Nothing Special   »   [go: up one dir, main page]

WO2018128225A1 - Eddy current array probe having an insulted transceiver unit and eddy current examination method using same - Google Patents

Eddy current array probe having an insulted transceiver unit and eddy current examination method using same Download PDF

Info

Publication number
WO2018128225A1
WO2018128225A1 PCT/KR2017/005275 KR2017005275W WO2018128225A1 WO 2018128225 A1 WO2018128225 A1 WO 2018128225A1 KR 2017005275 W KR2017005275 W KR 2017005275W WO 2018128225 A1 WO2018128225 A1 WO 2018128225A1
Authority
WO
WIPO (PCT)
Prior art keywords
eddy current
magnetic field
magnetic
field detection
excitation
Prior art date
Application number
PCT/KR2017/005275
Other languages
French (fr)
Korean (ko)
Inventor
이태훈
조찬희
지동현
유현주
김인철
Original Assignee
한국수력원자력 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국수력원자력 주식회사 filed Critical 한국수력원자력 주식회사
Priority to CN201780082184.2A priority Critical patent/CN110140049A/en
Publication of WO2018128225A1 publication Critical patent/WO2018128225A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
    • G01N27/90Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents
    • G01N27/9013Arrangements for scanning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
    • G01N27/90Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C17/00Monitoring; Testing ; Maintaining
    • G21C17/017Inspection or maintenance of pipe-lines or tubes in nuclear installations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Definitions

  • Embodiments of the present invention relate to an arrayed eddy current probe insulated from a transceiver for detecting circumferential cracks and residual material present on the outer surface of a heat exchanger conductive tube and an eddy current inspection method using the same.
  • Tubes of heat exchangers used in nuclear power plants are made of fine tubes with good heat transfer rate, corrosion resistance and thinness to improve heat exchange performance. These customs maintain pressure boundaries and are exposed to harsh environments, causing various types of defects such as cracks caused by high and high pressures, abrasion between pipes and pipe supports, and dents. Therefore, it is necessary to periodically perform nondestructive testing for the soundness diagnosis of the heat exchanger tube. Since most heat exchanger tubes are made of nonmagnetic materials, eddy current flaw detection is mainly used for nondestructive testing of such thin nonmagnetic tubes.
  • Eddy current inspection on the heat exchanger tube flows a high frequency (tens of tens to hundreds of ohms) of current into the coil of the eddy current probe inserted inside the tube to form an eddy current in the tube, and the eddy current due to the change in the geometry of the tube, the conductivity of the material, the defect, etc. This is done by measuring the presence and size of defects by detecting changes in the system.
  • a bobbin probe and a rotating pancake coil (RPC) probe are generally used as an eddy current probe for performing such a test.
  • the bobbin transducer is a device in which two coils having the same coil axis as the tube axis are wound annularly in one body, and have a constant gap between the coils. Inspection with bobbin probes has the advantage of fast inspection speed, but has the disadvantage of being sensitive to axial cracking but insensitive to circumferential crack detection.
  • the rotary probe is inspected by rotating the fuselage drive having a pancake-shaped coil whose coil axis is perpendicular to the tube plane. Inspection using a rotary probe has excellent defect detection performance in the axial and circumferential directions, but has a disadvantage in that the inspection speed is very slow.
  • An array eddy current transducer is one that maintains the advantages of both of these transducers and compensates for them.
  • Array The eddy current transducer has a coil arranged in a cylindrical body two-dimensionally in the circumferential direction according to the inspection object. Therefore, by electronically controlling each coil to transmit and receive signals in various directions, an eddy current test can be performed by electronic scanning on the region where the coils are arranged without mechanical rotation.
  • the inspection using the eddy current transducer has the advantages of rapid inspection of the bobbin transducer, and the advantage of the rotary probe that can detect circumferential defects and obtain 2D / 3D stereoscopic images of the corresponding site. At the same time, the inspection time is shortened, and the inspection reliability is improved.
  • FIG. 1 is a view showing a conventional array eddy current transducer.
  • a plurality of coils 100 are densely arranged in a plurality of rows in the circumferential direction of the array eddy current transducer.
  • a transmission / reception mode is used in which one coil excites the eddy current and the other coil detects magnetism by the eddy current.
  • At least one of the plurality of rows is used to detect circumferential cracks, and two or three rows are used to detect circumferential and axial cracks.
  • a multiplexer which is a switching device that selects a transmit / receive coil for electronic scanning.
  • FIG. 2 is a diagram illustrating the operation of a conventional array eddy current probe.
  • one row for circumferential defect detection is developed in a plane, and each time slot for flaw detection of the inner surface of the heat exchanger tube is performed.
  • the coil 210 of the array eddy current transducer is connected to the multiplexer 221 for magnetic excitation (transmission) and the multiplexer 222 for magnetic field detection (reception) of the signal switching device 220, respectively.
  • the signal switching device 220 includes a magnetic excitation multiplexer 221, a magnetic field detection multiplexer 222, and a multiplexer controller 223, and is connected to the main body 230 through a lead wire. Therefore, in performing the electronic scan, the coil used as the magnetic field detecting element is used as the magnetic excitation element again.
  • each coil 210 should have the same electrical characteristics, it is difficult to use a magnetic element such as a Hall sensor, a large magnetoresistive sensor, or a coil in the form of a printed circuit board (PCB) as a magnetic field detection element. have.
  • a magnetic element such as a Hall sensor, a large magnetoresistive sensor, or a coil in the form of a printed circuit board (PCB)
  • the technical problem of the present invention is to provide an arrayed eddy current probe and an eddy current flaw detection method using the same in which the transceiver is isolated to improve the signal quality by reducing the signal interference by the self-excitation signal to simplify the existing wiring more .
  • Another technical problem of the present invention is to provide an array eddy current probe insulated from a transceiver which can be used in combination of heterogeneous elements, and an eddy current flaw detection method using the same.
  • the array eddy current transducer is a body, a plurality of self-excited elements arranged in a row along the circumference of the body and a position spaced apart from the coil for the self-excited coil by a predetermined interval on the one row It may include a plurality of magnetic field detection elements disposed in.
  • the self-exciting element may be a coil of any one form of circular, elliptical, and square shape.
  • the magnetic field detection element is a coil in the form of any one of a circle, oval and square, such as the magnetic excitation element, or a coil, a hall sensor and a large magnetoresistive element in the form of a PCB (Printed Circuit Board) It can be either.
  • the magnetic excitation element and the magnetic field detection element may be alternately arranged two at equal intervals on the one column.
  • the array eddy current transducer is a magnetic excitation multiplexer connected to the magnetic excitation element, the magnetic field multiplexer connected to the magnetic field detection element and the magnetic excitation according to the selection signal received from the eddy current inspection device
  • the apparatus may further include a controller for selecting at least one of the device and the magnetic field detection device.
  • the magnetic excitation element and the magnetic field detection element may be separately connected to the magnetic excitation multiplexer and the magnetic field multiplexer, respectively.
  • the method may further include a signal amplifier connected to the magnetic field multiplexer for amplifying the magnetic field signal detected by the magnetic field detection element.
  • the magnetic field signal may be detected by the magnetic field detection element at a position separated by one element on the one column from the magnetic excitation element that generated the eddy current among the plurality of magnetic field detection elements.
  • the self-excited element may generate an eddy current using the alternating current received from the eddy current inspection device.
  • an eddy current flaw detection method using an array eddy current probe generates an eddy current by applying an alternating current to at least one of a plurality of self-excited elements arranged in a row along the circumference of the array eddy current probe. Step, spaced apart from the self-excited element that generated the eddy current on the one column of the plurality of magnetic field detection elements disposed in a position spaced apart from the self-excited coil by a predetermined interval on the one column by a predetermined interval
  • the method may include selecting a magnetic field detecting element disposed at a predetermined position and detecting a magnetic signal using the selected magnetic field detecting element.
  • the existing wiring can be simplified and the signal interference due to the magnetic excitation signal can be reduced to improve the signal quality.
  • the magnetic excitation element group and the magnetic field detection element group are clearly distinguished, heterogeneous elements can be used in combination, so that the size of the transducer can be reduced and the coil can be more densely constructed.
  • a smaller number of timeslots can be used to detect one round of the inner surface of the heat exchanger tube, allowing the use of multiplexers with fewer channels, and a faster inspection speed in one cycle, thus increasing the feeder speed.
  • FIG. 1 is a view showing a conventional array eddy current transducer.
  • FIG. 2 is a planar view of a coil arrangement circumferential defect detection shown in FIG. 1 for explaining the operation of a conventional array eddy current transducer in a plane to transmit / receive each time slot for flaw detection of the inner surface of a heat exchanger tube.
  • FIG. 3 is a view showing an array eddy current transducer according to an embodiment of the present invention.
  • FIG. 4 is a diagram illustrating a transmission / reception pattern and a configuration of time slots of an array eddy current probe according to an embodiment of the present invention.
  • FIG. 5 is an exploded view of an array eddy current transducer device having a heterogeneous combination type according to another embodiment of the present invention.
  • FIG. 6 is a diagram illustrating a transmission / reception pattern and a configuration of time slots of an array eddy current probe according to another embodiment of the present invention.
  • FIG. 3 is a view showing an array eddy current transducer according to an embodiment of the present invention.
  • the array eddy current transducer 300 includes a plurality of magnetic excitation elements 310 arranged in a row along a circumference of the cylindrical body, that is, in a circumferential direction, and a magnet on the one row.
  • the excitation coil 310 may include a plurality of magnetic field detecting elements 320 disposed at positions spaced apart by a predetermined interval.
  • the magnetic excitation element 310 may generate an eddy current in the body, and the magnetic field detection element 320 may detect magnetism.
  • the self-exciting element 310 may be a coil of any one of a circle, an ellipse, and a rectangle.
  • the magnetic field detecting element 320 may be a coil of any one of circular, elliptical, and square shapes, such as the magnetic excitation element 310, or a coil, a hall sensor, and a large magnetoresistance (GMR) in the form of a printed circuit board (GMR).
  • Giant Magneto Resistance can be any one of the elements. That is, in FIG. 3, a circular coil is used as both the magnetic excitation element and the magnetic field detection element.
  • the magnetic excitation element group and the magnetic field detection element group are clearly insulated and distinguished as magnetic field detection elements.
  • PCB type coils, Hall sensors, large magnetoresistive elements and the like can be used.
  • a total of 16 magnetic excitation elements 310 and the magnetic field detection elements 320 are alternately arranged at equal intervals on one column in an array eddy current transducer, but the number of transmission and reception elements is required. It can be increased or decreased accordingly.
  • FIG. 3 illustrates an interpolated probe inserted into a heat exchanger tube provided in a nuclear power plant as an example
  • the coil structure of FIG. 3 may be applied to a through type eddy current transducer.
  • FIG. 4 is a diagram illustrating a transmission / reception pattern and a configuration of time slots of an array eddy current probe according to an embodiment of the present invention.
  • the magnetic excitation elements a, b, e, f, I, j, m and n of the plurality of elements 410 and the magnetic field detection elements c, d, g, h, k, l, o. p) may be separately connected to the magnetic excitation multiplexer 421 and the magnetic field detection multiplexer 422 included in the eddy current signal switching device 420, respectively.
  • the eddy current signal switching device 420 may be embedded in the main body 430 of the eddy current inspection device, or may be configured as a separate device or interpolated inside the array eddy current transducer.
  • the self-excited multiplexer 421 is connected to the elements of the self-excited elements (a, b, e, f, I, j, m, n) for the magnetic excitation corresponding to the alternating current supplied from the main body 430 through the lead wire It can be applied to the device.
  • the self-excited elements (a, b, e, f, I, j, m, n) may generate an eddy current using the alternating current received through the self-excited multiplexer 421.
  • the magnetic field detecting multiplexer 422 is connected to the magnetic field detecting elements c, d, g, h, k, l, o.p and the amplifier 424 so that the magnetic field detecting elements c, d, g, h, The magnetic field signal detected by k, l, o. p) may be provided to the signal amplifier 424.
  • the magnetic field signal is a magnetic field detection element at a position spaced apart by one element from the magnetic excitation element that generated the eddy current among the plurality of magnetic field detection elements (c, d, g, h, k, l, o. P). Can be detected by.
  • the controller 423 controls the magnetic excitation multiplexer 421 to generate an eddy current in the magnetic excitation element e
  • the magnetic field is detected so that the magnetic signal is detected by the magnetic field detection elements c and g.
  • the detection multiplexer 422 can be controlled.
  • the controller 423 may select at least one of the magnetic excitation element and the magnetic field detection element according to the selection signal received from the main body 43 of the eddy current inspection apparatus.
  • the signal amplifier 424 may be connected to the magnetic field multiplexer 422 to amplify the magnetic field signal detected by the magnetic field detection elements c, d, g, h, k, l, and p.
  • the controller 423 allows an alternating current to be applied to at least one of the plurality of self-excited elements arranged in one row along the circumference of the array eddy current transducers, thereby causing an eddy current to be generated in the self-excited element.
  • the magnetic field detecting element may be selected to detect a magnetic signal through the magnetic field detecting element.
  • each of the multiplexers 421 and 422 receives a selection signal for selecting any one of the magnetic excitation element and the magnetic field detection element from the main body 430, and sequentially 1s each time slot through the controller 423. You can switch from channel 1 to channel n, where n is a natural number.
  • the selection signal may be a signal of m (where m is a natural number) or a continuous signal of a square pulse.
  • Each multiplexer 421, 422 may select a coil to enable inspection in the order shown in FIG. 4 through switching. In FIG. 4, "T” represents a transmitting element and "R" represents a receiving element.
  • a lead wire is connected to the self-excited multiplexer 421, and an alternating current may be applied to excite the magnetic field from the main body 430.
  • the magnetic excitation element (a) disposed at the first of the plurality of elements 410 is connected, and an eddy current is generated by the element (a). do.
  • the magnetic field due to the changed eddy current is sensed through the magnetic field detecting elements c, g, k and o at positions where one element is spaced to the left and right of the magnetic excitation elements a and i.
  • each magnetic field detection element (c, g, k, o) is connected to the magnetic field multiplexer 422.
  • the magnetic field signal detected by the magnetic field detecting elements c, g, k, and o is amplified by a signal amplifier 424 connected to the magnetic field multiplexer 422, and the amplified signal is a main body 430 through a lead wire. Is delivered.
  • the controller 423 switches to the second channel and is connected to the second self-excited elements b and j to generate eddy currents in the corresponding element. Then, as in the first time slot, the magnetic field due to the eddy current changed through the magnetic field detecting elements d, h, l, and p at positions where one element is spaced apart from the left and right sides of the corresponding magnetic excitation elements b and j. Is detected.
  • the output signal for each time slot is sequentially transmitted to the main body 430 through one lead through switching of the magnetic field multiplexer 422 for one period.
  • the array eddy current probe can detect one wheel of the inner surface of the heat exchanger tube with four time slots for one cycle of flaw detection based on 16 elements.
  • multiplexers 421 and 422 having a reduced number of channels can be used, and since the one-cycle inspection speed is high, the feeding speed of the transducer can be increased.
  • the magnetic excitation portion composed of the magnetic excitation element and the corresponding multiplexer 421 and the magnetic field detection portion composed of the magnetic detection element and the multiplexer 422 are clearly separated from each other, it is possible to simplify and simplify the existing wiring. It is possible to obtain an effect of improving signal quality by reducing signal interference due to an excitation signal.
  • FIG. 5 is an exploded view of an array eddy current transducer device having a heterogeneous combination type according to another embodiment of the present invention.
  • FIG. 5 illustrates an example in which a heterogeneous element different from the magnetic excitation element 510 is used as the magnetic field detection element 520 in the array eddy current probe. In this case, the size of the array eddy current transducer can be reduced or more compactly constructed.
  • FIG. 6 is a diagram illustrating a transmission / reception pattern and a configuration of time slots of an array eddy current probe according to another embodiment of the present invention.
  • the transmission and reception is divided into two zones as an example.
  • the time slot may be increased without dividing the zones as shown in FIG. 6.
  • the eddy current signal switching device 620 can be miniaturized. In this way, the wiring between the magnetic field detecting element and the multiplexer and the number of channels of the multiplexer can be changed as long as the transmission / reception pattern is the same as necessary.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Electrochemistry (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

The present invention provides an eddy current array probe having an insulated transceiver unit and an eddy current examination method using the same. The eddy current array probe may comprise: a body; a plurality of magnetic excitation elements arranged in one row along the periphery of the body; and a plurality of magnetic field detecting elements arranged in the one row at positions spaced apart a pre-set interval from the magnetic excitation coil.

Description

송수신부가 절연된 배열 와전류 탐촉자 및 이를 이용한 와전류 탐상 검사 방법Array eddy current probe with insulated transceiver and eddy current inspection method using same
본 발명의 실시예들은 열교환기 전도성 튜브의 원주 방향 균열과 튜브 외면에 존재하는 잔류물질을 검출할 수 있는 송수신부가 절연된 배열 와전류 탐촉자와 이를 이용한 와전류 탐상 검사 방법에 관한 것이다.Embodiments of the present invention relate to an arrayed eddy current probe insulated from a transceiver for detecting circumferential cracks and residual material present on the outer surface of a heat exchanger conductive tube and an eddy current inspection method using the same.
원자력 발전소에서 사용되는 열교환기의 튜브는 열교환 성능을 향상시키기 위해 열전달율이 좋고 부식에 강하며 두께가 얇은 세관들로 제작된다. 이 세관들은 압력경계를 유지하고 있고 매우 열악한 환경에 노출되어 있기 때문에 고온/고압에 의한 균열, 관과 관지지대 사이의 마모, 덴트(dent) 등 다양한 종류의 결함들이 발생한다. 따라서, 열교환기 튜브의 건전성 진단을 위해서는 주기적으로 비파괴 검사를 수행할 필요가 있다. 열교환기 튜브의 재질은 대부분 비자성체이므로, 이러한 두께가 얇은 비자성체 튜브의 비파괴 검사를 위해 와전류 탐상 검사가 주로 사용된다.Tubes of heat exchangers used in nuclear power plants are made of fine tubes with good heat transfer rate, corrosion resistance and thinness to improve heat exchange performance. These customs maintain pressure boundaries and are exposed to harsh environments, causing various types of defects such as cracks caused by high and high pressures, abrasion between pipes and pipe supports, and dents. Therefore, it is necessary to periodically perform nondestructive testing for the soundness diagnosis of the heat exchanger tube. Since most heat exchanger tubes are made of nonmagnetic materials, eddy current flaw detection is mainly used for nondestructive testing of such thin nonmagnetic tubes.
열교환기 튜브에 대한 와전류 탐상 검사는 튜브 내부에 삽입된 와전류 탐촉자의 코일에 고주파(수십 내지 수백㎑) 전류를 흘려 튜브에 와전류를 형성시키고, 튜브의 기하학적 형상 변화, 재료의 전도도, 결함 등에 의한 와전류의 변화를 감지하여 결함의 유무 및 크기를 측정하는 방법으로 수행된다. 이러한 검사를 수행하기 위한 와전류 탐촉자로서 일반적으로 보빈 탐촉자(Bobbin probe)와 회전형(Rotating Pancake Coil, RPC) 탐촉자가 이용되고 있다.Eddy current inspection on the heat exchanger tube flows a high frequency (tens of tens to hundreds of ohms) of current into the coil of the eddy current probe inserted inside the tube to form an eddy current in the tube, and the eddy current due to the change in the geometry of the tube, the conductivity of the material, the defect, etc. This is done by measuring the presence and size of defects by detecting changes in the system. As an eddy current probe for performing such a test, a bobbin probe and a rotating pancake coil (RPC) probe are generally used.
보빈 탐촉자는 코일 축이 튜브 축과 동일한 두 개의 코일을 한 개의 몸체에 환형으로 권선된 장치로, 코일 간에 일정한 간극을 가지고 있다. 보빈 탐촉자를 이용한 검사는 검사 속도가 빠르다는 장점은 있지만, 축방향 균열에는 민감한 반면 원주방향 균열 검출에는 둔감한 단점을 가지고 있다.The bobbin transducer is a device in which two coils having the same coil axis as the tube axis are wound annularly in one body, and have a constant gap between the coils. Inspection with bobbin probes has the advantage of fast inspection speed, but has the disadvantage of being sensitive to axial cracking but insensitive to circumferential crack detection.
회전형 탐촉자는 코일 축이 튜브 면에 수직한 팬케이크(pancake) 형태의 코일을 가진 동체 구동장치에 의하여 회전하며 검사를 수행한다. 회전형 탐촉자를 이용한 검사는 축방향 및 원주방향의 결함 검출 성능이 우수하지만, 검사속도가 매우 느리다는 단점이 있다.The rotary probe is inspected by rotating the fuselage drive having a pancake-shaped coil whose coil axis is perpendicular to the tube plane. Inspection using a rotary probe has excellent defect detection performance in the axial and circumferential directions, but has a disadvantage in that the inspection speed is very slow.
이 두 가지 탐촉자의 장점을 유지하고 단점을 보완한 장치가 배열 와전류 탐촉자이다. 배열 와전류 탐촉자는 코일이 원기둥 형태의 몸체에 검사대상에 따라 원주방향으로 2차원적으로 배열된다. 따라서 각각의 코일을 전자적으로 제어하여 여러 방향으로 신호를 송수신함으로써 기계적인 회전 없이 코일이 배열된 영역에 대하여 전자적 주사로 와전류 검사를 수행할 수 있다. 이와 같은 전자적인 주사에 의해, 와전류 탐촉자를 이용한 검사는 보빈 탐촉자의 빠른 검사의 장점과, 원주방향 결함 검출 및 해당부위에 대한 2차원/3차원의 입체영상을 획득할 수 있는 회전형 탐촉자의 장점을 동시에 가지게 되어 검사시간이 단축되고, 검사 신뢰도가 향상된다.An array eddy current transducer is one that maintains the advantages of both of these transducers and compensates for them. Array The eddy current transducer has a coil arranged in a cylindrical body two-dimensionally in the circumferential direction according to the inspection object. Therefore, by electronically controlling each coil to transmit and receive signals in various directions, an eddy current test can be performed by electronic scanning on the region where the coils are arranged without mechanical rotation. By the electronic scanning, the inspection using the eddy current transducer has the advantages of rapid inspection of the bobbin transducer, and the advantage of the rotary probe that can detect circumferential defects and obtain 2D / 3D stereoscopic images of the corresponding site. At the same time, the inspection time is shortened, and the inspection reliability is improved.
도 1은 종래의 배열 와전류 탐촉자를 나타내는 도면이다.1 is a view showing a conventional array eddy current transducer.
도 1을 참조하면, 종래의 배열 와전류 탐촉자에는 복수개의 코일(100)이 배열 와전류 탐촉자의 원주 방향으로 복수개의 열로 조밀하게 서로 엇갈려 배열되어 있다. 와전류 탐상 검사 시 코일 하나가 와전류를 여기시키고 다른 코일이 와전류에 의한 자기를 검출하는 송수신 모드가 사용된다. 원주방향 균열을 탐지하기 위해서 복수개의 열 중 최소 1열이 사용되고 원주방향 균열과 축방향 균열을 검출하기 위해서 2열 또는 3열이 사용된다. 또한 전자적인 주사를 위해 송수신 코일을 선택하는 스위칭 장치인 멀티플렉서가 사용된다.Referring to FIG. 1, in a conventional array eddy current transducer, a plurality of coils 100 are densely arranged in a plurality of rows in the circumferential direction of the array eddy current transducer. In the eddy current inspection, a transmission / reception mode is used in which one coil excites the eddy current and the other coil detects magnetism by the eddy current. At least one of the plurality of rows is used to detect circumferential cracks, and two or three rows are used to detect circumferential and axial cracks. Also used is a multiplexer, which is a switching device that selects a transmit / receive coil for electronic scanning.
도 2는 종래의 배열 와전류 탐촉자의 동작을 설명하기 위해 도 1에 나타낸 코일배치 중 원주방향 결함검출을 위한 1열을 평면으로 전개하여 열교환기 튜브의 내면 1 바퀴분의 탐상을 위한 각 타임 슬롯별 송수신 패턴과 이를 구현하기 구성을 나타내는 도면이다.FIG. 2 is a diagram illustrating the operation of a conventional array eddy current probe. In the coil arrangement illustrated in FIG. 1, one row for circumferential defect detection is developed in a plane, and each time slot for flaw detection of the inner surface of the heat exchanger tube is performed. A diagram illustrating a transmission / reception pattern and a configuration for implementing the same.
도 2를 참조하면, 배열 와전류 탐촉자의 코일(210)은 신호 스위칭 장치(220)의 자기여기(송신)용 멀티플렉서(221)와 자장검출(수신)용 멀티플렉서(222)에 각각 연결된다. 신호 스위칭 장치(220)는 자기여기용 멀티플렉서(221), 자장검출용 멀티플렉서(222) 및 멀티플렉서 제어기(223)를 포함하며, 리드선을 통해 본체(230)와 연결된다. 따라서 전자적인 주사를 수행함에 있어 자장검출 소자로 사용된 코일이 자기여기 소자로 다시 사용된다. 그러나 이와 같이 하나의 코일(210)에 대해 자기여기를 위한 멀티플렉서(221)와 자장검출을 위한 멀티플렉서(222)가 함께 사용되기 때문에 높은 진폭의 자기여기신호에 의한 신호간섭(cross talk)을 받게 되어 신호 품질이 나빠진다. 또한 각 코일(210)은 서로 동일한 전기적 특성을 가져야 하므로, 홀 센서(Hall sensor), 거대 자기 저항 센서 등과 같은 자기 소자나 PCB(Printed Circuit Board) 형태의 코일을 자장검출 소자로 사용하기에 어려움이 있다.Referring to FIG. 2, the coil 210 of the array eddy current transducer is connected to the multiplexer 221 for magnetic excitation (transmission) and the multiplexer 222 for magnetic field detection (reception) of the signal switching device 220, respectively. The signal switching device 220 includes a magnetic excitation multiplexer 221, a magnetic field detection multiplexer 222, and a multiplexer controller 223, and is connected to the main body 230 through a lead wire. Therefore, in performing the electronic scan, the coil used as the magnetic field detecting element is used as the magnetic excitation element again. However, since the multiplexer 221 for magnetic excitation and the multiplexer 222 for magnetic field detection are used together with one coil 210 as described above, signal interference due to a high amplitude magnetic excitation signal is received. Signal quality worsens. In addition, since each coil 210 should have the same electrical characteristics, it is difficult to use a magnetic element such as a Hall sensor, a large magnetoresistive sensor, or a coil in the form of a printed circuit board (PCB) as a magnetic field detection element. have.
본 발명의 기술적 과제는 기존의 배선을 보다 간소화시킬 수 있고 자기여기신호에 의한 신호간섭을 저감시켜 신호 품질을 향상시킬 수 있는 송수신부가 절연된 배열 와전류 탐촉자 및 이를 이용한 와전류 탐상 검사 방법을 제공함에 있다.The technical problem of the present invention is to provide an arrayed eddy current probe and an eddy current flaw detection method using the same in which the transceiver is isolated to improve the signal quality by reducing the signal interference by the self-excitation signal to simplify the existing wiring more .
본 발명의 다른 기술적 과제는 이종의 소자를 조합하여 사용할 수 있는 송수신부가 절연된 배열 와전류 탐촉자 및 이를 이용한 와전류 탐상 검사 방법을 제공함에 있다.Another technical problem of the present invention is to provide an array eddy current probe insulated from a transceiver which can be used in combination of heterogeneous elements, and an eddy current flaw detection method using the same.
본 발명의 또 다른 기술적 과제는 보다 빠르게 와전류 탐상 검사를 수행할 수 있는 송수신부가 절연된 배열 와전류 탐촉자 및 이를 이용한 와전류 탐상 검사 방법을 제공함에 있다.It is still another object of the present invention to provide an array eddy current probe insulated from a transceiver for performing eddy current flaw detection and a eddy current flaw detection method using the same.
본 발명의 일 양태에 따르면, 배열 와전류 탐촉자는 몸체, 상기 몸체의 둘레를 따라 하나의 열로 배치되는 복수개의 자기여기용 소자 및 상기 하나의 열 상에서 상기 자기여기용 코일과 기 설정된 간격만큼 이격된 위치에 배치되는 복수개의 자장검출용 소자를 포함할 수 있다.According to one aspect of the invention, the array eddy current transducer is a body, a plurality of self-excited elements arranged in a row along the circumference of the body and a position spaced apart from the coil for the self-excited coil by a predetermined interval on the one row It may include a plurality of magnetic field detection elements disposed in.
일측에 따르면, 상기 자기여기용 소자는 원형, 타원형 및 사각형 형태 중 어느 하나의 형태의 코일일 수 있다.According to one side, the self-exciting element may be a coil of any one form of circular, elliptical, and square shape.
다른 측면에 따르면, 상기 자장검출용 소자는 상기 자기여기용 소자와 같이 원형, 타원형 및 사각형 중 어느 하나의 형태의 코일이거나, PCB(Printed Circuit Board) 형태의 코일, 홀 센서 및 거대 자기 저항 소자 중 어느 하나일 수 있다.According to another aspect, the magnetic field detection element is a coil in the form of any one of a circle, oval and square, such as the magnetic excitation element, or a coil, a hall sensor and a large magnetoresistive element in the form of a PCB (Printed Circuit Board) It can be either.
또 다른 측면에 따르면, 상기 자기여기용 소자와 상기 자장검출용 소자는 상기 하나의 열 상에서 등간격으로 2개씩 번갈아 가며 배치될 수 있다.According to another aspect, the magnetic excitation element and the magnetic field detection element may be alternately arranged two at equal intervals on the one column.
또 다른 측면에 따르면, 상기 배열 와전류 탐촉자는 상기 자기여기용 소자에 연결되는 자기여기용 멀티플렉서, 상기 자장검출용 소자에 연결되는 자장검출용 멀티플렉서 및 와전류 검사 장치로부터 수신한 선택 신호에 따라 상기 자기여기용 소자 및 상기 자장검출용 소자 중 적어도 하나를 선택하는 제어기를 더 포함할 수 있다.According to another aspect, the array eddy current transducer is a magnetic excitation multiplexer connected to the magnetic excitation element, the magnetic field multiplexer connected to the magnetic field detection element and the magnetic excitation according to the selection signal received from the eddy current inspection device The apparatus may further include a controller for selecting at least one of the device and the magnetic field detection device.
또 다른 측면에 따르면, 상기 자기여기용 소자와 상기 자장검출용 소자는 각각 상기 자기여기용 멀티플렉서와 상기 자장검출용 멀티플렉서에 분리되어 연결될 수 있다.According to another aspect, the magnetic excitation element and the magnetic field detection element may be separately connected to the magnetic excitation multiplexer and the magnetic field multiplexer, respectively.
또 다른 측면에 따르면, 상기 자장검출용 멀티플렉서에 연결되어 상기 자장검출용 소자에 의해 검출된 자장 신호를 증폭하는 신호 증폭기를 더 포함할 수 있다.According to another aspect, the method may further include a signal amplifier connected to the magnetic field multiplexer for amplifying the magnetic field signal detected by the magnetic field detection element.
또 다른 측면에 따르면, 상기 자장 신호는 상기 복수개의 자장검출용 소자 중 와전류를 발생시킨 자기여기용 소자로부터 상기 하나의 열 상에서 한 소자씩 이격된 위치의 자장검출용 소자에 의해 검출될 수 있다.According to another aspect, the magnetic field signal may be detected by the magnetic field detection element at a position separated by one element on the one column from the magnetic excitation element that generated the eddy current among the plurality of magnetic field detection elements.
또 다른 측면에 따르면, 상기 자기여기용 소자는 상기 와전류 검사 장치로부터 수신한 교류 전류를 이용하여 와전류를 발생시킬 수 있다.According to another aspect, the self-excited element may generate an eddy current using the alternating current received from the eddy current inspection device.
본 발명의 다른 양태에 따르면, 배열 와전류 탐촉자를 이용한 와전류 탐상 검사 방법은 상기 배열 와전류 탐촉자의 둘레를 따라 하나의 열로 배치되는 복수개의 자기여기용 소자 중 적어도 하나에 교류 전류를 인가하여 와전류를 발생시키는 단계, 상기 하나의 열 상에서 상기 자기여기용 코일과 기 설정된 간격만큼 이격된 위치에 배치되는 복수개의 자장검출용 소자 중 상기 하나의 열 상에서 상기 와전류를 발생시킨 자기여기용 소자로부터 기 설정된 간격만큼 이격된 위치에 배치된 자장검출용 소자를 선택하는 단계 및 상기 선택한 자장검출용 소자를 이용하여 자기 신호를 검출하는 단계를 포함할 수 있다.According to another aspect of the present invention, an eddy current flaw detection method using an array eddy current probe generates an eddy current by applying an alternating current to at least one of a plurality of self-excited elements arranged in a row along the circumference of the array eddy current probe. Step, spaced apart from the self-excited element that generated the eddy current on the one column of the plurality of magnetic field detection elements disposed in a position spaced apart from the self-excited coil by a predetermined interval on the one column by a predetermined interval The method may include selecting a magnetic field detecting element disposed at a predetermined position and detecting a magnetic signal using the selected magnetic field detecting element.
자기여기부와 자장검출부가 명확하게 절연되어 구분되어 있기 때문에 기존의 배선을 보다 간소화시킬 수 있고 자기여기신호에 의한 신호간섭이 저감되어 신호 품질을 향상될 수 있다.Since the magnetic excitation portion and the magnetic field detection portion are clearly insulated from each other, the existing wiring can be simplified and the signal interference due to the magnetic excitation signal can be reduced to improve the signal quality.
자기여기소자군과 자장검출소자군이 명확하게 구분되어 있기 때문에 이종의 소자를 조합하여 사용할 수 있으므로, 탐촉자의 크기를 줄일 수 있고 코일을 보다 조밀하게 구성할 수 있다.Since the magnetic excitation element group and the magnetic field detection element group are clearly distinguished, heterogeneous elements can be used in combination, so that the size of the transducer can be reduced and the coil can be more densely constructed.
보다 적은 타임슬롯으로도 열교환기 튜브의 내면 1바퀴분을 탐상할 수 있기 때문에 채널 수가 적은 멀티플렉서를 사용할 수 있으며, 한 주기의 검사 속도가 빠르기 때문에 탐촉자의 이송속도를 높일 수 있다.A smaller number of timeslots can be used to detect one round of the inner surface of the heat exchanger tube, allowing the use of multiplexers with fewer channels, and a faster inspection speed in one cycle, thus increasing the feeder speed.
도 1은 종래의 배열 와전류 탐촉자를 나타내는 도면이다.1 is a view showing a conventional array eddy current transducer.
도 2는 종래의 배열 와전류 탐촉자의 동작을 설명하기 위해 도 1에 나타낸 코일배치 원주방향 결함검출을 위한 1열을 평면으로 전개하여 열교환기 튜브의 내면 1 바퀴분의 탐상을 위한 각 타임 슬롯별 송수신 패턴과 이를 구현하기 구성을 나타내는 도면이다.FIG. 2 is a planar view of a coil arrangement circumferential defect detection shown in FIG. 1 for explaining the operation of a conventional array eddy current transducer in a plane to transmit / receive each time slot for flaw detection of the inner surface of a heat exchanger tube. A diagram showing a pattern and a configuration for implementing it.
도 3은 본 발명의 일실시예에 따른 배열 와전류 탐촉자를 나타내는 도면이다.3 is a view showing an array eddy current transducer according to an embodiment of the present invention.
도 4는 본 발명의 일실시예에 따른 배열 와전류 탐촉자의 타임 슬롯별 송수신 패턴 및 구성을 나타내는 도면이다.4 is a diagram illustrating a transmission / reception pattern and a configuration of time slots of an array eddy current probe according to an embodiment of the present invention.
도 5는 본 발명의 다른 실시예에 따른 이종 조합 형태의 배열 와전류 탐촉자 소자의 전개도이다.5 is an exploded view of an array eddy current transducer device having a heterogeneous combination type according to another embodiment of the present invention.
도 6은 본 발명의 다른 실시예에 따른 배열 와전류 탐촉자의 타임 슬롯별 송수신 패턴 및 구성을 나타내는 도면이다.FIG. 6 is a diagram illustrating a transmission / reception pattern and a configuration of time slots of an array eddy current probe according to another embodiment of the present invention.
아래에서는 첨부한 도면을 참고로 하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다. 또한 명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.DETAILED DESCRIPTION Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art may easily implement the present invention. As those skilled in the art would realize, the described embodiments may be modified in various different ways, all without departing from the spirit or scope of the present invention. In the drawings, parts irrelevant to the description are omitted in order to clearly describe the present invention, and like reference numerals designate like parts throughout the specification. In addition, throughout the specification, when a part is said to "include" a certain component, it means that it can further include other components, except to exclude other components unless specifically stated otherwise.
도 3은 본 발명의 일실시예에 따른 배열 와전류 탐촉자를 나타내는 도면이다.3 is a view showing an array eddy current transducer according to an embodiment of the present invention.
도 3을 참조하면, 본 발명에 따른 배열 와전류 탐촉자(300)는 원기둥 형태의 몸체의 둘레 즉, 원주 방향을 따라 하나의 열로 배치되는 복수개의 자기여기용 소자(310) 및 상기 하나의 열 상에서 자기여기용 코일(310)과 기 설정된 간격만큼 이격된 위치에 배치되는 복수개의 자장검출용 소자(320)를 포함할 수 있다. 자기여기용 소자(310)는 상기 몸체에 와전류를 발생시킬 수 있으며, 자장검출용 소자(320)는 자기를 검출할 수 있다. 여기서 자기여기용 소자(310)는 원형, 타원형 및 사각형 중 어느 하나의 형태의 코일일 수 있다. 그리고 자장검출용 소자(320)는 자기여기용 소자(310)와 같이 원형, 타원형 및 사각형 중 어느 하나의 형태의 코일이거나, PCB(Printed Circuit Board) 형태의 코일, 홀 센서 및 거대 자기 저항(GMR: Giant Magneto Resistance) 소자 중 어느 하나일 수 있다. 즉, 도 3에서는 자기여기용 소자와 자장검출용 소자로서 모두 원형 코일이 이용되는 경우가 도시되어 있으나, 자기여기소자군과 자장검출소자군이 명확하게 절연되어 구별되어 있기 때문에 자장검출용 소자로서 PCB 형태의 코일, 홀 센서, 거대 자기저항 소자 등이 사용될 수 있다.Referring to FIG. 3, the array eddy current transducer 300 according to the present invention includes a plurality of magnetic excitation elements 310 arranged in a row along a circumference of the cylindrical body, that is, in a circumferential direction, and a magnet on the one row. The excitation coil 310 may include a plurality of magnetic field detecting elements 320 disposed at positions spaced apart by a predetermined interval. The magnetic excitation element 310 may generate an eddy current in the body, and the magnetic field detection element 320 may detect magnetism. Here, the self-exciting element 310 may be a coil of any one of a circle, an ellipse, and a rectangle. The magnetic field detecting element 320 may be a coil of any one of circular, elliptical, and square shapes, such as the magnetic excitation element 310, or a coil, a hall sensor, and a large magnetoresistance (GMR) in the form of a printed circuit board (GMR). : Giant Magneto Resistance) can be any one of the elements. That is, in FIG. 3, a circular coil is used as both the magnetic excitation element and the magnetic field detection element. However, the magnetic excitation element group and the magnetic field detection element group are clearly insulated and distinguished as magnetic field detection elements. PCB type coils, Hall sensors, large magnetoresistive elements and the like can be used.
또한, 도 3에서는 배열 와전류 탐촉자에 총 16개의 자기여자 소자(310)와 자장검출 소자(320)가 하나의 열 상에서 등간격으로 2개씩 번갈아 가며 배치되는 것이 도시되어 있으나, 송수신 소자의 개수는 필요에 따라 적절히 증감될 수 있다.In addition, in FIG. 3, a total of 16 magnetic excitation elements 310 and the magnetic field detection elements 320 are alternately arranged at equal intervals on one column in an array eddy current transducer, but the number of transmission and reception elements is required. It can be increased or decreased accordingly.
또한, 도 3에는 일 예로 원자력 발전소에 구비된 열교환기 튜브 내에 삽입되는 내삽형 탐촉자가 도시되어 있으나, 도 3의 코일 구조는 관통형 와전류 탐촉자에도 적용될 수 있다.In addition, although FIG. 3 illustrates an interpolated probe inserted into a heat exchanger tube provided in a nuclear power plant as an example, the coil structure of FIG. 3 may be applied to a through type eddy current transducer.
도 4는 본 발명의 일실시예에 따른 배열 와전류 탐촉자의 타임 슬롯별 송수신 패턴 및 구성을 나타내는 도면이다.4 is a diagram illustrating a transmission / reception pattern and a configuration of time slots of an array eddy current probe according to an embodiment of the present invention.
도 4를 참조하면, 복수개의 소자(410) 중 자기여기용 소자(a, b, e, f, I, j, m, n)와 자장검출용 소자(c, d, g, h, k, l, o. p)는 각각 와전류 신호 스위칭 장치(420)에 포함된 자기여기용 멀티플렉서(421)와 자장검출용 멀티플렉서(422)로 분리되어 연결될 수 있다. 와전류 신호 스위칭 장치(420)는 와전류 검사 장치의 본체(430)에 내장될 수도 있고, 별도의 장치로 구성되거나 배열 와전류 탐촉자 내부에 내삽될 수도 있다.Referring to FIG. 4, the magnetic excitation elements a, b, e, f, I, j, m and n of the plurality of elements 410 and the magnetic field detection elements c, d, g, h, k, l, o. p) may be separately connected to the magnetic excitation multiplexer 421 and the magnetic field detection multiplexer 422 included in the eddy current signal switching device 420, respectively. The eddy current signal switching device 420 may be embedded in the main body 430 of the eddy current inspection device, or may be configured as a separate device or interpolated inside the array eddy current transducer.
자기여기용 멀티플렉서(421)는 자기여기용 소자(a, b, e, f, I, j, m, n)에 연결되어 리드선을 통해 본체(430)로부터 공급되는 교류 전류를 해당하는 자기여기용 소자에 인가할 수 있다. 자기여기용 소자(a, b, e, f, I, j, m, n)는 자기여기용 멀티플렉서(421)를 통해 수신한 교류 전류를 이용하여 와전류를 발생시킬 수 있다.The self-excited multiplexer 421 is connected to the elements of the self-excited elements (a, b, e, f, I, j, m, n) for the magnetic excitation corresponding to the alternating current supplied from the main body 430 through the lead wire It can be applied to the device. The self-excited elements (a, b, e, f, I, j, m, n) may generate an eddy current using the alternating current received through the self-excited multiplexer 421.
자장검출용 멀티플렉서(422)는 자장검출용 소자(c, d, g, h, k, l, o. p)와 증폭기(424)에 연결되어 자장검출용 소자(c, d, g, h, k, l, o. p)에 의해 검출된 자장 신호를 신호 증폭기(424)로 제공할 수 있다. 여기서, 상기 자장 신호는 복수개의 자장검출용 소자(c, d, g, h, k, l, o. p) 중 와전류를 발생시킨 자기여기용 소자로부터 한 소자씩 이격된 위치의 자장검출용 소자에 의해 검출될 수 있다. 예를 들어, 제어기(423)는 자기여기용 소자(e)에서 와전류가 발생되도록 자기여기용 멀티플렉서(421)를 제어한 경우, 자장검출용 소자(c, g)에 의해 자기 신호가 검출되도록 자장검출용 멀티플렉서(422)를 제어할 수 있다.The magnetic field detecting multiplexer 422 is connected to the magnetic field detecting elements c, d, g, h, k, l, o.p and the amplifier 424 so that the magnetic field detecting elements c, d, g, h, The magnetic field signal detected by k, l, o. p) may be provided to the signal amplifier 424. Here, the magnetic field signal is a magnetic field detection element at a position spaced apart by one element from the magnetic excitation element that generated the eddy current among the plurality of magnetic field detection elements (c, d, g, h, k, l, o. P). Can be detected by. For example, when the controller 423 controls the magnetic excitation multiplexer 421 to generate an eddy current in the magnetic excitation element e, the magnetic field is detected so that the magnetic signal is detected by the magnetic field detection elements c and g. The detection multiplexer 422 can be controlled.
제어기(423)는 와전류 검사 장치의 본체(43)로부터 수신한 선택 신호에 따라 자기여기용 소자 및 상기 자장검출용 소자 중 적어도 하나를 선택할 수 있다.The controller 423 may select at least one of the magnetic excitation element and the magnetic field detection element according to the selection signal received from the main body 43 of the eddy current inspection apparatus.
신호 증폭기(424)는 자장검출용 멀티플렉서(422)에 연결되어 자장검출용 소자(c, d, g, h, k, l, o. p)에 의해 검출된 자장 신호를 증폭할 수 있다.The signal amplifier 424 may be connected to the magnetic field multiplexer 422 to amplify the magnetic field signal detected by the magnetic field detection elements c, d, g, h, k, l, and p.
예를 들어, 제어기(423)는 배열 와전류 탐촉자의 둘레를 따라 하나의 열로 배치되는 복수개의 자기여기용 소자 중 적어도 하나에 교류 전류가 인가되도록 하여 해당 자기여기용 소자에서 와전류가 발생되도록 하고, 상기 하나의 열 상에서 상기 자기여기용 코일과 기 설정된 간격만큼 이격된 위치에 배치되는 복수개의 자장검출용 소자 중 상기 하나의 열 상에서 상기 와전류를 발생시킨 자기여기용 소자로부터 기 설정된 간격만큼 이격된 위치에 배치된 자장검출용 소자를 선택하여 해당 자장검출용 소자를 통해 자기 신호를 검출되도록 할 수 있다.For example, the controller 423 allows an alternating current to be applied to at least one of the plurality of self-excited elements arranged in one row along the circumference of the array eddy current transducers, thereby causing an eddy current to be generated in the self-excited element. At a position spaced apart from the self-excited element that generated the eddy current on the one column among the plurality of magnetic field detection elements disposed at a position spaced apart from the coil for self-excited by a predetermined interval on one column The magnetic field detecting element may be selected to detect a magnetic signal through the magnetic field detecting element.
구체적으로, 각 멀티플렉서(421, 422)는 본체(430)에서 자기여기용 소자 및 자장검출용 중 어느 하나의 소자를 선택하기 위한 선택 신호를 받아 제어기(423)를 통해 각 타임 슬롯별로 순차적으로 1번 채널에서 n번(여기서, n은 자연수) 채널로 스위칭할 수 있다. 이 때 상기 선택 신호는 m(여기서, m은 자연수) 비트(bit)의 신호이거나, 사각 펄스의 연속신호 형태일 수 있다. 각 멀티플렉서(421, 422)는 스위칭을 통해 도 4에 도시된 순서로 검사가 가능하도록 코일을 선택할 수 있다. 도 4에서 "T"는 송신 소자, "R"은 수신 소자를 나타낸다.Specifically, each of the multiplexers 421 and 422 receives a selection signal for selecting any one of the magnetic excitation element and the magnetic field detection element from the main body 430, and sequentially 1s each time slot through the controller 423. You can switch from channel 1 to channel n, where n is a natural number. In this case, the selection signal may be a signal of m (where m is a natural number) or a continuous signal of a square pulse. Each multiplexer 421, 422 may select a coil to enable inspection in the order shown in FIG. 4 through switching. In FIG. 4, "T" represents a transmitting element and "R" represents a receiving element.
자기여기용 멀티플렉서(421)에는 리드선이 연결되어, 본체(430)로부터 자장을 여기하기 위한 교류 전류가 인가될 수 있다. 제1 타임 슬롯에서 제어기(423)에 의해 1번째 채널로 스위칭되면, 복수개의 소자(410) 중 첫번째에 배치된 자기여기용 소자(a)가 연결되고, 해당 소자(a)에 의해 와전류가 발생된다. 이 후 해당 자기여기용 소자(a, i)의 좌우로 소자 한 개가 이격된 위치의 자장검출용 소자(c, g, k, o)를 통해 변화된 와전류에 의한 자장이 감지된다. 이 때 각 자장검출용 소자(c, g, k, o)는 자장검출용 멀티플렉서(422)에 연결된다. 해당 자장검출용 소자(c, g, k, o)에 의해 검출된 자장 신호는 자장검출용 멀티플렉서(422)에 연결된 신호 증폭기(424)에 의해 증폭되고, 증폭된 신호는 리드선을 통해 본체(430)로 전달된다.A lead wire is connected to the self-excited multiplexer 421, and an alternating current may be applied to excite the magnetic field from the main body 430. When switching to the first channel by the controller 423 in the first time slot, the magnetic excitation element (a) disposed at the first of the plurality of elements 410 is connected, and an eddy current is generated by the element (a). do. Thereafter, the magnetic field due to the changed eddy current is sensed through the magnetic field detecting elements c, g, k and o at positions where one element is spaced to the left and right of the magnetic excitation elements a and i. At this time, each magnetic field detection element (c, g, k, o) is connected to the magnetic field multiplexer 422. The magnetic field signal detected by the magnetic field detecting elements c, g, k, and o is amplified by a signal amplifier 424 connected to the magnetic field multiplexer 422, and the amplified signal is a main body 430 through a lead wire. Is delivered.
제2 타임 슬롯에서는 제어기(423)에 의해 2번째 채널로 스위칭되고, 2번째에 배치된 자기여기용 소자(b, j)에 연결되어 해당 소자에서 와전류가 발생된다. 그리고, 제1 타임 슬롯에서와 같이 해당 자기여기용 소자(b, j)의 좌우로 소자 한 개가 이격된 위치의 자장검출용 소자(d, h, l, p)를 통해 변화된 와전류에 의한 자장이 감지된다.In the second time slot, the controller 423 switches to the second channel and is connected to the second self-excited elements b and j to generate eddy currents in the corresponding element. Then, as in the first time slot, the magnetic field due to the eddy current changed through the magnetic field detecting elements d, h, l, and p at positions where one element is spaced apart from the left and right sides of the corresponding magnetic excitation elements b and j. Is detected.
제3 타임 슬롯에서 제어기(423)에 의해 3번째 채널로 스위칭되면, 소자 두 개만큼 이격된 위치에 있는 자기여기용 소자(e, m)로 스위칭되고, 상기 절차와 같이 송수신이 수행된다.When switched to the third channel by the controller 423 in the third time slot, it is switched to the self-excited elements (e, m) at positions separated by two elements, and transmission and reception are performed as in the above procedure.
상기 절차의 반복을 통해 한 주기 동안 자장검출용 멀티플렉서(422)의 스위칭을 통해 각 타임 슬롯별 출력신호를 순차적으로 하나의 리드선을 통해 본체(430)로 전달하게 된다.By repeating the above procedure, the output signal for each time slot is sequentially transmitted to the main body 430 through one lead through switching of the magnetic field multiplexer 422 for one period.
따라서 본 발명의 일실시예에 따른 배열 와전류 탐촉자는 16개의 소자를 기준으로 1주기의 탐상을 위해 4개의 타임슬롯으로 열교환기 튜브의 내면 1 바퀴분을 탐상할 수 있다. 이를 통해 기존 대비 채널수가 감소된 멀티플렉서(421, 422)를 사용할 수 있으며, 한 주기 검사 속도가 빠르기 때문에 탐촉자의 이송속도를 높일 수 있다. 또한 자기여기용 소자와 해당 멀티플렉서(421)로 구성된 자기여기부와 자장검출용 소자와 해당 멀티플렉서(422)로 구성된 자장검출부가 명확하게 절열되어 구분되어 있기 때문에, 기존의 배선보다 간소화될 수 있고 자기여기신호에 의한 신호간섭을 저감하여 신호 품질을 향상시키는 효과를 얻을 수 있다.Therefore, the array eddy current probe according to an embodiment of the present invention can detect one wheel of the inner surface of the heat exchanger tube with four time slots for one cycle of flaw detection based on 16 elements. Through this, multiplexers 421 and 422 having a reduced number of channels can be used, and since the one-cycle inspection speed is high, the feeding speed of the transducer can be increased. In addition, since the magnetic excitation portion composed of the magnetic excitation element and the corresponding multiplexer 421 and the magnetic field detection portion composed of the magnetic detection element and the multiplexer 422 are clearly separated from each other, it is possible to simplify and simplify the existing wiring. It is possible to obtain an effect of improving signal quality by reducing signal interference due to an excitation signal.
도 5는 본 발명의 다른 실시예에 따른 이종 조합 형태의 배열 와전류 탐촉자 소자의 전개도이다. 도 5에는 일 예로, 배열 와전류 탐촉자에 자기여기용 소자(510)와는 다른 이종의 소자가 자장검출용 소자(520)로 사용되는 경우가 도시되어 있다. 이 경우, 배열 와전류 탐촉자의 크기를 줄이거나 조금 더 조밀하게 구성할 수 있다.5 is an exploded view of an array eddy current transducer device having a heterogeneous combination type according to another embodiment of the present invention. FIG. 5 illustrates an example in which a heterogeneous element different from the magnetic excitation element 510 is used as the magnetic field detection element 520 in the array eddy current probe. In this case, the size of the array eddy current transducer can be reduced or more compactly constructed.
도 6은 본 발명의 다른 실시예에 따른 배열 와전류 탐촉자의 타임 슬롯별 송수신 패턴 및 구성을 나타내는 도면이다.FIG. 6 is a diagram illustrating a transmission / reception pattern and a configuration of time slots of an array eddy current probe according to another embodiment of the present invention.
도 4에서는 일 예로 송수신이 두 구역으로 나뉘는 경우가 도시되어 있으나, 필요에 따라 도 6에 도시된 것과 같이 구역을 나누지 않고 타임 슬롯을 증가시키는 것도 가능하다. 이 경우 와전류 신호 스위칭 장치(620)에 포함되는 멀티플렉서(621, 622) 및 증폭기(624)의 수가 감소되기 때문에 와전류 신호 스위칭 장치(620)를 소형화할 수 있다. 이와 같이 자장검출 소자와 멀티플렉서와의 배선 및 멀티플렉서의 채널 수는 필요에 따라 송수신 패턴만 동일하다면 변경 가능하다.In FIG. 4, the transmission and reception is divided into two zones as an example. However, as shown in FIG. 6, the time slot may be increased without dividing the zones as shown in FIG. 6. In this case, since the number of multiplexers 621 and 622 and the amplifier 624 included in the eddy current signal switching device 620 is reduced, the eddy current signal switching device 620 can be miniaturized. In this way, the wiring between the magnetic field detecting element and the multiplexer and the number of channels of the multiplexer can be changed as long as the transmission / reception pattern is the same as necessary.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 발명에 개시된 실시예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.The above description is merely illustrative of the technical idea of the present invention, and those skilled in the art to which the present invention pertains may make various modifications and changes without departing from the essential characteristics of the present invention. Therefore, the embodiments disclosed in the present invention are not intended to limit the technical idea of the present invention but to describe the present invention, and the scope of the technical idea of the present invention is not limited by these embodiments. The protection scope of the present invention should be interpreted by the following claims, and all technical ideas within the equivalent scope should be interpreted as being included in the scope of the present invention.

Claims (16)

  1. 배열 와전류 탐촉자에 있어서,In array eddy current transducer,
    몸체;Body;
    상기 몸체의 둘레를 따라 하나의 열로 배치되는 복수개의 자기여기용 소자; 및A plurality of self-exciting elements arranged in one row along the circumference of the body; And
    상기 하나의 열 상에서 상기 자기여기용 코일과 기 설정된 간격만큼 이격된 위치에 배치되는 복수개의 자장검출용 소자A plurality of magnetic field detection elements disposed at a position spaced apart from the coil for self-excitation by a predetermined interval on the one row;
    를 포함하는 배열 와전류 탐촉자.Array eddy current transducer comprising a.
  2. 제1항에 있어서,The method of claim 1,
    상기 자기여기용 소자는,The magnetic excitation element,
    원형, 타원형 및 사각형 형태 중 어느 하나의 형태의 코일인 것을 특징으로 하는 배열 와전류 탐촉자.An array eddy current transducer, characterized in that the coil of any one of the circular, elliptical and square form.
  3. 제1항에 있어서,The method of claim 1,
    상기 자장검출용 소자는,The magnetic field detection element,
    상기 자기여기용 소자와 같이 원형, 타원형 및 사각형 중 어느 하나의 형태의 코일이거나, PCB(Printed Circuit Board) 형태의 코일, 홀 센서 및 거대 자기 저항 소자 중 어느 하나인 것을 특징으로 하는 배열 와전류 탐촉자.Like the magneto-excitation element, an array eddy current probe, characterized in that any one of a coil of the form of round, oval and square, or a coil of the PCB (Printed Circuit Board) form, a Hall sensor and a large magnetoresistive element.
  4. 제1항에 있어서,The method of claim 1,
    상기 자기여기용 소자와 상기 자장검출용 소자는 상기 하나의 열 상에서 등간격으로 2개씩 번갈아 가며 배치되는 것을 특징으로 하는 배열 와전류 탐촉자.And said magnetic excitation element and said magnetic field detection element are arranged alternately two at equal intervals on said one row.
  5. 제1항에 있어서,The method of claim 1,
    상기 자기여기용 소자에 연결되는 자기여기용 멀티플렉서;A self-excited multiplexer connected to the self-excited element;
    상기 자장검출용 소자에 연결되는 자장검출용 멀티플렉서; 및A magnetic field multiplexer connected to the magnetic field detection element; And
    와전류 검사 장치로부터 수신한 선택 신호에 따라 상기 자기여기용 소자 및 상기 자장검출용 소자 중 적어도 하나를 선택하는 제어기를 더 포함하는 것을 특징으로 하는 배열 와전류 탐촉자.And an controller for selecting at least one of the magnetic excitation element and the magnetic field detection element according to the selection signal received from the eddy current inspection device.
  6. 제5항에 있어서,The method of claim 5,
    상기 자기여기용 소자와 상기 자장검출용 소자는 각각 상기 자기여기용 멀티플렉서와 상기 자장검출용 멀티플렉서에 분리되어 연결되는 것을 특징으로 하는 배열 와전류 탐촉자.And the magnetic excitation element and the magnetic field detection element are separately connected to the magnetic excitation multiplexer and the magnetic field detection multiplexer, respectively.
  7. 제5항에 있어서,The method of claim 5,
    상기 자장검출용 멀티플렉서에 연결되어 상기 자장검출용 소자에 의해 검출된 자장 신호를 증폭하는 신호 증폭기를 더 포함하는 것을 특징으로 하는 배열 와전류 탐촉자.And a signal amplifier coupled to the magnetic field multiplexer for amplifying the magnetic field signal detected by the magnetic field detection element.
  8. 제7항에 있어서,The method of claim 7, wherein
    상기 자장 신호는,The magnetic field signal is,
    상기 복수개의 자장검출용 소자 중 와전류를 발생시킨 자기여기용 소자로부터 상기 하나의 열 상에서 한 소자씩 이격된 위치의 자장검출용 소자에 의해 검출되는 것을 특징으로 하는 배열 와전류 탐촉자.The array eddy current probe of claim 4, wherein the magnetic field detection element is detected by a magnetic field detection element spaced apart one by one from the magnetic excitation element generating the eddy current among the plurality of magnetic field detection elements.
  9. 제5항에 있어서,The method of claim 5,
    상기 자기여기용 소자는,The magnetic excitation element,
    상기 와전류 검사 장치로부터 수신한 교류 전류를 이용하여 와전류를 발생시키는 것을 특징으로 하는 배열 와전류 탐촉자.And an eddy current is generated using an alternating current received from the eddy current inspection device.
  10. 배열 와전류 탐촉자를 이용한 와전류 탐상 검사 방법에 있어서,In the eddy current flaw detection method using the array eddy current probe,
    상기 배열 와전류 탐촉자의 둘레를 따라 하나의 열로 배치되는 복수개의 자기여기용 소자 중 적어도 하나에 교류 전류를 인가하여 와전류를 발생시키는 단계;Generating an eddy current by applying an alternating current to at least one of a plurality of self-excited elements arranged in a row along the circumference of the array eddy current probe;
    상기 하나의 열 상에서 상기 자기여기용 코일과 기 설정된 간격만큼 이격된 위치에 배치되는 복수개의 자장검출용 소자 중 상기 하나의 열 상에서 상기 와전류를 발생시킨 자기여기용 소자로부터 기 설정된 간격만큼 이격된 위치에 배치된 자장검출용 소자를 선택하는 단계; 및A position spaced apart from the magnetic excitation element that generates the eddy current on the one column of the plurality of magnetic field detection elements disposed at a position spaced apart from the coil for the magnetic excitation on the one column by a predetermined interval; Selecting a magnetic field detecting element disposed in the; And
    상기 선택한 자장검출용 소자를 이용하여 자기 신호를 검출하는 단계Detecting a magnetic signal using the selected magnetic field detecting element;
    를 포함하는 와전류 탐상 검사 방법.Eddy current inspection method comprising a.
  11. 제10항에 있어서,The method of claim 10,
    상기 복수개의 자기여기용 소자는,The plurality of self-excited elements,
    원형, 타원형 및 사각형의 코일 중 어느 하나의 형태의 코일인 것을 특징으로 하는 와전류 탐상 검사 방법.Eddy current inspection method, characterized in that the coil of any one type of circular, elliptical and square coils.
  12. 제10항에 있어서,The method of claim 10,
    상기 복수개의 자장검출용 소자는,The plurality of magnetic field detection elements,
    상기 자기여기용 소자와 같이 원형, 타원형 및 사각형 중 어느 하나의 형태의 코일이거나, PCB(Printed Circuit Board) 형태의 코일, 홀 센서 및 거대 자기 저항 소자 중 어느 하나인 것을 특징으로 하는 와전류 탐상 검사 방법.Like the magneto-excitation element, any one of a coil in the form of a circle, an ellipse, and a square, or an eddy current inspection method, characterized in that any one of a coil (PCB), a hall sensor and a large magnetoresistive element of the PCB (Printed Circuit Board) type .
  13. 제10항에 있어서,The method of claim 10,
    상기 자기여기용 소자와 상기 자장검출용 소자는 상기 하나의 열 상에서 등간격으로 2개씩 번갈아 가며 배치되는 것을 특징으로 하는 와전류 탐상 검사 방법.And the magnetic excitation element and the magnetic field detection element are alternately arranged two by equal intervals on the one row.
  14. 제10항에 있어서,The method of claim 10,
    상기 복수개의 자기여기용 소자와 상기 복수개의 자장검출용 소자는 각각 자기여기용 멀티플렉서와 자장검출용 멀티플렉서에 분리되어 연결되는 것을 특징으로 하는 와전류 탐상 검사 방법.And the plurality of magnetic excitation elements and the plurality of magnetic field detection elements are separately connected to the magnetic excitation multiplexer and the magnetic field detection multiplexer, respectively.
  15. 제10항에 있어서,The method of claim 10,
    상기 선택한 자장검출용 소자에 의해 검출된 자기 신호를 증폭하는 단계를 더 포함하는 것을 특징으로 하는 와전류 탐상 검사 방법.And amplifying the magnetic signal detected by the selected magnetic field detecting element.
  16. 제10항에 있어서,The method of claim 10,
    상기 선택하는 단계는,The selecting step,
    상기 와전류를 발생시킨 자기여기용 소자로부터 상기 하나의 열 상에서 한 소자씩 이격된 위치에 배치된 자장검출용 소자를 선택하는 단계를 포함하는 것을 특징으로 하는 와전류 탐상 검사 방법.And selecting a magnetic field detecting element disposed at a position spaced apart by one element on the one column from the magnetic excitation element generating the eddy current.
PCT/KR2017/005275 2017-01-03 2017-05-22 Eddy current array probe having an insulted transceiver unit and eddy current examination method using same WO2018128225A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201780082184.2A CN110140049A (en) 2017-01-03 2017-05-22 Eddy current array probe with insulation transceiver unit and use its eddy current inspection method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0000815 2017-01-03
KR1020170000815A KR101941354B1 (en) 2017-01-03 2017-01-03 Array eddy current probe with isolated transmit/receive part and eddy current inspection method using thereof

Publications (1)

Publication Number Publication Date
WO2018128225A1 true WO2018128225A1 (en) 2018-07-12

Family

ID=62790975

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/005275 WO2018128225A1 (en) 2017-01-03 2017-05-22 Eddy current array probe having an insulted transceiver unit and eddy current examination method using same

Country Status (3)

Country Link
KR (1) KR101941354B1 (en)
CN (1) CN110140049A (en)
WO (1) WO2018128225A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112229903A (en) * 2020-04-29 2021-01-15 核动力运行研究所 Vortex array probe for heat transfer pipe
CN113567544A (en) * 2020-04-29 2021-10-29 核动力运行研究所 Eddy current array probe suitable for inspection of angular piece

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110823998A (en) * 2019-11-18 2020-02-21 中广核检测技术有限公司 Flexible rotating eddy current detection sensor for heat transfer pipe of evaporator of nuclear power station
CN112014458A (en) * 2020-09-04 2020-12-01 中广核检测技术有限公司 Eddy current probe set and method for detecting defects of small-diameter pipe

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1090231A (en) * 1996-09-12 1998-04-10 Mitsubishi Heavy Ind Ltd Eddy current flaw detecting probe
JP2000235019A (en) * 1999-02-12 2000-08-29 Genshiryoku Engineering:Kk Eddy-current flaw detecting probe
JP2007263946A (en) * 2006-03-03 2007-10-11 Hitachi Ltd Sensor and method for eddy current flaw detection
US20100102808A1 (en) * 2007-01-27 2010-04-29 Innospection Group Limited Method and apparatus for non-destructive testing
US7948233B2 (en) * 2008-10-07 2011-05-24 General Electric Company Omnidirectional eddy current array probes and methods of use

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4327745B2 (en) * 2005-02-18 2009-09-09 株式会社日立製作所 Eddy current flaw detection probe and eddy current flaw detection device
JP5175513B2 (en) * 2007-09-20 2013-04-03 株式会社原子力エンジニアリング Eddy current flaw detection method, eddy current flaw detection apparatus, and eddy current flaw detection probe
EP2864771A4 (en) * 2012-06-21 2015-04-29 Eddyfi Ndt Inc High resolution eddy current array probe
CN102841136B (en) * 2012-09-01 2015-07-29 爱德森(厦门)电子有限公司 A kind of the change in formation row eddy-current instrument method for designing based on array element coil
CN105806929A (en) * 2014-12-30 2016-07-27 中核武汉核电运行技术股份有限公司 Ferromagnetic thin-walled tube circumferential AC magnetization magnetic flux leakage detection array probe

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1090231A (en) * 1996-09-12 1998-04-10 Mitsubishi Heavy Ind Ltd Eddy current flaw detecting probe
JP2000235019A (en) * 1999-02-12 2000-08-29 Genshiryoku Engineering:Kk Eddy-current flaw detecting probe
JP2007263946A (en) * 2006-03-03 2007-10-11 Hitachi Ltd Sensor and method for eddy current flaw detection
US20100102808A1 (en) * 2007-01-27 2010-04-29 Innospection Group Limited Method and apparatus for non-destructive testing
US7948233B2 (en) * 2008-10-07 2011-05-24 General Electric Company Omnidirectional eddy current array probes and methods of use

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112229903A (en) * 2020-04-29 2021-01-15 核动力运行研究所 Vortex array probe for heat transfer pipe
CN113567544A (en) * 2020-04-29 2021-10-29 核动力运行研究所 Eddy current array probe suitable for inspection of angular piece

Also Published As

Publication number Publication date
KR101941354B1 (en) 2019-01-22
CN110140049A (en) 2019-08-16
KR20180079989A (en) 2018-07-11

Similar Documents

Publication Publication Date Title
EP1153289B1 (en) Eddy current testing with compact configuration
WO2018128225A1 (en) Eddy current array probe having an insulted transceiver unit and eddy current examination method using same
JP5175513B2 (en) Eddy current flaw detection method, eddy current flaw detection apparatus, and eddy current flaw detection probe
CA2842888C (en) High resolution eddy current array probe
CA2076205C (en) Differential transmit-receive eddy current probe incorporating bracelets of multi-coil units
JP4917899B2 (en) Eddy current flaw detection sensor and eddy current flaw detection method
JP5653999B2 (en) Equipment for nondestructive testing of conductive structures.
US8344725B2 (en) Device for nondestructive testing of pipes
EP2866027B1 (en) Eddy current sensor with linear drive conductor
US5256966A (en) Method for detecting flaws in a steam generator tube using a flexible eddy current probe having coil bank switching
KR101720831B1 (en) Through-coil arrangement, test apparatus with through-coil arrangement and testing method
WO2015159226A1 (en) Eddy current array probe with independent transmitters
US8884614B2 (en) Eddy current array probe
US6339327B1 (en) Eddy current probe for inspecting electrically conducting parts
CN107389782A (en) Spiral nonmagnetic matrix high accuracy imaging detection device for the detection of pipeline tiny flaw
JPH11502938A (en) Eddy current sensor and tube inspection device having at least one sensor
KR101174483B1 (en) Magnetic-field detecting apparatus having differnetial-magetic-sensor-module
WO2017183772A1 (en) Multi-array coil eddy current probe and switching device
WO2020111526A1 (en) Probe for nondestructive inspection apparatus using intersecting gradient-type induced currents, and method for manufacturing induction coil for nondestructive inspection apparatus
KR102185877B1 (en) Eddy current probe having tilted coils

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17890288

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 13/11/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17890288

Country of ref document: EP

Kind code of ref document: A1