이하, 본 발명에 따른 바람직한 실시 형태를 첨부된 도면을 참조하여 상세하게 설명한다. 첨부된 도면과 함께 이하에 개시될 상세한 설명은 본 발명의 예시적인 실시형태를 설명하고자 하는 것이며, 본 발명이 실시될 수 있는 유일한 실시형태를 나타내고자 하는 것이 아니다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. The detailed description, which will be given below with reference to the accompanying drawings, is intended to explain exemplary embodiments of the present invention and is not intended to represent the only embodiments in which the present invention may be practiced.
이하의 상세한 설명은 본 발명의 완전한 이해를 제공하기 위해서 구체적 세부사항을 포함한다. 그러나 당업자는 본 발명이 이러한 구체적 세부사항 없이도 실시될 수 있음을 안다. 몇몇 경우, 본 발명의 개념이 모호해지는 것을 피하기 위하여 공지의 구조 및 장치는 생략되거나, 각 구조 및 장치의 핵심기능을 중심으로 한 블록도 형식으로 도시된다. The following detailed description includes specific details in order to provide a thorough understanding of the present invention. However, one of ordinary skill in the art appreciates that the present invention may be practiced without these specific details. In some instances, well-known structures and devices are omitted or shown in block diagram form, centering on the core functions of each structure and device, in order to avoid obscuring the concepts of the present invention.
본 발명이 적용되는 이동통신 시스템은 다양하게 존재할 수 있으나, 이하에서는 이동통신 시스템의 일례로서 무선랜 시스템에 대해 구체적으로 설명한다.There may be various mobile communication systems to which the present invention is applied. Hereinafter, the WLAN system will be described in detail as an example of the mobile communication system.
1. One.
무선랜(Wireless LAN, Wireless LAN,
WLANWLAN
) 시스템) system
1-1. 무선랜 시스템 일반1-1. WLAN System General
도 1은 무선랜 시스템의 구성의 일례를 나타낸 도면이다.1 is a diagram illustrating an example of a configuration of a WLAN system.
도 1에 도시된 바와 같이, 무선랜 시스템은 하나 이상의 기본 서비스 세트(Basic Service Set, BSS)를 포함한다. BSS는 성공적으로 동기화를 이루어서 서로 통신할 수 있는 스테이션(Station, STA)의 집합이다. As shown in FIG. 1, the WLAN system includes one or more basic service sets (BSSs). A BSS is a set of stations (STAs) that can successfully synchronize and communicate with each other.
STA는 매체 접속 제어(Medium Access Control, MAC)와 무선 매체에 대한 물리계층(Physical Layer) 인터페이스를 포함하는 논리 개체로서, 액세스 포인트(access point, AP)와 비AP STA(Non-AP Station)을 포함한다. STA 중에서 사용자가 조작하는 휴대용 단말은 Non-AP STA로써, 단순히 STA라고 할 때는 Non-AP STA을 가리키기도 한다. Non-AP STA는 단말(terminal), 무선 송수신 유닛(Wireless Transmit/Receive Unit, WTRU), 사용자 장비(User Equipment, UE), 이동국(Mobile Station, MS), 휴대용 단말(Mobile Terminal), 또는 이동 가입자 유닛(Mobile Subscriber Unit) 등의 다른 명칭으로도 불릴 수 있다. An STA is a logical entity that includes a medium access control (MAC) and a physical layer interface to a wireless medium. The STA is an access point (AP) and a non-AP STA (Non-AP Station). Include. The portable terminal operated by the user among the STAs is a non-AP STA, and when referred to simply as an STA, it may also refer to a non-AP STA. A non-AP STA may be a terminal, a wireless transmit / receive unit (WTRU), a user equipment (UE), a mobile station (MS), a mobile terminal, or a mobile subscriber. It may also be called another name such as a mobile subscriber unit.
그리고, AP는 자신에게 결합된 STA(Associated Station)에게 무선 매체를 통해 분배 시스템(Distribution System, DS)으로의 접속을 제공하는 개체이다. AP는 집중 제어기, 기지국(Base Station, BS), Node-B, BTS(Base Transceiver System), PCP/AP(personal basic service set central point/access point) 또는 사이트 제어기 등으로 불릴 수도 있다. The AP is an entity that provides an associated station (STA) coupled to the AP to access a distribution system (DS) through a wireless medium. The AP may be called a centralized controller, a base station (BS), a Node-B, a base transceiver system (BTS), a personal basic service set central point / access point (PCP / AP), or a site controller.
BSS는 인프라스트럭처(infrastructure) BSS와 독립적인(Independent) BSS(IBSS)로 구분할 수 있다.BSS can be divided into infrastructure BSS and Independent BSS (IBSS).
도 1에 도시된 BBS는 IBSS이다. IBSS는 AP를 포함하지 않는 BSS를 의미하고, AP를 포함하지 않으므로, DS로의 접속이 허용되지 않아서 자기 완비적 네트워크(self-contained network)를 이룬다.The BBS shown in FIG. 1 is an IBSS. The IBSS means a BSS that does not include an AP. Since the IBSS does not include an AP, access to the DS is not allowed, thereby forming a self-contained network.
도 2는 무선랜 시스템의 구성의 다른 예를 나타낸 도면이다.2 is a diagram illustrating another example of a configuration of a WLAN system.
도 2에 도시된 BSS는 인프라스트럭처 BSS이다. 인프라스트럭처 BSS는 하나 이상의 STA 및 AP를 포함한다. 인프라스트럭처 BSS에서 비AP STA들 사이의 통신은 AP를 경유하여 이루어지는 것이 원칙이나, 비AP STA 간에 직접 링크(link)가 설정된 경우에는 비AP STA들 사이에서 직접 통신도 가능하다. The BSS shown in FIG. 2 is an infrastructure BSS. Infrastructure BSS includes one or more STAs and APs. In the infrastructure BSS, communication between non-AP STAs is performed via an AP. However, when a direct link is established between non-AP STAs, direct communication between non-AP STAs is also possible.
도 2에 도시된 바와 같이, 복수의 인프라스트럭처 BSS는 DS를 통해 상호 연결될 수 있다. DS를 통하여 연결된 복수의 BSS를 확장 서비스 세트(Extended Service Set, ESS)라 한다. ESS에 포함되는 STA들은 서로 통신할 수 있으며, 동일한 ESS 내에서 비AP STA는 끊김 없이 통신하면서 하나의 BSS에서 다른 BSS로 이동할 수 있다. As shown in FIG. 2, a plurality of infrastructure BSSs may be interconnected through a DS. A plurality of BSSs connected through a DS is called an extended service set (ESS). STAs included in the ESS may communicate with each other, and a non-AP STA may move from one BSS to another BSS while communicating seamlessly within the same ESS.
DS는 복수의 AP들을 연결하는 메커니즘(mechanism)으로서, 반드시 네트워크일 필요는 없으며, 소정의 분배 서비스를 제공할 수 있다면 그 형태에 대해서는 아무런 제한이 없다. 예컨대, DS는 메쉬(mesh) 네트워크와 같은 무선 네트워크일 수도 있고, AP들을 서로 연결시켜 주는 물리적인 구조물일 수도 있다. The DS is a mechanism for connecting a plurality of APs. The DS is not necessarily a network, and there is no limitation on the form if it can provide a predetermined distribution service. For example, the DS may be a wireless network such as a mesh network or a physical structure that connects APs to each other.
이상을 바탕으로 무선랜 시스템에서 채널 본딩 방식에 대해 설명한다.Based on the above, the channel bonding method in the WLAN system will be described.
1-2. 무선랜 시스템에서의 채널 1-2. Channel in WLAN system
본딩Bonding
도 3은 본 발명의 일 실시형태에 따른 채널 본딩 동작 설명을 위한 60GHz 대역에서의 채널을 설명하기 위한 도면이다.3 is a diagram for describing a channel in a 60 GHz band for explaining a channel bonding operation according to an embodiment of the present invention.
도 3에 도시된 바와 같이 60GHz 대역에서는 4개의 채널이 구성될 수 있으며, 일반 채널 대역폭은 2.16GHz일 수 있다. 60 GHz에서 사용 가능한 ISM 대역 (57 GHz ~ 66 GHz)은 각국 상황에 따라 다르게 규정될 수 있다. 일반적으로 도 3에 도시된 채널 중 채널 2는 모든 지역에서 사용 가능하여 default 채널로 사용될 수 있다. 호주를 제외한 대부분의 지적에서 채널 2 및 채널 3을 사용할 수 있으며, 이를 채널 본딩에 활용할 수 있다. 다만, 채널 본딩에 활용되는 채널은 다양할 수 있으며, 본 발명은 특정 채널에 한정되지 않는다.As shown in FIG. 3, four channels may be configured in the 60 GHz band, and a general channel bandwidth may be 2.16 GHz. The ISM bands available from 60 GHz (57 GHz to 66 GHz) may be defined differently in different countries. In general, channel 2 of the channels shown in FIG. 3 may be used in all regions and may be used as a default channel. Channels 2 and 3 can be used in most of the designations except Australia, which can be used for channel bonding. However, a channel used for channel bonding may vary, and the present invention is not limited to a specific channel.
도 4는 무선랜 시스템에서 채널 본딩을 수행하는 기본적인 방법을 설명하기 위한 도면이다.4 is a diagram illustrating a basic method of performing channel bonding in a WLAN system.
도 4의 예는 IEEE 802.11n 시스템에서 2개의 20MHz 채널을 결합하여 40 MHz 채널 본딩으로 동작하는 것을 예를 들어 설명한다. IEEE 802.11ac 시스템의 경우 40/80/160 MHz 채널 본딩이 가능할 것이다.The example of FIG. 4 illustrates the operation of 40 MHz channel bonding by combining two 20 MHz channels in an IEEE 802.11n system. For IEEE 802.11ac systems, 40/80/160 MHz channel bonding will be possible.
