Nothing Special   »   [go: up one dir, main page]

WO2018207537A1 - ワイヤレス内視鏡及びワイヤレス内視鏡システム - Google Patents

ワイヤレス内視鏡及びワイヤレス内視鏡システム Download PDF

Info

Publication number
WO2018207537A1
WO2018207537A1 PCT/JP2018/015113 JP2018015113W WO2018207537A1 WO 2018207537 A1 WO2018207537 A1 WO 2018207537A1 JP 2018015113 W JP2018015113 W JP 2018015113W WO 2018207537 A1 WO2018207537 A1 WO 2018207537A1
Authority
WO
WIPO (PCT)
Prior art keywords
standby
unit
control unit
standby mode
mode
Prior art date
Application number
PCT/JP2018/015113
Other languages
English (en)
French (fr)
Inventor
江莉香 柳原
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to CN201880043145.6A priority Critical patent/CN110799085B/zh
Publication of WO2018207537A1 publication Critical patent/WO2018207537A1/ja
Priority to US16/677,484 priority patent/US10973390B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00011Operational features of endoscopes characterised by signal transmission
    • A61B1/00016Operational features of endoscopes characterised by signal transmission using wireless means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00004Operational features of endoscopes characterised by electronic signal processing
    • A61B1/00009Operational features of endoscopes characterised by electronic signal processing of image signals during a use of endoscope
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00025Operational features of endoscopes characterised by power management
    • A61B1/00027Operational features of endoscopes characterised by power management characterised by power supply
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00025Operational features of endoscopes characterised by power management
    • A61B1/00027Operational features of endoscopes characterised by power management characterised by power supply
    • A61B1/00032Operational features of endoscopes characterised by power management characterised by power supply internally powered
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00025Operational features of endoscopes characterised by power management
    • A61B1/00036Means for power saving, e.g. sleeping mode
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00064Constructional details of the endoscope body
    • A61B1/00108Constructional details of the endoscope body characterised by self-sufficient functionality for stand-alone use
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0655Control therefor
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/65Control of camera operation in relation to power supply
    • H04N23/651Control of camera operation in relation to power supply for reducing power consumption by affecting camera operations, e.g. sleep mode, hibernation mode or power off of selective parts of the camera
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/18Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast
    • H04N7/183Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast for receiving images from a single remote source
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/18Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast
    • H04N7/183Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast for receiving images from a single remote source
    • H04N7/185Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast for receiving images from a single remote source from a mobile camera, e.g. for remote control
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00004Operational features of endoscopes characterised by electronic signal processing
    • A61B1/00006Operational features of endoscopes characterised by electronic signal processing of control signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/045Control thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/555Constructional details for picking-up images in sites, inaccessible due to their dimensions or hazardous conditions, e.g. endoscopes or borescopes

