Nothing Special   »   [go: up one dir, main page]

WO2018131203A1 - ロープ、及びそれを用いたエレベータ - Google Patents

ロープ、及びそれを用いたエレベータ Download PDF

Info

Publication number
WO2018131203A1
WO2018131203A1 PCT/JP2017/029799 JP2017029799W WO2018131203A1 WO 2018131203 A1 WO2018131203 A1 WO 2018131203A1 JP 2017029799 W JP2017029799 W JP 2017029799W WO 2018131203 A1 WO2018131203 A1 WO 2018131203A1
Authority
WO
WIPO (PCT)
Prior art keywords
reinforcing fiber
rope
wavy
load
cross
Prior art date
Application number
PCT/JP2017/029799
Other languages
English (en)
French (fr)
Inventor
雅也 瀬良
中川 博之
治彦 角谷
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to US16/347,232 priority Critical patent/US11618999B2/en
Priority to DE112017006769.3T priority patent/DE112017006769B4/de
Priority to CN201780082400.3A priority patent/CN110177908B/zh
Priority to JP2018561796A priority patent/JP6664518B2/ja
Publication of WO2018131203A1 publication Critical patent/WO2018131203A1/ja

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B5/00Making ropes or cables from special materials or of particular form
    • D07B5/04Rope bands
    • D07B5/045Belts comprising additional filaments for laterally interconnected load bearing members
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B7/00Other common features of elevators
    • B66B7/06Arrangements of ropes or cables
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B7/00Other common features of elevators
    • B66B7/06Arrangements of ropes or cables
    • B66B7/062Belts
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/16Ropes or cables with an enveloping sheathing or inlays of rubber or plastics
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/22Flat or flat-sided ropes; Sets of ropes consisting of a series of parallel ropes
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2015Strands
    • D07B2201/2016Strands characterised by their cross-sectional shape
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2015Strands
    • D07B2201/2021Strands characterised by their longitudinal shape
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2015Strands
    • D07B2201/2046Strands comprising fillers
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2083Jackets or coverings
    • D07B2201/2087Jackets or coverings being of the coated type
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2083Jackets or coverings
    • D07B2201/2088Jackets or coverings having multiple layers
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2205/00Rope or cable materials
    • D07B2205/20Organic high polymers
    • D07B2205/2046Polyamides, e.g. nylons
    • D07B2205/205Aramides
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2205/00Rope or cable materials
    • D07B2205/20Organic high polymers
    • D07B2205/2096Poly-p-phenylenebenzo-bisoxazole [PBO]
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2205/00Rope or cable materials
    • D07B2205/30Inorganic materials
    • D07B2205/3003Glass
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2205/00Rope or cable materials
    • D07B2205/30Inorganic materials
    • D07B2205/3007Carbon
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2401/00Aspects related to the problem to be solved or advantage
    • D07B2401/20Aspects related to the problem to be solved or advantage related to ropes or cables
    • D07B2401/2005Elongation or elasticity
    • D07B2401/201Elongation or elasticity regarding structural elongation
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2401/00Aspects related to the problem to be solved or advantage
    • D07B2401/20Aspects related to the problem to be solved or advantage related to ropes or cables
    • D07B2401/206Improving radial flexibility
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2501/00Application field
    • D07B2501/20Application field related to ropes or cables
    • D07B2501/2007Elevators
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B5/00Making ropes or cables from special materials or of particular form
    • D07B5/04Rope bands