도 4의 예시적인 2개의 채널은 주 채널(Primary Channel) 및 보조 채널(Secondary Channel)을 포함하여, STA는 상기 2개의 채널 중 주 채널에 대해 CSMA/CA 방식으로 채널 상태를 검토할 수 있다. 만일 주 채널이 일정한 백오프 간격(backoff interval) 동안 유휴(idle)하여 백오프 카운트가 0이 되는 시점에서, 보조 채널이 소정 시간(예를 들어, PIFS) 동안 유휴인 경우, STA는 주 채널 및 보조 채널을 결합하여 데이터를 전송할 수 있다.The two exemplary channels of FIG. 4 include a primary channel and a secondary channel, so that the STA may examine the channel state in a CSMA / CA manner for the primary channel of the two channels. If the secondary channel is idle for a predetermined time (e.g. PIFS) at the time when the primary channel idles for a constant backoff interval and the backoff count becomes zero, the STA is assigned to the primary channel and Auxiliary channels can be combined to transmit data.
다만, 도 4와 같이 경쟁 기반으로 채널 본딩을 수행하는 경우 상술한 바와 같이 주 채널에 대한 백오프 카운트가 만료되는 시점에서 보조 채널이 일정 시간 동안 유휴 상태를 유지한 경우에 한하여 채널 본딩이 가능하기 때문에 채널 본딩의 활용이 매우 제한적이며, 매체 상황에 유연하게 대응하기 어려운 측면이 있다.However, when channel bonding is performed based on contention as illustrated in FIG. 4, channel bonding may be performed only when the auxiliary channel is idle for a predetermined time at the time when the backoff count for the primary channel expires. Therefore, the use of channel bonding is very limited, and it is difficult to flexibly respond to the media situation.
이에 따라 본 발명의 일 측면에서는 AP가 STA들에게 스케줄링 정보를 전송하여 스케줄링 기반으로 접속을 수행하는 방안을 제안한다. 한편, 본 발명의 다른 일 측면에서는 상술한 스케줄링에 기반하여 또는 상술한 스케줄링과 독립적으로 경쟁 기반으로 채널 접속을 수행하는 방안을 제안한다. 아울러, 본 발명의 다른 일 측면에서는 빔포밍(beamforming)에 기반하여 공간 공유(Spatial Sharing) 기법을 통해 통신을 수행하는 방법에 대해 제안한다.Accordingly, an aspect of the present invention proposes a method in which an AP transmits scheduling information to STAs to perform access on a scheduling basis. Meanwhile, another aspect of the present invention proposes a method of performing channel access based on the above-described scheduling or on a contention-based basis independently of the above-described scheduling. In addition, another aspect of the present invention proposes a method for performing communication through a spatial sharing technique based on beamforming.
1-3. 1-3.
비콘Beacons
간격 구성 Configure interval
도 5는 비콘 간격의 구성을 설명하기 위한 도면이다.5 is a view for explaining the configuration of the beacon interval.
11ad 기반 DMG BSS 시스템에서 매체의 시간은 비콘 간격들로 나누어질 수 있다. 비콘 간격 내의 하위 구간들은 접속 구간(Access Period)로 지칭될 수 있다. 하나의 비콘 간격 내의 서로 다른 접속 구간은 상이한 접속 규칙을 가질 수 있다. 이와 같은 접속 구간에 대한 정보는 AP 또는 PCP (Personal basic service set Control Point)에 의해 non-AP STA 또는 non-PCP에게 전송될 수 있다. In an 11ad based DMG BSS system, the time of the medium may be divided into beacon intervals. Lower periods within the beacon interval may be referred to as an access period. Different connection intervals within one beacon interval may have different access rules. The information about the access interval may be transmitted to the non-AP STA or the non-PCP by an AP or a personal basic service set control point (PCP).
도 5에 도시된 예와 같이 하나의 비콘 간격은 하나의 BHI (Beacon Header Interval)과 하나의 DTI (Data Transfer Interval)을 포함할 수 있다. BHI는 도 4에 도시된 바와 같이 BTI(Beacon Transmission Interval), A-BFT(Association Beamforming Training) 및 ATI(Announcement Transmission Interval)를 포함할 수 있다.As shown in FIG. 5, one beacon interval may include one beacon header interval (BHI) and one data transfer interval (DTI). As shown in FIG. 4, the BHI may include a Beacon Transmission Interval (BTI), an Association Beamforming Training (A-BFT), and an Announcement Transmission Interval (ATI).
BTI는 하나 이상의 DMG 비콘 프레임이 전송될 수 있는 구간을 의미한다. A-BFT는 선행하는 BTI 동안 DMG 비콘 프레임을 전송한 STA에 의한 빔포밍 트레이닝이 수행되는 구간을 의미한다. ATI는 PCP/AP와 non-PCP/non-AP STA 사이에 요청-응답 기반의 관리 접속 구간을 의미한다.The BTI means a section in which one or more DMG beacon frames can be transmitted. A-BFT refers to a section in which beamforming training is performed by an STA that transmits a DMG beacon frame during a preceding BTI. ATI means a request-response based management access interval between PCP / AP and non-PCP / non-AP STA.
한편, DTI(Data Transfer Interval)는 STA들 사이의 프레임 교환이 이루어지는 구간으로서, 도 5에 도시된 바와 같이 하나 이상의 CBAP(Contention Based Access Period) 및 하나 이상의 SP(Service Period)가 할당될 수 있다. 도 5에서는 2개의 CBAP과 2개의 SP가 할당되는 예를 도시하고 있으나, 이는 예시적인 것으로서 이에 한정될 필요는 없다.Meanwhile, as shown in FIG. 5, one or more Content Based Access Period (CBAP) and one or more Service Periods (SPs) may be allocated as data transfer intervals (DTIs). Although FIG. 5 shows an example in which two CBAPs and two SPs are allocated, this is merely an example and need not be limited thereto.
이하에서는 본 발명이 적용될 무선랜 시스템에서의 물리계층 구성에 대해 구체적으로 살펴본다.Hereinafter, the physical layer configuration in the WLAN system to which the present invention is applied will be described in detail.
1-4. 물리계층 구성1-4. Physical Layer Configuration
본 발명의 일 실시형태에 따른 무선랜 시스템에서는 다음과 같은 3가지 다른 변조 모드를 제공할 수 있는 것을 가정한다. In the WLAN system according to an embodiment of the present invention, it is assumed that three different modulation modes may be provided.
PHYPHY
|
MCSMCS
|
Note Note
|
|
Control PHYControl PHY
|
00
|
|
Single carrier PHY(SC PHY)Single carrier PHY (SC PHY)
|
1, ..., 1225, ..., 311, ..., 1225, ..., 31
|
(low power SC PHY)(low power SC PHY)
|
OFDM PHYOFDM PHY
|
13, ..., 2413, ..., 24
|
|
이와 같은 변조 모드들은 서로 상이한 요구조건(예를 들어, 높은 처리율 또는 안정성)을 만족시키기 위해 이용될 수 있다. 시스템에 따라 이들 중 일부 모드만 지원할 수도 있다.Such modulation modes can be used to meet different requirements (eg, high throughput or stability). Depending on your system, only some of these modes may be supported.
도 6은 기존 무선 프레임의 물리 구성을 설명하기 위한 도면이다.6 is a diagram for explaining a physical configuration of an existing radio frame.
모든 DMG (Directional Multi-Gigabit) 물리계층은 도 6에 도시된 바와 같은 필드들을 공통적으로 포함하는 것을 가정한다. 다만, 각각의 모드에 따라 개별적인 필드의 규정 방식 및 사용되는 변조/코딩 방식에 있어서 차이를 가질 수 있다.It is assumed that all DMG (Directional Multi-Gigabit) physical layers commonly include fields as shown in FIG. 6. However, there may be a difference in the method of defining individual fields and the modulation / coding method used according to each mode.
도 6에 도시된 바와 같이 무선프레임의 프리엠블은 STF (Short Training Field) 및 CE (Channel Estimation)을 포함할 수 있다. 또한, 무선 프레임은 헤더, 및 페이로드로서 데이터 필드와 선택적으로 빔포밍을 위한 TRN(Training) 필드를 포함할 수 있다.As shown in FIG. 6, the preamble of the radio frame may include a Short Training Field (STF) and a Channel Estimation (CE). In addition, the radio frame may include a data field as a header and a payload, and optionally a training field for beamforming.
도 7 및 도 8은 도 6의 무선 프레임의 헤더 필드의 구성을 설명하기 위한 도면이다.7 and 8 are views for explaining the configuration of the header field of the radio frame of FIG.
구체적으로 도 7은 SC(Single Carrier) 모드가 이용되는 경우를 도시하고 있다. SC 모드에서 헤더는 스크램블링의 초기값을 나타내는 정보, MCS (Modulation and Coding Scheme), 데이터의 길이를 나타내는 정보, 추가적인 PPDU(Physical Protocol Data Unit)의 존재 여부를 나타내는 정보, 패킷 타입, 트레이닝 길이, Aggregation 여부, 빔 트레이닝 요청 여부, 마지막 RSSI (Received Signal Strength Indicator), 절단(truncation) 여부, HCS (Header Check Sequence) 등의 정보를 포함할 수 있다. 또한, 도 7에 도시된 바와 같이 헤더는 4 비트의 유보 비트들(reserved bits)을 가지고 있으며, 이하의 설명에서는 이와 같은 유보 비트들을 활용할 수도 있다.Specifically, FIG. 7 illustrates a case in which a single carrier mode is used. In SC mode, the header includes information indicating the initial value of scrambling, Modulation and Coding Scheme (MCS), information indicating the length of data, information indicating whether an additional physical protocol data unit (PPDU) exists, packet type, training length, and aggregation. Information about whether to request a beam training, whether to request a last received Signal Strength Indicator (RSSI), whether to truncate, or a header check sequence (HCS). In addition, as shown in FIG. 7, the header has 4 bits of reserved bits, which may be used in the following description.