Definitions

  • the present invention relates to a wireless endoscope and a wireless endoscope system that can be driven by a battery.
  • endoscopes for observing the surgical site during medical procedures such as surgery have become widespread.
  • Surgery using this endoscope for example, inserting an endoscope into a body cavity such as the abdominal cavity or chest cavity from a small fistula opened on the patient's body surface, and treating the organ in the body cavity under the endoscopic observation Endoscopic surgery or various examinations using an endoscope, for example, an endoscopic examination used in an otolaryngological examination is frequently performed.
  • the endoscopic image in the patient's body cavity obtained by the endoscope image sensor can be transmitted to a processor that performs signal processing.
  • the processor processes the image from the endoscope and supplies it to the monitor for display or to the recording device for recording. In this way, endoscopic images can be shared among surgical personnel such as an operator, assistant, or nurse.
  • Scope cables are used to transmit endoscopic images from the endoscope to the processor.
  • the scope cable may limit the range of movement of the endoscope or hinder operability.
  • the scope cable may be entangled with other cables to cause a failure such as disconnection. Therefore, in recent years, a wireless endoscope equipped with a rechargeable battery and transmitting an endoscopic image wirelessly to a processor or the like has been developed.
  • Japanese Unexamined Patent Application Publication No. 2013-94318 discloses an electronic endoscope that detects the use state and the non-use state of an electronic endoscope, and stops power feeding to an imaging unit when the non-use state is detected. ing.
  • the present invention provides a wireless endoscope and a wireless endoscope capable of achieving both quick recovery and low power consumption by preparing a plurality of standby modes and switching the standby mode according to the use environment of the endoscope.
  • the purpose is to provide a system.
  • a wireless endoscope includes a light source unit that emits illumination light from an insertion unit that can be inserted into a body cavity, an imaging unit that images the inside of the body cavity, and a captured image acquired by the imaging unit.
  • a plurality of circuit units including a communication unit and a power source for transmitting the power, and pairing by the communication unit while reducing power consumption than in a normal operation mode in which power is supplied from the power source to all of the plurality of circuit units
  • a first standby mode for maintaining a state, or a standby activation control unit for canceling a pairing state by the communication unit and causing a transition to a second standby mode for reducing power consumption compared to the first standby mode;
  • a standby stop control unit configured to transition from the first or second standby mode to the normal operation mode; and the first and second standby modes. ;
  • a power controller for controlling power supply to the circuit portion Te.
  • a wireless endoscope system includes the wireless endoscope and a processor that receives the captured image by communicating with the communication unit.
  • FIG. 1 is a block diagram showing a wireless endoscope according to a first embodiment of the present invention.
  • Explanatory drawing which shows the outline
  • Explanatory drawing which shows the whole structure of the endoscope system arrange
  • FIG. 4 is a block diagram showing an example of a specific configuration of a processor 30 in FIG. 3.
  • the block diagram which shows an example of the functional block of the control part 21 in FIG.
  • the block diagram which shows the 2nd Embodiment of this invention.
  • the block diagram which shows a modification The state transition diagram for demonstrating operation
  • FIG. 1 is a block diagram showing a wireless endoscope according to the first embodiment of the present invention.
  • FIG. 2 is an explanatory diagram showing an outline of the wireless endoscope of FIG.
  • FIG. 3 is an explanatory diagram showing the overall configuration of the endoscope system arranged in the operating room.
  • FIG. 4 is a block diagram showing an example of a specific configuration of the processor 30 in FIG.
  • the endoscope system 10 includes a wireless endoscope 1, a processor 30, and a monitor 40.
  • various medical devices and a monitor 40 are arranged on a cart 45 in the operating room.
  • the processor 30 is placed on the cart 45.
  • devices such as an electric scalpel device, a pneumoperitoneum device, a video recorder, a gas cylinder filled with carbon dioxide, and the like are placed as medical devices.
  • the wireless endoscope 1 and the processor 30 can wirelessly communicate with each other via wireless units 26 and 33 described later.
  • the wireless endoscope 1 is equipped with a battery 24, which will be described later, so that a photographing operation for normal endoscope observation can be performed by battery drive, and wirelessly with the processor 30. Wireless configuration to be connected.
  • the wireless endoscope 1 has an insertion portion 11 on the distal end side and an operation portion 12 on the proximal end side.
  • An image pickup unit 20 (not shown in FIGS. 2 and 3) having an image pickup element constituted by a CCD, a CMOS sensor, or the like is disposed at the distal end of the insertion unit 11.
  • the operation unit 12 is provided with a light source unit 23 (not shown in FIGS. 2 and 3) that generates illumination light for illuminating the subject.
  • the light generated by the light source unit 23 is inserted into the insertion unit 11.
  • the subject is irradiated as illumination light 15 through the lens 13.
  • the imaging unit 20 obtains a captured image based on the subject optical image by photoelectric conversion.
  • the imaging unit 20 transmits the captured image to the substrate 16 in the operation unit 12 via a signal line in the insertion unit 11.
  • Various ICs 16 a to 16 c are mounted on the substrate 16 provided in the operation unit 12. These ICs 16a to 16c and the like constitute each circuit unit in FIG.
  • the imaging unit 20 has been described as being provided at the distal end of the insertion unit 11, the imaging unit may be provided on the operation unit 12 side like a camera head, and the light source unit 23 is inserted.
  • the illumination light may be emitted from the distal end of the insertion portion 11 by being provided in the portion 11.
  • the operation unit 12 is provided with a battery 24 as a power source, and power from the battery 24 is supplied to each circuit unit mounted on the substrate 16 by power lines 18 a and 18 b connected to the battery 24. Be able to.
  • the processor 30 is configured such that a detachable wireless unit 33 can be attached to the attachment unit 32.
  • the wireless unit 33 is electrically connected to the control unit 31 and the image processing unit 35 via the connector 32a.
  • the wireless device may be built in the processor 30 instead of the detachable type.
  • the wireless unit 33 can perform wireless communication with the wireless unit 26 of the wireless endoscope 1 using, for example, a 5 GHz band or a 60 GHz band.
  • the wireless unit 33 exchanges image signals and various information transmitted in the 5 GHz band or 60 GHz band via the antenna 34.
  • the wireless unit 33 gives the received captured image to the image processing unit 35. Further, the radio unit 33 can give various information from the wireless endoscope 1 to the control unit 31 and can transmit various information from the control unit 31 to the wireless endoscope 1 via the antenna 34.
  • the image processing unit 35 is controlled by the control unit 31, performs predetermined image processing on the input captured image, and then outputs the processed image to the video output unit 36.
  • the video output unit 36 converts the input captured image into a format that can be displayed on the monitor 40 and outputs the converted image to the monitor 40.
  • the monitor 40 captures the captured image from the video output unit 36, performs predetermined display image processing, and displays it on the display screen 40a.
  • the captured image captured by the imaging unit 20 is displayed as a moving image or a still image on the display screen 40a.
  • the user I / F unit 37 is an interface that accepts user operations.
  • the user I / F unit 37 includes a front panel, various buttons of a control system, and the like, and outputs an operation signal based on a user operation to the control unit 31.
  • the user I / F unit 37 can accept various user operations such as designation of the observation mode of the wireless endoscope 1 and settings related to image display.
  • the control unit 31 can give various instructions to the control unit 21 of the wireless endoscope 1 via the radio units 33 and 26 based on an operation signal from the user I / F unit 37.
  • a power supply line is indicated by a solid line
  • a signal transmission line is indicated by a broken line.
  • the wireless endoscope 1 is provided with a control unit 21.
  • the control unit 21 may be configured by a processor using a CPU or the like (not shown), and may be configured to control each unit according to a program stored in the memory.
  • the input operation unit 22 includes a mechanical switch, a lever, or the like (not shown), and supplies an operation signal based on a user operation to the control unit 21.
  • the battery 24 generates power necessary for endoscopic observation.
  • the battery 24 generates power to be supplied to the control unit 21, the light source unit 23, the image processing unit 25, the wireless unit 26, the imaging unit 20, and the image analysis unit 29 of the wireless endoscope 1.
  • the light source unit 23 is supplied with electric power from the battery 24 and is controlled by the control unit 21 to generate light for illuminating the subject. This illumination light is transmitted to the distal end portion of the insertion portion 11 through the light guide 23 b inserted through the insertion portion 11.
  • the imaging unit 20 is supplied with power from the battery 24 and is driven by the control unit 21 to capture the subject and output the captured image to the image processing unit 25 through the signal line 20b.
  • the image processing unit 25 is supplied with power from the battery 24, performs predetermined image processing on the captured image from the imaging unit 20, and then outputs the processed image to the wireless unit 26.
  • the image processing unit 25 can perform image compression processing as image processing.
  • the wireless unit 26 as a communication unit receives power supply from the battery 24 and is driven by the control unit 21 to wirelessly transmit the captured image to the processor 30 or the like.
  • the wireless units 26 and 33 communicate with each other using a predetermined wireless transmission path, for example, a wireless LAN such as WiFi (registered trademark).
  • the wireless units 26 and 33 receive initial setting information from the control unit 21 and execute a pairing process for establishing communication with each other according to the initial setting.
  • the radio units 26 and 33 search for an empty channel so that necessary bandwidth can be secured while avoiding interference, and establish communication while changing connection settings as necessary. Therefore, the radio units 26 and 33 may not be able to establish reliable communication for image transmission only by using the initial setting information from the control unit 21. Accordingly, the wireless unit 26 not only takes a relatively long time to establish communication (pairing) for the first time after turning on the power, but also performs pairing again after communication is interrupted (pairing disconnection). In some cases, a relatively long time may be required.
  • the control unit 21 controls each unit in three operation modes of a normal operation mode, a standby mode A, and a standby mode B, as will be described later.
  • the normal operation mode is a mode in which power from the battery 24 is supplied to all the circuit units of the wireless endoscope 1 as necessary.
  • the standby mode A and the standby mode B are modes that are set when the wireless endoscope 1 is not used for observation of the subject, and power consumption is reduced compared to the normal operation mode. The supply of power from the battery 24 to each circuit unit is limited.
  • FIG. 5 is a block diagram showing an example of functional blocks of the control unit 21 in FIG.
  • the control unit 21 performs control to suppress battery consumption and return to the normal operation mode in a short time.
  • the control unit 21 performs control to supply a necessary minimum amount of power only to a necessary circuit unit in order to sufficiently suppress battery consumption.
  • the control unit 21 includes a standby control unit 41, a clock unit 42, a wireless control unit 26a, a power control unit 24a, a light source control unit 23a, an image processing control unit 25a, an imaging control unit 20a, and a memory control unit 28a.
  • the clock unit 42 outputs time information to the standby control unit 41.
  • the wireless control unit 26a, the power control unit 24a, the light source control unit 23a, the image processing control unit 25a, the imaging control unit 20a, and the memory control unit 28a are respectively a wireless unit 26, a battery 24, a light source unit 23, an image processing unit 25, The imaging unit 20 and the memory 28 are controlled.
  • the standby control unit 41 of the control unit 21 includes an extracorporeal determination unit 41a, a standby A start control unit 41b, a standby B start control unit 41c, a standby A stop control unit 41d, and a standby B stop control unit 41e.
  • the extracorporeal determination unit 41a determines whether the insertion unit 11 is inserted into the body or whether the insertion unit 11 is arranged outside the body (hereinafter referred to as in-vivo determination or in-vitro determination), and obtains a determination result. It is like that.
  • the standby A activation control unit 41b performs determination for transition to the standby mode A and setting of the standby mode A
  • the standby B activation control unit 41c performs determination for transition to the standby mode B and setting of the standby mode B.
  • the standby A stop control unit 41d performs a determination of return from the standby mode A to the normal operation mode and a return process to the normal operation mode
  • the standby B stop control unit 41e switches from the standby mode B to the normal operation mode. Return determination and normal operation mode return processing are performed.
  • the standby A activation control unit 41b gives an instruction to the image processing control unit 25a and the wireless unit 26 so that the compression rate in the image compression processing of the image processing unit 25 is higher than that in the normal operation mode.
  • control for reducing power consumption may be performed by reducing the amount of image transmission from the wireless unit 26 as compared with that in the normal operation mode.
  • the standby A activation control unit 41b may instruct the power control unit 24a to stop the power supply to the imaging unit 20 or stop the power supply to the light source unit 23.
  • the power supply to the image processing unit 25 may be stopped.
  • the standby A activation control unit 41b may control the imaging control unit 20a so as to reduce the imaging rate of the imaging unit 20 as compared with the normal mode. Further, the standby A activation control unit 41b may give an instruction to the light source control unit 23a so as to turn on the light source when imaging is stopped.
  • the wireless unit 26 takes a relatively long time to pair again after the pairing is disconnected. For this reason, when the pairing is terminated, it takes a relatively long time to return to the normal operation mode. Therefore, in the standby mode A, the standby A activation control unit 41b performs control so that pairing disconnection is not performed.
  • the standby A activation control unit 41b controls the wireless unit 26, for example, an endoscopic image, a highly compressed endoscopic image, a black image, head information, a control frame, and the like. The data is sent from anything, and the pairing state is maintained.
  • the standby B activation control unit 41c gives an instruction to the power control unit 26a to stop the power supply to all of the wireless unit 26, the light source unit 23, the image processing unit 25, and the imaging unit 20. It may be like this. That is, in this case, the pairing is also disconnected.
  • the standby B activation control unit 41c shifts to the standby mode B, the standby B activation control unit 41c controls the memory control unit 28a so that the communication setting information such as the receiver ID when the wireless unit 26 is paired is stored in the memory 28. To memorize.
  • the standby B stop control unit 41e performs pairing in a relatively short time by reading the communication setting information stored in the memory 28 and setting it in the radio unit 26 when returning from the standby mode B to the normal operation mode. It is supposed to be.
  • the standby A activation control unit 41b determines the operation mode by determining whether the insertion portion 11 of the endoscope is inserted into the body or whether the insertion portion 11 is disposed outside the body (hereinafter referred to as “external determination”). Switching may be performed.
  • the extracorporeal determination unit 41a may detect that the user has operated a switch (not shown) of the input operation unit 22 and determine that the insertion unit 11 is disposed outside the body.
  • the insertion unit 11 of the wireless endoscope 1 is provided with a sensor unit 51 having one or a plurality of types of sensors.
  • the sensor unit 51 may be provided with various sensors such as a temperature sensor, a humidity sensor, a motion sensor, an acceleration sensor, and a gyro sensor.
  • the sensor unit 51 outputs the detection results of one or more sensors to the standby control unit 41 of the control unit 21.
  • the extracorporeal determination unit 41a of the standby control unit 41 determines whether or not the insertion unit 11 is arranged outside the body depending on the detection result of the temperature and humidity when the sensor unit 51 is provided with a temperature sensor or a humidity sensor. May be determined.
  • the wireless endoscope 1 is also provided with an image analysis unit 29.
  • the image analysis unit 29 determines whether the image captured by the imaging unit 20 is an in-vivo image (endoscopic image) of the subject or an image outside the subject, such as image brightness, Judge by color analysis.
  • the image analysis unit 29 provides the standby control unit 41 with a determination result as to whether or not the captured image of the imaging unit 20 is reddish on average.
  • the extracorporeal determination unit 41a of the standby control unit 41 indicates that the insertion unit 11 is inserted into the body when the degree of redness of the captured image (for example, the number of pixels in the screen) is higher than a predetermined threshold. You may judge.
  • the standby control unit 41 switches the operation mode based on the determination whether the insertion unit 11 of the wireless endoscope 1 is not used for observation and is left unattended (hereinafter referred to as unattended determination). It may be.
  • the standby control unit 41 may perform the abandonment determination based on a determination result of whether or not the amount of motion of the endoscopic image from the imaging unit 20 is greater than a predetermined threshold.
  • the standby control unit 41 determines to leave when the amount of movement is smaller than a predetermined threshold.
  • the sensor unit 51 includes a motion sensor or an acceleration sensor
  • the standby control unit 41 is left unmoved by the detection result of the motion sensor or the acceleration sensor. You may determine that.
  • the standby control unit 41 switches the operation mode based on a determination (hereinafter referred to as a return determination) whether or not the insertion unit 11 of the wireless endoscope 1 has been left unattended. You may come to do.
  • the standby control unit 41 may perform the return determination based on the user operation of the input operation unit 22. Further, the standby control unit 41 may perform the return determination when the amount of movement of the endoscopic image from the imaging unit 20 is larger than a predetermined threshold.
  • the sensor unit 51 includes a motion sensor or an acceleration sensor
  • the standby control unit 41 is moved without being inserted in the insertion unit 11 according to the detection result of the motion sensor or the acceleration sensor. This may be detected to determine return.
  • the standby mode A is activated.
  • the standby B activation control unit 41c is determined to be disposed outside the body by the extracorporeal determination unit 41a, and activates the standby mode B when a predetermined period of time elapses after activation of the standby mode A.
  • the standby A stop control unit 41d determines that it is placed in the body by the extracorporeal determination unit 41a, or determines that the standby A stop control unit 41d is used for observation by the neglected determination. Stop A and return to normal mode.
  • the standby B stop control unit 41e determines that it is placed in the body by the extracorporeal determination unit 41a, or if it is determined that it has been used for observation by the neglect determination, Stop B and return to normal mode.
  • FIG. 6 is a flowchart for explaining the operation of the first embodiment
  • FIG. 7 is a state transition diagram for explaining the operation of the first embodiment.
  • the operation is performed in the three operation modes of the normal operation mode, the standby mode A, and the standby mode B. Transition according to the conditions shown in.
