを設定する。調整ステップでは、設定ステップにより教師ラベルが設定された画像を機械学習装置1に入力し、入力に対する出力結果に基づいて、教師ラベルに対応させて設定条件を調整する。 (3) Features (3-1)
As described above, the construction method for constructing the object identification device according to the present embodiment adjusts the setting conditions of themachine learning device 1 that executes machine learning, and the position in which position information is associated with individual image information. An object identification device 10 for identifying an object having a predetermined feature is constructed from the image data group with information. Specifically, this construction method includes an extraction step, a setting step, and an adjustment step. In the extraction step, an image is extracted from a part of the image data group with position information based on a rule base related to an object having a predetermined feature. In the setting step, when an object having a predetermined feature is projected in the image extracted in the extraction step, a teacher label indicating that the object has a predetermined feature is set. In the adjustment step, the image in which the teacher label is set in the setting step is input to the machine learning device 1, and the setting condition is adjusted in accordance with the teacher label based on the output result for the input.
(3-1)
以上説明したように、本実施形態に係る対象物識別装置を構築する構築方法は、機械学習を実行する機械学習装置1の設定条件を調整し、個別の画像情報に位置情報が関連付けられた位置情報付き画像データ群から、所定の特徴を有する対象物を識別する対象物識別装置10を構築する。具体的に、この構築方法では、抽出ステップと、設定ステップと、調整ステップと、を備える。抽出ステップでは、位置情報付き画像データ群の一部から、所定の特徴を有する対象物に関連するルールベースに基づいて画像を抽出する。設定ステップでは、抽出ステップにより抽出された画像に所定の特徴を有する対象物が写し出されている場合に、所定の特徴を有する対象物であることを示す教師ラベルを設定する。調整ステップでは、設定ステップにより教師ラベルが設定された画像を機械学習装置1に入力し、入力に対する出力結果に基づいて、教師ラベルに対応させて設定条件を調整する。 (3) Features (3-1)
As described above, the construction method for constructing the object identification device according to the present embodiment adjusts the setting conditions of the
したがって、この構築方法では、上述した各ステップを実行して、機械学習装置1の設定条件を調整するので、膨大なデータ量の位置情報付き画像データ群から、所定の特徴を有する対象物の画像情報を高精度及び高確度に抽出し得る対象物識別装置を構築できる。
Therefore, in this construction method, the above-described steps are executed to adjust the setting conditions of the machine learning device 1, so that an image of an object having a predetermined feature is obtained from a group of image data with position information having an enormous amount of data. An object identification device that can extract information with high accuracy and high accuracy can be constructed.
特に、本実施形態に係る対象物識別装置10は、対象物として「空調機」を検出し得るものである。ここで、室外に設置されている空調機は、数百万台以上であり膨大な個数である。そのため、対象物が空調機である場合には、仮に対象物の検出率が低い場合(50%に満たない場合)であったとしても、依然として膨大な個数の対象物を検出できる。したがって、対象物が空調機である場合には、このような対象物識別装置10を用いることで、膨大な個数の対象物の画像に基づいて有用情報を生成することが可能となる。なお、対象物の検出漏れが生じても利用価値の高い有用情報としては、代理店経由で販売した製品の位置情報などが挙げられる。
In particular, the object identification device 10 according to the present embodiment can detect an “air conditioner” as an object. Here, there are millions of air conditioners installed outdoors, which is a huge number. Therefore, if the object is an air conditioner, a huge number of objects can still be detected even if the object detection rate is low (less than 50%). Therefore, when the object is an air conditioner, it is possible to generate useful information based on images of an enormous number of objects by using such an object identification device 10. Note that useful information having a high utility value even if an object is not detected includes location information of a product sold via an agent.
なお、上述した効果に関しては、識別対象の対象物が空調機ではなく自動販売機等でも同様の議論が成立する。
In addition, regarding the above-described effects, the same argument holds even when the object to be identified is not an air conditioner but a vending machine.
(3-2)
また、本実施形態に係る構築方法により、位置情報付き画像データから、メーカー、機種、年式のいずれか又は任意の組み合わせに関する特徴を有する空調機が写し出された画像を識別し得る対象物識別装置10を構築できる。換言すると、本実施形態に係る構築方法により構築される対象物識別装置10によれば、空調機のメーカー、機種、年式のいずれか又は任意の組み合わせを識別することができる。 (3-2)
In addition, the object identification device that can identify an image in which an air conditioner having a feature related to any one of manufacturer, model, year, or any combination is imaged from image data with position information by the construction method according to the present embodiment. 10 can be built. In other words, according to theobject identification device 10 constructed by the construction method according to the present embodiment, any one or any combination of the manufacturer, model, and year of the air conditioner can be identified.