또한, 도 8은 OFDM 모드가 적용되는 경우의 헤더의 구체적인 구성을 도시하고 있다. OFDM 헤더는 스크램블링의 초기값을 나타내는 정보, MCS, 데이터의 길이를 나타내는 정보, 추가적인 PPDU의 존재 여부를 나타내는 정보, 패킷 타입, 트레이닝 길이, Aggregation 여부, 빔 트레이닝 요청 여부, 마지막 RSSI, 절단 여부, HCS (Header Check Sequence) 등의 정보를 포함할 수 있다. 또한, 도 8에 도시된 바와 같이 헤더는 2 비트의 유보 비트들을 가지고 있으며, 이하의 설명에서는 도 7의 경우와 마찬가지로 이와 같은 유보 비트들을 활용할 수도 있다.8 illustrates a specific configuration of a header when the OFDM mode is applied. The OFDM header includes information indicating an initial value of scrambling, an MCS, information indicating a length of data, information indicating whether an additional PPDU exists, packet type, training length, aggregation, beam training request, last RSSI, truncation, and HCS. (Header Check Sequence) may be included. In addition, as shown in FIG. 8, the header has 2 bits of reserved bits, and in the following description, such reserved bits may be utilized as in the case of FIG.
상술한 바와 같이 IEEE 802.11ay 시스템은 기존 11ad 시스템에 처음으로 채널본딩 및 MIMO 기술의 도입을 고려하고 있다. 11ay에서 채널본딩 및 MIMO를 구현하기 위해서는 새로운 PPDU 구조가 필요하다. 즉, 기존 11ad PPDU 구조로는 레거시 단말을 지원함과 동시에 채널본딩과 MIMO를 구현하기에는 한계가 있다. As described above, the IEEE 802.11ay system is considering introducing channel bonding and MIMO technology for the first time in the existing 11ad system. To implement channel bonding and MIMO in 11ay, a new PPDU structure is needed. That is, the existing 11ad PPDU structure has limitations in supporting legacy terminals and implementing channel bonding and MIMO.
이를 위해 레거시 단말을 지원하기 위한 레거시 프리엠블, 레거시 헤더 필드 뒤에 11ay 단말을 위한 새로운 필드를 정의할 수 있으며, 여기서 새롭게 정의된 필드를 통하여 채널본딩과 MIMO를 지원할 수 있다.To this end, a new field for the 11ay terminal may be defined after the legacy preamble and the legacy header field for supporting the legacy terminal. Here, channel bonding and MIMO may be supported through the newly defined field.
도 9는 본 발명의 바람직한 일 실시형태에 따른 PPDU 구조를 도시한 도면이다. 도 9에서 가로축은 시간 영역에 세로축은 주파수 영역에 대응할 수 있다.9 illustrates a PPDU structure according to one preferred embodiment of the present invention. In FIG. 9, the horizontal axis may correspond to the time domain and the vertical axis may correspond to the frequency domain.
2개 이상의 채널을 본딩 하였을 때, 각 채널에서 사용되는 주파수 대역(예: 1.83GHz) 사이에는 일정 크기의 주파수 대역(예:400MHz 대역)이 존재할 수 있다. Mixed mode의 경우, 각 채널을 통하여 레거시 프리엠블 (레거시 STF, 레거시 CE)이 duplicate로 전송되는데, 본 발명의 일 실시형태에서는 각 채널 사이의 400MHz 대역을 통하여 레거시 프리엠블과 함께 동시에 새로운 STF와 CE 필드의 전송(gap filling)을 고려할 수 있다.When two or more channels are bonded, a frequency band (eg, 400 MHz band) of a predetermined size may exist between frequency bands (eg, 1.83 GHz) used in each channel. In the mixed mode, legacy preambles (legacy STFs, legacy CEs) are transmitted as duplicates through each channel. In an embodiment of the present invention, a new STF and CE are simultaneously transmitted together with the legacy preambles through a 400 MHz band between each channel. Gap filling may be considered.
이 경우, 도 9에 도시된 바와 같이, 본 발명에 따른 PPDU 구조는 ay STF, ay CE, ay 헤더 B, 페이로드(payload)를 레거시 프리엠블, 레거시 헤더 및 ay 헤더 A 이후에 광대역으로 전송하는 형태를 가진다. 따라서, 헤더 필드 다음에 전송되는 ay 헤더, ay Payload 필드 등은 본딩에 사용되는 채널들을 통하여 전송할 수 있다. 이하, ay 헤더를 레거시 헤더와 구분하기 위해 EDMG (enhanced directional multi-gigabit) 헤더라 명명할 수도 있으며, 해당 명칭은 혼용하여 사용될 수 있다.In this case, as shown in FIG. 9, the PPDU structure according to the present invention transmits ay STF, ay CE, ay header B, and payload in a broadband manner after legacy preamble, legacy header, and ay header A. Has a form. Therefore, the ay header, ay Payload field, and the like transmitted after the header field may be transmitted through channels used for bonding. Hereinafter, the ay header may be referred to as an enhanced directional multi-gigabit (EDMG) header to distinguish the ay header from the legacy header, and the name may be used interchangeably.
일 예로, 11ay에는 총 6개 또는 8개의 채널(각 2.16 GHz)이 존재 할 수 있으며, 단일 STA으로는 최대 4개의 채널을 본딩하여 전송할 수 있다. 이에, ay 헤더와 ay Payload는 2.16GHz, 4.32GHz, 6.48GHz, 8.64GHz 대역폭을 통하여 전송할 수 있다.For example, a total of six or eight channels (each 2.16 GHz) may exist in 11ay, and a single STA may bond and transmit up to four channels. Thus, the ay header and ay Payload may be transmitted through 2.16 GHz, 4.32 GHz, 6.48 GHz, 8.64 GHz bandwidth.
또는, 상술한 바와 같은 Gap-Filling을 수행하지 않고 레거시 프리엠블을 반복하여 전송할 때의 PPDU 포맷 역시 고려할 수 있다.Alternatively, the PPDU format when repeatedly transmitting the legacy preamble without performing the gap-filling as described above may also be considered.
이 경우, Gap-Filling을 수행하지 않아 도 8에서 점선으로 도시된 GF-STF 및 GF-CE 필드 없이 ay STF, ay CE 및 ay 헤더 B를 레거시 프리엠블, 레거시 헤더 및 ay 헤더 A 이후에 광대역으로 전송하는 형태를 가진다.In this case, ay STF, ay CE, and ay header B are replaced by a legacy preamble, legacy header, and ay header A without a GF-Filling and thus without the GF-STF and GF-CE fields shown by dotted lines in FIG. 8. It has a form of transmission.
도 10은 본 발명에 적용 가능한 PPDU 구조를 간단히 도시한 도면이다. 상술한 PPDU 포맷을 간단히 정리하면 도 10과 같이 나타낼 수 있다10 is a diagram schematically illustrating a PPDU structure applicable to the present invention. Briefly summarizing the above-described PPDU format can be represented as shown in FIG.
도 10에 도시된 바와 같이, 11ay 시스템에 적용 가능한 PPDU 포맷은 L-STF, L-CE, L-Header, EDMG-Header-A, EDMG-STF, EDMG-CEF, EDMG-Header-B, Data, TRN 필드를 포함할 수 있으며, 상기 필드들은 PPDU의 형태 (예: SU PPDU, MU PPDU 등)에 따라 선택적으로 포함될 수 있다.As shown in FIG. 10, the PPDU format applicable to the 11ay system includes L-STF, L-CE, L-Header, EDMG-Header-A, EDMG-STF, EDMG-CEF, EDMG-Header-B, Data, It may include a TRN field, which may be selectively included according to the type of the PPDU (eg, SU PPDU, MU PPDU, etc.).
여기서, L-STF, L-CE, L-header 필드를 포함하는 부분은 비 EDMG 영역 (Non-EDMG portion)이라 명명할 수 있고, 나머지 부분은 EDMG 영역이라 명명할 수 있다. 또한, L-STF, L-CE, L-Header, EDMG-Header-A 필드들은 pre-EDMG modulated fields라 명명될 수 있고, 나머지 부분은 EDMG modulated fields라 명명될 수 있다.Here, a portion including the L-STF, L-CE, and L-header fields may be referred to as a non-EDMG portion, and the remaining portion may be referred to as an EDMG region. In addition, the L-STF, L-CE, L-Header, and EDMG-Header-A fields may be called pre-EDMG modulated fields, and the rest may be called EDMG modulated fields.
상기와 같은 PPDU의 (레거시) 프리앰블 부분은 패킷 검출 (packet detection), AGC (Automatic Gain Control), 주파수 오프셋 측정 (frequency offset estimation), 동기화 (synchronization), 변조 (SC 또는 OFDM)의 지시 및 채널 측정 (channel estimation)에 사용될 수 있다. 프리앰블의 포맷은 OFDM 패킷 및 SC 패킷에 대해 공통될 수 있다. 이때, 상기 프리앰블은 STF (Short Training Field) 및 상기 STF 필드 이후에 위치한 CE (Channel Estimation) 필드로 구성될 수 있다. (The preamble is the part of the PPDU that is used for packet detection, AGC, frequency offset estimation, synchronization, indication of modulation (SC or OFDM) and channel estimation. The format of the preamble is common to both OFDM packets and SC packets. The preamble is composed of two parts: the Short Training field and the Channel Estimation field.)The (legacy) preamble portion of the PPDU includes packet detection, automatic gain control (AGC), frequency offset estimation, synchronization, modulation (SC or OFDM) indication, and channel measurement. (channel estimation) can be used. The format of the preamble may be common for the OFDM packet and the SC packet. In this case, the preamble may include a Short Training Field (STF) and a Channel Estimation (CE) field located after the STF field. (The preamble is the part of the PPDU that is used for packet detection, AGC, frequency offset estimation, synchronization, indication of modulation (SC or OFDM) and channel estimation.The format of the preamble is common to both OFDM packets and SC packets .The preamble is composed of two parts: the Short Training field and the Channel Estimation field.)
도 11은 본 발명에 있어 (레거시) 프리앰블에 포함되는 패킷 프리앰블을 나타낸 도면이다.11 illustrates a packet preamble included in a (legacy) preamble according to the present invention.
STF는 128 길이의 Ga128(n) 시퀀스가 16 반복 (repetitions)되고, 이어 하나의 - Ga128(n) 시퀀스가 이어지는 구조로 구성된다. (The Short Training field is composed of 16 repetitions of sequences Ga128(n) of length 128, followed by a single repetition of -Ga128(n).) 이때, 상기 STF에 대한 파형(waveform)은 하기 수학식과 같이 나타낼 수 있다.The STF consists of a structure in which a length of 128 Ga 128 (n) sequences is 16 repetitions, followed by one -Ga 128 (n) sequence. (The Short Training field is composed of 16 repetitions of sequences Ga 128 (n) of length 128, followed by a single repetition of -Ga 128 (n).) In this case, the waveform for the STF is expressed by the following equation. Can be represented.