  • control unit 21 when the power of the wireless endoscope 1 is turned on, the control unit 21 first sets the normal operation mode in step S1 of FIG.
  • the standby control unit 41 of the control unit 21 controls the power control unit 24 a to supply the power of the battery 24 to all circuit units of the wireless endoscope 1. Thereby, battery drive is started and imaging by the imaging unit 20 is performed. The captured image is subjected to image processing by the image processing unit 25 and then transmitted to the processor 30 by the wireless unit 26.
  • the standby control unit 41 of the control unit 21 performs the extracorporeal determination in step S2.
  • the extracorporeal determination unit 41a performs extracorporeal determination based on an operation signal based on a user operation from the input operation unit 22, an image analysis result of the image analysis unit 29, or a detection result from the sensor unit 51, and the insertion unit 11 is disposed outside the body. If it is determined that the body has been placed, the process proceeds to step S3. If it is determined that the body has been placed inside the body, the outside body determination in step S2 is repeated.
  • the standby control unit 41 determines whether or not to shift to the standby mode A (step S3). For example, if the insertion unit 11 is removed from the body and left outside the body for a predetermined period or longer, the standby A activation control unit 41b sets the standby mode A (step S4).
  • the standby A activation control unit 41b gives an instruction to the image processing control unit 25a in the standby mode A to increase the image compression rate than in the normal operation mode, or gives an instruction to the power control unit 24a.
  • the power supply to the imaging unit 20, the light source unit 23, the image processing unit 25, etc. is stopped. With these processes, the power consumption can be reduced in the standby mode A than in the normal operation mode.
  • the standby A activation control unit 41b gives an instruction to the wireless control unit 26a so that the wireless communication to the processor 30 by the wireless unit 26 is continued.
  • the standby A stop control unit 41d determines whether to return from the standby mode A to the normal operation mode in the next step S5. For example, in the standby mode A, the wireless endoscope 1 can be used when an operator inserts the insertion portion 11 into the body or moves the insertion portion 11 left outside the body for use in observation inside the body. When it is determined that (scope) is used, the standby A stop control unit 41d returns to the normal operation mode in step S1. For example, the standby A stop control unit 41d gives an instruction to the power control unit 24a to restart the power supply of each unit of the wireless endoscope 1.
  • the standby mode A wireless communication by the wireless unit 26 is continued, and it is not necessary to execute a new pairing process when returning to the normal operation mode, and the return to the normal operation mode is performed in a short time. Is called.
  • step S6 the standby B activation control unit 41c determines whether or not to shift to the standby mode B. If the insertion unit 11 has been left unattended for a predetermined period from the start of the standby mode A, the standby B activation control unit 41c sets the standby mode B (step S7).
  • the standby B activation control unit 41c controls the memory control unit 28a to store the wireless setting information in the wireless unit 26 in the memory 28, and then gives an instruction to the power control unit 24a. Then, power supply to the imaging unit 20, the light source unit 23, the wireless unit 26, and the image processing unit 25 is stopped. By this processing, power consumption in the standby mode B can be reduced as compared with the standby mode A.
  • the wireless communication to the processor 30 by the wireless unit 26 is cut off, and it takes a relatively long time to return to the normal operation mode, but for most circuit parts. Since power supply is stopped, power consumption can be sufficiently reduced.
  • the standby B stop control unit 41e determines whether to return from the standby mode B to the normal operation mode in the next step S8. For example, in the standby mode B, the scope is used such as when the operator inserts the insertion portion 11 into the body or moves the insertion portion 11 left outside the body to be used for observation inside the body. When the determination is made, the standby B stop control unit 41e returns to the normal operation mode in step S1. For example, the standby B stop control unit 41 e gives an instruction to the power control unit 24 a to restart the power supply of each unit of the wireless endoscope 1. In this case, the standby B stop control unit 41e gives the communication setting information stored in the memory 28 to the wireless unit 26 so as to shorten the pairing operation in the wireless unit 26.
  • step S6 if the standby B activation control unit 41c does not determine that the standby mode B should be entered, the process returns to step S5 and the return determination is repeated. If it is determined in step S8 that the standby B stop control unit 41e should not return to the normal operation mode, the process returns to step S8 and the return determination is repeated.
  • the wireless endoscope when it is not in use, it shifts to the standby mode to reduce power consumption.
  • the standby mode A that maintains the pairing state with the processor and enables the return to the normal operation mode in a short time is set within a predetermined period when the normal operation mode has become unused. .
  • the power supply to the radio unit is also stopped and the standby mode B is released to cancel the pairing state, thereby sufficiently reducing power consumption. To do. Thereby, it is possible to obtain a sufficient power consumption reduction effect while shortening the time for returning to the normal operation mode.
  • control when the insertion portion is present in the body, control is performed so as not to shift to the standby mode, enabling reliable imaging of the body cavity, and no endoscopic image being acquired when necessary. This can be prevented.
  • FIG. 8 is a block diagram showing a second embodiment of the present invention.
  • the standby mode As the standby mode, the standby mode A and the wireless unit pairing state that reduces power consumption and shortens the return time to the normal operation mode while maintaining the wireless unit pairing state. Is set to standby mode B to obtain a sufficient power consumption reduction effect.
  • the standby mode A is divided into a plurality of modes so that the effect of reducing the power consumption and the effect of reducing the return time to the normal operation mode can be finely controlled.
  • FIG. 9 is a chart for explaining the standby mode in the second embodiment.
  • a circle indicates that power is supplied, and a cross indicates that power is not supplied.
  • FIG. 9 shows an example in which the standby mode is divided from standby mode 1 to standby mode 5.
  • the standby mode the endoscope image is compressed at the highest compression rate and then wirelessly transmitted.
  • power is supplied to all of the imaging unit 20, the light source unit 23, the image processing unit 25, and the wireless unit 26.
  • the standby mode 1 the power consumption in the wireless unit 26 can be reduced compared with that in the normal operation mode by increasing the compression rate and decreasing the transmission rate.
  • Standby mode 2 is to stop power supply to the imaging unit 20.
  • a black, non-imaged compressed image is output from the image processing unit 25.
  • This compressed image does not have image information, and the code amount can be sufficiently reduced, and the power consumption in the wireless unit 26 can be reduced as compared with the standby mode 1.
  • the power consumption of the imaging unit 20 can be reduced as compared with the standby mode 1.
  • the light source unit 23 is turned on or provided in the processor 30 or the wireless endoscope 1 in order for the operator to recognize that the power of the wireless endoscope 1 (scope) is turned on. Control such as turning on an LED (not shown) may be performed.
  • the standby mode 2 no image data is transmitted from the wireless unit 26 to the processor 30, and the pairing state is maintained.
  • Standby mode 3 is to stop power supply to the imaging unit 20 and the light source unit 23. Also in this case, the image processing unit 25 outputs a black, non-imaged compressed image. Since the power supply to the light source unit 23 is stopped, the power consumption can be significantly reduced as compared with the standby mode 2. Even in the standby mode 3, no image data is transmitted from the wireless unit 26 to the processor 30, and the pairing state is maintained.
  • Standby mode 4 is to stop power supply to the imaging unit 20, the light source unit 23, and the image processing unit 25. As a result, the power consumption in the standby mode 4 can be reduced as compared with the standby mode 3.
  • the control unit 21 since no signal is output from the image processing unit 25, the control unit 21 performs pairing according to the communication protocol to maintain the pairing state with the processor 30 with respect to the wireless unit 26. Packet data necessary for maintaining the ring state, for example, predetermined data (for example, text data) such as header information, control frame, and address information is transmitted. Therefore, in the standby mode 4, the pairing state is maintained.
  • Standby mode 1 to standby mode 4 correspond to standby mode A in the first embodiment.
  • the standby mode 5 corresponds to the standby mode B in the first embodiment, and as shown in FIG. 9, the power supply not only to the imaging unit 20, the light source unit 23, and the image processing unit 25 but also to the wireless unit 26 is stopped. To do. That is, the entire scope except the control unit 21 is turned off.
  • communication setting information such as a receiver ID used by the wireless unit 26 for communication is stored in the memory 28. That is, in the chart of FIG. 9, the mode in the upper column returns faster and the power consumption is lower in the lower column mode.
  • the control unit 21 is different from the standby control unit 41 in FIG. 5 only in the function of the standby control unit 45.
  • the standby control unit 45 includes an extracorporeal determination unit 46, a standby 1 start control unit 45a1, a standby 2 start control unit 45a2,..., A standby n start control unit 45an, a standby 1 stop control unit 45b1, a standby 2 stop control unit 45b2,. -It is comprised by the standby n stop control part 45bn.
  • the extracorporeal determination unit 46 has the same function as the extracorporeal determination unit 41a of FIG.
  • the standby 1 activation control unit 45a1, the standby 2 activation control unit 45a2,..., The standby n activation control unit 45an respectively perform activation determination (determination of transition conditions) of the standby modes 1, 2,. Standby modes 1, 2,..., N (n is an integer) are executed. Further, the standby 1 stop control unit 45b1, the standby 2 stop control unit 45b2,..., The standby n stop control unit 45bn perform the stop determination (return determination) of the standby modes 1, 2,. It returns to the operation mode.
  • FIG. 9 shows an example in which n is 5.
  • the standby 1 activation control unit 45a1 to standby 5 activation control unit 45a5 execute the standby modes 1 to 5 in FIG. 9, respectively, and the standby 1 stop control unit 45b1 to standby 5
  • the stop control unit 45b5 makes a stop determination in each of the standby modes 1 to 5, and returns to the normal operation mode.
  • FIG. 10 is a state transition diagram for explaining the operation of the second embodiment.
  • the operation is performed in n + 1 types of operation modes of the normal operation mode and standby mode 1 to standby mode n. Transition is performed according to the conditions shown in FIG.
  • the control unit 21 first sets the normal operation mode of FIG. In the standby 1 determination to standby n determination in which the transition condition determination of FIG. 10 is performed, it is used as a condition that the insertion portion 11 is arranged outside the body. Further, the standby 1 determination satisfies the condition when a predetermined period elapses after the insertion portion 11 is left outside the body. Further, for example, in the standby 2 determination to standby n determination, in the standby mode 1 to standby mode m (n ⁇ 1), the transition condition is set when the predetermined period elapses with the insertion unit 11 left outside the body. Satisfied.
  • FIG. 10 it is possible to shift directly from the normal operation mode to standby mode 1 to standby mode n by standby 1 determination to standby n determination.
  • the normal operation mode is directly shifted to the standby mode 3 or the standby mode 4 according to the remaining battery level of the battery 24. You may come to do.
  • the time required for returning to the normal operation mode differs in standby mode 1 to standby mode n.
  • the next procedure is a procedure that may take a long time to return, for example, the next procedure is designated by a user operation, so that, for example, the normal operation mode is directly shifted to the standby mode 4 or the like. It may be.
  • the return determination satisfies the transition condition when the insertion unit 11 is used for observation from a state where it is left unattended. For example, the return determination is performed based on the user operation of the input operation unit 22, the analysis result of the image analysis unit 29, the motion detection of the sensor unit 51, and the like.
  • standby 1 determination to standby n determination are performed by the extracorporeal determination unit 46 and the standby 1 activation control unit 45a1 to standby n activation control unit 45an.
  • the return determination is performed by the standby 1 stop control unit 45b1 to standby n stop control unit 45bn.
  • FIG. 10 shows only an example of transition from the standby mode 1 to the standby mode 5 side. However, for example, if a predetermined transition condition is satisfied between the standby mode 1 and the standby mode 5, between the modes. You may change freely. For example, when the time until the next use of the scope can be grasped to some extent empirically, when the unused scope is detected, the normal operation mode first shifts to the standby mode 4, and the standby mode 4 changes to the standby mode as time passes. A transition toward mode 1 may be made.
  • FIG. 11 is a block diagram showing a modification.
  • the standby control unit 45 of the control unit 21 includes the standby 3 activation control unit 45 a 3, the standby 4 activation control unit 45 a 4, the standby 5 activation control unit 45 a 5, and the standby 3 stop control unit 45 b 3 in addition to the extracorporeal determination unit 46.
  • the standby 4 stop control unit 45b4 and the standby 5 stop control unit 45b5 are provided.
  • the standby 3 activation control unit 45a3 transitions from the normal operation mode to the standby mode 3 when it is detected that the wireless endoscope 1 is not used in the normal operation mode.
  • the standby control unit 45 determines the wireless environment based on information from the wireless unit 26, and performs transition determination of either the standby mode 4 or 5 based on the determination result.
  • FIG. 12 is a state transition diagram for explaining the operation of this modification
  • FIG. 13 is a flowchart for explaining the operation of this modification. In FIG. 13, the same steps as those in FIG.
  • step S2 when it is determined in step S2 that the insertion unit 11 is located outside the body and left outside the body for a predetermined time, the standby 3 activation control unit 45a3 determines that the wireless endoscope 1 is not used. Determination is made (step S11), and the normal operation mode is shifted to the standby mode 3 (step S12). Note that the return determination in step S5 corresponds to the return determination i in FIG.
  • the standby control unit 45 determines whether or not the communication environment is good in step S13 (step S13).
  • the wireless unit 26 gives, for example, error rate information to the control unit 21 as an index indicating the communication environment, and the standby control unit 45 has a good communication environment when the error rate is equal to or lower than a predetermined value. If the error rate exceeds a predetermined value, it may be determined that the communication environment is bad.
  • Various information such as an S / N ratio can be adopted as an index indicating the communication environment.
  • the wireless unit 26 cancels the pairing with the processor 30 when the communication environment deteriorates, the possibility that the channel used by the wireless unit 26 with the processor 30 is used for other devices increases. Re-pairing may take a relatively long time. Therefore, when the communication environment is good, transition determination is performed by the standby 5 activation control unit 45a5, and when the communication environment is bad, transition determination is performed by the standby 4 activation control unit 45a4.
  • the standby 5 activation control unit 45a5 determines that the transition condition is satisfied when the wireless endoscope 1 is left for a predetermined period in the standby mode 3. (Step S15), the standby mode 3 is changed to the standby mode 5 (step S17).
  • the standby 4 activation control unit 45a4 determines that the transition condition is satisfied when the wireless endoscope 1 is left for a predetermined period in the standby mode 3. (Step S14), the standby mode 3 is changed to the standby mode 4 (step S16). Note that the return determination in step S8 corresponds to the return determination ii or iii in FIG.
  • FIG. 14 is a block diagram showing another modification.
  • the same components as those in FIG. Note that the standby modes 3 and 5 in the present modification are as shown in FIG. 9, for example.
  • the standby control unit 45 of the control unit 21 includes the standby 3 activation control unit 45a3, the standby 5 activation control unit 45a5, the standby 3 stop control unit 45b3, and the standby 5 stop control unit 45b5 in addition to the extracorporeal determination unit 46. It has the function of.
  • the standby control unit 45 determines whether the standby mode 3 or 5 is in transition based on the remaining battery level information. Further, when the remaining amount of the battery 24 is extremely small, the standby 5 stop control unit 45b5 maintains the standby mode 5 without returning to the normal operation mode even when the wireless endoscope 1 is moved. It is like that.
  • FIG. 15 is a state transition diagram for explaining the operation of this modification
  • FIG. 16 is a flowchart for explaining the operation of this modification. In FIG. 16, the same steps as those in FIG.
  • the standby control unit 45 determines that the remaining amount of the battery 24 is less than a predetermined threshold. Is also larger (step S21).
  • the remaining amount of the battery 24 is relatively small, it may be better to suppress the power consumption than to consider the recovery time, and the transition to the standby mode 5 is made rather than the transition from the normal operation mode to the standby mode 3 Sometimes better.
  • the standby 3 activation control unit 45a3 determines that the wireless endoscope 1 has been left for a predetermined period (step S12), and then enters the standby mode from the normal operation mode. The mode is changed to mode 3 (step S23). Note that the return determination in step S5 corresponds to the return determination I in FIG.
  • the standby 5 activation control unit 45a5 determines that the wireless endoscope 1 has been left for a predetermined period (step S24), and switches from the normal operation mode to the standby mode 5. Direct transition is made (step S25). As shown in FIG. 15, even when the wireless endoscope 1 is left for a predetermined period from the state of the standby mode 3, the standby mode 5 is set in step S25.
  • the standby 5 stop control unit 45b5 performs the return determination in step S26. In this case, the standby 5 stop control unit 45b5 determines whether or not the remaining amount of the battery 24 is lower than a predetermined lower limit threshold in step S27. If the remaining amount of the battery 24 is lower than a predetermined lower limit threshold, even when the wireless endoscope 1 is moved for use, the standby 5 stop control unit 45b5 performs a return determination. First, the standby mode 5 is maintained (return determination III in FIG. 15).
  • the standby 5 stop control unit 45b5 when the remaining amount of the battery 24 has a remaining amount equal to or greater than a predetermined lower limit threshold, when the wireless endoscope 1 is moved for use, Assuming that the return condition is satisfied, the normal operation mode is restored (return determination II in FIG. 15).
  • the normal operation mode is switched to the standby mode 5 in order to reduce power consumption. Further, when the remaining amount of the battery is extremely small, the standby mode 5 is maintained even when the use of the scope is resumed. As a result, it is possible to prevent the wireless endoscope 1 from being misused in a state where almost no remaining battery power remains.
  • the present invention is not limited to the above-described embodiments as they are, and can be embodied by modifying constituent elements without departing from the scope of the invention in the implementation stage.
  • various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the above embodiments. For example, you may delete some components of all the components shown by embodiment.
  • constituent elements over different embodiments may be appropriately combined.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Medical Informatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Endoscopes (AREA)
  • Studio Devices (AREA)
  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)

