WO2018128528A1 - 무선 통신 시스템에서 pdu 세션 관리 방법 및 이를 위한 장치 - Google Patents
무선 통신 시스템에서 pdu 세션 관리 방법 및 이를 위한 장치 Download PDFInfo
- Publication number
- WO2018128528A1 WO2018128528A1 PCT/KR2018/000438 KR2018000438W WO2018128528A1 WO 2018128528 A1 WO2018128528 A1 WO 2018128528A1 KR 2018000438 W KR2018000438 W KR 2018000438W WO 2018128528 A1 WO2018128528 A1 WO 2018128528A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- handover
- message
- session
- pdu session
- network
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 162
- 238000004891 communication Methods 0.000 title claims abstract description 64
- 230000008859 change Effects 0.000 claims abstract description 14
- 102100022887 GTP-binding nuclear protein Ran Human genes 0.000 claims abstract description 5
- 230000004044 response Effects 0.000 claims description 56
- 230000006870 function Effects 0.000 abstract description 113
- 230000015654 memory Effects 0.000 abstract description 14
- 239000010410 layer Substances 0.000 description 81
- 238000007726 management method Methods 0.000 description 75
- 210000004027 cell Anatomy 0.000 description 46
- 230000011664 signaling Effects 0.000 description 42
- 238000001994 activation Methods 0.000 description 36
- 230000004913 activation Effects 0.000 description 34
- 238000012384 transportation and delivery Methods 0.000 description 34
- 238000010586 diagram Methods 0.000 description 27
- 230000005540 biological transmission Effects 0.000 description 21
- 238000010295 mobile communication Methods 0.000 description 16
- 238000005516 engineering process Methods 0.000 description 14
- 230000008569 process Effects 0.000 description 14
- 101150102131 smf-1 gene Proteins 0.000 description 13
- 238000012546 transfer Methods 0.000 description 11
- 230000009849 deactivation Effects 0.000 description 10
- 101100477784 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) SMF2 gene Proteins 0.000 description 9
- 230000006835 compression Effects 0.000 description 9
- 238000007906 compression Methods 0.000 description 9
- 238000005457 optimization Methods 0.000 description 9
- 230000008093 supporting effect Effects 0.000 description 9
- 238000007600 charging Methods 0.000 description 8
- 238000012545 processing Methods 0.000 description 8
- 230000001960 triggered effect Effects 0.000 description 8
- 230000003993 interaction Effects 0.000 description 7
- 238000012986 modification Methods 0.000 description 7
- 230000004048 modification Effects 0.000 description 7
- 238000013507 mapping Methods 0.000 description 6
- 238000003860 storage Methods 0.000 description 6
- 230000003139 buffering effect Effects 0.000 description 5
- 230000009977 dual effect Effects 0.000 description 5
- 238000013468 resource allocation Methods 0.000 description 5
- 102100021087 Regulator of nonsense transcripts 2 Human genes 0.000 description 4
- 101710028540 UPF2 Proteins 0.000 description 4
- 238000012937 correction Methods 0.000 description 4
- 210000004754 hybrid cell Anatomy 0.000 description 4
- 230000010076 replication Effects 0.000 description 4
- 101100240980 Caenorhabditis elegans smf-2 gene Proteins 0.000 description 3
- 230000002159 abnormal effect Effects 0.000 description 3
- 238000013500 data storage Methods 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000001914 filtration Methods 0.000 description 3
- 238000012423 maintenance Methods 0.000 description 3
- 239000003550 marker Substances 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 230000006855 networking Effects 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 238000011084 recovery Methods 0.000 description 3
- 230000006978 adaptation Effects 0.000 description 2
- 238000013475 authorization Methods 0.000 description 2
- 230000006399 behavior Effects 0.000 description 2
- 239000002360 explosive Substances 0.000 description 2
- 208000016638 multiple benign circumferential skin creases on limbs Diseases 0.000 description 2
- 230000011218 segmentation Effects 0.000 description 2
- 108020001568 subdomains Proteins 0.000 description 2
- 101000958327 Homo sapiens Lymphocyte antigen 6 complex locus protein G6c Proteins 0.000 description 1
- 101000579423 Homo sapiens Regulator of nonsense transcripts 1 Proteins 0.000 description 1
- 101001090935 Homo sapiens Regulator of nonsense transcripts 3A Proteins 0.000 description 1
- 102100038211 Lymphocyte antigen 6 complex locus protein G6c Human genes 0.000 description 1
- 101150119040 Nsmf gene Proteins 0.000 description 1
- 102100028287 Regulator of nonsense transcripts 1 Human genes 0.000 description 1
- 102100035026 Regulator of nonsense transcripts 3A Human genes 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 230000002457 bidirectional effect Effects 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 238000012508 change request Methods 0.000 description 1
- 238000013480 data collection Methods 0.000 description 1
- 238000013523 data management Methods 0.000 description 1
- 230000006837 decompression Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 230000001976 improved effect Effects 0.000 description 1
- 239000003999 initiator Substances 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 239000002346 layers by function Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000001151 other effect Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 229920001690 polydopamine Polymers 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000008707 rearrangement Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 230000005477 standard model Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 230000005641 tunneling Effects 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W36/00—Hand-off or reselection arrangements
- H04W36/14—Reselecting a network or an air interface
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W76/00—Connection management
- H04W76/10—Connection setup
- H04W76/12—Setup of transport tunnels
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W36/00—Hand-off or reselection arrangements
- H04W36/0005—Control or signalling for completing the hand-off
- H04W36/0011—Control or signalling for completing the hand-off for data sessions of end-to-end connection
- H04W36/0019—Control or signalling for completing the hand-off for data sessions of end-to-end connection adapted for mobile IP [MIP]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W36/00—Hand-off or reselection arrangements
- H04W36/14—Reselecting a network or an air interface
- H04W36/142—Reselecting a network or an air interface over the same radio air interface technology
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W76/00—Connection management
- H04W76/10—Connection setup
- H04W76/11—Allocation or use of connection identifiers
Definitions
- the present invention relates to a wireless communication system, and more particularly, to a protocol data unit (PDU) session management method and an apparatus supporting the same.
- PDU protocol data unit
- Mobile communication systems have been developed to provide voice services while ensuring user activity.
- the mobile communication system has expanded not only voice but also data service.As a result of the explosive increase in traffic, a shortage of resources and users are demanding higher speed services, a more advanced mobile communication system is required. have.
- An object of the present invention is to propose a method of handing over only an active PDU session when performing handover due to mobility of a UE.
- An aspect of the present invention provides a method for performing a handover of a user equipment (UE) by a source radio access network (RAN) including a processor, a memory, and a communication module in a wireless communication system. And determining to initiate a handover to a target RAN and sending a Handover Required message to an access and mobility management function (AMF). Is a handover when a handover or AMF change is required between RANs having no interfaces, and the handover request message indicates a PDU session identifier (ID) of an activated Protocol Data Unit (PDU) session. It may include.
- ID PDU session identifier
- PDU Protocol Data Unit
- all PDU sessions processed by the source RAN may correspond to the activated PDU session.
- the PDU session ID may indicate that a PDU session corresponding to the PDU session ID is requested to be handed over by the source RAN.
- the activated PDU session may correspond to a PDU session in which a data radio bearer (DRB) between the RAN and the UE and an N3 interface tunnel between the RAN and the user plane function (UPF) are established.
- DRB data radio bearer
- UPF user plane function
- said handover request message is a transparent container from a source to a target including an identifier of said target RAN, and radio related information transmitted transparently over a core network from said source RAN to said target RAN.
- (Source to Target Transparent Container) may be included.
- the AMF is a network entity that provides mobility management function of the UE except for the session management function of the UE, and the session management function of the UE may be provided by a session management function (SMF). .
- SMF session management function
- a source access and mobility management function including a processor, a memory, and a communication module in a wireless communication system performs a handover of a user equipment (UE).
- a method for receiving a message comprising: receiving a Handover Required message from a source Radio Access Network (RAN), the handover request message being a message of an activated Protocol Data Unit (PDU) session; Including a PDU session ID and transmitting a Session Management (SM) message to a Session Management Function (SMF) associated with each PDU session indicated by the received PDU session ID; It may include.
- RAN Radio Access Network
- SM Session Management
- SMF Session Management Function
- the AMF may store an association between a PDU session ID and an SMF identifier (ID).
- ID an SMF identifier
- receiving the UPF address for setting the N3 interface path between the RAN and the user plane function (UPF) and the quality of service (QoS) information of the PDU session from the SMF to which the SM message is delivered may further include.
- UPF user plane function
- QoS quality of service
- the method further includes transmitting a handover request message to a target RAN, wherein the handover request message includes a list of PDU sessions for which handover is accepted and QoS of PDU sessions belonging to the list of PDU sessions. It may include rule information.
- the method further comprises receiving a Handover Request Acknowledgment message from the target RAN in response to the handover request message, wherein the handover request acknowledgment message is received from the target RAN.
- Target to Source transparent container containing radio-related information transmitted transparently through the core network to the RAN, and accepted PDU session information with accepted QoS rules. It may include.
- the method further comprises transmitting a Handover Command message to the source RAN, wherein the Handover Command message is a target to source transparent container and a setup target. It may include a PDU setup list for the PDU session.
- the AMF is a network entity that provides the mobility management function of the UE except for the session management function of the UE, and the session management function of the UE may be provided by the SMF.
- the AMF by providing the AMF with activated PDU session information in the RAN, the AMF does not need to maintain an unnecessarily signaling management (SM) context (ie, context for an activated PDU session).
- SM signaling management
- FIG. 1 is a view briefly illustrating an EPS (Evolved Packet System) to which the present invention can be applied.
- EPS Evolved Packet System
- E-UTRAN evolved universal terrestrial radio access network
- FIG. 3 illustrates the structure of an E-UTRAN and an EPC in a wireless communication system to which the present invention can be applied.
- FIG. 4 shows a structure of a radio interface protocol between a terminal and an E-UTRAN in a wireless communication system to which the present invention can be applied.
- FIG. 5 is a diagram exemplarily illustrating a structure of a physical channel in a wireless communication system to which the present invention can be applied.
- FIG. 6 is a diagram for explaining a contention based random access procedure in a wireless communication system to which the present invention can be applied.
- FIG. 7 illustrates an S1 based handover procedure in a wireless communication system to which the present invention can be applied.
- FIG. 8 is a diagram illustrating an S1 release procedure in a wireless communication system to which the present invention can be applied.
- 9-16 illustrate a wireless communication system architecture to which the present invention may be applied.
- FIG. 17 illustrates an NG-RAN architecture to which the present invention may be applied.
- FIG. 18 is a diagram illustrating a radio protocol stack in a wireless communication system to which the present invention can be applied.
- FIG. 19 illustrates a reference architecture of a wireless communication system to which the present invention may be applied.
- FIG. 20 illustrates a session / mobility state machine in a wireless communication system to which the present invention can be applied.
- 21 and 22 are diagrams illustrating a session activation procedure in a wireless communication system to which the present invention can be applied.
- FIG. 23 is a diagram illustrating an activation process for each PDU session in a wireless communication system to which the present invention can be applied.
- 24 is a diagram illustrating a handover method according to an embodiment of the present invention.
- 25 is a diagram illustrating an N2 release procedure according to an embodiment of the present invention.
- 26 is a diagram illustrating a PDU session management method according to an embodiment of the present invention.
- FIG. 27 illustrates a block diagram of a communication device according to an embodiment of the present invention.
- FIG. 28 illustrates a block diagram of a communication device according to an embodiment of the present invention.
- a base station has a meaning as a terminal node of a network that directly communicates with a terminal.
- the specific operation described as performed by the base station in this document may be performed by an upper node of the base station in some cases. That is, it is obvious that various operations performed for communication with a terminal in a network composed of a plurality of network nodes including a base station may be performed by the base station or other network nodes other than the base station.
- a 'base station (BS)' may be replaced by terms such as a fixed station, a Node B, an evolved-NodeB (eNB), a base transceiver system (BTS), an access point (AP), and the like. .
- a 'terminal' may be fixed or mobile, and may include a user equipment (UE), a mobile station (MS), a user terminal (UT), a mobile subscriber station (MSS), a subscriber station (SS), and an AMS ( Advanced Mobile Station (WT), Wireless Terminal (WT), Machine-Type Communication (MTC) Device, Machine-to-Machine (M2M) Device, Device-to-Device (D2D) Device, etc.
- UE user equipment
- MS mobile station
- UT user terminal
- MSS mobile subscriber station
- SS subscriber station
- AMS Advanced Mobile Station
- WT Wireless Terminal
- MTC Machine-Type Communication
- M2M Machine-to-Machine
- D2D Device-to-Device
- downlink means communication from a base station to a terminal
- uplink means communication from a terminal to a base station.
- a transmitter may be part of a base station, and a receiver may be part of a terminal.
- a transmitter may be part of a terminal and a receiver may be part of a base station.
- CDMA code division multiple access
- FDMA frequency division multiple access
- TDMA time division multiple access
- OFDMA orthogonal frequency division multiple access
- SC-FDMA single carrier frequency division multiple access
- GSM global system for mobile communications
- GPRS general packet radio service
- EDGE enhanced data rates for GSM evolution
- OFDMA may be implemented in a wireless technology such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, evolved UTRA (E-UTRA).
- UTRA is part of a universal mobile telecommunications system (UMTS).
- 3rd generation partnership project (3GPP) long term evolution (LTE) is a part of evolved UMTS (E-UMTS) using E-UTRA, and employs OFDMA in downlink and SC-FDMA in uplink.
- LTE-A (advanced) is the evolution of 3GPP LTE.
- Embodiments of the present invention may be supported by standard documents disclosed in at least one of the wireless access systems IEEE 802, 3GPP and 3GPP2. That is, steps or parts which are not described to clearly reveal the technical spirit of the present invention among the embodiments of the present invention may be supported by the above documents. In addition, all terms disclosed in the present document can be described by the above standard document.
- UMTS Universal Mobile Telecommunications System
- GSM Global System for Mobile Communication
- Evolved Packet System A network system consisting of an Evolved Packet Core (EPC), which is a packet switched core network based on Internet Protocol (IP), and an access network such as LTE and UTRAN.
- EPC Evolved Packet Core
- IP Internet Protocol
- UMTS is an evolutionary network.
- NodeB base station of UMTS network. It is installed outdoors and its coverage is macro cell size.
- eNodeB base station of EPS network. It is installed outdoors and its coverage is macro cell size.
- Home NodeB Base station of UMTS network. It is installed indoors and coverage is micro cell size.
- Home eNodeB Base station of EPS network. It is installed indoors and is micro cell size.
- a terminal may be referred to in terms of terminal, mobile equipment (ME), mobile station (MS), and the like.
- the terminal may be a portable device such as a laptop, a mobile phone, a personal digital assistant (PDA), a smartphone, a multimedia device, or the like, or may be a non-portable device such as a personal computer (PC) or a vehicle-mounted device.
- the term "terminal” or “terminal” in the MTC related content may refer to an MTC terminal.
- IMS IP Multimedia Subsystem
- IMSI International Mobile Subscriber Identity
- Mobility Management Entity A network node of an EPS that performs functions such as mobility management, session management, and the like.
- Packet Data Network Gateway PDN-GW: UE Internet Protocol (IP) address assignment, packet screening and filtering, charging data collection, etc.
- IP Internet Protocol
- Serving Gateway A network of EPS that performs functions such as mobility anchor, packet routing, idle mode packet buffering, and MME triggering to page the UE. Node.
- PCRF Policy and Charging Rule Function
- OMA DM Open Mobile Alliance Device Management: A protocol designed for the management of mobile devices such as mobile phones, PDAs, portable computers, etc., including device configuration, firmware upgrade, error report, etc. Performs the function of.
- OAM Operations Administration and Maintenance
- OAM refers to a group of network management functions that provide network fault indication, performance information, and data and diagnostics.
- NAS configuration management object Means a MO (management object) used to configure the parameters (parameters) associated with the NAS (Functionality) to the UE.
- Packet Data Network A network in which a server supporting a specific service (for example, a Multimedia Messaging Service (MMS) server, a wireless application protocol (WAP) server, etc.) is located.
- MMS Multimedia Messaging Service
- WAP wireless application protocol
- Access Point Name A string indicating or identifying a PDN.
- PDN Access Point Name
- the P-GW passes through the P-GW, which is a predefined name (string) in the network so that the P-GW can be found (for example, internet.mnc012.mcc345.gprs).
- -PDN connection connection from the terminal to the PDN, that is, the association (connection) of the terminal represented by the IP address with the PDN represented by the APN
- HLR Home Location Register
- HSS Home Subscriber Server
- RAN Radio Access Network: a unit including a Node B, a Radio Network Controller (RNC), and an eNodeB controlling the Node B in a 3GPP network. It exists at the terminal end and provides connection to the core network.
- RNC Radio Network Controller
- PLMN Public Land Mobile Network
- Non-Access Stratum A functional layer for transmitting and receiving signaling and traffic messages between a terminal and a core network in a UMTS and EPS protocol stack. The main function is to support the mobility of the terminal and to support the session management procedure for establishing and maintaining an IP connection between the terminal and the PDN GW.
- AS Access Stratum: Contains protocol stack between UE and wireless (or access) network, and is in charge of data and network control signal transmission.
- FIG. 1 is a diagram briefly illustrating an EPS (Evolved Packet System) to which the present invention may be applied.
- EPS Evolved Packet System
- the network structure diagram of FIG. 1 briefly reconstructs a structure of an EPS (Evolved Packet System) including an Evolved Packet Core (EPC).
- EPS Evolved Packet System
- EPC Evolved Packet Core
- EPC Evolved Packet Core
- SAE System Architecture Evolution
- SAE is a research project to determine network structure supporting mobility between various kinds of networks.
- SAE aims to provide an optimized packet-based system, for example, supporting various radio access technologies on an IP basis and providing improved data transfer capability.
- the EPC is a core network of an IP mobile communication system for a 3GPP LTE system and may support packet-based real-time and non-real-time services.
- a conventional mobile communication system i.e., a second generation or third generation mobile communication system
- the core network is divided into two distinct sub-domains of circuit-switched (CS) for voice and packet-switched (PS) for data.
- CS circuit-switched
- PS packet-switched
- the function has been implemented.
- the sub-domains of CS and PS have been unified into one IP domain.
- the EPC may include various components, and in FIG. 1, some of them correspond to a Serving Gateway (SGW) (or S-GW), PDN GW (Packet Data Network Gateway) (or PGW or P-GW), A mobility management entity (MME), a Serving General Packet Radio Service (GPRS) Supporting Node (SGSN), and an enhanced Packet Data Gateway (ePDG) are shown.
- SGW Serving Gateway
- PDN GW Packet Data Network Gateway
- MME mobility management entity
- GPRS General Packet Radio Service
- SGSN Serving General Packet Radio Service
- ePDG enhanced Packet Data Gateway
- the SGW acts as a boundary point between the radio access network (RAN) and the core network, and is an element that functions to maintain a data path between the eNodeB and the PDN GW.
- the SGW serves as a local mobility anchor point. That is, packets may be routed through the SGW for mobility in the E-UTRAN (Universal Mobile Telecommunications System (Evolved-UMTS) Terrestrial Radio Access Network defined in 3GPP Release-8 or later).
- E-UTRAN Universal Mobile Telecommunications System (Evolved-UMTS) Terrestrial Radio Access Network defined in 3GPP Release-8 or later.
- SGW also provides mobility with other 3GPP networks (RANs defined before 3GPP Release-8, such as UTRAN or GERAN (Global System for Mobile Communication (GSM) / Enhanced Data rates for Global Evolution (EDGE) Radio Access Network). It can also function as an anchor point.
- GSM Global System for Mobile Communication
- EDGE Enhanced Data rates for Global Evolution
- the PDN GW corresponds to the termination point of the data interface towards the packet data network.
- the PDN GW may support policy enforcement features, packet filtering, charging support, and the like.
- untrusted networks such as 3GPP networks and non-3GPP networks (e.g., Interworking Wireless Local Area Networks (I-WLANs), trusted divisions such as Code Division Multiple Access (CDMA) networks or Wimax). It can serve as an anchor point for mobility management with the network.
- I-WLANs Interworking Wireless Local Area Networks
- CDMA Code Division Multiple Access
- FIG. 1 shows that the SGW and the PDN GW are configured as separate gateways, two gateways may be implemented according to a single gateway configuration option.
- the MME is an element that performs signaling and control functions for supporting access to a network connection, allocation of network resources, tracking, paging, roaming, handover, and the like.
- the MME controls the control plane functions related to subscriber and session management.
- the MME manages a number of eNodeBs and performs signaling for the selection of a conventional gateway for handover to other 2G / 3G networks.
- the MME also performs functions such as security procedures, terminal-to-network session handling, and idle terminal location management.
- SGSN handles all packet data, such as user's mobility management and authentication to other 3GPP networks (eg GPRS networks).
- 3GPP networks eg GPRS networks.
- the ePDG acts as a secure node for untrusted non-3GPP networks (eg, I-WLAN, WiFi hotspots, etc.).
- untrusted non-3GPP networks eg, I-WLAN, WiFi hotspots, etc.
- a terminal having IP capability includes an IP service network provided by an operator (ie, an operator) via various elements in the EPC, based on 3GPP access as well as non-3GPP access.
- an operator ie, an operator
- 3GPP access based on 3GPP access as well as non-3GPP access.
- IMS IMS
- FIG. 1 illustrates various reference points (eg, S1-U, S1-MME, etc.).
- a conceptual link defining two functions existing in different functional entities of E-UTRAN and EPC is defined as a reference point.
- Table 1 below summarizes the reference points shown in FIG. 1.
- various reference points may exist according to the network structure.
- S2a and S2b correspond to non-3GPP interfaces.
- S2a is a reference point that provides the user plane with relevant control and mobility resources between trusted non-3GPP access and PDN GW.
- S2b is a reference point that provides the user plane with relevant control and mobility support between the ePDG and the PDN GW.
- E-UTRAN evolved universal terrestrial radio access network
- the E-UTRAN system is an evolution from the existing UTRAN system and may be, for example, a 3GPP LTE / LTE-A system.
- Communication networks are widely deployed to provide various communication services, such as voice (eg, Voice over Internet Protocol (VoIP)) over IMS and packet data.
- voice eg, Voice over Internet Protocol (VoIP)
- VoIP Voice over Internet Protocol
- an E-UMTS network includes an E-UTRAN, an EPC, and one or more UEs.
- the E-UTRAN consists of eNBs providing a control plane and a user plane protocol to the UE, and the eNBs are connected through an X2 interface.
- X2 user plane interface (X2-U) is defined between eNBs.
- the X2-U interface provides non guaranteed delivery of user plane packet data units (PDUs).
- An X2 control plane interface (X2-CP) is defined between two neighboring eNBs.
- X2-CP performs functions such as context transfer between eNBs, control of user plane tunnel between source eNB and target eNB, delivery of handover related messages, and uplink load management.
- the eNB is connected to the terminal through a wireless interface and is connected to an evolved packet core (EPC) through the S1 interface.
- EPC evolved packet core
- the S1 user plane interface (S1-U) is defined between the eNB and the serving gateway (S-GW).
- the S1 control plane interface (S1-MME) is defined between the eNB and the mobility management entity (MME).
- the S1 interface performs an evolved packet system (EPS) bearer service management function, a non-access stratum (NAS) signaling transport function, network sharing, and MME load balancing function.
- EPS evolved packet system
- NAS non-access stratum
- the S1 interface supports a many-to-many-relation between eNB and MME / S-GW.
- MME provides NAS signaling security, access stratum (AS) security control, inter-CN inter-CN signaling to support mobility between 3GPP access networks, and performing and controlling paging retransmission.
- EWS Earthquake and Tsunami Warning System
- CMAS Commercial Mobile Alert System
- FIG. 3 illustrates the structure of an E-UTRAN and an EPC in a wireless communication system to which the present invention can be applied.
- an eNB may select a gateway (eg, MME), route to the gateway during radio resource control (RRC) activation, scheduling of a broadcast channel (BCH), and the like. Dynamic resource allocation to the UE in transmission, uplink and downlink, and may perform the function of mobility control connection in the LTE_ACTIVE state.
- the gateway is responsible for paging initiation, LTE_IDLE state management, ciphering of the user plane, System Architecture Evolution (SAE) bearer control, and NAS signaling encryption. It can perform the functions of ciphering and integrity protection.
- FIG. 4 shows a structure of a radio interface protocol between a terminal and an E-UTRAN in a wireless communication system to which the present invention can be applied.
- FIG. 4 (a) shows the radio protocol structure for the control plane and FIG. 4 (b) shows the radio protocol structure for the user plane.
- the layers of the air interface protocol between the terminal and the E-UTRAN are based on the lower three layers of the open system interconnection (OSI) standard model known in the art of communication systems. It may be divided into a first layer L1, a second layer L2, and a third layer L3.
- the air interface protocol between the UE and the E-UTRAN consists of a physical layer, a data link layer, and a network layer horizontally, and vertically stacks a protocol stack for transmitting data information. (protocol stack) It is divided into a user plane and a control plane, which is a protocol stack for transmitting control signals.
- the control plane refers to a path through which control messages used by the terminal and the network to manage a call are transmitted.
- the user plane refers to a path through which data generated at an application layer, for example, voice data or Internet packet data, is transmitted.
- an application layer for example, voice data or Internet packet data
- a physical layer which is a first layer (L1), provides an information transfer service to a higher layer by using a physical channel.
- the physical layer is connected to a medium access control (MAC) layer located at a higher level through a transport channel, and data is transmitted between the MAC layer and the physical layer through the transport channel.
- Transport channels are classified according to how and with what characteristics data is transmitted over the air interface.
- data is transmitted between different physical layers through a physical channel between a physical layer of a transmitter and a physical layer of a receiver.
- the physical layer is modulated by an orthogonal frequency division multiplexing (OFDM) scheme and utilizes time and frequency as radio resources.
- OFDM orthogonal frequency division multiplexing
- a physical downlink control channel is a resource allocation of a paging channel (PCH) and a downlink shared channel (DL-SCH) and uplink shared channel (UL-SCH) to the UE. : informs hybrid automatic repeat request (HARQ) information associated with an uplink shared channel (HARQ).
- the PDCCH may carry an UL grant that informs the UE of resource allocation of uplink transmission.
- the physical control format indicator channel (PCFICH) informs the UE of the number of OFDM symbols used for PDCCHs and is transmitted every subframe.
- a physical HARQ indicator channel (PHICH) carries a HARQ acknowledgment (ACK) / non-acknowledge (NACK) signal in response to uplink transmission.
- the physical uplink control channel (PUCCH) carries uplink control information such as HARQ ACK / NACK, downlink request and channel quality indicator (CQI) for downlink transmission.
- a physical uplink shared channel (PUSCH) carries a UL-SCH.
- the MAC layer of the second layer provides a service to a radio link control (RLC) layer, which is a higher layer, through a logical channel.
- RLC radio link control
- the MAC layer multiplexes / demultiplexes into a transport block provided as a physical channel on a transport channel of a MAC service data unit (SDU) belonging to the logical channel and mapping between the logical channel and the transport channel.
- SDU MAC service data unit
- the RLC layer of the second layer supports reliable data transmission. Functions of the RLC layer include concatenation, segmentation, and reassembly of RLC SDUs.
- the RLC layer In order to guarantee the various quality of service (QoS) required by the radio bearer (RB), the RLC layer has a transparent mode (TM), an unacknowledged mode (UM) and an acknowledgment mode (AM). There are three modes of operation: acknowledge mode.
- AM RLC provides error correction through an automatic repeat request (ARQ). Meanwhile, when the MAC layer performs an RLC function, the RLC layer may be included as a functional block of the MAC layer.
- the packet data convergence protocol (PDCP) layer of the second layer (L2) performs user data transmission, header compression, and ciphering functions in the user plane.
- Header compression is relatively large and large in order to allow efficient transmission of Internet protocol (IP) packets, such as IPv4 (internet protocol version 4) or IPv6 (internet protocol version 6), over a small bandwidth wireless interface. It means the function to reduce the IP packet header size that contains unnecessary control information.
- IP Internet protocol
- IPv4 Internet protocol version 4
- IPv6 Internet protocol version 6
- a radio resource control (RRC) layer located at the lowest part of the third layer L3 is defined only in the control plane.
- the RRC layer serves to control radio resources between the terminal and the network.
- the UE and the network exchange RRC messages with each other through the RRC layer.
- the RRC layer controls the logical channel, transport channel and physical channel with respect to configuration, re-configuration and release of radio bearers.
- the radio bearer means a logical path provided by the second layer (L2) for data transmission between the terminal and the network.
- Establishing a radio bearer means defining characteristics of a radio protocol layer and a channel to provide a specific service, and setting each specific parameter and operation method.
- the radio bearer may be further divided into two signaling radio bearers (SRBs) and data radio bearers (DRBs).
- SRB is used as a path for transmitting RRC messages in the control plane
- DRB is used as a path for transmitting user data in the user plane.
- a non-access stratum (NAS) layer located above the RRC layer performs functions such as session management and mobility management.
- NAS non-access stratum
- One cell constituting the base station is set to one of the bandwidth, such as 1.25, 2.5, 5, 10, 20Mhz to provide a downlink or uplink transmission service to multiple terminals.
- Different cells may be configured to provide different bandwidths.
- a downlink transport channel for transmitting data from a network to a terminal includes a broadcast channel (BCH) for transmitting system information, a PCH for transmitting a paging message, and a DL-SCH for transmitting user traffic or control messages.
- BCH broadcast channel
- PCH for transmitting a paging message
- DL-SCH for transmitting user traffic or control messages.
- Traffic or control messages of the downlink multicast or broadcast service may be transmitted through the DL-SCH or may be transmitted through a separate downlink multicast channel (MCH).
- an uplink transport channel for transmitting data from a terminal to a network includes a random access channel (RACH) for transmitting an initial control message, and an UL-SCH (uplink shared) for transmitting user traffic or a control message. channel).
- RACH random access channel
- UL-SCH uplink shared
- the logical channel is on top of the transport channel and is mapped to the transport channel.
- the logical channel may be divided into a control channel for transmitting control region information and a traffic channel for delivering user region information.
- the control channel includes a broadcast control channel (BCCH), a paging control channel (PCCH), a common control channel (CCCH), a dedicated control channel (DCCH), multicast And a control channel (MCCH: multicast control channel).
- Traffic channels include a dedicated traffic channel (DTCH) and a multicast traffic channel (MTCH).
- PCCH is a downlink channel that carries paging information and is used when the network does not know the cell to which the UE belongs.
- CCCH is used by a UE that does not have an RRC connection with the network.
- the DCCH is a point-to-point bi-directional channel used by a terminal having an RRC connection for transferring dedicated control information between the UE and the network.
- DTCH is a point-to-point channel dedicated to one terminal for transmitting user information that may exist in uplink and downlink.
- MTCH is a point-to-multipoint downlink channel for carrying traffic data from the network to the UE.
- the DCCH may be mapped to the UL-SCH
- the DTCH may be mapped to the UL-SCH
- the CCCH may be mapped to the UL-SCH.
- the BCCH may be mapped with the BCH or DL-SCH
- the PCCH may be mapped with the PCH
- the DCCH may be mapped with the DL-SCH.
- the DTCH may be mapped with the DL-SCH
- the MCCH may be mapped with the MCH
- the MTCH may be mapped with the MCH.
- FIG. 5 is a diagram exemplarily illustrating a structure of a physical channel in a wireless communication system to which the present invention can be applied.
- a physical channel transmits signaling and data through a radio resource including one or more subcarriers in a frequency domain and one or more symbols in a time domain.
- One subframe having a length of 1.0 ms is composed of a plurality of symbols.
- the specific symbol (s) of the subframe eg, the first symbol of the subframe
- the PDCCH carries information about dynamically allocated resources (eg, a resource block, a modulation and coding scheme (MCS), etc.).
- MCS modulation and coding scheme
- the UE performs an RRC connection re-establishment procedure. Cases are performed.
- a contention-based random access procedure in which the UE randomly selects and uses one preamble within a specific set And a non-contention based random access procedure using a random access preamble allocated by a base station only to a specific terminal.
- FIG. 6 is a diagram for explaining a contention based random access procedure in a wireless communication system to which the present invention can be applied.
- the UE randomly selects one random access preamble (RACH preamble) from a set of random access preambles indicated through system information or a handover command, and A physical RACH (PRACH) resource capable of transmitting a random access preamble is selected and transmitted.
- RACH preamble random access preamble
- PRACH physical RACH
- the base station receiving the random access preamble from the terminal decodes the preamble and obtains an RA-RNTI.
- the RA-RNTI associated with the PRACH in which the random access preamble is transmitted is determined according to the time-frequency resource of the random access preamble transmitted by the corresponding UE.
- the base station transmits a random access response addressed to the RA-RNTI obtained through the preamble on the first message to the terminal.
- the random access response includes a random access preamble identifier (RA preamble index / identifier), an uplink grant (UL grant) indicating an uplink radio resource, a temporary cell identifier (TC-RNTI), and a time synchronization value ( TAC: time alignment commands) may be included.
- the TAC is information indicating a time synchronization value that the base station sends to the terminal to maintain uplink time alignment.
- the terminal updates the uplink transmission timing by using the time synchronization value. When the terminal updates the time synchronization, a time alignment timer is started or restarted.
- the UL grant includes an uplink resource allocation and a transmit power command (TPC) used for transmission of a scheduling message (third message), which will be described later. TPC is used to determine the transmit power for the scheduled PUSCH.
- TPC transmit power command
- the base station After the UE transmits the random access preamble, the base station attempts to receive its random access response within the random access response window indicated by the system information or the handover command, and PRACH
- the PDCCH masked by the RA-RNTI corresponding to the PDCCH is detected, and the PDSCH indicated by the detected PDCCH is received.
- the random access response information may be transmitted in the form of a MAC packet data unit (MAC PDU), and the MAC PDU may be transmitted through a PDSCH.
- MAC PDU MAC packet data unit
- the monitoring stops the random access response.
- the random access response message is not received until the random access response window ends, or if a valid random access response having the same random access preamble identifier as the random access preamble transmitted to the base station is not received, the random access response is received. Is considered to have failed, and then the UE may perform preamble retransmission.
- the terminal When the terminal receives a valid random access response to the terminal, it processes each of the information included in the random access response. That is, the terminal applies the TAC, and stores the TC-RNTI. In addition, by using the UL grant, data stored in the buffer of the terminal or newly generated data is transmitted to the base station.
- an RRC connection request generated in the RRC layer and delivered through the CCCH may be included in the third message and transmitted.
- the RRC layer is generated in the RRC layer and CCCH.
- the RRC connection reestablishment request delivered through the RRC connection reestablishment request may be included in the third message and transmitted. It may also include a NAS connection request message.
- the third message should include the identifier of the terminal.
- the first method if the UE has a valid cell identifier (C-RNTI) allocated in the corresponding cell before the random access procedure, the UE transmits its cell identifier through an uplink transmission signal corresponding to the UL grant. do.
- the UE may include its own unique identifier (eg, SAE temporary mobile subscriber identity (S-TMSI) or random number). send.
- S-TMSI temporary mobile subscriber identity
- the unique identifier is longer than the C-RNTI.
- the UE If the UE transmits data corresponding to the UL grant, it starts a timer for contention resolution (contention resolution timer).
- the base station When the base station receives the C-RNTI of the terminal through the third message from the terminal, the base station transmits a fourth message to the terminal using the received C-RNTI.
- the unique identifier ie, S-TMSI or random number
- the fourth message is transmitted using the TC-RNTI allocated to the terminal in the random access response.
- the fourth message may include an RRC connection setup message.
- the terminal After transmitting the data including its identifier through the UL grant included in the random access response, the terminal waits for an instruction of the base station to resolve the collision. That is, it attempts to receive a PDCCH to receive a specific message.
- the third message transmitted in response to the UL grant is its C-RNTI
- the identifier is a unique identifier (that is, In the case of S-TMSI or a random number, it attempts to receive the PDCCH using the TC-RNTI included in the random access response.
- the terminal determines that the random access procedure has been normally performed, and terminates the random access procedure.
- the terminal determines that the random access procedure has been normally performed, and terminates the random access procedure.
- the terminal determines that the random access procedure is normally performed, and terminates the random access procedure.
- the terminal acquires the C-RNTI through the fourth message, and then the terminal and the network transmit and receive a terminal-specific message using the C-RNTI.
- the random access procedure is terminated by only transmitting the first message and transmitting the second message.
- the terminal before the terminal transmits the random access preamble to the base station as the first message, the terminal is allocated a random access preamble from the base station, and transmits the allocated random access preamble to the base station as a first message, and sends a random access response from the base station.
- the random access procedure is terminated by receiving.
- S1-based (ie S1 interface (reference point based) handover procedure is used when X2-based (ie X2 interface (reference point) based) handover cannot be used. Initiate a handover by sending a Handover Required message
- This procedure may relocate the MME and / or the S-GW
- the MME is an MME Pool Area serviced by the UE. It should not be relocated during inter-eNB handovers unless it deviates from the MME (ie, the target MME in MME relocation) determines if the S-GW should be relocated. , MME selects the target S-GW.
- the source eNB determines which EPS bearer is the target for downlink delivery. Also, optionally, the source eNB determines which EPS bearer is the target for forwarding uplink data packets from the source eNB to the target eNB. EPC does not change the decision made by the RAN node. Packet delivery may be performed directly from the source eNB to the target eNB, or via the source and target S-GW from the source eNB to the target eNB (or via a single S-GW if the S-GW is not relocated). It may also be done indirectly.
- Availability of the direct delivery path is determined within the source eNB and directed to the source MME. If an X2 connection between the source and target eNB is available, a direct delivery path is available.
- the source MME uses the indication from the source eNB to determine whether to apply indirect delivery.
- the source MME instructs the target MME whether indirect delivery should be applied. Based on this indication, the target MME determines whether to apply indirect delivery.
- the MME If the MME receives a denial (eg, dedicated bearer establishment / modification / release; location report control; NAS message forwarding; etc.) from the eNB with an indication that the S1 handover is in progress, then the MME If it is still a serving MME, except in the case of S-GW relocation, when the handover completes or is considered to have failed, the MME retries the same S1 interface procedure. If the S1 handover changes the serving MME, the source MME terminates any procedure other than the S1 interface procedure in progress except for the handover procedure.
- a denial eg, dedicated bearer establishment / modification / release; location report control; NAS message forwarding; etc.
- the MME is for Downlink NAS Transport or Downlink Generic NAS Transport messages with an indication that S1 handover is in progress.
- the MME may retransmit the message to the target eNB when the handover is complete, or when the handover is considered failed, the MME sends the message to the source eNB. You can also retransmit.
- MME refuses to deliver NAS message for UE Context modification or CS Service Notification including CS Fallback indication accompanied by an indication that S1 handover is in progress If the MME is still a serving MME, it may retransmit the message to the target eNB when the handover is completed, or the MME may retransmit the message to the source eNB when the handover is considered failed.
- the MME will not relate to the non-hanover related S1 interface procedure (e.g. downlink NAS message delivery, E-RAB setup / Modify / release, etc.). And, when the MME completes the handover procedure, if the MME is still serving MME, continue the procedure, except in the case of S-GW relocation.
- the non-hanover related S1 interface procedure e.g. downlink NAS message delivery, E-RAB setup / Modify / release, etc.
- the MME rejects the EPS bearer (s) initiated by the P-GW received after the handover procedure has begun.
- the MME also includes an indication that the request was temporarily rejected because the handover procedure is in progress. The rejection is forwarded by the S-GW to the P-GW with an indication that the request was temporarily rejected.
- the P-GW Upon receiving a rejection for the procedure of the EPS bearer (s) initiated by the P-GW with an indication that the handover procedure is in progress and the request has been temporarily rejected, the P-GW will guard the locally set guard timer. start a timer). When it detects that the handover is complete or fails, or when the guard timer expires, the P-GW retries up to a pre-set number of times.
- the MME checks whether the handover is directed to a restricted area and whether the MME should release a non-emergency bearer.
- TAU Tracking Area Update
- CSG Closed Subscriber Group
- the source MME For inter-PLMN handover to a CSG cell, if the source MME has a CSG-ID (Identifier) list of the target PLMN, the source MME will use that list to verify the CSG membership of the UE in the target CSG cell. use. Otherwise, based on the operator's configuration, the source MME allows the handover by verifying the CSG membership of the UE in the target CSG cell using the CSG-ID of the registered PLMN-ID (Identifier). If neither the CSG-ID list of the target PLMN nor the operator's configuration allows handover, the source MME rejects the handover because there is no CSG membership information of the target PLMN-ID.
- CSG-ID Identity
- the source MME attempts to perform a handover to a target MME that can support the UE's preferred network operation. For UEs using a Non-IP (P-GW) connection or a PDN connection to a Service Capability Exposure Function (SCEF), if these bearers cannot be supported by the target MME, the source MME Do not attempt to handover these bearers, but instead release these bearers when the handover completes successfully. If the MME has no bearer for the UE that can be delivered, the MME sends an S1-AP Handover Preparation Failure message to the source eNB.
- P-GW Non-IP
- SCEF Service Capability Exposure Function
- FIG. 7 illustrates an S1 based handover procedure in a wireless communication system to which the present invention can be applied.
- the source S-GW in the box acts as the target S-GW.
- the source eNB decides to initiate S1-based handover to the target eNB. This may be triggered by, for example, an error indication from the target eNB after the X2 connection to the target eNB, or an unsuccessful X2-based handover, or dynamic information learned by the source eNB.
- the source eNB sends a handover request to the source MME.
- the Handover Required message includes direct forwarding path availability, source to target transparent container, target eNodeB identity, CSG identifier (CSG ID). ), A CSG access mode (CSG access mode), a target tracking area identifier (target TAI), and an S1AP cause.