골레이 시퀀스 (Golay sequence) (예: Ga128(n), Gb128(n), Ga64(n), Gb64(n), Ga32(n), Gb32(b))는 프리앰블, 단일 반송파 가드 구간 (single carrier guard interval), 빔 재련 (beam refinement) TRN-R/T 및 ACG 필드에 사용된다. 상기 골레이 시퀀스는 3 짝의 상보 시퀀스 (complementary sequences)라고 명명될 수 있다. 아래에 기입된 문자(subscript)는 시퀀스의 길이를 나타낸다. 상기 시퀀스들은 다음의 회귀 절차 (recursive procedure)를 이용해 생성된다. (The following Golay sequences are used in the preamble, in the single carrier guard interval and in beam refinement TRN-R/T and AGC fields: Ga128(n), Gb128(n), Ga64(n), Gb64(n), Ga32(n), Gb32(n). These are 3 pairs of complementary sequences. The subscript denotes the length of the sequences. These sequences are generated using the following recursive procedure:)Golay sequences (e.g. Ga 128 (n), Gb 128 (n), Ga 64 (n), Gb 64 (n), Ga 32 (n), Gb 32 (b)) are preamble, single It is used for a single carrier guard interval, beam refinement TRN-R / T and ACG fields. The golay sequence may be called a pair of complementary sequences. The subscript written below indicates the length of the sequence. The sequences are generated using the following recursive procedure. (The following Golay sequences are used in the preamble, in the single carrier guard interval and in beam refinement TRN-R / T and AGC fields: Ga 128 (n), Gb 128 (n), Ga 64 (n), Gb 64 (n), Ga 32 (n), Gb 32 (n) .These are 3 pairs of complementary sequences.The subscript denotes the length of the sequences.These sequences are generated using the following recursive procedure :)
여기서, n<0 또는 n≥2k 인 경우, Ak(n), Bk(n)는 0의 값을 갖는다.Here, when n <0 or n ≧ 2 k , A k (n) and B k (n) have a value of zero.
상기 절차에서 Dk = [1 8 2 4 16 32 64] (k=1,2,…,7) 및 Wk = [-1 -1 -1 -1 +1 -1 -1]이 사용되는 경우, Ga128(n)=A7(128-n) 및 Gb128(n)=B7(128-n)일 수 있다. (Ga128(n)=A7(128-n), Gb128(n)=B7(128-n) when the procedure uses Dk = [1 8 2 4 16 32 64] (k=1,2,…,7) and Wk = [-1 -1 -1 -1 +1 -1 -1].)When D k = [1 8 2 4 16 32 64] (k = 1,2, ..., 7) and W k = [-1 -1 -1 -1 +1 -1 -1] in the above procedure , Ga 128 (n) = A 7 (128-n) and Gb 128 (n) = B 7 (128-n). (Ga 128 (n) = A 7 (128-n), Gb 128 (n) = B 7 (128-n) when the procedure uses D k = [1 8 2 4 16 32 64] (k = 1,2 ,…, 7) and W k = [-1 -1 -1 -1 +1 -1 -1].)
또는, 상기 절차에서 Dk= [2 1 4 8 16 32] 및 Wk =[1 1 -1 -1 1 -1]이 사용되는 경우, Ga64(n)=A6(64-n) 및 Gb64(n)=B6(64-n) 일 수 있다. (Ga64(n)=A6(64-n)), Gb64(n)=B6(64-n) when the procedure uses Dk= [2 1 4 8 16 32] and Wk =[1 1 -1 -1 1 -1].)Or, if D k = [2 1 4 8 16 32] and W k = [1 1 -1 -1 1 -1] in the above procedure, then Ga 64 (n) = A 6 (64-n) and Gb 64 (n) = B 6 (64-n). (Ga 64 (n) = A 6 (64-n)), Gb 64 (n) = B 6 (64-n) when the procedure uses D k = [2 1 4 8 16 32] and W k = [1 1 -1 -1 1 -1].)
또는, 상기 절차에서 Dk=[1 4 8 2 16] 및 Wk =[-1 1 -1 1 -1]이 사용되는 경우, Ga32(n)=A5(32-n) 및 Gb32(n)=B5(32-n) 일 수 있다. (Ga32(n)=A5(32-n)), Gb32(n)=B5(32-n) when the procedure uses Dk=[1 4 8 2 16] and Wk =[-1 1 -1 1 -1].)Alternatively, when D k = [1 4 8 2 16] and W k = [-1 1 -1 1 -1] in the above procedure, Ga 32 (n) = A 5 (32-n) and Gb 32 (n) = B 5 (32-n). (Ga 32 (n) = A 5 (32-n)), Gb 32 (n) = B 5 (32-n) when the procedure uses D k = [1 4 8 2 16] and W k = [-1 1 -1 1 -1].)
앞서 상술한 각 시퀀스들은 도 12 내지 도 17과 같이 나타낼 수 있다. 이때, 상기 시퀀스들은 규범적이고, 위의 설명은 설명적이다(The sequences in the tables are normative, the description above is informative).Each of the above-described sequences may be represented as shown in FIGS. 12 to 17. The sequences in the tables are normative, the description above is informative.
이하, 도 12 내지 도 17은 본 발명에 적용 가능한 골레이 시퀀스를 나타낸 도면이다.12 to 17 are diagrams illustrating a Golay sequence applicable to the present invention.
3. 본 발명에 적용 가능한 3. Applicable to the present invention
실시예Example
본 발명이 적용 가능한 11ay 시스템의 PPDU 포맷으로는 도 10에 도시된 PPDU 포맷이 적용될 수 있다. 이때, Data 필드 및 TRN 필드 사이 영역에 AGC 필드가 추가적으로 포함될 수 있다.The PPDU format shown in FIG. 10 may be applied to the PPDU format of the 11ay system to which the present invention is applicable. In this case, the AGC field may be additionally included in the region between the Data field and the TRN field.
이때, 각 필드들은 다음과 같이 정의될 수 있다.At this time, each field may be defined as follows.
FieldField
|
DescriptionDescription
|
L-STFL-STF
|
Non-EDMG Short Training fieldNon-EDMG Short Training field
|
L-CEFL-CEF
|
Non-EDMG Channel Estimation fieldNon-EDMG Channel Estimation field
|
L-HeaderL-Header
|
Non-EDMG Header fieldNon-EDMG Header field
|
EDMG-Header-AEDMG-Header-A
|
EDMG Header A fieldEDMG Header A field
|
EDMG-STFEDMG-STF
|
EDMG Short Training fieldEDMG Short Training field
|
EDMG-CEFEDMG-CEF
|
EDMG CHannel Estimation fieldEDMG CHannel Estimation field
|
EDMG-Header-BEDMG-Header-B
|
EDMG Header B fieldEDMG Header B field
|
DataData
|
The Data field carriers the PSDU(s)The Data field carriers the PSDU (s)
|
AGCAGC
|
Automatic Gain Control fieldAutomatic Gain Control field
|
TRNTRN
|
Training sequences fieldTraining sequences field
|
본 발명에 따른 STA이 단일 채널 (single channel)을 이용한 SISO (Single Input Single Output) 스킴 (Scheme)에 따라 동작하는 경우, 표 2의 EDMG-STF와 EDMG-CEF는 전송되지 않을 수 있다.When the STA according to the present invention operates according to a Single Input Single Output (SISO) scheme using a single channel, EDMG-STF and EDMG-CEF of Table 2 may not be transmitted.
이하에서는, 상기와 같은 기술 구성들에 기반하여 OFDM 패킷을 위한 (또는 OFDM 전송 모드를 위한) EDMG-STF를 설계하는 방법을 제안한다. 구체적으로, 본 발명에서는 하기와 같은 기준 사항을 고려하여 OFDM 패킷을 위한 EDMG-STF를 설계하는 방법에 대해 제안한다. 이하, 본 발명에서 고려하는 기준 사항은 다음과 같다.Hereinafter, a method of designing an EDMG-STF for an OFDM packet (or for an OFDM transmission mode) is proposed based on the above technical configurations. Specifically, the present invention proposes a method of designing EDMG-STF for OFDM packets in consideration of the following criteria. Hereinafter, the criteria considered in the present invention are as follows.
(1) 주파수/시간 차원 (1) frequency / time dimension
시퀀스sequence
(Frequency / time domain sequence) (Frequency / time domain sequence)
OFDM 패킷을 위한 EDMG-STF는 시간 차원에서 생성된 시퀀스로 구성되어 전송될 수 있다. 일 예로, 상기 OFDM 패킷을 위한 EDMG-STF는 11ad 시스템에서 정의된 DMG-STF, 또는 새로운 골레이 시퀀스 (Golay sequence), 또는 11ay 시스템에서 정의된 SC (single carrier)를 위한 EDMG-STF로 정의될 수 있다.The EDMG-STF for the OFDM packet may be composed of a sequence generated in the time dimension and transmitted. For example, the EDMG-STF for the OFDM packet may be defined as a DMG-STF defined in the 11ad system, or a new Golay sequence, or an EDMG-STF for a single carrier (SC) defined in the 11ay system. Can be.
이와 같은 방법들에 대해 정의된 시퀀스와 OFDM 패킷이 차지하는 대역폭(Bandwidth)을 일치시키기 위한 방법으로써 11ad 시스템에서 사용된 리샘플링 (resampling) 방법을 수정하여 사용하거나, 또는 새로운 샘플링 레이트 (sampling rate)가 정의되어 사용될 수 있다. 그러나, 이와 같은 구성은 구현적으로 큰 부담이 될 수 있다.As a method for matching the bandwidths occupied by the OFDM packet and the sequence defined for these methods, the resampling method used in the 11ad system may be modified or a new sampling rate may be defined. Can be used. However, such a configuration can be a huge burden in practice.