Abstract

ワイヤレス内視鏡は、光源部、撮像部、通信部及び電源を含む複数の回路部と、前記電源から前記複数の回路部の全てに電力供給を行う通常動作モード時よりも消費電力を低減すると共に前記通信部によるペアリング状態を維持する第1のスタンバイモード、又は前記通信部によるペアリング状態を解除すると共に前記第1のスタンバイモード時よりも消費電力を低減する第2のスタンバイモードに遷移させるスタンバイ起動制御部と、前記第1又は第2のスタンバイモードから前記通常動作モードに遷移させるスタンバイ停止制御部と、前記第1及び第2のスタンバイモードにおいて前記回路部への電力供給を制御する電力制御部とを具備する。

Description

ワイヤレス内視鏡及びワイヤレス内視鏡システム
 本発明は、バッテリにより駆動可能なワイヤレス内視鏡及びワイヤレス内視鏡システムに関する。
 近年、手術等の医療行為に際して術部を観察するための内視鏡が普及している。この内視鏡を用いた手術、例えば、患者体表面に開口した小瘻から腹腔あるいは胸腔などの体腔内に内視鏡を挿入し、該内視鏡観察下において体腔内臓器の処置等を行う内視鏡下外科手術、或いは内視鏡を用いた各種検査、例えば耳鼻科の診察において利用される内視鏡検査等も頻繁に行われるようになっている。
 内視鏡の撮像素子によって得られる患者体腔内の内視鏡画像は、信号処理を行うプロセッサに伝送可能である。プロセッサは、内視鏡からの画像を信号処理し、表示用としてモニタに供給したり、記録用として記録装置に供給する。こうして、術者、助手、あるいは看護婦など手術関係者間で内視鏡画像を共有することができる。
 内視鏡からプロセッサに内視鏡画像を伝送するために、スコープケーブルが用いられる。しかしながら、スコープケーブルによって内視鏡の移動範囲が制限され、或いは操作性が妨げられることがある。また、スコープケーブルが他のケーブルに絡まって断線等の障害が生じることもある。そこで、近年、充電式のバッテリを搭載し、プロセッサ等に対して内視鏡画像を無線により伝送するワイヤレス内視鏡が開発されている。
 携帯性を考慮すると、ワイヤレス内視鏡に搭載するバッテリの重量には制限があり、バッテリ容量も制限される。このため、ワイヤレス内視鏡においては省電力化が求められている。
 日本国特開2013ー94318号公報においては、電子内視鏡の使用状態と非使用状態とを検知し、非使用状態を検知すると、撮像手段への給電を停止する電子内視鏡が開示されている。
 しかしながら、日本国特開2013ー94318号公報の提案では、使用状態と非使用状態のみを検知して撮像手段への給電を制御しており、必ずしも十分な省電力化を図ることはできない。また、仮に、非使用状態において内視鏡への電力供給を完全に停止すると、バッテリからの電力の再供給に際して、電源の投入操作や各種設定が必要となり、内視鏡画像を取得するまでに煩雑な作業と比較的長い時間が必要となる場合がある。特に、無線通信部において相手機器との通信の確立には比較的長時間を要することがあり、手技の進行が長時間妨げられてしまう。
 本発明は、複数のスタンバイモードを用意し、内視鏡の使用環境に応じてスタンバイモードを切換えることにより、素早い復帰と低消費電力化を両立することができるワイヤレス内視鏡及びワイヤレス内視鏡システムを提供することを目的とする。
 本発明の一態様によるワイヤレス内視鏡は、体腔内に挿入可能な挿入部から照明光を照射させるための光源部、前記体腔内を撮像するための撮像部、前記撮像部が取得した撮像画像を送信するための通信部及び電源を含む複数の回路部と、前記電源から前記複数の回路部の全てに電力供給を行う通常動作モード時よりも消費電力を低減すると共に前記通信部によるペアリング状態を維持する第1のスタンバイモード、又は前記通信部によるペアリング状態を解除すると共に前記第1のスタンバイモード時よりも消費電力を低減する第2のスタンバイモードに遷移させるスタンバイ起動制御部と、前記第1又は第2のスタンバイモードから前記通常動作モードに遷移させるスタンバイ停止制御部と、前記第1及び第2のスタンバイモードにおいて前記回路部への電力供給を制御する電力制御部とを具備する。
 本発明の一態様によるワイヤレス内視鏡システムは、上記ワイヤレス内視鏡と、前記通信部との間で通信を行って前記撮像画像を受信するプロセッサとを具備する。
本発明の第1の実施の形態に係るワイヤレス内視鏡を示すブロック図。 図1のワイヤレス内視鏡の概要を示す説明図。 手術室に配置される内視鏡システムの全体構成を示す説明図。 図3中のプロセッサ30の具体的な構成の一例を示すブロック図。 図1中の制御部21の機能ブロックの一例を示すブロック図。 第1の実施の形態の動作を説明するためのフローチャート。 第1の実施の形態の動作を説明するための状態遷移図。 本発明の第2の実施の形態を示すブロック図。 第2の実施の形態におけるスタンバイモードを説明するための図表。 第2の実施の形態の動作を説明するための状態遷移図。 変形例を示すブロック図。 変形例の動作を説明するための状態遷移図。 変形例の動作を説明するためのフローチャート。 他の変形例を示すブロック図。 他の変形例の動作を説明するための状態遷移図。 他の本変形例の動作を説明するためのフローチャート。
 以下、図面を参照して本発明の実施の形態について詳細に説明する。
(第1の実施の形態)
 図1は本発明の第1の実施の形態に係るワイヤレス内視鏡を示すブロック図である。図2は図1のワイヤレス内視鏡の概要を示す説明図である。図3は手術室に配置される内視鏡システムの全体構成を示す説明図である。また、図4は図3中のプロセッサ30の具体的な構成の一例を示すブロック図である。
 先ず、図2から図4を参照してワイヤレス内視鏡を用いた内視鏡システムの概略について説明する。
 図3に示すように、内視鏡システム10は、ワイヤレス内視鏡1、プロセッサ30及びモニタ40によって構成される。図3に示すように、手術室においては、カート45上に各種医療機器及びモニタ40が配置される。カート45上には、プロセッサ30が載置される。また、カート45上には、医療機器として、例えば電気メス装置、気腹装置、ビデオレコーダ等の装置類や、二酸化炭素を充填したガスボンベ等も載置される。
 ワイヤレス内視鏡1とプロセッサ30とは、後述する無線部26,33を介して互いに無線通信することができるようになっている。ワイヤレス内視鏡1は、後述するバッテリ24を搭載することで、バッテリ駆動により、通常の内視鏡観察のための撮影動作を行うことができるようになっており、プロセッサ30とは無線にて接続されるワイヤレス構成である。
 図2に示すように、ワイヤレス内視鏡1は、先端側に挿入部11を有し、基端側に操作部12を有して構成される。挿入部11の先端部にはCCDやCMOSセンサ等によって構成される撮像素子を有する撮像部20(図2及び図3では図示省略)が配設される。また、操作部12には、被写体を照明するための照明光を発生する光源部23(図2及び図3では図示省略)が設けられており、光源部23が発生した光は、挿入部11の先端に導かれ、レンズ13を介して被写体に照明光15として照射されるようになっている。
 被写体からの戻り光は、挿入部11の先端のレンズ14を介して入射され、撮像部20の撮像面に結像するようになっている。撮像部20は光電変換によって被写体光学像に基づく撮像画像を得る。撮像部20は撮像画像を挿入部11内の信号線を介して操作部12内の基板16に伝送するようになっている。操作部12に設けられた基板16には、各種IC16a~16cが搭載されている。これらのIC16a~16c等によって、図1の各回路部が構成されている。
 なお、撮像部20は、挿入部11の先端に設けられているものとして説明したが、カメラヘッドのように撮像部が操作部12側に設けられていてもよく、また、光源部23を挿入部11内に設けて照明光を挿入部11の先端から出射するようになっていてもよい。
 操作部12には、電源であるバッテリ24が配設されており、バッテリ24に接続された電源線18a,18bによって、基板16上に搭載された各回路部にバッテリ24からの電力を供給することができるようになっている。
 図4において、プロセッサ30は、着脱式の無線部33が取付部32に取り付け可能に構成されている。無線部33はコネクタ32aを介して制御部31及び画像処理部35に電気的に接続されている。なお、着脱式でなく、プロセッサ30に無線機器が内蔵されていてもよい。
 無線部33は、ワイヤレス内視鏡1の無線部26との間で例えば5GHz帯又は60GHz帯による無線通信が可能である。無線部33は、アンテナ34を介して5GHz帯又は60GHz帯で伝送された画像信号や各種情報の授受を行う。
 無線部33は、受信した撮像画像を画像処理部35に与える。また、無線部33は、ワイヤレス内視鏡1からの各種情報を制御部31に与えると共に、制御部31からの各種情報をアンテナ34を介してワイヤレス内視鏡1に送信することができる。
 画像処理部35は、制御部31に制御されて、入力された撮像画像に対して所定の画像処理を施した後ビデオ出力部36に出力する。ビデオ出力部36は、入力された撮像画像をモニタ40に表示可能なフォーマットに変換してモニタ40に出力する。モニタ40は、ビデオ出力部36からの撮像画像を取り込んで所定の表示画像処理を施した後表示画面40a上に表示させる。こうして、表示画面40a上において、撮像部20が撮像した撮像画像が動画像又は静止画像として表示される。
 ユーザI/F部37は、ユーザ操作を受け付けるインタフェースである。例えば、ユーザI/F部37は、フロントパネルや制御系の各種ボタン等によって構成され、ユーザ操作に基づく操作信号を制御部31に出力する。ユーザI/F部37によって、ワイヤレス内視鏡1の観察モードの指定や、画像表示に関する設定等の各種ユーザ操作を受け付けることができる。制御部31はユーザI/F部37からの操作信号に基づいて、無線部33,26を介して、ワイヤレス内視鏡1の制御部21に各種指示を与えること等が可能である。
 図1においては、実線によって電力供給ラインを示し、破線によって信号の伝送ラインを示している。図1において、ワイヤレス内視鏡1には、制御部21が設けられている。制御部21は、図示しないCPU等を用いたプロセッサによって構成することができ、メモリに記憶されたプログラムに従って各部を制御することができるようになっていてもよい。入力操作部22は、図示しないメカスイッチやレバー等によって構成されており、ユーザ操作に基づく操作信号を制御部21に供給するようになっている。
 バッテリ24は、内視鏡観察に必要な電力を発生する。例えば、バッテリ24は、ワイヤレス内視鏡1の制御部21、光源部23、画像処理部25、無線部26、撮像部20及び画像解析部29に供給する電力を発生する。光源部23は、バッテリ24から電力の供給を受け、制御部21に制御されて被写体を照明するための光を発生する。この照明光は、挿入部11に挿通されたライトガイド23bを介して挿入部11の先端部に伝送される。撮像部20はバッテリ24から電力の供給を受け、制御部21に駆動されて、被写体を撮像し、撮像画像を信号線20bを介して画像処理部25に出力する。
 画像処理部25は、バッテリ24から電力の供給を受け、撮像部20からの撮像画像に対して所定の画像処理を施した後、無線部26に出力する。例えば、画像処理部25は、画像処理として画像圧縮処理が可能である。通信部である無線部26は、バッテリ24から電力の供給を受け、制御部21に駆動されて、撮像画像をプロセッサ30等に無線送信する。
 無線部26,33は、所定の無線伝送路、例えばWifi(登録商標)等の無線LANを採用して相互に通信を行う。無線部26,33は、制御部21から初期設定情報が与えられて、初期設定に従って相互に通信を確立するペアリング処理を実行するようになっている。手術室には多くの無線機器が存在する可能性がある。無線部26,33は、混信を避けて必要な帯域を確保できるように、空きチャンネルを検索し、必要に応じて接続のための設定を変更しながら、通信を確立する。従って、無線部26,33は、制御部21からの初期設定情報を用いただけでは、画像伝送のための確実な通信を確立することができない場合がある。従って、無線部26は、電源投入後の最初に通信確立(ペアリング)を実行する場合において比較的長時間を要するだけでなく、一端通信が途切れた(ペアリング切断)後再度ペアリングする場合においても、比較的長時間を要する場合がある。
 本実施の形態においては、制御部21は、後述するように、通常動作モード及びスタンバイモードA及びスタンバイモードBの3つの動作モードで各部を制御するようになっている。通常動作モードは、バッテリ24からの電力をワイヤレス内視鏡1の全ての回路部に必要なだけ供給するモードである。スタンバイモードA及びスタンバイモードBは、ワイヤレス内視鏡1を被検体の観察に用いていない場合に設定するモードであり、通常動作モードに比べて消費電力が低減されるようになっており、例えば、バッテリ24からの電力の各回路部への供給を制限するようになっている。
 図5は図1中の制御部21の機能ブロックの一例を示すブロック図である。
 本実施の形態においては、制御部21は、スタンバイモードAでは、バッテリ消費を抑制すると共に短時間で通常動作モードに復帰することを可能にする制御を行う。一方、スタンバイモードBでは、制御部21は、バッテリ消費を十分に抑制するために、必要最低限の電力を必要な回路部のみに供給する制御を行う。
 制御部21は、スタンバイ制御部41、時計部42、無線制御部26a、電力制御部24a、光源制御部23a、画像処理制御部25a、撮像制御部20a及びメモリ制御部28aを有している。時計部42は、時間情報をスタンバイ制御部41に出力する。無線制御部26a、電力制御部24a、光源制御部23a、画像処理制御部25a、撮像制御部20a及びメモリ制御部28aは、それぞれ、無線部26、バッテリ24、光源部23、画像処理部25、撮像部20及びメモリ28を制御するようになっている。
 制御部21のスタンバイ制御部41は、体外判定部41a、スタンバイA起動制御部41b、スタンバイB起動制御部41c、スタンバイA停止制御部41d、スタンバイB停止制御部41eを備えている。体外判定部41aは、挿入部11が体内に挿入されているか否か又は挿入部11が体外に配置されているか否かの判定(以下、体内判定又は体外判定という)を行い、判定結果を得るようになっている。スタンバイA起動制御部41bはスタンバイモードAに遷移するための判定及びスタンバイモードAの設定を行い、スタンバイB起動制御部41cはスタンバイモードBに遷移するための判定及びスタンバイモードBの設定を行う。また、スタンバイA停止制御部41dは、スタンバイモードAから通常動作モードへの復帰の判定及び通常動作モードへの復帰処理を行い、スタンバイB停止制御部41eは、スタンバイモードBから通常動作モードへの復帰の判定及び通常動作モードへの復帰処理を行う。