また、本実施形態に係る構築方法により、位置情報付き画像データから、メーカー、機種、年式のいずれか又は任意の組み合わせに関する特徴を有する空調機が写し出された画像を識別し得る対象物識別装置10を構築できる。換言すると、本実施形態に係る構築方法により構築される対象物識別装置10によれば、空調機のメーカー、機種、年式のいずれか又は任意の組み合わせを識別することができる。 (3-2)
In addition, the object identification device that can identify an image in which an air conditioner having a feature related to any one of manufacturer, model, year, or any combination is imaged from image data with position information by the construction method according to the present embodiment. 10 can be built. In other words, according to the
同様に、本実施形態に係る構築方法により構築される対象物識別装置10によれば、冷媒の種類の情報を有する空調機を識別することができる。
Similarly, according to the object identification device 10 constructed by the construction method according to the present embodiment, an air conditioner having information on the type of refrigerant can be identified.
同様に、本実施形態に係る構築方法により構築される対象物識別装置10によれば、空調機の劣化に関する特徴を識別することができる。なお、劣化に関する特徴とは、劣化度合い、及び/又は、劣化種類を示す特徴である。「劣化種類」は、対象物の経年劣化に起因するものや、対象物に生じた異常に起因するものなどがある。具体的には、劣化の種類としては、摩耗、亀裂、破損、断線、(ネジ等の)緩み、(ネジ等の)脱落、変形、傷、接触不良、部品欠品、錆、腐食、汚れ等が挙げられる。
Similarly, according to the target object identification device 10 constructed by the construction method according to the present embodiment, it is possible to identify characteristics relating to deterioration of the air conditioner. Note that the characteristics related to deterioration are characteristics indicating the degree of deterioration and / or the type of deterioration. The “degradation type” includes those caused by aging degradation of an object and those caused by an abnormality occurring in the object. Specifically, types of deterioration include wear, cracks, breakage, disconnection, loosening (such as screws), dropout (such as screws), deformation, scratches, poor contact, missing parts, rust, corrosion, dirt, etc. Is mentioned.
なお、本実施形態に係る構築方法では、複数の特徴を一組として取り扱い、組毎に各特徴をクラス分類する対象物識別装置10を構築することができる。
In the construction method according to the present embodiment, it is possible to construct a target object identification device 10 that handles a plurality of features as a set and classifies each feature for each set.
(3-3)
また、本実施形態に係る構築方法では、位置情報付き画像データ群は、横方向から景観が撮影された画像、及び/又は、上方から景観が撮影された画像から生成される。したがって、この方法によれば、一般的に利用されているストリートビュー型の写真、地上写真、航空写真、及び衛星写真等から構成される位置情報付き画像データ群に基づいて対象物識別装置10を構築できる。 (3-3)
In the construction method according to the present embodiment, the image data group with position information is generated from an image of a landscape photographed from the lateral direction and / or an image of a landscape photographed from above. Therefore, according to this method, theobject identification apparatus 10 is based on a group of image data with position information that is composed of commonly used street view type photographs, ground photographs, aerial photographs, satellite photographs, and the like. Can be built.
また、本実施形態に係る構築方法では、位置情報付き画像データ群は、横方向から景観が撮影された画像、及び/又は、上方から景観が撮影された画像から生成される。したがって、この方法によれば、一般的に利用されているストリートビュー型の写真、地上写真、航空写真、及び衛星写真等から構成される位置情報付き画像データ群に基づいて対象物識別装置10を構築できる。 (3-3)
In the construction method according to the present embodiment, the image data group with position information is generated from an image of a landscape photographed from the lateral direction and / or an image of a landscape photographed from above. Therefore, according to this method, the
(3-4)
また、本実施形態に係る構築方法では、機械学習装置1を学習する際に、位置情報付き画像データに設定された座標情報に基づいて対象物が写し出された部分を特定する。そのため、データを加工して保存することが禁止されている画像データ群を利用して対象物識別装置10を構築することができる。補足すると、一般的に利用されているストリートビュー型の写真、地上写真、航空写真、及び衛星写真等から生成されている位置情報付き画像データ群は、データを加工後に保存することが禁止されている場合がある。このような場合でも、本実施形態に係る構築方法であれば、座標情報を用いて対象物が写し出された部分を指定するので、事前に、位置情報付き画像データから対象物が写し出された部分を切り出して保存しておく必要がない。換言すると、本実施形態に係る構築方法では、データを加工後に保存することが禁止されている位置情報付き画像データ群を利用して、機械学習装置1の学習を実行することができる。 (3-4)
Further, in the construction method according to the present embodiment, when learning themachine learning device 1, the portion where the object is projected is specified based on the coordinate information set in the image data with position information. Therefore, the object identification device 10 can be constructed using an image data group that is prohibited from processing and storing data. As a supplement, image data groups with location information generated from commonly used street view type photographs, ground photographs, aerial photographs, satellite photographs, etc. are prohibited from being saved after processing the data. There may be. Even in such a case, in the construction method according to the present embodiment, the portion where the object is copied is specified using the coordinate information, so the portion where the object is copied from the image data with position information in advance There is no need to cut out and save. In other words, in the construction method according to the present embodiment, the learning of the machine learning device 1 can be performed using the image data group with position information that is prohibited from storing data after processing.