이에, 본 발명에서는 주파수 차원 (frequency domain)에서 EDMG-STF에 대응하는 시퀀스를 생성함으로써 EDMG-CEF와도 호환성을 갖도록 하는 방법을 제안한다. 이를 통해, 페이로드 (payload)에 대한 대역폭 또한 서로 일치하게 됨으로써 STA이 보다 정확한 AGC를 수행할 수 있게 된다.Accordingly, the present invention proposes a method that is compatible with the EDMG-CEF by generating a sequence corresponding to the EDMG-STF in the frequency domain. Through this, the bandwidths for the payload also coincide with each other, so that the STA can perform more accurate AGC.
도 18은 2 채널 본딩 또는 4 채널 본딩인 경우 SC 패킷 및 OFDM 패킷의 대역폭을 각각 나타낸 도면이다.18 is a diagram illustrating bandwidths of an SC packet and an OFDM packet in case of two channel bonding or four channel bonding.
도 18에 도시된 바와 같이, 복수 개의 채널이 본딩되는 경우 SC 패킷 및 OFDM 패킷의 대역폭은 본딩된 채널 개수에 따라 0.47 GHz (예: 2CB의 경우, 도 18의 (a) 참조) 또는 1.28 GHz (4CB의 경우, 도 18의 (b) 참조) 만큼 대역폭이 차이 날 수 있다. 이에 따라, STA은 정확한 AGC를 수행할 수 없는 현상이 발생하게 된다. 앞서 상술한 바와 같이, 이러한 현상은 본딩된 채널의 수가 증가함에 따라 증가하게 된다.As shown in FIG. 18, when a plurality of channels are bonded, the bandwidth of the SC packet and the OFDM packet is 0.47 GHz (for example, in case of 2CB, see (a) of FIG. 18) or 1.28 GHz according to the number of bonded channels. In the case of 4CB, the bandwidth may vary as shown in (b) of FIG. 18. Accordingly, the STA may not perform accurate AGC. As mentioned above, this phenomenon increases as the number of bonded channels increases.
(2) (2)
레거시Legacy
헤더의 복호를 위한 처리 시간 (Processing time for L-Header decoding) Processing time for L-Header decoding
SC 패킷을 위한 EDMG-STF는 DMG 헤더의 처리 시간 (processing time)을 고려하여 18개의 Ga128*NCB 시퀀스와 1개의 -Ga128*NCB 시퀀스로 설계된다. 이때, 총 18+1 개의 시퀀스가 차지하는 시간은 약 1.3818us이다. 여기서, NCB는 채널 본딩 인자 (channel bonding factor)로써 채널 본딩에 사용되는 채널의 개수를 나타낸다.EDMG-STF for SC packet is designed with 18 Ga 128 * N CB sequences and 1 -Ga 128 * N CB sequences in consideration of the processing time of DMG header. At this time, the total time occupied by 18 + 1 sequences is about 1.3818us. Here, N CB represents the number of channels used for channel bonding as a channel bonding factor.
이처럼, 본 발명에서 제안하는 OFDM 패킷을 위한 EDMG-STF 또한 DMG 헤더의 처리 시간을 고려하여 설계될 수 있다. 이때, 하나의 OFDM 심볼의 길이(TDFT+TGI)가 0.2424us임을 가정할 때, 레거시 헤더의 복호를 위해 6개 이상의 OFDM 심볼이 필요할 수 있다. 왜냐하면, 1.3818us / 0.2424us =5.7이기 때문이다. 이에, 본 발명에서는 6개의 OFDM 심볼을 이용하여 EDMG-STF를 구성하는 것을 제안한다.As such, the EDMG-STF for the OFDM packet proposed in the present invention may also be designed in consideration of the processing time of the DMG header. In this case, assuming that the length (T DFT + T GI ) of one OFDM symbol is 0.2424us, six or more OFDM symbols may be required for decoding the legacy header. This is because 1.3818us / 0.2424us = 5.7. Accordingly, the present invention proposes to configure the EDMG-STF using six OFDM symbols.
(3) SC를 위한 (3) for SC
EDMGEDMG
--
STF와STF and
호환 가능한 구조 (Compatible structure to Compatible structure to
EDMGEDMG
--
STFSTF
for SC) for SC)
앞서 상술한 바와 같이, SC를 위한 EDMG-STF는 Ga128 (NCB=1 일 경우)을 이용하여 하나의 단일 반송파 블록 (single carrier block) 안에 4번 반복되는 구조를 가질 수 있다. 여기서, 이와 같이 반복되는 구조와 개수는 AGC와 동기 성능에 영향을 미칠 수 있다. 이에, SC의 성능 요구값 (requirement)과 유사할 수 있도록 본 발명에 따른 OFDM용 EDMG-STF 또한 하나의 DFT/IDFT 구간 (period) 동안 4번 반복되는 구조를 가질 수 있다.As described above, the EDMG-STF for SC may have a structure repeated four times in one single carrier block using Ga128 (when N CB = 1). Here, the repeated structure and number may affect the AGC and synchronization performance. Accordingly, the EDMG-STF for OFDM according to the present invention may also have a structure that is repeated four times during one DFT / IDFT period so as to be similar to the performance requirement of the SC.
여기서, 하나의 DFT/IDFT 구간 동안 특정 시퀀스가 4번 반복되는 구조는 11ad 시스템의 CP (Cyclic Prefix) 길이가 TDFT/4로 이루어진다는 점을 고려하였을 때 하나의 OFDM 심볼 구간 동안 특정 시퀀스가 5번 반복되는 통일된 구조를 가져갈 수 있다는 장점이 있다.Herein, a structure in which a specific sequence is repeated four times during one DFT / IDFT period has a specific sequence of 5 during one OFDM symbol period, considering that the CP (Cyclic Prefix) length of the 11ad system is T DFT / 4. The advantage is that it can take a uniform structure over and over again.
이와 같이, DFT/IDFT 구간 동안 시간 영역에서 특정 시퀀스가 4번 반복되는 구조를 갖기 위하여, 본 발명에 따라 OFDM을 위한 EDMG-STF는 주파수 영역에서 3개의 0(zero)가 반복적으로 삽입되는 구조를 가질 수 있다.As such, in order to have a structure in which a specific sequence is repeated four times in the time domain during the DFT / IDFT period, the EDMG-STF for OFDM has a structure in which three zeros are repeatedly inserted in the frequency domain. Can have
(4) 하드웨어 복잡도 (HW complexity)(4) HW complexity
하드웨어 복잡도를 감소하기 위한 방안으로써, 본 발명에서 제안하는 EDMG-STF 시퀀스에 포함된 0이 아닌 값은 +1,-1,+j,-j중 1개의 값을 가질 수 있다.As a method for reducing hardware complexity, a non-zero value included in the EDMG-STF sequence proposed in the present invention may have one of + 1, -1, + j, -j.
(5) (5)
MIMOMIMO
지원을 위한 For support
직교성Orthogonality
( (
OrthogonalityOrthogonality
for for
MIMOMIMO
))
MIMO 전송을 지원하기 위해, 본 발명에 따른 각 공간 스트림별 시퀀스들은 상호간에 직교하도록 설계될 수 있다.In order to support MIMO transmission, the sequences for each spatial stream according to the present invention may be designed to be orthogonal to each other.
(6) (6)
PAPRPAPR
(Peak to Average Power Ratio) 성능 ( Peak to Average Power Ratio performance
PAPRPAPR
performance) performance)
신뢰성 높은 신호 송수신을 위해, 본 발명에 따른 시퀀스들은 PAPR을 최소화할 수 있도록 설계될 수 있다. 특히, 본 발명에 따른 EDMG-STF는 11ad 시스템의 DMG-CEF의 PAPR (예: 3.12dB)와 유사한 PAPR을 가질 수 있도록 설계될 수 있다. For reliable signal transmission and reception, sequences according to the present invention can be designed to minimize PAPR. In particular, the EDMG-STF according to the present invention may be designed to have a PAPR similar to the PAPR (eg, 3.12 dB) of the DMG-CEF of the 11ad system.
이하에서는, 앞서 상술한 다양한 기준 사항들을 고려하여 하나 또는 두 개 채널이 본딩되는 경우에 적용 가능한 시퀀스 및 상기 시퀀스의 생성 방법에 대해 상세히 설명한다.Hereinafter, a sequence applicable to the case where one or two channels are bonded in consideration of the various criteria described above and a method of generating the sequence will be described in detail.
여기서, 본 발명에 따른 EDMG-STF는 고정된 시간 크기 (예: 6 OFDM 심볼 구간)를 가진다. 이때, 상기 고정된 시간 크기는 공간-시간 스트림의 개수와는 독립적으로 설정될 수 있다.Here, the EDMG-STF according to the present invention has a fixed time size (for example, 6 OFDM symbol interval). In this case, the fixed time size may be set independently of the number of space-time streams.
본 발명에 따른 EDMG-STF 필드의 구조는 EDMG PPDU가 전송되는 연속하는 채널 (예: 2.16GHz 채널)의 개수 및 공간-시간 스트림의 번호에 기반하여 결정될 수 있다. The structure of the EDMG-STF field according to the present invention may be determined based on the number of consecutive channels (eg, 2.16 GHz channels) on which the EDMG PPDU is transmitted and the number of space-time streams.
3.1. 단일 3.1. single
채널인 경우If channel
, OFDM을 위한 For OFDM
EDMGEDMG
--
STF의Of STF
시퀀스sequence
단일 채널 (예: 2.16GHz)을 통한 EDMG OFDM 전송을 위해, iSTS
th 공간-시간 스트림을 위한 EDMG STF 필드를 구성하는데 사용되는 주파수 시퀀스(또는 주파수 영역 신호)는 아래 수학식과 같이 표현할 수 있다.For EDMG OFDM transmission over a single channel (eg, 2.16 GHz), the frequency sequence (or frequency domain signal) used to construct the EDMG STF field for the i STS th space-time stream can be expressed as the following equation.
이때, 각 공간 시간 스트림별 및 는 도 19 및 도 20 과 같이 정의될 수 있다. 보다 구체적으로, 도 19는 iSTS가 1 내지 4 인 경우의 및 를 나타내고, 도 20은 iSTS가 5 내지 8인 경우의 및 를 나타낸다.At this time, for each space time stream And May be defined as shown in FIGS. 19 and 20. More specifically, FIG. 19 shows a case where i STS is 1 to 4 And 20 shows a case where i STS is 5 to 8 And Indicates.
상기 수학식 3 및 도 19 및 도 20의 각 시퀀스를 보다 일반화하면, 각 공간 시간 스트림별 시퀀스는 다음과 같이 표현할 수 있다.When generalizing each sequence of Equation 3 and FIGS. 19 and 20, the sequence for each space time stream may be expressed as follows.
이때, 각 공간 시간 스트림별 및 는 각각 도 21 및 도 22와 같이 정의될 수 있다. At this time, for each space time stream And May be defined as shown in FIGS. 21 and 22, respectively.
앞서 설명한 수학식들에 있어, iSTS는 공간 시간 스트림 인덱스 (space-time stream index)를 나타내고, 아래 첨자는 각 시퀀스의 길이를 나타낸다. 또한, 상기 수학식들의 가운데에 위치한 3개의 영(zero) 값은 DC (Direct Current) 오프셋 제거를 위한 널 반송파 (null carrier)를 의미할 수 있다.In the above equations, i STS denotes a space-time stream index, and a subscript denotes the length of each sequence. In addition, three zero values located in the middle of the equations may mean a null carrier for DC elimination of direct current offset.
추가적으로, 단일 채널을 통한 EDMG OFDM 전송을 위하여 EDMG-STF 필드를 구성하는 각 공간 시간 스트림별 주파수 영역 신호는 앞뒤로 일정 개수의 영(zero)을 가드 반송파로 더 포함할 수 있다. 일 예로, 앞서 상술한 수학식들의 앞에는 79개의 영(zero)이 추가되고, 앞서 상술한 수학식들의 뒤에는 78개의 영(zero)이 추가될 수 있다.Additionally, the frequency domain signal for each space time stream constituting the EDMG-STF field for EDMG OFDM transmission through a single channel may further include a predetermined number of zeros as guard carriers. For example, 79 zeros may be added before the above-described equations, and 78 zeros may be added after the above-mentioned equations.
한편, MIMO 전송시 각 스트림에서 동일한 신호가 전송될 경우 발생되는 비의도적 빔포밍 (unintentional beamforming)을 막기 위한 방안으로써, 본 발명에서 제안하는 각 공간 시간 스트림을 위한 시퀀스들은 상호간에 직교하도록 설계될 수 있다. Meanwhile, as a scheme for preventing unintentional beamforming generated when the same signal is transmitted in each stream during MIMO transmission, sequences for each spatial time stream proposed in the present invention may be designed to be orthogonal to each other. have.
이하에서는, 본 발명에 적용 가능한 일 예로써, 앞서 상술한 시퀀스들을 생성하기 위한 일 예에 대해 상세히 설명한다. 본 발명에 있어, 본 발명에 따른 STA은 상기 시퀀스를 생성하기 위하여 후술할 시퀀스 생성 방법을 활용하거나, 별도의 저장 장치에 저장된 시퀀스 정보(또는 테이블 정보)를 활용하거나, 이외 다양한 방법을 활용할 수 있다. 따라서, 본 발명에 따른 STA은 EDMG-STF 필드를 구성하기 위해 앞서 상술한 구체적인 시퀀스들을 활용하되, 상기 시퀀스들을 반드시 하기의 방법에 따라 생성하지 않고 다른 방법에 따라 생성하여 활용할 수 있다.Hereinafter, as an example applicable to the present invention, an example for generating the above-described sequences will be described in detail. In the present invention, the STA according to the present invention may utilize a sequence generation method to be described later, a sequence information (or table information) stored in a separate storage device, or various other methods to generate the sequence. . Accordingly, the STA according to the present invention may utilize the above-described specific sequences to configure the EDMG-STF field, but may not generate the sequences according to the following method but may be generated and used according to another method.
일 예로, 앞서 상술한 수학식 3 및 도 19 및 도 20과 같이 정의된 각 공간 시간 스트림별 및 는 다음과 같은 절차에 따라 도출될 수 있다.For example, each spatial time stream defined as shown in Equation 3 and FIGS. 19 and 20 described above. And Can be derived according to the following procedure.
먼저, 및 는 하기의 수학식과 같이 정의될 수 있다. 이때, 는 의 n 번째 값을 의미하고, 는 의 n 번째 값을 의미할 수 있다.first, And May be defined as in the following equation. At this time, Is Means the nth value of, Is It can mean the nth value of.
수학식 5에 있어, 및 는 하기의 수학식과 같은 재귀 절차 (recursive procedure)를 통해 생성될 수 있다.In Equation 5, And Can be generated through a recursive procedure such as the following equation.
여기서, k는 반복 인덱스 (iteration index)를 나타내고, 는 iSTS 번째 공간-시간 스트림의 시퀀스 및 k 번째 반복에 대한 가중치(the weight for sequence of iSTS-th space-time stream and k-th iteration) 를 나타낸다. Where k denotes an iteration index, The i-th STS-space represents the weight (the weight for STS sequence of i -th space-time stream and k-th iteration) for the sequence and k-th iteration of the time stream.
각 공간-시간 스트림별 벡터는 표 3과 같이 나타낼 수 있다.For each space-time stream Vectors can be represented as shown in Table 3.
상기 표와 같이 각 공간-시간 스트림별 벡터를 구성하는 경우, 공간 시간 스트림별 PAPR은 다음과 같다. As shown in the table, for each space-time stream In case of constructing a vector, the PAPR for each spatial temporal stream is as follows.
Space-time stream numberSpace-time stream number
|
PAPR (dB)PAPR (dB)
|
1One
|
3.003.00
|
22
|
2.992.99
|
33
|
2.992.99
|
44
|
3.003.00
|
55
|
2.992.99
|
66
|
3.003.00
|
77
|
3.003.00
|
88
|
3.003.00
|
이때, DMG-CEF가 3.12 dB를 갖는 것을 고려할 때, 본 발명에 따른 EDMGD-STF는 우수한 성능을 가짐을 확인할 수 있다.At this time, considering that the DMG-CEF has 3.12 dB, it can be seen that the EDMGD-STF according to the present invention has excellent performance.
3.2. 3.2.
2 채널2 channel
본딩인Bonding Inn
경우, OFDM을 위한 Case, for OFDM
EDMGEDMG
--
STF의Of STF
시퀀스sequence
2 채널이 본딩된 채널 (예: 단일 4.32 GHz) 을 이용한 EDMG OFDM 전송을 위해, iSTS
th 공간-시간 스트림을 위한 EDMG STF 필드를 구성하는데 사용되는 주파수 시퀀스(또는 주파수 영역 신호)는 아래 수학식과 같이 표현할 수 있다.For EDMG OFDM transmission using a channel with two channels bonded (e.g., a single 4.32 GHz), the frequency sequence (or frequency domain signal) used to construct the EDMG STF field for the i STS th space-time stream is given by the equation Can be expressed as:
이때, 각 공간 시간 스트림별 및 는 도 23 내지 도 26과 같이 정의될 수 있다. 보다 구체적으로, 도 23은 iSTS가 1 또는 2인 경우의 및 를 나타내고, 도 24는 iSTS가 3 또는 4인 경우의 및 를 나타내고, 도 25는 iSTS가 5 또는 6인 경우의 및 를 나타내고, 도 26은 iSTS가 7 또는 8인 경우의 및 를 나타낸다.At this time, for each space time stream And May be defined as shown in FIGS. 23 to 26. More specifically, FIG. 23 shows a case where i STS is 1 or 2 And 24 shows a case where i STS is 3 or 4 And 25 shows that i i STS is 5 or 6 And 26 shows that i i STS is 7 or 8 And Indicates.
상기 수학식 7 및 도 23 내지 도 26의 각 시퀀스를 보다 간단히 정리하면, 각 공간 시간 스트림별 시퀀스는 다음과 같이 표현할 수 있다.To sum up the sequence of Equation 7 and FIGS. 23 to 26 more simply, the sequence for each space time stream can be expressed as follows.
이때, 각 공간 시간 스트림별 및 는 각각 수학식 7의 {0, } 및 { , 0}으로 정의될 수 있다. 이에 따라, 각 공간 시간 스트림별 및 는 도 27 내지 도 30과 같이 정의될 수 있다. 구체적으로, 도 27은 iSTS가 1 내지 4인 경우의 를 나타내고, 도 28은 iSTS가 5 내지 8인 경우의 를 나타내고, 도 29는 iSTS가 1 내지 4인 경우의 를 나타내고, 도 30은 iSTS가 5 내지 8인 경우의 를 나타낸다.At this time, for each space time stream And Are each equal to {0, } And { , 0}. Accordingly, each space time stream And May be defined as shown in FIGS. 27 to 30. Specifically, FIG. 27 shows the case where i STS is 1 to 4. FIG. 28 shows the case where i STS is 5 to 8 29 shows the case where i STS is 1 to 4 30 shows that i i STS is 5 to 8 Indicates.
앞서 설명한 수학식들에 있어, iSTS는 공간 시간 스트림 인덱스 (spatial stream index)를 나타내고, 아래 첨자는 각 시퀀스의 길이를 나타낸다. 또한, 상기 수학식들의 가운데에 위치한 3개의 영(zero) 값은 DC (Direct Current) 오프셋 제거를 위한 널 반송파 (null carrier)를 나타낸다.In the above-described equations, i STS denotes a spatial temporal stream index, and a subscript denotes the length of each sequence. In addition, three zero values located in the middle of the above equations represent a null carrier for direct current (DC) offset cancellation.
한편, MIMO 전송시 각 스트림에서 동일한 신호가 전송될 경우 발생되는 비의도적 빔포밍 (unintentional beamforming)을 막기 위한 방안으로써, 본 발명에서 제안하는 각 공간 시간 스트림을 위한 시퀀스들은 상호간에 직교하도록 설계될 수 있다. Meanwhile, as a scheme for preventing unintentional beamforming generated when the same signal is transmitted in each stream during MIMO transmission, sequences for each spatial time stream proposed in the present invention may be designed to be orthogonal to each other. have.
이하에서는, 본 발명에 적용 가능한 일 예로써, 앞서 상술한 시퀀스들을 생성하기 위한 일 예에 대해 상세히 설명한다. 다시 말해, 본 발명에 따른 STA은 상기 시퀀스를 생성하기 위하여 후술할 시퀀스 생성 방법을 활용하거나, 별도의 저장 장치에 저장된 시퀀스 정보(또는 테이블 정보)를 활용하거나, 이외 다양한 방법을 활용할 수 있다. 따라서, 본 발명에 따른 STA은 EDMG-STF 필드를 구성하기 위해 앞서 상술한 구체적인 시퀀스들을 활용하되, 상기 시퀀스들을 반드시 하기의 방법에 따라 생성하지 않고 다른 방법에 따라 생성하여 활용할 수 있다.Hereinafter, as an example applicable to the present invention, an example for generating the above-described sequences will be described in detail. In other words, the STA according to the present invention may utilize a sequence generation method to be described later, a sequence information (or table information) stored in a separate storage device, or various other methods to generate the sequence. Accordingly, the STA according to the present invention may utilize the above-described specific sequences to configure the EDMG-STF field, but may not generate the sequences according to the following method but may be generated and used according to another method.
일 예로, 앞서 상술한 수학식 7 및 도 24 내지 도 26과 같이 정의된 각 공간 시간 스트림별 및 는 다음과 같은 절차에 따라 도출될 수 있다.For example, each spatial time stream defined as shown in Equation 7 and FIGS. 24 to 26 described above. And Can be derived according to the following procedure.
먼저, 및 는 하기의 수학식과 같이 정의될 수 있다. 이때, 는 의 n 번째 값을 의미하고, 는 의 n 번째 값을 의미할 수 있다.first, And May be defined as in the following equation. At this time, Is Means the nth value of, Is It can mean the nth value of.
수학식 9에 있어, 및 는 하기의 수학식과 같은 재귀 절차 (recursive procedure)를 통해 생성될 수 있다.In Equation 9, And Can be generated through a recursive procedure such as the following equation.
여기서, k는 반복 인덱스 (iteration index)를 나타내고, 는 iSTS 번째 공간-시간 스트림의 시퀀스 및 k 번째 반복에 대한 가중치(the weight for sequence of iSTS-th space-time stream and k-th iteration) 를 나타낸다. Where k denotes an iteration index, The i-th STS-space represents the weight (the weight for STS sequence of i -th space-time stream and k-th iteration) for the sequence and k-th iteration of the time stream.
각 공간-시간 스트림별 벡터는 표 5와 같이 나타낼 수 있다.For each space-time stream Vectors can be represented as shown in Table 5.
추가적으로, 수학식 10에 있어, 대신 이 적용될 수 있다. In addition, in Equation 10, instead This can be applied.
또는, 수학식 10에 있어, 및 에 대해 수학식 10에 개시된 요소(element)의 역순인 요소 값이 적용될 수 있다. 이에 따르면, 및 와 같이 표현될 수 있다.Or in equation (10), And An element value which is an inverse order of an element disclosed in Equation 10 may be applied to. According to this, And It can be expressed as
한편, 각 공간 시간 스트림별 벡터로는 상호 직교성 (mutual orthogonality)를 만족하는 요소들이 적용될 수 있다. 일 예로, 표 5와 달리, 각 공간-시간 스트림별 벡터를 구성하는 요소는 허수를 포함한 복소수가 적용될 수도 있다.Meanwhile, each space time stream As vectors, elements satisfying mutual orthogonality may be applied. For example, unlike Table 5, for each space-time stream The elements constituting the vector may be complex numbers including imaginary numbers.
상기 표와 같이 각 공간 시간 스트림별 벡터를 구성하는 경우, 공간 시간 스트림별 PAPR은 다음과 같다. As shown in the table above, each spatial time stream In case of constructing a vector, the PAPR for each spatial temporal stream is as follows.
Space-time stream numberSpace-time stream number
|
PAPR (dB)PAPR (dB)
|
1One
|
2.992.99
|
22
|
3.003.00
|
33
|
3.003.00
|
44
|
3.003.00
|
55
|
2.992.99
|
66
|
3.003.00
|
77
|
3.003.00
|
88
|
3.003.00
|
상술한 구성들에 있어, 시간 영역에서의 EDMG-STF 필드 전송 파형 (EDMG-STF field transmit waveform)은 OFDM 샘플링 레이트가 Fs=NCB*2.64GHz이고 시간 구간이 Ts=1/Fs
ns 인 경우, 다음과 같이 정의될 수 있다. (The EDMG-STF field transmit waveform in time domain shall be defined at the OFDM sampling rate Fs equal to NCB×2.64 GHz and sample time duration Ts= 1/Fs ns as follows:)In the above configurations, the EDMG-STF field transmit waveform in the time domain has an OFDM sampling rate of F s = N CB * 2.64 GHz and a time interval of T s = 1 / F s In the case of ns, it may be defined as follows. (The EDMG-STF field transmit waveform in time domain shall be defined at the OFDM sampling rate F s equal to N CB × 2.64 GHz and sample time duration T s = 1 / F s ns as follows :)
여기서, 는 NCB=1,2,3 및 4 경우 각각 88, 192, 296, 400 이고, 는 k번째 부반송파 별 공간 매핑 행렬 (spatial mapping matrix)이고, 는 m번째 열(row) 및 n 번째 행(column)의 행렬 요소 (matrix element)를 나타낸다. 는 연속하는 OFDM 심볼간 전이를 완화하기 위해 적용되는 윈도우 함수를 나타내고, 이에 대한 정의는 구현 의존적일 수 있다. ( is a window function applied to smooth the transitions between consecutive OFDM symbols, whose definition is implementation dependent.)here, Is 88, 192, 296, 400 for N CB = 1, 2, 3 and 4, respectively, Is the spatial mapping matrix for each k-th subcarrier, Denotes a matrix element of the m th row and the n th column. Denotes a window function applied to mitigate transitions between successive OFDM symbols, the definition of which may be implementation dependent. ( is a window function applied to smooth the transitions between consecutive OFDM symbols, whose definition is implementation dependent.)
도 31은 본 발명의 일 예에 따른 신호 전송 방법을 나타낸 흐름도이다.31 is a flowchart illustrating a signal transmission method according to an embodiment of the present invention.
먼저, 본 발명에 따른 스테이션은 EDMG PPDU 가 전송되는 본딩된 채널에 포함된 채널 개수 및 공간 시간 스트림의 번호에 기반하여 OFDM 모드로 전송되는 (또는 OFDM 패킷을 위한) EDMG STF 필드를 생성한다(S3110). First, the station according to the present invention generates an EDMG STF field transmitted in the OFDM mode (or for the OFDM packet) based on the number of channels included in the bonded channel through which the EDMG PPDU is transmitted and the number of spatial time streams (S3110). ).
이때, 상기 EDMG STF 필드에 포함된 각 공간 시간 스트림별 EDMG STF 시퀀스는 {A, 0, 0, 0, B}와 같은 형태로 구성될 수 있다. 구체적으로, 본딩된 채널 개수가 1개인 경우, 상기 A 및 B는 176 길이의 시퀀스로 구성될 수 있고, 본딩된 채널 개수가 2개인 경우, 상기 A 및 B는 385 길이의 시퀀스로 구성될 수 있다.At this time, the EDMG STF sequence for each space time stream included in the EDMG STF field may be configured as {A, 0, 0, 0, B}. Specifically, when the number of bonded channels is one, A and B may be configured in a sequence of 176 lengths, and when the number of bonded channels is two, the A and B may be configured in a sequence of 385 lengths. .
이때, 공간 시간 스트림은 최대 8개로 구성될 수 있고, 각 공간 시간 스트림에 대한 A 및 B는 다른 공간 시간 스트림의 A 및 B와 각각 직교할 수 있다. 다시 말해, 제1 공간 시간 스트림에 대한 A (또는 B)는 제2 공간 시간 스트림에 대한 A (또는 B)와 서로 직교하도록 설정될 수 있다.In this case, up to eight space time streams may be configured, and A and B for each space time stream may be orthogonal to A and B of other space time streams, respectively. In other words, A (or B) for the first space time stream may be set to be orthogonal to A (or B) for the second space time stream.
구체적인 일 예로, 본딩된 채널에 포함된 채널 개수가 1개인 경우, 각 공간 시간 스트림별 A 및 B는 도 21 및 도 22와 같이 구성될 수 있다. 또는, 본딩된 채널에 포함된 채널 개수가 2개인 경우, 각 공간 시간 스트림별 A 및 B는 도 27 내지 도 30과 같이 구성될 수 있다.As a specific example, when the number of channels included in the bonded channel is one, A and B for each space time stream may be configured as shown in FIGS. 21 and 22. Alternatively, when the number of channels included in the bonded channel is two, each of the space time streams A and B may be configured as shown in FIGS. 27 to 30.
여기서, 상기 EDMG STF 필드는 6개의 OFDM 심볼 길이로 구성될 수 있다.Here, the EDMG STF field may be configured with six OFDM symbol lengths.
본 발명에 있어, 상기 A 및 B에 포함된 0이 아닌 값은 상기 본딩된 채널에 포함된 채널 개수에 따라 상이한 길이의 제1 시퀀스 및 제2 시퀀스의 값들이 일정 규칙에 따른 가중치가 부가되어 반복 배치되는 구성을 가질 수 있다.In the present invention, non-zero values included in the A and B are repeated values of the first sequence and the second sequence having different lengths according to a predetermined rule depending on the number of channels included in the bonded channel. It may have a configuration arranged.
먼저, 상기 EDMG PPDU가 전송되는 본딩된 채널에 포함된 채널 개수가 1개인 경우에 대한 구체적인 기술적 특징은 다음과 같다.First, specific technical features of the case where the number of channels included in the bonded channel through which the EDMG PPDU is transmitted is one is as follows.
상기 A 및 B에 포함된 0이 아닌 값은 11 길이를 갖는 상기 제1 시퀀스 및 제2 시퀀스의 값들이 일정 규칙에 따른 가중치가 부가되어 반복 배치되는 구성으로 설정될 수 있다.The non-zero values included in the A and B may be set in such a way that the values of the first and second sequences having lengths of 11 are repeatedly arranged with a weight according to a predetermined rule.
이때, 공간 시간 스트림은 최대 8개로 구성되고, 각 공간 시간 스트림(iSTS)별 제1 시퀀스 () 및 제2 시퀀스 ()는 각각 하기 수학식 12와 같은 시퀀스로 구성될 수 있다.At this time, the space time stream is composed of a maximum of eight, each of the first sequence for each space time stream (i STS ) ( ) And second sequence ( ) May be configured in a sequence as shown in Equation 12 below.
여기서, 상기 A 및 B에 포함된 0이 아닌 값은 각각 하기 수학식 13에 의해 결정되는 및 와 같은 시퀀스로 구성될 수 있다.Here, the non-zero values included in A and B are each determined by Equation 13 below. And It can be composed of a sequence such as.
또한, 상기 수학식 13에서 공간 시간 스트림별 는 하기 표와 같이 설정될 수 있다.In addition, for each space time stream in Equation 13 May be set as shown in the following table.
여기서, 각 공간 시간 스트림의 A 및 B는 0이 아닌 값들 사이에 {0, 0, 0} 시퀀스를 포함할 수 있다.Here, A and B of each spatial time stream may include a {0, 0, 0} sequence between non-zero values.
특히, 각 공간 시간 스트림의 A는 가장 앞에 위치한 {0} 시퀀스 및 가장 뒤에 위치한 {0, 0} 시퀀스를 포함하고, 각 공간 시간 스트림의 B는 가장 앞에 위치한 {0, 0} 시퀀스 및 가장 뒤에 위치한 {0} 시퀀스를 포함할 수 있다. 보다 상세하게, 도 19 내지 도 22에 도시된 바와 같이, 각 공간 시간 스트림 별 A에 대응하는 전체 시퀀스는 가장 앞에 위치한 1개의 '0' 시퀀스 및 가장 뒤에 위치한 2개의 '0' 시퀀스를 포함하고, 각 공간 시간 스트림 별 B에 대응하는 전체 시퀀스는 가장 앞에 위치한 2개의 '0' 시퀀스 및 가장 뒤에 위치한 1개의 '0' 시퀀스를 포함할 수 있다.Specifically, A of each spatial temporal stream includes the first {0} sequence and the last {0, 0} sequence, and B of each spatial temporal stream is the first and the last {0, 0} sequence It may include a {0} sequence. In more detail, as shown in FIGS. 19 to 22, the entire sequence corresponding to A for each space time stream includes one '0' sequence located at the front and two '0' sequences located at the rear, The entire sequence corresponding to B for each space time stream may include two '0' sequences located at the front and one '0' sequence located at the rear.
이어, 상기 EDMG PPDU가 전송되는 본딩된 채널에 포함된 채널 개수가 2개인 경우에 대한 구체적인 기술적 특징은 다음과 같다.Next, specific technical features of the case where the number of channels included in the bonded channel through which the EDMG PPDU is transmitted are two as follows.
상기 A 및 B에 포함된 0이 아닌 값은 3 길이를 갖는 상기 제1 시퀀스 및 제2 시퀀스의 값들이 일정 규칙에 따른 가중치가 부가되어 반복 배치되는 구성으로 설정될 수 있다.Non-zero values included in the A and B may be set to a configuration in which the values of the first and second sequences having a length of 3 are repeatedly arranged with a weight according to a predetermined rule.
이때, 공간 시간 스트림은 최대 8개로 구성되고, 각 공간 시간 스트림(iSTS)별 제1 시퀀스 () 및 제2 시퀀스 ()는 각각 하기 수학식 14와 같은 시퀀스로 구성될 수 있다.At this time, the space time stream is composed of a maximum of eight, each of the first sequence for each space time stream (i STS ) ( ) And second sequence ( ) May each be configured in a sequence as shown in Equation 14 below.
여기서, 상기 A 및 B에 포함된 0이 아닌 값은 각각 하기 수학식 15에 의해 결정되는 및 와 같은 시퀀스로 구성될 수 있다.Herein, the non-zero values included in A and B are determined by Equation 15, respectively. And It can be composed of a sequence such as.
또한, 상기 수학식 5에서 공간 시간 스트림별 는 하기 표와 같이 설정될 수 있다.In addition, for each space time stream in Equation 5 May be set as shown in the following table.
여기서, 각 공간 시간 스트림의 A 및 B는 0이 아닌 값들 사이에 {0, 0, 0} 시퀀스를 포함할 수 있다.Here, A and B of each spatial time stream may include a {0, 0, 0} sequence between non-zero values.
특히, 각 공간 시간 스트림의 A 및 B는 가장 앞에 위치한 {0, 0} 시퀀스 및 가장 뒤에 위치한 {0, 0} 시퀀스를 각각 포함할 수 있다. 보다 상세하게, 도 23 내지 도 30에 도시된 바와 같이, 각 공간 시간 스트림 별 A및 B에 대응하는 전체 시퀀스는 가장 앞에 위치한 2개의 '0' 시퀀스 및 가장 뒤에 위치한 2개의 '0' 시퀀스를 포함할 수 있다.In particular, A and B of each spatial time stream may include the {0, 0} sequence located at the front and the {0, 0} sequence located at the rear. More specifically, as shown in FIGS. 23 to 30, the entire sequence corresponding to A and B for each space time stream includes two '0' sequences located at the front and two '0' sequences located at the rear. can do.
이어, 상기 스테이션은 상기 OFDM 모드로 전송되는 EDMG STF 필드를 포함하는 EDMG PPDU를 상기 하나 또는 두 개 채널이 본딩된 채널 내 공간 시간 스트림을 통해 다른 스테이션에게 전송한다(S3120).Subsequently, the station transmits an EDMG PPDU including an EDMG STF field transmitted in the OFDM mode to another station through a spatial time stream in a channel in which one or two channels are bonded (S3120).
4. 장치 구성4. Device Configuration
도 32는 상술한 바와 같은 방법을 구현하기 위한 장치를 설명하기 위한 도면이다.32 is a diagram for describing an apparatus for implementing the method as described above.
도 32의 무선 장치(100)은 상술한 설명에서 설명한 신호를 전송하는 개시자 STA, 그리고 무선 장치(150)은 상술한 설명에서 설명한 신호를 수신하는 응답자 STA에 대응할 수 있다. 이때, 각 스테이션은 11ay 단말 또는 PCP/AP에 대응될 수 있다. 이하, 설명의 편의를 위해 신호를 전송하는 개시자 STA은 송신 장치 (100)라 명명하고, 신호를 수신하는 응답자 STA은 수신 장치 (150)라 명명한다.The wireless device 100 of FIG. 32 may correspond to an initiator STA transmitting a signal described in the above description, and the wireless device 150 may correspond to a responder STA receiving the signal described in the above description. In this case, each station may correspond to an 11ay terminal or a PCP / AP. Hereinafter, for the convenience of description, the initiator STA transmitting a signal is called a transmitting device 100, and the responder STA receiving a signal is called a receiving device 150.
송신 장치 (100)는 프로세서(110), 메모리(120), 송수신부(130)를 포함할 수 있고, 수신 장치 (150)는 프로세서(160), 메모리(170) 및 송수신부(180)를 포함할 수 있다. 송수신부(130, 180)은 무선 신호를 송신/수신하고, IEEE 802.11/3GPP 등의 물리적 계층에서 실행될 수 있다. 프로세서(110, 160)은 물리 계층 및/또는 MAC 계층에서 실행되고, 송수신부(130, 180)와 연결되어 있다. The transmitter 100 may include a processor 110, a memory 120, and a transceiver 130, and the receiver device 150 may include a processor 160, a memory 170, and a transceiver 180. can do. The transceiver 130 and 180 may transmit / receive a radio signal and may be executed in a physical layer such as IEEE 802.11 / 3GPP. The processors 110 and 160 are executed in the physical layer and / or the MAC layer and are connected to the transceivers 130 and 180.
프로세서(110, 160) 및/또는 송수신부(130, 180)는 특정 집적 회로(application-specific integrated circuit, ASIC), 다른 칩셋, 논리 회로 및/또는 데이터 프로세서를 포함할 수 있다. 메모리(120, 170)은 ROM(read-only memory), RAM(random access memory), 플래시 메모리, 메모리 카드, 저장 매체 및/또는 다른 저장 유닛을 포함할 수 있다. 일 실시 예가 소프트웨어에 의해 실행될 때, 상기 기술한 방법은 상기 기술된 기능을 수행하는 모듈(예를 들어, 프로세스, 기능)로서 실행될 수 있다. 상기 모듈은 메모리(120, 170)에 저장될 수 있고, 프로세서(110, 160)에 의해 실행될 수 있다. 상기 메모리(120, 170)는 상기 프로세스(110, 160)의 내부 또는 외부에 배치될 수 있고, 잘 알려진 수단으로 상기 프로세스(110, 160)와 연결될 수 있다. The processors 110 and 160 and / or the transceivers 130 and 180 may include application-specific integrated circuits (ASICs), other chipsets, logic circuits, and / or data processors. The memory 120, 170 may include read-only memory (ROM), random access memory (RAM), flash memory, memory card, storage medium and / or other storage unit. When an embodiment is executed by software, the method described above can be executed as a module (eg, process, function) that performs the functions described above. The module may be stored in the memories 120 and 170 and may be executed by the processors 110 and 160. The memories 120 and 170 may be disposed inside or outside the processes 110 and 160, and may be connected to the processes 110 and 160 by well-known means.
상술한 바와 같이 개시된 본 발명의 바람직한 실시형태에 대한 상세한 설명은 당업자가 본 발명을 구현하고 실시할 수 있도록 제공되었다. 상기에서는 본 발명의 바람직한 실시 형태를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 상술한 설명으로부터 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다. 따라서, 본 발명은 여기에 나타난 실시형태들에 제한되려는 것이 아니라, 여기서 개시된 원리들 및 신규한 특징들과 일치하는 최광의 범위를 부여하려는 것이다. The detailed description of the preferred embodiments of the invention disclosed as described above is provided to enable any person skilled in the art to make and practice the invention. Although the above has been described with reference to a preferred embodiment of the present invention, those skilled in the art will understand that the present invention can be variously modified and changed from the above description. Thus, the present invention is not intended to be limited to the embodiments shown herein but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.