 例えば、スタンバイA起動制御部41bは、スタンバイモードAにおいて、画像処理制御部25a及び無線部26に指示を与えて、画像処理部25の画像圧縮処理における圧縮率を通常動作モード時よりも高くして、無線部26からの画像の伝送量を通常動作モード時に比べて低減することにより消費電力を低減する制御を行ってもよい。或いは、スタンバイA起動制御部41bは、スタンバイモードAにおいて、電力制御部24aに指示を与えて、撮像部20への電力供給を停止させてもよく、光源部23への電力供給を停止させてもよく、また、画像処理部25への電力供給を停止させてもよい。また、スタンバイA起動制御部41bは、スタンバイモードAにおいて、撮像制御部20aを制御して、撮像部20の撮像レートを通常モードよりも低減させるように制御してもよい。また、スタンバイA起動制御部41bは、光源制御部23aに指示を与えて、撮像停止時に光源を点灯させるように制御してもよい。
 上述したように、無線部26は、ペアリング切断後において再度ペアリングする場合には、比較的長い時間を要する。このため、一端ペアリングを切断すると、通常動作モードに復帰するまでに比較的長時間を要する。そこで、スタンバイA起動制御部41bは、スタンバイモードAにおいては、ペアリング切断が行われないように、制御を行うようになっている。例えば、スタンバイA起動制御部41bは、スタンバイモードAにおいては、無線部26を制御して、例えば、内視鏡画像や、高圧縮した内視鏡画像や、黒画像や、ヘッド情報、制御フレーム等の何からのデータを送信させて、ペアリング状態を維持するようになっている。
 一方、スタンバイB起動制御部41cは、スタンバイモードBにおいては、電力制御部26aに指示を与えて、無線部26、光源部23、画像処理部25、撮像部20の全てに対する電力供給を停止させるようになっていてもよい。即ち、この場合には、ペアリングも切断される。なお、スタンバイB起動制御部41cは、スタンバイモードBに移行する場合には、メモリ制御部28aを制御して、無線部26のペアリング時における受信機ID等の通信設定の情報を、メモリ28に記憶させるようになっている。スタンバイB停止制御部41eは、スタンバイモードBから通常動作モードへの復帰時において、メモリ28に格納した通信設定情報を読み出して無線部26に設定することにより、比較的短時間にペアリングを実施するようになっている。
 スタンバイA起動制御部41bは、内視鏡の挿入部11が体内に挿入されているか否か又は挿入部11が体外に配置されているか否かの判定(以下、体外判定という)によって動作モードの切り換えを行うようになっていてもよい。例えば、体外判定部41aは、入力操作部22の図示しないスイッチをユーザが操作したことを検出して、挿入部11が体外に配置されていることを判定してもよい。
 ワイヤレス内視鏡1の挿入部11には、1又は複数種類のセンサを有するセンサ部51が設けられている。例えば、センサ部51には、温度センサ、湿度センサ、動きセンサ、加速度センサ、ジャイロセンサ等の各種センサが設けられていてもよい。センサ部51は、1つ以上のセンサの検出結果を制御部21のスタンバイ制御部41に出力するようになっている。例えば、スタンバイ制御部41の体外判定部41aは、センサ部51に温度センサや湿度センサが設けられている場合には、温度や湿度の検出結果によって挿入部11が体外に配置されているか否かを判定してもよい。
 ワイヤレス内視鏡1には、画像解析部29も設けられている。画像解析部29は、撮像部20によって撮像されている画像が被検体の体内の画像(内視鏡画像)であるか被検体の体外の画像であるかを、画像解析、例えば画像の輝度や色味の解析によって判定する。例えば、画像解析部29は、撮像部20の撮像画像が平均的に赤みを帯びているか否かの判定結果をスタンバイ制御部41に与える。スタンバイ制御部41の体外判定部41aは、撮像画像が赤みを帯びている度合い(例えば画面内の画素数)が所定の閾値よりも高い場合に、挿入部11が体内に挿入されているものと判定してもよい。
 また、スタンバイ制御部41は、ワイヤレス内視鏡1の挿入部11が観察に用いられず放置されているか否かの判定(以下、放置判定という)に基づいて動作モードの切り換えを行うようになっていてもよい。例えば、スタンバイ制御部41は、撮像部20からの内視鏡画像の動き量が所定の閾値よりも大きいか否かの判定結果に基づいて、放置判定を行ってもよい。スタンバイ制御部41は、動き量が所定の閾値よりも小さい場合には放置と判定する。また、スタンバイ制御部41は、センサ部51が動きセンサや加速度センサを有している場合に、これらの動きセンサ又は加速度センサの検出結果によって、挿入部11が動かされておらず放置されていることを判定してもよい。
 また、スタンバイ制御部41は、ワイヤレス内視鏡1の挿入部11が放置されている状態から観察に用いられるようになったか否かの判定(以下、復帰判定という)に基づいて動作モードの切り換えを行うようになっていてもよい。例えば、スタンバイ制御部41は、入力操作部22のユーザ操作に基づいて、復帰判定を行ってもよい。また、スタンバイ制御部41は、撮像部20からの内視鏡画像の動き量が所定の閾値よりも大きい場合には復帰判定を行ってもよい。また、スタンバイ制御部41は、センサ部51が動きセンサや加速度センサを有している場合に、これらの動きセンサ又は加速度センサの検出結果によって、挿入部11が放置されておらず動かされていることを検出して復帰を判定してもよい。
 例えば、スタンバイA起動制御部41bは、体外判定部41aによって体外に配置されていると判定され、放置判定によって所定期間挿入部11が観察に用いられず放置されていることを判定した場合には、スタンバイモードAを起動する。スタンバイB起動制御部41cは、体外判定部41aによって体外に配置されていると判定され、スタンバイモードA起動後に、放置されたまま所定期間が経過すると、スタンバイモードBを起動する。
 スタンバイA停止制御部41dは、スタンバイモードAにおいて、体外判定部41aによって体内に配置されていると判定された場合、又は放置判定によって観察に用いられるようになったと判定した場合には、スタンバイモードAを停止して通常モードに復帰する。
 スタンバイB停止制御部41eは、スタンバイモードBにおいて、体外判定部41aによって体内に配置されていると判定された場合、又は放置判定によって観察に用いられるようになったと判定した場合には、スタンバイモードBを停止して通常モードに復帰する。
 次に、このように構成された実施の形態の動作について図6及び図7を参照して説明する。図6は第1の実施の形態の動作を説明するためのフローチャートであり、図7は第1の実施の形態の動作を説明するための状態遷移図である。
 本実施の形態においては、図7の状態遷移図に示すように、通常動作モード、スタンバイモードA及びスタンバイモードBの3つの動作モードで動作するようになっており、各動作モード間は図7に示す条件に従って遷移する。
 即ち、制御部21は、ワイヤレス内視鏡1の電源が投入されると、先ず図6のステップS1において、通常動作モードを設定する。制御部21のスタンバイ制御部41は、電力制御部24aを制御して、バッテリ24の電力をワイヤレス内視鏡1の全ての回路部に供給する。これにより、バッテリ駆動が開始されて、撮像部20による撮像が行われる。撮像画像は、画像処理部25によって画像処理された後、無線部26によってプロセッサ30に送信される。
 次に、制御部21のスタンバイ制御部41は、ステップS2において、体外判定を行う。体外判定部41aは、入力操作部22からのユーザ操作に基づく操作信号、画像解析部29の画像解析結果又はセンサ部51からの検出結果に基づいて体外判定を行い、挿入部11が体外に配置されていると判定した場合には、処理をステップS3に移行し、体内に配置されていると判定した場合には、ステップS2の体外判定を繰り返す。
 いま、術者がワイヤレス内視鏡1による観察を中止するものとする。例えば、術者は挿入部11を体内から抜去して、体外に放置するものとする。スタンバイ制御部41は、体外判定部41aによって挿入部11が体外に配置されていると判定すると、スタンバイA起動制御部41bが、スタンバイモードAに移行すべきか否かを判定する(ステップS3)。例えば、挿入部11が体内から抜去された後、所定期間以上体外に放置されると、スタンバイA起動制御部41bは、スタンバイモードAを設定する(ステップS4)。
 例えば、スタンバイA起動制御部41bは、スタンバイモードAにおいて、画像処理制御部25aに指示を与えて、画像の圧縮率を通常動作モード時よりも高くしたり、電力制御部24aに指示を与えて、撮像部20、光源部23、画像処理部25等への電力供給を停止させたりする。これらの処理によって、スタンバイモードAにおいては、通常動作モード時よりも消費電力を低減させることができる。
 なお、スタンバイA起動制御部41bは、スタンバイモードAにおいては、無線制御部26aに指示を与えて、無線部26によるプロセッサ30への無線通信を継続させるようになっている。
 スタンバイA停止制御部41dは、次のステップS5において、スタンバイモードAから通常動作モードへの復帰判定を行う。例えば、スタンバイモードAにおいて、術者が挿入部11を体内に挿入したり、体外に放置されていた挿入部11を体内の観察に用いるために移動させた場合等のようにワイヤレス内視鏡1(スコープ)が使用されたと判定した場合においては、スタンバイA停止制御部41dは、ステップS1の通常動作モードに復帰させる。例えば、スタンバイA停止制御部41dは、電力制御部24aに指示を与えて、ワイヤレス内視鏡1の各部の電力供給を再開させる。
 スタンバイモードAにおいては、無線部26による無線通信は継続されており、通常動作モードへの復帰時において新たなペアリング処理を実行する必要は無く、通常動作モードへの復帰は、短時間に行われる。
 ステップS6において、スタンバイB起動制御部41cは、スタンバイモードBに移行すべきか否かを判定する。スタンバイモードAの開始から所定期間挿入部11が放置され続けた場合等には、スタンバイB起動制御部41cは、スタンバイモードBを設定する(ステップS7)。
 例えば、スタンバイB起動制御部41cは、スタンバイモードBにおいて、メモリ制御部28aを制御して、無線部26における無線設定の情報をメモリ28に記憶させた後、電力制御部24aに指示を与えて、撮像部20、光源部23、無線部26及び画像処理部25への電力供給を停止させる。この処理によって、スタンバイモードBにおいては、スタンバイモードAよりも消費電力を低減させることができる。
 なお、スタンバイモードBにおいては、無線部26によるプロセッサ30への無線通信も切断させるようになっており、通常動作モードへの復帰には比較的長い時間が必要である反面、殆どの回路部分に対する電力供給を停止させていることから、消費電力を十分に低減させることが可能である。
 スタンバイB停止制御部41eは、次のステップS8において、スタンバイモードBから通常動作モードへの復帰判定を行う。例えば、スタンバイモードBにおいて、術者が挿入部11を体内に挿入したり、体外に放置されていた挿入部11を体内の観察に用いるために移動させた場合等のようにスコープが使用されたと判定した場合においては、スタンバイB停止制御部41eは、ステップS1の通常動作モードに復帰させる。例えば、スタンバイB停止制御部41eは、電力制御部24aに指示を与えて、ワイヤレス内視鏡1の各部の電力供給を再開させる。この場合には、スタンバイB停止制御部41eは、メモリ28に記憶されている通信設定情報を無線部26に与えて、無線部26におけるペアリング動作を短縮するようになっている。
 なお、ステップS6においてスタンバイB起動制御部41cによりスタンバイモードBに移行すべきとの判定が行われない場合には、処理はステップS5に戻されて復帰判定が繰り返される。また、ステップS8においてスタンバイB停止制御部41eにより通常動作モードに復帰すべきでないと判定された場合には、処理はステップS8に戻されて復帰判定が繰り返される。
 このように本実施の形態においては、ワイヤレス内視鏡が使用状態にない場合には、スタンバイモードに移行して消費電力を低減する。この場合において、通常動作モードから未使用の状態になった所定期間内は、プロセッサとのペアリング状態を維持して短時間に通常動作モードへの復帰を可能にするスタンバイモードAが設定される。更に、ワイヤレス内視鏡が使用されないまま所定期間が経過すると、無線部への電力供給も停止してペアリング状態を解除するスタンバイモードBに移行することにより、十分な消費電力の低減を可能にする。これにより、通常動作モードへの復帰の時間を短縮しながら十分な消費電力の低減効果を得ることができる。しかも、挿入部が体内に存在する場合には、スタンバイモードに移行しないように制御が行われており、体腔内の確実な撮影を可能にして、必要な場合に内視鏡画像が取得されなくなることを防止することができる。
 なお、図6及び図7では、スタンバイモードAからスタンバイモードBに遷移する例のみを示しているが、スタンバイモードBからスタンバイモードAに遷移するようになっていてもよい。
(第2の実施の形態)
 図8は本発明の第2の実施の形態を示すブロック図である。図8において図5と同一の構成要素には同一符号を付して説明を省略する。本実施の形態においては、制御部21の機能が異なるのみであり、他のハードウェア構成は第1の実施の形態と同様である。
 第1の実施の形態においては、スタンバイモードとしては、無線部のペアリング状態を維持しながら消費電力を低減して通常動作モードへの復帰時間を短縮するスタンバイモードAと無線部のペアリング状態を解除して十分な消費電力の低減効果を得るスタンバイモードBとを設定した。これに対し、本実施の形態においては、スタンバイモードAを複数のモードに分けて消費電力の低減効果と通常動作モードへの復帰時間短縮効果とを細かく制御可能にしたものである。
 図9は第2の実施の形態におけるスタンバイモードを説明するための図表である。なお、図9の○印は電力が供給されることを示し、×印は電力が供給されないことを示す。
 図9の例はスタンバイモードをスタンバイモード1からスタンバイモード5に分けた例を示している。スタンバイモード1は、最も高い圧縮率で内視鏡画像を圧縮した後、無線送信するものである。この場合には、撮像部20、光源部23、画像処理部25及び無線部26の全てに電力が供給される。スタンバイモード1では、圧縮率を高くして伝送レートを低下させることで、無線部26における消費電力を通常動作モード時よりも低減することができる。