- the source eNB indicates which bearer is subject to data delivery.
- Direct Forwarding Path Availability indicates whether direct forwarding from the source eNB to the target eNB is available. This indication from the source eNB may be based on the presence of X2.
- the target TAI is sent to the MME to be used for selection of a suitable target MME. If the target cell is a CSG cell or hybrid cell, the source eNB includes the CSG ID of the target cell. If the target cell is a hybrid cell, the CSG access mode is indicated.
- the source MME selects the target MME.
- the MME Upon determining to relocate the MME, the MME sends a Forward Relocation Request message to the target MME.
- the forward relocation request message may include an MME UE context, a source to target transparent container, a RAN cause, a target eNodeB identity, CSG Identifier (CSG ID), CSG Membership Indication, Target TAI, MS Info Change Reporting Action, UE Time Zone, Direct Delivery Flag It may include a forwarding flag, a serving network, and a local home network ID.
- the target TAI is sent to the target MME to help determine whether S-GW relocation is necessary.
- the old Serving Network is sent to the target MME to support the target MME to solve when the serving network changes.
- Serving Network refers to a serving core network.
- the source MME When the CSG ID is provided by the source eNB, by checking the CSG subscription of the UE, the source MME performs access control. If there is no subscription data for this CSG ID or the CSG subscription expires and this target cell is a CSG cell, the source MME rejects the handover for an appropriate cause unless the UE is an emergency bearer service.
- the MME UE context includes IMSI, ME Identity, UE Security context, UE Network Capability, Aggregate Maximum Bit Rate (AMBR), and selected Core Network Operator Identifier ( Selected CN operator ID, APN restriction, Tuning Endpoint Identifier (TEID) for control signaling (Serving GW address and TEID for control signaling), EPS bearer context (s) (EPS) Bearer context) may be included.
- the EPS Bearer context is the P-GW address and TEID (s) in the P-GW (s) for uplink traffic (for GTP-based S5 / S8) or General Routing Encapsulation (GRE) keys (Proxy Mobile Internet Protocol). ) S5 / S8), APN, S-GW address for uplink traffic, and TEID and TI (Transaction Identifier).
- the source MME Based on the CIoT EPS Optimization capability of the target MME, the source MME only includes EPS bearer context (s) that the target MME can support. If neither EPS bearer of the UE can be supported by the selected target MME, the source MME rejects the S1 handover attempt by sending a Handover Preparation Failure message (including cause) to the source eNB. If the target MME supports CIoT EPS Optimization and the use of header compression has been negotiated between the UE and the source MME, then the source MME is not the Robust Header Compression (ROHC) context itself in the Forward Relocation Request and is intended for ROHC channel setup. Include a previously negotiated Header Compression Configuration that contains the necessary information.
- ROHC Robust Header Compression
- SIPTO Selected IP Traffic Offload
- the RAN Cause indicates the S1AP Cause received from the source eNB.
- the source MME When the target cell is a CSG or hybrid cell, the source MME includes the CSG ID in the Forward Relocation Request message. If the target cell is a hybrid cell, or if one or more emergency bearers exist and the target cell is a CSG cell, a CSG Membership Indication indicating whether the UE is a CSG member is included in the Forward Relocation Request message.
- the Direct Forwarding Flag indicates whether direct forwarding is applied or whether indirect forwarding will be set up by the source side.
- the target MME determines the maximum APN restriction based on the APN Restriction of each bearer context in the Forward Relocation Request message. The target MME then stores the new maximum APN limit value.
- IMSI may be included in the MME UE context in the Forward Relocation Request message.
- the IMSI is marked as not authenticated. Also in this case, only security parameters are included.
- the target MME verifies that the source S-GW can continue to service the UE. If still unable to service, the target MME selects a new S-GW. If the MME has not been relocated, the source MME determines the S-GW relocation.
- the target S-GW is the same as the source S-GW.
- the target MME sends a Create Session Request message to the target S-GW for each PDN connection.
- the Create Session Request message is sent to the P-GW for uplink traffic with a P-GW address and TEID (for GTP-based S5 / S8) or GRE key (for PMIP-based S5 / S8), bearer context (s), It may include a Serving Network and a UE Time Zone.
- the target S-GW allocates an S-GW address and TEID for uplink traffic on the S1_U reference point (one TEID per bearer).
- the target S-GW sends a Create Session Response message to the target MME.
- the Create Session Response message may include an S-GW address and uplink TEID (s) for the user plane.
- the target MME sends a Handover Request message to the target eNB.
- the Handover Request message may include EPS Bearers to Setup, AMBR, S1AP cause, Source to Target transparent container, CSG ID, CSG Membership Indication, and Handover Restriction List.
- This message creates a UE context that contains information about the bearer and the security context within the target eNB.
- Bearers to Setup includes S-GW address, uplink TEID, and EPS bearer QoS for the user plane. If the direct forwarding flag indicates that direct forwarding is not available, and the target MME knows that there is no indirect data forwarding connection between the source and the target, Bearers to Setup will say "Data forwarding not possible" for each EPS bearer. Contains instructions.
- the Handover Restriction List is sent if it is available in the target MME.
- S1AP Cause indicates the RAN Cause received from the source MME.
- the target MME When provided by the source MME in a Forward Relocation Request message, the target MME includes a CSG ID and a CSG Membership Indication.
- the target eNB sends a Handover Request Acknowledge message to the target MME.
- the Handover Request Acknowledge message may include an EPS Bearer Setup list, an EPS Bearer failed to setup list, and a Target to Source transparent container. Can be.
- the EPS Bearer Setup list contains a list of addresses and TEIDs assigned at the target eNB for downlink traffic on the S1-U reference point (one TEID per bearer) and, if necessary, an address for receiving the forwarded data and Contains a TEID. If the UE AMBR is changed (eg, all EPS bearers associated with the same APN are rejected within the target eNB), the MME recalculates the new UE-AMBR and signals the modified eNB AMBR value to the target eNB.
- the target MME rejects the handover.
- the target eNB verifies the CSG ID provided by the target MME, and rejects the handover for an appropriate cause if it does not match the CSG ID for the target cell. If the target eNB is in hybrid mode, the target eNB may use CSG Membership Indication to perform the operation of distinguishing the CSG member from the CSG non-member. If the target cell is a CSG cell and the CSG Membership Indication is "non member", the target eNB only accepts an emergency bearer.
- the target MME sets up the forwarding parameters by sending a Create Indirect Data Forwarding Tunnel Request message to the S-GW.
- the Create Indirect Data Forwarding Tunnel Request message may include a target eNB address and TEID for delivery.
- the S-GW sends a Create Indirect Data Forwarding Tunnel Response message to the target MME.
- the Create Indirect Data Forwarding Tunnel Response message may include a target S-GW address and TEID for forwarding. If the S-GW is not relocated, indirect delivery can be set up in step 8 below.
- Indirect delivery may be performed via an S-GW different from the S-GW used as the anchor point of the UE.
- the target MME sends a Forward Relocation Response message to the source MME.
- the forward relocation response message may include a cause, a target to source transparent container, a serving GW change indication, an EPS bearer setup list, addresses, and a TEID.
- this message includes a (source or target) S-GW address and TEID for indirect delivery.
- the Serving GW change indication indicates that a new S-GW has been selected.
- the source MME sends a Create Indirect Data Forwarding Tunnel Request message to the S-GW.
- the Create Indirect Data Forwarding Tunnel Request message contains the address and TEID for the forwarding. If the S-GW is relocated, it includes the tunnel identifier for the target S-GW.
- the S-GW responds to the source MME with a Create Indirect Data Forwarding Tunnel Response message.
- the Create Indirect Data Forwarding Tunnel Response message includes the S-GW address and TEID for forwarding.
- Indirect delivery may be performed via an S-GW different from the S-GW used as the anchor point of the UE.
- the source MME sends a handover command message to the source eNB.
- the Handover Command message may include a Target to Source transparent container, Bearers subject to forwarding, and Bearers to Release.
- Bearers subject to forwarding contains a list of addresses and TEIDs assigned for forwarding.
- Bearers to Release contains a list of bearers to be released.
- the Handover Command is configured using a Target to Source transparent container and transmitted to the UE. Upon receiving this message, the UE removes the EPS bearer for which no EPS radio bearer has been received in the target cell.
- the source eNB sends an eNodeB Status Transfer (eNodeB Status Transfer) message to the target eNB via the MME to convey the PDCP and Hyper Frame Number (HFN) status of the E-RAB to which the PDCP status reservation is applied. . If none of the UE's E-RABs are treated as PDCP status reservations, the source eNB may omit sending this message.
- eNodeB Status Transfer eNodeB Status Transfer
- HFN Hyper Frame Number
- the source MME sends this information to the target MME via a Forward Access Context Notification message.
- the source MME or target MME (when MME is relocated) sends this information to the target eNB via an MME Status Transfer message.
- the source eNB starts forwarding downlink data for the bearer that is the subject of data delivery from the source eNB to the target eNB. This may be direct delivery (step 11a) or indirect delivery 11b.
- the UE After the UE successfully synchronizes to the target cell, the UE sends a Handover Confirm message to the target eNB.
- the downlink packet delivered from the source eNB may be transmitted to the UE.
- the uplink packet may be sent from the UE, which is forwarded to the target S-GW and forwarded to the P-GW.
- the target eNB sends a Handover Notify message to the target MME.
- the Handover Notify message may include an E-UTRAN Cell Global Identifier (TAI + ECGI) and a Local Home Network ID.
- the target eNB includes the Local Home Network ID of the target cell in the Handover Notify message.
- the target MME sends a Forward Relocation Complete Notification message to the source MME.
- the source MME sends a Forward Relocation Complete Acknowledge message to the target MME.
- a timer in the source MME is started to monitor when resources in the source eNB are released (also when resources in the source S-GW are released when the source S-GW is relocated).
- the target MME When the Forward Relocation Complete Acknowledge message is received, if the target MME allocates S-GW resources for indirect delivery, the target MME starts a timer.
- the MME releases the bearers by sending a Delete Bearer Command message to the S-GW or by sending an appropriate message to the SCEF.
- the MME sends a Bearer Modify Request message to the target S-GW for each PDN connection, including the PDN connection that needs to be released.
- the Modify Bearer Request message indicates the eNB address and TEID allocated at the target eNodeB for downlink traffic on S1 U for the accepted EPS bearers for the downlink traffic on S1-U for the accepted EPS bearer.
- ISR idle state signaling reduction
- ISR Activated idle state signaling reduction
- the MME may also request a User Location Information (IE) Information Element (IE). Different in comparison) and / or User CSG Information IE is included in this message.
- IE User Location Information
- IE User CSG Information
- the MME includes the UE Time Zone IE in this message. If the S-GW has not been redeployed and the serving network has changed, or if the MME has not received previous serving network information from the previous MME, the MME includes a Serving Network IE in this message. If neither the MME nor the S-GW has changed, the MME maintains the ISR if the ISR was activated prior to this procedure. The UE is informed about the ISR status within the TAU procedure. If the S-GW supports the Modify Access Bearers Request procedure, and the S-GW does not need to send signaling to the P-GW, the MME requests a Modify Access Bearer (Modify Access) per UE to optimize the signaling.
- Modify Access Modify Access
- the Modify Access Bearers Request message is an eNodeB address and TEID allocated at the target eNodeB for downlink traffic on S1 U for the accepted EPS for the accepted EPS bearer. bearers), and ISR Activated.
- the MME releases an unaccepted dedicated bearer by triggering a bearer release procedure. If the S-GW receives a downlink packet for a bearer that has not been accepted, the S-GW drops the downlink packet and does not transmit a downlink data notification message to the MME.
- the MME processes in the same way as when all bearers of the PDN connection have not been accepted.
- the MME releases these PDN connections by triggering an MME requested PDN disconnection procedure.
- the S-GW deletes the ISR resource by sending a Delete Bearer Request (CN) message to another Core Network (CN) node where the bearer resource is reserved on the S-GW. .
- CN Delete Bearer Request
- the target S-GW allocates an address and TEID (one for each bearer) for downlink traffic from the P-GW.
- the S-GW transmits a bearer modification request message to the P-GW for each PDN connection.
- the Modify Bearer Request message may include an S-GW address for the user plane and a TEID, Serving Network, and PDN Charging Pause Support Indication.
- the S-GW if present in step 15 above, includes a User Location Information IE and / or a UE Time Zone IE and / or a User CSG Information IE.
- the S-GW also includes a Serving Network IE if it was present in step 4 or 15 above.
- the S-GW assigns a downlink TEID on S5 / S8 even for an unaccepted bearer.
- the P-GW updates the context filter and sends a Modify Bearer Response message to the target S-GW.
- the Modify Bearer Response message may include a charging identifier (Charging Id), a Mobile Station International Subscriber Directory Number (MSSIS), and a PDN Pause Enabled Indication. MSISDN is included if the P-GW was storing in the UE context.
- the P-GW starts transmitting the downlink packet to the target S-GW using the newly received address and TEID. These downlink packets use a new downlink path to the target eNB via the target S-GW.
- the S-GW is associated with the associated P-GW. Inform the P-GW of this information by sending a Bearer Modify Request message to the P-GW.
- the Modify Bearer Request message may include User Location Information IE, UE Time Zone IE, User CSG Information IE, and Serving Network IE.
- a Bearer Modify Response (Modify Bearer Response) message is sent to the S-GW.
- the S-GW has not been relocated and has not received the User Location Information IE and the UE Time Zone IE and the User CSG Information IE and Serving Network IE from the MME in step 15 above, no message is sent at this step.
- the downlink packet from the S-GW is immediately sent to the target eNB.
- the P-GW sends one or more "end marker” packets on the previous path immediately after the path is switched to assist in the reordering function at the target eNB.
- the source S-GW delivers an "end marker” packet to the source eNB.
- the S-GW sends a Modify Bearer Response message to the MME in response to the Modify Bearer Request message.
- the Modify Bearer Response message may include an S-GW address and TEID for uplink traffic.
- the S-GW may transmit a Modify Access Bearers Response message in response to the Modify Access Bearers Request message.
- the Modify Access Bearers Response message may include an S-GW address and TEID for uplink traffic.
- the S-GW If the S-GW is unable to service the MME request in the Modify Access Bearers Request message, without S5 / S8 signaling other than discontinuing charging in the P-GW or without Gxc signaling when PMIP is used over the S5 / S8 interface, the S-GW Responds to the MME with an indication that the modification is not limited to the S1-U bearer.
- the MME repeats the request using a Modify Bearer Request message for each PDN connection.
- the S-GW sends one or more "end marker" packets on the previous path immediately after the path is switched to assist in the rearrangement function within the target eNB.
- the UE initiates a TAU procedure.
- EPS bearer status information is included in the TAU Request message.
- the MME indicates the EPS bearer status to the UE in a TAU Accept message, and the UE releases the bearer that was not delivered locally.
- the target MME knows that it is a handover procedure performed for the UE when receiving the bearer context (s) by handover messages, so the target MME performs only a part of the TAU procedure. In particular, the context transfer procedure between the source MME and the target MME is excluded. In this case, the target MME sets a header compression context status for each EPS bearer in the TAU Accept message based on the information obtained in step 3 above.
- the source MME sends a UE context release command (UE Context Release Command) message to the source eNB.
- the source eNB releases resources associated with the UE and responds with a UE context release complete message.
- the source MME receives the S-GW change indication in the Forward Relocation Response message, the source MME sends a Delete Session Request message to the source S-GW to send the EPS bearer. Delete the resource.
- the Delete Session Request message may include a Cause, a Linked EPS Bearer Identity (LBI), and an Operation Indication.
- LBI Linked EPS Bearer Identity
- the operation Indication flag is not set indicating that the source S-GW should not initiate the delete procedure for the P-GW.
- the S-GW acknowledges with a Delete Session Response message. If the ISR was activated prior to this procedure, the cause instructs the S-GW to delete bearer resources on another CN node by sending a Bearer Delete Request message to the CN node.
- the indirect data forwarding tunnel deletion request (Delete) is used to release the temporary resources used for the indirect forwarding that the source MME had previously allocated in step 8. Send Indirect Data Forwarding Tunnel Request) message to S-GW.
- the target MME may release the temporary resources used for indirect delivery previously allocated in step 6.
- the Delete Indirect Data Forwarding Tunnel Request message is transmitted to the target S-GW.
- the MME may request the MME to release the S1. Accordingly, the MME instructs the S-GW to terminate the S1-U and release the RRC connection, thereby informing the UE and the core. You can request to disconnect from the network.
- the S1 release procedure is used to release the logical S1-AP signaling connection (via S1-MME) and all S1 bearer (s) (in S1-U) to the UE.
- This procedure releases the S11-U bearer (except for buffering in the MME) in CP CIoT EPS Optimization instead of the S1-U bearer.
- This procedure changes the UE from ECM-CONNNECTED to ECM-IDLE in both the UE and the MME, and all UE related context information is deleted in the eNB.
- the S1 release procedure is performed by the eNB and / or by the MME.
- the S1 release procedure is performed locally by the eNB or by the MME, and each node performs the operation locally without direct signaling between the eNB and the MME.
- the S1 release procedure is initiated by one of the following:
- RRC Signaling Integrity Check Failure Release due to UE generated signaling connection release, CS Fallback triggered, Inter-RAT Redirection, etc .; or
- FIG. 8 is a diagram illustrating an S1 release procedure in a wireless communication system to which the present invention can be applied.
- the eNB may release the signaling connection of the UE before or concurrently with requesting the SME context release to the MME. For example, the eNB may initiate RRC Connection Release for CS fallback by redirection.
- the eNB If the eNB detects that it needs to release the signaling connection of the UE and all radio bearers for the UE, the eNB sends an S1 UE Context Release Request message (including cause) to the MME.
- the cause indicates the reason for the release (e.g. O & M intervention, unspecified failure, user inactivity, repeated integrity checking failure, or release due to UE generated signaling connection release).
- the first step is performed only in the S1 release procedure initiated by the eNB, and the S1 release procedure initiated by the MME is performed from step 2.
- steps 2 and 3 are skipped.
- the MME requests release of an access bearer from the S-GW to request release of all S1-U bearer (s) for the UE or S11-U in CP CIoT EPS Optimization if it is buffering in the S-GW.
- Request) message (Abnormal Release of Radio Link Indication) is transmitted. This message is triggered by the S1 Release Request message from the eNB or by another MME event. If the S1 release procedure is due to abnormal release of the radio link, an abnormal release instruction of the radio link is included.
- the S-GW When the S-GW receives the Release Access Bearers Request message, the S-GW releases all eNB related information (address and TEID (s)) for the UE or MME TEID (s) information in CP CIoT EPS Optimization. And responds to the MME with a Release Access Bearers Release message. Other elements of the S-GW context of the UE are not affected.
- the S-GW maintains the S1-U configuration that the S-GW assigned to the bearer (s) of the UE.
- the S GW starts to buffer the received downlink packet for the UE, and initiates a network triggered service request procedure.
- Downlink data in CP CIoT EPS Optimization triggers mobile terminated data transport in NAS signaling.
- the MME releases S1 by sending an S1 UE Context Release Command message (including Cause) to the eNB.
- the eNB sends an RRC Connection Release message to the UE in an acknowledgment mode (AM). If this message is acknowledged by the UE, the eNB deletes the context of the UE.
- AM acknowledgment mode
- the eNB confirms S1 release by sending an S1 UE Context Release Complete message (including ECGI, TAI) to the MME.
- S1 UE Context Release Complete message including ECGI, TAI
- the signaling connection between the MME and the eNB for the UE is released. This step is performed immediately after step 4 above (for example, it should not be delayed in a situation where the UE has not acknowledged RRC disconnection).
- the eNB may include information on Recommended Cells And eNodeBs For Paging for paging in the S1 UE Context Release Complete message. If available, the MME stores this information for use when paging the UE.
- the eNB if available, includes information for Enhanced Coverage in the S1 UE Context Release Complete message.
- the MME deletes any eNB related information (ie eNB address used for S1-MME, MME UE S1 AP ID, eNB UE S1AP ID) from the MME context of the UE, but includes S1-G configuration information of the S-GW. Remaining information (address and TEID (s)) of the MME context of the UE is maintained. All non Guaranteed Bit Rate (non-GBR) EPS bearers established for the UE are reserved in the MME and S-GW.
- eNB related information ie eNB address used for S1-MME, MME UE S1 AP ID, eNB UE S1AP ID
- Remaining information address and TEID (s)
- All non Guaranteed Bit Rate (non-GBR) EPS bearers established for the UE are reserved in the MME and S-GW.
- the MME reserves a GBR bearer. If the cause of the S1 release is due to CS Fallback, the S1 release may be, for example, Radio Connection With UE Lost, S1 signaling connection lost, eNB failure (eNodeB). due to failure, etc., the MME triggers an MME initiated dedicated bearer deactivation procedure for the GBR bearer (s) of the UE after the S1 release procedure is completed.
- 5G system 5G system: A system consisting of a 5G access network (AN), a 5G core network, and a user equipment (UE)
- AN 5G access network
- 5G core network 5G core network
- UE user equipment
- 5G Access Network 5G Access Network
- AN New Generation Radio Access Network
- NG-RAN New Generation Radio Access Network
- 3GPP AN An access network consisting of a non-5G Access Network.
- New Generation Radio Access Network (NG-RAN) (or RAN): A radio access network that has a common feature of being connected to 5GC and supports one or more of the following options:
- 5G Core Network A core network connected to a 5G access network.
- NF Network Function
- NF service A function exposed by the NF through a service-based interface and consumed by other authorized NF (s).
- Network Slice Logical network providing specific network capability (s) and network feature (s).
- Network Slice instance A set of NF instance (s) and required resource (s) (e.g. compute, storage and networking resources) forming a network slice to be deployed.
- Protocol Data Unit (PDU) Connectivity Service PDU: A service that provides for the exchange of PDU (s) between a UE and a data network.
- PDU Connectivity Service A service that provides the exchange of PDU (s) between the UE and the data network.
- PDU Session An association between a UE and a data network providing a PDU Connectivity Service.
- the association type may be Internet Protocol (IP), Ethernet, or unstructured.
- the 5G system is an advanced technology from the 4th generation LTE mobile communication technology, and is a new radio access technology (RAT) and long-range LTE (Long) through the evolution or clean-state structure of the existing mobile communication network structure.
- Term Evolution (Extended LTE) technology supports extended LTE (eLTE), non-3GPP (eg, Wireless Local Area Network (WLAN)) access, and the like.
- the 5G system architecture is defined to support data connectivity and services so that deployments can use technologies such as Network Function Virtualization and Software Defined Networking.
- the 5G system architecture utilizes service-based interactions between Control Plane (CP) Network Functions (NF).
- CP Control Plane
- NF Network Functions
- each NF can interact directly with other NFs.
- the architecture does not preclude the use of intermediate functions to route control plane messages
- the architecture is defined as a converged core network with a common AN-CN interface that incorporates different access types (eg 3GPP access and non-3GPP access).
- UP functions can be deployed in close proximity to the access network to support low latency services and access to the local data network
- the 5G system is defined as service-based, and the interaction between network functions (NF) in the architecture for the 5G system can be expressed in two ways as follows.
- NF network functions
- Service-based representation (FIG. 9): Network functions (eg AMF) in the Control Plane (CP) allow other authorized network functions to access their services. This expression also includes a point-to-point reference point if necessary.
- AMF Network functions
- CP Control Plane
- FIG. 10 Reference point representation: NF services in NFs described by a point-to-point reference point (eg N11) between two NFs (eg AMF and SMF) Indicates the interaction between them.
- a point-to-point reference point eg N11
- two NFs eg AMF and SMF
- FIG 9 illustrates a wireless communication system architecture to which the present invention may be applied.
- the service-based interface illustrated in FIG. 9 represents a set of services provided / exposed by a given NF. Service-based interfaces are used within the control plane.
- the 5G system architecture may include various components (ie, a network function (NF)), and an authentication server function (AUSF) corresponding to some of them in FIG. 9.
- Function Access and Mobility Management Function (AMF), Session Management Function (SMF), Policy Control Function (PCF), Application Function (AF) ), Unified Data Management (UDM), Data Network (DN), User Plane Function (UPF), Network Exposure Function (NEF), NF Storage Function (NRF) NF Repository Function), (Wireless) Access Network ((R) AN: (Radio) Access Network), and User Equipment (UE).
- AMF Access and Mobility Management Function
- SMF Session Management Function
- PCF Policy Control Function
- AF Application Function
- UDM Unified Data Management
- DN Data Network
- UPF User Plane Function
- NEF Network Exposure Function
- NRF NF Storage Function
- UE Wireless
- Each NF supports the following functions.
- AUSF stores data for authentication of the UE.
- AMF provides a function for UE-level access and mobility management and can be connected to one AMF basically per UE.
- AMF includes CN inter-node signaling for mobility between 3GPP access networks, termination of Radio Access Network (RAN) CP interface (ie, N2 interface), termination of NAS signaling (N1), NAS signaling security (NAS ciphering and integrity protection), AS security control, registration management (registration area management), connection management, idle mode UE reachability (control of paging retransmission and Mobility management controls (subscription and policy), intra-system mobility and inter-system mobility support, network slicing support, SMF selection, Lawful Intercept (AMF events and LI systems) Interface), providing delivery of session management (SM) messages between the UE and the SMF, transparent proxy for routing SM messages, access Access Authentication, access authorization including roaming authorization checks, delivery of SMS messages between UE and SMSF, Security Anchor Function (SEA), Security Context Management (SCM), etc. Support the function.
- RAN Radio Access Network
- N1 termination of NAS signaling
- NAS ciphering and integrity protection NAS signaling and integrity protection
- AS security control registration
- AMF Access Management Function
- the DN means, for example, an operator service, an Internet connection, or a third party service.
- the DN transmits a downlink protocol data unit (PDU) to the UPF or receives a PDU transmitted from the UE from the UPF.
- PDU downlink protocol data unit
- PCF receives the packet flow information from the application server and provides the function to determine the policy of mobility management, session management, etc.
- PCF supports a unified policy framework for controlling network behavior, providing policy rules for CP function (s) (eg, AMF, SMF, etc.) to enforce policy rules, and user data store (UDR).
- policy rules for CP function (s) (eg, AMF, SMF, etc.) to enforce policy rules, and user data store (UDR).
- UDR user data store
- the SMF provides a session management function, and when the UE has a plurality of sessions, it can be managed by different SMFs for each session.
- the SMF is responsible for session management (eg, establishing, modifying, and tearing down sessions, including maintaining tunnels between UPF and AN nodes), assigning and managing UE IP addresses (optionally including authentication), and selecting UP functionality. And control, setting traffic steering to route traffic to the appropriate destination in the UPF, terminating the interface towards policy control functions, enforcing the control portion of policy and QoS, and lawful intercept ( For SM events and interfaces to the LI system), termination of the SM portion of NAS messages, downlink data notification, initiator of AN specific SM information (delivered to the AN via N2 via AMF), It supports functions such as determining the SSC mode of the session and roaming functions.
- session management eg, establishing, modifying, and tearing down sessions, including maintaining tunnels between UPF and AN nodes
- assigning and managing UE IP addresses optionally including authentication
- selecting UP functionality e.g., setting traffic steering to route traffic to the appropriate destination in the UPF, terminating the interface towards policy
- Some or all functions of an SMF may be supported within a single instance of one SMF.
- UDM stores user subscription data, policy data, etc.
- the UDM includes two parts: an application front end (FE) and a user data repository (UDR).
- FE application front end
- UDR user data repository
- the FE includes a UDM FE responsible for location management, subscription management, credential processing, and the PCF responsible for policy control.
- the UDR stores the data required for the functions provided by the UDM-FE and the policy profile required by the PCF.
- Data stored in the UDR includes user subscription data and policy data, including subscription identifiers, security credentials, access and mobility related subscription data, and session related subscription data.
- UDM-FE accesses subscription information stored in the UDR and supports features such as Authentication Credential Processing, User Identification Handling, Access Authentication, Registration / Mobility Management, Subscription Management, and SMS Management. do.
- the UPF delivers the downlink PDU received from the DN to the UE via the (R) AN and the uplink PDU received from the UE via the (R) AN to the DN.
- the UPF includes anchor points for intra / inter RAT mobility, external PDU session points of the interconnect to the Data Network, packet routing and forwarding, packet inspection and User plane part of policy rule enforcement, lawful intercept, traffic usage reporting, uplink classifier and multi-homed PDU sessions to support routing of traffic flow to data network.
- Branching point to support, QoS handling for user plane eg packet filtering, gating, uplink / downlink rate enforcement
- uplink traffic verification service data flow (SDF) : SDF mapping between service data flow and QoS flow)
- uplink and downlink transport level packet marking downlink packet buffering and downlink data notification Functions such as triggering function are supported.
- Some or all of the functions of the UPF may be supported within a single instance of one UPF.
- AF interacts with the 3GPP core network to provide services (e.g. application impact on traffic routing, access to Network Capability Exposure, and interaction with policy frameworks for policy control). It works.
- NEF is a service provided for 3rd party, internal exposure / re-exposure, application function, edge computing provided by 3GPP network functions. Provide a means for safely exposing the fields and capabilities.
- the NEF receives information (based on the exposed capability (s) of the other network function (s)) from the other network function (s).
- the NEF may store the received information as structured data using a standardized interface to the data storage network function. The stored information is re-exposed to other network function (s) and application function (s) by the NEF and may be used for other purposes such as analysis.
- NRF supports service discovery. Receives an NF discovery request from an NF instance and provides the NF instance with information about the found NF instance. It also maintains the available NF instances and the services they support.
- -(R) AN is a new radio that supports both evolved E-UTRA (e-UTRA) and New Radio (NR) (e.g. gNB), an evolution of the 4G radio access technology. Collectively, the access network.
- e-UTRA evolved E-UTRA
- NR New Radio
- the gNB is capable of dynamic resource allocation to the UE in radio resource management functions (ie, radio bearer control, radio admission control, connection mobility control, uplink / downlink). Dynamic allocation of resources (i.e., scheduling), IP (Internet Protocol) header compression, encryption and integrity protection of user data streams, and routing from the information provided to the UE to the AMF is not determined.
- radio resource management functions ie, radio bearer control, radio admission control, connection mobility control, uplink / downlink.
- Dynamic allocation of resources i.e., scheduling
- IP (Internet Protocol) header compression i.e., IP (Internet Protocol) header compression
- encryption and integrity protection of user data streams i.e., encryption and integrity protection of user data streams
- AMF AMF upon attachment of the UE
- routing user plane data to the UPF s
- routing control plane information to the AMF
- connection setup and teardown scheduling and transmission of paging messages
- AMF system Scheduling and transmission of broadcast information
- measurement and measurement reporting settings for mobility and scheduling and Transport level packet marking on the uplink
- session management support for network slicing, QoS flow management and mapping to data radio bearers, support for UEs in inactive mode
- NAS It supports message distribution, NAS node selection, radio access network sharing, dual connectivity, and tight interworking between NR and E-UTRA.
- the UE means user equipment.
- the user device may be referred to in terms of terminal, mobile equipment (ME), mobile station (MS), and the like.
- the user device may be a portable device such as a laptop, a mobile phone, a personal digital assistant (PDA), a smartphone, a multimedia device, or the like, or may be a non-portable device such as a personal computer (PC) or a vehicle-mounted device.
- a portable device such as a laptop, a mobile phone, a personal digital assistant (PDA), a smartphone, a multimedia device, or the like
- PC personal computer
- Unstructured Data Storage Network Function (UDSF) and the Structured Data Storage Network Function (SDSF) are not shown in FIG. 9, all NFs shown in FIG. 9 are required. Therefore, it can interact with UDSF and SDSF.
- UDSF Unstructured Data Storage Network Function
- SDSF Structured Data Storage Network Function
- SDSF is an optional feature to support the storage and retrieval of information as structured data by any NEF.
- UDSF is an optional feature to support the storage and retrieval of information as unstructured data by any NF.
- the following illustrates a service-based interface included in the 5G system architecture represented as shown in FIG.
- Nnef service-based interface exposed by NEF
- Npcf service-based interface exposed by PCF
- Nnrf service-based interface exposed by NRF
- Nausf service-based interface exposed by AUSF
- An NF service is a type of ability exposed by a NF (ie, an NF service provider) to another NF (ie, an NF service consumer) via a service-based interface.
- the NF may expose one or more NF service (s). The following criteria apply to defining an NF service:
- NF services are derived from an information flow to describe end-to-end functionality.
- Control plane NF_B i.e., NF service provider
- NF_A i.e. Request to provide
- NF_B responds with NF service results based on the information provided by NF_A in the request.
- the NF_B may in turn consume NF services from other NF (s).
- NF NF
- the request-response mechanism communication is performed one-to-one between two NFs (ie, consumer and supplier).
- Control plane NF_A subscribes to the NF service provided by another control plane NF_B (ie, NF service provider). Multiple control plane NF (s) may subscribe to the same control plane NF service. NF_B notifies the NF (s) of interest subscribed to this NF service of the results of this NF service.
- the subscription request from the consumer may include a notification request for notification triggered through periodic updates or certain events (eg, change in requested information, reaching a certain threshold, etc.). This mechanism also includes the case where the NF (s) (eg NF_B) implicitly subscribed to a particular notification without an explicit subscription request (eg, due to a successful registration procedure).
- FIG. 10 illustrates a wireless communication system architecture to which the present invention may be applied.
- a conceptual link connecting NFs in a 5G system is defined as a reference point.
- the following illustrates a reference point included in the 5G system architecture represented as shown in FIG.
- N1 (or NG1): reference point between UE and AMF
- N2 (or NG2): a reference point between (R) AN and AMF
- N3 (or NG3): a reference point between (R) AN and UPF
- N4 (or NG4): reference point between SMF and UPF
- N5 (or NG5): reference point between PCF and AF
- N6 (or NG6): a reference point between the UPF and the data network
- N7 (or NG7): reference point between SMF and PCF
- N24 (or NG24): a reference point between a PCF in a visited network and a PCF in a home network
- N8 (or NG8): reference point between UDM and AMF
- N9 (or NG9): reference point between two core UPFs
- N10 (or NG10): reference point between UDM and SMF
- N11 (or NG11): a reference point between AMF and SMF
- N12 (or NG12): reference point between AMF and AUSF
- N13 (or NG13): a reference point between UDM and Authentication Server function (AUSF)
- N14 (or NG14): reference point between two AMFs
- N15 (or NG15): reference point between PCF and AMF in non-roaming scenario, reference point between PCF and AMF in visited network in roaming scenario
- N16 (or NG16): a reference point between two SMFs (in a roaming scenario, a reference point between an SMF in a visited network and an SMF in a home network)
- N17 (or NG17): reference point between AMF and EIR
- N18 (or NG18): reference point between any NF and UDSF
- N19 (or NG19): reference point between NEF and SDSF
- FIG. 10 illustrates a reference model for the case where the UE accesses one DN using one PDU session for convenience of description, but is not limited thereto.
- FIG. 11 illustrates a wireless communication system architecture to which the present invention may be applied.
- non-roaming for a UE concurrently accessing two (ie, local and central) data networks (DNs) using multiple PDU sessions using a reference point representation.
- DNs local and central data networks
- reference point representation Represents a 5G system architecture.
- each SMF may have the ability to control both the local UPF and the central UPF in the PDU session.
- FIG. 12 illustrates a wireless communication system architecture to which the present invention may be applied.
- FIG. 13 illustrates a wireless communication system architecture to which the present invention may be applied.
- FIG. 13 shows a roaming 5G system architecture for an LBO scenario with a service-based interface within the control plane.
- FIG. 14 illustrates a wireless communication system architecture to which the present invention may be applied.
- FIG. 14 illustrates a roaming 5G system architecture for a home routed scenario with a service-based interface in the control plane.
- FIG. 15 illustrates a roaming 5G system architecture for an LBO scenario using reference point expression.
- FIG. 16 illustrates a wireless communication system architecture to which the present invention may be applied.
- FIG. 16 illustrates a roaming 5G system architecture for a home routed scenario using reference point representation.
- FIG. 17 illustrates an NG-RAN architecture to which the present invention may be applied.
- NG-RAN New Generation Radio Access Network
- gNB NR NodeB
- eNodeB eNodeB
- the gNB (s) and eNB (s) are also connected to the 5GC using the NG interface, and more specifically to the AMF using the NG-C interface (ie, N2 reference point), which is the control plane interface between the NG-RAN and 5GC. It is connected to the UPF using the NG-U interface (ie, N3 reference point), which is a user plane interface between the NG-RAN and 5GC.
- NG-C interface ie, N2 reference point
- N3 reference point is a user plane interface between the NG-RAN and 5GC.
- FIG. 18 is a diagram illustrating a radio protocol stack in a wireless communication system to which the present invention can be applied.
- FIG. 18 (a) illustrates the air interface user plane protocol stack between the UE and the gNB
- FIG. 18 (b) illustrates the air interface control plane protocol stack between the UE and the gNB.
- the control plane refers to a path through which control messages used by the UE and the network to manage a call are transmitted.
- the user plane refers to a path through which data generated at an application layer, for example, voice data or Internet packet data, is transmitted.
- a user plane protocol stack may be divided into a first layer (Layer 1) (that is, a physical layer (PHY) layer) and a second layer (Layer 2).
- Layer 1 that is, a physical layer (PHY) layer
- Layer 2 a second layer
- the control plane protocol stack includes a first layer (ie, PHY layer), a second layer, and a third layer (ie, radio resource control radio resource control (RRC) layer). It may be divided into a non-access stratum (NAS) layer.
- a first layer ie, PHY layer
- a second layer ie, a third layer
- RRC radio resource control radio resource control
- NAS non-access stratum
- the second layer includes a medium access control (MAC) sublayer, a radio link control (RLC) sublayer, a packet data convergence protocol (PDC) sublayer, a service data adaptation protocol ( SDAP: Service Data Adaptation Protocol (SDAP) sublayer (in case of user plane).
- MAC medium access control
- RLC radio link control
- PDC packet data convergence protocol
- SDAP Service Data Adaptation Protocol
- Radio bearers are classified into two groups: a data radio bearer (DRB) for user plane data and a signaling radio bearer (SRB) for control plane data.
- DRB data radio bearer
- SRB signaling radio bearer
- the first layer provides an information transfer service to a higher layer by using a physical channel.
- the physical layer is connected to a MAC sublayer located at a higher level through a transport channel, and data is transmitted between the MAC sublayer and the PHY layer through the transport channel.
- Transport channels are classified according to how and with what characteristics data is transmitted over the air interface.
- data is transmitted between different physical layers through a physical channel between a PHY layer of a transmitter and a PHY layer of a receiver.
- the MAC sublayer includes a mapping between a logical channel and a transport channel; Multiplexing / demultiplexing of MAC Service Data Units (SDUs) belonging to one or different logical channels to / from a transport block (TB) delivered to / from the PHY layer via the transport channel; Reporting scheduling information; Error correction through hybrid automatic repeat request (HARQ); Priority handling between UEs using dynamic scheduling; Priority handling between logical channels of one UE using logical channel priority; Padding is performed.
- SDUs Service Data Units
- TB transport block
- HARQ hybrid automatic repeat request
- Each logical channel type defines what type of information is conveyed.
- Logical channels are classified into two groups: Control Channel and Traffic Channel.
- control channel is used to convey only control plane information and is as follows.
- BCCH Broadcast Control Channel
- PCCH Paging Control Channel
- CCCH Common Control Channel
- DCCH Dedicated Control Channel
- the traffic channel is used to use only user plane information:
- DTCH Dedicated Traffic Channel
- connection between a logical channel and a transport channel is as follows.
- BCCH may be mapped to BCH.
- BCCH may be mapped to the DL-SCH.
- PCCH may be mapped to PCH.
- CCCH may be mapped to the DL-SCH.
- DCCH may be mapped to DL-SCH.
- DTCH may be mapped to the DL-SCH.
- CCCH may be mapped to UL-SCH.
- DCCH may be mapped to UL-SCH.
- DTCH may be mapped to UL-SCH.
- the RLC sublayer supports three transmission modes: transparent mode (TM), unacknowledged mode (UM), and acknowledgment mode (AM).
- TM transparent mode
- UM unacknowledged mode
- AM acknowledgment mode
- the RLC configuration may be applied for each logical channel.
- TM or AM mode is used for SRB, while UM or AM mode is used for DRB.
- the RLC sublayer is passed in upper layer PDU; Sequence numbering independent of PDCP; Error correction through automatic repeat request (ARQ); Segmentation and re-segmentation; Reassembly of SDUs; RLC SDU discard; RLC re-establishment is performed.
- Sequence numbering independent of PDCP Error correction through automatic repeat request (ARQ); Segmentation and re-segmentation; Reassembly of SDUs; RLC SDU discard; RLC re-establishment is performed.
- PDCP sublayer for user plane includes sequence numbering; Header compression and decompression (only for Robust Header Compression (RoHC)); User data delivery; Reordering and duplicate detection (if delivery to a layer higher than PDCP is required); PDCP PDU routing (for split bearer); Retransmission of PDCP SDUs; Ciphering and deciphering; Discarding PDCP SDUs; PDCP re-establishment and data recovery for RLC AM; Perform replication of PDCP PDUs.
- Header compression and decompression only for Robust Header Compression (RoHC)
- User data delivery Reordering and duplicate detection (if delivery to a layer higher than PDCP is required)
- PDCP PDU routing for split bearer
- Retransmission of PDCP SDUs Ciphering and deciphering
- Discarding PDCP SDUs PDCP re-establishment and data recovery for RLC AM
- Perform replication of PDCP PDUs
- the PDCP sublayer for the control plane additionally includes sequence numbering; Ciphering, decryption, and integrity protection; Control plane data transfer; Replication detection; Perform replication of PDCP PDUs.
- Replication in PDCP involves sending the same PDCP PDU (s) twice. One is delivered to the original RLC entity, the second to an additional RLC entity. At this time, the original PDCP PDU and the corresponding copy are not transmitted in the same transport block.