Definitions

  • the present invention relates to a rope used in, for example, an elevator or a crane apparatus, and an elevator using the rope.
  • an elevator car is suspended by a rope, and moves up and down as a driving sheave around which the rope is wound rotates.
  • the bending rigidity of the load supporting member is high, so that it is difficult to wind the rope around the drive sheave and the workability is low.
  • the reinforcing fiber is difficult to shrink and extend, so the stress generated in the reinforcing fiber on the surface of the load supporting member increases, and there is a concern about the strength reliability of the rope.
  • the present invention has been made to solve the above-described problems, and is intended to obtain a rope capable of reducing bending rigidity while achieving high strength and light weight, and an elevator using the same. Objective.
  • a rope according to the present invention includes an impregnating material, a load supporting member embedded in the impregnating material, and a reinforcing fiber body continuous in the longitudinal direction that supports a load acting in the longitudinal direction, and the load supporting member
  • the reinforcing fiber body includes a wavy reinforcing fiber body having a wavy shape in a cross section parallel to the longitudinal direction, and the wavy reinforcing fiber body is a straight line.
  • the total length when stretched into a shape is 1.1 times or more the total length of the load support member.
  • a rope according to the present invention includes an impregnation material, a load supporting member embedded in the impregnation material, and a reinforcing fiber body continuous in the longitudinal direction that supports the load acting in the longitudinal direction, and the load
  • the load support member further includes a plurality of cross members embedded in the impregnation material at intervals in the longitudinal direction of the load support member. Is a long shape extending in a direction perpendicular to the longitudinal direction of the load supporting member, the elastic modulus of the cross member is larger than the elastic modulus of the impregnating material, and the reinforcing fiber body is at least one.
  • the portion includes a wavy reinforcing fiber body that is formed in a wave shape by being hung on a cross member, and the total length when the wavy reinforcing fiber body is linearly extended is longer than the total length of the load support member.
  • the rope of the present invention can reduce the bending rigidity while achieving high strength and light weight.
  • FIG. 2 is a perspective view showing a part of a rope according to Embodiment 1.
  • FIG. 3 is a cross-sectional view taken along line AA in FIG. 2.
  • FIG. 3 is a sectional view taken along line BB in FIG. It is a perspective view which takes out and shows only a wavy reinforcement fiber bundle from the rope of FIG. It is sectional drawing which expands and shows a part of load support member of FIG. It is AA sectional drawing of the rope by Embodiment 2 of this invention.
  • FIG. 8 is a BB cross-sectional view of the rope of FIG.
  • FIG. 12 is a BB cross-sectional view of the rope of FIG. It is a perspective view which takes out and shows only a wavy reinforcement fiber bundle and a crosspiece from the rope of FIG. It is AA sectional drawing of the rope by Embodiment 4 of this invention.
  • FIG. 15 is a cross-sectional view of the rope of FIG. 14 taken along the line BB.
  • FIG. 10 is an AA cross-sectional view showing a first modification of the rope according to the fourth embodiment.
  • FIG. 18 is a BB cross-sectional view of the rope of FIG.
  • FIG. 10 is a BB cross-sectional view showing a second modification of the rope according to the fourth embodiment.
  • It is AA sectional drawing of the rope by Embodiment 5 of this invention.
  • FIG. 21 is a cross-sectional view of the rope of FIG. 20 taken along the line BB. It is a perspective view which takes out only a wavy reinforcement fiber bundle, a parallel reinforcement fiber bundle, and a crosspiece from the rope of FIG. It is BB sectional drawing of the rope 20 by Embodiment 6 of this invention.
  • FIG. 1 is a block diagram showing an elevator according to Embodiment 1 of the present invention.
  • a machine room 2 is provided in the upper part of the hoistway 1.
  • a hoisting machine 3 and a deflecting wheel 4 are installed in the machine room 2.
  • the hoisting machine 3 has a drive sheave 5 and a hoisting machine main body 6.
  • the hoisting machine body 6 is provided with a hoisting machine motor (not shown) that rotates the driving sheave 5 and a hoisting machine brake (not shown) that brakes the rotation of the driving sheave 5.
  • a plurality of ropes 20 (only one is shown in FIG. 1) are wound around the drive sheave 5 and the deflecting wheel 4.
  • a car 7 is connected to the first end of the rope 20 in the longitudinal direction.
  • a counterweight 8 is connected to the second end of the rope 20 in the longitudinal direction. The car 7 and the counterweight 8 are suspended by a rope 20 and are moved up and down in the hoistway 1 by rotating the drive sheave 5.
  • a pair of car guide rails 9 (only one is shown in FIG. 1) for guiding the raising and lowering of the car 7 and a pair (only one is shown in FIG. 1) for guiding the raising and lowering of the counterweight 8.
  • a counterweight guide rail 10 is installed.
  • An emergency stop device 11 that holds the pair of car guide rails 9 and stops the car 7 in an emergency is mounted on the lower part of the car 7.
  • the frictional force acting between the rope 20 and the drive sheave 5, that is, the winding force is called traction.
  • the weight of the counterweight 8 is substantially balanced with the weight of the car 7 and plays a role of reducing the traction required for the rope 20 and the capacity of the hoisting machine 3 required for winding.
  • reducing the weight of the rope 20 not only ensures the safety of the rope 20, but also reduces the total weight of the elevator. Moreover, it leads to size reduction and cost reduction of the elevator components, for example, the hoisting machine 3 and the emergency stop device 11. That is, reducing the weight of the rope 20 has advantages such as space saving and cost reduction as the entire elevator system.
  • FIG. 2 is a perspective view showing a part of the rope 20 according to the first embodiment
  • FIG. 3 is a sectional view taken along the line AA in FIG. 2
  • FIG. 4 is a sectional view taken along the line BB in FIG. 2 is the longitudinal direction of the rope 20
  • the Y-axis direction is the width direction of the rope 20
  • the Z-axis direction is the thickness direction of the rope 20
  • L is the length of the rope 20 in the X-axis direction.
  • the same reference numerals are used in the following drawings and description.
  • cut surface of the rope 20 along the line AA in FIG. 2 is taken along the line AA
  • the cut surface of the rope 20 along the line BB along the line BB is taken along the line BB.
  • similar cut surfaces are referred to as an AA section and a BB section.
  • the load due to the weight of the car 7 or the like acts on the rope 20 in the X-axis direction.
  • the rope 20 is bent in the direction around the Y axis when passing through the drive sheave 5 and the deflector wheel 4.
  • the rope 20 of the first embodiment includes a load support member 21 that is a main member and a covering material 22 that covers the outer periphery of the load support member 21.
  • the shape of the rope 20 taken along the line AA is a rectangle having a dimension in the width direction larger than the dimension in the thickness direction.
  • the shape of the cross section AA of the load supporting member 21 is a rectangle having a dimension in the width direction larger than the dimension in the thickness direction.
  • the covering material 22 covers the periphery of the load supporting member 21 and protects the load supporting member 21 from external environmental loads such as heat and humidity and physical loads caused by contact with the drive sheave 5 and the deflector 4 and the like. is doing. Further, the covering material 22 plays a role of stably providing traction necessary for the rope 20.
  • the covering material 22 has high heat resistance and wear resistance.
  • the material of the covering material 22 for example, polyurethane, epoxy, polyester, or vinyl ester can be used. By changing the material of the covering material 22, the friction coefficient of the rope 20 with respect to the drive sheave 5 can be adjusted.
  • the load support member 21 has a plurality of wavy reinforcing fiber bundles 23 as a wavy reinforcing fiber body and an impregnating material 24.
  • the wavy reinforcing fiber bundle 23 is embedded in the impregnating material 24.
  • the wavy reinforcing fiber bundle 23 is continuously arranged over the entire length of the load support member 21.
  • the load acting in the longitudinal direction of the rope 20 is mainly supported by the wavy reinforcing fiber bundle 23.
  • the wavy reinforcing fiber bundle 23 has a wavy shape in a cross section parallel to the longitudinal direction. That is, the wavy reinforcing fiber bundle 23 is wavy in the BB cross section of the rope 20. Further, the wavy reinforcing fiber bundle 23 is periodically curved along the longitudinal direction of the load support member 21 so as to alternately protrude on one side and the other side in the thickness direction of the load support member 21. .
  • FIG. 5 is a perspective view showing only the wavy reinforcing fiber bundle 23 taken out from the rope 20 of FIG.
  • only the wavy reinforcing fiber bundle 23 is used as the reinforcing fiber body.
  • all the wavy reinforcing fiber bundles 23 are in the same phase.
  • the total length when each of the wavy reinforcing fiber bundles 23 is linearly extended is 1.1 times or more the total length of the load support member 21, that is, the length in the X-axis direction.
  • the Z of the peak of the peak convex on one side and the peak of the peak convex on the other side is viewed, with respect to the thickness direction of the load supporting member 21, the Z of the peak of the peak convex on one side and the peak of the peak convex on the other side.
  • the difference in height in the axial direction is a.
  • the distance in the X-axis direction between the vertices of adjacent peaks protruding in the same direction is b. That is, b represents the wave period of the wavy reinforcing fiber bundle 23.
  • the wave height is a and the wave period is b.
  • FIG. 6 is an enlarged cross-sectional view showing a part of the load support member 21 of FIG.
  • Each of the wavy reinforcing fiber bundles 23 is composed of a plurality of continuous reinforcing fibers 25 that are bundled with each other and are light and high in strength.
  • the reinforcing fiber 25 for example, carbon fiber, glass fiber, aramid fiber, PBO fiber, or a composite fiber obtained by combining these fibers is used.
  • the reinforcing fibers 25 in each wavy reinforcing fiber bundle 23 are bonded to each other by an impregnating material 24.
  • the wavy reinforcing fiber bundles 23 are bonded to each other by an impregnating material 24.
  • the impregnating material 24 prevents the position of the reinforcing fibers 25 from shifting inside the rope 20 when the rope 20 is used, suppresses contact and wear of the reinforcing fibers 25, and improves the life of the rope 20.
  • the elastic modulus of the reinforcing fiber 25 is larger than the elastic modulus of the impregnating material 24 and the covering material 22, and the load in the X-axis direction acting on the rope 20 due to the weight of the car 7 and the weight of the rope 20 is the load support.
  • the member 21, among them, the reinforcing fiber 25 bears most, that is, 90% or more.
  • the rope 20 when the rope 20 is bent along the outer periphery of the drive sheave 5, for example, the rope 20 contracts in the X-axis direction on the drive sheave 5 side and extends in the X-axis direction on the opposite side.
  • the amount of contraction and extension at this time are determined by the radius of curvature of the outer periphery of the drive sheave 5 and the thickness of the rope 20, and the closer to the surface in the Z-axis direction of the rope 20, the greater.
  • the bending stiffness EI is a value obtained by multiplying the equivalent elastic modulus E by the sectional secondary moment I of the rope 20 in the AA section.
  • the equivalent elastic modulus E is an elastic modulus when the rope 20 is regarded as a homogeneous body.
  • the reinforcing fiber 25 has the largest elastic modulus. Since the reinforcing fiber 25 is difficult to shrink and extend, the magnitude of the equivalent elastic modulus E of the rope 20 mainly depends on the reinforcing fiber 25. Therefore, if the shrinkage and extension of the reinforcing fiber 25 with respect to the load are increased, the equivalent elastic modulus E can be reduced and the bending rigidity can be reduced.