 スタンバイモード2は、撮像部20への電力供給を停止するものである。これにより、画像処理部25から真っ黒な無画像の圧縮画像が出力されることになる。この圧縮画像は画像情報を有しておらず符号量を十分に低減することができ、無線部26における消費電力をスタンバイモード1よりも低減させることができる。更に、撮像部20の消費電力分もスタンバイモード1よりも低減させることができる。なお、このモードでは、ワイヤレス内視鏡1(スコープ)の電源が投入されていることを術者に認識させるために、光源部23を点灯させたり、プロセッサ30やワイヤレス内視鏡1に設けた図示しないLEDを点灯させる等の制御が行われるようにしてもよい。スタンバイモード2においては、無線部26からプロセッサ30に対して無画像の画像データが送信されており、ペアリング状態は維持される。
 スタンバイモード3は、撮像部20及び光源部23への電力供給を停止するものである。この場合にも、画像処理部25からは真っ黒な無画像の圧縮画像が出力されることになる。光源部23への電力供給を停止させるので、スタンバイモード2よりも消費電力を著しく低減させることができる。スタンバイモード3においても、無線部26からプロセッサ30に対して無画像の画像データが送信されており、ペアリング状態は維持される。
 スタンバイモード4は、撮像部20、光源部23及び画像処理部25への電力供給を停止するものである。これにより、スタンバイモード4ではスタンバイモード3よりも消費電力を低減させることができる。なお、スタンバイモード4では、画像処理部25からは信号が出力されないので、制御部21は、無線部26に対して、プロセッサ30との間のペアリング状態の維持のために、通信プロトコロに従ってペアリング状態の維持のために必要なパケットデータ、例えばヘッダ情報、制御フレームやアドレス情報等の所定のデータ(例えばテキストデータ)を送信させる。従って、スタンバイモード4ではペアリング状態は維持される。
 スタンバイモード1からスタンバイモード4が第1の実施の形態におけるスタンバイモードAに相当する。スタンバイモード5は第1の実施の形態におけるスタンバイモードBに相当し、図9に示すように、撮像部20、光源部23、画像処理部25だけでなく、無線部26への電力供給も停止する。即ち、制御部21を除くスコープ全体の電源をオフにする。なお、スタンバイモード5においては、無線部26の電力供給を停止する前に、無線部26が通信に用いている受信機ID等の通信設定情報をメモリ28に記憶させるようになっている。即ち、図9の図表は上側の欄のモードほど復帰が早く、下側の欄のモードほど消費電力が小さい。
 図8において、制御部21は、スタンバイ制御部45の機能が図5のスタンバイ制御部41と異なるのみである。スタンバイ制御部45は、体外判定部46、スタンバイ1起動制御部45a1、スタンバイ2起動制御部45a2、…、スタンバイn起動制御部45an、スタンバイ1停止制御部45b1、スタンバイ2停止制御部45b2、・・・、スタンバイn停止制御部45bnにより構成されている。体外判定部46は図5の体外判定部41aと同様の機能を有する。
 スタンバイ1起動制御部45a1、スタンバイ2起動制御部45a2、・・・、スタンバイn起動制御部45anは、それぞれスタンバイモード1,2,…,nの起動判定(遷移条件の判定)を行って、それぞれスタンバイモード1,2,…,n(nは整数)を実行する。また、スタンバイ1停止制御部45b1、スタンバイ2停止制御部45b2、・・・、スタンバイn停止制御部45bnは、それぞれスタンバイモード1,2,…,nの停止判定(復帰判定)を行って、通常動作モードに復帰させるようになっている。
 なお、図9はnが5の例であり、スタンバイ1起動制御部45a1~スタンバイ5起動制御部45a5は、夫々図9のスタンバイモード1~5を実行し、スタンバイ1停止制御部45b1~スタンバイ5停止制御部45b5は、それぞれスタンバイモード1~5の停止判定を行って、通常動作モードに復帰させるようになっている。
 次にこのように構成された実施の形態の動作について図10を参照して説明する。図10は第2の実施の形態の動作を説明するための状態遷移図である。
  本実施の形態においては、図10の状態遷移図に示すように、通常動作モード、スタンバイモード1~スタンバイモードnのn+1種類の動作モードで動作するようになっており、各動作モード間は図10に示す条件に従って遷移する。
 即ち、制御部21は、ワイヤレス内視鏡1の電源が投入されると、先ず図10の通常動作モードを設定する。図10の遷移条件の判定を行うスタンバイ1判定~スタンバイn判定では、挿入部11が体外に配置されていることが条件として用いられる。更に、スタンバイ1判定は挿入部11が体外に放置された後、所定期間が経過することによって条件を満足する。また、例えば、スタンバイ2判定~スタンバイn判定は、スタンバイモード1~スタンバイモードm(n-1)において、挿入部11が体外に放置された状態で所定期間が経過することで、それぞれ遷移条件を満足する。
 更に、図10においては、通常動作モードからスタンバイ1判定~スタンバイn判定により、直接スタンバイモード1~スタンバイモードnに移行することができるようになっている。例えば、手術時間が比較的長く、消費電力を十分に抑制する必要がある場合等においては、例えばバッテリ24の電池残量に応じて、通常動作モードから直接スタンバイモード3やスタンバイモード4等に移行するようになっていてもよい。
 また、例えば、スタンバイモード1~スタンバイモードnでは通常動作モードへの復帰に要する時間も異なる。例えば、次の手技が復帰に要する時間が長くてもよい手技である場合には、例えばユーザ操作によって次の手技を指定することで、例えば、通常動作モードから直接スタンバイモード4等に移行するようになっていてもよい。
 また、復帰判定は、挿入部11が放置されている状態から観察に用いられるようになった場合に遷移条件を満足する。例えば、入力操作部22のユーザ操作、画像解析部29の解析結果やセンサ部51の動き検出等に基づいて復帰判定が行われる。
 これらのスタンバイ1判定~スタンバイn判定は、体外判定部46及びスタンバイ1起動制御部45a1~スタンバイn起動制御部45anによって行われる。また、復帰判定は、スタンバイ1停止制御部45b1~スタンバイn停止制御部45bnによって行われる。
 他の作用は第1の実施の形態と同様である。
 このように本実施の形態においても第1の実施の形態と同様の効果が得られる。更に、本実施の形態においては、複数種類のスタンバイモードを設定することができるので、消費電力と復帰時間の短縮とを内視鏡の利用状態に応じて細かく制御することができるという利点がある。
 なお、図10では、スタンバイモード1からスタンバイモード5側に遷移する例のみを示しているが、例えば、スタンバイモード1からスタンバイモード5の間において、所定の遷移条件を満たせば、各モード間で自由に遷移するようになっていてもよい。例えば、経験的にスコープの次の使用までの時間がある程度把握できる場合には、スコープの未使用を検知すると、通常動作モードから先ずスタンバイモード4に遷移し、時間の経過と共にスタンバイモード4からスタンバイモード1に向かって遷移するようになっていてもよい。
(変形例)
 図11は変形例を示すブロック図である。図11において図8と同一の構成要素には同一符号を付して説明を省略する。なお、本変形例におけるスタンバイモード3-5は例えば図9に示すものである。
 図10の状態遷移図では、スタンバイモード1~スタンバイモード5に順番に遷移する例のみを示したが、上述したように遷移する順番は限定されない。本変形例は、遷移条件によって遷移するモードが変化する例を示している。図11においては、制御部21のスタンバイ制御部45は、体外判定部46の他に、スタンバイ3起動制御部45a3、スタンバイ4起動制御部45a4、スタンバイ5起動制御部45a5、スタンバイ3停止制御部45b3、スタンバイ4停止制御部45b4及びスタンバイ5停止制御部45b5の機能を有する。
 スタンバイ3起動制御部45a3は、通常動作モード時にワイヤレス内視鏡1の未使用が検知されると、通常動作モードからスタンバイモード3に遷移させる。本変形例においては、スタンバイ制御部45は、無線部26からの情報によって無線環境を判定し、判定結果に基づいてスタンバイモード4又は5のいずれかの遷移判定を行う。
 図12は本変形例の動作を説明するための状態遷移図であり、図13は本変形例の動作を説明するためのフローチャートである。図13において図6と同一の手順には同一符号を付して説明を省略する。
 通常動作モード時に、ステップS2によって挿入部11が体外に位置することが判定され、所定時間体外に放置されると、スタンバイ3起動制御部45a3は、ワイヤレス内視鏡1が未使用であるものと判定し(ステップS11)、通常動作モードからスタンバイモード3に遷移させる(ステップS12)。なお、ステップS5の復帰判定は図12の復帰判定iに対応する。
 スタンバイ制御部45は、ステップS13において通信環境が良好か否かを判定する(ステップS13)。無線部26は、通信環境を示す指標として、例えばエラーレートの情報を制御部21に与えており、スタンバイ制御部45は、エラーレートが所定の値以下である場合には通信環境が良好であると判定し、エラーレートが所定の値を超えると通信環境が不良と判定してもよい。なお、通信環境を示す指標としては、S/N比等の各種情報を採用することができる。
 通信環境が悪化した場合において無線部26がプロセッサ30とのペアリングを解除すると、無線部26がプロセッサ30との間で使用していたチャンネルが他の機器に使用される可能性が大きくなり、再ペアリングに比較的長時間を要する虞がある。そこで、通信環境が良好な場合には、スタンバイ5起動制御部45a5により遷移判定を行い、通信環境が不良な場合には、スタンバイ4起動制御部45a4により遷移判定を行う。
 例えば、通信環境が良好な場合には、スタンバイ5起動制御部45a5は、スタンバイモード3の状態において所定期間ワイヤレス内視鏡1が放置された場合には、遷移条件を満足したものと判定して(ステップS15)、スタンバイモード3からスタンバイモード5に遷移させる(ステップS17)。
 一方、通信環境が不良の場合には、スタンバイ4起動制御部45a4は、スタンバイモード3の状態において所定期間ワイヤレス内視鏡1が放置された場合には、遷移条件を満足したものと判定して(ステップS14)、スタンバイモード3からスタンバイモード4に遷移させる(ステップS16)。なお、ステップS8の復帰判定は図12の復帰判定ii又はiiiに対応する。
 これにより、通信環境が悪化した場合においても、通常動作モードへの復帰時間が比較的長時間になることを防止することが可能である。
(他の変形例)
 図14は他の変形例を示すブロック図である。図14において図8と同一の構成要素には同一符号を付して説明を省略する。なお、本変形例におけるスタンバイモード3,5は例えば図9に示すものである。
 本変形例は、バッテリ容量を遷移条件に加えて遷移するモードを決定する具体例を示している。図14においては、制御部21のスタンバイ制御部45は、体外判定部46の他に、スタンバイ3起動制御部45a3、スタンバイ5起動制御部45a5、スタンバイ3停止制御部45b3及びスタンバイ5停止制御部45b5の機能を有する。
 スタンバイ制御部45は、通常動作モード時にワイヤレス内視鏡1の未使用が検知されると、バッテリ24の残量の情報に基づいて、スタンバイモード3又は5のいずれかの遷移判定を行う。また、スタンバイ5停止制御部45b5は、バッテリ24の残量が極めて少ない場合には、ワイヤレス内視鏡1が動かされた場合等においても、通常動作モードに復帰させることなくスタンバイモード5を維持するようになっている。
 図15は本変形例の動作を説明するための状態遷移図であり、図16は本変形例の動作を説明するためのフローチャートである。図16において図6と同一の手順には同一符号を付して説明を省略する。
 通常動作モード時に、ステップS2によって挿入部11が体外に位置することが判定され、挿入部11が所定時間体外に放置されると、スタンバイ制御部45は、バッテリ24の残量が所定の閾値よりも大きいか否かを判定する(ステップS21)。バッテリ24の残量が比較的少ない場合には、復帰時間を考慮するよりも消費電力を抑制した方がよい場合があり、通常動作モードからスタンバイモード3に遷移するよりもスタンバイモード5に遷移した方がよいことがある。
 そこで、バッテリ24の容量が所定の閾値よりも大きい場合にのみ、スタンバイ3起動制御部45a3は、ワイヤレス内視鏡1が所定期間放置されたことを判定すると(ステップS12)、通常動作モードからスタンバイモード3に遷移させる(ステップS23)。なお、ステップS5の復帰判定は図15の復帰判定Iに対応する。
 一方、バッテリ24の容量が所定の閾値以下になると、スタンバイ5起動制御部45a5は、ワイヤレス内視鏡1が所定期間放置されたことを判定すると(ステップS24)、通常動作モードからスタンバイモード5に直接遷移させる(ステップS25)。なお、図15に示すように、スタンバイモード3の状態から所定期間ワイヤレス内視鏡1が放置される場合においても、ステップS25において、スタンバイモード5が設定される。
 スタンバイモード5の状態において、スタンバイ5停止制御部45b5は、ステップS26において復帰判定を行う。この場合には、スタンバイ5停止制御部45b5は、ステップS27においてバッテリ24の残量が所定の下限閾値よりも低下しているか否かの判定を行う。仮に、バッテリ24の残量が所定の下限閾値よりも低下している場合には、ワイヤレス内視鏡1が使用のために移動された場合でも、スタンバイ5停止制御部45b5は、復帰判定を行わずスタンバイモード5を維持する(図15の復帰判定III)。
 なお、スタンバイ5停止制御部45b5は、バッテリ24の残量が所定の下限閾値以上の残量を有している場合には、ワイヤレス内視鏡1が使用のために移動された場合には、復帰条件を満足したものとして、通常動作モードに復帰させる(図15の復帰判定II)。
 このように本変形例では、バッテリの残量が比較的少ない場合においてスコープの使用が停止されると、消費電力を抑制するために通常動作モードからスタンバイモード5に遷移させる。また、バッテリの残量が極めて少ない場合には、スコープの使用が再開された場合でも、スタンバイモード5を維持する。これにより、バッテリ残量が殆ど残っていない状態で、ワイヤレス内視鏡1を誤使用してしまうことを防止することができる。
 また、本発明は、上記各実施形態にそのまま限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記各実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素の幾つかの構成要素を削除してもよい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。
 本出願は、2017年5月10日に日本国に出願された特願2017-94239号を優先権主張の基礎として出願するものであり、上記の開示内容は、本願明細書、請求の範囲に引用されるものとする。