- Two different logical channels may belong to the same MAC entity (for CA) or may belong to different MAC entities (for DC). In the former case, logical channel mapping restrictions are used to ensure that the original PDCP PDU and its copy are not transmitted in the same transport block.
- the SDAP sublayer performs i) mapping between QoS flows and data radio bearers, ii) QoS flow identifier (ID) marking in downlink and uplink packets.
- a single protocol entity of SDAP is configured for each individual PDU session.
- two SDAP entities may be configured in the case of dual connectivity (DC).
- DC dual connectivity
- the RRC sublayer is a broadcast of system information related to an access stratum (AS) and a non-access stratum (NAS); Paging initiated by 5GC or NG-RAN; Establishing, maintaining, and releasing RRC connections between the UE and the NG-RAN (in addition, modifying and releasing carrier aggregation), and additionally, dual connectivity between the E-UTRAN and the NR or within the NR (Dual).
- AS access stratum
- NAS non-access stratum
- 5GC access stratum
- NG-RAN non-access stratum
- Security functions including key management; Establishment, establishment, maintenance, and release of SRB (s) and DRB (s); Handover and context transfer; Control of UE cell selection and disaster recovery and cell selection / reselection; Mobility functionality including inter-RAT mobility; QoS management functions, UE measurement reporting and report control; Detection of radio link failures and recovery from radio link failures; NAS message delivery from NAS to UE and NAS message delivery from UE to NAS are performed.
- SSC Session and service continuity
- 3GPP SA2 a method for supporting session and service continuity according to UE mobility is being discussed.
- next generation systems eg 5G systems
- solutions to support the three SSC modes are being discussed.
- TUPF terminating user-plane function
- SSC mode 1 The same TUPF is maintained regardless of the access technology (eg, RAT and cell) the UE is using to access the network.
- the access technology eg, RAT and cell
- SSC mode 2 The same TUPF is only available through a subset of the access network attachment points (e.g., cell and RAT) (i.e., one or more, but not all) referred to as the serving area of the TUPF. maintain. When the UE leaves the serving area of the TUPF, the UE is served by different TUPFs that are suitable for the new attachment point to the UE's network.
- the access network attachment points e.g., cell and RAT
- SSC mode 3 In this mode, the network allows establishment of UE continuity to the same data network (DN) via the new TUPF before the connection between the UE and the previous TUPF is terminated.
- the network selects a target TUPF that is appropriate for the new attach point to the UE's network. While both TUPFs are active, the UE actively rebinds the application from the old address / prefix to the new address / prefix or binds to the old address / prefix. Wait until the end.
- the UE may indicate to the network the SSC mode requested as part of the PDU session setup signaling.
- the method for the UE to determine the requested SSC mode is described below.
- the serving network receives from the subscription database a list of supported SSC modes per subscriber data network and default SSC mode as part of the subscription information.
- the serving network selects the SSC mode by approving the requested SSC mode or modifying the requested SSC mode based on subscription information and / or local settings.
- the network selects the default SSC mode (to connect to the data network) listed in the subscription information or applies a local setting for selecting the SSC mode.
- the network After selecting the SSC mode, the network either (a) accepts the PDU session request from the UE and instructs the UE to select the approved SSC mode, or (b) the network rejects the PDU session request, and the selected SSC mode and cause value sending a (cause value) to the UE to indicate that the selected SSC mode is already in use by another PDU session in the UE.
- -SSC mode is applied per PDU session.
- the UE requests different SSC modes for different PDU sessions. That is, different PDU sessions simultaneously activated for the same UE may have different SSC modes.
- SSC mode is not changed during the lifetime of the PDU session.
- TUPF Selection When selecting a TUPF for a PDU session, the network considers the UE's current attachment point and the requested SSC mode.
- the allocated TUPF is maintained for the lifetime of the PDU session. In other words, the TUPF is not changed by the network.
- Redirection triggers to different TUPFs The network indicates that TUPFs are redirected based on UE mobility, local policy (i.e., information on the serving area of the assigned TUPFs), if the TUPFs are assigned to the PDU sessions of the UEs. Determine whether it needs to be.
- Redirection procedure The network redirects the UE's traffic to different TUPFs by first releasing the user plane path associated with the current TUPF and then setting up the user plane path corresponding to the new TUPF.
- Two solutions are used. One is that the PDU session is preserved when reallocating the TUPF. The other disconnects the PDU session of the UE corresponding to the current TUPF and asks the UE to immediately reactivate the PDU session (which is the result of the selection of the new TUPF). During this process, the UE remains attached. The network selects the TUPF based on the current attachment point of the UE to the network.
- Redirection triggers to different TUPFs The network requires that the TUPFs assigned to the PDU sessions of the TUPFs need to be redirected based on local policy (i.e. information about the serving area of the assigned TUPFs). Determine whether there is.
- the network instructs the UE if traffic on one of the UE's active PDU sessions needs to be redirected.
- the network also starts a timer and indicates the timer value to the UE.
- the user plane path is established towards the new TUPF.
- Two solutions are used. One is that the PDU session is reused for additional user plane paths. The other is an additional PDU session is reestablished.
- the network selects the TUPF based on the current attachment point of the UE to the network. If the UE sent a request for an additional PDU session to the same DN without prior indication from the network that the activated PDU session needs to be redirected, the network rejects the UE's request.
- the UE may perform one of the following options.
- Option 1 The UE actively redirects the application flow bound with the old TUPF to the new TUPF (eg, by using a higher layer session continuity mechanism). When the UE completes redirection of the application flow to the new TUPF, the previous TUPF is released.
- Option 2 The UE steers a new application flow with a new TUPF.
- the previous flow via the previous TUPF continues until the flow ends.
- the previous TUPF is released.
- option 2 a multi-homed PDU session can be used to send an application flow bound to a previous TUPF.
- the tunnel between the old TUPF and the new TUPF is used to carry that flow.
- the network releases the previous TUPF.
- -SMF and AMF are separated into different network functions. If a UE is registered with multiple network slice instances, the UE may be served from multiple SMFs. That is, multiple PDU sessions are established.
- PDU sessions are established for a given UE.
- One PDU session may be in an idle state or an active state.
- UP connection (including data radio connection and N3 tunnel establishment) may be activated for one PDU session.
- UP connections (to the same or different network instances) for different PDU sessions may be independently activated / deactivated.
- PDU session activation is a transmission to an "Active” session state in the SMF, and an UP connection is established.
- PDU session deactivation is a transition to an "Idle” session state in the SMF, and the UP connection is released / deactivated.
- SM GPRS and Signaling Management
- EPS GPRS and Signaling Management
- FIG. 19 illustrates a reference architecture of a wireless communication system to which the present invention may be applied.
- FIG. 19 illustrates a reference architecture with three PDU sessions with different network slices with independent SMFs.
- the common control plane network function may include mobility management function (AMF) or AAA function.
- Dedicated Control Plane Network Function (Ded. CP NF) may include a Session Management Function (SMF) and optionally may include a Policy Control Function (PCF).
- SMF Session Management Function
- PCF Policy Control Function
- FIG. 20 illustrates a session / mobility state machine in a wireless communication system to which the present invention can be applied.
- FIG. 20 illustrates a multiple session state machine (one per established session) and a single mobility state machine.
- the session state machine may be maintained as part of the UE's SM context in the SMF.
- the session state machine can also be maintained in AMF.
- the CCNF eg AMF
- the CCNF knows the session state (Idle or Active) for all established PDU sessions.
- the AMF also maintains state information for all established PDU sessions.
- AMF says that SMF should not be updated when the UE moves or changes the RAN node. Know.
- the corresponding SMF will display the details of the new (R) AN node (e.g. IP address, tunnel identifier, transport port identifier). AMF knows that it needs to be updated with port ID) or other parameters).
- 21 is a diagram illustrating a session activation procedure in a wireless communication system to which the present invention can be applied.
- FIG. 21 illustrates a session activation procedure triggered by downlink data transmission independent of another PDU session (that is, in case of a mobile terminal (MT)).
- MT mobile terminal
- UPF2 initiates an Activate session request procedure to establish a UP connection.
- SMF2 initiates a session activation request procedure towards CCNF (eg, AMF).
- SMF2 may include a session identifier (ID), a QoS parameter, a paging priority, and an UPF identifier (ID) (e.g., an IP address, tunneling endpoint ID, and / or transport layer port needed to establish an NG3 tunnel).
- ID session identifier
- Identifier transport layer port ID
- the AMF initiates a paging procedure to the UE.
- the paging message includes a session identifier (ID) corresponding to the downlink packet arriving at UPF2.
- ID session identifier
- the CCNF sends a session notification (service notification) message to the UE via the NG1 interface instead of performing a paging procedure.
- the UE sends a Service Request message to the CCNF. If there is a session ID in step 3, the Service Request message includes the session ID.
- CCNF eg, AMF
- AMF Access Management Function
- the AMF sends a response to SMF2 containing the RAN node UP information for establishing the NG3 tunnel for phase 2.
- the CCNF receives an Activate session request message from multiple SMFs, and the multiple session activation response message responds to the corresponding SMFs.
- SMF2 updates UPF3 with the information needed to establish an NG3 tunnel.
- FIG. 22 is a diagram illustrating a session activation procedure in a wireless communication system to which the present invention can be applied.
- FIG. 22 illustrates a session activation procedure triggered by uplink data transmission independent of activation of another PDU session (that is, in case of mobile originated MT).
- the UE Due to the uplink data for PDU session 2, the UE initiates an RRC connection establishment with the RAN node to send an initial NAS message. If the UE has an active session (ie, Ready state), the UE skips this step and performs step 3.
- the UE sends a Service Request message to the CCNF.
- the Service Request message includes a session identifier (ID) that the UE wants to activate.
- the UE If the UE has an activated session (ie, Ready state), the UE sends a NAS SM session activation message containing a session identifier (ID) that the UE wishes to activate.
- ID session identifier
- CCNF eg, AMF
- SMF2 updates UPF2 if necessary and responds to the AMF with the corresponding stored QoS parameters and UPF identifier (ID).
- CCNF eg, AMF
- SM In-UE Session
- the AMF performs an update session procedure toward the related SMF2 to inform the SMF2 and the UPF2 of the RAN node UP information for establishing the NG3 tunnel.
- the procedure for session deactivation includes the release of the UP connection (data radio connection and NG3 connection / tunnel).
- the context of the UE in the SMF and the NAS SM context in the UE are maintained, but the state is "Idle".
- the session deactivation procedure may be initiated by the RAN node.
- EPS evolved packet system
- ECM EPS connection management
- the UE may request to activate only a PDU session that the UE wants to activate.
- activation and / or deactivation
- FIG. 23 is a diagram illustrating an activation process for each PDU session in a wireless communication system to which the present invention can be applied.
- the UE may have two PDU sessions.
- PDU session 1 illustrates a PDU session established through UPF 1
- PDU session 2 illustrates a PDU session established through UPF 2.
- the UE may transmit a service request message to the source AMF including a session identifier (ID) desired for activation.
- ID session identifier
- FIG. 23 exemplifies a case in which the UE wants to activate only PDU session 1 and includes only session ID 1 in a service request message.
- the UE does not request (activate) both the created (established) PDU sessions 1 and 2, but requests to activate only PDU session 1 that wants the current service.
- the source AMF sends a session management (SM) request message to SMF 1.
- the SM request message may include a PDU session ID, a gNB identifier (ID) and a cell identifier (ID) requested to be activated.
- FIG. 23 exemplifies a case in which only a session ID 1 included in a service request message is included in an SM request message.
- SMF 1 transmits an SM Request Ack message to the source AMF in response to the SM request message in step 4-2.
- the SM request acknowledgment message may include a PDU session ID which is a target of activation and a Quality of Service (QoS) rule for the corresponding PDU session.
- QoS Quality of Service
- the source AMF sends a context setup request message to the source gNB.
- the Context Setup Request message may include a PDU session (ie, a setup PDU session) that is an activation target, QoS rules for the corresponding PDU session, and security information.
- the context for PDU session 1 in SMF 1 is delivered to the gNB via the source AMF.
- the source gNB activates a Data Radio Bearer (DRB). That is, the radio resource reservation and allocation is performed between the gNB and the terminal through this step.
- DRB Data Radio Bearer
- the source gNB sends a Context Setup Response message to the source AMF in response to the Context Setup Request message.
- the Context Setup Response message may include an accepted PDU session and an accepted QoS Rule for that PDU session.
- the source AMF sends an SM request message to SMF 1.
- the SM request message may include a PDU session ID that is an activation target and an accepted QoS rule for the PDU session.
- the gNB may transmit configurable QoS rule information to SMF 1 through AMF.
- SMF 1 transmits a Session Activation Request message to UPF 1 (ie, an IP anchor).
- the Session Activation Request message may include an activation target PDU session ID and a QoS rule for the corresponding PDU session.
- UPF 1 sends a Session Activation Ack message to SMF 1 in response to the Session Activation Request message.
- SMF 1 transmits an SM Request Ack message to the source AMF in response to the SM Request message in steps 4-7.
- session management of the UE is performed in the SMF, and the SMF managing this for each PDU session established to the UE may be different. In this situation, if handover is performed for all PDU sessions established for the UE regardless of activation, unnecessary signaling occurs in the SMF managing the deactivated PDU sessions.
- the present invention proposes a method of performing handover only for an activated PDU session among PDU sessions established for a UE in an AMF managing mobility of the UE.
- 24 is a diagram illustrating a handover method according to an embodiment of the present invention.
- FIG. 24 illustrates a case in which both AMF and SMF / UPF are not changed
- the present invention may be applied even when at least one of ⁇ AMF, SMF, and UPF ⁇ is changed.
- N2-based handover refers to handover between RANs (ie, gNBs) that do not have interfaces between each other, or handover through an N2 interface when a change in AMF is required.
- RANs ie, gNBs
- Source gNB determines handover to a target gNB (or target RAN) by the mobility of the UE.
- the source gNB determines to perform N2-based handover due to the absence of an interface between the target gNB and the source gNB, or the AMF change. In other words, the source gNB decides to trigger relocation over the N2 interface.
- the Source gNB sends a Handover Required message to the serving AMF (or source AMF).
- the source gNB includes an activated PDU session identifier (ID) (ID) served by the source gNB in a field that AMF can receive and process in the Handover Required message.
- PDU session IDs for all PDU sessions processed by the source gNB ie, all existing PDU sessions with an active user plane connection
- PDU session IDs for all PDU sessions processed by the source gNB may be included in the Handover Required message.
- activation of the user plane connection of the PDU session causes activation of the user plane connection (ie, data radio bearer and N3 (interface / reference point between gNB (or RAN) and UPF) tunnel) between the UE and the core network.
- deactivation of the user plane connection of the PDU session causes the data radio bearer and N3 tunnel to be deactivated.
- user plane connection of different PDU sessions may be independently deactivated.
- the PDU session ID included in this Handover Required message may indicate that the corresponding PDU session (s) is requested to be handed over by the source gNB.
- the source gNB may include an address (or identifier (ID) of the target gNB) of the target gNB in the Handover Required message so that the AMF can determine whether to relocate the SMF.
- ID an address of the target gNB
- the source gNB may generate a signaling management (SM) transparent container (SM transparent container) that can be transmitted to the SMF for each activated PDU session and include it in the Handover required message.
- SM transparent container is transparent to the core network (ie, without change / modification in the core network), delivered to the target gNB, and can be used by the target gNB.
- the AMF includes the corresponding SM transparent container received from the SMF corresponding to the PDU session ID included in the Handover required message in the SM message (for example, the SM Request message). send.
- AMF previously stores a connection relationship between a PDU session ID and an SMF address (or SMF Identifier) when a PDU session is created (established). That is, the AMF stores the association between the PDU session ID and the SMF (ie, SMF identifier). However, AMF assumes that the PDU session is not activated and does not store the context related to the PDU session.
- PDU session ID 1 is associated with SMF 1 and PDU session ID 2 is associated with SMF 2.
- the AMF Since the PDU session ID 1 is included in the handover required message of the second step, the AMF transmits an SM message to SMF 1 associated with the PDU session ID 1.
- the AMF may transmit an SM message to the SMF 2 associated with the PDU session ID 2.
- the Handover required message includes both PDU session ID 1 and PDU session ID 2
- AMF sends an SM message to SMF 1 associated with PDU session ID 1 and SMF 2 associated with PDU session ID 2, respectively. Can be transmitted.
- the SM message may further include a handover type, a forwarding path info, a target gNB identifier and an address, and the like.
- FIG. 24 exemplifies a handover procedure for the case where the AMF is not changed as described above.
- the SM message may be transmitted to the SMF by the target AMF.
- SMF 1 receiving the SM message receives the address of UPF 1 for uplink N3 (ie, interface between RAN and UPF) and the quality of service (QoS) of the PDU session.
- Service information is included in the SM message (eg, SM Request Acknowledge message) and transmitted to the AMF.
- the SMF may include a cause of success in the SM message (eg, an SM Request Acknowledge message).
- the AMF sends a Handover Request message to the target gNB.
- the Handover Request message may include information received from the SMF in step 4 (e.g., a list of PDU sessions that need to be set up (ie, a list of PDU sessions for which handover was accepted) and PDU sessions belonging to the list of PDU sessions. QoS rules, UPF addresses for uplink path establishment, etc.).
- the target gNB determines whether the received PDU session is configurable and QoS allows, and sends a Handover Request Acknowledge message to the AMF in response to the Handover Request message.
- a Handover Request Acknowledge message is a target to source transparent container, which includes radio-related information transmitted transparently over the core network from the target RAN to the source RAN, the accepted QoS. It may include accepted PDU session (Accepted PDU with accepted QoS rule) information having a rule.
- the AMF sends a Handover Command message to the source gNB.
- the Handover Command message may include a Target to Source transparent container and a PDU setup list for a PDU session to be set up.
- the UE performs steps such as moving to a target cell and establishing a radio bearer.
- the Handover Required message is sent by the source gNB to the AMF to request preparation of resources at the target.
- Table 2 illustrates the content of the Handover Required message.
- the IE / Group Name represents the name of an IE or an IE group.
- 'M' in the presence field indicates an IE / IE group always included in the message as mandatory IE, and 'O' is an optional IE and may or may not be included in the message.
- / IE group, 'C' represents a conditional (IE) IE / IE group included in the message only when a specific condition is satisfied.
- the Range field indicates the number of repetitive IEs / IE groups that can be repeated.
- the IE type and reference field indicates the type of the IE (eg, enumerated data (ENUMERATED), integer (INTEGER), octet string (OCTET STRING), etc.) and the value that the IE can have. If a range exists, a range of values is shown.
- the Criticality field indicates criticality information applied to the IE / IE group.
- the criticality information refers to information indicating how to operate at the receiver when the receiver does not understand all or a part of the IE / IE group.
- '-' Indicates that criticality information is not applied, and 'YES' indicates that criticality information is applied.
- 'GLOBAL' indicates that one of the criticality information is common to the repetition of the IE and the IE.
- 'EACH' indicates that each of the repetitions of the IE has unique criticality information.
- the assigned Criticality field indicates actual criticality information.
- Handover Required messages include Message Type IE, AMF UE S1AP ID IE, gNB UE S1AP Identifier, gNB UE S1AP ID IE, Handover Type IE, Cause (Cause) IE, Target ID IE, Source to Target Transparent Container IE, PDU session To Be Setup List IE, PDU Session Identifier (PDU) session ID) IE may be included.
- Message Type IE uniquely identifies the message being sent.
- the AMF UE S1AP ID uniquely identifies a UE association over the N2 interface within AMF.
- the gNB UE S1AP ID uniquely identifies a UE association over the N2 interface within the gNB.
- the Handover Type IE indicates what type of handover is triggered on the source side.
- Cause IE The purpose of Cause IE is to indicate the reason for a specific event for the N2AP protocol.
- the Target ID IE identifies the target of the handover.
- the target ID may be, for example, an identifier of a gNB.
- Source to Target Transparent Container IE is an IE used to transparently transmit radio related information from a handover source to a handover target through a core network. This IE is passed from the source RAN node to the target RAN node.
- the PDU session To Be Setup List contains a list of PDU session IDs.
- PDU session ID IE includes the PDU session ID of an active PDU session.
- the PDU session ID may have any one value from 1 to the maximum number of PDU sessions (maxnoofPDUsession).
- the source gNB includes its activated PDU session ID (s) in the Handover Required message.
- the AMF that receives the Handover Required message is associated with the PDU session ID included in the PDU session To Be Setup List (that is, through the PDU session establishment procedure, the AMF transmits an SM message for each PDU session ID (eg, SM request). SMF connection relationship (association) to be delivered is stored.) An SM message (for example, SM request message) is sent to the SMF to inform the need of handover of the corresponding PDU session. That is, the PDU session ID indicates a PDU session candidate for handover.
- PDU session ID indicates a PDU session candidate for handover.
- the SMF Upon receiving this, the SMF sends an SM message (eg, SM request ack) to the AMF including the operation for N3 interface setup and QoS rules that should be enforced at the gNB. Upon receiving this, the AMF transmits a handover request message to the target gNB.
- an SM message eg, SM request ack
- the source gNB does not inform the AMF with the activated PDU session ID
- the AMF always maintains the context for the activated PDU session and is associated with the SMF associated with the ADU-enabled PDU session. You must send an SM message (eg an SM request message). However, this operation is a problem that violates the functional separation of the AMF and SMF.
- AMF activates the PDU session for all SMFs that have a PDU session established. After querying the state of, a problem arises in that the SMF associated with the activated PDU session needs to perform an operation for handover required again.
- a gNB that knows activated PDU session information requests a handover (ie, transmits a Handover Required message)
- an existing system for example, an LTE system
- the AMF does not need to maintain the SM context (that is, the context for the activated PDU session), and also prevents unnecessary signaling such as the AMF querying the SMF for the activated PDU session.
- the concept of the present invention proposed above may be applied to the N2 release procedure as well as the handover procedure described above, and may be applied to the gNB and the AMF / SMF interaction.
- 25 is a diagram illustrating an N2 release procedure according to an embodiment of the present invention.
- the RAN ie, gNB
- the AMF requests the AMF to release N2.
- an N2 UE context release request message may be transmitted.
- the RAN includes an identifier (eg, S-TMSI) of the corresponding UE in the N2 UE Context Release Request message and an active session ID list activated for the UE to the AMF.
- S-TMSI identifier of the corresponding UE in the N2 UE Context Release Request message
- active session ID list activated for the UE to the AMF.
- the AMF transmits an SM message (eg, an SM request message) to the SMF associated with the Session ID included in the received N2 UE Context Release Request message.
- an SM message eg, an SM request message
- the AMF does not send SM messages to all SMFs for which AMFs and PDU sessions are established, but SM messages only for SMFs associated with Session IDs 1,2. Send it.
- the SM message may include a session ID of a PDU session requesting a cause value (eg, a session release) and a deactivation.
- a cause value eg, a session release
- SMF performs N2 interface release procedure. That is, the SMF transmits a Session Modification Request message to the UPF, and receives a Session Modification Response message in response thereto. After completing this procedure, the PDU session is deactivated in the SMF.
- the SMF sends an SM message to the AMF about the PDU deactivation (eg SM request ack message).
- AMF When AMF receives all SM messages (eg SM request ack) in response to an SM message (eg SM request) sent by it, the AMF sends an N2 UE context release command to the RAN. ) Send a message.
- SM message eg SM request
- the RAN releases all RRC connections of the UE and transmits an N2 UE context release complete message to the AMF.
- the AMF may perform N2 release (ie, PDU session deactivation) operation on the PDU session in which the session is activated without managing the activation context of the PDU session.
- N2 release ie, PDU session deactivation
- 26 is a diagram illustrating a PDU session management method according to an embodiment of the present invention.
- the source RAN decides to initiate a handover (eg, N2-based handover) to the target RAN (ie, target gNB) due to the mobility of the UE or It may be determined to detect the inactivity of the UE to start the N2 release procedure (S2601).
- a handover eg, N2-based handover
- target RAN ie, target gNB
- This step may correspond to step 1 in FIG. 24 or step 1 in FIG. 25.
- the source RAN may send a Handover Required message to the AMF (if the handover is determined in step S2601) or the RAN may send a UE Context Release Request message to the AMF (step S2601). N2 release procedure determined) (S2602).
- This step may correspond to step 2 in FIG. 24 or step 1b in FIG. 25.
- the Handover Required message or the UE Context Release Request message may include a PDU session ID of an activated PDU session.
- the activated PDU session may mean a PDU session having an activated user plane connection.
- a PDU session having an activated user plane connection may mean a PDU session in which a data radio bearer (DRB) between the RAN and the UE and an N3 interface tunnel between the RAN and the UPF are established.
- DRB data radio bearer
- all PDU sessions processed by the source RAN may correspond to an activated PDU session.
- the source RAN may include the PDU session ID for all the PDU sessions it handles in the Handover Required message.
- the PDU session ID included in the Handover Required message may indicate that a PDU session corresponding to the PDU session ID is requested to be handed over by the source RAN.
- the content of the Handover Required message may be configured as shown in Table 2, and a detailed description thereof will be omitted.
- the AMF sends a Session Management (SM) session (eg, SM Request message) to the SMF associated with each PDU session indicated by the PDU session ID received in the Handover Required message or the UE Context Release Request message. It transmits (S2603).
- SM Session Management
- This step may correspond to step 3 in FIG. 24 or step 2 in FIG. 25.
- the AMF may store an association between the PDU session ID and the SMF identifier (ID). Based on this association information, the AMF can determine an associated SMF for each PDU session ID received from the source RAN. The SM message for the PDU session associated with the SMF may be transmitted to the determined SMF.
- ID the SMF identifier
- FIG. 27 illustrates a block diagram of a communication device according to an embodiment of the present invention.
- a wireless communication system includes a network node 2710 and a plurality of terminals (UEs) 2720.
- UEs terminals
- the network node 2710 includes a processor 2711, a memory 2712, and a communication module 2713.
- the processor 2711 implements the functions, processes, and / or methods proposed in FIGS. 1 to 26. Layers of the wired / wireless interface protocol may be implemented by the processor 2711.
- the memory 2712 is connected to the processor 2711 and stores various information for driving the processor 2711.
- the communication module 2713 is connected to the processor 2711 to transmit and / or receive wired / wireless signals.
- An example of the network node 2710 may be a base station (eNB or gNB), AMF, SMF, UPF, AUSF, NEF, NRF, PCF, UDM, AF, DN, and the like.
- the communication module 2713 may include a radio frequency unit (RF) for transmitting / receiving a radio signal.
- RF radio frequency unit
- the terminal 2720 includes a processor 2721, a memory 2722, and a communication module (or RF unit) 2723.
- the processor 2721 implements the functions, processes, and / or methods proposed in FIGS. 1 to 26. Layers of the air interface protocol may be implemented by the processor 2721.
- the memory 2722 is connected to the processor 2721 and stores various information for driving the processor 2721.
- the communication module 2723 is connected to the processor 2721 to transmit and / or receive a radio signal.
- the memories 2712 and 2722 may be inside or outside the processors 2711 and 2721, and may be connected to the processors 2711 and 2721 by various well-known means.
- the network node 2710 (when the base station) and / or the terminal 2720 may have a single antenna or multiple antennas.
- FIG. 28 illustrates a block diagram of a communication device according to an embodiment of the present invention.
- FIG. 28 is a diagram illustrating the terminal of FIG. 27 in more detail.
- a terminal may include a processor (or a digital signal processor (DSP) 2810, an RF module (or an RF unit) 2835, and a power management module 2805). ), Antenna 2840, battery 2855, display 2815, keypad 2820, memory 2830, SIM card Subscriber Identification Module card) 2825 (this configuration is optional), a speaker 2845 and a microphone 2850.
- the terminal may also include a single antenna or multiple antennas. Can be.
- the processor 2810 implements the functions, processes, and / or methods proposed in FIGS. 1 to 26.
- the layer of the air interface protocol may be implemented by the processor 2810.
- the memory 2830 is connected to the processor 2810 and stores information related to the operation of the processor 2810.
- the memory 2830 may be inside or outside the processor 2810 and may be connected to the processor 2810 by various well-known means.
- the user enters command information such as a telephone number, for example, by pressing (or touching) a button on keypad 2820 or by voice activation using microphone 2850.
- the processor 2810 receives the command information, processes the telephone number, and performs a proper function. Operational data may be extracted from the SIM card 2825 or the memory 2830. In addition, the processor 2810 may display command information or driving information on the display 2815 for recognition by the user and for convenience.
- the RF module 2835 is coupled to the processor 2810 to transmit and / or receive RF signals.
- the processor 2810 communicates command information to the RF module 2835 to transmit, for example, a wireless signal constituting voice communication data to initiate communication.
- the RF module 2835 is comprised of a receiver and a transmitter for receiving and transmitting a radio signal.
- Antenna 2840 functions to transmit and receive wireless signals.
- the RF module 2835 may forward the signal and convert the signal to baseband for processing by the processor 2810.
- the processed signal may be converted into audible or readable information output through the speaker 2845.
- each component or feature is to be considered optional unless stated otherwise.
- Each component or feature may be embodied in a form that is not combined with other components or features. It is also possible to combine some of the components and / or features to form an embodiment of the invention.
- the order of the operations described in the embodiments of the present invention may be changed. Some components or features of one embodiment may be included in another embodiment or may be replaced with corresponding components or features of another embodiment. It is obvious that the claims may be combined to form an embodiment by combining claims that do not have an explicit citation relationship in the claims or as new claims by post-application correction.
- Embodiments according to the present invention may be implemented by various means, for example, hardware, firmware, software, or a combination thereof.
- an embodiment of the present invention may include one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), FPGAs ( field programmable gate arrays), processors, controllers, microcontrollers, microprocessors, and the like.
- ASICs application specific integrated circuits
- DSPs digital signal processors
- DSPDs digital signal processing devices
- PLDs programmable logic devices
- FPGAs field programmable gate arrays
- processors controllers, microcontrollers, microprocessors, and the like.
- an embodiment of the present invention may be implemented in the form of a module, procedure, function, etc. that performs the functions or operations described above.
- the software code may be stored in memory and driven by the processor.
- the memory may be located inside or outside the processor, and may exchange data with the processor by various known means.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
무선 통신 시스템에서 무선 통신 시스템에서 PDU 세션 관리 방법 및 이를 위한 장치가 개시된다. 구체적으로, 무선 통신 시스템에서 프로세서, 메모리 및 통신 모듈을 포함하는 소스 무선 액세스 네트워크(RAN: Radio Access Network)가 사용자 장치(UE: User Equipment)의 핸드오버를 수행하기 위한 방법에 있어서, 타겟 RAN으로의 핸드오버를 개시하기로 결정하는 단계 및 소스 액세스 및 이동성 관리 기능(AMF: Access and Mobility Management Function)에게 핸드오버 요구(Handover Required) 메시지를 전송하는 단계를 포함하고, 상기 핸드오버는 상호 간의 인터페이스가 없는 RAN 간의 핸드오버 또는 AMF 변경이 필요한 경우의 핸드오버이고, 상기 핸드오버 요구 메시지는 활성화된 프로토콜 데이터 유닛(PDU: Protocol Data Unit) 세션의 PDU 세션 식별자(ID: Identifier)를 포함할 수 있다.
Description
본 발명은 무선 통신 시스템에 관한 것으로서, 보다 상세하게 프로토콜 데이터 유닛(PDU: Protocol Data Unit) 세션 관리 방법 및 이를 지원하는 장치에 관한 것이다.
이동 통신 시스템은 사용자의 활동성을 보장하면서 음성 서비스를 제공하기 위해 개발되었다. 그러나 이동통신 시스템은 음성뿐 아니라 데이터 서비스까지 영역을 확장하였으며, 현재에는 폭발적인 트래픽의 증가로 인하여 자원의 부족 현상이 야기되고 사용자들이 보다 고속의 서비스에 대한 요구하므로, 보다 발전된 이동 통신 시스템이 요구되고 있다.
차세대 이동 통신 시스템의 요구 조건은 크게 폭발적인 데이터 트래픽의 수용, 사용자 당 전송률의 획기적인 증가, 대폭 증가된 연결 디바이스 개수의 수용, 매우 낮은 단대단 지연(End-to-End Latency), 고에너지 효율을 지원할 수 있어야 한다. 이를 위하여 이중 연결성(Dual Connectivity), 대규모 다중 입출력(Massive MIMO: Massive Multiple Input Multiple Output), 전이중(In-band Full Duplex), 비직교 다중접속(NOMA: Non-Orthogonal Multiple Access), 초광대역(Super wideband) 지원, 단말 네트워킹(Device Networking) 등 다양한 기술들이 연구되고 있다.
본 발명의 목적은, UE의 이동성으로 인하여 핸드오버를 수행할 때, 활성화된 PDU 세션만을 핸드오버하는 방법을 제안한다.
또한, 본 발명의 목적은, UE의 비활동성(inactivity)으로 인하여 해제 절차를 수행할 때, 활성화된 PDU 세션만을 해제하는 방법을 제안한다.
본 발명에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명의 일 양상은, 무선 통신 시스템에서 프로세서, 메모리 및 통신 모듈을 포함하는 소스 무선 액세스 네트워크(RAN: Radio Access Network)가 사용자 장치(UE: User Equipment)의 핸드오버를 수행하기 위한 방법에 있어서, 타겟 RAN으로의 핸드오버를 개시하기로 결정하는 단계 및 소스 액세스 및 이동성 관리 기능(AMF: Access and Mobility Management Function)에게 핸드오버 요구(Handover Required) 메시지를 전송하는 단계를 포함하고, 상기 핸드오버는 상호 간의 인터페이스가 없는 RAN 간의 핸드오버 또는 AMF 변경이 필요한 경우의 핸드오버이고, 상기 핸드오버 요구 메시지는 활성화된 프로토콜 데이터 유닛(PDU: Protocol Data Unit) 세션의 PDU 세션 식별자(ID: Identifier)를 포함할 수 있다.
바람직하게, 상기 소스 RAN에 의해 처리되는 PDU 세션은 모두 상기 활성화된 PDU 세션에 해당할 수 있다.
바람직하게, 상기 PDU 세션 ID는 상기 PDU 세션 ID에 해당하는 PDU 세션이 상기 소스 RAN에 의해 핸드오버가 요청됨을 지시할 수 있다.
바람직하게, 상기 활성화된 PDU 세션은 RAN과 UE 간의 데이터 무선 베어러(DRB: Data Radio Bearer) 그리고 RAN과 사용자 평면 기능(UPF: User plane Function) 간의 N3 인터페이스 터널이 확립되어 있는 PDU 세션에 해당할 수 있다.
바람직하게, 상기 핸드오버 요구 메시지는 상기 타겟 RAN의 식별자, 상기 소스 RAN으로부터 상기 타겟 RAN으로 코어 네트워크를 통해 트랜스패런트하게(transparently) 전송되는 무선 관련 정보를 포함하는 소스에서 타겟으로 트랜스패런트 컨테이너(Source to Target Transparent Container)를 포함할 수 있다.
바람직하게, 상기 AMF는 상기 UE의 세션 관리 기능을 제외한 상기 UE의 이동성 관리 기능을 제공하는 네트워크 개체이며, 상기 UE의 세션 관리 기능은 세션 관리 기능(SMF: Session Management Function)에 의해 제공될 수 있다.
본 발명의 다른 일 양상은, 무선 통신 시스템에서 프로세서, 메모리, 통신 모듈을 포함하는 소스 액세스 및 이동성 관리 기능(AMF: Access and Mobility Management Function)이 사용자 장치(UE: User Equipment)의 핸드오버를 수행하기 위한 방법에 있어서, 소스 무선 액세스 네트워크(RAN: Radio Access Network)로부터 핸드오버 요구(Handover Required) 메시지를 수신하되, 상기 핸드오버 요구 메시지는 활성화된 프로토콜 데이터 유닛(PDU: Protocol Data Unit) 세션의 PDU 세션 ID를 포함하는 단계 및 상기 수신한 PDU 세션 ID에 의해 지시된 각 PDU 세션 별로 연관된(associated) 세션 관리 기능(SMF: Session Management Function)에게 세션 관리(SM: Session Management) 메시지를 전송하는 단계를 포함할 수 있다.
바람직하게, 상기 AMF는 PDU 세션 ID와 SMF 식별자(ID: Identifier) 간의 연계(association)을 저장할 수 있다.
바람직하게, 상기 SM 메시지가 전달된 SMF으로부터 RAN과 사용자 평면 기능(UPF: User plane Function) 간의 N3 인터페이스 경로 설정을 위한 UPF 주소, PDU 세션의 서비스 품질(QoS: Quality of Service) 정보를 수신하는 단계를 더 포함할 수 있다.
바람직하게, 타겟 RAN에게 핸드오버 요청(Handover Request) 메시지를 전송하는 단계를 더 포함하고, 상기 핸드오버 요청 메시지는 핸드오버가 수락된 PDU 세션의 리스트 및 상기 PDU 세션의 리스트에 속한 PDU 세션의 QoS 규칙 정보를 포함할 수 있다.
바람직하게, 상기 타겟 RAN으로부터 상기 핸드오버 요청 메시지에 대한 응답으로 핸드오버 요청 확인응답(Handover Request Acknowledge) 메시지를 수신하는 단계를 더 포함하고, 상기 핸드오버 요청 확인응답 메시지는 상기 타겟 RAN으로부터 상기 소스 RAN으로 코어 네트워크를 통해 트랜스패런트하게(transparently) 전송되는 무선 관련 정보를 포함하는 타겟에서 소스로의 트랜스패런트 컨테이너(Target to Source transparent container), 수락된 QoS 규칙을 가지는 수락된 PDU 세션 정보를 포함할 수 있다.
바람직하게, 상기 소스 RAN에게 핸드오버 명령(Handover Command) 메시지를 전송하는 단계를 더 포함하고, 상기 핸드오버 명령 메시지는 상기 타겟에서 소스로의 트랜스패런트 컨테이너(Target to Source transparent container) 및 셋업 대상이 되는 PDU 세션에 대한 PDU 셋업 리스트를 포함할 수 있다.
바람직하게, 상기 AMF는 상기 UE의 세션 관리 기능을 제외한 상기 UE의 이동성 관리 기능을 제공하는 네트워크 개체이며, 상기 UE의 세션 관리 기능은 상기 SMF에 의해 제공될 수 있다.
본 발명의 실시예에 따르면, RAN에서 활성화된 PDU 세션 정보를 AMF에게 제공함으로써, AMF는 불필요하게 시그널링 관리(SM: Signaling Management) 컨텍스트(즉, 활성화된 PDU session에 대한 컨텍스트)를 유지할 필요가 없다.
또한, 본 발명의 실시예에 따르면, RAN에서 활성화된 PDU 세션 정보를 AMF에게 제공함으로써, AMF가 SMF에게 활성화된 PDU session에 대한 문의(query)를 하는 등 불필요한 시그널링을 방지할 수 있다.
또한, 본 발명의 실시예에 따르면, RAN에서 활성화된 PDU 세션 정보를 AMF에게 제공함으로써, 불필요한 시그널링/처리 동작을 최소화하여 핸드오버 절차 및 해제 절차의 지연을 방지할 수 있다.
본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명에 관한 이해를 돕기 위해 상세한 설명의 일부로 포함되는, 첨부 도면은 본 발명에 대한 실시예를 제공하고, 상세한 설명과 함께 본 발명의 기술적 특징을 설명한다.
도 1은 본 발명이 적용될 수 있는 EPS(Evolved Packet System)을 간략히 예시하는 도면이다.
도 2는 본 발명이 적용될 수 있는 E-UTRAN(evolved universal terrestrial radio access network)의 네트워크 구조의 일 예를 나타낸다.
도 3은 본 발명이 적용될 수 있는 무선 통신 시스템에서 E-UTRAN 및 EPC의 구조를 예시한다.
도 4는 본 발명이 적용될 수 있는 무선 통신 시스템에서 단말과 E-UTRAN 사이의 무선 인터페이스 프로토콜(radio interface protocol) 구조를 나타낸다.
도 5는 본 발명이 적용될 수 있는 무선 통신 시스템에서 물리 채널의 구조를 간략히 예시하는 도면이다.
도 6은 본 발명이 적용될 수 있는 무선 통신 시스템에서 경쟁 기반 랜덤 액세스 절차를 설명하기 위한 도면이다.
도 7은 본 발명이 적용될 수 있는 무선 통신 시스템에서 S1 기반 핸드오버 절차를 예시한다.
도 8은 본 발명이 적용될 수 있는 무선 통신 시스템에서 S1 해제 절차를 예시하는 도면이다.
도 9 내지 도 16은 본 발명이 적용될 수 있는 무선 통신 시스템 아키텍쳐를 예시한다.
도 17은 본 발명이 적용될 수 있는 NG-RAN 아키텍처를 예시한다.
도 18은 본 발명이 적용될 수 있는 무선 통신 시스템에서 무선 프로토콜 스택을 예시하는 도면이다.
도 19는 본 발명이 적용될 수 있는 무선 통신 시스템의 참조 아키텍처를 예시한다.
도 20은 본 발명이 적용될 수 있는 무선 통신 시스템에서 세션/이동성 상태 머신(state machine)을 예시한다.
도 21 및 도 22는 본 발명이 적용될 수 있는 무선 통신 시스템에서 세션 활성화 절차를 예시하는 도면이다.
도 23은 본 발명이 적용될 수 있는 무선 통신 시스템에서 PDU 세션 별 활성화 과정을 예시하는 도면이다.
도 24는 본 발명의 일 실시예에 따른 핸드오버 수행 방법을 예시하는 도면이다.
도 25는 본 발명의 일 실시예에 따른 N2 해제 절차를 예시하는 도면이다.
도 26은 본 발명의 일 실시예에 따른 PDU 세션 관리 방법을 예시하는 도면이다.
도 27은 본 발명의 일 실시예에 따른 통신 장치의 블록 구성도를 예시한다.
도 28은 본 발명의 일 실시예에 따른 통신 장치의 블록 구성도를 예시한다.
이하, 본 발명에 따른 바람직한 실시 형태를 첨부된 도면을 참조하여 상세하게 설명한다. 첨부된 도면과 함께 이하에 개시될 상세한 설명은 본 발명의 예시적인 실시형태를 설명하고자 하는 것이며, 본 발명이 실시될 수 있는 유일한 실시형태를 나타내고자 하는 것이 아니다. 이하의 상세한 설명은 본 발명의 완전한 이해를 제공하기 위해서 구체적 세부사항을 포함한다. 그러나, 당업자는 본 발명이 이러한 구체적 세부사항 없이도 실시될 수 있음을 안다.
몇몇 경우, 본 발명의 개념이 모호해지는 것을 피하기 위하여 공지의 구조 및 장치는 생략되거나, 각 구조 및 장치의 핵심기능을 중심으로 한 블록도 형식으로 도시될 수 있다.
본 명세서에서 기지국은 단말과 직접적으로 통신을 수행하는 네트워크의 종단 노드(terminal node)로서의 의미를 갖는다. 본 문서에서 기지국에 의해 수행되는 것으로 설명된 특정 동작은 경우에 따라서는 기지국의 상위 노드(upper node)에 의해 수행될 수도 있다. 즉, 기지국을 포함하는 다수의 네트워크 노드들(network nodes)로 이루어지는 네트워크에서 단말과의 통신을 위해 수행되는 다양한 동작들은 기지국 또는 기지국 이외의 다른 네트워크 노드들에 의해 수행될 수 있음은 자명하다. '기지국(BS: Base Station)'은 고정국(fixed station), Node B, eNB(evolved-NodeB), BTS(base transceiver system), 액세스 포인트(AP: Access Point) 등의 용어에 의해 대체될 수 있다. 또한, '단말(Terminal)'은 고정되거나 이동성을 가질 수 있으며, UE(User Equipment), MS(Mobile Station), UT(user terminal), MSS(Mobile Subscriber Station), SS(Subscriber Station), AMS(Advanced Mobile Station), WT(Wireless terminal), MTC(Machine-Type Communication) 장치, M2M(Machine-to-Machine) 장치, D2D(Device-to-Device) 장치 등의 용어로 대체될 수 있다.
이하에서, 하향링크(DL: downlink)는 기지국에서 단말로의 통신을 의미하며, 상향링크(UL: uplink)는 단말에서 기지국으로의 통신을 의미한다. 하향링크에서 송신기는 기지국의 일부이고, 수신기는 단말의 일부일 수 있다. 상향링크에서 송신기는 단말의 일부이고, 수신기는 기지국의 일부일 수 있다.
이하의 설명에서 사용되는 특정 용어들은 본 발명의 이해를 돕기 위해서 제공된 것이며, 이러한 특정 용어의 사용은 본 발명의 기술적 사상을 벗어나지 않는 범위에서 다른 형태로 변경될 수 있다.
이하의 기술은 CDMA(code division multiple access), FDMA(frequency division multiple access), TDMA(time division multiple access), OFDMA(orthogonal frequency division multiple access), SC-FDMA(single carrier frequency division multiple access), NOMA(non-orthogonal multiple access) 등과 같은 다양한 무선 접속 시스템에 이용될 수 있다. CDMA는 UTRA(universal terrestrial radio access)나 CDMA2000과 같은 무선 기술(radio technology)로 구현될 수 있다. TDMA는 GSM(global system for mobile communications)/GPRS(general packet radio service)/EDGE(enhanced data rates for GSM evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, E-UTRA(evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. UTRA는 UMTS(universal mobile telecommunications system)의 일부이다. 3GPP(3rd generation partnership project) LTE(long term evolution)은 E-UTRA를 사용하는 E-UMTS(evolved UMTS)의 일부로써, 하향링크에서 OFDMA를 채용하고 상향링크에서 SC-FDMA를 채용한다. LTE-A(advanced)는 3GPP LTE의 진화이다.
본 발명의 실시예들은 무선 접속 시스템들인 IEEE 802, 3GPP 및 3GPP2 중 적어도 하나에 개시된 표준 문서들에 의해 뒷받침될 수 있다. 즉, 본 발명의 실시예들 중 본 발명의 기술적 사상을 명확히 드러내기 위해 설명하지 않은 단계들 또는 부분들은 상기 문서들에 의해 뒷받침될 수 있다. 또한, 본 문서에서 개시하고 있는 모든 용어들은 상기 표준 문서에 의해 설명될 수 있다.
설명을 명확하게 하기 위해, 3GPP LTE/LTE-A를 위주로 기술하지만 본 발명의 기술적 특징이 이에 제한되는 것은 아니다.
본 문서에서 사용될 수 있는 용어들은 다음과 같이 정의된다.
- UMTS(Universal Mobile Telecommunications System): 3GPP에 의해서 개발된, GSM(Global System for Mobile Communication) 기반의 3 세대(Generation) 이동 통신 기술
- EPS(Evolved Packet System): IP(Internet Protocol) 기반의 패킷 교환(packet switched) 코어 네트워크인 EPC(Evolved Packet Core)와 LTE, UTRAN 등의 액세스 네트워크로 구성된 네트워크 시스템. UMTS가 진화된 형태의 네트워크이다.
- NodeB: UMTS 네트워크의 기지국. 옥외에 설치하며 커버리지는 매크로 셀(macro cell) 규모이다.
- eNodeB: EPS 네트워크의 기지국. 옥외에 설치하며 커버리지는 매크로 셀(macro cell) 규모이다.
- 홈 NodeB(Home NodeB): UMTS 망의 기지국(Base station). 옥내에 설치하며 커버리지는 마이크로 셀(micro cell) 규모이다.
- 홈 eNodeB(Home eNodeB): EPS 망의 기지국(Base station). 옥내에 설치하며 마이크로 셀(micro cell) 규모이다.
- 단말(User Equipment): 사용자 기기. 단말은 단말(terminal), ME(Mobile Equipment), MS(Mobile Station) 등의 용어로 언급될 수 있다. 또한, 단말은 노트북, 휴대폰, PDA(Personal Digital Assistant), 스마트폰, 멀티미디어 기기 등과 같이 휴대 가능한 기기일 수 있고, 또는 PC(Personal Computer), 차량 탑재 장치와 같이 휴대 불가능한 기기일 수도 있다. MTC 관련 내용에서 단말 또는 단말이라는 용어는 MTC 단말을 지칭할 수 있다.
- IMS(IP Multimedia Subsystem): 멀티미디어 서비스를 IP 기반으로 제공하는 서브시스템.
- IMSI(International Mobile Subscriber Identity): 이동 통신 네트워크에서 국제적으로 고유하게 할당되는 사용자 식별자.
- 이동성 관리 개체(MME: Mobility Management Entity): 이동성 관리, 세션 관리 등의 기능을 수행하는 EPS의 네트워크 노드.
- 패킷 데이터 네트워크 게이트웨이(PDN-GW: Packet Data Network Gateway): UE 인터넷 프로토콜(IP: Internet Protocol) 주소 할당, 패킷 스크리닝(Packet screening) 및 필터링(filtering), 과금 데이터 수집(Charging data collection) 등의 기능을 수행하는 EPS의 네트워크 노드.
- 서빙 게이트웨이(Serving GW: Serving Gateway): 이동성 앵커(anchor), 패킷 라우팅(Packet routing), 아이들 모드 패킷 버퍼링(Idle mode packet buffering), UE를 페이징하도록 MME 트리거링 등의 기능을 수행하는 EPS의 네트워크 노드.
- 정책 및 과금 규칙 기능(PCRF: Policy and Charging Rule Function): 서비스 플로우(flow) 별로 차별화된 서비스의 품질(QoS; Quality of Service) 및 과금 정책을 동적(dynamic)으로 적용하기 위한 정책 결정(Policy decision)을 수행하는 EPS의 네트워크 노드.
- OMA DM(Open Mobile Alliance Device Management): 핸드폰, PDA, 휴대용 컴퓨터 등과 같은 모바일 디바이스들 관리를 위해 디자인된 프로토콜로써, 디바이스 설정(configuration), 펌웨어 업그레이드(firmware upgrade), 에러 보고 (Error Report)등의 기능을 수행한다.
- OAM(Operation Administration and Maintenance): OAM이란 네트워크 결함 표시, 성능정보, 그리고 데이터와 진단 기능을 제공하는 네트워크 관리 기능군을 의미한다.
- NAS 설정 관리 객체(NAS configuration MO(Management Object)): NAS 기능(Functionality)과 연관된 파라미터들(parameters)을 UE에게 설정(configuration)하는 데 사용하는 MO(Management object)를 의미한다.
- 패킷 데이터 네트워크(PDN: Packet Data Network): 특정 서비스를 지원하는 서버(예를 들어, MMS(Multimedia Messaging Service) 서버, WAP([wireless application protocol) 서버 등)가 위치하고 있는 네트워크.
- 액세스 포인트 명칭(APN: Access Point Name): PDN을 지칭하거나 구분하는 문자열. 요청한 서비스나 망(PDN)에 접속하기 위해서는 해당 P-GW를 거치게 되는데, 이 P-GW를 찾을 수 있도록 망 내에서 미리 정의한 이름(문자열) (예를 들어, internet.mnc012.mcc345.gprs)
- PDN 연결(PDN connection): 단말에서 PDN으로의 연결, 즉, IP 주소로 표현되는 단말과 APN으로 표현되는 PDN과의 연관(연결)
- HLR(Home Location Register)/HSS(Home Subscriber Server): 3GPP 네트워크 내의 가입자 정보를 가지고 있는 데이터베이스. HSS는 설정 저장(configuration storage), 식별자 관리(identity management), 사용자 상태 저장 등의 기능을 수행할 수 있다.
- RAN(Radio Access Network): 3GPP 네트워크에서 Node B 및 이를 제어하는 RNC(Radio Network Controller), eNodeB를 포함하는 단위. 단말 단에 존재하며 코어 네트워크로의 연결을 제공한다.
- PLMN(Public Land Mobile Network): 개인들에게 이동 통신 서비스를 제공할 목적으로 구성된 네트워크. 오퍼레이터 별로 구분되어 구성될 수 있다.
- NAS(Non-Access Stratum): UMTS, EPS 프로토콜 스택에서 단말과 코어 네트워크 간의 시그널링, 트래픽 메시지를 주고 받기 위한 기능적인 계층. 단말의 이동성을 지원하고, 단말과 PDN GW 간의 IP 연결을 수립 및 유지하는 세션 관리 절차를 지원하는 것을 주된 기능으로 한다.
- AS(Access Stratum): UE와 무선(혹은 액세스) 네트워크간의 프로토콜 스텍을 포함하며, 데이터 및 네트워크 제어 신호 전송 등을 담당한다.
이하, 위와 같이 정의된 용어를 바탕으로 본 발명에 대하여 기술한다.
본 발명이 적용될 수 있는 시스템 일반
도 1은 본 발명이 적용될 수 있는 EPS (Evolved Packet System)을 간략히 예시하는 도면이다.
도 1의 네트워크 구조도는 EPC(Evolved Packet Core)를 포함하는 EPS(Evolved Packet System)의 구조를 이를 간략하게 재구성 한 것이다.
EPC(Evolved Packet Core)는 3GPP 기술들의 성능을 향상하기 위한 SAE(System Architecture Evolution)의 핵심적인 요소이다. SAE는 다양한 종류의 네트워크 간의 이동성을 지원하는 네트워크 구조를 결정하는 연구 과제에 해당한다. SAE는, 예를 들어, IP 기반으로 다양한 무선 접속 기술들을 지원하고 보다 향상된 데이터 전송 능력을 제공하는 등의 최적화된 패킷-기반 시스템을 제공하는 것을 목표로 한다.
구체적으로, EPC는 3GPP LTE 시스템을 위한 IP 이동 통신 시스템의 코어 네트워크(Core Network)이며, 패킷-기반 실시간 및 비실시간 서비스를 지원할 수 있다. 기존의 이동 통신 시스템(즉, 2 세대 또는 3 세대 이동 통신 시스템)에서는 음성을 위한 CS(Circuit-Switched) 및 데이터를 위한 PS(Packet-Switched)의 2 개의 구별되는 서브-도메인을 통해서 코어 네트워크의 기능이 구현되었다. 그러나, 3 세대 이동 통신 시스템의 진화인 3GPP LTE 시스템에서는, CS 및 PS의 서브-도메인들이 하나의 IP 도메인으로 단일화되었다. 즉, 3GPP LTE 시스템에서는, IP 능력(capability)을 가지는 단말과 단말 간의 연결이, IP 기반의 기지국(예를 들어, eNodeB(evolved Node B)), EPC, 애플리케이션 도메인(예를 들어, IMS)을 통하여 구성될 수 있다. 즉, EPC는 단-대-단(end-to-end) IP 서비스 구현에 필수적인 구조이다.
EPC는 다양한 구성요소들을 포함할 수 있으며, 도 1에서는 그 중에서 일부에 해당하는, SGW(Serving Gateway)(또는 S-GW), PDN GW(Packet Data Network Gateway)(또는 PGW 또는 P-GW), MME(Mobility Management Entity), SGSN(Serving GPRS(General Packet Radio Service) Supporting Node), ePDG(enhanced Packet Data Gateway)를 도시한다.
SGW는 무선 접속 네트워크(RAN)와 코어 네트워크 사이의 경계점으로서 동작하고, eNodeB와 PDN GW 사이의 데이터 경로를 유지하는 기능을 하는 요소이다. 또한, 단말이 eNodeB에 의해서 서빙(serving)되는 영역에 걸쳐 이동하는 경우, SGW는 로컬 이동성 앵커 포인트(anchor point)의 역할을 한다. 즉, E-UTRAN (3GPP 릴리즈-8 이후에서 정의되는 Evolved-UMTS(Universal Mobile Telecommunications System) Terrestrial Radio Access Network) 내에서의 이동성을 위해서 SGW를 통해서 패킷들이 라우팅될 수 있다. 또한, SGW는 다른 3GPP 네트워크(3GPP 릴리즈-8 전에 정의되는 RAN, 예를 들어, UTRAN 또는 GERAN(GSM(Global System for Mobile Communication)/EDGE(Enhanced Data rates for Global Evolution) Radio Access Network)와의 이동성을 위한 앵커 포인트로서 기능할 수도 있다.
PDN GW는 패킷 데이터 네트워크를 향한 데이터 인터페이스의 종단점(termination point)에 해당한다. PDN GW는 정책 집행 특징(policy enforcement features), 패킷 필터링(packet filtering), 과금 지원(charging support) 등을 지원할 수 있다. 또한, 3GPP 네트워크와 비-3GPP(non-3GPP) 네트워크 (예를 들어, I-WLAN(Interworking Wireless Local Area Network)과 같은 신뢰되지 않는 네트워크, CDMA(Code Division Multiple Access) 네트워크나 Wimax와 같은 신뢰되는 네트워크)와의 이동성 관리를 위한 앵커 포인트 역할을 할 수 있다.
도 1의 네트워크 구조의 예시에서는 SGW와 PDN GW가 별도의 게이트웨이로 구성되는 것을 나타내지만, 두 개의 게이트웨이가 단일 게이트웨이 구성 옵션(Single Gateway Configuration Option)에 따라 구현될 수도 있다.
MME는, 단말의 네트워크 연결에 대한 액세스, 네트워크 자원의 할당, 트래킹(tracking), 페이징(paging), 로밍(roaming) 및 핸드오버 등을 지원하기 위한 시그널링 및 제어 기능들을 수행하는 요소이다. MME는 가입자 및 세션 관리에 관련된 제어 평면 기능들을 제어한다. MME는 수많은 eNodeB들을 관리하고, 다른 2G/3G 네트워크에 대한 핸드오버를 위한 종래의 게이트웨이의 선택을 위한 시그널링을 수행한다. 또한, MME는 보안 과정(Security Procedures), 단말-대-네트워크 세션 핸들링(Terminal-to-network Session Handling), 유휴 단말 위치결정 관리(Idle Terminal Location Management) 등의 기능을 수행한다.
SGSN은 다른 3GPP 네트워크(예를 들어, GPRS 네트워크)에 대한 사용자의 이동성 관리 및 인증(authentication)과 같은 모든 패킷 데이터를 핸들링한다.
ePDG는 신뢰되지 않는 비-3GPP 네트워크(예를 들어, I-WLAN, WiFi 핫스팟(hotspot) 등)에 대한 보안 노드로서의 역할을 한다.
도 1을 참조하여 설명한 바와 같이, IP 능력을 가지는 단말은, 3GPP 액세스는 물론 비-3GPP 액세스 기반으로도 EPC 내의 다양한 요소들을 경유하여 사업자(즉, 오퍼레이터(operator))가 제공하는 IP 서비스 네트워크(예를 들어, IMS)에 액세스할 수 있다.
또한, 도 1에서는 다양한 레퍼런스 포인트들(예를 들어, S1-U, S1-MME 등)을 도시한다. 3GPP 시스템에서는 E-UTRAN 및 EPC의 상이한 기능 개체(functional entity)들에 존재하는 2 개의 기능을 연결하는 개념적인 링크를 레퍼런스 포인트(reference point)라고 정의한다. 다음의 표 1은 도 1에 도시된 레퍼런스 포인트를 정리한 것이다. 표 1의 예시들 외에도 네트워크 구조에 따라 다양한 레퍼런스 포인트(reference point)들이 존재할 수 있다.
도 1에 도시된 레퍼런스 포인트 중에서 S2a 및 S2b는 비-3GPP 인터페이스에 해당한다. S2a는 신뢰되는 비-3GPP 액세스 및 PDN GW 간의 관련 제어 및 이동성 자원을 사용자 플레인에 제공하는 레퍼런스 포인트이다. S2b는 ePDG 및 PDN GW 간의 관련 제어 및 이동성 지원을 사용자 플레인에 제공하는 레퍼런스 포인트이다.
도 2는 본 발명이 적용될 수 있는 E-UTRAN(evolved universal terrestrial radio access network)의 네트워크 구조의 일 예를 나타낸다.
E-UTRAN 시스템은 기존 UTRAN 시스템에서 진화한 시스템으로, 예를 들어, 3GPP LTE/LTE-A 시스템일 수 있다. 통신 네트워크는 IMS 및 패킷 데이터를 통해 음성(voice)(예를 들어, VoIP(Voice over Internet Protocol))과 같은 다양한 통신 서비스를 제공하기 위하여 광범위하게 배치된다.
도 2를 참조하면, E-UMTS 네트워크는 E-UTRAN, EPC 및 하나 이상의 UE를 포함한다. E-UTRAN은 단말에게 제어 평면(control plane)과 사용자 평면(user plane) 프로토콜을 제공하는 eNB들로 구성되고, eNB들은 X2 인터페이스를 통해 연결된다.
X2 사용자 평면 인터페이스(X2-U)는 eNB들 사이에 정의된다. X2-U 인터페이스는 사용자 평면 PDU(packet data unit)의 보장되지 않은 전달(non guaranteed delivery)을 제공한다. X2 제어 평면 인터페이스(X2-CP)는 두 개의 이웃 eNB 사이에 정의된다. X2-CP는 eNB 간의 컨텍스트(context) 전달, 소스 eNB와 타겟 eNB 사이의 사용자 평면 터널의 제어, 핸드오버 관련 메시지의 전달, 상향링크 부하 관리 등의 기능을 수행한다.
eNB은 무선인터페이스를 통해 단말과 연결되고 S1 인터페이스를 통해 EPC(evolved packet core)에 연결된다.
S1 사용자 평면 인터페이스(S1-U)는 eNB와 서빙 게이트웨이(S-GW: serving gateway) 사이에 정의된다. S1 제어 평면 인터페이스(S1-MME)는 eNB와 이동성 관리 개체(MME: mobility management entity) 사이에 정의된다. S1 인터페이스는 EPS(evolved packet system) 베어러 서비스 관리 기능, NAS(non-access stratum) 시그널링 트랜스포트 기능, 네트워크 쉐어링, MME 부하 밸런싱 기능 등을 수행한다. S1 인터페이스는 eNB와 MME/S-GW 간에 다수-대-다수 관계(many-to-many-relation)를 지원한다.
MME는 NAS 시그널링 보안(security), AS(Access Stratum) 보안(security) 제어, 3GPP 액세스 네트워크 간 이동성을 지원하기 위한 CN(Core Network) 노드 간(Inter-CN) 시그널링, (페이징 재전송의 수행 및 제어 포함하여) 아이들(IDLE) 모드 UE 접근성(reachability), (아이들 및 액티브 모드 단말을 위한) 트래킹 영역 식별자(TAI: Tracking Area Identity) 관리, PDN GW 및 SGW 선택, MME가 변경되는 핸드오버를 위한 MME 선택, 2G 또는 3G 3GPP 액세스 네트워크로의 핸드오버를 위한 SGSN 선택, 로밍(roaming), 인증(authentication), 전용 베어러 확립(dedicated bearer establishment)를 포함하는 베어러 관리 기능, 공공 경고 시스템(PWS: Public Warning System)(지진 및 쓰나미 경고 시스템(ETWS: Earthquake and Tsunami Warning System) 및 상용 모바일 경고 시스템(CMAS: Commercial Mobile Alert System) 포함) 메시지 전송의 지원 등의 다양한 기능을 수행할 수 있다.
도 3은 본 발명이 적용될 수 있는 무선 통신 시스템에서 E-UTRAN 및 EPC의 구조를 예시한다.
도 3을 참조하면, eNB는 게이트웨이(예를 들어, MME)의 선택, 무선 자원 제어(RRC: radio resource control) 활성(activation) 동안 게이트웨이로의 라우팅, 방송 채널(BCH: broadcast channel)의 스케줄링 및 전송, 상향링크 및 하향링크에서 UE로 동적 자원 할당, 그리고 LTE_ACTIVE 상태에서 이동성 제어 연결의 기능을 수행할 수 있다. 상술한 바와 같이, EPC 내에서 게이트웨이는 페이징 개시(orgination), LTE_IDLE 상태 관리, 사용자 평면(user plane)의 암호화(ciphering), 시스템 구조 진화(SAE: System Architecture Evolution) 베어러 제어, 그리고 NAS 시그널링의 암호화(ciphering) 및 무결성(intergrity) 보호의 기능을 수행할 수 있다.
도 4는 본 발명이 적용될 수 있는 무선 통신 시스템에서 단말과 E-UTRAN 사이의 무선 인터페이스 프로토콜(radio interface protocol) 구조를 나타낸다.
도 4(a)는 제어 평면(control plane)에 대한 무선 프로토콜 구조를 나타내고, 도 4(b)는 사용자 평면(user plane)에 대한 무선 프로토콜 구조를 나타낸다.
도 4를 참조하면, 단말과 E-UTRAN 사이의 무선 인터페이스 프로토콜의 계층들은 통신 시스템의 기술분야에 공지된 널리 알려진 개방형 시스템 간 상호접속(OSI: open system interconnection) 표준 모델의 하위 3 계층에 기초하여 제1 계층(L1), 제2 계층 (L2) 및 제3 계층 (L3)으로 분할될 수 있다. 단말과 E-UTRAN 사이의 무선 인터페이스 프로토콜은 수평적으로 물리계층(physical layer), 데이터링크 계층(data link layer) 및 네트워크 계층(network layer)으로 이루어지며, 수직적으로는 데이터 정보 전송을 위한 프로토콜 스택(protocol stack) 사용자 평면(user plane)과 제어신호(signaling) 전달을 위한 프로토콜 스택인 제어 평면(control plane)으로 구분된다.
제어평면은 단말과 네트워크가 호를 관리하기 위해서 이용하는 제어 메시지들이 전송되는 통로를 의미한다. 사용자 평면은 애플리케이션 계층에서 생성된 데이터, 예를 들어, 음성 데이터 또는 인터넷 패킷 데이터 등이 전송되는 통로를 의미한다. 이하, 무선 프로토콜의 제어평면과 사용자평면의 각 계층을 설명한다.
제1 계층(L1)인 물리 계층(PHY: physical layer)은 물리 채널(physical channel)을 사용함으로써 상위 계층으로의 정보 송신 서비스(information transfer service)를 제공한다. 물리 계층은 상위 레벨에 위치한 매체 접속 제어(MAC: medium access control) 계층으로 전송 채널(transport channel)을 통하여 연결되고, 전송 채널을 통하여 MAC 계층과 물리 계층 사이에서 데이터가 전송된다. 전송 채널은 무선 인터페이스를 통해 데이터가 어떻게 어떤 특징으로 전송되는가에 따라 분류된다. 그리고, 서로 다른 물리 계층 사이, 송신단의 물리 계층과 수신단의 물리 계층 간에는 물리 채널(physical channel)을 통해 데이터가 전송된다. 물리 계층은 OFDM(orthogonal frequency division multiplexing) 방식으로 변조되며, 시간과 주파수를 무선 자원으로 활용한다.
물리 계층에서 사용되는 몇몇 물리 제어 채널들이 있다. 물리 하향링크 제어 채널(PDCCH: physical downlink control channel)는 단말에게 페이징 채널(PCH: paging channel)와 하향링크 공유 채널(DL-SCH: downlink shared channel)의 자원 할당 및 상향링크 공유 채널(UL-SCH: uplink shared channel)과 관련된 HARQ(hybrid automatic repeat request) 정보를 알려준다. 또한, PDCCH는 단말에게 상향링크 전송의 자원 할당을 알려주는 상향링크 승인(UL grant)를 나를 수 있다. 물리 제어 포맷 지시자 채널(PCFICH: physical control format indicator channel)는 단말에게 PDCCH들에 사용되는 OFDM 심볼의 수를 알려주고, 매 서브프레임마다 전송된다. 물리 HARQ 지시자 채널(PHICH: physical HARQ indicator channel)는 상향링크 전송의 응답으로 HARQ ACK(acknowledge)/NACK(non-acknowledge) 신호를 나른다. 물리 상향링크 제어 채널(PUCCH: physical uplink control channel)은 하향링크 전송에 대한 HARQ ACK/NACK, 스케줄링 요청 및 채널 품질 지시자(CQI: channel quality indicator) 등과 같은 상향링크 제어 정보를 나른다. 물리 상향링크 공유 채널(PUSCH: physical uplink shared channel)은 UL-SCH을 나른다.
제2 계층(L2)의 MAC 계층은 논리 채널(logical channel)을 통하여 상위 계층인 무선 링크 제어(RLC: radio link control) 계층에게 서비스를 제공한다. 또한, MAC 계층은 논리 채널과 전송 채널 간의 맵핑 및 논리 채널에 속하는 MAC 서비스 데이터 유닛(SDU: service data unit)의 전송 채널 상에 물리 채널로 제공되는 전송 블록(transport block)으로의 다중화/역다중화 기능을 포함한다.
제2 계층(L2)의 RLC 계층은 신뢰성 있는 데이터 전송을 지원한다. RLC 계층의 기능은 RLC SDU의 연결(concatenation), 분할(segmentation) 및 재결합(reassembly)을 포함한다. 무선 베어러(RB: radio bearer)가 요구하는 다양한 QoS(quality of service)를 보장하기 위해, RLC 계층은 투명 모드(TM: transparent mode), 비확인 모드(UM: unacknowledged mode) 및 확인 모드(AM: acknowledge mode)의 세 가지의 동작 모드를 제공한다. AM RLC는 ARQ(automatic repeat request)를 통해 오류 정정을 제공한다. 한편, MAC 계층이 RLC 기능을 수행하는 경우에 RLC 계층은 MAC 계층의 기능 블록으로 포함될 수 있다.
제2 계층(L2)의 패킷 데이터 컨버전스 프로토콜(PDCP: packet data convergence protocol) 계층은 사용자 평면에서 사용자 데이터의 전달, 헤더 압축(header compression) 및 암호화(ciphering) 기능을 수행한다. 헤더 압축 기능은 작은 대역폭을 가지는 무선 인터페이스를 통하여 IPv4(internet protocol version 4) 또는 IPv6(internet protocol version 6)와 같은 인터넷 프로토콜(IP: internet protocol) 패킷을 효율적으로 전송되게 하기 위하여 상대적으로 크기가 크고 불필요한 제어 정보를 담고 있는 IP 패킷 헤더 사이즈를 줄이는 기능을 의미한다. 제어 평면에서의 PDCP 계층의 기능은 제어 평면 데이터의 전달 및 암호화/무결정 보호(integrity protection)을 포함한다.
제3 계층(L3)의 최하위 부분에 위치한 무선 자원 제어(RRC: radio resource control) 계층은 제어 평면에만 정의된다. RRC 계층은 단말과 네트워크 간의 무선 자원을 제어하는 역할을 수행한다. 이를 위해 단말과 네트워크는 RRC 계층을 통해 RRC 메시지를 서로 교환한다. RRC 계층은 무선 베어러들의 설정(configuration), 재설정(re-configuration) 및 해제(release)와 관련하여 논리 채널, 전송 채널 및 물리 채널을 제어한다. 무선 베어러는 단말과 네트워크 사이의 데이터 전송을 위하여 제2 계층(L2)에 의하여 제공되는 논리적인 경로를 의미한다. 무선 베어러가 설정된다는 것은 특정 서비스를 제공하기 위해 무선 프로토콜 계층 및 채널의 특성을 규정하고, 각각의 구체적인 파라미터 및 동작 방법을 설정하는 것을 의미한다. 무선 베어러는 다시 시그널링 무선 베어러(SRB: signaling RB)와 데이터 무선 베어러(DRB: data RB) 두 가지로 나눠 질 수 있다. SRB는 제어 평면에서 RRC 메시지를 전송하는 통로로 사용되며, DRB는 사용자 평면에서 사용자 데이터를 전송하는 통로로 사용된다.
RRC 계층 상위에 위치하는 NAS(non-access stratum) 계층은 세션 관리(session management)와 이동성 관리(mobility management) 등의 기능을 수행한다.
기지국을 구성하는 하나의 셀은 1.25, 2.5, 5, 10, 20Mhz 등의 대역폭 중 하나로 설정되어 여러 단말에게 하향 또는 상향 전송 서비스를 제공한다. 서로 다른 셀은 서로 다른 대역폭을 제공하도록 설정될 수 있다.
네트워크에서 단말로 데이터를 전송하는 하향 전송채널(downlink transport channel)은 시스템 정보를 전송하는 방송 채널(BCH: broadcast channel), 페이징 메시지를 전송하는 PCH, 사용자 트래픽이나 제어메시지를 전송하는 DL-SCH 등이 있다. 하향 멀티캐스트 또는 방송 서비스의 트래픽 또는 제어메시지의 경우 DL-SCH를 통해 전송될 수도 있고, 또는 별도의 하향 멀티캐스트 채널(MCH: multicast channel)을 통해 전송될 수도 있다. 한편, 단말에서 네트워크로 데이터를 전송하는 상향 전송채널(uplink transport channel)로는 초기 제어메시지를 전송하는 랜덤 액세스 채널(RACH: random access channel), 사용자 트래픽이나 제어메시지를 전송하는 UL-SCH(uplink shared channel)가 있다.
논리 채널(logical channel)은 전송 채널의 상위에 있으며, 전송 채널에 맵핑된다. 논리 채널은 제어 영역 정보의 전달을 위한 제어 채널과 사용자 영역 정보의 전달을 위한 트래픽 채널로 구분될 수 있다. 제어 채널로는 방송 제어 채널(BCCH: broadcast control channel), 페이징 제어 채널(PCCH: paging control channel), 공통 제어 채널(CCCH: common control channel), 전용 제어 채널(DCCH: dedicated control channel), 멀티캐스트 제어 채널(MCCH: multicast control channel) 등이 있다. 트래픽 채널로는 전용 트래픽 채널(DTCH: dedicated traffic channel), 멀티캐스트 트래픽 채널(MTCH: multicast traffic channel) 등이 있다. PCCH는 페이징 정보를 전달하는 하향링크 채널이고, 네트워크가 UE가 속한 셀을 모를 때 사용된다. CCCH는 네트워크와의 RRC 연결을 가지지 않는 UE에 의해 사용된다. MCCH 네트워크로부터 UE로의 MBMS(Multimedia Broadcast and Multicast Service) 제어 정보를 전달하기 위하여 사용되는 점-대-다점(point-to-multipoint) 하향링크 채널이다. DCCH는 UE와 네트워크 간에 전용 제어 정보를 전달하는 RRC 연결을 가지는 단말에 의해 사용되는 일-대-일(point-to-point) 양방향(bi-directional) 채널이다. DTCH는 상향링크 및 하향링크에서 존재할 수 있는 사용자 정보를 전달하기 위하여 하나의 단말에 전용되는 일-대-일(point-to-point) 채널이다. MTCH는 네트워크로부터 UE로의 트래픽 데이터를 전달하기 위하여 일-대-다(point-to-multipoint) 하향링크 채널이다.
논리 채널(logical channel)과 전송 채널(transport channel) 간 상향링크 연결의 경우, DCCH는 UL-SCH과 매핑될 수 있고, DTCH는 UL-SCH와 매핑될 수 있으며, CCCH는 UL-SCH와 매핑될 수 있다. 논리 채널(logical channel)과 전송 채널(transport channel) 간 하향링크 연결의 경우, BCCH는 BCH 또는 DL-SCH와 매핑될 수 있고, PCCH는 PCH와 매핑될 수 있으며, DCCH는 DL-SCH와 매핑될 수 있으며, DTCH는 DL-SCH와 매핑될 수 있으며, MCCH는 MCH와 매핑될 수 있으며, MTCH는 MCH와 매핑될 수 있다.
도 5는 본 발명이 적용될 수 있는 무선 통신 시스템에서 물리 채널의 구조를 간략히 예시하는 도면이다.
도 5를 참조하면, 물리 채널은 주파수 영역(frequency domain)에서 하나 이상의 서브캐리어와 시간 영역(time domain)에서 하나 이상의 심볼로 구성되는 무선 자원을 통해 시그널링 및 데이터를 전달한다.
1.0ms 길이를 가지는 하나의 서브프레임은 복수의 심볼로 구성된다. 서브프레임의 특정 심볼(들)(예를 들어, 서브프레임의 첫번째 심볼)은 PDCCH를 위해 사용될 수 있다. PDCCH는 동적으로 할당되는 자원에 대한 정보(예를 들어, 자원 블록(Resource Block), 변조 및 코딩 방식(MCS: Modulation and Coding Scheme) 등)를 나른다.
랜덤 액세스 절차(Random Access Procedure)
이하에서는 LTE/LTE-A 시스템에서 제공하는 랜덤 액세스 절차(random access procedure)에 대해 살펴본다.
랜덤 액세스 절차는 단말이 기지국과의 RRC 연결(RRC Connection)이 없어, RRC 아이들 상태에서 초기 접속 (initial access)을 수행하는 경우, RRC 연결 재-확립 절차(RRC connection re-establishment procedure)를 수행하는 경우 등에 수행된다.
LTE/LTE-A 시스템에서는 랜덤 액세스 프리앰블(random access preamble, RACH preamble)을 선택하는 과정에서, 특정한 집합 안에서 단말이 임의로 하나의 프리앰블을 선택하여 사용하는 경쟁 기반 랜덤 액세스 절차(contention based random access procedure)과 기지국이 특정 단말에게만 할당해준 랜덤 액세스 프리앰블을 사용하는 비 경쟁 기반 랜덤 액세스 절차(non-contention based random access procedure)을 모두 제공한다.
도 6은 본 발명이 적용될 수 있는 무선 통신 시스템에서 경쟁 기반 랜덤 액세스 절차를 설명하기 위한 도면이다.
(1) 제1 메시지(Msg 1, message 1)
먼저, 단말은 시스템 정보(system information) 또는 핸드오버 명령(handover command)을 통해 지시된 랜덤 액세스 프리앰블의 집합에서 임의로(randomly) 하나의 랜덤 액세스 프리앰블(random access preamble, RACH preamble)을 선택하고, 상기 랜덤 액세스 프리앰블을 전송할 수 있는 PRACH(physical RACH) 자원을 선택하여 전송한다.
단말로부터 랜덤 액세스 프리앰블을 수신한 기지국은 프리앰블을 디코딩하고, RA-RNTI를 획득한다. 랜덤 액세스 프리앰블이 전송된 PRACH와 관련된 RA-RNTI는 해당 단말이 전송한 랜덤 액세스 프리앰블의 시간-주파수 자원에 따라 결정된다.
(2) 제2 메시지(Msg 2, message 2)
기지국은 제1 메시지 상의 프리앰블을 통해서 획득한 RA-RNTI로 지시(address)되는 랜덤 액세스 응답(random access response)을 단말로 전송한다. 랜덤 액세스 응답에는 랜덤 액세스 프리앰블 구분자/식별자(RA preamble index/identifier), 상향링크 무선자원을 알려주는 상향링크 승인(UL grant), 임시 셀 식별자(TC-RNTI: Temporary Cell RNTI) 그리고 시간 동기 값(TAC: time alignment command)들이 포함될 수 있다. TAC는 기지국이 단말에게 상향링크 시간 정렬(time alignment)을 유지하기 위해 보내는 시간 동기 값을 지시하는 정보이다. 단말은 상기 시간 동기 값을 이용하여, 상향링크 전송 타이밍을 갱신한다. 단말이 시간 동기를 갱신하면, 시간 동기 타이머(time alignment timer)를 개시 또는 재시작한다. UL grant는 후술하는 스케줄링 메시지(제3 메시지)의 전송에 사용되는 상향링크 자원 할당 및 TPC(transmit power command)를 포함한다. TPC는 스케줄링된 PUSCH를 위한 전송 파워의 결정에 사용된다.
단말은 랜덤 액세스 프리앰블을 전송 후에, 기지국이 시스템 정보 또는 핸드오버 명령을 통해 지시된 랜덤 액세스 응답 윈도우(random access response window) 내에서 자신의 랜덤 액세스 응답(random access response)의 수신을 시도하며, PRACH에 대응되는 RA-RNTI로 마스킹된 PDCCH를 검출하고, 검출된 PDCCH에 의해 지시되는 PDSCH를 수신하게 된다. 랜덤 액세스 응답 정보는 MAC PDU(MAC packet data unit)의 형식으로 전송될 수 있으며, 상기 MAC PDU는 PDSCH을 통해 전달될 수 있다.
단말은 기지국에 전송하였던 랜덤 액세스 프리앰블과 동일한 랜덤 액세스 프리앰블 구분자/식별자를 가지는 랜덤 액세스 응답을 성공적으로 수신하면, 랜덤 액세스 응답의 모니터링을 중지한다. 반면, 랜덤 액세스 응답 윈도우가 종료될 때까지 랜덤 액세스 응답 메시지를 수신하지 못하거나, 기지국에 전송하였던 랜덤 액세스 프리앰블과 동일한 랜덤 액세스 프리앰블 구분자를 가지는 유효한 랜덤 액세스 응답을 수신하지 못한 경우 랜덤 액세스 응답의 수신은 실패하였다고 간주되고, 이후 단말은 프리앰블 재전송을 수행할 수 있다.
(3) 제3 메시지(Msg 3, message 3)
단말이 자신에게 유효한 랜덤 액세스 응답을 수신한 경우에는, 상기 랜덤 액세스 응답에 포함된 정보들을 각각 처리한다. 즉, 단말은 TAC을 적용시키고, TC-RNTI를 저장한다. 또한, UL grant를 이용하여, 단말의 버퍼에 저장된 데이터 또는 새롭게 생성된 데이터를 기지국으로 전송한다.
단말의 최초 접속의 경우, RRC 계층에서 생성되어 CCCH를 통해 전달된 RRC 연결 요청(RRC Connection Request)이 제3 메시지에 포함되어 전송될 수 있으며, RRC 연결 재확립 절차의 경우 RRC 계층에서 생성되어 CCCH를 통해 전달된 RRC 연결 재확립 요청(RRC Connection Re-establishment Request)이 제3 메시지에 포함되어 전송될 수 있다. 또한, NAS 접속 요청 메시지를 포함할 수도 있다.
제3 메시지는 단말의 식별자가 포함되어야 한다. 단말의 식별자를 포함시키는 방법으로는 두 가지 방법이 존재한다. 첫 번째 방법은 단말이 상기 랜덤 액세스 절차 이전에 이미 해당 셀에서 할당 받은 유효한 셀 식별자(C-RNTI)를 가지고 있었다면, 단말은 상기 UL grant에 대응하는 상향링크 전송 신호를 통해 자신의 셀 식별자를 전송한다. 반면에, 만약 랜덤 액세스 절차 이전에 유효한 셀 식별자를 할당 받지 못하였다면, 단말은 자신의 고유 식별자(예를 들면, S-TMSI(SAE temporary mobile subscriber identity) 또는 임의 값(random number))를 포함하여 전송한다. 일반적으로 상기의 고유 식별자는 C-RNTI보다 길다.
단말은 상기 UL grant에 대응하는 데이터를 전송하였다면, 충돌 해결을 위한 타이머(contention resolution timer)를 개시한다.
(4) 제4 메시지(Msg 4, message 4)
기지국은 단말로부터 제3 메시지를 통해 해당 단말의 C-RNTI를 수신한 경우 수신한 C-RNTI를 이용하여 단말에게 제4 메시지를 전송한다. 반면, 단말로부터 제3 메시지를 통해 상기 고유 식별자(즉, S-TMSI 또는 임의 값(random number))를 수신한 경우, 랜덤 액세스 응답에서 해당 단말에게 할당한 TC-RNTI를 이용하여 제4 메시지를 단말에게 전송한다. 일례로, 제4 메시지는 RRC 연결 설정 메시지(RRC Connection Setup)가 포함할 수 있다.
단말은 랜덤 액세스 응답에 포함된 UL grant를 통해 자신의 식별자를 포함한 데이터를 전송한 이후, 충돌 해결을 위해 기지국의 지시를 기다린다. 즉, 특정 메시지를 수신하기 위해 PDCCH의 수신을 시도한다. 상기 PDCCH를 수신하는 방법에 있어서도 두 가지 방법이 존재한다. 앞에서 언급한 바와 같이 상기 UL grant에 대응하여 전송된 제3 메시지가 자신의 식별자가 C-RNTI인 경우, 자신의 C-RNTI를 이용하여 PDCCH의 수신을 시도하고, 상기 식별자가 고유 식별자(즉, S-TMSI 또는 임의 값(random number))인 경우에는, 랜덤 액세스 응답에 포함된 TC-RNTI를 이용하여 PDCCH의 수신을 시도한다. 그 후, 전자의 경우, 만약 상기 충돌 해결 타이머가 만료되기 전에 자신의 C-RNTI를 통해 PDCCH를 수신한 경우에, 단말은 정상적으로 랜덤 액세스 절차가 수행되었다고 판단하고, 랜덤 액세스 절차를 종료한다. 후자의 경우에는 상기 충돌 해결 타이머가 만료되기 전에 TC-RNTI를 통해 PDCCH를 수신하였다면, 상기 PDCCH가 지시하는 PDSCH이 전달하는 데이터를 확인한다. 만약 상기 데이터의 내용에 자신의 고유 식별자가 포함되어 있다면, 단말은 정상적으로 랜덤 액세스 절차가 수행되었다고 판단하고, 랜덤 액세스 절차를 종료한다. 제4 메시지를 통해 단말은 C-RNTI를 획득하고, 이후 단말과 네트워크는 C-RNTI를 이용하여 단말 특정 메시지(dedicated message)를 송수신하게 된다.
한편, 비경쟁 기반 임의접속 과정에서의 동작은 도 6에 도시된 경쟁 기반 임의접속 과정과 달리 제1 메시지 전송 및 제2 메시지 전송만으로 임의접속 절차가 종료되게 된다. 다만, 제1 메시지로서 단말이 기지국에 임의접속 프리앰블을 전송하기 전에 단말은 기지국으로부터 임의접속 프리앰블을 할당받게 되며, 이 할당받은 임의접속 프리앰블을 기지국에 제1 메시지로서 전송하고, 기지국으로부터 임의접속 응답을 수신함으로써 임의접속 절차가 종료되게 된다.
S1 기반 핸드오버
S1 기반(즉, S1 인터페이스(참조 포인트 기반) 핸드오버 절차는 X2 기반(즉, X2 인터페이스(참조 포인트) 기반 핸드오버가 이용될 수 없을 때, 이용된다. 소소 eNB는 S1-MME 참조 포인트를 통해 핸드오버 요구(Handover Required) 메시지를 전송함으로써 핸드오버를 개시한다. 이 절차는 MME 및/또는 S-GW를 재배치(relocate)할 수 있다. MME는 UE가 서비스 받는 MME 풀 영역(MME Pool Area)를 벗어나지 않는 한 기지국 간(inter-eNB) 핸드오버 도중에 재배치되지 않아야 한다. MME(즉, MME 재배치에 있어서 타겟 MME)는 S-GW가 재배치되어야 하는지 결정한다. S-GW가 배치될 필요가 있으면, MME는 타겟 S-GW를 선택한다.
소스 eNB는 어떠한 EPS 베어러가 하향링크의 전달을 위한 대상이 되는지 결정한다. 또한, 선택적으로, 소스 eNB는 어떠한 EPS 베어러가 상향링크 데이터 패킷을 소스 eNB로부터 타겟 eNB에게 전달하기 위한 대상이 되는지 결정한다. EPC는 RAN 노드에 의한 결정을 변경하지 않는다. 패킷 전달은 소스 eNB로부터 타겟 eNB로부터 직접 수행될 수도 있으며, 또는 소스 eNB로부터 타겟 eNB로부터 소스 및 타겟 S-GW를 경유하여(또는 만약 S-GW가 재배치되지 않으면, 단일 S-GW을 경유하여) 간접적으로 수행될 수도 있다.
직접 전달 경로의 이용 가능성은 소스 eNB 내에서 결정되고, 소스 MME에게 지시된다. 소스와 타겟 eNB 간의 X2 연결이 이용 가능하면, 직접 전달 경로가 이용 가능하다.
직접 전달 경로가 이용 가능하지 않으면, 간접 전달이 사용될 수 있다. 소스 MME는 간접 전달을 적용할지 여부를 결정하기 위하여 소스 eNB로부터 지시를 사용한다. 소스 MME는 간접 전달이 적용되어야 하는지 여부를 타겟 MME에게 지시한다. 이 지시에 기반하여, 타겟 MME는 간접 전달을 적용할지 여부를 결정한다.
MME가 S1 핸드오버가 진행 중이라는 지시를 수반하는 S1 인터페이스 절차에 대한 거절(예를 들어, 전용 베어러 확립/수정/해제; 위치 보고 제어; NAS 메시지 전달; 등)을 eNB로부터 수신하면, MME가 여전히 서빙 MME라면, S-GW 재배치의 경우를 제외하고, 핸드오버가 완료될 때 또는 핸드오버가 실패되었다고 간주될 때, MME는 동일한 S1 인터페이스 절차를 재시도 한다. S1 핸드오버가 서빙 MME를 변경시키면, 소스 MME는 핸드오버 절차를 제외하고 진행 중인 S1 인터페이스 절차 이외의 어떠한 다른 절차를 종료시킨다.
S1 핸드오버가 S-GW 재배치를 포함하면, 그리고 MME가 S1 핸드오버가 진행 중이라는 지시를 수반한 하향링크 NAS 전달(Downlink NAS Transport) 또는 하향링크 일반 NAS 전달(Downlink Generic NAS Transport) 메시지를 위한 NAS 메시지 전달에 대한 거절을 수신하면, MME가 여전히 서빙 MME라면, 핸드오버가 완료될 때 타겟 eNB에게 해당 메시지를 재전송할 수도 있으며, 또는 핸드오버가 실패되었다고 간주될 때 MME는 소스 eNB에게 해당 메시지를 재전송할 수도 있다.
MME가 S1 핸드오버가 진행 중이라는 지시를 수반한 CS 폴백 지시(CS Fallback indication)를 포함하는 UE 컨텍스트 수정 요청(UE Context modification) 또는 CS 서비스 통지(CS Service Notification)를 위한 NAS 메시지 전달에 대한 거절을 수신하면, MME가 여전히 서빙 MME라면, 핸드오버가 완료될 때 타겟 eNB에게 해당 메시지를 재전송할 수도 있으며, 또는 핸드오버가 실패되었다고 간주될 때 MME는 소스 eNB에게 해당 메시지를 재전송할 수도 있다.
eNB에 의해 거절된 절차의 수를 최소화하기 위하여, 핸드오버가 진행 중인 동안에(즉, Handover Required가 수신된 시점으로부터 핸드오버 절차가 성공할 때까지(즉, 핸드오버 통지(Handover Notify)) 또는 핸드오버 절차가 실패할 때까지(즉, 핸드오버 실패(Handover Failure))), MME는 핸드오버가 아닌(non-hanover) 관련 S1 인터페이스 절차(예를 들어, 하향링크 NAS 메시지 전달, E-RAB 셋업/수정/해제, 등)를 중단한다. 그리고, MME는 핸드오버 절차가 완료될 때, MME가 여전히 서빙 MME라면, S-GW 재배치의 경우를 제외하고, 해당 절차를 계속한다.
핸드오버 절차 중에 S-GW 및/또는 MME가 재배치되어야 한다고 감지하면, MME는 핸드오버 절차가 시작된 후 수신한 P-GW에 의해 개시된 EPS 베어러(들)을 거절한다. 그리고, MME는 핸드오버 절차가 진행 중이므로 요청이 임시적으로 거절되었다는 지시를 포함시킨다. 요청이 임시적으로 거절되었다는 지시와 함께 거절은 S-GW에 의해 P-GW로 전달된다.
핸드오버 절차가 진행 중이므로 요청이 임시적으로 거절되었다는 지시를 수반한 P-GW에 의해 개시된 EPS 베어러(들)의 절차에 대한 거절을 수신하면, P-GW는 지역적으로(locally) 설정된 가드 타이머(guard timer)를 시작한다. 핸드오버가 완료되었다고 감지하거나 또는 실패하였다고 감지하거나 또는 가드 타이머가 만료될 때, P-GW는 미리-설정된 횟수까지 재시도한다.
긴급 베어러 서비스가 UE에게 진행 중이면, 타겟 eNB로의 핸드오버는 핸드오버 제한 리스트(Handover Restriction List)와 별도로 수행된다.
실행 과정 내 트래킹 영역 업데이트(TAU: Tracking Area Update)의 일부로서, MME는 핸드오버가 제한된 영역으로 향하는지 그리고 MME가 비-긴급(non-emergency) 베어러를 해제해야 하는지 여부를 체크한다.
긴급 베어러 서비스가 UE에게 진행 중이면, 타겟 폐쇄된 가입자 그룹(CSG: Closed Subscriber Group) 셀로의 핸드오버는 UE의 CSG 가입과 무관하게 수행된다. 핸드오버가 UE가 가입되지 않은 CSG 셀로 향하면, 타겟 eNB는 긴급 베어러만을 수락하고, 타겟 eNB에 의해 수락되지 않은 타겟 MME는 비-긴급(non-emergency) PDN 연결을 해제한다.
CSG 셀로의 PLMN 간 핸드오버(inter-PLMN handover)의 경우, 소스 MME는 타겟 PLMN의 CSG-ID(Identifier) 리스트를 가지면, 소스 MME는 해당 리스트를 타겟 CSG 셀 내 UE의 CSG 멤버십을 검증하기 위해 사용한다. 그렇지 않으면, 운영자의 설정에 기반하여 소스 MME는 등록된 PLMN-ID(Identifier)의 CSG-ID를 이용하여 타겟 CSG 셀 내 UE의 CSG 멤버십을 검증함으로써 핸드오버를 허가한다. 타겟 PLMN의 CSG-ID 리스트도 운영자의 설정도 핸드오버를 허용하지 않으면, 소스 MME는 타겟 PLMN-ID의 CSG 멤버십 정보가 없음을 이유로 핸드오버를 거절한다.
셀룰러 IoT(CIoT: Cellular Internet of Things) EPS 최적화 Optimisation)과 관련하여, 소스 MME는 UE의 선호된 네트워크 동작을 지원할 수 있는 타겟 MME로의 핸드오버를 수행하도록 시도한다. P-GW로의 비-IP(Non-IP) 연결 또는 서비스 능력 확장 기능(SCEF: Service Capability Exposure Function)로의 PDN 연결을 이용하는 UE의 경우, 이들 베어러가 타겟 MME에 의해 지원될 수 없으면, 소스 MME는 이들 베어러의 핸드오버를 시도하지 않고, 대신에 핸드오버가 성공적으로 완료할 때 이들 베어러를 해제한다. MME가 전달될 수 있는 UE에 대한 어떠한 베어러도 가지지 않으면, MME는 S1-AP 핸드오버 준비 실패(Handover Preparation Failure) 메시지를 소스 eNB에게 전송한다.
도 7은 본 발명이 적용될 수 있는 무선 통신 시스템에서 S1 기반 핸드오버 절차를 예시한다.
도 7에서 S-GW가 재배치(relocate)되지 않으면, 박스에서 소스 S-GW가 타겟 S-GW로서 동작한다.
1. 소스 eNB는 타겟 eNB로의 S1-기반 핸드오버를 개시하도록 결정한다. 이는 예를 들어, 타겟 eNB로의 X2 연결이 없음, 또는 성공하지 못한 X2 기반 핸드오버 이후에 타겟 eNB로부터 에러 지시, 또는 소스 eNB에 의해 학습된 동적 정보에 의해 트리거될 수 있다.
2. 소스 eNB는 핸드오버 요구(Handover Required)를 소스 MME에게 전송한다. Handover Required 메시지는 직접 전달 경로 이용 가능성(Direct Forwarding Path Availability), 소스에서 타겟으로 트랜스패런트(transparent)한 컨테이너(Source to Target transparent container), 타겟 eNB 식별자(target eNodeB Identity), CSG 식별자(CSG ID), CSG 액세스 모드(CSG access mode), 타겟 트래킹 영역 식별자(target TAI: target Tracking Area Identifier), S1AP 원인(S1AP Cause)을 포함할 수 있다. 소스 eNB가 어떠한 베어러가 데이터 전달의 대상이 되는지 지시한다. Direct Forwarding Path Availability는 소스 eNB로부터 타겟 eNB로의 직접 전달이 이용 가능한지 여부를 지시한다. 소스 eNB로부터의 이 지시는 X2의 존재에 기반할 수 있다. target TAI는 적합한 타겟 MME의 선택에 이용되도록 MME에게 전송된다. 타겟 셀이 CSG 셀 또는 하이브리드 셀이면, 소스 eNB는 타겟 셀의 CSG ID를 포함시킨다. 타겟 셀이 하이브리드 셀이면, CSG access mode가 지시된다.
3. 소스 MME는 타겟 MME를 선택한다. MME를 재배치하도록 결정하면, MME는 전달 재배치 요청(Forward Relocation Request) 메시지를 타겟 MME에게 전송한다. Forward Relocation Request 메시지는 MME UE 컨텍스트(MME UE context), 소스에서 타겟으로 트랜스패런트(transparent)한 컨테이너(Source to Target transparent container), RAN 원인(RAN Cause), 타겟 eNB 식별자(target eNodeB Identity), CSG 식별자(CSG ID), CSG 멤버십 지시(CSG Membership Indication), 타겟 TAI(target TAI), MS 정보 변경 보고 동작(MS Info Change Reporting Action), UE 시간 존(UE Time Zone), 직접 전달 플래그(Direct Forwarding Flag), 서빙 네트워크(Serving Network), 로컬 홈 네트워크 식별자(Local Home Network ID)를 포함할 수 있다. target TAI는 S-GW 재배치가 필요한지 여부를 결정하는데 도움을 주기 위하여 타겟 MME에게 전송된다. 이전(old) Serving Network는 서빙 네트워크가 변경되면 해결하기 위해 타겟 MME를 지원하기 위하여 타겟 MME에게 전송된다. 네트워크 공유 시나리오에서, Serving Network는 서빙 코어 네트워크를 지칭한다.
CSG ID가 소스 eNB에 의해 제공될 때, UE의 CSG 가입을 체크함으로써, 소스 MME는 액세스 제어를 수행한다. 이 CSG ID에 대한 가입 데이터가 존재하지 않거나 또는 CSG 가입이 만료되고, 이 타겟 셀이 CSG 셀이면, 소스 MME는 UE가 긴급 베어러 서비스가 아닌 한 적절한 원인으로 핸드오버를 거절한다.
MME UE context는 IMSI, ME 식별자(ME Identity), UE 보안 컨텍스트(UE security context), UE 네트워크 능력(UE Network Capability), 통합된 최대 비트율(AMBR: Aggregate Maximum Bit rate), 선택된 코어 네트워크 운영자 식별자(Selected CN operator ID), APN 제한(APN restriction), 제어 시그널링을 위한 S-GW 주소 및 종단 식별자(TEID: Tunnel Endpoint Identifier)(Serving GW address and TEID for control signaling), EPS 베어러 컨텍스트(들)(EPS Bearer context)을 포함할 수 있다.
EPS Bearer context는 상향링크 트래픽을 위한 P-GW(들)에서의 P-GW 주소 및 TEID(들)(GTP 기반 S5/S8의 경우) 또는 GRE(General Routing Encapsulation) 키(PMIP(Proxy Mobile Internet Protocol) 기반 S5/S8의 경우), APN, 상향링크 트래픽을 위한 S-GW 주소 및 TEID 및 TI(Transaction Identifier)를 포함한다.
타겟 MME의 CIoT EPS Optimization 능력에 기반하여, 소스 MME는 타겟 MME가 지원할 수 있는 EPS 베어러 컨텍스트(들)만을 포함시킨다. UE의 EPS 베어러가 선택된 타겟 MME에 의해 하나도 지원될 수 없으면, 핸드오버 준비 실패(Handover Preparation Failure) 메시지(원인 포함)를 소스 eNB에게 전송함으로써, 소스 MME는 S1 핸드오버 시도를 거절한다. 타겟 MME가 CIoT EPS Optimization을 지원하고, 헤더 압축의 사용이 UE와 소스 MME 간에 협의되었으면, 소스 MME는 전달 재배치 요청(Forward Relocation Request) 내 ROHC(Robust Header Compression) 컨텍스트 자체는 아니며 ROHC 채널 셋업을 위해 필요한 정보를 포함하는 이전에 협의된 헤더 압축 설정(Header Compression Configuration)을 포함시킨다.
로컬 네트워크에서 선택된 IP 트래픽 오프로드(SIPTO: Selected IP Traffic Offload)가 스탠드-얼론(stand-alone) 게이트웨이를 가지는 아키텍처 내 PDN 연결을 위해 활성화되면, 소스 MME는 로컬 네트워크 PDN 연결에서 SIPTO에 해당하는 EPS 베어러 컨텍스트 내 소스 셀의 로컬 홈 네트워크 ID(Local Home Network ID)를 포함시킨다.
RAN Cause는 소스 eNB로부터 수신한 S1AP Cause를 지시한다.
타겟 셀이 CSG 또는 하이브리드 셀일 때, 소스 MME는 Forward Relocation Request 메시지 내 CSG ID를 포함시킨다. 타겟 셀이 하이브리드 셀이면, 또는 하나 이상의 긴급 베어러가 존재하고 타겟 셀이 CSG 셀이면, UE가 CSG 멤버인지 여부를 지시하는 CSG Membership Indication가 Forward Relocation Request 메시지 내 포함된다.
Direct Forwarding Flag는 직접 전달이 적용되는지 여부를 지시하거나 또는 간접 전달이 소스 측(source side)에 의해 셋업될 것인지 지시한다.
타겟 MME는 Forward Relocation Request 메시지 내 각 베어러 컨텍스트의 APN Restriction에 기반하여 최대 APN 제한을 결정한다. 그리고, 타겟 MME는 새로운 최대 APN 제한 값을 저장한다.
UE가 긴급 서비스만을 수신하고 UE가 UICC(Universal Integrated Circuit Card)가 없으면, IMSI는 Forward Relocation Request 메시지 내 MME UE 컨텍스트 내 포함될 수 있다. 긴급 어태치된 UE의 경우, IMSI가 인증될 수 없으면, IMSI는 인증되지 않았다고 마킹된다. 또한, 이 경우, 보안 파라미터만이 포함된다.
4. MME가 재배치되면, 타겟 MME는 소스 S-GW가 계속하여 UE를 서비스할 수 있는지 검증한다. 계속 서비스할 수 없다면, 타겟 MME는 새로운 S-GW를 선택한다. MME가 재배치되지 않았으면, 소스 MME가 S-GW 재배치를 결정한다.
소스 S-GW가 UE를 계속하여 서비스하면, 이 단계에서 메시지가 전송되지 않는다. 이 경우, 타겟 S-GW는 소스 S-GW와 동일하다.
새로운 S-FW가 선택되면, 타겟 MME는 PDN 연결 별로 세션 생성 요청(Create Session Request) 메시지를 타겟 S-GW에게 전송한다. Create Session Request 메시지는 상향링크 트래픽을 위한 P-GW에서 P-GW 주소 및 TEID(GTP 기반 S5/S8의 경우) 또는 GRE 키(PMIP 기반 S5/S8의 경우)를 수반하는 베어러 컨텍스트(들), Serving Network 및 UE Time Zone을 포함할 수 있다. 타겟 S-GW는 S1_U 참조 포인트 상에서(베어러 별로 하나의 TEID) 상향링크 트래픽을 위한 S-GW 주소 및 TEID를 할당한다. 타겟 S-GW는 세션 생성 응답(Create Session Response) 메시지를 타겟 MME에게 전송한다. Create Session Response 메시지는 사용자 평면을 위한 S-GW 주소 및 상향링크 TEID(들)을 포함할 수 있다.
5. 타겟 MME는 핸드오버 요청(Handover Request) 메시지를 타겟 eNB에게 전송한다. Handover Request 메시지는 셋업될 EPS 베어러(EPS Bearers to Setup), AMBR, S1AP 원인, Source to Target transparent container, CSG ID, CSG Membership Indication, Handover Restriction List를 포함할 수 있다. 이 메시지는 타겟 eNB 내에서 베어러에 대한 정보와 보안 컨텍스트를 포함하는 UE 컨텍스트를 생성한다. 각 EPS 베어러에 있어서, Bearers to Setup는 사용자 평면을 위한 S-GW 주소 및 상향링크 TEID, EPS 베어러 QoS를 포함한다. direct forwarding flag가 직접 전달을 이용 가능하지 않다고 지시하고, 또한 타겟 MME가 소스와 타겟 간의 간접 데이터 전달 연결이 없다고 알고 있으면, Bearers to Setup는 각 EPS 베어러 별로 "데이터 전달 불가능함(Data forwarding not possible)" 지시를 포함한다. Handover Restriction List는 타겟 MME 내에서 이용 가능하면 전송된다.
S1AP Cause는 소스 MME로부터 수신한 RAN Cause를 지시한다.
Forward Relocation Request 메시지 내에서 소스 MME에 의해 제공될 때, 타겟 MME는 CSG ID 및 CSG Membership Indication를 포함시킨다.
타겟 eNB는 핸드오버 요청 확인응답(Handover Request Acknowledge) 메시지를 타겟 MME에게 전송한다. Handover Request Acknowledge 메시지는 EPS 베어러 셋업 리스트(EPS Bearer Setup list), 셋업에 실패한 EPS 베어러 리스트(EPS Bearers failed to setup list), 타겟에서 소스로의 트랜스패런트 컨테이너(Target to Source transparent container)를 포함할 수 있다.
EPS Bearer Setup list는 S1-U 참조 포인트 상에서 하향링크 트래픽을 위한 타겟 eNB에서 할당된 주소 및 TEID의 리스트를 포함하고(하나의 베어러 당 하나의 TEID), 필요하다면 전달된 데이터를 수신하기 위한 주소 및 TEID를 포함한다. UE AMBR가 변경되면(예를 들어, 동일한 APN과 연관된 모든 EPS 베어러가 타겟 eNB 내에서 거절됨), MME는 새로운 UE-AMBR를 재계산하고, 타겟 eNB에게 수정된 UE AMBR 값을 시그널링한다.
타겟 eNB에 의해 수락된 기본 EPS 베어러가 없다면, 타겟 MME는 핸드오버를 거절한다.
타겟 셀이 CSG 셀이면, 타겟 eNB는 타겟 MME에 의해 제공된 CSG ID를 검증하고, 타겟 셀에 대한 CSG ID와 매칭되지 않으면 적절한 원인으로 핸드오버를 거절한다. 타겟 eNB가 하이브리드 모드이면, 타겟 eNB는 CSG 멤버와 CSG 비-멤버를 구분하는 동작을 수행하도록 CSG Membership Indication를 사용할 수 있다. 타겟 셀이 CSG 셀이고, CSG Membership Indication이 "비-멤버(non member)"이면, 타겟 eNB는 긴급 베어러만을 수락한다.
6. 간접 전달이 적용되고, S-GW가 재배치되면, 타겟 MME는 간접 데이터 전달 터널 생성 요청(Create Indirect Data Forwarding Tunnel Request) 메시지를 S-GW에게 전송함으로써 전달 파라미터를 셋업한다. Create Indirect Data Forwarding Tunnel Request 메시지는 전달을 위한 타겟 eNB 주소 및 TEID를 포함할 수 있다. S-GW는 간접 데이터 전달 터널 생성 응답(Create Indirect Data Forwarding Tunnel Response) 메시지를 타겟 MME에게 전송한다. Create Indirect Data Forwarding Tunnel Response 메시지는 전달을 위한 타겟 S-GW 주소 및 TEID를 포함할 수 있다. S-GW가 재배치되지 않으면, 아래 8 단계에서 간접 전달이 셋업될 수 있다.
간접 전달은 UE의 앵커 포인트(anchor point)로 이용된 S-GW와 상이한 S-GW를 통해 수행될 수 있다.
7. MME가 재배치되었으면, 타겟 MME는 전달 재배치 응답(Forward Relocation Response) 메시지를 소스 MME에게 전송한다. Forward Relocation Response 메시지는 원인(Cause), Target to Source transparent container, 서빙 GW 변경 지시(Serving GW change indication), EPS Bearer Setup List, Addresses and TEID를 포함할 수 있다.
간접 전달에 있어서, 이 메시지는 간접 전달을 위한 (소스 또는 타겟) S-GW 주소 및 TEID를 포함한다. Serving GW change indication는 새로운 S-GW가 선택되었음을 지시한다.
8. 간접 전달이 적용되면, 소스 MME는 간접 데이터 전달 터널 생성 요청(Create Indirect Data Forwarding Tunnel Request) 메시지를 S-GW에게 전송한다. Create Indirect Data Forwarding Tunnel Request 메시지는 전달을 위한 주소 및 TEID를 포함한다. S-GW가 재배치되면, 타겟 S-GW에 대한 터널 식별자를 포함한다.
S-GW는 간접 데이터 전달 터널 생성 응답(Create Indirect Data Forwarding Tunnel Response) 메시지로 소스 MME에게 응답한다. Create Indirect Data Forwarding Tunnel Response 메시지는 전달을 위한 S-GW 주소 및 TEID를 포함한다.
간접 전달은 UE의 앵커 포인트(anchor point)로 이용된 S-GW와 상이한 S-GW를 통해 수행될 수 있다.
9. 소스 MME는 소스 eNB에게 핸드오버 명령(Handover Command) 메시지를 전송한다. Handover Command 메시지는 Target to Source transparent container, 전달 대상이 되는 베어러(Bearers subject to forwarding), 해제될 베어러(Bearers to Release)를 포함할 수 있다. Bearers subject to forwarding은 전달을 위해 할당된 주소 및 TEID의 리스트를 포함한다. Bearers to Release는 해제될 베어러의 리스트를 포함한다.
9a. Handover Command는 Target to Source transparent container를 이용하여 구성되고, UE에게 전송된다. 이 메시지를 수신할 때, UE는 타겟 셀 내에서 EPS 무선 베어러가 수신되지 않은 EPS 베어러를 제거한다.
10. 소스 eNB는 PDCP 상태 예약이 적용된 E-RAB의 PDCP 및 하이퍼 프레임 번호(HFN: Hyper Frame Number) 상태를 전달하기 위하여 MME를 경유하여 eNB 상태 전달(eNodeB Status Transfer) 메시지를 타겟 eNB에게 전송한다. UE의 E-RAB 중 어느 것도 PDCP 상태 예약으로 처리되지 않으면, 소스 eNB는 이 메시지의 전송을 생략할 수 있다.
MME 재배치가 있으면, 소스 MME는 이 정보를 액세스 컨텍스트 전달 통지(Forward Access Context Notification) 메시지를 통해 타겟 MME에게 전송한다. 소스 MME 또는 타겟 MME(MME가 재배치된 경우)는 이 정보를 MME 상태 전달(MME Status Transfer) 메시지를 통해 타겟 eNB에게 전송한다.
11. 소스 eNB는 소스 eNB로부터 타겟 eNB를 향하여 데이터 전달의 대상이 되는 베어러에 대하여 하향링크 데이터의 전달을 시작한다. 이는 직접 전달(11a 단계) 또는 간접 전달(11b)일 수 있다.
12. UE가 타겟 셀에 성공적으로 동기화한 후, UE는 핸드오버 확인(Handover Confirm) 메시지를 타겟 eNB에게 전송한다. 소스 eNB로부터 전달된 하향링크 패킷은 UE에게 전송될 수 있다. 상향링크 패킷은 UE로부터 전송될 수 있으며, 이 패킷은 타겟 S-GW에게 전달되고, P-GW에게 전달된다.
13. 타겟 eNB는 핸드오버 통지(Handover Notify) 메시지를 타겟 MME에게 전송한다. Handover Notify 메시지는 TAI+ECGI(E-UTRAN Cell Global Identifier) 및 로컬 홈 네트워크 식별자(Local Home Network ID)를 포함할 수 있다.
스탠드-얼론(stand-alone) 게이트웨이 아키텍처를 가지는 수반한 로컬 네트워크에서 SIPTO의 경우, 타겟 eNB는 Handover Notify 메시지 내 타겟 셀의 Local Home Network ID를 포함시킨다.
14. MME가 재배치되면, 타겟 MME는 전달 재배치 완료 통지(Forward Relocation Complete Notification) 메시지를 소스 MME에게 전송한다. 소스 MME는 이에 응답하여 전달 재배치 완료 확인응답(Forward Relocation Complete Acknowledge) 메시지를 타겟 MME에게 전송한다. MME가 재배치되었는지 여부와 무관하게, 소스 MME 내 타이머는 소스 eNB 내 자원이 해제될 때(또한, 소스 S-GW가 재배치될 때 소스 S-GW 내 자원이 해제될 때) 감독하기 위하여 시작된다.
Forward Relocation Complete Acknowledge 메시지가 수신될 때, 타겟 MME가 간접 전달을 위해 S-GW 자원을 할당하면, 타겟 MME는 타이머를 시작한다.
앞서 3 단계에서 Forward Relocation Request 메시지 내 모든 베어러가 포함되지 않는 경우, MME는 S-GW에게 베어러 삭제 명령(Delete Bearer Command) 메시지를 전송함으로써 또는 SCEF에게 적절한 메시지를 전송함으로써 해당 베어러들을 해제시킨다.
15. MME는 베어러 수정 요청(Modify Bearer Request) 메시지를 해제될 필요가 있는 PDN 연결을 포함하여 각 PDN 연결 별로 타겟 S-GW에게 전송한다. Modify Bearer Request 메시지는 수락된 EPS 베어러를 위해 S1-U 상에서 하향링크 트래픽을 위한 타겟 eNB에서 할당된 eNB 주소 및 TEID(eNodeB address and TEID allocated at the target eNodeB for downlink traffic on S1 U for the accepted EPS bearers) 및 유휴 상태 시그널링 감소(ISR: idle state signalling reduction) 활성화(ISR Activated)를 포함할 수 있다. P-GW가 위치 정보 변경 요청 및/또는 사용자 CSG 정보(UE 컨텍스트로부터 결정된)를 요청하였으면, MME는 또한 사용자 위치 정보 (User Location Information) 정보 요소(IE: Information Element)(이전에 전송된 정보와 비교하여 상이하면) 및/또는 사용자 CSG 정보(User CSG Information) IE를 이 메시지에 포함시킨다. UE Time Zone이 변경되었으면, MME는 이 메시지 내 UE Time Zone IE를 포함시킨다. S-GW가 재배치되지 않고 서빙 네트워크가 변경되었으면, 또는 MME가 이전 서빙 네트워크 정보를 이전 MME로부터 수신하지 않았다면, MME는 서빙 네트워크(Serving Network) IE를 이 메시지 내 포함시킨다. MME와 S-GW 모두 변경되지 않은 경우, ISR이 이 절차 이전에 활성화되었으면, MME는 ISR을 유지한다. UE는 TAU 절차 내에서 ISR 상태에 대하여 알림을 받는다. S-GW가 액세스 베어러 수정 요청(Modify Access Bearers Request) 절차를 지원하고, S-GW가 P-GW에게 시그널링을 전송할 필요가 없으면, MME는 시그널링을 최적화하기 위하여 UE 별로 액세스 베어러 수정 요청(Modify Access Bearers Request) 메시지를 S-GW에게 전송한다. Modify Access Bearers Request 메시지는 수락된 EPS 베어러에 대하여 S1-U 상에서 하향링크 트래픽을 위해 타겟 eNB에게 할당된 eNB 주소 및 TEID(eNodeB address and TEID allocated at the target eNodeB for downlink traffic on S1 U for the accepted EPS bearers), ISR Activated를 포함할 수 있다.
MME는 베어러 해제 절차를 트리거함으로써 수락되지 않은 전용 베어러를 해제한다. S-GW가 수락되지 않은 베어러에 대한 하향링크 패킷을 수신하면, S-GW는 하향링크 패킷을 드랍(drop)하고, MME에게 하향링크 데이터 통지(Downlink Data Notification) 메시지를 전송하지 않는다.
PDN 연결의 기본 베어러가 타겟 eNB에 의해 수락되지 않았고, 다른 PDN 연결이 활성화되었으면, MME는 PDN 연결의 모든 베어러가 수락되지 않았을 때와 동일한 방식으로 처리한다. MME는 MME 요청 PDN 단절 절차(MME requested PDN disconnection procedure)를 트리거함으로써 이들 PDN 연결을 해제한다.
Modify Bearer Request이 ISR Activated를 지시하지 않으면, S-GW는 S-GW 상에서 베어러 자원이 예약되었던 다른 코어 네트워크(CN: Core Network) 노드에게 베어러 삭제 요청(Delete Bearer Request) 메시지를 ISR 자원을 삭제한다.
16. S-GW가 재배치되면, 타겟 S-GW는 P-GW로부터 하향링크 트래픽을 위한 주소 및 TEID(베어러 별로 한 개)를 할당한다. S-GW는 PDN 연결 별로 베어러 수정 요청(Modify Bearer Request) 메시지를 P-GW에게 전송한다. Modify Bearer Request 메시지는 사용자 평면을 위한 S-GW 주소 및 TEID, Serving Network, PDN 과금 중단 지원 지시(PDN Charging Pause Support Indication)를 포함할 수 있다. S-GW는 앞서 15 단계에 존재하였으면, User Location Information IE 및/또는 UE Time Zone IE 및/또는 User CSG Information IE를 포함시킨다. S-GW는 또한 앞서 4 단계 또는 15 단계에서 존재하였으면, Serving Network IE를 포함시킨다. S-GW는 수락되지 않은 베어러에 대해서도 S5/S8 상에서 하향링크 TEID를 할당한다. P-GW는 컨텍스트 필터를 업데이트하고, 베어러 수정 응답(Modify Bearer Response) 메시지를 타겟 S-GW에게 전송한다. Modify Bearer Response 메시지는 과금 식별자(Charging Id), MSISDN(Mobile Station International Subscriber Directory Number), PDN 과금 중단 가능 지시(Pause Enabled Indication)를 포함할 수 있다. MSISDN는 P-GW가 UE 컨텍스트 내 저장하고 있었으면 포함된다. P-GW는 새롭게 수신한 주소 및 TEID를 이용하여 하향링크 패킷을 타겟 S-GW에게 전송하기 시작한다. 이들 하향링크 패킷은 타겟 S-GW를 경유하여 타겟 eNB로의 새로운 하향링크 경로를 사용한다.
S-GW가 재배치되지 않았지만, 앞서 15 단계에서 MME로부터 User Location Information IE 및/또는 UE Time Zone IE 및/또는 User CSG Information IE 및/또는 Serving Network IE를 수신하였으면, S-GW는 연관된 P-GW에게 베어러 수정 요청(Modify Bearer Request) 메시지를 전송함으로써 P-GW에게 이들 정보를 알린다. Modify Bearer Request 메시지는 User Location Information IE, UE Time Zone IE, User CSG Information IE, Serving Network IE를 포함할 수 있다. 베어러 수정 응답(Modify Bearer Response) 메시지는 S-GW에게 전송된다.
S-GW가 재배치되지 않았으며, 앞서 15 단계에서 MME로부터 User Location Information IE 및 UE Time Zone IE 및 User CSG Information IE 및 Serving Network IE를 수신하지 않았으면, 이 단계에서 아무 메시지가 전송되지 않는다. S-GW로부터 하향링크 패킷은 즉시 타겟 eNB에게 전송된다.
S-GW가 재배치되었으면, P-GW는 타겟 eNB에서 재배열(reordering) 기능을 보조하기 위하여 경로가 스위칭된 후 즉시 이전 경로 상에서 하나 이상의 "엔드 마커(end marker)" 패킷을 전송한다. 소스 S-GW는 "end marker" 패킷을 소스 eNB에게 전달한다.
17. S-GW는 Modify Bearer Request 메시지에 대한 응답으로 베어러 수정 응답(Modify Bearer Response) 메시지를 MME에게 전송한다. Modify Bearer Response 메시지는 상향링크 트래픽을 위한 S-GW 주소 및 TEID를 포함할 수 있다. 또는, S-GW는 Modify Access Bearers Request 메시지에 대한 응답으로 액세스 베어러 수정 응답(Modify Access Bearers Response) 메시지를 전송할 수 있다. Modify Access Bearers Response 메시지는 상향링크 트래픽을 위한 S-GW 주소 및 TEID를 포함할 수 있다. P-GW 내 과금을 중단 이외의 S5/S8 시그널링 없이 또는 PMIP가 S5/S8 인터페이스를 통해 사용될 때 Gxc 시그널링 없이, S-GW가 Modify Access Bearers Request 메시지 내 MME 요청을 서비스할 수 없으면, S-GW는 MME에게 수정이 S1-U 베어러에 한정되지 않는다는 지시와 함께 응답한다. 그리고, MME는 PDN 연결 별로 Modify Bearer Request 메시지를 이용하여 요청을 반복한다.
S-GW가 변경되지 않으면, S-GW는 타겟 eNB 내에서 재배열 기능을 보조하기 위하여 경로가 스위칭된 후 즉시 하나 이상의 "end marker" 패킷을 이전 경로 상에서 전송한다.
18. 미리 정의된 조건 중 하나가 만족되면, UE는 TAU 절차를 개시한다.
CIoT EPS Optimisations을 지원하는 UE의 경우, EPS 베어러 상태 정보는 TAU 요청(TAU Request) 메시지 내 포함된다. MME는 TAU 수락(TAU Accept) 메시지 내에서 UE에게 EPS 베어러 상태를 지시하고, UE는 지역적으로(locally) 전달되지 않은 베어러를 해제한다.
타겟 MME는 핸드오버 메시지들에 의해 베어러 컨텍스트(들)을 수신 하였을 때 UE에 대해 수행된 핸드오버 절차임을 알고 있으며, 따라서 타겟 MME는 TAU 절차의 일부만을 수행한다. 특히, 이때 소스 MME와 타겟 MME 간의 컨텍스트 전달 절차가 배제된다. 이 경우, 타겟 MME는 앞서 3 단계에서 획득한 정보에 기반하여 TAU Accept 메시지 내 각 EPS 베어러에 대하여 헤더 압축 컨텍스트 상태(Header Compression Context Status)를 셋팅한다.
19. 앞서 14 단계에서 시작된 타이머가 만료될 때, 소스 MME는 UE 컨텍스트 해제 명령(UE Context Release Command) 메시지를 소스 eNB에게 전송한다. 소스 eNB는 UE와 관련된 자원을 해제하고, UE 컨텍스트 해제 완료(UE Context Release Complete) 메시지로 응답한다. 앞서 14 단계에서 시작된 타이머가 만료될 때, 소스 MME가 Forward Relocation Response 메시지 내 S-GW 변경 지시를 수신하였으면, 소스 MME는 세션 삭제 요청(Delete Session Request) 메시지를 소스 S-GW에게 전송함으로써 EPS 베어러 자원을 삭제한다. Delete Session Request 메시지는 원인(Cause), 링크된 EPS 베어러 식별자(LBI: Linked EPS Bearer Identity), 동작 지시(Operation Indication)를 포함할 수 있다. 소스 S-GW가 P-GW에 대한 삭제 절차를 개시하지 않아야 한다는 것을 지시하는 operation Indication 플래그는 셋팅되지 않는다. S-GW는 세션 삭제 응답(Delete Session Response) 메시지로 확인응답(acknowledge)한다. ISR이 이 절차 이전에 활성화되었으면, 원인은 S-GW가 베어러 삭제 요청(Delete Bearer Request) 메시지를 CN 노드에게 전송함으로써 다른 CN 노드 상의 베어러 자원을 삭제하도록 S-GW에게 지시한다.
20. 간접 전달이 사용되었고, 앞서 14 단계에서 시작된 소스 MME에서 타이머가 만료되면, 소스 MME가 앞서 8 단계에서 할당되었던 간접 전달을 위해 사용된 임시 자원을 해제하기 위하여 간접 데이터 전달 터널 삭제 요청(Delete Indirect Data Forwarding Tunnel Request) 메시지를 S-GW에게 전송한다.
21. 간접 전달이 사용되었고, S-GW가 재배치되었으면, 그리고 앞서 14 단계에서 시작된 소스 MME에서 타이머가 만료되면, 타겟 MME가 앞서 6 단계에서 할당되었던 간접 전달을 위해 사용된 임시 자원을 해제하기 위하여 간접 데이터 전달 터널 삭제 요청(Delete Indirect Data Forwarding Tunnel Request) 메시지를 타겟 S-GW에게 전송한다.
S1 해제 절차(S1 release procedure)
EPS에서는 eNB에서 UE의 비활동성(inactivity)을 일정시간 감지할 때, MME에게 S1 해제를 요청할 수 있고, 이에 따라 MME는 S-GW에게 S1-U의 해지와 RRC 연결 해제를 명령하여 UE와 코어 네트워크와의 연결 해제를 요청할 수 있다.
이에 대하여 보다 구체적으로 살펴본다.
S1 해제 절차는 UE에 대한 논리적인 S1-AP 시그널링 연결(S1-MME를 통한) 및 모든 S1 베어러(들)(S1-U 내)을 해제하기 위하여 사용된다. 이 절차는 S1-U 베어러 대신에 CP CIoT EPS Optimization 내 S11-U 베어러(MME 내 버퍼링의 경우 제외)를 해제한다. 이 절차는 UE 및 MME 내에서 모두 UE를 ECM-CONNNECTED로부터 ECM-IDLE으로 변경시키고, 모든 UE 관련 컨텍스트 정보는 eNB 내에서 삭제된다. S1-AP 시그널링 연결이 손실(lost)(예를 들어, 시그널링 전달의 손실 또는 eNB 또는 MME의 실패 등으로 인하여)될 때, S1 해제 절차가 eNB에 의해 및/또는 MME에 의해 수행된다. S1 해제 절차는 eNB에 의해 또는 MME에 의해 지역적으로(locally) 수행되고, 각 노드는 eNB와 MME 간의 직접적인 시그널링 없이 동작을 지역적으로(locally) 수행한다.
S1 해제 절차는 다음 중 하나로 개시된다:
- eNB에 의해 개시되는 원인: 예를 들어, 운영 및 관리(O&M: Operations and Maintenance) 조정, 명확하지 않은 실패(Unspecified Failure), 사용자 비활동(User Inactivity), 반복된 RRC 시그널링 무결성 체크 실패(Repeated RRC signalling Integrity Check Failure), UE에 의해 발생된 시그널링 연결 해제로 인한 해제(Release due to UE generated signalling connection release), CS 폴백 트리거(CS Fallback triggered), RAT 간 리다이렉션(Inter-RAT Redirection), 등; 또는
- MME에 의해 개시되는 원인: 인증 실패(authentication failure), 디태치(detach), 허용되지 않은 CSG 셀(not allowed CSG cell)(예를 들어, 현재 사용되는 CSG 셀의 CSG ID가 만료되거나 또는 CSG 가입 데이터에서 삭제), 등.
도 8은 본 발명이 적용될 수 있는 무선 통신 시스템에서 S1 해제 절차를 예시하는 도면이다.
1a. 특정한 경우, eNB는 MME에게 S1 컨텍스트 해제를 요청하기 전 또는 요청과 동시에 UE의 시그널링 연결을 해제할 수 있다. 예를 들어, eNB는 리다이렉션(redirection)에 의한 CS 폴백을 위한 RRC 연결 해제(RRC Connection Release)를 개시할 수 있다.
1b. eNB가 UE의 시그널링 연결 및 UE에 대한 모든 무선 베어러를 해제할 필요가 있다고 감지하면, eNB는 S1 UE 컨텍스트 해제 요청(S1 UE Context Release Request) 메시지(원인(cause) 포함)를 MME에게 전송한다. 원인(cause)은 해제의 이유를 지시한다(예를 들어, O&M intervention, unspecified failure, user inactivity, repeated integrity checking failure, 또는 release due to UE generated signalling connection release).
앞서 1 단계는 eNB에 의해 개시된 S1 해제 절차에서만 수행되고, MME에 의해 개시된 S1 해제 절차를 2 단계부터 수행된다.
MME 내 버퍼링 중에 데이터를 수반하는 CP EPS Optimization의 경우, 2 단게 및 3 단계는 스킵(skip)된다.
2. MME는 UE에 대한 모든 S1-U 베어러(들), 또는 S-GW 내 버퍼링 중이면 CP CIoT EPS Optimization 내 S11-U의 해제를 요청하기 위하여 S-GW에게 액세스 베어러 해제 요청(Release Access Bearers Request) 메시지(무선 링크의 비정상 해제 지시(Abnormal Release of Radio Link Indication))를 전송한다. 이 메시지는 eNB로부터 S1 Release Request 메시지에 의해, 또는 또 다른 MME 이벤트에 의해 트리거된다. S1 해제 절차가 무선 링크의 비정상적인 해제로 인하면, 무선 링크의 비정상적인 해제 지시가 포함된다.
3. S-GW가 Release Access Bearers Request 메시지를 수신하면, S-GW는 UE에 대한 모든 eNB 관련 정보(주소 및 TEID(들)), 또는 CP CIoT EPS Optimization 내 MME TEID(들) 관련 정보를 해제하고, 액세스 베어러 해제 응답(Release Access Bearers Release) 메시지를 MME에에 응답한다. UE의 S-GW 컨텍스트의 다른 요소들은 영향을 받지 않는다. S-GW는 S-GW가 UE의 베어러(들)에 할당하였던 S1-U 설정을 유지한다. S GW는 UE에 대한 하향링크 패킷이 도착하면, UE에 대하여 수신된 하향링크 패킷을 버퍼링하기 시작하고, 네트워크 개시 서비스 요청(Network Triggered Service Request) 절차를 개시한다. CP CIoT EPS Optimization 내에서 하향링크 데이터는 NAS 시그널링 내 단말 종단 데이터 전달(Mobile Terminated Data transport)을 트리거한다.
4. MME는 S1 UE 컨텍스트 해제 명령(the S1 UE Context Release Command) 메시지(원인(Cause) 포함)을 eNB에게 전송함으로써 S1을 해제한다.
5. RRC 연결이 이미 해제되지 않았으면, 확인응답 모드(AM: Acknowledged Mode)로 eNB는 RRC 연결 해제(RRC Connection Release) 메시지를 UE에게 전송한다. 이 메시지가 UE에 의해 확인응답(acknowledge)되면, eNB는 UE의 컨텍스트를 삭제한다.
6. eNB는 S1 UE 컨텍스트 해제 완료(S1 UE Context Release Complete) 메시지(ECGI, TAI 포함)를 MME에게 전송함으로써 S1 해제를 확인(confirm)한다. 이와 함께, 해당 UE에 대한 MME와 eNB 간 시그널링 연결이 해제된다. 이 단계는 앞서 4단계 이후에 즉시 수행된다(예를 들어, UE가 RRC 연결 해제를 확인응답(acknowledge) 하지 않은 상황에서 지연되지 않아야 한다.).
eNB는 S1 UE Context Release Complete 메시지 내 페이징을 위해 추천되는 셀 및 기지국 정보(Information On Recommended Cells And eNodeBs For Paging)를 포함시킬 수 있다. 이용 가능하면, MME는 UE를 페이징할 때 사용되도록 이 정보를 저장한다.
eNB는, 이용 가능하다면, S1 UE Context Release Complete 메시지 내 진보된 커버리지를 위한 정보(Information for Enhanced Coverage)를 포함시킨다.
MME는 UE의 MME 컨텍스트로부터 어떠한 eNB 관련 정보(즉, S1-MME를 위해 사용되는 eNB 주소, MME UE S1 AP ID, eNB UE S1AP ID)를 삭제하지만, S-GW의 S1-U 설정 정보를 포함하는 UE의 MME 컨텍스트의 잔여 정보(주소 및 TEID(들))는 유지한다. UE를 위해 확립된 모든 비-보장된 비트율(non-GBR: non Guaranteed Bit Rate) EPS 베어러가 MME 및 S-GW 내 예약된다.
S1 해제가 사용자 비활동성(User I inactivity), RAT 간 리다이렉션(Inter-RAT Redirection)에 기인하면, MME는 GBR 베어러를 예약한다. S1 해제의 원인이 CS 폴백(CS Fallback)에 기인하면, S1 해제가 예를 들어, UE와의 무선 연결 손실(Radio Connection With UE Lost), S1 시그널링 연결 손실(S1 signalling connection lost), eNB 실패(eNodeB failure) 등에 기인하면, MME는 S1 해제 절차가 완료된 후 UE의 GBR 베어러(들)에 대하여 MME 개시 전용 베어러 비활성화(Initiated Dedicated Bearer Deactivation) 절차를 트리거한다.
본 문서에서 사용되는 용어는 다음과 같이 정의될 수 있다.
- 5G 시스템(5GS: 5G System): 5G 액세스 네트워크(AN: Access Network), 5G 코어 네트워크 및 사용자 장치(UE: User Equipment)로 구성되는 시스템
- 5G 액세스 네트워크(5G-AN: 5G Access Network)(또는 AN): 5G 코어 네트워크에 연결되는 차세대 무선 액세스 네트워크(NG-RAN: New Generation Radio Access Network) 및/또는 비-3GPP 액세스 네트워크(non-3GPP AN: non-5G Access Network)로 구성되는 액세스 네트워크.
- 차세대 무선 액세스 네트워크(NG-RAN: New Generation Radio Access Network)(또는 RAN): 5GC에 연결된다는 공통의 특징을 가지며, 다음의 옵션 중 하나 이상을 지원하는 무선 액세스 네트워크:
1) 스탠드얼론 새로운 무선(Standalone New Radio).
2) E-UTRA 확장을 지원하는 앵커(anchor)인 새로운 무선(new radio).
3) 스탠드얼론 E-UTRA(예를 들어, eNodeB).
4) 새로운 무선(new radio) 확장을 지원하는 앵커(anchor)
- 5G 코어 네트워크(5GC: 5G Core Network): 5G 액세스 네트워크에 연결되는 코어 네트워크
- 네트워크 기능(NF: Network Function): 네트워크 내 3GPP에서 채택(adopted)되거나 또는 3GPP에서 정의된 처리 기능을 의미하고, 이러한 처리 기능은 정의된 기능적인 동작(functional behavior)과 3GPP에서 정의된 인터페이스를 포함한다.
- NF 서비스(NF service): 서비스-기반 인터페이스를 통해 NF에 의해 노출되고, 다른 인증된 NF(들)에 의해 이용되는(consumed) 기능
- 네트워크 슬라이스(Network Slice): 특정 네트워크 능력(들) 및 네트워크 특징(들)을 제공하는 논리적인 네트워크
- 네트워크 슬라이스 인스턴스(Network Slice instance): 배치되는 네트워크 슬라이스를 형성하는 NF 인스턴스(들) 및 요구되는 자원(들)(예를 들어, 계산, 저장 및 네트워킹 자원)의 세트
- 프로토콜 데이터 유닛(PDU: Protocol Data Unit) 연결 서비스(PDU Connectivity Service): UE와 데이터 네트워크 간의 PDU(들)의 교환을 제공하는 서비스.
- PDU 연결 서비스(PDU Connectivity Service): UE와 데이터 네트워크 간의 PDU(들)의 교환을 제공하는 서비스
- PDU 세션(PDU Session): PDU Connectivity Service를 제공하는 UE와 데이터 네트워크 간의 연계(association). 연계 타입은 인터넷 프로토콜(IP: Internet Protocol), 이더넷(Ethernet) 또는 비구조화(unstructured)될 수 있다.
본 발명이 적용될 수 있는 5G 시스템 아키텍처
5G 시스템은 4세대 LTE 이동통신 기술로부터 진보된 기술로서 기존 이동통신망 구조의 개선(Evolution) 혹은 클린-스테이트(Clean-state) 구조를 통해 새로운 무선 액세스 기술(RAT: Radio Access Technology), LTE(Long Term Evolution)의 확장된 기술로서 eLTE(extended LTE), non-3GPP(예를 들어, 무선 근거리 액세스 네트워크(WLAN: Wireless Local Area Network)) 액세스 등을 지원한다.
5G 시스템 아키텍처는 배치(deployment)가 네트워크 기능 가상화(Network Function Virtualization) 및 소프트웨어 정의 네트워킹(Software Defined Networking)과 같은 기술을 사용할 수 있도록 데이터 연결 및 서비스를 지원하도록 정의된다. 5G 시스템 아키텍처는 제어 평면(CP: Control Plane) 네트워크 기능(NF: Network Function)들 간에 서비스-기반 상호동작(interaction)들을 활용한다. 몇 가지 주요한 원칙 및 컨셉은 다음과 같다:
- CP 기능들과 사용자 평면(UP: User Plane) 기능들을 구분하고, 독립적인 확장성(scalability), 진화(evolution), 유연한 배치들(예를 들어, 중앙집중된(centralized) 위치 또는 분산된(원격) 위치)을 허용함
- 기능 설계를 모듈화(예를 들어, 유연하고 효율적인 네트워크 슬라이싱을 가능하게 함)
- 서비스로서 절차들(즉, NF들 간의 상호동작(interaction)의 세트)이 어디에도 적용 가능하도록 정의
- 필요하다면, 각 NF가 다른 NF와 직접적으로 상호동작(interaction) 가능. 아키텍처는 제어 평면 메시지를 라우팅할 수 있도록 중간 기능(intermediate function)의 사용을 배제하지 않음
- 액세스 네트워크(AN: Access Network)와 코어 네트워크(CN: Core Network) 간의 종속성을 최소화함. 아키텍처는 서로 다른 액세스 타입(예를 들어, 3GPP 액세스 및 비-3GPP 액세스)를 통합하는 공통된 AN-CN 인터페이스를 가지는 집중된(converged) 코어 네트워크로 정의됨
- 통일된 인증 프레임워크를 지원함
- "계산(compute)" 자원이 "저장(storage)" 자원으로부터 분리되는, "무상태(stateless)" NF들을 지원함
- 능력 확장을 지원
- 로컬 및 중앙집중된(centralized) 서비스에 동시(concurrent) 액세스를 지원. 낮은 레이턴시(latency) 서비스 및 로컬 데이터 네트워크로의 액세스를 지원하기 위해, UP 기능들이 액세스 네트워크에 근접하게 배치될 수 있음
-방문 PLMN(visited PLMN) 내 로컬 발생(LBO: Local BreakOut) 트래픽 뿐만 아니라 홈 라우팅된(Home routed) 트래픽 모두에 대한 로밍을 지원
5G 시스템은 서비스-기반으로 정의되고, 5G 시스템을 위한 아키텍처(architecture) 내 네트워크 기능(NF: Network Function)들 간의 상호동작(interaction)은 다음과 같이 2가지 방식으로 나타낼 수 있다.
- 서비스-기반 표현(representation)(도 9): 제어 평면(CP: Control Plane) 내 네트워크 기능들(예를 들어, AMF)은 다른 인증된 네트워크 기능들이 자신의 서비스에 액세스하는 것을 허용한다. 이 표현은 필요한 경우 점-대-점(point-to-point) 참조 포인트(reference point)도 포함한다.
- 참조 포인트 표현(representation)(도 10): 2개의 NF들(예를 들어, AMF 및 SMF) 간의 점-대-점 참조 포인트(예를 들어, N11)에 의해 기술되는 NF들 내 NF 서비스들 간의 상호동작을 나타낸다.
도 9는 본 발명이 적용될 수 있는 무선 통신 시스템 아키텍쳐를 예시한다.
도 9에서 예시된 서비스-기반 인터페이스는 소정의 NF에 의해 제공되는/노출되는 서비스의 세트를 나타낸다. 서비스-기반 인터페이스는 제어 평면 내에서 사용된다.
도 9를 참조하면, 5G 시스템 아키텍처는 다양한 구성요소들(즉, 네트워크 기능(NF: network function))을 포함할 수 있으며, 도 9에서 그 중에서 일부에 해당하는, 인증 서버 기능(AUSF: Authentication Server Function), 액세스 및 이동성 관리 기능(AMF: (Core) Access and Mobility Management Function), 세션 관리 기능(SMF: Session Management Function), 정책 제어 기능(PCF: Policy Control function), 어플리케이션 기능(AF: Application Function), 통합된 데이터 관리(UDM: Unified Data Management), 데이터 네트워크(DN: Data network), 사용자 평면 기능(UPF: User plane Function), 네트워크 노출 기능(NEF: Network Exposure Function), NF 저장소 기능(NRF: NF Repository Function), (무선) 액세스 네트워크((R)AN: (Radio) Access Network), 사용자 장치(UE: User Equipment)를 도시한다.
각 NF들은 다음과 같은 기능을 지원한다.
- AUSF는 UE의 인증을 위한 데이터를 저장한다.
- AMF는 UE 단위의 접속 및 이동성 관리를 위한 기능을 제공하며, 하나의 UE 당 기본적으로 하나의 AMF에 연결될 수 있다.
구체적으로, AMF는 3GPP 액세스 네트워크들 간의 이동성을 위한 CN 노드 간 시그널링, 무선 액세스 네트워크(RAN: Radio Access Network) CP 인터페이스(즉, N2 인터페이스)의 종단(termination), NAS 시그널링의 종단(N1), NAS 시그널링 보안(NAS 암호화(ciphering) 및 무결성 보호(integrity protection)), AS 보안 제어, 등록 관리(등록 영역(Registration Area) 관리), 연결 관리, 아이들 모드 UE 접근성(reachability) (페이징 재전송의 제어 및 수행 포함), 이동성 관리 제어(가입 및 정책), 인트라-시스템 이동성 및 인터-시스템 이동성 지원, 네트워크 슬라이싱(Network Slicing)의 지원, SMF 선택, 합법적 감청(Lawful Intercept)(AMF 이벤트 및 LI 시스템으로의 인터페이스에 대한), UE와 SMF 간의 세션 관리(SM: session management) 메시지의 전달 제공, SM 메시지 라우팅을 위한 트랜스패런트 프록시(Transparent proxy), 액세스 인증(Access Authentication), 로밍 권한 체크를 포함한 액세스 허가(Access Authorization), UE와 SMSF 간의 SMS 메시지의 전달 제공, 보안 앵커 기능(SEA: Security Anchor Function), 보안 컨텍스트 관리(SCM: Security Context Management) 등의 기능을 지원한다.
AMF의 일부 또는 전체의 기능들은 하나의 AMF의 단일 인스턴스(instance) 내에서 지원될 수 있다.
- DN은 예를 들어, 운영자 서비스, 인터넷 접속 또는 서드파티(3rd party) 서비스 등을 의미한다. DN은 UPF로 하향링크 프로토콜 데이터 유닛(PDU: Protocol Data Unit)을 전송하거나, UE로부터 전송된 PDU를 UPF로부터 수신한다.
- PCF는 어플리케이션 서버로부터 패킷 흐름에 대한 정보를 수신하여, 이동성 관리, 세션 관리 등의 정책을 결정하는 기능을 제공한다. 구체적으로, PCF는 네트워크 동작을 통제하기 위한 단일화된 정책 프레임워크 지원, CP 기능(들)(예를 들어, AMF, SMF 등)이 정책 규칙을 시행할 수 있도록 정책 규칙 제공, 사용자 데이터 저장소(UDR: User Data Repository) 내 정책 결정을 위해 관련된 가입 정보에 액세스하기 위한 프론트 엔드(Front End) 구현 등의 기능을 지원한다.
- SMF는 세션 관리 기능을 제공하며, UE가 다수 개의 세션을 가지는 경우 각 세션 별로 서로 다른 SMF에 의해 관리될 수 있다.
구체적으로, SMF는 세션 관리(예를 들어, UPF와 AN 노드 간의 터널(tunnel) 유지를 포함하여 세션 확립, 수정 및 해제), UE IP 주소 할당 및 관리(선택적으로 인증 포함), UP 기능의 선택 및 제어, UPF에서 트래픽을 적절한 목적지로 라우팅하기 위한 트래픽 스티어링(traffic steering) 설정, 정책 제어 기능(Policy control functions)를 향한 인터페이스의 종단, 정책 및 QoS의 제어 부분 시행, 합법적 감청(Lawful Intercept)(SM 이벤트 및 LI 시스템으로의 인터페이스에 대한), NAS 메시지의 SM 부분의 종단, 하향링크 데이터 통지(Downlink Data Notification), AN 특정 SM 정보의 개시자(AMF를 경유하여 N2를 통해 AN에게 전달), 세션의 SSC 모드 결정, 로밍 기능 등의 기능을 지원한다.
SMF의 일부 또는 전체의 기능들은 하나의 SMF의 단일 인스턴스(instance) 내에서 지원될 수 있다.
- UDM은 사용자의 가입 데이터, 정책 데이터 등을 저장한다. UDM은 2개의 부분, 즉 어플리케이션 프론트 엔드(FE: front end) 및 사용자 데이터 저장소(UDR: User Data Repository)를 포함한다.
FE는 위치 관리, 가입 관리, 자격 증명(credential)의 처리 등을 담당하는 UDM FE와 정책 제어를 담당하는 PCF를 포함한다. UDR은 UDM-FE에 의해 제공되는 기능들을 위해 요구되는 데이터와 PCF에 의해 요구되는 정책 프로파일을 저장한다. UDR 내 저장되는 데이터는 가입 식별자, 보안 자격 증명(security credential), 액세스 및 이동성 관련 가입 데이터 및 세션 관련 가입 데이터를 포함하는 사용자 가입 데이터와 정책 데이터를 포함한다. UDM-FE는 UDR에 저장된 가입 정보에 액세스하고, 인증 자격 증명 처리(Authentication Credential Processing), 사용자 식별자 핸들링(User Identification Handling), 액세스 인증, 등록/이동성 관리, 가입 관리, SMS 관리 등의 기능을 지원한다.
- UPF는 DN으로부터 수신한 하향링크 PDU를 (R)AN을 경유하여 UE에게 전달하며, (R)AN을 경유하여 UE로부터 수신한 상향링크 PDU를 DN으로 전달한다.
구체적으로, UPF는 인트라(intra)/인터(inter) RAT 이동성을 위한 앵커 포인트, 데이터 네트워크(Data Network)로의 상호연결(interconnect)의 외부 PDU 세션 포인트, 패킷 라우팅 및 포워딩, 패킷 검사(inspection) 및 정책 규칙 시행의 사용자 평면 부분, 합법적 감청(Lawful Intercept), 트래픽 사용량 보고, 데이터 네트워크로의 트래픽 플로우의 라우팅을 지원하기 위한 상향링크 분류자(classifier), 멀티-홈(multi-homed) PDU 세션을 지원하기 위한 브랜치 포인트(Branching point), 사용자 평면을 위한 QoS 핸들링(handling)(예를 들어 패킷 필터링, 게이팅(gating), 상향링크/하향링크 레이트 시행), 상향링크 트래픽 검증 (서비스 데이터 플로우(SDF: Service Data Flow)와 QoS 플로우 간 SDF 매핑), 상향링크 및 하향링크 내 전달 레벨(transport level) 패킷 마킹, 하향링크 패킷 버퍼링 및 하향링크 데이터 통지 트리거링 기능 등의 기능을 지원한다. UPF의 일부 또는 전체의 기능들은 하나의 UPF의 단일 인스턴스(instance) 내에서 지원될 수 있다.
- AF는 서비스 제공(예를 들어, 트래픽 라우팅 상에서 어플리케이션 영향, 네트워크 능력 노출(Network Capability Exposure) 접근, 정책 제어를 위한 정책 프레임워크와의 상호동작 등의 기능을 지원)을 위해 3GPP 코어 네트워크와 상호동작한다.
- NEF는 3GPP 네트워크 기능들에 의해 제공되는 예를 들어, 제3자(3rd party), 내부 노출(internal exposure)/재노출(re-exposure), 어플리케이션 기능, 에지 컴퓨팅(Edge Computing)을 위한 서비스들 및 능력들을 안전하게 노출하기 위한 수단을 제공한다. NEF는 다른 네트워크 기능(들)로부터 (다른 네트워크 기능(들)의 노출된 능력(들)에 기반한) 정보를 수신한다. NEF는 데이터 저장 네트워크 기능으로의 표준화된 인터페이스를 이용하여 구조화된 데이터로서 수신된 정보를 저장할 수 있다. 저장된 정보는 NEF에 의해 다른 네트워크 기능(들) 및 어플리케이션 기능(들)에게 재노출(re-expose)되고, 분석 등과 같은 다른 목적으로 이용될 수 있다.
- NRF는 서비스 디스커버리 기능을 지원한다. NF 인스턴스로부터 NF 디스커버리 요청 수신하고, 발견된 NF 인스턴스의 정보를 NF 인스턴스에게 제공한다. 또한, 이용 가능한 NF 인스턴스들과 그들이 지원하는 서비스를 유지한다.
- (R)AN은 4G 무선 액세스 기술의 진화된 버전인 진화된 E-UTRA(evolved E-UTRA)와 새로운 무선 액세스 기술(NR: New Radio)(예를 들어, gNB)을 모두 지원하는 새로운 무선 액세스 네트워크를 총칭한다.
gNB은 무선 자원 관리를 위한 기능들(즉, 무선 베어러 제어(Radio Bearer Control), 무선 허락 제어(Radio Admission Control), 연결 이동성 제어(Connection Mobility Control), 상향링크/하향링크에서 UE에게 자원의 동적 할당(Dynamic allocation of resources)(즉, 스케줄링)), IP(Internet Protocol) 헤더 압축, 사용자 데이터 스트림의 암호화(encryption) 및 무결성 보호(integrity protection), UE에게 제공된 정보로부터 AMF로의 라우팅이 결정되지 않는 경우, UE의 어태치(attachment) 시 AMF의 선택, UPF(들)로의 사용자 평면 데이터 라우팅, AMF로의 제어 평면 정보 라우팅, 연결 셋업 및 해제, 페이징 메시지의 스케줄링 및 전송(AMF로부터 발생된), 시스템 브로드캐스트 정보의 스케줄링 및 전송(AMF 또는 운영 및 유지(O&M: operating and maintenance)로부터 발생된), 이동성 및 스케줄링을 위한 측정 및 측정 보고 설정, 상향링크에서 전달 레벨 패킷 마킹(Transport level packet marking), 세션 관리, 네트워크 슬라이싱(Network Slicing)의 지원, QoS 흐름 관리 및 데이터 무선 베어러로의 매핑, 비활동 모드(inactive mode)인 UE의 지원, NAS 메시지의 분배 기능, NAS 노드 선택 기능, 무선 액세스 네트워크 공유, 이중 연결성(Dual Connectivity), NR과 E-UTRA 간의 밀접한 상호동작(tight interworking) 등의 기능을 지원한다.
- UE는 사용자 기기를 의미한다. 사용자 장치는 단말(terminal), ME(Mobile Equipment), MS(Mobile Station) 등의 용어로 언급될 수 있다. 또한, 사용자 장치는 노트북, 휴대폰, PDA(Personal Digital Assistant), 스마트폰, 멀티미디어 기기 등과 같이 휴대 가능한 기기일 수 있고, 또는 PC(Personal Computer), 차량 탑재 장치와 같이 휴대 불가능한 기기일 수도 있다.
도 9에서는 비구조화된 데이터 저장 네트워크 기능(UDSF: Unstructured Data Storage network function), 구조화된 데이터 저장 네트워크 기능(SDSF: Structured Data Storage network function)가 도시되지 않았으나, 도 9에서 도시된 모든 NF들은 필요에 따라 UDSF, SDSF와 상호동작을 수행할 수 있다.
- SDSF는 어떠한 NEF에 의한 구조화된 데이터로서 정보를 저장 및 회수(retrieval) 기능을 지원하기 위한 선택적인 기능이다.
- UDSF은 어떠한 NF에 의한 비구조적 데이터로서 정보를 저장 및 회수(retrieval) 기능을 지원하기 위한 선택적인 기능이다.
다음은 도 9와 같이 표현된 5G 시스템 아키텍처에 포함되는 서비스-기반 인터페이스를 예시한다.
- Namf: AMF에 의해 공개된(exhibited) 서비스-기반 인터페이스
- Nsmf: SMF에 의해 공개된(exhibited) 서비스-기반 인터페이스
- Nnef: NEF에 의해 공개된(exhibited) 서비스-기반 인터페이스
- Npcf: PCF에 의해 공개된(exhibited) 서비스-기반 인터페이스
- Nudm: UDM에 의해 공개된(exhibited) 서비스-기반 인터페이스
- Naf: AF에 의해 공개된(exhibited) 서비스-기반 인터페이스
- Nnrf: NRF에 의해 공개된(exhibited) 서비스-기반 인터페이스
- Nausf: AUSF에 의해 공개된(exhibited) 서비스-기반 인터페이스
NF 서비스는 NF(즉, NF 서비스 공급자)에 의해 다른 NF(즉, NF 서비스 소비자)에게 서비스-기반 인터페이스를 통해 노출되는 능력의 일종이다. NF는 하나 이상의 NF 서비스(들)을 노출할 수 있다. NF 서비스를 정의하기 위하여 다음과 같은 기준이 적용된다:
- NF 서비스들은 종단 간(end-to-end) 기능을 설명하기 위한 정보 흐름으로부터 도출된다.
- 완전한 종단 간(end-to-end) 메시지 흐름은 NF 서비스 호출(invocation)의 시퀀스에 의해 설명된다.
- NF(들)이 자신들의 서비스를 서비스-기반 인터페이스를 통해 제공하는 2가지의 동작은 다음과 같다:
i) "요청-응답(Request-response)": 제어 평면 NF_B (즉, NF 서비스 공급자)는 또 다른 제어 평면 NF_A (즉, NF 서비스 소비자)로부터 특정 NF 서비스(동작의 수행 및/또는 정보의 제공을 포함)의 제공을 요청 받는다. NF_B는 요청 내에서 NF_A에 의해 제공된 정보에 기반한 NF 서비스 결과를 응답한다.
요청을 충족시키기 위하여, NF_B는 교대로 다른 NF(들)로부터의 NF 서비스를 소비할 수 있다. 요청-응답 메커니즘에서, 통신은 두 개의 NF들(즉, 소비자 및 공급자) 간의 일대일로 수행된다.
ii) "가입-통지(Subscribe-Notify)"
제어 평면 NF_A (즉, NF 서비스 소비자)는 또 다른 제어 평면 NF_B (즉, NF 서비스 공급자)에 의해 제공되는 NF 서비스에 가입한다. 다수의 제어 평면 NF(들)은 동일한 제어 평면 NF 서비스에 가입할 수 있다. NF_B는 이 NF 서비스의 결과를 이 NF 서비스에 가입된 관심있는 NF(들)에게 통지한다. 소비자로부터 가입 요청은 주기적인 업데이트 또는 특정 이벤트(예를 들어, 요청된 정보의 변경, 특정 임계치 도달 등)를 통해 트리거되는 통지를 위한 통지 요청을 포함할 수 있다. 이 메커니즘은 NF(들)(예를 들어, NF_B)이 명시적인 가입 요청없이 암묵적으로 특정 통지에 가입한 경우(예를 들어, 성공적인 등록 절차로 인하여)도 포함한다.
도 10은 본 발명이 적용될 수 있는 무선 통신 시스템 아키텍처를 예시한다.
3GPP 시스템에서는 5G 시스템 내 NF들 간을 연결하는 개념적인 링크를 참조 포인트(reference point)라고 정의한다. 다음은 도 10과 같이 표현된 5G 시스템 아키텍처에 포함되는 참조 포인트를 예시한다.
- N1(또는 NG1): UE와 AMF 간의 참조 포인트
- N2(또는 NG2): (R)AN과 AMF 간의 참조 포인트
- N3(또는 NG3): (R)AN과 UPF 간의 참조 포인트
- N4(또는 NG4): SMF와 UPF 간의 참조 포인트
- N5(또는 NG5): PCF와 AF 간의 참조 포인트
- N6(또는 NG6): UPF와 데이터 네트워크 간의 참조 포인트
- N7(또는 NG7): SMF와 PCF 간의 참조 포인트
- N24(또는 NG24): 방문 네트워크(visited network) 내 PCF와 홈 네트워크(home network) 내 PCF 간의 참조 포인트
- N8(또는 NG8): UDM과 AMF 간의 참조 포인트
- N9(또는 NG9): 2개의 코어 UPF들 간의 참조 포인트
- N10(또는 NG10): UDM과 SMF 간의 참조 포인트
- N11(또는 NG11): AMF와 SMF 간의 참조 포인트
- N12(또는 NG12): AMF와 AUSF 간의 참조 포인트
- N13(또는 NG13): UDM과 인증 서버 기능(AUSF: Authentication Server function) 간의 참조 포인트
- N14(또는 NG14): 2개의 AMF들 간의 참조 포인트
- N15(또는 NG15): 비-로밍 시나리오의 경우, PCF와 AMF 간의 참조 포인트, 로밍 시나리오의 경우 방문 네트워크(visited network) 내 PCF와 AMF 간의 참조 포인트
- N16(또는 NG16): 2개의 SMF들 간의 참조 포인트 (로밍 시나리오의 경우, 방문 네트워크(visited network) 내 SMF와 홈 네트워크(home network) 내 SMF 간의 참조 포인트)
- N17(또는 NG17): AMF와 EIR 간의 참조 포인트
- N18(또는 NG18): 어떠한 NF와 UDSF 간의 참조 포인트
- N19(또는 NG19): NEF와 SDSF 간의 참조 포인트
한편, 도 10에서는 설명의 편의 상 UE가 하나의 PDU 세션을 이용하여 하나의 DN에 엑세스하는 경우에 대한 참조 모델을 예시하나 이에 한정되지 않는다.
도 11은 본 발명이 적용될 수 있는 무선 통신 시스템 아키텍처를 예시한다.
도 11에서는 참조 포인트 표현을 이용한, 다중의 PDU 세션을 이용하여 2개의(즉, 지역적(local) 그리고 중앙의(central)) 데이터 네트워크(DN)에 동시에(concurrently) 액세스하는 UE를 위한 비-로밍(non-roaming) 5G 시스템 아키텍처를 나타낸다.
도 11에서는 서로 다른 PDU 세션을 위해 2개의 SMF들이 선택된 경우에 대하여, 다중 PDU 세션을 위한 아키텍처를 예시한다. 다만, 각 SMF는 PDU 세션 내 local UPF 및 central UPF를 모두 제어할 수 있는 능력을 가질 수 있다.
도 12는 본 발명이 적용될 수 있는 무선 통신 시스템 아키텍처를 예시한다.
도 12에서는 참조 포인트 표현을 이용한, 2개의(즉, 지역적(local) 그리고 중앙의(central)) 데이터 네트워크(DN)로 동시의(concurrent) 액세스가 단일의 PDU 세션 내에서 제공되는 경우에 대한 비-로밍(non-roaming) 5G 시스템 아키텍처를 나타낸다.
도 13은 본 발명이 적용될 수 있는 무선 통신 시스템 아키텍처를 예시한다.
도 13에서는 제어 평면 내에서 서비스-기반 인터페이스를 가지는 LBO 시나리오의 경우 로밍 5G 시스템 아키텍처를 나타낸다.
도 14는 본 발명이 적용될 수 있는 무선 통신 시스템 아키텍처를 예시한다.
도 14에서는 제어 평면 내에서 서비스-기반 인터페이스를 가지는 홈 라우팅된(home routed) 시나리오의 경우 로밍 5G 시스템 아키텍처를 나타낸다.
도 15는 본 발명이 적용될 수 있는 무선 통신 시스템 아키텍처를 예시한다.
도 15에서는 참조 포인트 포현을 이용한, LBO 시나리오의 경우 로밍 5G 시스템 아키텍처를 나타낸다.
도 16은 본 발명이 적용될 수 있는 무선 통신 시스템 아키텍처를 예시한다.
도 16에서는 참조 포인트 포현을 이용한, 홈 라우팅된(home routed) 시나리오의 경우 로밍 5G 시스템 아키텍처를 나타낸다.
도 17은 본 발명이 적용될 수 있는 NG-RAN 아키텍처를 예시한다.
도 17을 참조하면, 차세대 액세스 네트워크(NG-RAN: New Generation Radio Access Network)은 UE를 향한 사용자 평면 및 제어 평면 프로토콜의 종단을 제공하는, gNB(NR NodeB)(들) 및/또는 eNB(eNodeB)(들)로 구성된다.
gNB(들) 간에, 또한 gNB(들)과 5GC에 연결되는 eNB(들) 간에 Xn 인터페이스를 이용하여 상호 연결된다. gNB(들) 및 eNB(들)은 또한 5GC에 NG 인터페이스를 이용하여 연결되고, 더욱 구체적으로 NG-RAN과 5GC 간의 제어 평면 인터페이스인 NG-C 인터페이스(즉, N2 참조 포인트)를 이용하여 AMF에 연결되고, NG-RAN과 5GC 간의 사용자 평면 인터페이스인 NG-U 인터페이스(즉, N3 참조 포인트)를 이용하여 UPF에 연결된다.
도 18은 본 발명이 적용될 수 있는 무선 통신 시스템에서 무선 프로토콜 스택을 예시하는 도면이다.
도 18(a)는 UE와 gNB 간의 무선 인터페이스 사용자 평면 프로토콜 스택을 예시하고, 도 18(b)는 UE와 gNB 간의 무선 인터페이스 제어 평면 프로토콜 스택을 예시한다.
제어평면은 UE와 네트워크가 호를 관리하기 위해서 이용하는 제어 메시지들이 전송되는 통로를 의미한다. 사용자 평면은 어플리케이션 계층에서 생성된 데이터, 예를 들어, 음성 데이터 또는 인터넷 패킷 데이터 등이 전송되는 통로를 의미한다.
도 18(a)를 참조하면, 사용자 평면 프로토콜 스택은 제1 계층(Layer 1)(즉, 물리(PHY: physical layer) 계층), 제2 계층(Layer 2)으로 분할될 수 있다.
도 18(b)를 참조하면, 제어 평면 프로토콜 스택은 제1 계층(즉, PHY 계층), 제2 계층, 제3 계층(즉, 무선 자원 제어 무선 자원 제어(RRC: radio resource control) 계층), 넌-액세스 스트라텀(NAS: Non-Access Stratum) 계층으로 분할될 수 있다.
제2 계층은 매체 액세스 제어(MAC: Medium Access Control) 서브계층, 무선 링크 제어(RLC: Radio Link Control) 서브계층, 패킷 데이터 컨버전스 프로토콜(PDC: Packet Data Convergence Protocol) 서브계층, 서비스 데이터 적응 프로토콜(SDAP: Service Data Adaptation Protocol) 서브계층(사용자 평면의 경우)으로 분할된다.
무선 베어러는 2가지 그룹으로 분류된다: 사용자 평면 데이터를 위한 데이터 무선 베어러(DRB: data radio bearer)과 제어 평면 데이터를 위한 시그널링 무선 베어러(SRB: signalling radio bearer)
이하, 무선 프로토콜의 제어평면과 사용자평면의 각 계층을 설명한다.
1) 제1 계층인 PHY 계층은 물리 채널(physical channel)을 사용함으로써 상위 계층으로의 정보 송신 서비스(information transfer service)를 제공한다. 물리 계층은 상위 레벨에 위치한 MAC 서브계층으로 전송 채널(transport channel)을 통하여 연결되고, 전송 채널을 통하여 MAC 서브계층과 PHY 계층 사이에서 데이터가 전송된다. 전송 채널은 무선 인터페이스를 통해 데이터가 어떻게 어떤 특징으로 전송되는가에 따라 분류된다. 그리고, 서로 다른 물리 계층 사이, 송신단의 PHY 계층과 수신단의 PHY 계층 간에는 물리 채널(physical channel)을 통해 데이터가 전송된다.
2) MAC 서브계층은 논리 채널(logical channel)과 전송 채널(transport channel) 간의 매핑; 전송 채널을 통해 PHY 계층으로/으로부터 전달되는 전송 블록(TB: transport block)으로/으로부터 하나 또는 상이한 논리 채널에 속한 MAC 서비스 데이터 유닛(SDU: Service Data Unit)의 다중화/역다중화; 스케줄링 정보 보고; HARQ(hybrid automatic repeat request)를 통한 에러 정정; 동적 스케줄링을 이용한 UE들 간의 우선순위 핸들링; 논리 채널 우선순위를 이용하여 하나의 UE의 논리 채널들 간의 우선순위 핸들링; 패딩(Padding)을 수행한다.
서로 다른 종류의 데이터는 MAC 서브계층에 의해 제공되는 서비스를 전달한다. 각 논리 채널 타입은 어떠한 타입의 정보가 전달되는지 정의한다.
논리 채널은 2가지의 그룹으로 분류된다: 제어 채널(Control Channel) 및 트래픽 채널(Traffic Channel).
i) 제어 채널은 제어 평면 정보만을 전달하기 위하여 사용되며 다음과 같다.
- 브로드캐스트 제어 채널(BCCH: Broadcast Control Channel): 시스템 제어 정보를 브로드캐스팅하기 위한 하향링크 채널.
- 페이징 제어 채널(PCCH: Paging Control Channel): 페이징 정보 및 시스템 정보 변경 통지를 전달하는 하향링크 채널.
- 공통 제어 채널(CCCH: Common Control Channel): UE와 네트워크 간의 제어 정보를 전송하기 위한 채널. 이 채널은 네트워크와 RRC 연결을 가지지 않는 UE들을 위해 사용된다.
- 전용 제어 채널(DCCH: Dedicated Control Channel): UE와 네트워크 간에 전용 제어 정보를 전송하기 위한 점-대-점(point-to-point) 쌍방향 채널. RRC 연결을 가지는 UE에 의해 사용된다.
ii) 트래픽 채널은 사용자 평면 정보만을 사용하기 위하여 사용된다:
- 전용 트래픽 채널(DTCH: Dedicated Traffic Channel: 사용자 정보를 전달하기 위한, 단일의 UE에게 전용되는, 점-대-점(point-to-point) 채널. DTCH는 상향링크 및 하향링크 모두 존재할 수 있다.
하향링크에서, 논리 채널과 전송 채널 간의 연결은 다음과 같다.
BCCH는 BCH에 매핑될 수 있다. BCCH는 DL-SCH에 매핑될 수 있다. PCCH는 PCH에 매핑될 수 있다. CCCH는 DL-SCH에 매핑될 수 있다. DCCH는 DL-SCH에 매핑될 수 있다. DTCH는 DL-SCH에 매핑될 수 있다.
상향링크에서, 논리 채널과 전송 채널 간의 연결은 다음과 같다. CCCH는 UL-SCH에 매핑될 수 있다. DCCH는 UL- SCH에 매핑될 수 있다. DTCH는 UL-SCH에 매핑될 수 있다.
3) RLC 서브계층은 3가지의 전송 모드를 지원한다: 트랜트패런트 모드(TM: Transparent Mode), 비확인 모드(UM: Unacknowledged Mode), 확인 모드(AM: Acknowledged Mode).
RLC 설정은 논리 채널 별로 적용될 수 있다. SRB의 경우 TM 또는 AM 모드가 이용되고, 반면 DRB의 경우 UM 또는 AM 모드가 이용된다.
RLC 서브계층은 상위 계층 PDU의 전달; PDCP와 독립적인 시퀀스 넘버링; ARQ(automatic repeat request)를 통한 에러 정정; 분할(segmentation) 및 재-분할(re-segmentation); SDU의 재결합(reassembly); RLC SDU 폐기(discard); RLC 재-확립(re-establishment)을 수행한다.
4) 사용자 평면을 위한 PDCP 서브계층은 시퀀스 넘버링(Sequence Numbering); 헤더 압축 및 압축-해제(decompression)(강인한 헤더 압축(RoHC: Robust Header Compression)의 경우만); 사용자 데이터 전달; 재배열(reordering) 및 복사 검출(duplicate detection) (PDCP 보다 상위의 계층으로 전달이 요구되는 경우); PDCP PDU 라우팅 (분할 베어러(split bearer)의 경우); PDCP SDU의 재전송; 암호화(ciphering) 및 해독화(deciphering); PDCP SDU 폐기; RLC AM를 위한 PDCP 재-확립 및 데이터 복구(recovery); PDCP PDU의 복제를 수행한다.
제어 평면을 위한 PDCP 서브계층은 추가적으로 시퀀스 넘버링(Sequence Numbering); 암호화(ciphering), 해독화(deciphering) 및 무결성 보호(integrity protection); 제어 평면 데이터 전달; 복제 검출; PDCP PDU의 복제를 수행한다.
RRC에 의해 무선 베어러를 위한 복제(duplication)이 설정될 때, 복제된 PDCP PDU(들)을 제어하기 위하여 추가적인 RLC 개체 및 추가적인 논리 채널이 무선 베어러에 추가된다. PDCP에서 복제는 동일한 PDCP PDU(들)을 2번 전송하는 것을 포함한다. 한번은 원래의 RLC 개체에게 전달되고, 두 번째는 추가적인 RLC 개체에게 전달된다. 이때, 원래의 PDCP PDU 및 해당 복제본은 동일한 전송 블록(transport block)에 전송되지 않는다. 서로 다른 2개의 논리 채널이 동일한 MAC 개체에 속할 수도 있으며(CA의 경우) 또는 서로 다른 MAC 개체에 속할 수도 있다(DC의 경우). 전자의 경우, 원래의 PDCP PDU와 해당 복제본이 동일한 전송 블록(transport block)에 전송되지 않도록 보장하기 위하여 논리 채널 매핑 제한이 사용된다.
5) SDAP 서브계층은 i) QoS 흐름과 데이터 무선 베어러 간의 매핑, ii) 하향링크 및 상향링크 패킷 내 QoS 흐름 식별자(ID) 마킹을 수행한다.
SDAP의 단일의 프로토콜 개체가 각 개별적인 PDU 세션 별로 설정되나, 예외적으로 이중 연결성(DC: Dual Connectivity)의 경우 2개의 SDAP 개체가 설정될 수 있다.
6) RRC 서브계층은 AS(Access Stratum) 및 NAS(Non-Access Stratum)과 관련된 시스템 정보의 브로드캐스트; 5GC 또는 NG-RAN에 의해 개시된 페이징(paging); UE와 NG-RAN 간의 RRC 연결의 확립, 유지 및 해제(추가적으로, 캐리어 병합(carrier aggregation)의 수정 및 해제를 포함하고, 또한, 추가적으로, E-UTRAN과 NR 간에 또는 NR 내에서의 이중 연결성(Dual Connectivity)의 수정 및 해제를 포함함); 키 관리를 포함한 보안 기능; SRB(들) 및 DRB(들)의 확립, 설정, 유지 및 해제; 핸드오버 및 컨텍스트 전달; UE 셀 선택 및 재해제 및 셀 선택/재선택의 제어; RAT 간 이동성을 포함하는 이동성 기능; QoS 관리 기능, UE 측정 보고 및 보고 제어; 무선 링크 실패의 검출 및 무선 링크 실패로부터 회복; NAS로부터 UE로의 NAS 메시지 전달 및 UE로부터 NAS로의 NAS 메시지 전달을 수행한다.
세션 및 서비스 연속성(SSC: session and service continuity)
3GPP SA2에서는 UE의 이동성에 따른 세션 및 서비스 연속성을 지원하기 위한 방법에 대한 논의가 진행되고 있다.
차세대 시스템(예를 들어, 5G 시스템)에서는 3가지의 SSC 모드를 지원하기 위한 솔루션이 논의되고 있다.
이 솔루션은 UE와 사용자 평면 기능(이하, 이를 종단 사용자 평면 기능(TUPF: terminating user-plane function)이라 지칭하지만, 상술한 UPF로 대체될 수 있음) 간의 존재하는 PDU 세션을 가정한다. TUPF는 3GPP 사용자 평면을 종단(terminate)하고, 데이터 네트워크와 접속시킨다(interface).
1) SSC 모드 정의
차세대 시스템은 다음과 같은 SSC 모드를 지원한다.
- SSC 모드 1: UE가 네트워크에 액세스하기 위하여 사용 중인 액세스 기술(예를 들어, RAT 및 셀)과 무관하게 동일한 TUPF가 유지된다.
- SSC 모드 2: TUPF의 서빙 영역으로 지칭되는 액세스 네트워크 어태치(attachment) 포인트(예를 들어, 셀 및 RAT)의 부분집합(즉, 하나 또는 그 이상, 다만 전체는 아닌)을 통해서만 동일한 TUPF가 유지된다. UE가 TUPF의 서빙 영역을 벗어날 때, UE는 UE의 네트워크로의 새로운 어태치(attachment) 포인트에 적합한 서로 다른 TUPF에 의해 서비스 받는다.
- SSC 모드 3: 이 모드에서, 네트워크는 UE와 이전 TUPF 간의 연결이 종료되기 전에 새로운 TUPF를 경유하여 동일한 데이터 네트워크(DN)로의 UE 연속성의 확립을 허용한다. 트리거 조건이 적용될 때, 네트워크는 UE의 네트워크로의 새로운 어태치(attachment) 포인트에 적합한 타겟 TUPF를 선택한다. 두 개의 TUPF들이 모두 활성화 중에, UE는 이전의 주소/프리픽스(prefix)로부터 새로운 주소/프리픽스(prefix)로의 어플리케이션을 능동적으로 재바인딩(rebind)하거나 또는 이전의 주소/프리픽스(prefix)에 바인딩 된 플로우가 끝날 때까지 대기한다.
2) 모드 선택 및 네트워크 지원
모드 선택 및 네트워크 지원과 관련하여, 다음과 같은 원칙이 적용된다:
- PDU 세션을 요청할 때, UE는 네트워크에게 PDU 세션 셋업 시그널링의 일부로서 요청된(requested) SSC 모드를 지시할 수 있다. UE가 요청된 SSC 모드를 결정하는 방법은 후술한다.
- 서빙 네트워크는 가입 데이터베이스로부터 가입 정보의 일부로서 가입자 별 데이터 네트워크 별 지원되는 SSC 모드의 리스트 및 기본(default) SSC 모드를 수신한다.
- 서빙 네트워크는 가입 정보 및/또는 로컬(local) 설정에 기반하여 요청된 SSC 모드를 승인함으로써 또는 요청된 SSC 모드를 수정함으로써 SSC 모드를 선택한다.
- UE가 새로운 PDU 세션을 요청할 때 SSC 모드를 제공하지 않으면, 네트워크는 가입 정보에 열거된 기본 SSC 모드를 (데이터 네트워크에 연결하기 위하여) 선택하거나 또는 SSC 모드를 선택하기 위한 로컬 설정을 적용한다.
- SSC 모드를 선택한 후, 네트워는 (a) UE로부터 PDU 세션 요청을 승인하고, UE에게 승인된 선택된 SSC 모드를 지시하거나, (b) 네트워크는 PDU 세션 요청을 거절하고, 선택된 SSC 모드 및 원인 값(cause value)를 UE에게 전송함으로써 선택된 SSC 모드가 이미 UE 내 또 다른 PDU 세션에 의해 사용되고 있음을 지시한다.
- SSC 모드는 PDU 세션 별로 적용한다. UE는 서로 다른 PDU 세션에 서로 다른 SSC 모드를 요청한다. 즉, 동일한 UE를 위해 동시에 활성화된 서로 다른 PDU 세션은 서로 다른 SSC 모드를 가질 수 있다.
- SSC 모드는 PDU 세션의 수명(lifetime) 동안에 변경되지 않는다.
- TUPF 선택: PDU 세션을 위한 TUPF를 선택할 때, 네트워크는 UE의 현재 어태치(attachment) 포인트 및 요청된 SSC 모드를 고려한다.
3) SSC 모드 1
SSC 모드 1와 관련하여, 다음과 같은 원칙이 적용된다:
- 할당된 TUPF는 PDU 세션의 수명(lifetime) 동안에 유지된다. 즉, TUPF는 네트워크에 의해 변경되지 않는다.
4) SSC 모드 2
SSC 모드 2와 관련하여, 다음과 같은 원칙이 적용된다:
- 서로 다른 TUPF로의 리다이렉션(redirection) 트리거: 네트워크는 UE의 PDU 세션에 할당된 TUPF가 UE 이동성, 로컬 정책(즉, 할당된 TUPF의 서빙 영역에 대한 정보)에 기반하여 TUPF가 리다렉션(redirection)될 필요가 있는지 여부를 판단한다.
- 리다이렉션(redirection) 절차: 네트워크는 먼저 현재 TUPF와 연관된 사용자 평면 경로를 해제하고 다음으로 새로운 TUPF에 상응하는 사용자 평면 경로를 셋업함으로써 UE의 트래픽을 서로 다른 TUPF에게 리다이렉션(redirection)한다. 다음과 같은 2가지의 솔루션이 이용된다. 하나는 TUPF를 재할당할 때 PDU 세션이 보존된다. 다른 하나는 네트워크는 현재 TUPF에 상응하는 UE의 PDU 세션를 단절하고, UE에게 즉시 PDU 세션(새로운 TUPF의 선택의 결과인)을 재활성하도록 요청한다. 이 프로세스 동안에, UE는 어태치(attach)된 상태를 유지한다. 네트워크는 네트워크로의 UE의 현재 어태치(attachment) 포인트를 기반으로 TUPF를 선택한다.
5) SSC 모드 3
SSC 모드 3과 관련하여, 다음과 같은 원칙이 적용된다:
- 서로 다른 TUPF로의 리다이렉션(redirection) 트리거: 네트워크는 TUPF가 UE의 PDU 세션에 할당된 TUPF가 로컬 정책(즉, 할당된 TUPF의 서빙 영역에 대한 정보)에 기반하여 리다렉션(redirection)될 필요가 있는지 여부를 판단한다.
- 리다이렉션(redirection) 절차: 네트워크는 UE에게 UE의 활성화된 PDU 세션 중의 하나 상의 트래픽이 리다이렉션(redirection)될 필요가 있는지 지시한다. 네트워크는 또한 타이머를 시작하고, 타이머 값을 UE에게 지시한다. 사용자 평면 경로는 새로운 TUPF를 향하여 확립된다. 다음과 같은 2가지의 솔루션이 이용된다. 하나는 PDU 세션이 추가적인 사용자 평면 경로를 위해 재사용된다. 다른 하나는 추가적인 PDU 세션이 재확립된다. 네트워크는 네트워크로의 UE의 현재 어태치(attachment) 포인트를 기반으로 TUPF를 선택한다. 활성화된 PDU 세션이 리다이렉션(redirection)될 필요가 있다고 네트워크로부터 이전의 지시 없이 UE가 동일한 DN에게 추가적인 PDU 세션을 위한 요청을 전송하였으면, 네트워크는 UE의 요청을 거절한다.
- 새로운 TUPF와 연관된 새로운 사용자 평면 경로가 확립되었으면, UE는 다음과 같은 옵션 중 하나를 수행할 수 있다.
옵션 1: UE는 이전의 TUPF와 바인딩된(bound) 어플리케이션 플로우를 새로운 TUPF에게 능동적으로 리다이렉션(redirection)한다(예를 들어, 상위 계층 세션 연속성 메커니즘을 이용함으로써). UE가 새로운 TUPF로의 어플리케이션 플로우를 리다이렉션(redirection)을 완료하면, 이전의 TUPF는 해제된다.
옵션 2: UE는 새로운 TUPF로 새로운 어플리케이션 플로우를 조정(steer)한다. 이전의 TUPF를 경유하는 이전의 플로우는 플로우가 종료될 때까지 계속된다. 이전의 TUPF를 이용하는 모든 플로우가 종료되면, 이전의 TUPF는 해제된다. 옵션 2가 사용될 때, 다중-홈(multi-homed) PDU 세션은 이전의 TUPF에 바인딩된(bound) 어플리케이션 플로우를 전송하기 위하여 사용될 수 있다. 이전의 TUPF와 새로운 TUPF 간의 터널은 그러한 플로우를 전달하기 위하여 사용된다.
- 타이머가 만료될 때 이전의 TUPF가 해제되지 않았으면, 또는 네트워크가 이전의 TUPF가 비활성화되었음을 감지하면, 네트워크는 이전의 TUPF를 해제한다.
PDU 세션 별 세션 관리
이 솔루션은 다음과 같은 원칙에 기초한다:
- SMF 및 AMF는 서로 다른 네트워크 기능들로 분리된다. UE가 다중 네트워크 슬라이스 인스턴스에 등록된 경우, UE는 다중 SMF들로부터 서비스될 수 있다. 즉, 다중 PDU 세션이 확립된다.
- 다중 PDU 세션(동일한 또는 서로 다른 네트워크 슬라이스로의)이 주어진 UE를 위해 확립된다. 하나의 PDU 세션은 아이들(Idle) 상태 또는 활성(Active) 상태일 수 있다.
- UP 연결(데이터 무선 연결 및 N3 터널 확립 포함)이 하나의 PDU 세션을 위해 활성화될 수 있다. 다른 PDU 세션들에 대한 UP 연결(동일한 또는 서로 다른 네트워크 인스턴스들로의)은 독립적으로 활성화/비활성화될 수 있다.
- PDU 세션 활성화 및 비활성화를 위한 절차가 제안된다.
여기서, PDU 세션 활성화는 SMF 내에서 "활성화(Active)" 세션 상태로의 전송이며, UP 연결이 확립된다. PDU 세션 비활성화는 SMF 내 "아이들(Idle)" 세션 상태로의 전환이며, UP 연결이 해제/비활성화된다.
- 기존의 GPRS 및 EPS 내 시그널링 관리(SM: Signaling Management)(즉, Active/Idle 전환 관리)와 유사하게, 모든 존재하는 PDU 세션에 대해 함께 SM을 수행하는 것을 배제하지 않는다. 모든 PDU 세션의 활성화를 수행하는지 또는 개별적인 PDU 세션의 활성화를 수행하는지 여부는 가입 정보 및 UE 능력에 기반할 수 있다.
도 19는 본 발명이 적용될 수 있는 무선 통신 시스템의 참조 아키텍처를 예시한다.
도 19에서는 독립적인 SMF를 가지는 서로 다른 네트워크 슬라이스들로 3개의 PDU 세션을 가지는 참조 아키텍처를 예시한다.
공통된 제어 평면 네트워크 기능(CCNF: Common Control Plane Network Function)은 이동성 관리 기능(AMF) 또는 AAA 기능을 포함할 수 있다. 전용된 제어 평면 네트워크 기능(Ded. CP NF: Dedicated Control Plane Network Function)은 세션 관리 기능(SMF)을 포함할 수 있으며, 선택적으로 정책 제어 기능(PCF)을 포함할 수 있다.
도 20은 본 발명이 적용될 수 있는 무선 통신 시스템에서 세션/이동성 상태 머신(state machine)을 예시한다.
도 20에서는 다중 세션 상태 머신(확립된 세션 별로 하나) 및 단일의 이동성 상태 머신을 예시한다.
도 20에서는 존재하는 세션(즉, 네트워크 슬라이스, 또는 PDU 세션) 별로 독립적인 세션 상태 머신을 나타낸다. 세션 상태 머신은 SMF 내 UE의 SM 컨텍스트의 일부로서 유지될 수 있다. 세션 상태 머신은 또한 AMF 내 유지될 수 있다.
CCNF(예를 들어, AMF)는 모든 확립된 PDU 세션에 대한 세션 상태(Idle 또는 Active)를 알고 있다. 이와 함께, 이동성 컨텍스트에 추가하여, AMF는 모든 확립된 PDU 세션을 위한 상태 정보를 또한 유지한다.
예를 들어, 하나의 PDU 세션이 비활성화(즉, UP 연결이 해제되지만, 컨텍스트는 UE, SMF/UPF 내에서 유지됨)되면, AMF는 UE가 RAN 노드를 이동하거나 변경할 때 해당 SMF가 업데이트되지 않아야 한다고 알고 있다. 반면, PDU 세션이 활성화되면, (R)AN 모드가 UE 이동성으로 인해 변경될 때마다 해당 SMF가 새로운 (R)AN 노드의 상세 정보(예를 들어, IP 주소, 터널 식별자, 전송 포트 식별자(transport port ID) 또는 다른 파라미터들)로 업데이트되어야 한다는 것을 AMF는 알고 있다.
도 21은 본 발명이 적용될 수 있는 무선 통신 시스템에서 세션 활성화 절차를 예시하는 도면이다.
도 21에서는 다른 PDU 세션과 독립된 하향링크 데이터 전송(즉, 단말 종단(MT: Mobile Terminate)의 경우)에 의해 트리거된 세션 활성화 절차를 예시한다.
1. UPF2는 UP 연결의 확립을 위해 세션 활성화 요청(Activate session request) 절차를 개시한다.
2. SMF2는 CCNF(예를 들어, AMF)를 향해 세션 활성화 요청 절차를 개시한다. SMF2는 세션 식별자(ID), QoS 파라미터, 페이징 우선순위 및 UPF 식별자(ID)(NG3 터널 확립을 위해 필요한, 예를 들어, IP 주소, 터널링 종단포인트 식별자(tunnelling endpoint ID) 및/또는 전송 계층 포트 식별자(transport layer port ID))를 포함시킨다. CCSF가 다른 SMF(예를 들어, SMF1)과 또 다른 세션 활성화 요청 절차를 진행 중이고 SMF2로부터 세션 활성화 요청(Activate session request) 메시지가 진행 중인 것과 동일하거나 낮은 페이징 우선순위를 가지면, CCSF는 UE에게 새로운 페이징 절차를 개시하지 않는다.
3-4. AMF가 대기(Standby) 상태이면, AMF는 UE에게 페이징 절차를 개시한다. 페이징 메시지는 UPF2에게 도착된 하향링크 패킷에 상응하는 세션 식별자(ID)를 포함한다. AMF가 준비(Ready) 상태(즉, UPF1과 활성화된 세션이 존재함)이면, CCNF는 페이징 절차를 수행하는 대신 NG1 인터페이스를 통해 세션 통지(service notification) 메시지를 UE에게 전송한다.
4. UE는 서비스 요청(Service Request) 메시지를 CCNF에게 전송한다. 3 단계에서 세션 ID가 존재하였다면 Service Request 메시지는 세션 ID를 포함한다.
5-7. CCNF(예를 들어, AMF)는 RAN 노드를 향해 UE 컨텍스트 셋업(UE context setup) 절차를 수행한다. 이 PDU 세션을 위한 UE 내 세션 상태는 "활성화(Active)"로 변경되고, UE는 데이터를 송수신할 수 있다.
8. AMF는 2 단계에 대하여 NG3 터널 확립을 위한 RAN 노드 UP 정보를 포함하는 응답을 SMF2에게 전송한다. CCNF가 다중의 SMF들로부터 Activate session request 메시지를 수신하였으며, 다중의 세션 활성화 응답(Activate session response) 메시지는 해당 SMF들에게 응답한다.
9. SMF2는 NG3 터널 확립을 위해 필요한 정보로 UPF3를 업데이트한다.
도 22는 본 발명이 적용될 수 있는 무선 통신 시스템에서 세션 활성화 절차를 예시하는 도면이다.
도 22에서는 다른 PDU 세션의 활성화와 독립된 상향링크 데이터 전송(즉, 단말 발생(MT: Mobile Originated)의 경우)에 의해 트리거된 세션 활성화 절차를 예시한다.
1. PDU 세션 2를 위한 상향링크 데이터로 인하여, UE는 초기 NAS 메시지를 전송하기 위하여 RAN 노드와 RRC 연결 확립(RRC connection establishment)을 개시한다. UE가 활성화된 세션(즉, 준비(Ready) 상태)을 가진다면, UE는 이 단계를 생략하고, 3 단계를 수행한다.
2. UE가 어떠한 활성화된 세션을 가지지 않으면, UE는 서비스 요청(Service Request) 메시지를 CCNF에게 전송한다. Service Request 메시지는 UE가 활성화하길 원하는 세션 식별자(ID)를 포함한다.
3. UE는 활성화된 세션을 가지면(즉, 준비(Ready) 상태), UE는 UE가 활성화하길 원하는 세션 식별자(ID)를 포함하는 NAS SM 세션 활성화(NAS SM session activation) 메시지를 전송한다.
4-6. CCNF(예를 들어, AMF)는 SMF2와 세션 활성화(Activate session) 절차를 수행한다. SMF2는 필요하다면 UPF2를 업데이트하고, 해당 저장된 QoS 파라미터 및 UPF 식별자(ID)로 AMF에게 응답한다.
7-9. CCNF(예를 들어, AMF)는 RAN 노드와 UE 컨텍스트 셋업(UE context setup) 절차를 수행한다. 이 PDU 세션을 위한 UE 내 세션(SM) 상태는 "활성화(Active)"로 변경되고, UE는 이 PDU 세션을 이용하여 데이터를 송수신할 수 있다.
10-12. AMF는 SMF2 및 UPF2에게 NG3 터널 확립을 위한 RAN 노드 UP 정보를 알리기 위해 관련된 SMF2를 향해 세션 업데이트(Update session) 절차를 수행한다.
세션 비활성화(session deactivation)를 위한 절차는 UP 연결(데이터 무선 연결 및 NG3 연결/터널)의 해제를 포함한다. SMF 내 UE의 컨텍스트 및 UE 내 NAS SM 컨텍스트가 유지되지만, 상태는 "Idle"이다. 세션 비활성화 절차는 RAN 노드에 의해 개시될 수 있다.
PDU 세션 별 활성화와 관련된 액세스 네트워크(AN: Access Network)와 코어 네트워크(CN: Core Network) 간의 상호 동작
EPS(evolved packet system)의 경우, PDN 연결이 확립되고 베어러가 생성되면, UE가 아이들 모드(Idle mode)(예를 들어, ECM(EPS Connection Management)-IDLE 모드) 진입 후, 서비스 요청(service request) 절차 등을 이용하여 연결 셋업 시 UE가 원하는 서비스를 위한 PDN 연결인지 여부와 상관없이 모든 PDN 연결이 활성화된다.
또한, UE가 연결 모드(connected mode)(예를 들어, ECM-CONNECTED 모드)에서 이동성으로 인해 핸드오버할 때, UE에게 설정되어 있는 모든 PDN 연결(들)이 모두 이동(즉, 핸드오버)된다.
하지만, 5G(5 Generation) 시스템에서는 PDU(Protocol Data Unit) 세션 별 활성화(activation)(및/또는 비활성화(deactivation)) 개념의 도입되었다.
이 경우, UE는 Idle 모드에서 Connected 모드로 전환 시, UE가 활성화를 원하는 PDU 세션만을 활성화할 것을 요청할 수 있다. 또한, UE 수신 호에 대해서도, 네트워크에서 PDU 세션 별로 활성화(및/또는 비활성화)가 가능하다. 이에 따라, 핸드오버를 수행하는 경우에도, 해당 UE에 대해 확립된 모든 PDU 세션을 핸드오버 절차 중에 이동(즉, 핸드오버)하는 것이 아니라 활성화되어 있는 PDU 세션만을 핸드오버할 수 있다.
도 23은 본 발명이 적용될 수 있는 무선 통신 시스템에서 PDU 세션 별 활성화 과정을 예시하는 도면이다.
1-2. UE는 2개의 PDU 세션을 가질 수 있다. 도 23에서 PDU 세션 1은 UPF 1을 통해 확립된 PDU 세션을 예시하고, PDU 세션 2는 UPF 2를 통해 확립된 PDU 세션을 예시하고 있다.
3. 이후, 송수신 종료로 인한 UE의 비활동(Inactivity)이 감지되면, N2 해제 절차(N2 release procedure)가 수행된다. 이때, UE는 Idle 모드로 전환된다.
4-1. 이후, UE가 다시 서비스를 원하는 경우, UE는 활성화(activation)을 원하는 세션 식별자(ID: Identifier)을 포함하여 서비스 요청(Service Request) 메시지를 소스(source) AMF에게 전송할 수 있다.
도 23에서는 UE가 PDU 세션 1의 활성화만을 원하여, Service Request 메시지 내 세션 ID 1만을 포함시킨 경우를 예시한다.
이 경우, UE는 생성된(확립된) PDU 세션 1, 2 모두를 (활성화) 요청하는 것이 아니라 현재 서비스를 원하는 PDU 세션 1만을 활성화해 줄 것을 요청하는 것을 의미한다.
4-2. 소스 AMF는 세션 관리(SM: Session Management) 요청 메시지를 SMF 1에게 전송한다. SM 요청 메시지는 활성화가 요청된 PDU 세션 ID와 gNB 식별자(ID: Identifier), 셀 식별자(ID: Identifier)를 포함할 수 있다.
도 23에서는 Service Request 메시지 내 포함된 세션 ID 1만이 SM 요청 메시지 내 포함되는 경우를 예시한다.
4-3. SMF 1은 4-2 단계의 SM 요청 메시지에 대한 응답으로 SM 요청 확인응답(SM Request Ack) 메시지를 소스 AMF에게 전송한다. SM 요청 확인응답 메시지는 활성화의 대상인 PDU 세션 ID와 해당 PDU 세션에 대한 서비스 품질(QoS: Quality of Service) 규칙을 포함할 수 있다.
4-4. 소스 AMF는 컨텍스트 셋업 요청(Context Setup Request) 메시지를 소스 gNB에게 전송한다. Context Setup Request 메시지는 활성화 대상인 PDU 세션(즉, 셋업 PDU 세션), 해당 PDU 세션에 대한 QoS 규칙, 보안 정보(security info)를 포함할 수 있다.
4-3 및 4-4 단계를 통해, SMF 1에서 PDU 세션 1에 대한 컨텍스트가 소스 AMF을 경유하여 gNB에게 전달된다.
4-5. 소스 gNB는 데이터 무선 베어러(DRB: Data Radio Bearer)를 활성화한다. 즉, 이 단계를 통해 gNB와 단말 사이의 무선 자원 예약 및 할당이 진행된다.
4-6. 소스 gNB는 Context Setup Request 메시지에 대한 응답으로 컨텍스트 셋업 응답(Context Setup Response) 메시지를 소스 AMF에게 전송한다. Context Setup Response 메시지는 수락된 PDU 세션(accepted PDU), 해당 PDU 세션에 대한 수락된 QoS 규칙(accepted QoS Rule)을 포함할 수 있다.
4-7. 소스 AMF는 SM 요청 메시지를 SMF 1에게 전송한다. SM 요청 메시지는 활성화 대상인 PDU 세션 ID, 해당 PDU 세션에 대한 수락된 QoS 규칙(accepted QoS Rule)을 포함할 수 있다.
4-6 및 4-7 단계를 통해 gNB는 설정 가능한 QoS 규칙 정보를 AMF를 통해 SMF 1에게 전달할 수 있다.
4-8. SMF 1은 UPF 1(즉, IP 앵커(anchor))에게 세션 활성화 요청(Session Activation Request) 메시지를 전송한다. Session Activation Request 메시지는 활성화 대상인 PDU 세션 ID, 해당 PDU 세션에 대한 QoS 규칙을 포함할 수 있다.
4-9. UPF 1은 Session Activation Request 메시지에 대한 응답으로 세션 활성화 확인응답(Session Activation Ack) 메시지를 SMF 1에게 전송한다.
4-10. SMF 1은 4-7 단계의 SM Request 메시지에 대한 응답으로 SM 요청 확인응답(SM Request Ack) 메시지를 소스 AMF에게 전송한다.
4-7 단계 내지 4-10 단계의 동작을 통해 PDU 세션 1의 서비스를 위한 UE와 gNB 사이, gNB와 UPF 1 사이의 인터페이스가 설정된다.
이후, UPF 1을 경유하여 PDU 세션 1에 대한 데이터 송수신이 가능하다.
상술한 바와 같이, 연결 모드(connected mode)인 UE의 이동성으로 인하여 핸드오버할 때, UE에게 설정되어 있는 모든 PDU 세션(들)이 모두 이동(즉, 핸드오버)된다. 즉, UE가 핸드오버 이후에도 계속하여 원하는 서비스를 위한 PDN 연결인지 여부와 무관하게 모든 PDN 연결이 핸드오버되었다. 따라서, 핸드오버 이후에 UE가 원하지 않은 서비스에 대한 PDN 연결에 대해서는 연결 해제 절차가 수행되므로 불필요한 동작이 수행되게 된다.
이러한 단점을 해결하기 위하여, 본 발명에서는 연결 모드(connected mode)인 UE가 핸드오버를 수행할 때, 해당 UE에 대해 확립된 모든 PDU 세션을 핸드오버 절차 중에 이동(즉, 핸드오버)하는 것이 아니라 활성화되어 있는 PDU 세션만을 핸드오버하는 방법을 제안한다.
특히, 5G 시스템에서는 UE의 이동성 관리는 AMF에서 수행되고, UE의 세션 관리는 SMF에서 수행되므로, AMF가 해당 UE에 대해 확립된 PDU 세션 중 어떠한 PDU 세션이 활성화되어 있는지 알 수 없다는 문제가 발생한다.
또한, UE의 세션 관리는 SMF에서 수행되며, UE에게 확립된 PDU 세션 별로 이를 관리하는 SMF가 상이할 수 있다. 이러한 상황에서 활성화 여부와 무관하게 UE에 대해 확립된 모든 PDU 세션에 대하여 핸드오버를 진행하게 된다면, 비활성화된 PDU 세션을 관리하는 SMF에서 불필요한 시그널링이 발생하는 문제가 있다.
또한, 위와 마찬가지로, 활성화 여부와 무관하게 UE에 대해 확립된 모든 PDU 세션에 대하여 핸드오버를 진행하게 된다면, 비활성화된 PDU 세션을 관리하는 SMF에서 불필요한 처리/시그널링 등을 위한 시간이 소비됨으로써 핸드오버 절차가 신속하게 수행될 수 없다는 문제가 있다.
따라서, 본 발명에서는 UE의 이동성을 관리하는 AMF에서 UE에게 확립된 PDU 세션 중 활성화된 PDU 세션에 대해서만 핸드오버를 수행하는 방법을 제안한다.
도 24는 본 발명의 일 실시예에 따른 핸드오버 수행 방법을 예시하는 도면이다.
도 24에서는 AMF와 SMF/UPF가 모두 변경되지 않는 경우를 예시하고 있지만, {AMF, SMF, UPF} 중 적어도 어느 하나가 변경되는 경우에도 적용될 수 있다.
도 24에서는 UE에게 PDU 세션 2개가 확립되어 있으며, PDU 세션 별 활성화에 의해 UE에게 설정된 PDU 세션 2개 중 1개가 활성화된 상태에서 UE의 이동성에 의해 N2 기반 핸드오버가 수행되는 경우를 가정한다. N2 기반 핸드오버는 상호 간의 인터페이스가 없는 RAN(즉, gNB) 간의 핸드오버 또는 AMF의 변경이 필요한 경우 N2 interface를 통한 핸드오버를 의미한다.
1. 소스(Source) gNB(또는 소스 무선 액세스 네트워크(RAN: Radio Access Network))는 UE의 이동성에 의해 타겟(target) gNB(또는 타겟 RAN)로의 핸드오버를 결정한다.
또한, source gNB는 target gNB와 source gNB 사이의 인터페이스의 부재 혹은 AMF 변경 등에 의해 N2 기반 핸드오버의 실시를 결정한다. 즉, source gNB는 N2 인터페이스를 통한 재배치(relocation)을 트리거하도록 결정한다.
2. Source gNB는 서빙(serving) AMF(또는 소스 AMF)에게 핸드오버 요구(Handover Required) 메시지를 전송한다.
이때, Source gNB는 Handover Required 메시지 내 AMF가 수신해서 처리할 수 있는 필드에 source gNB가 서비스하고 있는 활성화된 PDU 세션 식별자(ID: Identifier)(들)을 포함시킨다. 다시 말해, source gNB에 의해 처리되는 모든 PDU 세션(즉, 활성화된 사용자 평면 연결을 가지는 모든 존재하는 PDU 세션)에 대한 PDU 세션 ID가 Handover Required 메시지 내 포함될 수 있다. 여기서, PDU 세션의 사용자 평면 연결의 활성화는 UE와 코어 네트워크 간의 사용자 평면 연결(즉, 데이터 무선 베어러 및 N3(gNB(또는 RAN)와 UPF 간의 인터페이스/참조 포인트) 터널)의 활성화를 야기한다. 또한, PDU 세션의 사용자 평면 연결의 비활성화는 데이터 무선 베어러 및 N3 터널이 비활성화되는 것을 야기한다. 이때, 서로 다른 PDU 세션의 사용자 평면 연결은 독립적으로 비활성화될 수 있다.
이러한 Handover Required 메시지 내 포함된 PDU 세션 ID는 해당 PDU 세션(들)이 소스 gNB에 의해 핸드오버가 요청됨을 지시할 수 있다.
또한, AMF가 SMF 재배치(relocation) 여부를 판단할 수 있도록, 소스 gNB는 target gNB의 주소(또는 target gNB의 식별자(ID: Identifier)) 등을 Handover Required 메시지 내 포함할 수 있다.
또한, 소스 gNB는 활성화된 PDU 세션 별로 SMF에게 전송 가능한 시그널링 관리(SM: Signaling Management) 트랜스패런트 컨테이너(SM transparent container)를 생성해서 Handover required 메시지 내 포함할 수 있다. 이러한 트랜스패런트 컨테이너는 코어 네트워크에게 트랜스패런트(transparent)하며(즉, 코어 네트워크에서 변경/수정없이), 타겟 gNB에게 전달되고, 타겟 gNB에 의해 사용될 수 있다.
3. AMF는 Handover required 메시지에 포함된 PDU 세션 ID에 해당하는(연계된(associated)) SMF에게 수신한 해당 SM transparent container를 SM 메시지(예를 들어, SM 요청(SM Request) 메시지)에 포함시켜 전송한다.
AMF는 이전에 PDU 세션 생성(확립) 시 PDU 세션 ID와 SMF 주소(또는, SMF 식별자(ID: Identifier))의 연결 관계를 저장하고 있다. 즉, AMF는 PDU 세션 ID와 SMF(즉, SMF 식별자) 간의 연계(association)를 저장한다. 하지만, AMF는 해당 PDU 세션의 활성화 여부 및 PDU 세션 관련 컨텍스트를 저장하고 있지 않는 것을 전제로 한다.
도 24에서 PDU 세션 ID 1는 SMF 1과 연계되고(associated), PDU 세션 ID 2는 SMF 2와 연계되는 것을 예시한다.
앞서 2 단계의 Handover required 메시지에 PDU 세션 ID 1이 포함되어 있으므로, AMF는 PDU 세션 ID 1과 연계된 SMF 1에게 SM 메시지를 전송하게 된다.
다른 예로, Handover required 메시지에 PDU 세션 ID 2가 포함되어 있는 경우에는, AMF는 PDU 세션 ID 2와 연계된 SMF 2에게 SM 메시지를 전송할 수 있다. 또 다른 예로, Handover required 메시지에 PDU 세션 ID 1과 PDU 세션 ID 2가 모두 포함되어 있는 경우에는, AMF는 PDU 세션 ID 1과 연계된 SMF 1과 PDU 세션 ID 2와 연계된 SMF 2에게 각각 SM 메시지를 전송할 수 있다.
또한, SM 메시지는 핸드오버 타입(handover type), 전달 경로 정보(forwarding path info), 타겟 gNB 식별자 및 주소(target gNB ID & address) 등을 더 포함할 수 있다.
한편, 도 24에서는 상술한 바와 같이, AMF가 변경되지 않은 경우에 대한 핸드오버 절차를 예시하고 있다. 다만, AMF가 변경된 경우, SM 메시지는 타겟 AMF에 의해 SMF에게 전송될 수 있다.
4. SM 메시지(예를 들어, SM Request 메시지)를 수신한 SMF 1은 상향링크 N3(즉, RAN과 UPF 간의 인터페이스) 경로 설정을 위한 UPF 1의 주소 및 PDU 세션의 서비스 품질(QoS: Quality of Service) 정보를 SM 메시지(예를 들어, SM 요청 확인응답(SM Request Acknowledge) 메시지)에 포함하여 AMF에게 전송한다.
만약, 성공한 경우(즉, PDU 세션에 대한 핸드오버가 수락되는 경우), SMF는 성공을 지시하는 원인(cause)을 SM 메시지(예를 들어, SM Request Acknowledge 메시지) 내 포함할 수 있다.
5. AMF는 타겟 gNB에게 핸드오버 요청(Handover Request) 메시지를 전송한다.
Handover Request 메시지는, 4 단계에서 SMF로부터 수신한 정보(예를 들어, 셋업해야 하는 PDU 세션의 리스트(즉, 핸드오버가 수락된 PDU 세션의 리스트) 및 해당 PDU 세션의 리스트 내 속한 PDU 세션에 대한 QoS 규칙, 상향링크 경로 설정을 위한 UPF 주소 등)를 포함할 수 있다.
6. 타겟 gNB는 수신한 PDU 세션에 대한 설정 가능 여부 및 QoS 허용 가능 여부들을 판단하고, Handover Request 메시지에 대한 응답으로 핸드오버 요청 확인응답(Handover Request Acknowledge) 메시지를 AMF에게 전송한다.
Handover Request Acknowledge 메시지는 타겟 RAN으로부터 소스 RAN으로 코어 네트워크를 통해 트랜스패런트하게(transparently) 전송되는 무선 관련 정보를 포함하는 타겟에서 소스로의 트랜스패런트 컨테이너(Target to Source transparent container), 수락된 QoS 규칙을 가지는 수락된 PDU 세션(Accepted PDU with accepted QoS rule) 정보를 포함할 수 있다.
7. AMF는 source gNB에게 핸드오버 명령(Handover Command) 메시지를 전송한다.
Handover Command 메시지는 Target to Source transparent container와 셋업 대상이 되는 PDU 세션에 대한 PDU 셋업 리스트(PDU setup list)를 포함할 수 있다.
8. 이후, 핸드오버 실행(handover execution) 과정이 수행된다. 이는 UE가 타겟 셀로의 이동 및 무선 베어러 설정 등의 단계가 수행된다.
이하, Handover Required 메시지에 대하여 보다 구체적으로 살펴본다.
Handover Required 메시지는 타겟에서 자원의 준비를 요청하기 위하여 소스 gNB에 의해 AMF에게 전송된다.
표 2는 Handover Required 메시지의 콘텐츠를 예시한다.
표 2를 참조하면, IE/Group 명칭(IE/Group Name)은 IE 또는 정보 요소 그룹(IE group)의 명칭을 나타낸다.
존재(Presence) 필드의 'M'은 필수적(mandatory)인 IE로서 항상 메시지에 포함되는 IE/IE group를 나타내고, 'O'는 선택적(optional)인 IE로서 메시지에 포함되거나 포함되지 않을 수 있는 IE/IE group를 나타내며, 'C'는 조건적인(conditional) IE로서 특정 조건이 만족될 때만 메시지에 포함되는 IE/IE group를 나타낸다.
범위(Range) 필드는 반복적인 IEs/IE groups가 반복될 수 있는 수를 나타낸다.
IE 타입 및 참조(IE type and reference) 필드는 해당 IE의 타입(예를 들어, 열거 데이터(ENUMERATED), 정수(INTEGER), 옥텟 스트링(OCTET STRING) 등)을 나타내고, 해당 IE가 가질 수 있는 값의 범위가 존재하는 경우, 값의 범위를 나타낸다.
임계(Criticality) 필드는 IE/IE group에 적용되는 임계(criticality) 정보를 나타낸다. criticality 정보는 수신단에서 IE/IE group의 전체 또는 일부분을 이해하지 못하는 경우에 수신단에서 어떻게 동작해야 하는지 지시하는 정보를 의미한다. '-'는 criticality 정보가 적용되지 않은 것을 나타내고, 'YES'는 criticality 정보가 적용된 것을 나타낸다. 'GLOBAL'은 IE 및 해당 IE의 반복에 공통적으로 하나의 criticality 정보를 가지는 것을 나타낸다. 'EACH'는 IE의 각 반복 별로 고유의 criticality 정보를 가지는 것을 나타낸다.
지정된 임계(Assigned Criticality) 필드는 실제 criticality 정보를 나타낸다.
표 2와 같이 Handover Required 메시지는 메시지 타입(Message Type) IE, AMF UE S1AP 식별자(AMF UE S1AP ID) IE, gNB UE S1AP 식별자(gNB UE S1AP ID) IE, 핸드오버 타입(Handover Type) IE, 원인(Cause) IE, 타겟 식별자(Target ID) IE, 소스에서 타겟으로 트랜스패런트 컨테이너(Source to Target Transparent Container) IE, 셋업될 PDU 세션 리스트(PDU session To Be Setup List) IE, PDU 세션 식별자(PDU session ID) IE를 포함할 수 있다.
Message Type IE는 전송되는 메시지를 고유하게 식별한다.
AMF UE S1AP ID는 AMF 내에서 N2 인터페이스를 통한 UE 연관(association)을 고유하게 식별한다.
gNB UE S1AP ID는 gNB 내에서 N2 인터페이스를 통한 UE 연관(association)을 고유하게 식별한다.
Handover Type IE는 소스 측(source side) 내에서 어떠한 타입의 핸드오버가 트리거되는지 지시한다.
Cause IE의 목적은 N2AP 프로토콜을 위한 특정 이벤트에 대한 이유를 지시하기 위함이다.
Target ID IE는 핸드오버의 타겟을 식별한다. target ID는 예를 들어, gNB의 식별자일 수 있다.
Source to Target Transparent Container IE는 무선 관련 정보를 핸드오버 소스로부터 핸드오버 타겟으로 코어 네트워크를 통해 트랜스패런트하게(transparently) 전달하기 위해 사용되는 IE이다. 이 IE는 소스 RAN 노드로부터 타겟 RAN 노드에게 전달된다.
PDU session To Be Setup List는 PDU session ID들의 리스트를 포함한다.
PDU session ID IE는 활성화된 PDU 세션의 PDU session ID를 포함한다. PDU session ID는 1부터 최대 PDU 세션의 수(maxnoofPDUsession)까지의 값 중에서 어느 하나의 값을 가질 수 있다.
즉, source gNB는 자신이 가지고 있는 활성화된 PDU session ID(들)을 Handover Required 메시지에 포함시킨다.
Handover Required 메시지를 수신한 AMF는 PDU session To Be Setup List에 포함된 PDU session ID와 연관되는(associated)(즉, PDU 세션 확립 절차를 통해 AMF는 PDU session ID 별로 SM 메시지(예를 들어, SM request)를 전달하여야 하는 SMF 연결 관계(연관)을 저장하고 있다.) SMF에게 SM 메시지(예를 들어, SM request 메시지)를 보내면서 해당 PDU 세션의 핸드오버의 필요성을 알린다. 즉, PDU session ID는 핸드오버의 PDU 세션 후보를 지시한다.
이를 수신한 SMF는 N3 인터페이스 셋업을 위한 위한 동작 및 gNB에서 시행(enforcement) 하여야 하는 QoS 규칙을 포함하여 SM 메시지(예를 들어, SM request ack)을 AMF에게 전송한다. 이를 수신한 AMF는 target gNB에게 handover request 메시지를 송신한다.
만약, Handover required 메시지에 source gNB가 활성화된 PDU session ID를 포함해서 AMF에게 알려주지 않는 경우라면 AMF가 항상 활성화된 PDU session에 대한 컨텍스트를 유지하고 AMF가 활성화된 PDU session과 연관된(associated) 해당 SMF에 SM 메시지(예를 들어, SM request 메시지)를 송신해야 한다. 다만, 이러한 동작은 AMF와 SMF의 기능적인 분리에 위배되는 문제가 발생된다.
또한, AMF가 활성화된 PDU session에 대한 컨텍스트를 유지하지도 않고, source gNB가 handover required 메시지에 활성화된 PDU session ID를 포함해서 알려주지도 않는다면, AMF가 PDU session이 확립되어 있는 모든 SMF에게 활성화된 PDU session의 상태를 문의(query)한 후, 활성화된 PDU session과 연관된(associated) 해당 SMF에게 다시 handover required에 대한 동작을 수행해야 하는 문제점이 생긴다.
이러한 문제를 해결하기 위하여, 본 발명의 일 실시예에서는 활성화된 PDU session 정보를 알고 있는 gNB가 핸드오버를 요청할 때(즉, Handover Required 메시지를 전송할 때), 기존의 시스템(예를 들어, LTE 시스템)과 상이하게, 활성화된 PDU session 정보를 전송함으로써 이에 대한 핸드오버만을 요청하는 방법을 제안한다. 이로 인하여, AMF는 SM 컨텍스트(즉, 활성화된 PDU session에 대한 컨텍스트)를 유지할 필요도 없으며, 또한 AMF가 SMF에게 활성화된 PDU session에 대한 문의(query)를 하는 등 불필요한 시그널링을 방지할 수 있다.
한편, 앞서 설명한 핸드오버 절차 이외에도 N2 해제 절차에도 앞서 제안된 본 발명의 개념이 적용될 수 있으며, gNB와 AMF/SMF 상호동작(interaction)에도 적용될 수 있다.
도 25는 본 발명의 일 실시예에 따른 N2 해제 절차를 예시하는 도면이다.
1. RAN(즉, gNB)은 UE의 비활동성(inactivity)을 감지하면, AMF에게 N2 해제를 요청한다. 예를 들어, N2 UE 컨텍스트 해제 요청(N2 UE Context Release Request) 메시지를 전송할 수 있다.
이때, RAN은 AMF에게 N2 UE Context Release Request 메시지 내 해당 UE의 식별자(identity)(예를 들어, S-TMSI)와 해당 UE에 대해 활성화되어 있는 PDU 세션 ID 리스트(active Session ID list)를 포함시켜 전송할 수 있다.
2. AMF는 수신한 N2 UE Context Release Request 메시지에 포함된 Session ID와 연관된(associated) SMF에게 SM 메시지(예를 들어, SM request 메시지)를 송신한다.
즉, RAN이 Session ID 1, 2를 포함시킨 경우, AMF는 AMF와 PDU session이 설정되어 있는 모든 SMF에게 SM 메시지를 전송하는 것이 아니라 Session ID 1,2와 연관(association되어 있는 SMF들에만 SM 메시지를 전송한다.
이때, SM 메시지는 원인(cause) 값(예를 들어, 세션 해제(release session))과 비활성화(deactivation)을 요청하는 PDU session의 session ID를 포함할 수 있다.
3~4. SMF는 N2 인터페이스 해제 절차 수행한다. 즉, SMF는 UPF에게 세션 수정 요청(Session Modification Request) 메시지를 전송하고, 이에 대한 응답으로 세션 수정 응답(Session Modification Response) 메시지를 수신한다. 이 절차 완료 후, SMF에서 해당 PDU session은 비활성화(deactivating)된다.
5. SMF는 PDU 비활성화에 대한 SM 메시지(예를 들어, SM request ack 메시지)를 AMF에게 전송한다.
6. AMF는 자신이 송신한 SM 메시지(예를 들어, SM request)에 대한 응답으로 모든 SM 메시지(예를 들어, SM request ack)을 수신하면 RAN에게 N2 UE 컨텍스트 해제 명령(N2 UE Context Release Command) 메시지를 전송한다.
7~8. RAN은 UE의 RRC 연결을 모두 해제하고, AMF에게 N2 UE 컨텍스트 해제 완료(N2 UE context release complete) 메시지를 전송한다.
위와 같은 동작을 통해 AMF는 PDU session의 활성화 컨텍스트를 관리하지 않으면서, 또한 session이 활성화되어 있는 PDU session에 대해서 N2 해제(즉, PDU session 비활성화) 동작을 수행할 수 있다.
도 26은 본 발명의 일 실시예에 따른 PDU 세션 관리 방법을 예시하는 도면이다.
도 26을 참조하면, 소스 RAN(즉, 소스 gNB)은 UE의 이동성으로 인하여 타겟 RAN(즉, 타겟 gNB)로 핸드오버(예를 들어, N2 기반 핸드오버)를 개시하기로 결정하거나 또는 RAN은 UE의 비활동성(inactivity)을 감지하여 N2 해제 절차를 개시하기로 결정할 수 있다(S2601).
이 단계는 앞서 도 24에서 1 단계 또는 앞서 도 25에서 1 단계에 해당할 수 있다.
소스 RAN은 핸드오버 요구(Handover Required) 메시지를 AMF에게 전송하거나(S2601 단계에서 핸드오버를 결정한 경우) 또는 RAN은 UE 컨텍스트 해제 요청(UE Context Release Request) 메시지를 AMF에게 전송할 수 있다(S2601 단계에서 N2 해제 절차를 결정한 경우)(S2602).
이 단계는 앞서 도 24에서 2 단계 또는 앞서 도 25에서 1b 단계에 해당할 수 있다.
이때, Handover Required 메시지 또는 UE Context Release Request 메시지는 활성화된 PDU 세션의 PDU 세션 ID를 포함할 수 있다. 이때, 활성화된 PDU 세션은 활성화된 사용자 평면 연결을 가지는 PDU 세션을 의미할 수 있다. 또한, 활성화된 사용자 평면 연결을 가지는 PDU 세션이란 RAN과 UE 간의 데이터 무선 베어러(DRB: Data Radio Bearer) 그리고 RAN과 UPF 간의 N3 인터페이스 터널이 확립되어 있는 PDU 세션을 의미할 수 있다.
또한, 소스 RAN에 의해 처리되는 PDU 세션은 모두 활성화된 PDU 세션에 해당할 수 있다. 이 경우, 소스 RAN은 자신이 처리하는 모든 PDU 세션에 대한 PDU 세션 ID를 Handover Required 메시지에 포함시킬 수 있다.
이와 같이 Handover Required 메시지에 포함되는 PDU 세션 ID는 PDU 세션 ID에 해당하는 PDU 세션이 소스 RAN에 의해 핸드오버가 요청됨을 지시할 수 있다.
Handover Required 메시지의 콘텐츠는 표 2와 같이 구성될 수 있으며, 이에 대한 보다 상세한 설명은 생략한다.
AMF는 Handover Required 메시지 또는 UE Context Release Request 메시지 내에서 수신한 PDU 세션 ID에 의해 지시된 각 PDU 세션 별로 연관된(associated) SMF에게 세션 관리(SM: Session Management) 메시지(예를 들어, SM Request 메시지)를 전송한다(S2603).
이 단계는 앞서 도 24에서 3 단계 또는 앞서 도 25에서 2 단계에 해당할 수 있다.
AMF는 PDU 세션 ID와 SMF 식별자(ID) 간의 연계(association)을 저장하고 있을 수 있다. 이 연계(association) 정보를 기반으로, AMF는 소스 RAN으로부터 수신한 각 PDU 세션 ID 별로 연관된(associated)된 SMF를 결정할 수 있다. 그리고, 결정된 SMF에게 해당 SMF와 연관된(associated) PDU 세션에 대한 SM 메시지를 전송할 수 있다.
이후, 앞서 도 24에서 예시된 과정(4 단계부터) 또는 도 25에서 예시된 과정(3 단계부터)이 수행될 수 있다.
본 발명이 적용될 수 있는 장치 일반
도 27은 본 발명의 일 실시예에 따른 통신 장치의 블록 구성도를 예시한다.
도 27을 참조하면, 무선 통신 시스템은 네트워크 노드(2710)와 다수의 단말(UE)(2720)을 포함한다.
네트워크 노드(2710)는 프로세서(processor, 2711), 메모리(memory, 2712) 및 통신 모듈(communication module, 2713)을 포함한다. 프로세서(2711)는 앞서 도 1 내지 도 26에서 제안된 기능, 과정 및/또는 방법을 구현한다. 유/무선 인터페이스 프로토콜의 계층들은 프로세서(2711)에 의해 구현될 수 있다. 메모리(2712)는 프로세서(2711)와 연결되어, 프로세서(2711)를 구동하기 위한 다양한 정보를 저장한다. 통신 모듈(2713)은 프로세서(2711)와 연결되어, 유/무선 신호를 송신 및/또는 수신한다. 네트워크 노드(2710)의 일례로, 기지국(eNB 또는 gNB), AMF, SMF, UPF, AUSF, NEF, NRF, PCF, UDM, AF, DN 등이 이에 해당될 수 있다. 특히, 네트워크 노드(2710)가 기지국인 경우, 통신 모듈(2713)은 무선 신호를 송/수신하기 위한 RF부(radio frequency unit)을 포함할 수 있다.
단말(2720)은 프로세서(2721), 메모리(2722) 및 통신 모듈(또는 RF부)(2723)을 포함한다. 프로세서(2721)는 앞서 도 1 내지 도 26에서 제안된 기능, 과정 및/또는 방법을 구현한다. 무선 인터페이스 프로토콜의 계층들은 프로세서(2721)에 의해 구현될 수 있다. 메모리(2722)는 프로세서(2721)와 연결되어, 프로세서(2721)를 구동하기 위한 다양한 정보를 저장한다. 통신 모듈(2723)는 프로세서(2721)와 연결되어, 무선 신호를 송신 및/또는 수신한다.
메모리(2712, 2722)는 프로세서(2711, 2721) 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한 수단으로 프로세서(2711, 2721)와 연결될 수 있다. 또한, 네트워크 노드(2710)(기지국인 경우) 및/또는 단말(2720)은 한 개의 안테나(single antenna) 또는 다중 안테나(multiple antenna)를 가질 수 있다.
도 28은 본 발명의 일 실시예에 따른 통신 장치의 블록 구성도를 예시한다.
특히, 도 28에서는 앞서 도 27의 단말을 보다 상세히 예시하는 도면이다.
도 28을 참조하면, 단말은 프로세서(또는 디지털 신호 프로세서(DSP: digital signal processor)(2810), RF 모듈(RF module)(또는 RF 유닛)(2835), 파워 관리 모듈(power management module)(2805), 안테나(antenna)(2840), 배터리(battery)(2855), 디스플레이(display)(2815), 키패드(keypad)(2820), 메모리(memory)(2830), 심카드(SIM(Subscriber Identification Module) card)(2825)(이 구성은 선택적임), 스피커(speaker)(2845) 및 마이크로폰(microphone)(2850)을 포함하여 구성될 수 있다. 단말은 또한 단일의 안테나 또는 다중의 안테나를 포함할 수 있다.
프로세서(2810)는 앞서 도 1 내지 도 26에서 제안된 기능, 과정 및/또는 방법을 구현한다. 무선 인터페이스 프로토콜의 계층은 프로세서(2810)에 의해 구현될 수 있다.
메모리(2830)는 프로세서(2810)와 연결되고, 프로세서(2810)의 동작과 관련된 정보를 저장한다. 메모리(2830)는 프로세서(2810) 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한 수단으로 프로세서(2810)와 연결될 수 있다.
사용자는 예를 들어, 키패드(2820)의 버튼을 누르거나(혹은 터치하거나) 또는 마이크로폰(2850)를 이용한 음성 구동(voice activation)에 의해 전화 번호 등과 같은 명령 정보를 입력한다. 프로세서(2810)는 이러한 명령 정보를 수신하고, 전화 번호로 전화를 거는 등 적절한 기능을 수행하도록 처리한다. 구동 상의 데이터(operational data)는 심카드(2825) 또는 메모리(2830)로부터 추출할 수 있다. 또한, 프로세서(2810)는 사용자가 인지하고 또한 편의를 위해 명령 정보 또는 구동 정보를 디스플레이(2815) 상에 디스플레이할 수 있다.
RF 모듈(2835)는 프로세서(2810)에 연결되어, RF 신호를 송신 및/또는 수신한다. 프로세서(2810)는 통신을 개시하기 위하여 예를 들어, 음성 통신 데이터를 구성하는 무선 신호를 전송하도록 명령 정보를 RF 모듈(2835)에 전달한다. RF 모듈(2835)은 무선 신호를 수신 및 송신하기 위하여 수신기(receiver) 및 전송기(transmitter)로 구성된다. 안테나(2840)는 무선 신호를 송신 및 수신하는 기능을 한다. 무선 신호를 수신할 때, RF 모듈(2835)은 프로세서(2810)에 의해 처리하기 위하여 신호를 전달하고 기저 대역으로 신호를 변환할 수 있다. 처리된 신호는 스피커(2845)를 통해 출력되는 가청 또는 가독 정보로 변환될 수 있다.
이상에서 설명된 실시예들은 본 발명의 구성요소들과 특징들이 소정 형태로 결합된 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려되어야 한다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시예를 구성하는 것도 가능하다. 본 발명의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다. 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함시킬 수 있음은 자명하다.
본 발명에 따른 실시예는 다양한 수단, 예를 들어, 하드웨어, 펌웨어(firmware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다. 하드웨어에 의한 구현의 경우, 본 발명의 일 실시예는 하나 또는 그 이상의 ASICs(application specific integrated circuits), DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays), 프로세서, 콘트롤러, 마이크로 콘트롤러, 마이크로 프로세서 등에 의해 구현될 수 있다.
펌웨어나 소프트웨어에 의한 구현의 경우, 본 발명의 일 실시예는 이상에서 설명된 기능 또는 동작들을 수행하는 모듈, 절차, 함수 등의 형태로 구현될 수 있다. 소프트웨어 코드는 메모리에 저장되어 프로세서에 의해 구동될 수 있다. 상기 메모리는 상기 프로세서 내부 또는 외부에 위치하여, 이미 공지된 다양한 수단에 의해 상기 프로세서와 데이터를 주고 받을 수 있다.
본 발명은 본 발명의 필수적 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 당업자에게 자명하다. 따라서, 상술한 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니 되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.
본 발명은 3GPP LTE/LTE-A 시스템, 5G 시스템에 적용되는 예를 중심으로 설명하였으나, 3GPP LTE/LTE-A 시스템, 5G 시스템 이외에도 다양한 무선 통신 시스템에 적용하는 것이 가능하다.
Claims (13)
- 무선 통신 시스템에서 소스 무선 액세스 네트워크(RAN: Radio Access Network)가 사용자 장치(UE: User Equipment)의 핸드오버를 수행하기 위한 방법에 있어서,타겟 RAN으로의 핸드오버를 개시하기로 결정하는 단계; 및소스 액세스 및 이동성 관리 기능(AMF: Access and Mobility Management Function)에게 핸드오버 요구(Handover Required) 메시지를 전송하는 단계를 포함하고,상기 핸드오버는 상호 간의 인터페이스가 없는 RAN 간의 핸드오버 또는 AMF 변경이 필요한 경우의 핸드오버이고,상기 핸드오버 요구 메시지는 활성화된 프로토콜 데이터 유닛(PDU: Protocol Data Unit) 세션의 PDU 세션 식별자(ID: Identifier)를 포함하는 핸드오버 수행 방법.
- 제1항에 있어서,상기 소스 RAN에 의해 처리되는 PDU 세션은 모두 상기 활성화된 PDU 세션에 해당하는 핸드오버 수행 방법.
- 제1항에 있어서,상기 PDU 세션 ID는 상기 PDU 세션 ID에 해당하는 PDU 세션이 상기 소스 RAN에 의해 핸드오버가 요청됨을 지시하는 핸드오버 수행 방법.
- 제1항에 있어서,상기 활성화된 PDU 세션은 RAN과 UE 간의 데이터 무선 베어러(DRB: Data Radio Bearer) 그리고 RAN과 사용자 평면 기능(UPF: User plane Function) 간의 N3 인터페이스 터널이 확립되어 있는 PDU 세션에 해당하는 핸드오버 수행 방법.
- 제1항에 있어서,상기 핸드오버 요구 메시지는 상기 타겟 RAN의 식별자, 상기 소스 RAN으로부터 상기 타겟 RAN으로 코어 네트워크를 통해 트랜스패런트하게(transparently) 전송되는 무선 관련 정보를 포함하는 소스에서 타겟으로 트랜스패런트 컨테이너(Source to Target Transparent Container)를 포함하는 핸드오버 수행 방법.
- 제1항에 있어서,상기 AMF는 상기 UE의 세션 관리 기능을 제외한 상기 UE의 이동성 관리 기능을 제공하는 네트워크 개체이며, 상기 UE의 세션 관리 기능은 세션 관리 기능(SMF: Session Management Function)에 의해 제공되는 핸드오버 수행 방법.
- 무선 통신 시스템에서 소스 액세스 및 이동성 관리 기능(AMF: Access and Mobility Management Function)이 사용자 장치(UE: User Equipment)의 핸드오버를 수행하기 위한 방법에 있어서,소스 무선 액세스 네트워크(RAN: Radio Access Network)로부터 핸드오버 요구(Handover Required) 메시지를 수신하되, 상기 핸드오버 요구 메시지는 활성화된 프로토콜 데이터 유닛(PDU: Protocol Data Unit) 세션의 PDU 세션 ID를 포함하는 단계; 및상기 수신한 PDU 세션 ID에 의해 지시된 각 PDU 세션 별로 연관된(associated) 세션 관리 기능(SMF: Session Management Function)에게 세션 관리(SM: Session Management) 메시지를 전송하는 단계를 포함하는 핸드오버 수행 방법.
- 제7항에 있어서,상기 AMF는 PDU 세션 ID와 SMF 식별자(ID: Identifier) 간의 연계(association)을 저장하는 핸드오버 수행 방법.
- 제7항에 있어서,상기 SM 메시지가 전달된 SMF으로부터 RAN과 사용자 평면 기능(UPF: User plane Function) 간의 N3 인터페이스 경로 설정을 위한 UPF 주소, PDU 세션의 서비스 품질(QoS: Quality of Service) 정보를 수신하는 단계를 더 포함하는 핸드오버 수행 방법.
- 제9항에 있어서,타겟 RAN에게 핸드오버 요청(Handover Request) 메시지를 전송하는 단계를 더 포함하고,상기 핸드오버 요청 메시지는 핸드오버가 수락된 PDU 세션의 리스트 및 상기 PDU 세션의 리스트에 속한 PDU 세션의 QoS 규칙 정보를 포함하는 핸드오버 수행 방법.
- 제10항에 있어서,상기 타겟 RAN으로부터 상기 핸드오버 요청 메시지에 대한 응답으로 핸드오버 요청 확인응답(Handover Request Acknowledge) 메시지를 수신하는 단계를 더 포함하고,상기 핸드오버 요청 확인응답 메시지는 상기 타겟 RAN으로부터 상기 소스 RAN으로 코어 네트워크를 통해 트랜스패런트하게(transparently) 전송되는 무선 관련 정보를 포함하는 타겟에서 소스로의 트랜스패런트 컨테이너(Target to Source transparent container), 수락된 QoS 규칙을 가지는 수락된 PDU 세션 정보를 포함하는 핸드오버 수행 방법.
- 제12항에 있어서,상기 소스 RAN에게 핸드오버 명령(Handover Command) 메시지를 전송하는 단계를 더 포함하고,상기 핸드오버 명령 메시지는 상기 타겟에서 소스로의 트랜스패런트 컨테이너(Target to Source transparent container) 및 셋업 대상이 되는 PDU 세션에 대한 PDU 셋업 리스트를 포함하는 핸드오버 수행 방법.
- 제7항에 있어서,상기 AMF는 상기 UE의 세션 관리 기능을 제외한 상기 UE의 이동성 관리 기능을 제공하는 네트워크 개체이며, 상기 UE의 세션 관리 기능은 상기 SMF에 의해 제공되는 핸드오버 수행 방법.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/065,120 US11523319B2 (en) | 2017-01-09 | 2018-01-09 | Method for managing PDU session in wireless communication system and device for same |
US17/850,308 US12041505B2 (en) | 2017-01-09 | 2022-06-27 | Method for managing PDU session in wireless communication system and apparatus therefor |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201762443840P | 2017-01-09 | 2017-01-09 | |
US62/443,840 | 2017-01-09 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/065,120 A-371-Of-International US11523319B2 (en) | 2017-01-09 | 2018-01-09 | Method for managing PDU session in wireless communication system and device for same |
US17/850,308 Continuation US12041505B2 (en) | 2017-01-09 | 2022-06-27 | Method for managing PDU session in wireless communication system and apparatus therefor |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018128528A1 true WO2018128528A1 (ko) | 2018-07-12 |
Family
ID=62789330
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2018/000438 WO2018128528A1 (ko) | 2017-01-09 | 2018-01-09 | 무선 통신 시스템에서 pdu 세션 관리 방법 및 이를 위한 장치 |
Country Status (2)
Country | Link |
---|---|
US (2) | US11523319B2 (ko) |
WO (1) | WO2018128528A1 (ko) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020032767A1 (ko) * | 2018-08-10 | 2020-02-13 | 삼성전자 주식회사 | 무선 통신 시스템에서 데이터를 송수신하는 방법 및 장치 |
WO2020036428A1 (ko) * | 2018-08-13 | 2020-02-20 | 삼성전자 주식회사 | 5g 네트워크에서 non-ip 데이터 전송 방법 |
WO2020055176A1 (ko) * | 2018-09-12 | 2020-03-19 | 에스케이텔레콤 주식회사 | 트래픽 처리 모니터링 방법 |
CN111865633A (zh) * | 2019-04-28 | 2020-10-30 | 华为技术有限公司 | 一种通信方法、装置及系统 |
CN112584449A (zh) * | 2019-09-30 | 2021-03-30 | 中国移动通信有限公司研究院 | 移动会话管理方法、装置、设备及存储介质 |
TWI733216B (zh) * | 2018-10-16 | 2021-07-11 | 聯發科技股份有限公司 | 無效協定資料單元會話之處理方法及其使用者設備 |
WO2021212318A1 (en) * | 2020-04-21 | 2021-10-28 | Qualcomm Incorporated | Priority 5g-anchor cell selection after circuit switched fallback |
CN114079870A (zh) * | 2020-08-13 | 2022-02-22 | 华为技术有限公司 | 通信方法及装置 |
CN114095984A (zh) * | 2021-11-02 | 2022-02-25 | 中国联合网络通信集团有限公司 | 会话管理方法、oam和amf |
EP3917190A4 (en) * | 2019-01-31 | 2022-03-16 | Huawei Technologies Co., Ltd. | COMMUNICATION METHOD, DEVICE AND SYSTEM |
Families Citing this family (44)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018128528A1 (ko) | 2017-01-09 | 2018-07-12 | 엘지전자(주) | 무선 통신 시스템에서 pdu 세션 관리 방법 및 이를 위한 장치 |
EP3902333A1 (en) | 2017-03-16 | 2021-10-27 | Samsung Electronics Co., Ltd. | Terminal registration for connection to roaming network |
AU2017413894B2 (en) * | 2017-05-08 | 2021-04-01 | Huawei Technologies Co., Ltd. | Method for moving between communications systems and apparatus |
FI3709763T3 (fi) | 2017-06-16 | 2024-10-03 | Beijing Xiaomi Mobile Software Co Ltd | Menetelmät ja kojeet langattoman laiteympäristön vapauttamista varten |
WO2019015778A1 (en) * | 2017-07-21 | 2019-01-24 | Telefonaktiebolaget Lm Ericsson (Publ) | NON-STRUCTURED DATA STORAGE FUNCTION SERVICES (UDSF) |
CN109548092B (zh) * | 2017-07-28 | 2021-04-09 | 华为技术有限公司 | 一种激活session的方法、设备及系统 |
CN112312500A (zh) | 2017-10-16 | 2021-02-02 | 华为技术有限公司 | 会话建立方法、设备及系统 |
CN109819530B (zh) * | 2017-11-21 | 2023-12-08 | 华为技术有限公司 | 一种通信方法及装置 |
KR102389867B1 (ko) * | 2018-01-30 | 2022-04-22 | 삼성전자주식회사 | 무선 통신 시스템에서 로컬 네트워크와의 통신을 위한 세션을 설립하는 방법, 장치 및 시스템 |
WO2019151991A1 (en) * | 2018-01-30 | 2019-08-08 | Nokia Technologies Oy | Support of protocol data unit session types in the network |
WO2019149185A1 (en) * | 2018-01-31 | 2019-08-08 | Telefonaktiebolaget Lm Ericsson (Publ) | Methods and devices for status exposure in wireless communication networks |
US10764935B2 (en) * | 2018-02-12 | 2020-09-01 | Cisco Technology, Inc. | Methods and apparatus for selecting network slice, session management and user plane functions |
CN110149166B9 (zh) | 2018-02-13 | 2021-11-30 | 华为技术有限公司 | 传输控制方法、装置和系统 |
WO2019165629A1 (zh) * | 2018-03-01 | 2019-09-06 | 华为技术有限公司 | 会话管理方法及装置、通信系统 |
CN110366011B (zh) * | 2018-04-09 | 2021-01-29 | 华为技术有限公司 | 接入服务网络的方法和通信装置 |
US10904947B2 (en) * | 2018-05-16 | 2021-01-26 | Huawei Technologies Co., Ltd. | Message and system for application function influence on traffic routing |
CN110536378A (zh) * | 2018-05-23 | 2019-12-03 | 北京三星通信技术研究有限公司 | 一种用于发送数据的方法、设备和存储介质 |
WO2019237364A1 (zh) * | 2018-06-15 | 2019-12-19 | Oppo广东移动通信有限公司 | 数据按序递交的方法、网络设备及终端设备 |
CN112544108A (zh) * | 2018-06-19 | 2021-03-23 | 瑞典爱立信有限公司 | 为以太网pdu会话和相关网络实体/节点提供锚改变的方法 |
CN114785626B (zh) * | 2018-06-26 | 2024-01-30 | 华为技术有限公司 | 数据管理的方法和装置 |
EP3818776B1 (en) * | 2018-07-02 | 2023-05-17 | Telefonaktiebolaget Lm Ericsson (Publ) | Packet data convergence protocol data recovery |
CN110831083B (zh) * | 2018-08-10 | 2021-03-23 | 华为技术有限公司 | 数据传输的方法和设备 |
CN110831243B (zh) * | 2018-08-13 | 2021-10-01 | 华为技术有限公司 | 一种用户面安全策略实现方法、装置及系统 |
US11224093B2 (en) * | 2018-08-13 | 2022-01-11 | Ofinno, Llc | Network initiated UPF sessions transfer |
EP3857933A1 (en) * | 2018-09-26 | 2021-08-04 | Telefonaktiebolaget LM Ericsson (publ) | Method and functions for handling a ue's access to a dn |
US11399304B2 (en) * | 2018-09-28 | 2022-07-26 | Ofinno, Llc | Packet duplication by core network |
CN111181747B (zh) * | 2018-11-09 | 2023-05-02 | 中兴通讯股份有限公司 | 一种网关协同实现方法、装置、IoT网关及存储介质 |
US12041493B2 (en) * | 2018-11-09 | 2024-07-16 | Lg Electronics Inc. | Support of inter-GNB handover in higher layer multi-connectivity |
WO2020102795A1 (en) * | 2018-11-16 | 2020-05-22 | Talebi Fard Peyman | Application triggering for a wireless device |
CN113766670B (zh) * | 2019-01-15 | 2023-10-03 | 大唐移动通信设备有限公司 | 一种pdu会话激活方法、寻呼方法及其装置 |
WO2020200287A1 (en) * | 2019-04-02 | 2020-10-08 | Huawei Technologies Co., Ltd. | Method, apparatus and systems for supporting packet delivery |
WO2021025308A1 (ko) * | 2019-08-08 | 2021-02-11 | 엘지전자 주식회사 | 다중 usim을 지원하기 위한 amf의 처리 방안 |
CA3111859C (en) * | 2019-08-12 | 2023-08-15 | Guangdong Oppo Mobile Telecommunications Corp., Ltd. | Method and device for establishing session |
CN112399490B (zh) * | 2019-08-15 | 2022-04-01 | 大唐移动通信设备有限公司 | 一种信息处理方法、装置、设备及计算机可读存储介质 |
WO2021056563A1 (zh) * | 2019-09-29 | 2021-04-01 | 华为技术有限公司 | 通信方法和通信装置 |
US11510138B2 (en) * | 2020-01-03 | 2022-11-22 | Apple Inc. | Network slice quota management |
US11729091B2 (en) | 2020-12-10 | 2023-08-15 | Amazon Technologies, Inc. | Highly available data-processing network functions for radio-based networks |
US20220369393A1 (en) * | 2021-05-12 | 2022-11-17 | Mediatek Inc. | Enhanced handling of 5gsm procedure collision |
US11743953B2 (en) * | 2021-05-26 | 2023-08-29 | Amazon Technologies, Inc. | Distributed user plane functions for radio-based networks |
EP4096343A1 (fr) * | 2021-05-28 | 2022-11-30 | Airbus SAS | Procédé de routage et dispositif mettant en oeuvre ledit procédé |
US11706614B2 (en) * | 2021-07-16 | 2023-07-18 | Cisco Technology, Inc. | Direct SMF control plane with gNB |
CN113923716B (zh) * | 2021-12-13 | 2022-05-03 | 北京赋乐科技有限公司 | 一种用户信息获取方法、装置和电子设备 |
CN117793811A (zh) * | 2022-09-21 | 2024-03-29 | 维沃移动通信有限公司 | 通信方法、装置及设备 |
WO2024072135A1 (en) * | 2022-09-29 | 2024-04-04 | Samsung Electronics Co., Ltd. | Methods for handling ciot data for invalid pdu session id |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20130028102A (ko) * | 2010-05-14 | 2013-03-18 | 엘지전자 주식회사 | 무선 통신 시스템에서 핸드오버 과정을 수행하는 방법 및 장치 |
KR20150106422A (ko) * | 2013-02-08 | 2015-09-21 | 닛본 덴끼 가부시끼가이샤 | 핸드오버 실패 검출 장치, 핸드오버·파라미터 조정 장치, 및 핸드오버 최적화 시스템 |
US20160088527A1 (en) * | 2014-09-24 | 2016-03-24 | Verizon Patent And Licensing Inc. | Managing transmission dependent handovers |
US20160183156A1 (en) * | 2010-09-28 | 2016-06-23 | Blackberry Limited | Method and apparatus for releasing connection with local gw when ue moves out of the residential/enterprise network coverage |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9800503B2 (en) * | 2012-12-03 | 2017-10-24 | Aruba Networks, Inc. | Control plane protection for various tables using storm prevention entries |
US9510376B2 (en) * | 2013-09-25 | 2016-11-29 | At&T Intellectual Property I, L.P. | Tunneling packet exchange in long term evolution protocol based networks |
EP3244671A1 (en) * | 2015-01-08 | 2017-11-15 | LG Electronics Inc. | Method for transmitting paging in wireless communication system and device therefor |
US11228949B2 (en) * | 2017-01-06 | 2022-01-18 | Samsung Electronics Co., Ltd. | Intra-RAT handover for next generation system |
WO2018128528A1 (ko) | 2017-01-09 | 2018-07-12 | 엘지전자(주) | 무선 통신 시스템에서 pdu 세션 관리 방법 및 이를 위한 장치 |
US10251147B2 (en) * | 2017-03-20 | 2019-04-02 | Samsung Electronics Co., Ltd. | Method for supporting efficient PDU session activation and deactivation in cellular networks |
US20200059989A1 (en) * | 2017-08-16 | 2020-02-20 | Lenovo (Singapore) Pte. Ltd. | Indicating a packet data unit session as unavailable |
-
2018
- 2018-01-09 WO PCT/KR2018/000438 patent/WO2018128528A1/ko active Application Filing
- 2018-01-09 US US16/065,120 patent/US11523319B2/en active Active
-
2022
- 2022-06-27 US US17/850,308 patent/US12041505B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20130028102A (ko) * | 2010-05-14 | 2013-03-18 | 엘지전자 주식회사 | 무선 통신 시스템에서 핸드오버 과정을 수행하는 방법 및 장치 |
US20160183156A1 (en) * | 2010-09-28 | 2016-06-23 | Blackberry Limited | Method and apparatus for releasing connection with local gw when ue moves out of the residential/enterprise network coverage |
KR20150106422A (ko) * | 2013-02-08 | 2015-09-21 | 닛본 덴끼 가부시끼가이샤 | 핸드오버 실패 검출 장치, 핸드오버·파라미터 조정 장치, 및 핸드오버 최적화 시스템 |
US20160088527A1 (en) * | 2014-09-24 | 2016-03-24 | Verizon Patent And Licensing Inc. | Managing transmission dependent handovers |
Non-Patent Citations (1)
Title |
---|
3GPP: "3rd Generation Partnership Project;Technical Specification Group Services and System Aspects; Study on Architecture for Next Generation System(Release 14)", 3GPP TR 23.799 V1.1.0, 31 October 2016 (2016-10-31), XP055484362 * |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20200018139A (ko) * | 2018-08-10 | 2020-02-19 | 삼성전자주식회사 | 무선 통신 시스템에서 데이터를 송수신하는 방법 및 장치 |
WO2020032767A1 (ko) * | 2018-08-10 | 2020-02-13 | 삼성전자 주식회사 | 무선 통신 시스템에서 데이터를 송수신하는 방법 및 장치 |
KR102447502B1 (ko) | 2018-08-10 | 2022-09-26 | 삼성전자주식회사 | 무선 통신 시스템에서 데이터를 송수신하는 방법 및 장치 |
WO2020036428A1 (ko) * | 2018-08-13 | 2020-02-20 | 삼성전자 주식회사 | 5g 네트워크에서 non-ip 데이터 전송 방법 |
WO2020055176A1 (ko) * | 2018-09-12 | 2020-03-19 | 에스케이텔레콤 주식회사 | 트래픽 처리 모니터링 방법 |
US12075278B2 (en) | 2018-09-12 | 2024-08-27 | Sk Telecom Co., Ltd. | Traffic processing monitoring method |
TWI733216B (zh) * | 2018-10-16 | 2021-07-11 | 聯發科技股份有限公司 | 無效協定資料單元會話之處理方法及其使用者設備 |
EP3917190A4 (en) * | 2019-01-31 | 2022-03-16 | Huawei Technologies Co., Ltd. | COMMUNICATION METHOD, DEVICE AND SYSTEM |
US12010576B2 (en) | 2019-01-31 | 2024-06-11 | Huawei Technologies Co., Ltd. | Communication method, apparatus, and system |
AU2020214502B2 (en) * | 2019-01-31 | 2023-03-16 | Huawei Technologies Co., Ltd. | Communication method, apparatus, and system |
CN111865633A (zh) * | 2019-04-28 | 2020-10-30 | 华为技术有限公司 | 一种通信方法、装置及系统 |
US12040979B2 (en) | 2019-04-28 | 2024-07-16 | Huawei Technologies Co., Ltd. | Communications method, apparatus, and system |
CN112584449B (zh) * | 2019-09-30 | 2023-03-31 | 中国移动通信有限公司研究院 | 移动会话管理方法、装置、设备及存储介质 |
CN112584449A (zh) * | 2019-09-30 | 2021-03-30 | 中国移动通信有限公司研究院 | 移动会话管理方法、装置、设备及存储介质 |
WO2021212318A1 (en) * | 2020-04-21 | 2021-10-28 | Qualcomm Incorporated | Priority 5g-anchor cell selection after circuit switched fallback |
CN114079870A (zh) * | 2020-08-13 | 2022-02-22 | 华为技术有限公司 | 通信方法及装置 |
CN114095984A (zh) * | 2021-11-02 | 2022-02-25 | 中国联合网络通信集团有限公司 | 会话管理方法、oam和amf |
CN114095984B (zh) * | 2021-11-02 | 2023-08-18 | 中国联合网络通信集团有限公司 | 会话管理方法、oam和amf |
Also Published As
Publication number | Publication date |
---|---|
US20220338084A1 (en) | 2022-10-20 |
US11523319B2 (en) | 2022-12-06 |
US20210211960A1 (en) | 2021-07-08 |
US12041505B2 (en) | 2024-07-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018128528A1 (ko) | 무선 통신 시스템에서 pdu 세션 관리 방법 및 이를 위한 장치 | |
WO2018131984A1 (ko) | 무선 통신 시스템에서 ue 설정 업데이트 방법 및 이를 위한 장치 | |
WO2018231028A1 (ko) | 무선 통신 시스템에서 단말의 등록 방법 및 이를 위한 장치 | |
WO2018097599A1 (ko) | 무선 통신 시스템에서의 등록 해제 방법 및 이를 위한 장치 | |
WO2018169244A1 (ko) | 무선 통신 시스템에서 이동성 이벤트 통지 방법 및 이를 위한 장치 | |
WO2018174525A1 (ko) | 무선 통신 시스템에서 계층간 상호작용 방법 및 이를 위한 장치 | |
WO2018231029A1 (ko) | 무선 통신 시스템에서 단말의 등록 방법 및 이를 위한 장치 | |
WO2018008980A1 (ko) | 무선 통신 시스템에서 사용자가 선호하는 자원 운용 선택 방법 및 이를 위한 장치 | |
WO2018070689A1 (ko) | 무선 통신 시스템에서의 반영형 서비스 퀄리티 적용 방법 및 이를 위한 장치 | |
WO2018128529A1 (ko) | 무선 통신 시스템에서 네트워크간 상호연동 방법 및 이를 위한 장치 | |
WO2019160390A1 (ko) | 무선 통신 시스템에서의 단말 설정 업데이트 방법 및 이를 위한 장치 | |
WO2018110939A1 (ko) | 무선 통신 시스템에서의 트래킹 영역 할당 방법 및 이를 위한 장치 | |
WO2019098745A1 (ko) | 무선 통신 시스템에서의 핸드오버 방법 및 이를 위한 장치 | |
WO2018174516A1 (ko) | 무선 통신 시스템에서 nas 메시지 처리 방법 및 이를 위한 장치 | |
WO2018093168A1 (ko) | 무선 통신 시스템에서의 네트워크 노드 선택 방법 및 이를 위한 장치 | |
WO2018066799A1 (ko) | 무선 통신 시스템에서 세션 및 서비스 연속성 모드 선택 방법 및 이를 위한 장치 | |
WO2018066876A1 (ko) | 무선 통신 시스템에서 v2x 통신 지원 방법 | |
WO2018231007A1 (ko) | 요청에 대한 응답 방법 및 네트워크 장치 | |
WO2018044144A1 (ko) | 무선 통신 시스템에서 서비스 요청 절차를 수행하기 위한 방법 및 이를 위한 장치 | |
WO2018147698A1 (ko) | 무선 통신 시스템에서 nas 메시지 송수신 방법 및 이를 위한 장치 | |
WO2018079947A1 (ko) | 무선 통신 시스템에서 ue 이동성을 지원하기 위한 방법 및 이를 위한 장치 | |
WO2018155908A1 (ko) | 무선 통신 시스템에서 릴레이를 통한 데이터 송수신 방법 및 이를 위한 장치 | |
WO2017119802A1 (ko) | 무선 통신 시스템에서 nidd(non-ip data delivery) 구성 설정 방법 및 이를 위한 장치 | |
WO2017164679A1 (ko) | 무선 통신 시스템에서 트래킹 영역 업데이트 방법 및 이를 위한 장치 | |
WO2018236164A1 (ko) | 무선 통신 시스템에서 서비스 요청 절차 수행 방법 및 이를 위한 장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18736456 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18736456 Country of ref document: EP Kind code of ref document: A1 |