  • the elastic modulus at a location near the surface in the thickness direction of the rope 20 that requires a large amount of contraction and extension is larger than the bending rigidity at the center in the thickness direction. If it can be reduced, the bending rigidity can be effectively reduced.
  • the bending rigidity EI can be reduced even if the secondary moment I is reduced.
  • the cross-sectional secondary moment I of the rope 20 is expressed by the following formula (1) using the width w and the thickness t of the rope 20.
  • I wt 3/12 ⁇ ( 1)
  • the cross-sectional secondary moment I is proportional to the width w and proportional to the cube of the thickness t. Therefore, by reducing the thickness t, the cross-sectional secondary moment can be effectively reduced and the bending rigidity EI can be reduced.
  • the rope 20 of the first embodiment has a wavy reinforcing fiber bundle 23, that is, a reinforcing fiber 25 constituting the wavy reinforcing fiber bundle 23, in a BB cross section.
  • This is a structure in which the reinforcing fibers 25 are longer than the reinforcing fibers 25 oriented in parallel to the X-axis direction of the rope 20.
  • the amount of shrinkage and extension of the reinforcing fiber 25 increases even if the load is the same, so that the equivalent elastic modulus E of the rope 20 can be reduced.
  • the proportion of the reinforcing fibers 25 is reduced at a location near the surface in the thickness direction of the rope 20 than in the center of the rope 20 in the thickness direction. For this reason, the elasticity modulus of the location close
  • the reinforcing fiber 25 is made longer, even if the shrinkage amount and the extension amount of the reinforcing fiber 25 are the same, the strain generated in the reinforcing fiber 25 when the rope 20 is wound around the sheave is reduced.
  • the radius of curvature of the outer periphery of the sheave around which the rope 20 is wound can be made smaller than arranging the reinforcing fiber 25 in parallel with the X-axis direction. This leads to space saving.
  • the fibers are slightly wavy, but the wave height a is small, and the reinforcing fibers 25 are hardly elongated with respect to the length L of the rope 20. There is no effect.
  • the equivalent elastic modulus E of the rope 20 can be reduced and the bending rigidity EI can be reduced.
  • the bending rigidity of the rope 20 of the present invention can be reduced to at least 0.9 times or less with respect to the rope in which the reinforcing fibers 25 are oriented parallel to the X-axis direction of the rope 20.
  • the reinforcing fiber 25 is desirably about 1.1 times longer than the length L of the rope 20.
  • the reinforcing fiber 25 In order to increase the length of the reinforcing fiber 25 in the wavy shape, it is necessary to increase the wave height a with respect to the wave period b. For example, if the wave height a is 1 ⁇ 4 times the thickness of the load support member 21 and 1 / times the wave period b, the reinforcing fiber 25 is made longer than the length L of the rope 20. Can be longer than 1.1 times.
  • cross-sectional shapes of the rope 20 and the load support member 21 are not limited to rectangles, but the contact area with the sheave is increased by using a rectangle having a width-direction dimension larger than the thickness-direction dimension as compared to a circular shape. And stable traction can be obtained.
  • the thickness of the rope can be made smaller in the rectangular cross-sectional shape than in the circular shape, so that the bending rigidity can be effectively reduced.
  • the stress generated in the constituent members of the rope 20 is reduced, and the strength reliability of the rope 20 is improved.
  • the bending rigidity can be adjusted by changing the wave period and amplitude. For example, if the wave period is reduced or the amplitude is increased, the length of the wavy reinforcing fiber bundle 23 is increased, so that the bending rigidity can be reduced.
  • the wavy shape of the wavy reinforcing fiber bundle 23 is obtained by, for example, winding the reinforcing fiber bundle around a plurality of round bars made of the same material as the impregnating material 24 and allowing the impregnating material 24 to penetrate therethrough. realizable.
  • all the reinforcing fiber bodies are the wave-like reinforcing fiber bundles 23, but reinforcing fiber bodies other than the wave-like reinforcing fiber bundles 23 may be mixed.
  • the material of the impregnating material 24 for example, polyurethane, epoxy, polyester, vinyl ester, or phenol resin can be used, and a material having good adhesion to the reinforcing fiber 25 is desirable. Further, if a material having a low elastic modulus is used as the material of the impregnating material 24, the bending rigidity of the rope 20 can be reduced. On the other hand, if a material having a large elastic modulus is used as the material of the impregnating material 24, the load applied to the reinforcing fibers 25 becomes uniform, and variations in the strength of the rope 20 can be reduced.
  • FIG. 7 is an AA cross-sectional view of the rope 20 according to the second embodiment of the present invention
  • FIG. 8 is a BB cross-sectional view of the rope 20 of FIG.
  • the load support member 21 of the second embodiment further includes a plurality of bar-shaped cross members 26.
  • the cross members 26 are embedded in the impregnating material 24 at intervals in the longitudinal direction of the load support member 21.
  • each cross member 26 is arranged in parallel to each other and in the Y-axis direction. Further, each cross member 26 has a long shape extending in a direction perpendicular to the longitudinal direction of the load support member 21. Furthermore, the cross-sectional shape of each cross member 26 is circular. The elastic modulus of each cross member 26 is larger than the elastic modulus of the impregnating material 24. Further, it is desirable that the cross member 26 is not plastically deformed by a load in the Z-axis direction applied to the cross member 26 from the wavy reinforcing fiber bundle 23 when a load in the X-axis direction acts on the rope 20.
  • Examples of the material of the cross member 26 include ferrous materials, non-ferrous metal materials, glass, and ceramics.
  • the iron-based material include carbon steel, high-tensile steel, rolled steel, stainless steel, and structural alloy steel.
  • examples of non-ferrous metal materials include materials such as aluminum, magnesium, titanium, brass, and copper, and alloy materials.
  • FIG. 9 is a perspective view showing only the wavy reinforcing fiber bundle 23 and the cross member 26 taken out from the rope 20 of FIG.
  • the wavy reinforcing fiber bundle 23 is alternately waved on one side and the other side of the cross member 26 in the thickness direction of the load supporting member 21 to be wavy. Thereby, the full length when the wavy reinforcing fiber bundle 23 is linearly extended is longer than the full length of the load support member 21.
  • each cross member 26 coincides with the width dimension of the load support member 21. Furthermore, in this example, all the cross members 26 are arranged at the same position in the thickness direction of the load support member 21. Other configurations are the same as those in the first embodiment.
  • the load supporting member 21 is impregnated between the reinforcing fibers 25, between the wavy reinforcing fiber bundles 23, and between the wavy reinforcing fiber bundle 23 and the cross member 26 in a state where the wavy reinforcing fiber bundle 23 is wound around the cross member 26. It is produced by infiltrating the material 24. At this time, the cross member 26 is bonded to the wavy reinforcing fiber bundle 23 by the impregnating material 24.
  • the bending rigidity can be reduced while increasing the strength and the weight.
  • the cross member 26 receives a force in the Z-axis direction generated in the wavy reinforcing fiber bundle 23, so that the elongation of the rope 20 in the X-axis direction can be reduced.
  • the load supporting member 21 when the load supporting member 21 is manufactured, the position of the wavy reinforcing fiber bundle 23 is prevented from shifting, and the mechanical characteristics of the rope 20 can be stabilized.
  • the load supporting member 21 when the load supporting member 21 is produced, if a load in the X-axis direction is applied to the wavy reinforcing fiber bundle 23, the displacement of the wavy reinforcing fiber bundle 23 can be further suppressed, and the X axis can be maintained in the state of the rope 20. Elongation when a load in the direction is applied can be reduced.
  • the shape of the cross member 26 is not particularly limited, but the cross-sectional area of the cross member 26 where the wavy reinforcing fiber bundle 23 is hung in the BB cross section is larger than the cross-sectional area of each wavy reinforcing fiber bundle 23 in the AA cross section. Is larger, the length of the wavy reinforcing fiber bundle 23 can be effectively increased. Further, the length of the reinforcing fiber 25 relative to the rope 20 can be adjusted by changing the cross-sectional area of the cross member 26 in the BB cross section, that is, the cross-sectional area of the cross section perpendicular to the longitudinal direction of the cross member 26.
  • cross-sectional shape of the cross member 26 in the BB cross section is circular, local contact with the wavy reinforcing fiber bundle 23 can be avoided, and damage to the wavy reinforcing fiber bundle 23 due to excessive stress concentration is prevented. be able to.
  • FIG. 10 is a perspective view showing a modification of the cross member 26.
  • the cross member 26 includes a round bar-like cross member main body 26a, a first flange portion 26b provided at a first end portion in the longitudinal direction of the cross member main body 26a, and a length of the cross member main body 26a. And a second flange portion 26c provided at the second end portion in the direction.
  • the diameters of the first and second flange portions 26b and 26c are larger than the diameter of the cross member body 26a.
  • a groove into which the wavy reinforcing fiber bundle 23 is inserted may be provided on the outer peripheral surface of the cross member 26, and the positional deviation of the wavy reinforcing fiber bundle 23 during manufacturing can be suppressed.
  • the outer periphery of the cross member 26 may be previously coated with the same material as the impregnating material 24 or a different material. Thereby, the coating is interposed between the wavy reinforcing fiber bundle 23 and the cross member 26, and it is possible to reliably prevent the wavy reinforcing fiber bundle 23 from directly contacting the cross member 26.
  • the intervals between the cross members 26 in the X-axis direction may be equal intervals or not constant.
  • the cross member 26 may be disposed only in a portion passing through the sheave of the rope 20. And in the part which does not pass the sheave of the rope 20, you may arrange
  • the cross member 26 is not necessarily arranged at the same position in the thickness direction of the load supporting member 21.
  • the direction of the cross member 26 is not limited to the Y-axis direction, and may be arranged in parallel to the Z-axis direction, for example.
  • the wavy reinforcing fiber bundle 23 has a wavy shape when a cross section parallel to the XY plane is viewed.
  • the cross member 26 is arranged in parallel to the Y-axis direction and the wavy reinforcing fiber bundle 23 is hung in a BB cross section so as to be wavy in the Z-direction of the rope 20. Since the reinforcing fiber 25 closer to the surface in the axial direction has a structure that is more easily contracted and extended, the bending rigidity of the rope 20 can be effectively reduced.
  • the total length when the wave-like reinforcing fiber bundle 23 is linearly extended may be larger than 1 time and smaller than 1.1 times the total length of the load support member 21, but as in the first embodiment. It is particularly preferable that the load supporting member 21 is 1.1 times or more the entire length of the load supporting member 21, and the bending rigidity of the rope 20 can be effectively reduced.
  • FIG. 11 is an AA sectional view of the rope 20 according to Embodiment 3 of the present invention
  • FIG. 12 is a BB sectional view of the rope 20 in FIG. 11
  • FIG. 13 is a wavy reinforcing fiber from the rope 20 in FIG. It is a perspective view which takes out and shows only the bundle 23 and the crosspiece 26.
  • the wavy reinforcing fiber bundles 23 are divided into a plurality of groups arranged in the width direction of the load support member 21.
  • the wavy reinforcing fiber bundles 23 of the groups adjacent in the width direction of the load support member 21 are hung on the cross member 26 with the phase in the longitudinal direction of the load support member 21 being shifted from each other by 180 °.