Claims (12)

  1.  体腔内に挿入可能な挿入部から照明光を照射させるための光源部、前記体腔内を撮像するための撮像部、前記撮像部が取得した撮像画像を送信するための通信部及び電源を含む複数の回路部と、
     前記電源から前記複数の回路部の全てに電力供給を行う通常動作モード時よりも消費電力を低減すると共に前記通信部によるペアリング状態を維持する第1のスタンバイモード、又は前記通信部によるペアリング状態を解除すると共に前記第1のスタンバイモード時よりも消費電力を低減する第2のスタンバイモードに遷移させるスタンバイ起動制御部と、
     前記第1又は第2のスタンバイモードから前記通常動作モードに遷移させるスタンバイ停止制御部と、
     前記第1及び第2のスタンバイモードにおいて前記回路部への電力供給を制御する電力制御部とを具備したことを特徴とするワイヤレス内視鏡。
  2.  前記スタンバイ起動制御部は、前記挿入部が前記体腔内に挿入されていないことを前記第1又は第2のスタンバイモードへの遷移条件とすることを特徴とする請求項1に記載のワイヤレス内視鏡。
  3.  前記スタンバイ起動制御部は、前記挿入部が前記体腔内に挿入されていないことを前記撮像画像又は前記挿入部に設けたセンサによって検出することを特徴とする請求項2に記載のワイヤレス内視鏡。
  4.  前記スタンバイ起動制御部は、前記挿入部が体外に所定期間放置されたことを前記第1又は第2のスタンバイモードへの遷移条件とすることを特徴とする請求項2に記載のワイヤレス内視鏡。
  5.  前記スタンバイ起動制御部は、前記挿入部が体外に所定期間放置されたことを前記撮像画像の動き量又は前記挿入部に設けたセンサによる動きの検出結果によって検出することを特徴とする請求項4に記載のワイヤレス内視鏡。
  6.  前記スタンバイ起動制御部は、前記第1のスタンバイモード時に前記挿入部が前記体外に所定期間放置されたことを前記第2のスタンバイモードへの遷移条件とすることを特徴とする請求項4に記載のワイヤレス内視鏡。
  7.  前記スタンバイ起動制御部は、前記電力制御部による電力供給の停止制御を行うことなく、前記第1のスタンバイモードにおける消費電力を前記通常動作モード時よりも低減することを特徴とする請求項1に記載のワイヤレス内視鏡。
  8.  前記スタンバイ起動制御部は、前記電力制御部による電力供給の停止制御によって、前記第1のスタンバイモードにおける消費電力を前記通常動作モード時よりも低減し、前記第2のスタンバイモードにおける消費電力を前記第1のスタンバイモード時よりも低減することを特徴とする請求項1に記載のワイヤレス内視鏡。
  9.  前記スタンバイ起動制御部は、前記第2のスタンバイモード時に前記電力制御部を制御して、前記光源部、撮像部及び通信部への電力供給を停止させることを特徴とする請求項8に記載のワイヤレス内視鏡。
  10.  前記スタンバイ起動制御部は、前記第1のスタンバイモードを、消費電力が異なる複数のスタンバイモードに分割し、所定の遷移条件に従って、分割した複数のスタンバイモード間を遷移させることを特徴とする請求項1に記載のワイヤレス内視鏡。
  11.  前記スタンバイ停止制御部は、前記挿入部の動きを検出すると、前記第1又は第2のスタンバイモードから前記通常動作モードに復帰させることを特徴とする請求項1に記載のワイヤレス内視鏡。
  12.  請求項1から11のいずれか1つに記載のワイヤレス内視鏡と、
     前記通信部との間で通信を行って前記撮像画像を受信するプロセッサとを具備したことを特徴とするワイヤレス内視鏡システム。
PCT/JP2018/015113 2017-05-10 2018-04-10 ワイヤレス内視鏡及びワイヤレス内視鏡システム WO2018207537A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880043145.6A CN110799085B (zh) 2017-05-10 2018-04-10 无线内窥镜和无线内窥镜系统
US16/677,484 US10973390B2 (en) 2017-05-10 2019-11-07 Wireless endoscope and wireless endoscope system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-094239 2017-05-10
JP2017094239 2017-05-10