また、本実施形態に係る構築方法では、機械学習装置1を学習する際に、位置情報付き画像データに設定された座標情報に基づいて対象物が写し出された部分を特定する。そのため、データを加工して保存することが禁止されている画像データ群を利用して対象物識別装置10を構築することができる。補足すると、一般的に利用されているストリートビュー型の写真、地上写真、航空写真、及び衛星写真等から生成されている位置情報付き画像データ群は、データを加工後に保存することが禁止されている場合がある。このような場合でも、本実施形態に係る構築方法であれば、座標情報を用いて対象物が写し出された部分を指定するので、事前に、位置情報付き画像データから対象物が写し出された部分を切り出して保存しておく必要がない。換言すると、本実施形態に係る構築方法では、データを加工後に保存することが禁止されている位置情報付き画像データ群を利用して、機械学習装置1の学習を実行することができる。 (3-4)
Further, in the construction method according to the present embodiment, when learning the
なお、これらの座標情報と、学習データである位置情報付き画像データとは記憶装置5に記憶される。ただし、これに限らず、これらの情報は、設定装置20又は機械学習装置1に格納されていてもよいものである。
The coordinate information and the image data with position information that is learning data are stored in the storage device 5. However, the information is not limited to this, and the information may be stored in the setting device 20 or the machine learning device 1.
(3-5)
また、本実施形態に係る設定装置20は、機械学習を実行する機械学習装置1の設定条件を調整し、個別の画像情報に位置情報が関連付けられた位置情報付き画像データ群から、所定の特徴を有する対象物を識別する対象物識別装置10を構築する。具体的に、設定装置20は、抽出部251と、設定部252と、調整部253と、を備える。抽出部251では、位置情報付き画像データ群の一部から、所定の特徴に対応するルールベースに基づいて画像を抽出する。設定部252では、抽出部251により抽出された画像に所定の特徴を有する対象物が写し出されている場合に、所定の特徴を有することを示すラベルを設定する。調整部253では、設定部252により教師ラベルが設定された画像を機械学習装置1に入力し、入力に対する出力結果に基づいて、教師ラベルに対応させて設定条件を調整する。 (3-5)
In addition, the settingdevice 20 according to the present embodiment adjusts the setting conditions of the machine learning device 1 that executes machine learning, and has predetermined characteristics from an image data group with position information in which the position information is associated with individual image information. The object identification device 10 for identifying the object having Specifically, the setting device 20 includes an extraction unit 251, a setting unit 252, and an adjustment unit 253. The extraction unit 251 extracts an image from a part of the image data group with position information based on a rule base corresponding to a predetermined feature. The setting unit 252 sets a label indicating that it has a predetermined feature when an object having the predetermined feature is projected in the image extracted by the extraction unit 251. In the adjustment unit 253, the image in which the teacher label is set by the setting unit 252 is input to the machine learning device 1, and the setting condition is adjusted corresponding to the teacher label based on the output result with respect to the input.
また、本実施形態に係る設定装置20は、機械学習を実行する機械学習装置1の設定条件を調整し、個別の画像情報に位置情報が関連付けられた位置情報付き画像データ群から、所定の特徴を有する対象物を識別する対象物識別装置10を構築する。具体的に、設定装置20は、抽出部251と、設定部252と、調整部253と、を備える。抽出部251では、位置情報付き画像データ群の一部から、所定の特徴に対応するルールベースに基づいて画像を抽出する。設定部252では、抽出部251により抽出された画像に所定の特徴を有する対象物が写し出されている場合に、所定の特徴を有することを示すラベルを設定する。調整部253では、設定部252により教師ラベルが設定された画像を機械学習装置1に入力し、入力に対する出力結果に基づいて、教師ラベルに対応させて設定条件を調整する。 (3-5)
In addition, the setting
したがって、本実施形態に係る設定装置20では、上記構成を具備するので、機械学習装置1の設定条件を調整して対象物識別装置10を構築できる。そして、このような対象物識別装置10を用いることで、膨大なデータ量の位置情報付き画像データ群から、特定の特徴を有する対象物の画像情報を高精度及び高確度に抽出できる。
Therefore, since the setting device 20 according to the present embodiment has the above configuration, the object identification device 10 can be constructed by adjusting the setting conditions of the machine learning device 1. By using such an object identification device 10, image information of an object having a specific feature can be extracted with high accuracy and high accuracy from a group of image data with position information having an enormous amount of data.
(4)変形例
(4-1)
本実施形態に係る設定装置20において、調整部253は、設定条件が調整された機械学習装置1に位置情報付き画像データを入力することで、設定条件を再調整できるものでもよい。 (4) Modification (4-1)
In thesetting device 20 according to the present embodiment, the adjustment unit 253 may be capable of readjusting the setting conditions by inputting the image data with position information to the machine learning device 1 in which the setting conditions are adjusted.
(4-1)
本実施形態に係る設定装置20において、調整部253は、設定条件が調整された機械学習装置1に位置情報付き画像データを入力することで、設定条件を再調整できるものでもよい。 (4) Modification (4-1)
In the
具体的には、図9に示すように、対象物識別装置10から検出された画像データを作業者3が選別して(T1)、新たな教師データとして追加する(T2)。そして、これらの新たな教師データを含めて、改めて機械学習装置1の学習を行い、各層のユニット間の重みwを調整する(T3)。
Specifically, as shown in FIG. 9, the operator 3 selects image data detected from the object identification device 10 (T1) and adds it as new teacher data (T2). Then, the machine learning device 1 learns anew including these new teacher data, and adjusts the weight w between the units of each layer (T3).
これにより、設定条件が調整された機械学習装置1を用いて条件を再調整するので、機械学習装置1の設定条件をさらに最適化することができる。結果として、対象物の画像情報をさらに高精度及び高確度に抽出し得る対象物識別装置10を構築できる。
Thereby, since the condition is readjusted using the machine learning device 1 in which the setting condition is adjusted, the setting condition of the machine learning device 1 can be further optimized. As a result, it is possible to construct the object identification device 10 that can extract the image information of the object with higher accuracy and accuracy.
(4-2)
なお、上記実施形態では、対象物として「空調機」を例に挙げたが、これに限定されるものではない。すわなち、本発明に係る構築方法により構築される対象物識別装置は、位置情報付き画像データ群から取得される任意の対象物を識別するものである。例えば、対象物として、冷媒を冷媒回路で循環させる冷凍装置の一部を構成する任意の機器を識別することができる。具体的には、冷暖房用の空調装置の他、冷房専用又は暖房専用の空調装置、床暖房装置、給湯装置、及び除湿装置などが挙げられる。さらに、対象物として、冷凍装置に限らず、路上に設置される自動販売機等の装置や、建物の屋上やベランダ等に設置される衛星アンテナ等を識別することができる。 (4-2)
In the above embodiment, the “air conditioner” is taken as an example of the object, but the present invention is not limited to this. That is, the object identification device constructed by the construction method according to the present invention identifies an arbitrary object acquired from the image data group with position information. For example, an arbitrary device constituting a part of a refrigeration apparatus that circulates a refrigerant in a refrigerant circuit can be identified as an object. Specifically, in addition to an air conditioner for cooling and heating, an air conditioner dedicated to cooling or heating, a floor heater, a hot water supply device, a dehumidifier, and the like can be given. Furthermore, the object is not limited to the refrigeration apparatus, and an apparatus such as a vending machine installed on the road, a satellite antenna installed on the roof of a building, a veranda, or the like can be identified.
なお、上記実施形態では、対象物として「空調機」を例に挙げたが、これに限定されるものではない。すわなち、本発明に係る構築方法により構築される対象物識別装置は、位置情報付き画像データ群から取得される任意の対象物を識別するものである。例えば、対象物として、冷媒を冷媒回路で循環させる冷凍装置の一部を構成する任意の機器を識別することができる。具体的には、冷暖房用の空調装置の他、冷房専用又は暖房専用の空調装置、床暖房装置、給湯装置、及び除湿装置などが挙げられる。さらに、対象物として、冷凍装置に限らず、路上に設置される自動販売機等の装置や、建物の屋上やベランダ等に設置される衛星アンテナ等を識別することができる。 (4-2)
In the above embodiment, the “air conditioner” is taken as an example of the object, but the present invention is not limited to this. That is, the object identification device constructed by the construction method according to the present invention identifies an arbitrary object acquired from the image data group with position information. For example, an arbitrary device constituting a part of a refrigeration apparatus that circulates a refrigerant in a refrigerant circuit can be identified as an object. Specifically, in addition to an air conditioner for cooling and heating, an air conditioner dedicated to cooling or heating, a floor heater, a hot water supply device, a dehumidifier, and the like can be given. Furthermore, the object is not limited to the refrigeration apparatus, and an apparatus such as a vending machine installed on the road, a satellite antenna installed on the roof of a building, a veranda, or the like can be identified.
(5)応用例
本実施形態に係る対象物識別装置の構築方法を用いることで、更なる対象物識別方法への応用が可能である。具体的には、本実施形態に係る構築方法を用いて、複数の対象物識別装置からなる対象物識別システムを構築し、この対象物識別システムを用いて対象物を識別する対象物識別方法を提供できる。 (5) Application example By using the construction method of the object identification device according to the present embodiment, it is possible to apply to a further object identification method. Specifically, an object identification system including a plurality of object identification devices is constructed using the construction method according to the present embodiment, and an object identification method for identifying an object using the object identification system is provided. Can be provided.
本実施形態に係る対象物識別装置の構築方法を用いることで、更なる対象物識別方法への応用が可能である。具体的には、本実施形態に係る構築方法を用いて、複数の対象物識別装置からなる対象物識別システムを構築し、この対象物識別システムを用いて対象物を識別する対象物識別方法を提供できる。 (5) Application example By using the construction method of the object identification device according to the present embodiment, it is possible to apply to a further object identification method. Specifically, an object identification system including a plurality of object identification devices is constructed using the construction method according to the present embodiment, and an object identification method for identifying an object using the object identification system is provided. Can be provided.
図10は本実施形態の応用例に係る対象物識別システムの概念を示す模式図である。
FIG. 10 is a schematic diagram showing a concept of an object identification system according to an application example of the present embodiment.
第1対象物識別装置10Aは、上述した構築方法を用いて、第1位置情報付き画像データ群を機械学習装置1に学習させることで構築される。ここで、「第1位置情報付き画像データ群」は、位置情報が個別に関連付けられた横方向から景観が撮影された画像データ群である。そして、第1対象物識別装置10Aは、任意の第1位置情報付き画像データ群を取得して、対象物の画像が写し出された位置情報付き画像データを識別する。第1対象物識別装置10Aによる識別結果は、後述する判定装置15に送出される。
The first object identification device 10A is constructed by causing the machine learning device 1 to learn the image data group with the first position information using the construction method described above. Here, the “first image data group with position information” is an image data group in which a landscape is photographed from a lateral direction in which position information is individually associated. Then, the first object identification device 10A acquires an arbitrary first image data group with position information, and identifies image data with position information in which an image of the object is projected. The identification result by the first object identification device 10A is sent to the determination device 15 described later.
第2対象物識別装置10Bは、上述した構築方法を用いて、第2位置情報付き画像データ群を機械学習装置1に学習させることで構築される。ここで、「第2位置情報付き画像データ群」は、位置情報が個別に関連付けられた上方向から景観が撮影された画像データ群である。そして、第2対象物識別装置10Bは、任意の第2位置情報付き画像データ群を取得して、対象物の画像が写し出された位置情報付き画像データを識別する。第2対象物識別装置10Bによる識別結果は、後述する判定装置15に送出される。
The second object identification device 10B is constructed by causing the machine learning device 1 to learn the image data group with the second position information using the construction method described above. Here, the “second image data group with position information” is an image data group in which a landscape is photographed from above in which position information is individually associated. Then, the second object identification device 10B acquires an arbitrary image data group with position information, and identifies image data with position information in which an image of the object is copied. The identification result by the second object identification device 10B is sent to the determination device 15 described later.
判定装置15は、第1対象物識別装置10Aから受け取った識別結果と、第2対象物識別装置10Bから受け取った識別結果とを照合し、それらに含まれる位置情報付き画像データの位置情報が一致する場合、一致した位置情報に当該対象物が存在すると判定する。すなわち、判定装置15は、第1対象物識別装置10Aの識別結果と、第2対象物識別装置10Bの識別結果との論理積に基づいて対象物を識別する。また、判定装置15は、一致した位置情報を地図情報に反映させて、対象物の存在する場所を地図上に表示する(図5参照)。
The determination device 15 collates the identification result received from the first object identification device 10A and the identification result received from the second object identification device 10B, and the position information of the image data with position information included therein matches. If it is determined that the target object exists in the matched position information. That is, the determination device 15 identifies an object based on the logical product of the identification result of the first object identification device 10A and the identification result of the second object identification device 10B. Further, the determination device 15 reflects the matched position information on the map information, and displays the place where the object exists on the map (see FIG. 5).
上述した対象物識別システムを用いた対象物識別方法であれば、異なる位置情報付き画像データ群に基づいて構築された第1対象物識別装置10A及び第2対象物識別装置10Bのそれぞれの識別結果に基づいて対象物を識別するので、対象物を識別する確度及び精度を高めることができる。さらに、ここでは、第1位置情報付き画像データ群として横方向から景観が撮像された画像データ群、及び、第2位置情報付き画像データ群として上方から景観が撮像された画像データ群の両方を用いて対象物を識別するので、対象物を識別する精度及び確度を高めることができる。
If it is the target object identification method using the target object identification system mentioned above, each identification result of 10A of 1st target object identification apparatuses and the 2nd target object identification apparatus 10B constructed | assembled based on the image data group with a different positional information Therefore, the accuracy and accuracy of identifying the object can be improved. Furthermore, here, both the image data group in which the landscape is imaged from the lateral direction as the image data group with the first position information, and the image data group in which the landscape is imaged from above as the image data group with the second position information are included. Since the object is identified by using it, the accuracy and accuracy of identifying the object can be increased.
なお、判定装置15は、第1対象物識別装置10Aの識別結果と、第2対象物識別装置10Bの識別結果との論理積ではなく、論理和に基づいて対象物を識別してもよい。すなわち、判定装置15は、第1対象物識別装置10Aから受け取った識別結果と、第2対象物識別装置10Bから受け取った識別結果とを照合し、それらのいずれかの識別結果に対応する位置情報を地図情報に反映させて、対象物の存在する場所を地図上に表示するものでもよい。この場合、対象物の検出位置の網羅性を高めることができる。
Note that the determination device 15 may identify an object based on a logical sum instead of a logical product of the identification result of the first object identification device 10A and the identification result of the second object identification device 10B. That is, the determination device 15 collates the identification result received from the first object identification device 10A and the identification result received from the second object identification device 10B, and the position information corresponding to any of the identification results. May be reflected on the map information, and the place where the object exists may be displayed on the map. In this case, the completeness of the detection position of the object can be improved.
<付記>
なお、本発明は、上記各実施形態そのままに限定されるものではない。本発明は、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、本発明は、上記各実施形態に開示されている複数の構成要素の適宜な組み合わせにより種々の発明を形成できるものである。例えば、実施形態に示される全構成要素から幾つかの構成要素は削除してもよいものである。さらに、異なる実施形態に構成要素を適宜組み合わせてもよいものである。 <Appendix>
The present invention is not limited to the above embodiments as they are. The present invention can be embodied by modifying the components without departing from the scope of the invention in the implementation stage. Further, the present invention can form various inventions by appropriately combining a plurality of constituent elements disclosed in the above embodiments. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, constituent elements may be appropriately combined in different embodiments.
なお、本発明は、上記各実施形態そのままに限定されるものではない。本発明は、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、本発明は、上記各実施形態に開示されている複数の構成要素の適宜な組み合わせにより種々の発明を形成できるものである。例えば、実施形態に示される全構成要素から幾つかの構成要素は削除してもよいものである。さらに、異なる実施形態に構成要素を適宜組み合わせてもよいものである。 <Appendix>
The present invention is not limited to the above embodiments as they are. The present invention can be embodied by modifying the components without departing from the scope of the invention in the implementation stage. Further, the present invention can form various inventions by appropriately combining a plurality of constituent elements disclosed in the above embodiments. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, constituent elements may be appropriately combined in different embodiments.
1 機械学習装置
2 サーバ装置
3 作業者
5 記憶装置
10 対象物識別装置
10A 第1対象物識別装置
10B 第2対象物識別装置
15 判定装置
20 設定装置
21 入力部
22 出力部
23 取得部
24 記憶部
25 処理部
251 抽出部
252 設定部
253 調整部 DESCRIPTION OFSYMBOLS 1 Machine learning apparatus 2 Server apparatus 3 Worker 5 Storage apparatus 10 Object identification apparatus 10A 1st object identification apparatus 10B 2nd object identification apparatus 15 Determination apparatus 20 Setting apparatus 21 Input part 22 Output part 23 Acquisition part 24 Storage part 25 processing unit 251 extraction unit 252 setting unit 253 adjustment unit
2 サーバ装置
3 作業者
5 記憶装置
10 対象物識別装置
10A 第1対象物識別装置
10B 第2対象物識別装置
15 判定装置
20 設定装置
21 入力部
22 出力部
23 取得部
24 記憶部
25 処理部
251 抽出部
252 設定部
253 調整部 DESCRIPTION OF
Claims (12)
- 機械学習を実行する機械学習装置(1)の設定条件を調整し、個別の画像情報に位置情報が関連付けられた位置情報付き画像データ群から、所定の特徴を有する対象物を識別する対象物識別装置(10)を構築する構築方法であって、
前記位置情報付き画像データ群の一部から、前記所定の特徴を有する対象物に関連するルールベースに基づいて画像を抽出する抽出ステップと、
前記抽出ステップにより抽出された画像に、前記所定の特徴を有する対象物が写し出されている場合に、前記所定の特徴を有する対象物であることを示すラベルを設定する設定ステップと、
前記設定ステップによりラベルが設定された画像を前記機械学習装置に入力し、入力に対する出力結果に基づいて、前記ラベルに対応させて前記設定条件を調整する調整ステップと、
を備える、構築方法。 Object identification for identifying an object having a predetermined characteristic from a group of image data with position information in which position information is associated with individual image information by adjusting setting conditions of the machine learning device (1) that performs machine learning A construction method for constructing a device (10), comprising:
An extraction step of extracting an image from a part of the image data group with the position information based on a rule base related to the object having the predetermined feature;
A setting step of setting a label indicating that the object having the predetermined characteristic is copied in the image extracted by the extraction step when the object having the predetermined characteristic is copied;
An adjustment step of inputting an image in which a label is set in the setting step to the machine learning device, and adjusting the setting condition corresponding to the label based on an output result with respect to the input;
A construction method comprising: - 前記調整ステップにより前記設定条件が調整された機械学習装置に、位置情報付き画像データを入力することにより、前記設定条件を再調整する再調整ステップ、
をさらに備える請求項1に記載の構築方法。 A readjustment step for readjusting the set conditions by inputting image data with position information to the machine learning device in which the set conditions are adjusted by the adjusting step;
The construction method according to claim 1, further comprising: - 前記対象物は、冷媒回路内で冷媒を循環させる冷凍装置の少なくとも一部を構成する機器である、
請求項1又は2に記載の構築方法。 The object is a device constituting at least a part of a refrigeration apparatus for circulating a refrigerant in a refrigerant circuit.
The construction method according to claim 1 or 2. - 前記特徴は、冷媒の種類の情報を示すものである、
請求項3に記載の構築方法。 The characteristics indicate information on the type of refrigerant.
The construction method according to claim 3. - 前記特徴は、メーカー、機種、年式のいずれか又は任意の組み合わせの情報を示すものである、
請求項1から4のいずれか1項に記載の構築方法。 The feature indicates information of manufacturer, model, year, or any combination,
The construction method according to any one of claims 1 to 4. - 前記特徴は、劣化に関するものである、
請求項1から5のいずれか1項に記載の構築方法。 The feature is related to degradation,
The construction method according to any one of claims 1 to 5. - 前記位置情報付き画像データ群は、横方向から景観が撮影された画像、及び/又は、上方から景観が撮影された画像から構成される、
請求項1から6のいずれか1項に記載の構築方法。 The image data group with position information is composed of an image of a landscape taken from the lateral direction and / or an image of a landscape taken from above.
The construction method according to any one of claims 1 to 6. - 前記調整ステップは、前記機械学習装置に前記位置情報付き画像データ群の一部を入力する際に、個々の位置情報付き画像データに設定された座標情報を用いて前記対象物が写し出された部分を特定する、
請求項1から7のいずれか1項に記載の構築方法。 In the adjustment step, when a part of the image data group with position information is input to the machine learning device, a part in which the object is projected using the coordinate information set in each image data with position information Identify
The construction method according to any one of claims 1 to 7. - 請求項8に記載の構築方法に用いられる記憶装置(5)であって、
個々の位置情報付き画像データに設定された座標情報を、前記位置情報付き画像データに関連付けて記憶する、記憶装置。 A storage device (5) used in the construction method according to claim 8,
A storage device that stores coordinate information set in each piece of image data with position information in association with the image data with position information. - 機械学習を実行する機械学習装置(1)の設定条件を調整し、個別の画像情報に位置情報が関連付けられた位置情報付き画像データ群から、所定の特徴を有する対象物を識別する対象物識別装置(10)を構築するために用いる設定装置(20)であって、
前記位置情報付き画像データ群の一部から、前記所定の特徴を有する対象物に関連するルールベースに基づいて画像を抽出する抽出部(251)と、
前記抽出部により抽出された画像に、前記所定の特徴を有する対象物が写し出されている場合に、前記所定の特徴を有する対象物であることを示すラベルを設定する設定部(252)と、
前記設定部によりラベルが設定された画像を前記機械学習装置に入力し、入力に対する出力結果に基づいて、前記ラベルに対応させて前記設定条件を調整する調整部(253)と、
を備える、設定装置。 Object identification for identifying an object having a predetermined characteristic from a group of image data with position information in which position information is associated with individual image information by adjusting setting conditions of the machine learning device (1) that performs machine learning A setting device (20) used to construct the device (10),
An extraction unit (251) for extracting an image from a part of the image data group with position information based on a rule base related to the object having the predetermined feature;
A setting unit (252) for setting a label indicating that the target object has the predetermined feature when the target object having the predetermined feature is copied in the image extracted by the extraction unit;
An adjustment unit (253) that inputs an image in which a label is set by the setting unit to the machine learning device, and adjusts the setting condition corresponding to the label based on an output result with respect to the input;
A setting device. - 請求項1から8のいずれか1項に記載の構築方法を用いて、第1位置情報付き画像データ群から第1対象物識別装置(10A)を構築し、
請求項1から8のいずれか1項に記載の構築方法を用いて、前記第1位置情報付き画像データ群とは異なる第2位置情報付き画像データ群から第2対象物識別装置(10B)を構築し、
前記第1対象物識別装置及び前記第2対象物識別装置を用いて、前記対象物を識別する対象物識別方法。 Using the construction method according to any one of claims 1 to 8, the first object identification device (10A) is constructed from the image data group with the first position information,
Using the construction method according to any one of claims 1 to 8, a second object identification device (10B) is generated from an image data group with second position information different from the image data group with first position information. Build and
An object identification method for identifying the object using the first object identification device and the second object identification device. - 前記第1位置情報付き画像データ群又は前記第2位置情報付き画像データ群のいずれかの一方が、位置情報が個別に関連付けられた横方向から景観が撮影された画像データ群であり、他方が、位置情報が個別に関連付けられた上方から景観が撮影された画像データ群である、
請求項11に記載の対象物識別方法。 One of the image data group with the first position information or the image data group with the second position information is an image data group in which a landscape is photographed from the lateral direction in which the position information is individually associated, and the other is , Is a group of image data in which the landscape is photographed from above where the position information is individually associated.
The method for identifying an object according to claim 11.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017096476A JP2018194950A (en) | 2017-05-15 | 2017-05-15 | Constructing method of constructing object identification device, storage device, setting device and method of identifying object |
JP2017-096476 | 2017-05-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018212023A1 true WO2018212023A1 (en) | 2018-11-22 |
Family
ID=64274060
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/017819 WO2018212023A1 (en) | 2017-05-15 | 2018-05-08 | Building method for building object identification apparatus, storage device, setting device and object identification method |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2018194950A (en) |
WO (1) | WO2018212023A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115009943A (en) * | 2022-05-12 | 2022-09-06 | 通力电梯有限公司 | Method, device and system for tracking target object in building |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20230298311A1 (en) * | 2020-08-25 | 2023-09-21 | Nec Corporation | Image matching apparatus, control method, and non-transitory computer-readable storage medium |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09231362A (en) * | 1996-02-27 | 1997-09-05 | Fuji Electric Co Ltd | Appearance inspecting device and its method |
JP2014106617A (en) * | 2012-11-26 | 2014-06-09 | Mitsubishi Electric Corp | On-vehicle information providing device |
WO2015098313A1 (en) * | 2013-12-27 | 2015-07-02 | オリンパス株式会社 | Image processing device, image processing method, and storage medium on which image processing program is stored |
JP2016018538A (en) * | 2014-07-11 | 2016-02-01 | キヤノン株式会社 | Image recognition device and method and program |
-
2017
- 2017-05-15 JP JP2017096476A patent/JP2018194950A/en active Pending
-
2018
- 2018-05-08 WO PCT/JP2018/017819 patent/WO2018212023A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09231362A (en) * | 1996-02-27 | 1997-09-05 | Fuji Electric Co Ltd | Appearance inspecting device and its method |
JP2014106617A (en) * | 2012-11-26 | 2014-06-09 | Mitsubishi Electric Corp | On-vehicle information providing device |
WO2015098313A1 (en) * | 2013-12-27 | 2015-07-02 | オリンパス株式会社 | Image processing device, image processing method, and storage medium on which image processing program is stored |
JP2016018538A (en) * | 2014-07-11 | 2016-02-01 | キヤノン株式会社 | Image recognition device and method and program |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115009943A (en) * | 2022-05-12 | 2022-09-06 | 通力电梯有限公司 | Method, device and system for tracking target object in building |
CN115009943B (en) * | 2022-05-12 | 2024-03-29 | 通力电梯有限公司 | Method, apparatus and system for tracking target objects within a building |
Also Published As
Publication number | Publication date |
---|---|
JP2018194950A (en) | 2018-12-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7161130B2 (en) | Product information generation system | |
JP6821762B2 (en) | Systems and methods for detecting POI changes using convolutional neural networks | |
US11051000B2 (en) | Method for calibrating cameras with non-overlapping views | |
US9741121B2 (en) | Photograph localization in a three-dimensional model | |
Hou et al. | Fusing tie points' RGB and thermal information for mapping large areas based on aerial images: A study of fusion performance under different flight configurations and experimental conditions | |
US20160125252A1 (en) | Image recognition apparatus, processing method thereof, and program | |
US11587253B2 (en) | Method, apparatus, and computer program product for displaying virtual graphical data based on digital signatures | |
US11775788B2 (en) | Arbitrary visual features as fiducial elements | |
WO2018212023A1 (en) | Building method for building object identification apparatus, storage device, setting device and object identification method | |
CN111079518A (en) | Fall-down abnormal behavior identification method based on scene of law enforcement and case handling area | |
CN103793894A (en) | Cloud model cellular automata corner detection-based substation remote viewing image splicing method | |
JP2013214143A (en) | Vehicle abnormality management device, vehicle abnormality management system, vehicle abnormality management method, and program | |
CN112215964A (en) | Scene navigation method and device based on AR | |
US20210201542A1 (en) | Building maintaining method and system | |
CN115512225A (en) | End-to-end forest fire detection algorithm based on attention mechanism | |
JP2018526754A (en) | Image processing apparatus, image processing method, and storage medium | |
Huang et al. | Robust simultaneous localization and mapping in low‐light environment | |
JP6304815B2 (en) | Image processing apparatus and image feature detection method, program and apparatus thereof | |
JP4896762B2 (en) | Image processing apparatus and image processing program | |
CN114596102B (en) | Block chain-based anti-counterfeiting traceability federated learning training method and device | |
JP5158162B2 (en) | Augmented reality display system, augmented reality display method, and augmented reality display program | |
US11631221B2 (en) | Augmenting a video flux of a real scene | |
WO2019080257A1 (en) | Electronic device, vehicle accident scene panoramic image display method and storage medium | |
Tybusch et al. | Color-based and recursive fiducial marker for augmented reality | |
Bullock | 96 Development and Implementation of MODE Time Domain Object-Based Verification |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18802150 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18802150 Country of ref document: EP Kind code of ref document: A1 |