  • the wavy reinforcing fiber bundles 23 are divided into different groups one by one. For this reason, the wavy reinforcing fiber bundles 23 adjacent to each other in the width direction of the load support member 21 have a wave shape in which the phases in the longitudinal direction of the load support member 21 are shifted from each other by 180 °.
  • the Z-axis direction force acting on the cross member 26 as a whole can be balanced, and the movement of the wavy reinforcing fiber bundle 23 in the Z-axis direction when a load acts on the rope 20 can be suppressed. . Further, the extension of the wavy reinforcing fiber bundle 23 in the X-axis direction due to the load, that is, the elongation in the X-axis direction of the rope 20 with respect to the load can be reduced.
  • FIGS. 6 to 9 and FIGS. 11 to 13 three layers of the wavy reinforcing fiber bundle 23 are stacked in the Z-axis direction.
  • the number of layers of the wavy reinforcing fiber bundle 23 is not limited to this, and 1 There may be only one layer or two layers, or four or more layers. If two or more layers of the wavy reinforcing fiber bundles 23 are stacked in the Z-axis direction, the diameter of the crossing member 26 is reduced by increasing the position of the wavy reinforcing fiber bundles 23 applied to the cross member 26 in the Z-axis direction in the AA cross section. However, since the length of the reinforcing fiber 25 can be earned, the bending rigidity can be effectively reduced.
  • the wavy reinforcing fiber bundles 23 are divided into different groups one by one, but two or more wavy reinforcing fiber bundles 23 may be included in each group.
  • FIG. 14 is a cross-sectional view taken along line AA of the rope 20 according to Embodiment 4 of the present invention
  • FIG. 15 is a cross-sectional view taken along line BB of the rope 20 in FIG. 14,
  • FIG. It is a perspective view which takes out and shows only the bundle 23 and the crosspiece 26.
  • a plurality of composite layers 27 each composed of a plurality of wavy reinforcing fiber bundles 23 and a plurality of cross members 26 are arranged side by side in the thickness direction of the load support member 21.
  • three composite layers 27 are stacked in the thickness direction of the load support member 21.
  • each composite layer 27 only one layer of the wavy reinforcing fiber bundle 23 is arranged in the Z-axis direction.
  • the wavy reinforcing fiber bundles 23 are divided into a plurality of groups in the width direction of the load support member 21.
  • each composite layer 27 the corrugated reinforcing fiber bundles 23 of the groups adjacent to each other in the width direction of the load supporting member 21 are cross members 26 so that the longitudinal phases of the load supporting member 21 are shifted from each other by 180 °. It is hung on.
  • the composite layer 27 is bonded to each other by the impregnating material 24.
  • Other configurations are the same as those of the third embodiment.
  • the rope 20 of Embodiment 4 has many cross members 26 with respect to the unit length of the X-axis direction, the effect which suppresses the position shift of the wavy reinforcement fiber bundle 23 produced at the time of rope 20 manufacture is large. Therefore, the rope 20 having stable mechanical characteristics can be obtained.
  • each composite layer 27 by shifting the phase of the adjacent wavy reinforcing fiber bundles 23 by 180 °, the Z-axis direction of the wavy reinforcing fiber bundles 23 when a load is applied to the rope 20 as in the third embodiment. The movement to can be suppressed.
  • the inter-layer distance between the composite layers 27 adjacent in the Z-axis direction, the phase in the X-axis direction, and the number of layers of the composite layers 27 are not particularly limited.
  • FIG. 17 is an AA sectional view showing a first modification of the rope 20 according to the fourth embodiment
  • FIG. 18 is a BB sectional view of the rope 20 of FIG.
  • the interlayer distance of the composite layer 27 is reduced, and the wavy reinforcing fiber bundle 23 of the composite layer 27 adjacent in the Z-axis direction enters between the wavy reinforcing fiber bundles 23 adjacent in the Y-axis direction. .
  • the dimension of the rope 20 in the Z-axis direction that is, the thickness dimension can be reduced without reducing the number of the wavy reinforcing fiber bundles 23. That is, the specific strength with respect to the AA cross-sectional area of the rope 20 can be increased.
  • FIG. 19 is a cross-sectional view taken along the line BB showing a second modification of the rope 20 according to the fourth embodiment.
  • the axial phase is shifted by 90 °.
  • the inter-layer distance of the composite layer 27 is reduced by bringing the wave-like reinforcing fiber bundles 23 of the adjacent composite layers 27 as close as possible in the Z-axis direction.
  • FIG. 20 is an AA cross-sectional view of the rope 20 according to Embodiment 5 of the present invention
  • FIG. 21 is a BB cross-sectional view of the rope 20 of FIG.
  • a plurality of parallel reinforcing fiber bundles 28 that are parallel reinforcing fiber bodies are arranged in the center of the load supporting member 21 in the thickness direction.
  • Each parallel reinforcing fiber bundle 28 is a bundle of reinforcing fibers 25 arranged in parallel with the longitudinal direction of the load support member 21.
  • the parallel reinforcing fiber bundle 28 is continuously arranged over the entire longitudinal direction of the load supporting member 21. That is, the reinforcing fiber body of the fifth embodiment includes the wavy reinforcing fiber bundle 23 and the parallel reinforcing fiber bundle 28.
  • the parallel reinforcing fiber bundle 28 is arranged without a gap in the Y-axis direction and the Z-axis direction when the AA cross section is viewed.
  • four layers of parallel reinforcing fiber bundles 28 are arranged in the Z-axis direction.
  • the composite layers 27 are respectively disposed on both sides of the layer of the parallel reinforcing fiber bundle 28 in the thickness direction of the load supporting member 21. That is, the layers of the parallel reinforcing fiber bundles 28 are sandwiched between the composite layers 27 in the Z-axis direction.
  • FIG. 22 is a perspective view showing only the wavy reinforcing fiber bundle 23, the parallel reinforcing fiber bundle 28, and the cross member 26 taken out from the rope 20 of FIG.
  • the fifth embodiment is a configuration in which the intermediate composite layer 27 in the Z-axis direction of the fourth embodiment is replaced with a layer of parallel reinforcing fiber bundles 28. Other configurations are the same as those of the fourth embodiment.
  • the parallel reinforcing fiber bundle 28 is disposed near the middle in the Z-axis direction that does not require much shrinkage and extension when the rope 20 is bent, the rope 20 takes charge in the X-axis direction.
  • the content rate of the reinforcing fiber 25 can be increased. Therefore, the specific strength with respect to the AA cross-sectional area can be increased.
  • the number of layers of the parallel reinforcing fiber bundle 28 in the Z-axis direction is not particularly limited.
  • FIG. 23 is a BB sectional view of the rope 20 according to the sixth embodiment of the present invention.
  • four composite layers 27 are arranged side by side in the Z-axis direction. Further, in the middle of the Z-axis direction, one layer of parallel reinforcing fiber bundles 28 is disposed in the Z-axis direction.
  • the diameter of the cross member 26 of the two composite layers 27 close to the surface in the Z-axis direction of the load supporting member 21 is larger than the diameter of the cross member 26 of the two composite layers 27 far from the surface. .
  • the diameter of the cross member 26 of the composite layer 27 far from the surface is smaller than the diameter of the cross member 26 of the composite layer 27 close to the surface.
  • the wave height that is, the amplitude of the wave-like reinforcing fiber bundle 23 of the composite layer 27 close to the surface is larger than the wave amplitude of the wave-like reinforcing fiber bundle 23 of the composite layer 27 far from the surface.
  • the composite layer 27 closer to the surface in the thickness direction of the load supporting member 21 has a longer total length when the wavy reinforcing fiber bundle 23 is linearly extended.
  • Other configurations are the same as those of the fifth embodiment.
  • the reliability of the ropes 20 can be sufficiently ensured while corresponding to a higher head. Furthermore, the installation property of the rope 20 with respect to the sheave such as the drive sheave 5 can be improved.
  • the elastic modulus may be reduced. Thereby, since the wavy reinforcing fiber bundle 23 is easily contracted and extended, the bending rigidity of the rope 20 can be reduced.
  • Reduction of the elastic modulus of the wavy reinforcing fiber bundle 23 can be realized by, for example, reducing the fiber density of the reinforcing fibers 25 in the wavy reinforcing fiber bundle 23 or using the reinforcing fibers 25 having a low elastic modulus. Further, the fiber density of the reinforcing fibers 25 in the wavy reinforcing fiber bundle 23 can be reduced by reducing the number of reinforcing fibers 25 used in the wavy reinforcing fiber bundle 23 or by using thin fibers without changing the number, for example.
  • the surface of the rope 20 is flat.
  • the contact surface between the rope 20 and the sheave is provided with irregularities such as grooves or protrusions to increase the contact area between the rope 20 and the sheave. You may let them. Further, if the rope 20 and the sheave are provided with irregularities along the Y-axis direction so as to mesh with each other, the rope 20 can be more reliably prevented from slipping with respect to the sheave.
  • the arrangement method, configuration, and number of the wavy reinforcing fiber bundles 23 are not limited to the examples in the first to sixth embodiments.
  • the wavy reinforcing fiber bundle 23 may not be of a constant period but of an indefinite period.
  • at least one of the amplitude and the period of the wave may be changed depending on the position of the rope 20 in the longitudinal direction.
  • the reinforcing fiber bundle may be waved only at a portion that passes through the sheave during use, and the reinforcing fiber bundle may be disposed parallel to the X-axis direction at a portion that does not pass through the sheave.
  • the reinforcing fibers 25 are bundled in parallel to each other, but a configuration in which a plurality of reinforcing fibers 25 are twisted in a spiral shape or the like may be used.
  • the length of the reinforcing fibers 25 can be made longer than the length L of the rope 20 in the X-axis direction, rather than arranging them in parallel.
  • a reinforcing fiber bundle in which the reinforcing fibers 25 are spirally twisted may be arranged so as to be parallel to the X-axis direction.
  • the length of the reinforcing fiber 25 can be made longer than the length L of the rope 20 in the X-axis direction, and the bending rigidity can be further reduced.
  • each wavy reinforcing fiber bundle 23 in the AA cross section is circular (for example, FIG. 3), but the cross-sectional shape of the wavy reinforcing fiber bundle 23 is not limited to a circular shape.
  • the reinforcing fibers 25 may be bundled so that each wavy reinforcing fiber bundle 23 in the AA cross section has a rectangular shape. If the cross-sectional shape of the wavy reinforcing fiber bundle 23 is rectangular, the wavy reinforcing fiber bundle 23 is aligned without a gap, and the content of the reinforcing fibers 25 in the rope 20 can be increased as compared with the case of a circular cross section. Therefore, the rope 20 having high strength with respect to the AA cross-sectional area can be provided. Furthermore, the fiber diameter and the number of the reinforcing fibers 25 are not particularly limited.
  • the wavy reinforcing fiber bundle 23 and the parallel reinforcing fiber bundle 28 which are bundles of the reinforcing fibers 25 are shown as the reinforcing fiber bodies, but the reinforcing fiber bodies are not limited to this.
  • a corrugated sheet made of reinforcing fibers or a sheet laminate in which the sheets are laminated in the Z-axis direction may be used as the reinforcing fiber body.
  • the shape of the cross section perpendicular to the longitudinal direction of the rope and the load support member is not limited to a rectangle, and may be, for example, an ellipse or a circle.
  • the cross member 26 may be omitted.
  • the structure of the elevator which applies the rope of this invention is not limited to FIG.
  • the rope of the present invention can also be applied to ropes other than ropes for suspending elevator cars.
  • the present invention can be applied to an elevator compen- sion rope and a rope used in a crane apparatus.
  • 3-winding machine 5 drive sheave, 7 cage, 20 rope, 21 load support member, 22 coating material, 23 wavy reinforcing fiber bundle (reinforced fiber body), 24 impregnated material, 25 reinforcing fiber, 26 cross member, 27 composite layer , 28 Parallel reinforcing fiber bundle (reinforced fiber body).

Landscapes

  • Lift-Guide Devices, And Elevator Ropes And Cables (AREA)
  • Ropes Or Cables (AREA)

Abstract

ロープ(20)は、荷重支持部材(21)と、荷重支持部材(21)の外周を覆っている被覆材(22)とを有している。荷重支持部材(21)は、含浸材(24)と、含浸材(24)に埋め込まれており、長手方向(X軸方向)に作用する荷重を支持する長手方向に連続した強化繊維体(23)とを有している。強化繊維体(23)は、少なくとも一部が長手方向に平行な断面において波状の形状を有している波状強化繊維体(23)を含んでいる。波状強化繊維体(23)を直線状に伸ばしたときの全長は、荷重支持部材(21)の全長の1.1倍以上である。

Description

ロープ、及びそれを用いたエレベータ
 この発明は、例えばエレベータ又はクレーン装置に用いられるロープ、及びそれを用いたエレベータに関するものである。
 近年の建物の高層化に伴い、高揚程のエレベータが望まれている。しかし、エレベータが高揚程になると、ロープの自重が増大し、ロープの安全性を確保することが難しくなるため、軽量なロープが必要とされている。即ち、主として荷重を受ける荷重支持部材が鋼材である従来のロープでは、軽量化に限界があり、荷重支持部材に鋼材よりも重量比強度の高い材料を用いたロープの開発が行われている。
 例えば、荷重支持部材として炭素繊維又はガラス繊維などの強化繊維を長手方向に平行に配置した複合材料を用いたロープがある(例えば、特許文献1参照)。
特許第5713682号公報
 一般に、エレベータのかごは、ロープにより吊り下げられており、ロープが巻き掛けられている駆動シーブが回転することで昇降する。これに対して、上記のような従来の複合材料を用いたロープでは、荷重支持部材の曲げ剛性が高いため、駆動シーブに対してロープを巻き掛けにくく、施工作業性が低い。また、ロープが駆動シーブに沿って曲げられる際に、強化繊維が収縮及び伸展しにくい構造であるため、荷重支持部材の表面の強化繊維に生じる応力が大きくなり、ロープの強度信頼性が懸念される。
 この発明は、上記のような課題を解決するためになされたものであり、高強度化及び軽量化を図りつつ、曲げ剛性を低減することができるロープ、及びそれを用いたエレベータを得ることを目的とする。
 この発明に係るロープは、含浸材と、含浸材に埋め込まれており、長手方向に作用する荷重を支持する長手方向に連続した強化繊維体とを有している荷重支持部材、及び荷重支持部材の外周を覆っている被覆材を備え、強化繊維体は、少なくとも一部が長手方向に平行な断面において波状の形状を有している波状強化繊維体を含んでおり、波状強化繊維体を直線状に伸ばしたときの全長が、荷重支持部材の全長の1.1倍以上である。
 また、この発明に係るロープは、含浸材と、含浸材に埋め込まれており、長手方向に作用する荷重を支持する長手方向に連続した強化繊維体とを有している荷重支持部材、及び荷重支持部材の外周を覆っている被覆材を備え、荷重支持部材は、荷重支持部材の長手方向に互いに間隔をおいて含浸材に埋め込まれている複数の横材をさらに有しており、横材は、荷重支持部材の長手方向に対して直角の方向に延在する長尺状であり、横材の弾性率は、含浸材の弾性率よりも大きくなっており、強化繊維体は、少なくとも一部が横材に掛けられて波状に形成された波状強化繊維体を含んでおり、波状強化繊維体を直線状に伸ばしたときの全長が、荷重支持部材の全長よりも長くなっている。
 この発明のロープは、高強度化及び軽量化を図りつつ、曲げ剛性を低減することができる。
この発明の実施の形態1によるエレベータを示す構成図である。 実施の形態1によるロープの一部を示す斜視図である。 図2のA-A断面図である。 図2のB-B断面図である。 図2のロープから波状強化繊維束のみを取り出して示す斜視図である。 図3の荷重支持部材の一部を拡大して示す断面図である。 この発明の実施の形態2によるロープのA-A断面図である。 図7のロープのB-B断面図である。 図7のロープから波状強化繊維束及び横材のみを取り出して示す斜視図である。 横材の変形例を示す斜視図である。 この発明の実施の形態3によるロープのA-A断面図である。 図11のロープのB-B断面図である。 図11のロープから波状強化繊維束及び横材のみを取り出して示す斜視図である。 この発明の実施の形態4によるロープのA-A断面図である。 図14のロープのB-B断面図である。 図14のロープから波状強化繊維束及び横材のみを取り出して示す斜視図である。 実施の形態4によるロープの第1の変形例を示すA-A断面図である。 図17のロープのB-B断面図である。 実施の形態4によるロープの第2の変形例を示すB-B断面図である。 この発明の実施の形態5によるロープのA-A断面図である。 図20のロープのB-B断面図である。 図20のロープから波状強化繊維束、平行強化繊維束及び横材のみを取り出して示す斜視図である。 この発明の実施の形態6によるロープ20のB-B断面図である。
 以下、この発明を実施するための形態について、図面を参照して説明する。
 実施の形態1.
 図1はこの発明の実施の形態1によるエレベータを示す構成図である。図において、昇降路1の上部には、機械室2が設けられている。機械室2には、巻上機3及びそらせ車4が設置されている。巻上機3は、駆動シーブ5及び巻上機本体6を有している。巻上機本体6には、駆動シーブ5を回転させる巻上機モータ(図示せず)と、駆動シーブ5の回転を制動する巻上機ブレーキ(図示せず)とが設けられている。
 駆動シーブ5及びそらせ車4には、複数本(図1では1本のみ示す)のロープ20が巻き掛けられている。ロープ20の長手方向の第1の端部には、かご7が接続されている。ロープ20の長手方向の第2の端部には、釣合おもり8が接続されている。かご7及び釣合おもり8は、ロープ20により吊り下げられており、駆動シーブ5を回転させることにより、昇降路1内を昇降する。
 昇降路1内には、かご7の昇降を案内する一対(図1では一方のみ示す)のかごガイドレール9と、釣合おもり8の昇降を案内する一対(図1では一方のみ示す)の釣合おもりガイドレール10とが設置されている。かご7の下部には、一対のかごガイドレール9を把持してかご7を非常停止させる非常止め装置11が搭載されている。
 ロープ20と駆動シーブ5との間に作用する摩擦力、即ち巻き上げ力は、トラクションと呼ばれている。釣合おもり8の重量は、かご7の重量とほぼ釣り合っており、ロープ20に必要なトラクションと、巻き上げに必要な巻上機3の能力とを小さくする役割を担っている。
 このようなエレベータにおいて、ロープ20を軽量化することは、ロープ20の安全性を確保するだけでなく、エレベータの総重量を軽量化することにも繋がる。また、エレベータの構成部品、例えば巻上機3及び非常止め装置11の小型化及び低コスト化に繋がる。つまり、ロープ20を軽量化することには、エレベータのシステム全体として省スペース化及び低コスト化できるなどの利点がある。
 図2は実施の形態1によるロープ20の一部を示す斜視図、図3は図2のA-A断面図、図4は図2のB-B断面図である。なお、図2のX軸方向はロープ20の長手方向、Y軸方向はロープ20の幅方向、Z軸方向はロープ20の厚さ方向、Lはロープ20のX軸方向の長さであり、以降の図及び説明においても同様の符号を用いる。
 また、図2のA-A線に沿ったYZ平面でのロープ20の切断面をA-A断面、B-B線に沿ったZX平面でのロープ20の切断面をB-B断面とし、以降の図においても同様の切断面を、A-A断面、B-B断面と称する。
 ロープ20には、かご7等の重量による荷重がX軸方向に作用する。また、ロープ20は、駆動シーブ5及びそらせ車4を通過する際に、Y軸まわりの方向に曲げられる。
 実施の形態1のロープ20は、主要部材である荷重支持部材21と、荷重支持部材21の外周を覆っている被覆材22とを有している。図3に示すように、ロープ20のA-A断面の形状は、厚さ方向寸法よりも幅方向寸法が大きい矩形である。同様に、荷重支持部材21のA-A断面の形状は、厚さ方向寸法よりも幅方向寸法が大きい矩形である。
 被覆材22は、荷重支持部材21の周囲を覆い、熱及び湿度などの外部からの環境負荷と、駆動シーブ5及びそらせ車4等との接触による物理的負荷とから、荷重支持部材21を保護している。また、被覆材22は、ロープ20に必要なトラクションを安定して提供する役割を担っている。
 さらに、被覆材22は、耐熱性及び耐摩耗性が高いことが望ましい。被覆材22の材料としては、例えば、ポリウレタン、エポキシ、ポリエステル又はビニルエステルを用いることができる。被覆材22の材料を変更することで、駆動シーブ5に対するロープ20の摩擦係数を調整することができる。
 荷重支持部材21は、波状強化繊維体としての複数の波状強化繊維束23と、含浸材24とを有している。波状強化繊維束23は、含浸材24に埋め込まれている。また、波状強化繊維束23は、荷重支持部材21の長手方向の全体に渡って連続して配置されている。ロープ20の長手方向に作用する荷重は、主として波状強化繊維束23が支持する。
 波状強化繊維束23は、長手方向に平行な断面において波状の形状を有している。即ち、波状強化繊維束23は、ロープ20のB-B断面において波状となっている。また、波状強化繊維束23は、荷重支持部材21の厚さ方向の一側と他側とに交互に凸となるように、荷重支持部材21の長手方向に沿って周期的に湾曲している。
 図5は図2のロープ20から波状強化繊維束23のみを取り出して示す斜視図である。実施の形態1では、強化繊維体として波状強化繊維束23のみが用いられている。また、全ての波状強化繊維束23は、同位相の波状となっている。そして、各波状強化繊維束23を直線状に伸ばしたときの全長は、荷重支持部材21の全長、即ちX軸方向の長さの1.1倍以上となっている。
 図4に示すように、1本の波状強化繊維束23を見たとき、荷重支持部材21の厚さ方向について、一側に凸な山の頂点と他側に凸な山の頂点とのZ軸方向の高さの差はaである。また、隣り合う同方向へ凸な山の頂点間のX軸方向の距離はbである。即ち、bは波状強化繊維束23の波の周期を表わしている。以降の説明においても、波の高さをa、波の周期をbとする。
 図6は図3の荷重支持部材21の一部を拡大して示す断面図である。各波状強化繊維束23は、互いに束ねられている軽量で高強度な連続した複数の強化繊維25により構成されている。強化繊維25としては、例えば、炭素繊維、ガラス繊維、アラミド繊維又はPBO繊維、あるいはこれらの繊維を組み合わせた複合繊維が用いられている。
 各波状強化繊維束23における強化繊維25は、含浸材24により互いに接着されている。また、波状強化繊維束23は、含浸材24により互いに接着されている。
 含浸材24は、ロープ20の使用時にロープ20の内部で強化繊維25の位置がずれないようにするとともに、強化繊維25同士の接触及び摩耗を抑制し、ロープ20の寿命を向上させる。
 ここで、強化繊維25の弾性率は、含浸材24及び被覆材22の弾性率よりも大きく、かご7の重量及びロープ20の自重などによりロープ20に作用するX軸方向の荷重は、荷重支持部材21、その中でも強化繊維25が大部分、即ち90%以上を負担する。
 また、ロープ20は、例えば駆動シーブ5の外周に沿って曲げられる際、駆動シーブ5側でX軸方向に収縮、反対側でX軸方向に伸展される。このときの収縮量及び伸展量は、駆動シーブ5の外周の曲率半径とロープ20の厚さとで決まり、ロープ20のZ軸方向の表面に近い箇所ほど大きい。
 ロープ20を曲げやすくするためには、曲げ剛性EIを小さくする必要がある。曲げ剛性EIは、等価弾性率Eと、A-A断面におけるロープ20の断面二次モーメントIとを掛けた値である。等価弾性率Eは、ロープ20を均質体と見なした際の弾性率である。そして、曲げ剛性EIを低減する方法として、等価弾性率Eを小さくする方法がある。
 ロープ20の構成材料のうち、弾性率が最も大きいのは強化繊維25である。強化繊維25は、収縮及び伸展しにくいため、ロープ20の等価弾性率Eの大きさは主に強化繊維25に依存する。そのため、負荷に対する強化繊維25の収縮量及び伸展量を大きくすれば、等価弾性率Eを小さくし、曲げ剛性を低減できる。
 また、ロープ20が駆動シーブ5に沿って曲げられた際に大きな収縮量及び伸展量が必要となるロープ20の厚み方向の表面に近い箇所の弾性率を、厚み方向の中央の曲げ剛性よりも小さくできれば、曲げ剛性を効果的に低減できる。
 また、強化繊維25を収縮及び伸展し易くし、等価弾性率Eを低下させる他に、断面二次モーメントIを小さくしても、曲げ剛性EIを低減できる。
 均質体の矩形断面の場合、ロープ20の断面二次モーメントIは、ロープ20の幅wと厚さtとを用いて、以下の式(1)で表わされる。
 I=wt3/12 ・・・(1)
 断面二次モーメントIは、幅wに比例し、厚さtの3乗に比例するため、厚さtを小さくすることで断面二次モーメントを効果的に低減し、曲げ剛性EIを小さくできる。
 実施の形態1のロープ20は、図4及び図5に示すように、波状強化繊維束23、つまりは波状強化繊維束23を構成する強化繊維25をB-B断面において波状とすることで、強化繊維25をロープ20のX軸方向に平行に配向するよりも、強化繊維25を長くした構造である。
 強化繊維25を長くすることで、負荷は同じでも強化繊維25の収縮量及び伸展量は増加するため、ロープ20の等価弾性率Eが低減できる。また、ロープ20のXY断面において、ロープ20の厚み方向の表面に近い箇所では、ロープ20の厚み方向の中央よりも強化繊維25の割合が減少する。このため、表面に近い箇所の弾性率をさらに低下させることができる。そのため、曲げ剛性EIが低減でき、ロープ20を曲げやすくできる。
 このように、ロープ20が曲げやすくなるため、駆動シーブ5及びそらせ車4等のシーブへのロープの巻き掛けが容易となり、ロープ施工時の作業性が良い。
 また、強化繊維25を長くすることで、強化繊維25の収縮量及び伸展量が同じであっても、ロープ20がシーブに巻き掛けられる際の強化繊維25に生じる歪みが低下する。
 さらに、強化繊維25に生じる応力が小さくなるため、強化繊維25が破壊しにくく、ロープ20の強度信頼性が向上する。
 さらにまた、ロープ20の施工作業性及び強度信頼性が向上するため、強化繊維25をX軸方向と平行に配置するよりも、ロープ20を巻き掛けるシーブの外周の曲率半径を小さくでき、エレベータの省スペース化に繋がる。
 なお、横糸を有する一般的な織物構造においても、繊維はわずかに波状となるが、波の高さaが小さく、ロープ20の長さLに対し強化繊維25をほとんど長くならないため、本発明における効果は得られない。
 ロープ20の長さLに対して、強化繊維25の長さを大きくするほど、ロープ20の等価弾性率Eを小さくでき、曲げ剛性EIを低減できる。実用上は、強化繊維25をロープ20のX軸方向に平行に配向したロープに対して、本発明のロープ20の曲げ剛性を少なくとも0.9倍以下に低減できることが望ましい。また、強化繊維25の長さの増大による等価弾性率Eの低減効果のみを考えた場合、強化繊維25は、ロープ20の長さLよりも約1.1倍以上長いことが望ましい。
 波状の形状で強化繊維25の長さを大きくするには、波の周期bに対して、波の高さaを大きくする必要がある。例えば、波の高さaを、荷重支持部材21の厚さの1/4倍以上、かつ波の周期bの1/6倍以上とすれば、強化繊維25をロープ20の長さLよりも1.1倍以上に長くできる。
 また、強化繊維25の長さがロープ20の長さLよりも1.1倍以上に長くなるような波の高さaが大きい構造では、ロープ20のXY断面において、ロープ20の厚み方向の表面に近い箇所で、ロープ20の厚み方向の中央よりも強化繊維25の割合が減少するため、等価弾性率Eをさらに低下でき、ロープ20の曲げ剛性を効果的に低減できる。
 また、ロープ20及び荷重支持部材21の断面形状は矩形に限定されないが、厚さ方向寸法よりも幅方向寸法が大きい矩形とすることにより、円形などの場合よりも、シーブとの接触面積を増加させ、安定したトラクションを得ることができる。
 さらに、シーブとの接触面積の増加により、接触応力が小さくなるため、ロープ20及びシーブの局所的な変形、損傷、摩耗などを低減できる。
 さらにまた、断面積が同じ場合、矩形の断面形状では、円形などよりも、ロープの厚さ寸法を小さくできるため、曲げ剛性を効果的に低減できる。
 また、ロープ20の厚さを小さくすることで、ロープ20の構成部材に生じる応力を低減し、ロープ20の強度信頼性が向上する。
 さらに、波状強化繊維束23を用いる場合、波の周期及び振幅を変えることで、曲げ剛性を調整できる。例えば、波の周期を小さくするか、又は振幅を大きくすれば、波状強化繊維束23の長さが増加するため、曲げ剛性を小さくできる。
 なお、波状強化繊維束23の波状の形状は、例えば、含浸材24と同じ材料で作製された複数の丸棒に強化繊維束を波状に巻き掛け、その状態で含浸材24を浸透させることで実現できる。
 また、実施の形態1では、全ての強化繊維体を波状強化繊維束23としたが、波状強化繊維束23以外の強化繊維体が混在してもよい。
 さらに、含浸材24の材料としては、例えば、ポリウレタン、エポキシ、ポリエステル、ビニルエステル又はフェノール樹脂を用いることができ、強化繊維25との接着性が良い材料が望ましい。また、含浸材24の材料として、弾性率の小さい材料を用いれば、ロープ20の曲げ剛性を小さくできる。一方、含浸材24の材料として、弾性率の大きい材料を用いれば、強化繊維25に加わる荷重が均等となり、ロープ20の強度のばらつきを低減できる。
 実施の形態2.
 次に、図7はこの発明の実施の形態2によるロープ20のA-A断面図、図8は図7のロープ20のB-B断面図である。実施の形態2の荷重支持部材21は、複数の棒状の横材26をさらに有している。横材26は、荷重支持部材21の長手方向に互いに間隔をおいて含浸材24に埋め込まれている。
 また、横材26は、互いに平行、かつY軸方向に平行に配置されている。さらに、各横材26は、荷重支持部材21の長手方向に対して直角の方向に延在する長尺状である。さらにまた、各横材26の断面形状は円形である。各横材26の弾性率は、含浸材24の弾性率よりも大きい。また、横材26は、ロープ20にX軸方向の荷重が作用した際の波状強化繊維束23から横材26に加わるZ軸方向の荷重で、塑性変形しないことが望ましい。
 横材26の材料としては、例えば、鉄系材料、非鉄系金属材料、ガラス、又はセラミックが挙げられる。鉄系材料としては、炭素鋼、高張力鋼、圧延鋼、ステンレス鋼、及び構造用合金鋼などが挙げられる。また、非鉄系金属材料としては、アルミニウム、マグネシウム、チタン、黄銅、及び銅などの材料、並びに合金材料などが挙げられる。
 図9は図7のロープ20から波状強化繊維束23及び横材26のみを取り出して示す斜視図である。波状強化繊維束23は、荷重支持部材21の厚さ方向の横材26の一側と他側とに交互に掛けられて波状となっている。これにより、波状強化繊維束23を直線状に伸ばしたときの全長が、荷重支持部材21の全長よりも長くなっている。
 また、各横材26の長手方向寸法は、荷重支持部材21の幅方向寸法と一致している。さらに、この例では、全ての横材26が、荷重支持部材21の厚さ方向の同じ位置に配置されている。他の構成は、実施の形態1と同様である。
 荷重支持部材21は、波状強化繊維束23を横材26に巻き掛けた状態で、強化繊維25間、波状強化繊維束23間、及び波状強化繊維束23と横材26との間にそれぞれ含浸材24を浸透させることで作製される。このとき、横材26は、含浸材24により波状強化繊維束23に接着される。
 このような構成によっても、実施の形態1と同様に、高強度化及び軽量化を図りつつ、曲げ剛性を低減することができる。
 また、ロープ20にX軸方向の荷重が作用した際に、波状強化繊維束23に生じるZ軸方向への力を横材26が受けるため、ロープ20のX軸方向の伸びを小さくできる。
 さらに、荷重支持部材21の作製時に、波状強化繊維束23の位置がずれるのが抑制され、ロープ20の機械的特性を安定させることができる。ここで、荷重支持部材21を作製する際、波状強化繊維束23にX軸方向の荷重をかけておけば、波状強化繊維束23の位置ずれをさらに抑制でき、かつロープ20の状態でX軸方向の荷重が作用した際の伸びを低減できる。
 なお、横材26の形状は特に限定されないが、B-B断面において波状強化繊維束23が掛けられる箇所の横材26の断面積がA-A断面における各波状強化繊維束23の断面積よりも大きければ、波状強化繊維束23の長さを効果的に長くできる。
 また、B-B断面における横材26の断面積、即ち横材26の長手方向に直角な断面の断面積を変更することで、ロープ20に対する強化繊維25の長さを調整することができる。
 さらに、B-B断面における横材26の断面形状を円形とすれば、波状強化繊維束23との局所的な接触を避けることができ、過度な応力集中による波状強化繊維束23の損傷を防ぐことができる。
 図10は横材26の変形例を示す斜視図である。この例では、横材26は、丸棒状の横材本体26aと、横材本体26aの長手方向の第1の端部に設けられている第1のフランジ部26bと、横材本体26aの長手方向の第2の端部に設けられている第2のフランジ部26cとを有している。第1及び第2のフランジ部26b,26cの径は、横材本体26aの径よりも大きい。
 このような横材26を用いることにより、製造時の波状強化繊維束23のY軸方向への広がり及びはみ出しを抑制できる。
 また、横材26の外周面に波状強化繊維束23が挿入される溝を設けてもよく、製造時の波状強化繊維束23の位置ずれを抑制することができる。
 さらに、横材26の外周に、含浸材24と同じ材料又は異なる材料により予め被覆を施してもよい。これにより、波状強化繊維束23と横材26との間に被覆が介在することになり、波状強化繊維束23が横材26に直接接触することを確実に防止できる。
 さらにまた、X軸方向の横材26の間隔は、等間隔であっても、一定でなくてもよい。例えば、ロープ20のシーブを通過する部分にのみ横材26を配置してもよい。そして、ロープ20のシーブを通過しない部分には、横材26を配置せず、強化繊維束をX軸方向に平行に配置してもよい。これにより、ロープ20にX軸方向の荷重が作用した際のロープ20のX軸方向の伸びを小さくできる。
 また、横材26は、必ずしも荷重支持部材21の厚さ方向の同じ位置に配置しなくてもよい。
 さらに、横材26の向きは、Y軸方向に限定せず、例えばZ軸方向に平行に配置してもよい。この場合、波状強化繊維束23は、XY平面に平行な断面を見たときに波状の形状となる。但し、図6~図9に示すように、横材26をY軸方向に平行に配置し、波状強化繊維束23をB-B断面において波状になるように掛けた方が、ロープ20のZ軸方向の表面に近い強化繊維25ほど収縮及び伸展しやすい構造となるため、ロープ20の曲げ剛性を効果的に小さくできる。
 さらにまた、波状強化繊維束23を直線状に伸ばしたときの全長は、荷重支持部材21の全長の1倍よりも大きく1.1倍よりも小さくてもよいが、実施の形態1と同様に、荷重支持部材21の全長の1.1倍以上とするのが特に好適であり、ロープ20の曲げ剛性を効果的に低減できる。
 実施の形態3.
 次に、図11はこの発明の実施の形態3によるロープ20のA-A断面図、図12は図11のロープ20のB-B断面図、図13は図11のロープ20から波状強化繊維束23及び横材26のみを取り出して示す斜視図である。
 実施の形態3では、波状強化繊維束23が、荷重支持部材21の幅方向に並んだ複数のグループに分けられている。そして、荷重支持部材21の幅方向に隣り合うグループの波状強化繊維束23は、荷重支持部材21の長手方向の位相が互いに180°ずらされて横材26に掛けられている。
 この例では、波状強化繊維束23は、1本ずつ異なるグループに分けられている。このため、荷重支持部材21の幅方向に隣り合う波状強化繊維束23は、荷重支持部材21の長手方向の位相が互いに180°ずれた波状となっている。
 即ち、図6~図9に示すロープ20では、波状強化繊維束23は全てX軸方向に同位相である。これに対して、図11~図13に示すロープ20では、Y軸方向の隣り合う波状強化繊維束23aと波状強化繊維束23bとが、X軸方向の位相を180°ずらした状態で、B-B断面において波状になるように、横材26に巻き掛けられている。他の構成は、実施の形態2と同様である。
 このような構成によっても、実施の形態2と同様に、高強度化及び軽量化を図りつつ、曲げ剛性を低減することができる。
 また、隣り合う波状強化繊維束23a,23bの位相を180°ずらすことにより、ロープ20にX軸方向の荷重が作用した際、波状強化繊維束23aから横材26に作用するZ軸方向の力と、波状強化繊維束23bから横材26に作用するZ軸方向の力とを逆向きにすることができる。
 これにより、全体として横材26に作用するZ軸方向の力を釣り合わせることができ、ロープ20に荷重が作用した際の波状強化繊維束23のZ軸方向への移動を抑制することができる。また、荷重による波状強化繊維束23のX軸方向への伸展、つまり荷重に対するロープ20のX軸方向の伸びを小さくできる。
 なお、図6~図9、図11~図13では、Z軸方向に3層の波状強化繊維束23が重ねられているが、波状強化繊維束23の層数はこれに限定されず、1層又は2層だけであっても、4層以上であってもよい。波状強化繊維束23をZ軸方向へ2層以上重ねることにより、横材26に掛ける波状強化繊維束23の箇所をA-A断面においてZ軸方向に大きくすれば、横材26の径が小さくても、強化繊維25の長さを稼ぐことができるため、効果的に曲げ剛性を低減できる。
 また、実施の形態3では、波状強化繊維束23を1本ずつ異なるグループに分けたが、各グループに波状強化繊維束23を2本以上含ませてもよい。
 実施の形態4.
 次に、図14はこの発明の実施の形態4によるロープ20のA-A断面図、図15は図14のロープ20のB-B断面図、図16は図14のロープ20から波状強化繊維束23及び横材26のみを取り出して示す斜視図である。
 実施の形態4では、それぞれ複数の波状強化繊維束23と複数の横材26とからなる複数の複合層27が、荷重支持部材21の厚さ方向に並べて配置されている。この例では、3層の複合層27が荷重支持部材21の厚さ方向に重ねられている。
 各複合層27において、波状強化繊維束23は、Z軸方向に1層だけ配置されている。また、各複合層27において、波状強化繊維束23は、荷重支持部材21の幅方向に複数のグループに分けられている。
 さらに、各複合層27において、荷重支持部材21の幅方向に隣り合うグループの波状強化繊維束23は、荷重支持部材21の長手方向の位相を互いに180°ずらした波状になるように横材26に掛けられている。複合層27は、含浸材24により互いに接着されている。他の構成は、実施の形態3と同様である。
 このような構成によっても、実施の形態3と同様に、高強度化及び軽量化を図りつつ、曲げ剛性を低減することができる。
 また、実施の形態4のロープ20は、X軸方向の単位長さに対し、横材26の本数が多いため、ロープ20製造時に生じる波状強化繊維束23の位置ずれを抑制する効果が大きい。そのため、機械特性が安定したロープ20を得ることができる。
 さらに、各複合層27において、隣り合う波状強化繊維束23の位相を180°ずらすことにより、実施の形態3と同様に、ロープ20に荷重が作用した際の波状強化繊維束23のZ軸方向への移動を抑制することができる。
 なお、Z軸方向に隣り合う複合層27の層間距離、X軸方向の位相、及び複合層27の層数は特に限定されない。
 また、図17は実施の形態4によるロープ20の第1の変形例を示すA-A断面図、図18は図17のロープ20のB-B断面図である。この例では、複合層27の層間距離が小さくされており、Y軸方向に隣り合う波状強化繊維束23の間に、Z軸方向に隣り合う複合層27の波状強化繊維束23が入り込んでいる。
 このような構成により、波状強化繊維束23の本数を減らすことなく、ロープ20のZ軸方向の寸法、即ち厚さ寸法を小さくすることができる。つまり、ロープ20のA-A断面積に対する比強度を増加できる。
 さらに、図19は実施の形態4によるロープ20の第2の変形例を示すB-B断面図である。この例では、Z軸方向に積層された3層の複合層27のうち、中間の複合層27の波状強化繊維束23のみが、他の複合層27の波状強化繊維束23に対して、X軸方向の位相を90°ずらされている。また、隣り合う複合層27の波状強化繊維束23同士をZ軸方向にできる限り近接させることで、複合層27の層間距離を小さくしている。
 このような構成では、層間距離をさらに小さくできるため、ロープ20のZ軸方向の厚さ寸法をさらに小さくして、ロープ20のA-A断面積に対する比強度をさらに増加できる。
 実施の形態5.
 次に、図20はこの発明の実施の形態5によるロープ20のA-A断面図、図21は図20のロープ20のB-B断面図である。実施の形態5では、荷重支持部材21の厚さ方向の中央に、平行強化繊維体である複数の平行強化繊維束28が配置されている。各平行強化繊維束28は、荷重支持部材21の長手方向に平行に配置された強化繊維25の束である。
 また、平行強化繊維束28は、荷重支持部材21の長手方向の全体に渡って連続して配置されている。即ち、実施の形態5の強化繊維体は、波状強化繊維束23と平行強化繊維束28とを含んでいる。
 さらに、平行強化繊維束28は、A-A断面を見たとき、Y軸方向及びZ軸方向に隙間無く配置されている。図20では、Z軸方向に4層の平行強化繊維束28が配置されている。
 荷重支持部材21の厚さ方向の平行強化繊維束28の層の両側に、複合層27がそれぞれ配置されている。即ち、Z軸方向について、平行強化繊維束28の層は、複合層27間に挟まれている。
 図22は図20のロープ20から波状強化繊維束23、平行強化繊維束28及び横材26のみを取り出して示す斜視図である。実施の形態5は、実施の形態4のZ軸方向の中間の複合層27を平行強化繊維束28の層に置き換えた構成であり、他の構成は実施の形態4と同様である。
 このような構成によっても、実施の形態2と同様に、高強度化及び軽量化を図りつつ、曲げ剛性を低減することができる。即ち、ロープ20を曲げた際、収縮量及び伸展量が必要となるZ軸方向の表面近くに、波状強化繊維束23が配置されているため、ロープ20の曲げ剛性を小さくできる。
 一方、ロープ20を曲げた際に収縮量及び伸展量をあまり必要としないZ軸方向の中間付近には、平行強化繊維束28が配置されているので、ロープ20においてX軸方向の荷重を受け持つ強化繊維25の含有率を増加させることができる。そのため、A-A断面積に対する比強度を増加できる。
 なお、実施の形態5において、Z軸方向の平行強化繊維束28の層数は特に限定されない。
 実施の形態6.
 次に、図23はこの発明の実施の形態6によるロープ20のB-B断面図である。実施の形態6では、Z軸方向に4層の複合層27が並べて配置されている。また、Z軸方向の中間には、Z軸方向に1層の平行強化繊維束28の層が配置されている。
 複合層27のうち、荷重支持部材21のZ軸方向の表面に近い2層の複合層27の横材26の径が、表面から遠い2層の複合層27の横材26の径よりも大きい。逆に言うと、表面から遠い複合層27の横材26の径が、表面に近い複合層27の横材26の径よりも小さい。
 これにより、表面に近い複合層27の波状強化繊維束23の波の高さ、即ち振幅が、表面から遠い複合層27の波状強化繊維束23の波の振幅よりも大きい。これにより、荷重支持部材21の厚さ方向の表面に近い複合層27ほど、波状強化繊維束23を直線状に伸ばしたときの全長が長い。他の構成は、実施の形態5と同様である。
 このような構成によっても、実施の形態5と同様に、高強度化及び軽量化を図りつつ、曲げ剛性を低減することができる。また、ロープ20のX軸方向の強度に対して、ロープ20の曲げ剛性を効果的に低減できる。
 また、実施の形態1~6のロープ20を適用したエレベータでは、高揚程化に対応しつつ、ロープ20の信頼性を十分に確保することができる。さらに、駆動シーブ5等のシーブに対するロープ20の据付性を向上させることができる。
 なお、実施の形態4、5のロープ20において、Z軸方向の中央に近い複合層27の波状強化繊維束23又は平行強化繊維束28よりも、表面に近い複合層27の波状強化繊維束23の弾性率を小さくしてもよい。これにより、波状強化繊維束23が収縮及び伸展しやすくなるため、ロープ20の曲げ剛性を低減できる。
 波状強化繊維束23の弾性率の低減は、例えば、波状強化繊維束23における強化繊維25の繊維密度を小さくするか、又は弾性率の小さい強化繊維25を用いることで実現できる。また、波状強化繊維束23における強化繊維25の繊維密度は、例えば、波状強化繊維束23に用いる強化繊維25の本数を少なくするか、又は本数を変えずに細い繊維を用いることで小さくできる。
 なお、実施の形態1~6では、ロープ20の表面が平坦であるが、例えば、ロープ20とシーブとの接触面に溝又は突起などの凹凸を設け、ロープ20とシーブとの接触面積を増加させてもよい。
 また、ロープ20及びシーブにY軸方向に沿う凹凸を設け、互いに噛み合うようにすれば、シーブに対するロープ20の滑りをより確実に抑制できる。
 さらに、波状強化繊維束23の配置方法、構成及び本数は、実施の形態1~6の例に限定されない。
 さらにまた、実施の形態1~6において、波状強化繊維束23は、一定周期の波状でなく、不定周期の波状であってもよい。例えば、ロープ20の長手方向の位置によって、波の振幅及び周期の少なくともいずれか一方を変化させてもよい。また、使用時にシーブを通過する部分のみで強化繊維束を波状とし、シーブを通過しない部分では強化繊維束をX軸方向と平行に配置してもよい。この場合、ロープ20にX軸方向の荷重が作用した際に、強化繊維束のX軸方向と平行に配置された部分の伸びが、強化繊維束の波状に形成された部分の伸びよりも小さくなるため、全体としてのロープ20の伸びを小さくできる。
 また、実施の形態1~6では、強化繊維25が互いに平行に束ねられているが、複数の強化繊維25をらせん状等に撚った構成であってもよい。強化繊維25をらせん状に撚ることで、平行に配置するよりも強化繊維25の長さをロープ20のX軸方向の長さLに対して長くできる。また、強化繊維25をらせん状に撚った強化繊維束をX軸方向と平行になるように配置してもよいが、強化繊維25をらせん状に撚った強化繊維束をB-B断面において波状の形状とすれば、ロープ20のX軸方向の長さLに対して、強化繊維25の長さをより長くでき、曲げ剛性をさらに低減できる。
 さらに、実施の形態1~6では、A-A断面における各波状強化繊維束23の断面形状を円形としたが(例えば図3)、波状強化繊維束23の断面形状は円形に限定されない。例えば、A-A断面における各波状強化繊維束23の形状が矩形になるように強化繊維25を束にしてもよい。波状強化繊維束23の断面形状を矩形とすれば、波状強化繊維束23を隙間なく整列させ、円形断面の場合よりもロープ20における強化繊維25の含有率を大きくできる。そのため、A-A断面積に対して、高強度なロープ20が提供できる。
 さらにまた、強化繊維25の繊維径及び本数も特に限定されるものではない。
 また、実施の形態1~6では、強化繊維体として、強化繊維25の束である波状強化繊維束23及び平行強化繊維束28を示したが、強化繊維体はこれに限定されるものではない。例えば、強化繊維体として、強化繊維からなる波状のシート、又はそのシートをZ軸方向に積層したシート積層体を用いてもよい。
 さらに、ロープ及び荷重支持部材の長手方向に直角な断面の形状は、矩形に限定されるものではなく、例えば楕円形又は円形であってもよい。
 さらにまた、実施の形態2~6において、横材26を省略した構成とすることも可能である。
 また、この発明のロープを適用するエレベータの構成は、図1に限定されるものではない。
 さらに、この発明のロープは、エレベータのかごを吊るロープ以外のロープにも適用できる。例えば、エレベータのコンペンロープ、クレーン装置に使用されるロープにも適用できる。
 3 巻上機、5 駆動シーブ、7 かご、20 ロープ、21 荷重支持部材、22 被覆材、23 波状強化繊維束(強化繊維体)、24 含浸材、25 強化繊維、26 横材、27 複合層、28 平行強化繊維束(強化繊維体)。

Claims (9)

  1.  含浸材と、前記含浸材に埋め込まれており、長手方向に作用する荷重を支持する長手方向に連続した強化繊維体とを有している荷重支持部材、及び
     前記荷重支持部材の外周を覆っている被覆材
     を備え、
     前記強化繊維体は、少なくとも一部が長手方向に平行な断面において波状の形状を有している波状強化繊維体を含んでおり、
     前記波状強化繊維体を直線状に伸ばしたときの全長が、前記荷重支持部材の全長の1.1倍以上であるロープ。
  2.  含浸材と、前記含浸材に埋め込まれており、長手方向に作用する荷重を支持する長手方向に連続した強化繊維体とを有している荷重支持部材、及び
     前記荷重支持部材の外周を覆っている被覆材
     を備え、
     前記荷重支持部材は、前記荷重支持部材の長手方向に互いに間隔をおいて前記含浸材に埋め込まれている複数の横材をさらに有しており、
     前記横材は、前記荷重支持部材の長手方向に対して直角の方向に延在する長尺状であり、
     前記横材の弾性率は、前記含浸材の弾性率よりも大きくなっており、
     前記強化繊維体は、少なくとも一部が前記横材に掛けられて波状に形成された波状強化繊維体を含んでおり、
     前記波状強化繊維体を直線状に伸ばしたときの全長が、前記荷重支持部材の全長よりも長くなっているロープ。
  3.  それぞれ前記波状強化繊維体と前記横材とからなる複数の複合層が前記荷重支持部材の厚さ方向に並べて配置されている請求項2に記載のロープ。
  4.  前記強化繊維体は、前記荷重支持部材の長手方向に平行に配置された強化繊維の束である平行強化繊維体を含んでおり、
     前記平行強化繊維体は、前記荷重支持部材の厚さ方向の中央に配置されており、
     前記荷重支持部材の厚さ方向の前記平行強化繊維体の両側に前記複合層が配置されている請求項3記載のロープ。
  5.  前記荷重支持部材の厚さ方向の表面に近い前記複合層ほど、前記波状強化繊維体の全長が長い請求項3又は請求項4に記載のロープ。
  6.  前記荷重支持部材の厚さ方向の表面に近い前記複合層ほど、前記波状強化繊維体の弾性率が小さい請求項3から請求項5までのいずれか1項に記載のロープ。
  7.  前記横材の長手方向寸法が、前記荷重支持部材の幅方向寸法と一致している請求項2から請求項6までのいずれか1項に記載のロープ。
  8.  前記波状強化繊維体は、前記荷重支持部材の幅方向に並んだ複数のグループに分けられており、
     前記荷重支持部材の幅方向に隣り合う前記グループの前記波状強化繊維体は、前記荷重支持部材の長手方向の位相が互いに180°ずらされている請求項1から請求項7までのいずれか1項に記載のロープ。
  9.  請求項1から請求項8までのいずれか1項に記載のロープ、
     前記ロープが巻き掛けられている駆動シーブを有している巻上機、及び
     前記ロープにより吊り下げられており、前記駆動シーブの回転により昇降するかご
     を備えているエレベータ。
PCT/JP2017/029799 2017-01-10 2017-08-21 ロープ、及びそれを用いたエレベータ WO2018131203A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/347,232 US11618999B2 (en) 2017-01-10 2017-08-21 Rope and elevator using same
DE112017006769.3T DE112017006769B4 (de) 2017-01-10 2017-08-21 Seil und ein solches seil verwendender aufzug
CN201780082400.3A CN110177908B (zh) 2017-01-10 2017-08-21 绳索和使用该绳索的电梯
JP2018561796A JP6664518B2 (ja) 2017-01-10 2017-08-21 ロープ、及びそれを用いたエレベータ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-001828 2017-01-10
JP2017001828 2017-01-10

Publications (1)

Publication Number Publication Date
WO2018131203A1 true WO2018131203A1 (ja) 2018-07-19

Family

ID=62839580

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/029799 WO2018131203A1 (ja) 2017-01-10 2017-08-21 ロープ、及びそれを用いたエレベータ

Country Status (5)

Country Link
US (1) US11618999B2 (ja)
JP (1) JP6664518B2 (ja)
CN (1) CN110177908B (ja)
DE (1) DE112017006769B4 (ja)
WO (1) WO2018131203A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3738915A1 (en) * 2019-05-15 2020-11-18 China Enfi Engineering Corporation Koepe hoist
WO2020255335A1 (ja) * 2019-06-20 2020-12-24 三菱電機株式会社 懸架体及びその製造方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018198240A1 (ja) * 2017-04-26 2018-11-01 三菱電機株式会社 エレベータ、その懸架体、及びその製造方法
US10926976B2 (en) * 2018-06-18 2021-02-23 Otis Elevator Company Belt with corrugated material
US11591186B2 (en) * 2018-08-06 2023-02-28 Otis Elevator Company Belt with layered load bearing elements
KR102178591B1 (ko) * 2018-08-31 2020-11-13 전재원 엘리베이터 로프용 브레이크 라이닝 및 그 제조방법
WO2021100154A1 (ja) * 2019-11-20 2021-05-27 三菱電機株式会社 ベルト把持具
CN114787067B (zh) * 2019-12-13 2023-08-08 三菱电机株式会社 悬挂体、悬挂体的制造方法、电梯的组装方法和电梯

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015048178A (ja) * 2013-08-30 2015-03-16 東芝エレベータ株式会社 エレベータ装置
JP2015074871A (ja) * 2013-10-10 2015-04-20 コネ コーポレイションKone Corporation 巻上機のロープおよびエレベータ

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE859230A (nl) * 1977-09-30 1978-03-30 Bekaert Sa Nv Staalkoordversterking voor rubbervoorwerpen, alsmede aldus versterkte voorwerpen
US4602476A (en) 1984-12-03 1986-07-29 Amsted Industries Incorporated Plastic filled wire rope with strand spacer
US6273161B1 (en) 1998-05-28 2001-08-14 Tokyo Rope Mfg. Co., Ltd. Tire with single wire steel belt cord
CN2496801Y (zh) * 2001-07-18 2002-06-26 解华平 包塑钢丝绳
GB2458001B (en) 2008-01-18 2010-12-08 Kone Corp An elevator hoist rope, an elevator and method
JP2012516393A (ja) 2009-01-28 2012-07-19 ナムローゼ・フェンノートシャップ・ベーカート・ソシエテ・アノニム 楕円形コードの芯として構成された波形状偏平ワイヤ
CN102918189B (zh) 2010-05-13 2015-07-22 奥的斯电梯公司 制造在抗拉构件之间具有希望的间隔的织造织物的方法
JP5577419B1 (ja) * 2013-02-25 2014-08-20 株式会社ブリヂストン クローラ
CN104528498A (zh) * 2014-12-30 2015-04-22 天津高盛钢丝绳有限公司 一种复合材料的曳引带
CN106044470B (zh) * 2015-04-10 2020-04-17 奥的斯电梯公司 用于电梯系统的载荷支承构件

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015048178A (ja) * 2013-08-30 2015-03-16 東芝エレベータ株式会社 エレベータ装置
JP2015074871A (ja) * 2013-10-10 2015-04-20 コネ コーポレイションKone Corporation 巻上機のロープおよびエレベータ

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3738915A1 (en) * 2019-05-15 2020-11-18 China Enfi Engineering Corporation Koepe hoist
WO2020255335A1 (ja) * 2019-06-20 2020-12-24 三菱電機株式会社 懸架体及びその製造方法

Also Published As

Publication number Publication date
JPWO2018131203A1 (ja) 2019-06-27
CN110177908B (zh) 2022-03-18
DE112017006769B4 (de) 2023-10-26
CN110177908A (zh) 2019-08-27
US11618999B2 (en) 2023-04-04
US20190315596A1 (en) 2019-10-17
DE112017006769T5 (de) 2019-11-14
JP6664518B2 (ja) 2020-03-13

Similar Documents

Publication Publication Date Title
WO2018131203A1 (ja) ロープ、及びそれを用いたエレベータ
JP6109804B2 (ja) 巻上げ機のロープ、エレベータおよび用途
JP3177397B2 (ja) エレベータ懸吊手段としてのケーブル
JP5624921B2 (ja) エレベータ用引張り部材
EP1060305B2 (en) Elevator Systems
JP4391640B2 (ja) より合成繊維ロープ
KR100578782B1 (ko) 합성 섬유 로프 및 이를 사용한 엘리베이터 설비
JP2013529163A5 (ja)
US11485612B2 (en) Belt with corrugated material
EP3483109B1 (en) Elevator system belt
JP4064668B2 (ja) 複合型ワイヤロープ
JP2015089853A (ja) エレベータ
US10214388B2 (en) Rope storage unit, a method for installing elevator and a method for fabricating rope storage unit
JP2006335568A (ja) せん断力を許容することができ数本のケーブルを接続する接続部を有する支持手段
KR102657801B1 (ko) 엘리베이터 시스템 현수 부재
US10221043B2 (en) Elevator suspension and/or driving arrangement
CN108861955A (zh) 电梯系统的曳引带及其带轮和采用该曳引带及带轮的电梯
JP2593513B2 (ja) 巻上げ装置
US20240228243A1 (en) Flexible form factor belt driven block and tackle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17891516

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018561796

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 17891516

Country of ref document: EP

Kind code of ref document: A1