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/677,484 Continuation US10973390B2 (en) 2017-05-10 2019-11-07 Wireless endoscope and wireless endoscope system

Publications (1)

Publication Number Publication Date
WO2018207537A1 true WO2018207537A1 (ja) 2018-11-15

Family

ID=64104526

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/015113 WO2018207537A1 (ja) 2017-05-10 2018-04-10 ワイヤレス内視鏡及びワイヤレス内視鏡システム

Country Status (3)

Country Link
US (1) US10973390B2 (ja)
CN (1) CN110799085B (ja)
WO (1) WO2018207537A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020152784A1 (ja) * 2019-01-22 2020-07-30 オリンパス株式会社 内視鏡システムおよびパラメータ制御装置
JP2020156814A (ja) * 2019-03-27 2020-10-01 ソニー株式会社 内視鏡システム、内視鏡制御方法、及び、撮像制御装置
JPWO2020152788A1 (ja) * 2019-01-22 2021-11-25 オリンパス株式会社 ビデオプロセッサ、画像処理方法および内視鏡
WO2022085104A1 (ja) * 2020-10-21 2022-04-28 日本電気株式会社 内視鏡操作支援装置、制御方法、コンピュータ可読媒体、及びプログラム
JP2022538290A (ja) * 2019-06-28 2022-09-01 ニコベンチャーズ トレーディング リミテッド エアロゾル発生デバイス用の装置
WO2022195830A1 (ja) * 2021-03-18 2022-09-22 オリンパスメディカルシステムズ株式会社 受信機および受信機の作動方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110325098A (zh) 2016-11-28 2019-10-11 适内有限责任公司 具有可分离一次性轴的内窥镜
USD1018844S1 (en) 2020-01-09 2024-03-19 Adaptivendo Llc Endoscope handle
CN111053521A (zh) * 2020-03-11 2020-04-24 上海安翰医疗技术有限公司 胶囊内窥镜及其控制系统
JP2022061605A (ja) * 2020-10-07 2022-04-19 オリンパス株式会社 内視鏡システム、内視鏡用アダプタ、および内視鏡の作動方法
US20220192467A1 (en) * 2020-12-20 2022-06-23 CapsoVision, Inc. Method and Apparatus for Extending Battery Life of Capsule Endoscope
USD1031035S1 (en) 2021-04-29 2024-06-11 Adaptivendo Llc Endoscope handle
JP7495063B2 (ja) * 2021-05-21 2024-06-04 富士フイルム株式会社 内視鏡システム及びその作動方法
KR102612159B1 (ko) * 2021-07-19 2023-12-12 주식회사 메디트 무선 스캐닝 시스템 및 무선 스캐닝 방법

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001037719A (ja) * 1999-07-28 2001-02-13 Olympus Optical Co Ltd 内視鏡装置
JP2005110932A (ja) * 2003-10-07 2005-04-28 Olympus Corp 無線型被検体内情報取得装置
JP2008113756A (ja) * 2006-11-01 2008-05-22 Olympus Corp カプセル型医療装置
JP2010184054A (ja) * 2009-02-13 2010-08-26 Hoya Corp カプセル型内視鏡および無線通信可能な撮影装置
JP2012011054A (ja) * 2010-07-01 2012-01-19 Olympus Corp 内視鏡装置
WO2016071992A1 (ja) * 2014-11-06 2016-05-12 オリンパス株式会社 観察装置と内視鏡システム
WO2017029839A1 (ja) * 2015-08-18 2017-02-23 オリンパス株式会社 ワイヤレス内視鏡

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003144385A (ja) 2001-11-13 2003-05-20 Pentax Corp 電子内視鏡
JP4451217B2 (ja) * 2004-06-01 2010-04-14 オリンパス株式会社 カプセル型通信システム、カプセル型医療装置及び生体情報受信装置
JP4383134B2 (ja) 2003-09-04 2009-12-16 オリンパス株式会社 無線型被検体内情報取得装置
US8135606B2 (en) * 2004-04-15 2012-03-13 Arbitron, Inc. Gathering data concerning publication usage and exposure to products and/or presence in commercial establishment
JP2007082664A (ja) * 2005-09-21 2007-04-05 Fujifilm Corp カプセル内視鏡
JP2013094318A (ja) 2011-10-31 2013-05-20 Fujifilm Corp 医療機器、医療機器システムおよび医療機器のメンテナンス方法
JP2014054314A (ja) 2012-09-11 2014-03-27 Olympus Corp 生体情報取得装置
JP5881907B2 (ja) * 2014-02-05 2016-03-09 オリンパス株式会社 電子内視鏡システム、電子内視鏡、電源装置、電子内視鏡システムの作動方法
JP6356552B2 (ja) * 2014-09-16 2018-07-11 東芝メモリ株式会社 情報処理装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001037719A (ja) * 1999-07-28 2001-02-13 Olympus Optical Co Ltd 内視鏡装置
JP2005110932A (ja) * 2003-10-07 2005-04-28 Olympus Corp 無線型被検体内情報取得装置
JP2008113756A (ja) * 2006-11-01 2008-05-22 Olympus Corp カプセル型医療装置
JP2010184054A (ja) * 2009-02-13 2010-08-26 Hoya Corp カプセル型内視鏡および無線通信可能な撮影装置
JP2012011054A (ja) * 2010-07-01 2012-01-19 Olympus Corp 内視鏡装置
WO2016071992A1 (ja) * 2014-11-06 2016-05-12 オリンパス株式会社 観察装置と内視鏡システム
WO2017029839A1 (ja) * 2015-08-18 2017-02-23 オリンパス株式会社 ワイヤレス内視鏡

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113597275A (zh) * 2019-01-22 2021-11-02 奥林巴斯株式会社 内窥镜系统和参数控制装置
JPWO2020152788A1 (ja) * 2019-01-22 2021-11-25 オリンパス株式会社 ビデオプロセッサ、画像処理方法および内視鏡
JPWO2020152784A1 (ja) * 2019-01-22 2021-12-02 オリンパス株式会社 ビデオプロセッサ、内視鏡システムおよび画像処理方法
WO2020152784A1 (ja) * 2019-01-22 2020-07-30 オリンパス株式会社 内視鏡システムおよびパラメータ制御装置
JP7123180B2 (ja) 2019-01-22 2022-08-22 オリンパス株式会社 ビデオプロセッサ、内視鏡システムの作動方法および内視鏡
US12003863B2 (en) 2019-01-22 2024-06-04 Olympus Corporation Video processor, endoscope system, and image processing method
JP7237095B2 (ja) 2019-01-22 2023-03-10 オリンパス株式会社 ビデオプロセッサ、内視鏡システムおよび内視鏡装置の画像処理装置の作動方法
JP2020156814A (ja) * 2019-03-27 2020-10-01 ソニー株式会社 内視鏡システム、内視鏡制御方法、及び、撮像制御装置
WO2020196868A1 (en) * 2019-03-27 2020-10-01 Sony Corporation Endoscope system, non-transitory computer readable medium, and method
JP7247702B2 (ja) 2019-03-27 2023-03-29 ソニーグループ株式会社 内視鏡システム、内視鏡制御方法、及び、撮像制御装置
JP7390406B2 (ja) 2019-06-28 2023-12-01 ニコベンチャーズ トレーディング リミテッド エアロゾル発生デバイス用の装置
JP2022538290A (ja) * 2019-06-28 2022-09-01 ニコベンチャーズ トレーディング リミテッド エアロゾル発生デバイス用の装置
WO2022085104A1 (ja) * 2020-10-21 2022-04-28 日本電気株式会社 内視鏡操作支援装置、制御方法、コンピュータ可読媒体、及びプログラム
JP7551766B2 (ja) 2020-10-21 2024-09-17 日本電気株式会社 内視鏡操作支援装置、制御方法、及びプログラム
WO2022195830A1 (ja) * 2021-03-18 2022-09-22 オリンパスメディカルシステムズ株式会社 受信機および受信機の作動方法

Also Published As

Publication number Publication date
US10973390B2 (en) 2021-04-13
CN110799085A (zh) 2020-02-14
US20200069149A1 (en) 2020-03-05
CN110799085B (zh) 2022-12-16

Similar Documents

Publication Publication Date Title
WO2018207537A1 (ja) ワイヤレス内視鏡及びワイヤレス内視鏡システム
US11672516B2 (en) Control apparatus, control method, and control system
JP4914574B2 (ja) 内視鏡形状検出装置
US10441133B2 (en) Wireless endoscope
JP4855759B2 (ja) 受信装置およびこれを用いた被検体内情報取得システム
JP2009207872A (ja) 医療制御装置及び該システム
WO2018061247A1 (ja) ワイヤレス内視鏡装置
WO2007061008A1 (ja) 生体内画像表示装置、受信装置、およびこれらを用いた画像表示システム並びに画像表示方法
US20210113059A1 (en) Endoscope apparatus, method of controlling endoscope apparatus and non-transitory computer readable recording medium recording program for controlling endoscope apparatus
WO2016052175A1 (ja) 内視鏡システム
JP5096676B2 (ja) 生体内画像表示装置及び受信システム
JP2007167555A5 (ja)
WO2019211939A1 (ja) 内視鏡装置
JP7405136B2 (ja) ケーブル、報知方法
JP4477286B2 (ja) 電子内視鏡システム
US12126899B2 (en) Imaging device, imaging control device, and imaging method
US20210076903A1 (en) Endoscope system, control method of endoscope system and storage medium
JP6301046B1 (ja) ワイヤレス内視鏡装置
JP2008173398A (ja) 医療機器制御システム
US20220263598A1 (en) Endoscope system, processing device, and control method of signal transmission
US11533419B2 (en) Imaging apparatus, image sensor unit, camera unit, and control method for determining and updating correction data
JP2001218735A (ja) 電子内視鏡の切替装置を含む電子内視鏡システム
JP2009045098A (ja) 電子内視鏡システムおよび電子内視鏡

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18798273

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18798273

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP