WO2018123457A1 - Optical laminate - Google Patents
Optical laminate Download PDFInfo
- Publication number
- WO2018123457A1 WO2018123457A1 PCT/JP2017/043548 JP2017043548W WO2018123457A1 WO 2018123457 A1 WO2018123457 A1 WO 2018123457A1 JP 2017043548 W JP2017043548 W JP 2017043548W WO 2018123457 A1 WO2018123457 A1 WO 2018123457A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- reflective polarizer
- haze
- meth
- polarizer layer
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/02—Diffusing elements; Afocal elements
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/08—Mirrors
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/30—Polarising elements
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
Definitions
- the present invention relates to an optical laminate.
- the image display device displays an image on the screen with the power turned on, and the screen becomes black or gray when the power is turned off.
- a mirror display that uses a screen in a state where the power is turned off (black display) as a mirror.
- the mirror display is arranged on the viewing side of the image display element so that the screen with the power turned off can be used as a mirror and an image can be displayed on the screen when the power is turned on.
- a half mirror is provided.
- Patent Documents 1 and 2 It is known to use a reflective polarizer as a half mirror. However, when only one reflective polarizer is used, the reflection luminance rate in black display is limited to about 50%, and it is difficult to obtain a clear image as a mirror. Thus, it has been proposed to form a half mirror using a plurality of reflective polarizers (Patent Documents 1 and 2).
- a half mirror plate is constituted by two reflective polarizing plates arranged so that their transmission axes intersect with each other, thereby preventing a reduction in screen luminance in the display mode and in the mirror mode. It is described that the reflectance of the light can be increased (paragraphs [0010] and [0011]). However, if the half mirror plate is configured by crossing the transmission axes of the two reflective polarizing plates and arranged on the viewing side of the image display device, the light reflected by each of the reflective polarizing plates interferes with the rainbow unevenness. It has been found that visibility decreases in both the mirror mode and the display mode.
- Patent Document 2 describes using a member in which two reflective polarizing plates (reflective polarization separators) are stacked on the backlight side of a transflective liquid crystal display device.
- the same document describes that the two reflection-type polarizing plates are bonded in order to prevent the occurrence of interference fringes (synonymous with rainbow unevenness) (paragraph [0056]).
- the influence of rainbow unevenness due to light interference differs greatly between the backlight side and the viewing side.
- an optical layered body in which two reflective polarizing plates are laminated on the backlight side is installed, the optical layered body is visually recognized through the display device, and rainbow unevenness tends to be difficult to be visually recognized.
- An object of the present invention is an optical laminate including two reflective polarizer layers, which can suppress the occurrence of rainbow unevenness even when it is arranged on the viewing side of a display device, and has good visibility.
- An object of the present invention is to provide an optical laminate suitable as a half mirror that can be provided.
- the present invention provides the following optical laminate. [1] including a first reflective polarizer layer, a second reflective polarizer layer, and an intervening layer disposed between the first reflective polarizer layer and the second reflective polarizer layer, The angle formed by the reflection axis of the first reflective polarizer layer and the reflection axis of the second reflective polarizer layer is 20 ° or more and 70 ° or less, An optical laminate having a haze of 0.4% to 20%.
- optical stack according to any one of [1] to [5], further including a base material layer disposed outside the first reflective polarizer layer or outside the second reflective polarizer layer. body.
- An optical laminate including two reflective polarizer layers which can suppress the occurrence of rainbow unevenness even when arranged on the viewing side of a display device, and can provide good visibility As such, a suitable optical laminate can be provided.
- FIG. 1 is a schematic cross-sectional view showing an example of an optical laminate according to the present invention.
- An optical laminate 100 shown in FIG. 1 is an optical member that can be suitably used as a half mirror element having two reflective polarizer layers, and includes a first reflective polarizer layer 10 and a second reflective polarizer.
- Layer 20 includes an intervening layer 30 disposed between the first reflective polarizer layer 10 and the second reflective polarizer layer 20.
- the first reflective polarizer layer 10 is laminated on one surface of the intervening layer 30 via the first pressure-sensitive adhesive layer 40.
- the second reflective polarizer layer 20 is laminated on the other surface of the intervening layer 30 via the second pressure-sensitive adhesive layer 50.
- the angle formed by the reflection axis of the first reflective polarizer layer 10 and the reflection axis of the second reflective polarizer layer 20 (hereinafter also referred to as “relative angle of the reflection axis”) is 20 to 70 °, and is optical.
- the haze of the laminate 100 is 0.4 to 20%.
- the haze of the optical laminate 100 is preferably 0.4 to 10%, more preferably 0.4 to 8%, still more preferably 0.5 to 6%, and 0.5 to It may be 5%.
- the optical layered body 100 having the above-described configuration the occurrence of rainbow unevenness can be effectively suppressed even when the optical laminated body 100 is disposed on the viewing side of the display device, and good visibility can be provided.
- the visibility here refers to the visibility of the image when the display device is turned on and the screen is displayed in white (display mode), and the display device is used as a device for displaying an image on the screen. Is turned off, the screen is displayed in black (mirror mode), and the visibility when using the display device as a mirror is included.
- the optical laminated body 100 having the above-described configuration the visibility is compatible at a high level. It is possible to make it.
- first reflective polarizer layer 10 and the second reflective polarizer layer 20 can be, for example, an anisotropic reflective polarizer.
- anisotropic reflective polarizer is an anisotropic multiple thin film that transmits linearly polarized light in one vibration direction and reflects linearly polarized light in the other vibration direction. Specific examples thereof include “APF” manufactured by 3M, “DBEF” (see Japanese Patent Laid-Open No. 4-268505).
- anisotropic reflective polarizer is a composite of a cholesteric liquid crystal layer and a ⁇ / 4 plate, and a specific example thereof is “PCF” manufactured by Nitto Denko Corporation (Japanese Patent Laid-Open No. 11-231130). Etc.).
- an anisotropic reflective polarizer is a reflective grid polarizer, and a specific example thereof is a metal grid reflective polarizer (nanoscopically) that emits reflected polarized light even in the visible light region by finely processing a metal.
- a wire grid polarizer see US Pat. No. 6,288,840), and a film obtained by adding metal fine particles into a polymer matrix and stretching (see JP-A-8-184701, etc.).
- the relative angle of the reflection axis is set to 20 to 70 °.
- the relative angle of the reflection axis is preferably 25 to 65 °, more preferably 30 to 60 °, and still more preferably 35 to 55 °.
- the angle of one corner is ⁇ °
- the angle of the other corner is (180 ⁇ ) °.
- the relative angle of the reflection axis in this specification refers to the smaller of the two angles. That is, the minimum value that can be taken by the relative angle of the reflection axis is 0 °, and the maximum value that can be taken is 90 °.
- the thicknesses of the first reflective polarizer layer 10 and the second reflective polarizer layer 20 are usually 10 to 100 ⁇ m, but preferably 10 to 50 ⁇ m from the viewpoint of reducing the thickness of the optical laminate 100 and the display device. More preferably, the thickness is 10 to 30 ⁇ m.
- At least one of the first reflective polarizer layer 10 and the second reflective polarizer layer 20 may have a surface treatment layer (coating layer) or an optical layer other than the reflective polarizer layer on its outer surface.
- the surface treatment layer is a layer formed by applying a coating liquid containing a curable resin or the like, and performing a drying treatment or a curing treatment as necessary.
- Examples of the surface treatment layer include a hard coat layer, an antiglare layer, a light diffusion layer, a retardation layer (a retardation layer having a retardation value of 1 ⁇ 4 wavelength), an antireflection layer, an antistatic layer, an antifouling layer, and the like. Layer and the like.
- a surface treatment layer coating layer
- another optical layer an additional function is imparted to the optical laminate 100, or the visibility of a display image when the optical laminate 100 is applied to a display device (clear)
- the first reflective polarizer layer 10 and the second reflective polarizer layer 20 may have the same configuration, thickness, material, layer configuration, optical characteristics, surface treatment layer and other optical layers. It may differ in the presence or absence. Moreover, in order to give the optical laminate 100 haze in the predetermined range, at least one of the first reflective polarizer layer 10 and the second reflective polarizer layer 20 may have non-zero haze. Good. In this case, the haze of the first reflective polarizer layer 10 and / or the second reflective polarizer layer 20 is, for example, 0.1 to 5%. The first reflective polarizer layer 10 and the second reflective polarizer layer 20 may have the same haze value or may have different haze values.
- the total light transmittance Tt is the sum of the parallel light transmittance Tp and the diffused light transmittance Td that are transmitted coaxially with the incident light. Measured in accordance with JIS K 7136: 2000 “Plastics-Determination of Haze of Transparent Materials”.
- the intervening layer 30 is a layer disposed between the first reflective polarizer layer 10 and the second reflective polarizer layer 20, and may have a single-layer structure or two layers. Alternatively, it may be a multilayer structure of three or more layers. In the case of a multilayer structure, two or more layers may have different hazes.
- the intervening layer 30 preferably has a non-zero haze.
- the haze of the intervening layer 30 is preferably 0.1 to 20%, more preferably 0.5 to 20%, still more preferably 0.8 to 10%, still more preferably 0.8 to It is 8%, particularly preferably 1 to 8%.
- the intervening layer 30 having the haze in the range is suitable as one means for imparting the haze in the predetermined range to the optical laminate 100.
- the haze of the intervening layer 30 exceeds 20%, the clearness of the black display tends to be reduced in black display (mirror mode), and the image tends to be whitish in white display (display mode) and the visibility tends to decrease. is there.
- Examples of the method for imparting haze to the intervening layer 30 include the following methods. a) A method of using a layer (haze imparting layer) in which particles that cause light scattering are dispersed inside the layer as the layer constituting the intervening layer 30. b) A method of using a layer having surface irregularities (haze imparting layer) as a layer constituting the surface of the intervening layer 30. c) A combination of a) and b) above.
- the layer in which particles that cause light scattering are dispersed inside the layer and the layer having surface irregularities may be the same layer.
- FIG. 2 is a schematic cross-sectional view showing another example of the optical laminate according to the present invention.
- the intervening layer 30 includes a base film 31 and a haze imparting layer 32 laminated on one surface thereof. That is, in the example of FIG. 2, the intervening layer 30 includes a haze-imparting layer 32 that mainly bears the expression of haze and a base film 31 that supports it.
- the haze imparting layer 32 is provided only on one surface of the base film 31, but the intervening layer 30 includes two or more haze imparting layers, such as provided on both surfaces of the base film 31. You may have. You may have another layer (For example, an adhesive bond layer, a primer layer, a resin layer, etc.) between the base film 31 and the haze provision layer 32.
- FIG. 1 an adhesive bond layer, a primer layer, a resin layer, etc.
- the base film 31 can be made of, for example, a thermoplastic resin, and is preferably made of a thermoplastic resin having excellent optical transparency.
- thermoplastic resins include, for example, polyolefin resins such as chain polyolefin resins and cyclic polyolefin resins (norbornene resins, etc.); polyester resins; (meth) acrylic resins; cellulose triacetate, Cellulose ester resins such as cellulose diacetate; Polycarbonate resins; Polyvinyl alcohol resins; Polyvinyl acetate resins; Polyarylate resins; Polystyrene resins; Polyethersulfone resins; Polysulfone resins; Polyamide resins; System resins; and mixtures and copolymers thereof.
- (meth) acryl means at least one selected from acrylic and methacrylic.
- (meth) acryloyl means at least one selected from acrylic and methacrylic.
- (meth) acryloyl means at least one selected from acrylic and methacrylic.
- chain polyolefin-based resin polyethylene resin (polyethylene resin which is a homopolymer of ethylene or a copolymer mainly composed of ethylene), polypropylene resin (polypropylene resin which is a homopolymer of propylene, or propylene as a main component) And a copolymer composed of two or more chain olefins in addition to a chain olefin homopolymer such as
- the cyclic polyolefin resin is a general term for resins that are polymerized using a cyclic olefin as a polymerization unit, and is described in, for example, JP-A-1-240517, JP-A-3-14882, JP-A-3-122137, and the like. Resin.
- cyclic polyolefin resins include ring-opening (co) polymers of cyclic olefins, addition polymers of cyclic olefins, copolymers of cyclic olefins and chain olefins such as ethylene and propylene (typically Are random copolymers), graft polymers obtained by modifying them with unsaturated carboxylic acids or their derivatives, and hydrides thereof.
- norbornene resins using norbornene monomers such as norbornene and polycyclic norbornene monomers as cyclic olefins are preferably used.
- the polyester-based resin is a resin having an ester bond except for the following cellulose ester-based resin, and is generally made of a polycondensate of a polyvalent carboxylic acid or a derivative thereof and a polyhydric alcohol.
- a polyvalent carboxylic acid or a derivative thereof a divalent dicarboxylic acid or a derivative thereof can be used, and examples thereof include terephthalic acid, isophthalic acid, dimethyl terephthalate, and dimethyl naphthalenedicarboxylate.
- a divalent diol can be used, and examples thereof include ethylene glycol, propanediol, butanediol, neopentyl glycol, and cyclohexanedimethanol.
- a typical example of the polyester resin is polyethylene terephthalate which is a polycondensate of terephthalic acid and ethylene glycol.
- the (meth) acrylic resin is a resin containing a compound having a (meth) acryloyl group as a main constituent monomer.
- Specific examples of the (meth) acrylic resin include, for example, poly (meth) acrylic acid esters such as polymethyl methacrylate; methyl methacrylate- (meth) acrylic acid copolymer; methyl methacrylate- (meth) acrylic acid Ester copolymer; methyl methacrylate-acrylate ester- (meth) acrylic acid copolymer; (meth) methyl acrylate-styrene copolymer (MS resin, etc.); methyl methacrylate and alicyclic hydrocarbon group And a copolymer with the compound (for example, methyl methacrylate-cyclohexyl methacrylate copolymer, methyl methacrylate- (meth) acrylate norbornyl copolymer, etc.).
- a polymer based on a poly (meth) acrylic acid C 1-6 alkyl ester such as poly (meth) acrylic acid methyl is used, and more preferably methyl methacrylate is used as a main component (50 to 100). % Methyl methacrylate-based resin is used.
- the cellulose ester resin is an ester of cellulose and a fatty acid.
- Specific examples of the cellulose ester resin include cellulose triacetate, cellulose diacetate, cellulose tripropionate, and cellulose dipropionate. Further, these copolymers and those in which a part of the hydroxyl group is modified with other substituents are also included. Among these, cellulose triacetate (triacetyl cellulose) is particularly preferable.
- Polycarbonate-based resin is an engineering plastic made of a polymer in which monomer units are bonded via a carbonate group.
- the thickness of the base film 30 is usually 1 to 300 ⁇ m, and preferably 2 to 200 ⁇ m, more preferably 5 to 150 ⁇ m, and still more preferably 5 from the viewpoint of thinning the optical laminate 100 and the display device and film strength. ⁇ 100 ⁇ m (for example, 80 ⁇ m or less).
- the haze-imparting layer 32 can be a cured product layer formed by applying a curable resin composition containing a curable resin on the base film 31 and drying it as necessary.
- the curable resin include an active energy ray curable resin that is cured by irradiation with active energy rays such as ultraviolet rays, visible light, an electron beam, and X-rays, and a thermosetting resin that is cured by heat.
- the curable resin is preferably an active energy ray curable resin, and more preferably a photocurable resin such as an ultraviolet curable resin.
- the photocurable resin may be a visible light curable resin that can be cured with visible light having a wavelength longer than that of ultraviolet rays. Moreover, it is preferable that curable resin is selected from what a hardened
- the curable resin composition usually further includes a photopolymerization initiator.
- photocurable resin examples include urethane (meth) acrylate, polyol (meth) acrylate, and (meth) acrylic polymer having an alkyl group containing two or more hydroxyl groups. These (meth) acrylic compounds can be used alone or in combination of two or more as required.
- the urethane (meth) acrylate is preferably prepared using (meth) acrylic acid and / or (meth) acrylic ester, polyol, and diisocyanate.
- urethane (meth) acrylate is obtained by preparing hydroxy (meth) acrylate having at least one hydroxyl group from (meth) acrylic acid and / or (meth) acrylic acid ester and polyol, and reacting it with diisocyanate. be able to.
- These (meth) acrylic acid and / or (meth) acrylic acid ester, polyol, and diisocyanate may be used alone or in combination of two or more.
- Examples of the (meth) acrylic acid ester include alkyl (meth) acrylates such as methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, isopropyl (meth) acrylate, and butyl (meth) acrylate; cyclohexyl ( And cycloalkyl (meth) acrylates such as (meth) acrylate.
- a polyol is a compound having at least two hydroxyl groups, such as ethylene glycol, 1,3-propylene glycol, 1,2-propylene glycol, diethylene glycol, dipropylene glycol, neopentyl glycol, 1,3-butanediol, , 4-butanediol, 1,6-hexanediol, 1,9-nonanediol, 1,10-decane glycol, 2,2,4-trimethyl-1,3-pentanediol, 3-methyl-1,5- Pentanediol, hydroxypivalic acid neopentyl glycol ester, cyclohexanedimethylol, 1,4-cyclohexanediol, spiroglycol, tricyclodecanemethylol, hydrogenated bisphenol A, ethylene oxide-added bisphenol A, propylene oxide De addition bisphenol A, trimethylolethane, trimethylolpropane di
- diisocyanate for example, various aromatic, aliphatic or alicyclic diisocyanates can be used. Specific examples include tetramethylene diisocyanate, hexamethylene diisocyanate, isophorone diisocyanate, 2,4-tolylene diisocyanate, 4,4-diphenyl diisocyanate, 1,5-naphthalene diisocyanate, 3,3-dimethyl-4,4-diphenyl diisocyanate. Xylene diisocyanate, trimethylhexamethylene diisocyanate, 4,4-diphenylmethane diisocyanate, and hydrogenated products thereof.
- polyol (meth) acrylate examples include trimethylolpropane triacrylate, pentaerythritol di (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate, 1 , 6-hexanediol (meth) acrylate and the like. These may be used alone or in combination.
- Examples of the (meth) acrylic polymer having an alkyl group containing two or more hydroxyl groups include a (meth) acrylic polymer having a 2,3-dihydroxypropyl group, a 2-hydroxyethyl group, and a 2,3-dihydroxypropyl group.
- the adhesion between the haze-imparting layer 32 and the base film 31 can be improved, and the mechanical strength is further improved. It is possible to obtain the haze imparting layer 32 that can more effectively prevent the surface from being scratched.
- acetophenone various types such as acetophenone, benzophenone, benzoin ether, amine, and phosphine oxide can be used.
- compounds classified as acetophenone photopolymerization initiators include 2,2-dimethoxy-2-phenylacetophenone (also known as benzyldimethyl ketal), 2,2-diethoxyacetophenone, 1- (4-isopropylphenyl) -2 -Hydroxy-2-methylpropan-1-one, 1-hydroxycyclohexyl phenyl ketone, 2-methyl-2-morpholino-1- (4-methylthiophenyl) propan-1-one.
- Examples of compounds classified as benzophenone-based photopolymerization initiators include benzophenone, 4-chlorobenzophenone, and 4,4'-dimethoxybenzophenone.
- Examples of compounds classified as benzoin ether photopolymerization initiators include benzoin methyl ether and benzoin propyl ether.
- Examples of compounds classified as compounds classified as amine photopolymerization initiators include N, N, N ′, N′-tetramethyl-4,4′-diaminobenzophenone (also known as Michler's ketone).
- Examples of the phosphine oxide photopolymerization initiator include 2,4,6-trimethylbenzoyldiphenylphosphine oxide.
- xanthone compounds and thioxant compounds can also be used as photopolymerization initiators.
- typical commercially available photopolymerization initiators include “Irgacure 907”, “Irgacure 184”, and “Lucirin TPO” sold by BASF Germany.
- the curable resin composition can contain a solvent as needed.
- a solvent arbitrary organic solvents which can melt
- the curable resin composition may contain a leveling agent, and for example, a fluorine-based or silicone-based leveling agent can be used.
- a leveling agent for example, a fluorine-based or silicone-based leveling agent can be used.
- the silicone leveling agent include reactive silicone, polydimethylsiloxane, polyether-modified polydimethylsiloxane, and polymethylalkylsiloxane.
- the silicone leveling agents preferred are reactive silicone and siloxane leveling agents.
- the haze imparting layer 32 may contain particles that cause light scattering.
- the particles include inorganic particles such as silica, colloidal silica, alumina, alumina sol, aluminosilicate, alumina-silica composite oxide, kaolin, talc, mica, calcium carbonate, calcium phosphate; crosslinked polyacrylic acid particles, methyl methacrylate / Examples thereof include organic particles such as styrene copolymer resin particles, crosslinked polystyrene particles, crosslinked polymethyl methacrylate particles, silicone resin particles, and polyimide particles.
- the above-mentioned particles it is preferable to use particles having an average particle diameter of 0.1 to 10 ⁇ m and a refractive index difference with the curable resin after curing of 0.02 to 0.2.
- the average particle diameter of the fine particles can be obtained by a dynamic light scattering method or the like.
- the average particle diameter in this case is a weight average particle diameter.
- the haze imparting layer 32 having surface irregularities 1) forms a coating film by applying the curable resin composition containing the curable resin and the particles on the base film 31, and has irregularities based on the particles.
- Method of providing 2) A mold (roll or the like) having a concavo-convex shape on its surface after coating a curable resin composition containing or not containing particles on the base film 31 to form a coating film ) To transfer the concavo-convex shape (also referred to as “embossing method”) or the like.
- a curable resin composition containing a curable resin and particles is applied onto the substrate film 31, and the coating film is cured by irradiation with light such as ultraviolet rays or heating, thereby providing a haze-imparting layer. 32 can be formed.
- a mold having a concavo-convex shape formed on the surface is used, and the shape of the mold is applied to the coating film (resin layer) formed on the base film 31.
- the coating film to which the uneven shape is transferred may or may not contain the particles.
- a curable resin composition containing a photocurable resin is applied onto the base film 31, and the formed coating film is cured while being pressed against the concavo-convex surface of the mold. Is transferred to the coating film.
- the curable resin composition is applied onto the base film 31 and the formed coating film is in close contact with the uneven surface of the mold, light such as ultraviolet rays is transmitted from the base film 31 side. Is applied to cure the coating film, and the substrate film 31 having the cured coating film (haze imparting layer 32) is peeled off from the mold to transfer the uneven shape of the mold to the haze imparting layer 32.
- the thickness of the haze imparting layer 32 is, for example, 2 to 30 ⁇ m, and preferably 3 to 30 ⁇ m.
- the thickness of the haze imparting layer 32 is less than 2 ⁇ m, sufficient hardness cannot be obtained and the surface tends to be easily damaged.
- the thickness of the haze-giving layer 32 exceeds 30 ⁇ m, it tends to break or the intervening layer 30 curls due to curing shrinkage when forming the haze-giving layer 32 and the productivity tends to decrease.
- the thickness in the above range is suitable for providing sufficient haze.
- the intervening layer 30 preferably has a haze based on the haze imparting layer 32, but may have a haze based on the base film 31 together with the haze based on the haze imparted layer 32.
- the haze based on the base film 31 can be expressed, for example, by dispersing the above-described particles in the film.
- the intervening layer 30 can be composed of only the base film 31 in which the above-described particles are dispersed (it can be said that the intervening layer 30 is composed of only the haze imparting layer 32).
- the thickness of the intervening layer 30 consisting only of the base film 31 in which the above-mentioned particles are dispersed is preferably 20 to 200 ⁇ m, more preferably 20 to 120 ⁇ m.
- the first pressure-sensitive adhesive layer 40 and the second pressure-sensitive adhesive layer 50 are (meth) acrylic, rubber-based, urethane-based, ester-based, silicone-based, and polyvinyl ether, respectively. It can be comprised with the adhesive composition which has resin like a system as a main component. Especially, the adhesive composition which uses (meth) acrylic resin excellent in transparency, weather resistance, heat resistance, etc. as a base polymer is suitable.
- the pressure-sensitive adhesive composition may be an active energy ray curable type or a thermosetting type.
- Examples of the (meth) acrylic resin (base polymer) used in the pressure-sensitive adhesive composition include butyl (meth) acrylate, ethyl (meth) acrylate, isooctyl (meth) acrylate, and (meth) acrylic acid 2-
- a polymer or copolymer having one or more (meth) acrylic acid esters such as ethylhexyl as a monomer is preferably used.
- the base polymer is preferably copolymerized with a polar monomer.
- polar monomers examples include (meth) acrylic acid, 2-hydroxypropyl (meth) acrylate, hydroxyethyl (meth) acrylate, (meth) acrylamide, N, N-dimethylaminoethyl (meth) acrylate, glycidyl ( Mention may be made of monomers having a carboxyl group, a hydroxyl group, an amide group, an amino group, an epoxy group and the like, such as (meth) acrylate.
- the pressure-sensitive adhesive composition may contain only the above base polymer, but usually further contains a crosslinking agent.
- a crosslinking agent a metal ion having a valence of 2 or more, which forms a carboxylic acid metal salt with a carboxyl group; a polyamine compound, which forms an amide bond with a carboxyl group; Examples thereof include epoxy compounds and polyols that form ester bonds with carboxyl groups; polyisocyanate compounds that form amide bonds with carboxyl groups. Of these, polyisocyanate compounds are preferred.
- the active energy ray-curable pressure-sensitive adhesive composition has a property of being cured by irradiation with active energy rays such as ultraviolet rays and electron beams, and has an adhesive property even before irradiation with active energy rays. It is a pressure-sensitive adhesive composition having such a property that it can be adhered to an adherend such as the like and can be cured by irradiation with active energy rays to adjust the adhesion.
- the active energy ray-curable pressure-sensitive adhesive composition is preferably ultraviolet curable.
- the active energy ray-curable pressure-sensitive adhesive composition further contains an active energy ray-polymerizable compound in addition to the base polymer and the crosslinking agent. Furthermore, if necessary, a photopolymerization initiator, a photosensitizer, and the like can be contained.
- At least one of the first pressure-sensitive adhesive layer 40 and the second pressure-sensitive adhesive layer 50 may have a non-zero haze.
- the haze of the first pressure-sensitive adhesive layer 40 and / or the second pressure-sensitive adhesive layer 50 is, for example, 0.1 to 5%.
- the first pressure-sensitive adhesive layer 40 and the second pressure-sensitive adhesive layer 50 may have the same haze value or may have different haze values.
- haze can be imparted to the pressure-sensitive adhesive layer by incorporating the above-described particles into the pressure-sensitive adhesive composition.
- the first pressure-sensitive adhesive layer 40 and the second pressure-sensitive adhesive layer 50 may contain other additives.
- other additives include beads (resin beads, glass beads, etc.), glass fibers, resins other than the base polymer, tackifiers, fillers (metal powder and other inorganic powders, etc.), antioxidants, Examples include ultraviolet absorbers, dyes, pigments, colorants, antifoaming agents, corrosion inhibitors, and photopolymerization initiators.
- the thicknesses of the first pressure-sensitive adhesive layer 40 and the second pressure-sensitive adhesive layer 50 can be 1 to 40 ⁇ m, respectively. However, the thickness of the optical laminate 100 and the display device can be reduced, and the dimensions can be maintained while maintaining good processability. From the viewpoint of suppressing the change, the thickness is preferably 3 to 25 ⁇ m (for example, 3 to 20 ⁇ m, more preferably 3 to 15 ⁇ m).
- the first pressure-sensitive adhesive layer 40 and the second pressure-sensitive adhesive layer 50 may have the same configuration, or may differ in thickness, material, optical characteristics such as light diffusibility, and the like.
- the first pressure-sensitive adhesive layer 40 and the second pressure-sensitive adhesive layer 50 can be formed by applying an organic solvent diluted solution of the pressure-sensitive adhesive composition on a substrate and drying it.
- the base material can be the first reflective polarizer layer 10, the second reflective polarizer layer 20, the intervening layer 30, a separate film (release film), or the like.
- a pressure-sensitive adhesive layer having a desired degree of curing can be obtained by irradiating the formed pressure-sensitive adhesive layer with active energy rays.
- a film in which a release treatment is applied to the surface on which the pressure-sensitive adhesive layer is laminated can be used.
- the mold release treatment are silicone treatment, long chain alkyl treatment, fluorine treatment and the like.
- the material of the film is, for example, a polyethylene resin such as polyethylene, a polypropylene resin such as polypropylene, or a polyester resin such as polyethylene terephthalate.
- the optical laminate is a pressure-sensitive adhesive layer that is laminated on at least one outer surface of the first reflective polarizer layer 10 and the second reflective polarizer layer 20.
- the third pressure-sensitive adhesive layer 60 can be further included.
- the 3rd adhesive layer 60 can be used in order to bond an optical laminated body to another member.
- the other member include other optical films and any optical member included in the display device (image display device), for example, an optical member disposed on the outermost surface of the display device (image display device). it can.
- the description of the above (3) about the first pressure-sensitive adhesive layer 40 and the second pressure-sensitive adhesive layer 50 is cited.
- the third pressure-sensitive adhesive layer 60 is laminated on the outer surface of the first reflective polarizer layer 10.
- the present invention is not limited to this, and the second reflective polarizer is used. It may be laminated on the outer surface of the layer 20, or may be laminated on both the outer surface of the first reflective polarizer layer 10 and the outer surface of the second reflective polarizer layer 20.
- An optical laminate having a three-layer structure in which the first reflective polarizer layer 10 and the second reflective polarizer layer 20 are bonded via an adhesive layer can also be an optical laminate according to the present invention.
- the pressure-sensitive adhesive layer corresponds to an intervening layer (haze imparting layer).
- the pressure-sensitive adhesive layer is preferably a light-diffusible pressure-sensitive adhesive layer containing the above-described particles in order to give the optical laminate a haze in the predetermined range.
- the haze of the optical layered body can be adjusted by adjusting the content of the particles.
- ⁇ An adhesive layer may be used instead of the adhesive layer.
- the adhesive for forming the adhesive layer the adhesive described in (5) described later can be similarly used.
- the adhesive layer is a light diffusing adhesive layer containing the above-described particles in order to give the optical laminate a haze in the predetermined range. Is preferred.
- the optical laminate may further include a base material layer 70 disposed on the outer side of the first reflective polarizer layer 10 or the outer side of the second reflective polarizer layer 20.
- the base material layer 70 is a member that supports the optical laminate.
- the base material layer 70 is laminated on the first reflective polarizer layer 10 side, but is not limited to this, and the second reflective polarizer layer 20 side is not limited thereto. It may be laminated.
- the substrate layer 70 is not particularly limited, and examples thereof include a glass plate and a thermoplastic resin film.
- the base material layer 70 is typically a member disposed on the outermost surface of the display device, for example, an absorption-type polarizing plate disposed on the viewing side of the display device; a viewing side of the viewing-side absorption polarizing plate And a front plate disposed on the outermost surface of the display device; a touch panel element disposed on the outermost surface of the touch input type display device, and the like.
- the absorption polarizing plate may include at least a polarizer in which a dichroic dye such as iodine or a dichroic organic dye is adsorbed and oriented on a stretched polyvinyl alcohol-based resin film.
- the absorption polarizing plate may be one in which a protective film made of a thermoplastic resin or the like is bonded to one side or both sides of a polarizer.
- the thickness of the polarizer is, for example, 2 to 30 ⁇ m, preferably 2 to 10 ⁇ m.
- the thickness of the protective film is, for example, 2 to 150 ⁇ m, preferably 5 to 100 ⁇ m.
- the protective film may be a retardation film.
- optical laminated body 100 shown by FIG. 1 laminates
- At least one bonding surface selected from the group consisting of a bonding surface with the second pressure-sensitive adhesive layer 50 and a bonding surface with the second pressure-sensitive adhesive layer 50 in the second reflective polarizer layer 20, preferably 2. You may perform a surface activation process to the above bonding surface, More preferably, all the bonding surfaces. In addition to or instead of these bonding surfaces, the bonding surface with the first reflective polarizer layer 10 in the first pressure-sensitive adhesive layer 40 and the intervening layer 30 in the first pressure-sensitive adhesive layer 40. Selected from the group consisting of: a bonding surface with the second reflective polarizer layer 20 in the second pressure-sensitive adhesive layer 50; and a bonding surface with the intervening layer 30 in the second pressure-sensitive adhesive layer 50.
- the surface activation treatment may be performed on at least one bonding surface, preferably two or more bonding surfaces, more preferably all bonding surfaces.
- the surface activation treatment is advantageous for obtaining an optical layered body that is less susceptible to delamination and has excellent wet heat durability.
- dry treatment such as corona treatment, plasma treatment, discharge treatment (glow discharge treatment, etc.), flame treatment, ozone treatment, UV ozone treatment, ionizing active ray treatment (ultraviolet treatment, electron beam treatment, etc.)
- wet treatment such as ultrasonic treatment using a solvent such as water and acetone, alkali treatment, and anchor coat treatment.
- the first reflective polarizer layer 10 and the second reflective polarizer layer 20 may be bonded to the intervening layer 30 using an adhesive.
- an adhesive layer is disposed between the first reflective polarizer layer 10 and the intervening layer 30 and between the second reflective polarizer layer 20 and the intervening layer 30.
- the first reflective polarizer layer 10 and the second reflective polarizer layer 20 may be bonded to the intervening layer 30 through one adhesive layer and the other through an adhesive layer. .
- the adhesive forming the adhesive layer includes an active energy ray-curable adhesive containing a curable compound that is cured by irradiation with active energy rays such as ultraviolet rays, visible light, electron beams, and X-rays (preferably ultraviolet curing) Adhesive) and an aqueous adhesive in which an adhesive component such as a polyvinyl alcohol resin is dissolved or dispersed in water.
- active energy rays such as ultraviolet rays, visible light, electron beams, and X-rays (preferably ultraviolet curing) Adhesive
- aqueous adhesive in which an adhesive component such as a polyvinyl alcohol resin is dissolved or dispersed in water.
- the curable compound can be a cationic polymerizable curable compound or a radical polymerizable curable compound.
- the cationic polymerizable curable compound include an epoxy compound (a compound having one or more epoxy groups in the molecule) and an oxetane compound (one or two or more oxetane rings in the molecule). Or a combination thereof.
- the radical polymerizable curable compound include (meth) acrylic compounds (compounds having one or more (meth) acryloyloxy groups in the molecule) and radical polymerizable double bonds. Other vinyl compounds or combinations thereof can be mentioned.
- a cationic polymerizable curable compound and a radical polymerizable curable compound may be used in combination.
- the active energy ray-curable adhesive usually further includes a cationic polymerization initiator and / or a radical polymerization initiator for initiating a curing reaction of the curable compound.
- optical layered body according to the modified example described in (4) above can also be manufactured in the same manner as described above.
- the occurrence of rainbow unevenness can be effectively suppressed even when the optical laminated body is arranged on the viewing side of the display device, and good visual recognition is achieved.
- the visibility means that the display device is turned on and the screen is displayed in white (display mode), and the image is displayed when the display device is used as a device for displaying an image on the screen. Visibility and visibility when the power is turned off and the screen is displayed in black (mirror mode) and the display device is used as a mirror are included.
- the visibility in the white display mainly means the sharpness of the image (transmission image) projected on the screen.
- the visibility in the black display mainly means the sharpness of the reflected image reflected on the screen and its hue.
- the surface of the optical laminate (the surface directed outward when applied to a display device) preferably has good reflection characteristics.
- the reflection characteristic can be evaluated as a reflection luminance rate.
- the reflection luminance factor is that of the measured luminous reflectance R SCI in the regular reflection inclusive manner.
- FIG. 5 is a cross-sectional view schematically showing an optical system for measuring the luminous reflectance RSCI .
- the optical system shown in FIG. 5 is a diffuse illumination optical system.
- the diffuse illumination method is a method of illuminating a measurement sample uniformly from all directions using an integrating sphere.
- an integrating sphere 80 white paint such as barium sulfate that diffuses and reflects light almost completely on the inner surface is used. Spheres coated on
- the light emitted from the light source 81 is diffused inside the integrating sphere 80 and reflected by the surface of the measurement sample 82. Since the optical system shown in FIG. 5 is configured so that light in all directions including light in the specular reflection direction with respect to the light receiving unit is incident on the surface of the measurement sample, it is referred to as a specular reflection light entering mode (SCI) mode. .
- SCI specular reflection light entering mode
- a light trap (the light entering here is absorbed and does not return into the integrating sphere 80) is installed at the position of the integrating sphere 80 in the regular reflection direction with respect to the light receiving unit.
- the optical system configured so that light in the regular reflection direction does not strike the surface of the measurement sample with respect to the light receiving unit is called a regular reflection light removal mode (SCE mode).
- the optical spectrum shown in FIG. 5 is used to obtain the reflection spectrum of the measurement sample, and the visual sensation calculated from this reflection spectrum according to the method defined in JIS Z8722: 2009 “Color Measurement Method—Reflection and Transmission Object Color” reflectance, a luminous reflectance R SCI measured by specular light included schemes.
- the reflection luminance rate of the optical laminate is preferably 55% or more, and may be 60% or more.
- the reflection luminance rate is preferably 85% or less, and may be 80% or less. Having a reflection luminance rate in the above range is advantageous in achieving both visibility in white display (display mode) and black display (mirror mode).
- the optical layered body can be applied to a display device.
- the display device image display device
- the display device preferably includes a display element (image display element) and the optical layered body disposed on the viewing side. According to the optical layered body of the present invention, it is possible to effectively suppress the occurrence of rainbow unevenness even when it is disposed on the viewing side of the display device, and it is possible to provide good visibility.
- the display element is not particularly limited, and examples thereof include a liquid crystal cell in a liquid crystal display device, an organic EL element in an organic EL device, and a touch panel element in a touch input display device. Attachment of the optical laminate to the display device can be performed via an adhesive layer (for example, the third adhesive layer 60).
- the first reflective polarizer layer 10 and the second reflective type included in the optical laminate When the display device has an absorptive polarizing plate on the viewing side of the display element and the optical laminate is disposed on the viewing side, the first reflective polarizer layer 10 and the second reflective type included in the optical laminate.
- the angle formed by the reflection axis of the reflective polarizer layer disposed closer to the absorption polarizing plate in the polarizer layer 20 and the absorption axis of the absorption polarizing plate is preferably about 0 °. . “Abbreviated” means to allow a deviation within a range of ⁇ 10 °, preferably ⁇ 5 °.
- UV-curable resin composition Contains pentaerythritol triacrylate and polyfunctional urethanized acrylate (reaction product of hexamethylene diisocyanate and pentaerythritol triacrylate), and the weight ratio of the former / the latter is 60/40
- An ultraviolet curable resin composition 1 was prepared, which was dissolved in ethyl acetate so that the total concentration of both was 60% by weight, and a leveling agent was further blended.
- the pentaerythritol triacrylate and polyfunctional urethanized acrylate contained in the ultraviolet curable resin composition 1 are collectively referred to as a “curable component”.
- 1 part by weight of methyl methacrylate / styrene copolymer resin particles having an average particle diameter of 2.7 ⁇ m is added to 100 parts by weight of the curable component of the ultraviolet curable resin composition 1 and dispersed therein.
- the resin particles were diluted with ethyl acetate so that the total concentration of the resin particles was 30% by weight to obtain an ultraviolet curable resin composition 2.
- 1 part by weight of a photopolymerization initiator (trade name “Irgacure (registered trademark) 184” manufactured by Ciba) is added to 100 parts by weight of the curable acrylate to the ultraviolet curable resin composition 2 to obtain an ultraviolet curable resin.
- Composition 3 was obtained.
- the refractive index of the cured product obtained by adding 1 part by weight of the photopolymerization initiator to 100 parts by weight of the curable acrylate to the ultraviolet curable resin composition 1 and curing it by irradiating with ultraviolet rays is 1. 53.
- the refractive index of the methyl methacrylate / styrene copolymer resin particles was 1.49. Therefore, the refractive index difference between them was 0.04.
- An optically transparent (meth) acrylic pressure-sensitive adhesive layer is bonded to the surface of the base film of a film having a laminated structure of the base film and the cured product layer, and the optical laminate is not formed via this pressure-sensitive adhesive layer.
- the sample was bonded to an alkali glass substrate (trade name “Eagle XG” manufactured by Corning) and used as a measurement sample. With respect to this measurement sample, light is incident from the glass substrate side, and a haze meter “HM-150” manufactured by Murakami Color Research Laboratory Co., Ltd. conforming to JIS K 7136: 2000 “How to determine haze of plastic-transparent material”. When the haze was measured using a mold, it was 1.0%.
- a 20 cm ⁇ 30 cm sheet is cut out from a reflective polarizer (trade name “APF-v3” manufactured by 3M, thickness 26 ⁇ m), and this is cut into a first reflective polarizer layer. did.
- the angle formed between the short side and the reflection axis is 0 °.
- a sheet body having a size of 20 cm ⁇ 30 cm was cut out from the reflective polarizer and used as a second reflective polarizer layer.
- the angle formed between the short side and the reflection axis is 50 °.
- a sheet of 20 cm ⁇ 30 cm size was cut out from the film having a laminated structure of the base film and the cured product layer obtained in (2) above, and this was used as an intervening layer.
- the intervening layer was laminated on the first reflective polarizer layer via a (meth) acrylic pressure-sensitive adhesive layer (20 cm ⁇ 30 cm size) having a thickness of 20 ⁇ m. At this time, the intervening layer was laminated so that the base film of the intervening layer was in contact with the (meth) acrylic pressure-sensitive adhesive layer. Prior to lamination, corona treatment was applied to the bonding surface of the first reflective polarizer layer with the pressure-sensitive adhesive layer and the bonding surface of the intervening layer with the pressure-sensitive adhesive layer.
- a second reflective polarizer layer is laminated on the intervening layer via a (meth) acrylic pressure-sensitive adhesive layer (20 cm ⁇ 30 cm size) having a thickness of 20 ⁇ m to obtain an optical laminate having a size of 20 cm ⁇ 30 cm. It was. Prior to lamination, corona treatment was applied to the bonding surface of the second reflective polarizer layer with the adhesive layer and the bonding surface of the intervening layer with the adhesive layer. The angle formed by the reflection axis of the first reflective polarizer layer and the reflection axis of the second reflective polarizer layer (relative angle of the reflection axis) is 50 °.
- An optically transparent (meth) acrylic pressure-sensitive adhesive layer is bonded to the outer surface of the first reflective polarizer layer of the optical layered body, and the optical layered body is attached via this pressure-sensitive adhesive layer.
- IPS mode liquid crystal display (bonded on the screen of LG Electronics, product name “22MP57VQ-P”.
- the reflection axis of the first reflective polarizer layer and the viewing side polarization of the liquid crystal display Bonding was performed so that the absorption axis of the plate was parallel, the liquid crystal display device was turned on, the screen was displayed in white (display mode), characters were input, and this was displayed on the screen.
- AC film means a (meth) acrylic resin film having a thickness of 100 ⁇ m.
- COP film means a cyclic polyolefin resin film having a thickness of 100 ⁇ m.
- an optically transparent (meth) acrylic pressure-sensitive adhesive layer having a thickness of 20 ⁇ m (referred to as “transparent pressure-sensitive adhesive layer” in Table 1) and the relative angle of the reflection axis are shown in Table 1.
- An optical layered body was produced in the same manner as in Example 1 except that it was as described above, and the measurements and evaluations (4) to (7) in Example 1 were carried out in the same manner as in Example 1. The results are shown in Table 1.
- Example 10 and 11 An optical laminate was prepared in the same manner as in Example 1 except that a light-diffusing pressure-sensitive adhesive layer having a thickness of 20 ⁇ m was used as the intervening layer, and (4) to (7) in Example 1 as in Example 1. ) was measured and evaluated. The results are shown in Table 1.
- the light diffusing pressure-sensitive adhesive layer is obtained by dispersing light diffusing particles in an optically transparent (meth) acrylic pressure-sensitive adhesive layer.
- the haze of the light diffusing pressure-sensitive adhesive layer was adjusted by changing the addition amount of the light diffusing particles.
- First reflective polarizer layer 10 First reflective polarizer layer, 20 Second reflective polarizer layer, 30 Intervening layer, 31 Base film, 32 Haze imparting layer, 40 First adhesive layer, 50 Second adhesive layer, 60 Third adhesive Agent layer, 70 base layer, 80 integrating sphere, 81 light source, 82 measurement sample, 100, 200, 300, 400 optical laminate.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Nonlinear Science (AREA)
- Mathematical Physics (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Polarising Elements (AREA)
- Liquid Crystal (AREA)
- Laminated Bodies (AREA)
- Optical Elements Other Than Lenses (AREA)
Abstract
[Problem] To provide an optical laminate that includes two reflective polarizer layers and suitably functions as a half-mirror capable of suppressing the occurrence of iridescent unevenness and providing high visibility even when being arranged on the visible side of a display device. [Solution] This optical laminate includes: a first reflective polarizer layer; a second reflective polarizer layer; and an interposition layer that is arranged between the first reflective polarizer layer and the second reflective polarizer layer, wherein the angle formed between the reflection axis of the first reflective polarizer layer and the reflection axis of the second reflective polarizer layer is 20°-70°, and the haze is 0.4%-20%.
Description
本発明は、光学積層体に関する。
The present invention relates to an optical laminate.
一般的に、画像表示装置は電源をONにした状態で画像を画面上に表示し、電源をOFFにした状態では画面は黒色又は灰色になる。近年、電源をOFFにした状態(黒表示)での画面をミラー(鏡)として利用するミラーディスプレイが提案されている。ミラーディスプレイは、電源をOFFにした状態での画面をミラーとして利用することができ、電源をONにしたときに画面に画像を表示することができるよう、画像表示素子の視認側に配置されるハーフミラーを備える。
Generally, the image display device displays an image on the screen with the power turned on, and the screen becomes black or gray when the power is turned off. In recent years, there has been proposed a mirror display that uses a screen in a state where the power is turned off (black display) as a mirror. The mirror display is arranged on the viewing side of the image display element so that the screen with the power turned off can be used as a mirror and an image can be displayed on the screen when the power is turned on. A half mirror is provided.
ハーフミラーとして反射型偏光子を用いることが知られている。しかし、反射型偏光子を1枚のみ用いる場合には、黒表示での反射輝度率は約50%程度が限界であり、ミラーとして鮮明な画像を得ることが難しかった。そこで、複数の反射型偏光子を用いてハーフミラーを構成することが提案されている(特許文献1及び2)。
It is known to use a reflective polarizer as a half mirror. However, when only one reflective polarizer is used, the reflection luminance rate in black display is limited to about 50%, and it is difficult to obtain a clear image as a mirror. Thus, it has been proposed to form a half mirror using a plurality of reflective polarizers (Patent Documents 1 and 2).
特許文献1には、各々の透過軸が交差するように配置された2つの反射型偏光板によってハーフミラープレートを構成することにより、ディスプレイモード時の画面輝度の低下を防止しつつ、ミラーモード時の反射率を高め得ることが記載されている(段落[0010]及び[0011])。しかし、2つの反射型偏光板の透過軸を交差させてハーフミラープレートを構成し、これを画像表示装置の視認側に配置すると、各々の反射型偏光板で反射した光が干渉して虹ムラが発生し、ミラーモード及びディスプレイモードの双方において視認性が低下することが判明した。
In Patent Document 1, a half mirror plate is constituted by two reflective polarizing plates arranged so that their transmission axes intersect with each other, thereby preventing a reduction in screen luminance in the display mode and in the mirror mode. It is described that the reflectance of the light can be increased (paragraphs [0010] and [0011]). However, if the half mirror plate is configured by crossing the transmission axes of the two reflective polarizing plates and arranged on the viewing side of the image display device, the light reflected by each of the reflective polarizing plates interferes with the rainbow unevenness. It has been found that visibility decreases in both the mirror mode and the display mode.
特許文献2には、半透過反射型液晶表示装置のバックライト側に、反射型偏光板(反射性偏光分離器)を2枚重ねた部材を使用することが記載されている。また同文献には、干渉縞(上記虹ムラと同義)の発生を防止するために、上記2枚の反射型偏光板を接着することが記載されている(段落[0056])。しかしながら、バックライト側と視認側とでは光干渉による虹ムラの影響が大きく異なる。バックライト側に反射型偏光板を2枚張り合わせた光学積層体を設置した場合、表示装置越しに光学積層体を視認することになり、虹ムラは視認されにくい傾向にある。一方で反射型偏光板を2枚貼り合わせただけの光学積層体を視認側に配置した場合には、光学積層体の虹ムラが直接観察されるため、ミラーモード及びディスプレイモードの双方において視認性が著しく低下する。
Patent Document 2 describes using a member in which two reflective polarizing plates (reflective polarization separators) are stacked on the backlight side of a transflective liquid crystal display device. The same document describes that the two reflection-type polarizing plates are bonded in order to prevent the occurrence of interference fringes (synonymous with rainbow unevenness) (paragraph [0056]). However, the influence of rainbow unevenness due to light interference differs greatly between the backlight side and the viewing side. When an optical layered body in which two reflective polarizing plates are laminated on the backlight side is installed, the optical layered body is visually recognized through the display device, and rainbow unevenness tends to be difficult to be visually recognized. On the other hand, when an optical layered body in which two reflective polarizing plates are bonded together is arranged on the viewing side, the rainbow unevenness of the optical layered body is directly observed, so visibility in both the mirror mode and the display mode is achieved. Is significantly reduced.
本発明の目的は、2枚の反射型偏光子層を含む光学積層体であって、表示装置の視認側に配置された場合であっても虹ムラの発生を抑制でき、良好な視認性を与えることができるハーフミラーとして好適な光学積層体を提供することにある。
An object of the present invention is an optical laminate including two reflective polarizer layers, which can suppress the occurrence of rainbow unevenness even when it is arranged on the viewing side of a display device, and has good visibility. An object of the present invention is to provide an optical laminate suitable as a half mirror that can be provided.
本発明は、以下に示す光学積層体を提供する。
[1] 第1反射型偏光子層、第2反射型偏光子層、及び前記第1反射型偏光子層と前記第2反射型偏光子層との間に配置される介在層を含み、
前記第1反射型偏光子層の反射軸と前記第2反射型偏光子層の反射軸とがなす角度は、20°以上70°以下であり、
ヘイズが0.4%以上20%以下である、光学積層体。 The present invention provides the following optical laminate.
[1] including a first reflective polarizer layer, a second reflective polarizer layer, and an intervening layer disposed between the first reflective polarizer layer and the second reflective polarizer layer,
The angle formed by the reflection axis of the first reflective polarizer layer and the reflection axis of the second reflective polarizer layer is 20 ° or more and 70 ° or less,
An optical laminate having a haze of 0.4% to 20%.
[1] 第1反射型偏光子層、第2反射型偏光子層、及び前記第1反射型偏光子層と前記第2反射型偏光子層との間に配置される介在層を含み、
前記第1反射型偏光子層の反射軸と前記第2反射型偏光子層の反射軸とがなす角度は、20°以上70°以下であり、
ヘイズが0.4%以上20%以下である、光学積層体。 The present invention provides the following optical laminate.
[1] including a first reflective polarizer layer, a second reflective polarizer layer, and an intervening layer disposed between the first reflective polarizer layer and the second reflective polarizer layer,
The angle formed by the reflection axis of the first reflective polarizer layer and the reflection axis of the second reflective polarizer layer is 20 ° or more and 70 ° or less,
An optical laminate having a haze of 0.4% to 20%.
[2] 反射輝度率が55%以上85%以下である、[1]に記載の光学積層体。
[3] 前記介在層のヘイズが0.8%以上20%以下である、[1]又は[2]に記載の光学積層体。 [2] The optical layered body according to [1], wherein the reflection luminance rate is 55% or more and 85% or less.
[3] The optical laminate according to [1] or [2], wherein the intervening layer has a haze of 0.8% to 20%.
[3] 前記介在層のヘイズが0.8%以上20%以下である、[1]又は[2]に記載の光学積層体。 [2] The optical layered body according to [1], wherein the reflection luminance rate is 55% or more and 85% or less.
[3] The optical laminate according to [1] or [2], wherein the intervening layer has a haze of 0.8% to 20%.
[4] 前記介在層が2以上の層を含む、[1]~[3]のいずれかに記載の光学積層体。
[4] The optical laminate according to any one of [1] to [3], wherein the intervening layer includes two or more layers.
[5] 前記2以上の層は、互いに異なるヘイズを有する、[4]に記載の光学積層体。
[5] The optical laminate according to [4], wherein the two or more layers have different hazes.
[6] 前記第1反射型偏光子層の外側又は前記第2反射型偏光子層の外側に配置される基材層をさらに含む、[1]~[5]のいずれかに記載の光学積層体。
[6] The optical stack according to any one of [1] to [5], further including a base material layer disposed outside the first reflective polarizer layer or outside the second reflective polarizer layer. body.
[7] 前記基材層が吸収型偏光子層を含む、[6]に記載の光学積層体。
[8] 前記第1反射型偏光子層及び前記第2反射型偏光子層の少なくとも一方の外面に積層される粘着剤層をさらに含む、[1]~[7]のいずれかに記載の光学積層体。 [7] The optical laminate according to [6], wherein the base material layer includes an absorption polarizer layer.
[8] The optical system according to any one of [1] to [7], further including an adhesive layer laminated on at least one outer surface of the first reflective polarizer layer and the second reflective polarizer layer. Laminated body.
[8] 前記第1反射型偏光子層及び前記第2反射型偏光子層の少なくとも一方の外面に積層される粘着剤層をさらに含む、[1]~[7]のいずれかに記載の光学積層体。 [7] The optical laminate according to [6], wherein the base material layer includes an absorption polarizer layer.
[8] The optical system according to any one of [1] to [7], further including an adhesive layer laminated on at least one outer surface of the first reflective polarizer layer and the second reflective polarizer layer. Laminated body.
[9] 表示素子の視認側に配置される、[1]~[8]のいずれかに記載の光学積層体。
[9] The optical laminate according to any one of [1] to [8], which is disposed on the viewing side of the display element.
2枚の反射型偏光子層を含む光学積層体であって、表示装置の視認側に配置された場合であっても虹ムラの発生を抑制でき、良好な視認性を与えることができるハーフミラーとして好適な光学積層体を提供することができる。
An optical laminate including two reflective polarizer layers, which can suppress the occurrence of rainbow unevenness even when arranged on the viewing side of a display device, and can provide good visibility As such, a suitable optical laminate can be provided.
以下、実施の形態を示して本発明を詳細に説明する。
なお、本明細書において「A~B」(A及びBは数値である。)との記載は、特記ない限り「A以上B以下」を表す。 Hereinafter, the present invention will be described in detail with reference to embodiments.
In this specification, “A to B” (A and B are numerical values) represents “A or more and B or less” unless otherwise specified.
なお、本明細書において「A~B」(A及びBは数値である。)との記載は、特記ない限り「A以上B以下」を表す。 Hereinafter, the present invention will be described in detail with reference to embodiments.
In this specification, “A to B” (A and B are numerical values) represents “A or more and B or less” unless otherwise specified.
<光学積層体>
図1は、本発明に係る光学積層体の一例を示す概略断面図である。図1に示される光学積層体100は、2つの反射型偏光子層を有するハーフミラー要素として好適に用いることができる光学部材であり、第1反射型偏光子層10;第2反射型偏光子層20;第1反射型偏光子層10と第2反射型偏光子層20との間に配置される介在層30を含む。第1反射型偏光子層10は、介在層30の一方の面に第1粘着剤層40を介して積層されている。第2反射型偏光子層20は、介在層30の他方の面に第2粘着剤層50を介して積層されている。 <Optical laminate>
FIG. 1 is a schematic cross-sectional view showing an example of an optical laminate according to the present invention. Anoptical laminate 100 shown in FIG. 1 is an optical member that can be suitably used as a half mirror element having two reflective polarizer layers, and includes a first reflective polarizer layer 10 and a second reflective polarizer. Layer 20; includes an intervening layer 30 disposed between the first reflective polarizer layer 10 and the second reflective polarizer layer 20. The first reflective polarizer layer 10 is laminated on one surface of the intervening layer 30 via the first pressure-sensitive adhesive layer 40. The second reflective polarizer layer 20 is laminated on the other surface of the intervening layer 30 via the second pressure-sensitive adhesive layer 50.
図1は、本発明に係る光学積層体の一例を示す概略断面図である。図1に示される光学積層体100は、2つの反射型偏光子層を有するハーフミラー要素として好適に用いることができる光学部材であり、第1反射型偏光子層10;第2反射型偏光子層20;第1反射型偏光子層10と第2反射型偏光子層20との間に配置される介在層30を含む。第1反射型偏光子層10は、介在層30の一方の面に第1粘着剤層40を介して積層されている。第2反射型偏光子層20は、介在層30の他方の面に第2粘着剤層50を介して積層されている。 <Optical laminate>
FIG. 1 is a schematic cross-sectional view showing an example of an optical laminate according to the present invention. An
第1反射型偏光子層10の反射軸と第2反射型偏光子層20の反射軸とがなす角度(以下、「反射軸の相対角度」ともいう。)は20~70°であり、光学積層体100のヘイズは0.4~20%である。光学積層体100のヘイズは、0.4~10%であることが好ましく、0.4~8%であることがより好ましく、0.5~6%であることがさらに好ましく、0.5~5%であってもよい。
The angle formed by the reflection axis of the first reflective polarizer layer 10 and the reflection axis of the second reflective polarizer layer 20 (hereinafter also referred to as “relative angle of the reflection axis”) is 20 to 70 °, and is optical. The haze of the laminate 100 is 0.4 to 20%. The haze of the optical laminate 100 is preferably 0.4 to 10%, more preferably 0.4 to 8%, still more preferably 0.5 to 6%, and 0.5 to It may be 5%.
上記構成を有する光学積層体100によれば、表示装置の視認側に配置された場合であっても虹ムラの発生を効果的に抑制でき、また、良好な視認性を与えることができる。ここでいう視認性とは、表示装置の電源をONにして画面を白表示(ディスプレイモード)とし、この表示装置を画面に画像を表示するデバイスとして使用するときの当該画像の視認性と、電源をOFFにして画面を黒表示(ミラーモード)とし、表示装置をミラーとして使用するときの視認性とを含み、上記構成を有する光学積層体100によれば、これらの視認性を高いレベルで両立させることが可能である。
According to the optical layered body 100 having the above-described configuration, the occurrence of rainbow unevenness can be effectively suppressed even when the optical laminated body 100 is disposed on the viewing side of the display device, and good visibility can be provided. The visibility here refers to the visibility of the image when the display device is turned on and the screen is displayed in white (display mode), and the display device is used as a device for displaying an image on the screen. Is turned off, the screen is displayed in black (mirror mode), and the visibility when using the display device as a mirror is included. According to the optical laminated body 100 having the above-described configuration, the visibility is compatible at a high level. It is possible to make it.
(1)第1反射型偏光子層及び第2反射型偏光子層
第1反射型偏光子層10及び第2反射型偏光子層20はそれぞれ、例えば異方性反射偏光子であることができる。異方性反射偏光子の一例は、一方の振動方向の直線偏光を透過し、他方の振動方向の直線偏光を反射する異方性多重薄膜であり、その具体例は3M製の「APF」、「DBEF」である(特開平4-268505号公報等参照)。異方性反射偏光子の他の一例は、コレステリック液晶層とλ/4板との複合体であり、その具体例は日東電工株式会社製の「PCF」である(特開平11-231130号公報等参照)。異方性反射偏光子のさらに他の一例は、反射グリッド偏光子であり、その具体例は、金属に微細加工を施して可視光領域でも反射偏光を出射するような金属格子反射偏光子(ナノワイヤーグリッド偏光子、米国特許第6288840号明細書等参照)、金属微粒子を高分子マトリックス中に添加して延伸したフィルム(特開平8-184701号公報等参照)である。 (1) First Reflective Polarizer Layer and Second Reflective Polarizer Layer Each of the firstreflective polarizer layer 10 and the second reflective polarizer layer 20 can be, for example, an anisotropic reflective polarizer. . An example of the anisotropic reflective polarizer is an anisotropic multiple thin film that transmits linearly polarized light in one vibration direction and reflects linearly polarized light in the other vibration direction. Specific examples thereof include “APF” manufactured by 3M, “DBEF” (see Japanese Patent Laid-Open No. 4-268505). Another example of the anisotropic reflective polarizer is a composite of a cholesteric liquid crystal layer and a λ / 4 plate, and a specific example thereof is “PCF” manufactured by Nitto Denko Corporation (Japanese Patent Laid-Open No. 11-231130). Etc.). Yet another example of an anisotropic reflective polarizer is a reflective grid polarizer, and a specific example thereof is a metal grid reflective polarizer (nanoscopically) that emits reflected polarized light even in the visible light region by finely processing a metal. A wire grid polarizer, see US Pat. No. 6,288,840), and a film obtained by adding metal fine particles into a polymer matrix and stretching (see JP-A-8-184701, etc.).
第1反射型偏光子層10及び第2反射型偏光子層20はそれぞれ、例えば異方性反射偏光子であることができる。異方性反射偏光子の一例は、一方の振動方向の直線偏光を透過し、他方の振動方向の直線偏光を反射する異方性多重薄膜であり、その具体例は3M製の「APF」、「DBEF」である(特開平4-268505号公報等参照)。異方性反射偏光子の他の一例は、コレステリック液晶層とλ/4板との複合体であり、その具体例は日東電工株式会社製の「PCF」である(特開平11-231130号公報等参照)。異方性反射偏光子のさらに他の一例は、反射グリッド偏光子であり、その具体例は、金属に微細加工を施して可視光領域でも反射偏光を出射するような金属格子反射偏光子(ナノワイヤーグリッド偏光子、米国特許第6288840号明細書等参照)、金属微粒子を高分子マトリックス中に添加して延伸したフィルム(特開平8-184701号公報等参照)である。 (1) First Reflective Polarizer Layer and Second Reflective Polarizer Layer Each of the first
表示装置の視認性を高める等の観点から、反射軸の相対角度は20~70°とされる。
反射軸の相対角度は、好ましくは25~65°であり、より好ましくは30~60°であり、さらに好ましくは35~55°である。2つの反射軸を交差させると2つの角が形成される。一方の角の角度をα°とすると、他方の角の角度は(180-α)°となる。本明細書でいう反射軸の相対角度とは、上記2つの角のうち、小さい方をいう。すなわち、反射軸の相対角度が採り得る最小値は0°であり、採り得る最大値は90°である。 From the viewpoint of improving the visibility of the display device, the relative angle of the reflection axis is set to 20 to 70 °.
The relative angle of the reflection axis is preferably 25 to 65 °, more preferably 30 to 60 °, and still more preferably 35 to 55 °. When the two reflection axes intersect, two corners are formed. If the angle of one corner is α °, the angle of the other corner is (180−α) °. The relative angle of the reflection axis in this specification refers to the smaller of the two angles. That is, the minimum value that can be taken by the relative angle of the reflection axis is 0 °, and the maximum value that can be taken is 90 °.
反射軸の相対角度は、好ましくは25~65°であり、より好ましくは30~60°であり、さらに好ましくは35~55°である。2つの反射軸を交差させると2つの角が形成される。一方の角の角度をα°とすると、他方の角の角度は(180-α)°となる。本明細書でいう反射軸の相対角度とは、上記2つの角のうち、小さい方をいう。すなわち、反射軸の相対角度が採り得る最小値は0°であり、採り得る最大値は90°である。 From the viewpoint of improving the visibility of the display device, the relative angle of the reflection axis is set to 20 to 70 °.
The relative angle of the reflection axis is preferably 25 to 65 °, more preferably 30 to 60 °, and still more preferably 35 to 55 °. When the two reflection axes intersect, two corners are formed. If the angle of one corner is α °, the angle of the other corner is (180−α) °. The relative angle of the reflection axis in this specification refers to the smaller of the two angles. That is, the minimum value that can be taken by the relative angle of the reflection axis is 0 °, and the maximum value that can be taken is 90 °.
第1反射型偏光子層10及び第2反射型偏光子層20の厚みは、通常10~100μmであるが、光学積層体100及び表示装置の薄型化の観点から、好ましくは10~50μmであり、より好ましくは10~30μmである。
The thicknesses of the first reflective polarizer layer 10 and the second reflective polarizer layer 20 are usually 10 to 100 μm, but preferably 10 to 50 μm from the viewpoint of reducing the thickness of the optical laminate 100 and the display device. More preferably, the thickness is 10 to 30 μm.
第1反射型偏光子層10及び第2反射型偏光子層20の少なくとも一方は、その外面に表面処理層(コーティング層)又は反射型偏光子層以外の他の光学層を有していてもよい。表面処理層は、硬化性樹脂等を含有する塗工液を塗工し、必要に応じて乾燥処理や硬化処理を施して形成される層である。表面処理層としては、例えば、ハードコート層、防眩層、光拡散層、位相差層(1/4波長の位相差値を持つ位相差層等)、反射防止層、帯電防止層、防汚層等が挙げられる。表面処理層(コーティング層)又は他の光学層を設けることにより、光学積層体100に付加的な機能を付与したり、光学積層体100を表示装置に適用したときの表示画像の視認性(鮮明さ、外光の映り込みによる見えにくさの改善、表示画像の均質性、虹ムラのさらなる改善等を含む。)を高めたりすることが可能となる。
At least one of the first reflective polarizer layer 10 and the second reflective polarizer layer 20 may have a surface treatment layer (coating layer) or an optical layer other than the reflective polarizer layer on its outer surface. Good. The surface treatment layer is a layer formed by applying a coating liquid containing a curable resin or the like, and performing a drying treatment or a curing treatment as necessary. Examples of the surface treatment layer include a hard coat layer, an antiglare layer, a light diffusion layer, a retardation layer (a retardation layer having a retardation value of ¼ wavelength), an antireflection layer, an antistatic layer, an antifouling layer, and the like. Layer and the like. By providing a surface treatment layer (coating layer) or another optical layer, an additional function is imparted to the optical laminate 100, or the visibility of a display image when the optical laminate 100 is applied to a display device (clear) In addition, it is possible to improve the difficulty of viewing due to the reflection of outside light, the uniformity of the display image, the further improvement of rainbow unevenness, etc.).
第1反射型偏光子層10と第2反射型偏光子層20とは、同じ構成を有していてもよいし、厚み、材質、層構成、光学特性、表面処理層や他の光学層の有無等において異なっていてもよい。また、光学積層体100に上記所定の範囲のヘイズを付与するために、第1反射型偏光子層10及び第2反射型偏光子層20の少なくとも一方は、ゼロでないヘイズを有していてもよい。この場合における第1反射型偏光子層10及び/又は第2反射型偏光子層20が有するヘイズは、例えば0.1~5%である。第1反射型偏光子層10と第2反射型偏光子層20とは、同じヘイズ値を有していてもよいし、互いに異なるヘイズ値を有していてもよい。
The first reflective polarizer layer 10 and the second reflective polarizer layer 20 may have the same configuration, thickness, material, layer configuration, optical characteristics, surface treatment layer and other optical layers. It may differ in the presence or absence. Moreover, in order to give the optical laminate 100 haze in the predetermined range, at least one of the first reflective polarizer layer 10 and the second reflective polarizer layer 20 may have non-zero haze. Good. In this case, the haze of the first reflective polarizer layer 10 and / or the second reflective polarizer layer 20 is, for example, 0.1 to 5%. The first reflective polarizer layer 10 and the second reflective polarizer layer 20 may have the same haze value or may have different haze values.
ヘイズとは、全光線透過率Ttに対する拡散透過率Tdの割合であり、下記式〔A〕: ヘイズ(%)=(Td/Tt)×100 〔A〕
により求められる。全光線透過率Ttは、入射光と同軸のまま透過した平行光線透過率Tpと拡散光線透過率Tdの和である。JIS K 7136:2000「プラスチック-透明材料のヘーズの求め方」に準拠して測定される。 The haze is the ratio of the diffuse transmittance Td to the total light transmittance Tt, and the following formula [A]: haze (%) = (Td / Tt) × 100 [A]
Is required. The total light transmittance Tt is the sum of the parallel light transmittance Tp and the diffused light transmittance Td that are transmitted coaxially with the incident light. Measured in accordance with JIS K 7136: 2000 “Plastics-Determination of Haze of Transparent Materials”.
により求められる。全光線透過率Ttは、入射光と同軸のまま透過した平行光線透過率Tpと拡散光線透過率Tdの和である。JIS K 7136:2000「プラスチック-透明材料のヘーズの求め方」に準拠して測定される。 The haze is the ratio of the diffuse transmittance Td to the total light transmittance Tt, and the following formula [A]: haze (%) = (Td / Tt) × 100 [A]
Is required. The total light transmittance Tt is the sum of the parallel light transmittance Tp and the diffused light transmittance Td that are transmitted coaxially with the incident light. Measured in accordance with JIS K 7136: 2000 “Plastics-Determination of Haze of Transparent Materials”.
(2)介在層
介在層30は、第1反射型偏光子層10と第2反射型偏光子層20との間に配置される層であり、単層構造であってもよいし、2層又は3層以上の多層構造であってもよい。多層構造である場合において、2以上の層は互いに異なるヘイズを有していてもよい。介在層30は、ゼロでないヘイズを有していることが好ましい。介在層30のヘイズは、好ましくは0.1~20%であり、より好ましくは0.5~20%であり、さらに好ましくは0.8~10%であり、なおさらに好ましくは0.8~8%であり、特に好ましくは1~8%である。当該範囲のヘイズを有する介在層30を用いることは、光学積層体100に上記所定の範囲のヘイズを付与するための手段の1つとして好適である。介在層30のヘイズが20%を超えると、黒表示(ミラーモード)において黒表示のクリア感が低下しやすく、また、白表示(ディスプレイモード)において画像が白っぽくなり視認性が低下しやすい傾向にある。 (2) Intervening Layer Theintervening layer 30 is a layer disposed between the first reflective polarizer layer 10 and the second reflective polarizer layer 20, and may have a single-layer structure or two layers. Alternatively, it may be a multilayer structure of three or more layers. In the case of a multilayer structure, two or more layers may have different hazes. The intervening layer 30 preferably has a non-zero haze. The haze of the intervening layer 30 is preferably 0.1 to 20%, more preferably 0.5 to 20%, still more preferably 0.8 to 10%, still more preferably 0.8 to It is 8%, particularly preferably 1 to 8%. Use of the intervening layer 30 having the haze in the range is suitable as one means for imparting the haze in the predetermined range to the optical laminate 100. When the haze of the intervening layer 30 exceeds 20%, the clearness of the black display tends to be reduced in black display (mirror mode), and the image tends to be whitish in white display (display mode) and the visibility tends to decrease. is there.
介在層30は、第1反射型偏光子層10と第2反射型偏光子層20との間に配置される層であり、単層構造であってもよいし、2層又は3層以上の多層構造であってもよい。多層構造である場合において、2以上の層は互いに異なるヘイズを有していてもよい。介在層30は、ゼロでないヘイズを有していることが好ましい。介在層30のヘイズは、好ましくは0.1~20%であり、より好ましくは0.5~20%であり、さらに好ましくは0.8~10%であり、なおさらに好ましくは0.8~8%であり、特に好ましくは1~8%である。当該範囲のヘイズを有する介在層30を用いることは、光学積層体100に上記所定の範囲のヘイズを付与するための手段の1つとして好適である。介在層30のヘイズが20%を超えると、黒表示(ミラーモード)において黒表示のクリア感が低下しやすく、また、白表示(ディスプレイモード)において画像が白っぽくなり視認性が低下しやすい傾向にある。 (2) Intervening Layer The
介在層30にヘイズを付与する方法としては、例えば次の方法が挙げられる。
a)介在層30を構成する層として、層内部に光散乱を生じさせる粒子を分散させた層(ヘイズ付与層)を用いる方法。
b)介在層30の表面を構成する層として、表面凹凸を有する層(ヘイズ付与層)を用いる方法。
c)上記a)とb)との組み合わせ。 Examples of the method for imparting haze to the interveninglayer 30 include the following methods.
a) A method of using a layer (haze imparting layer) in which particles that cause light scattering are dispersed inside the layer as the layer constituting the interveninglayer 30.
b) A method of using a layer having surface irregularities (haze imparting layer) as a layer constituting the surface of the interveninglayer 30.
c) A combination of a) and b) above.
a)介在層30を構成する層として、層内部に光散乱を生じさせる粒子を分散させた層(ヘイズ付与層)を用いる方法。
b)介在層30の表面を構成する層として、表面凹凸を有する層(ヘイズ付与層)を用いる方法。
c)上記a)とb)との組み合わせ。 Examples of the method for imparting haze to the intervening
a) A method of using a layer (haze imparting layer) in which particles that cause light scattering are dispersed inside the layer as the layer constituting the intervening
b) A method of using a layer having surface irregularities (haze imparting layer) as a layer constituting the surface of the intervening
c) A combination of a) and b) above.
層内部に光散乱を生じさせる粒子を分散させた層と、表面凹凸を有する層とは同じ層であってもよい。
The layer in which particles that cause light scattering are dispersed inside the layer and the layer having surface irregularities may be the same layer.
図2は、本発明に係る光学積層体の他の一例を示す概略断面図である。図2に示される光学積層体200において介在層30は、基材フィルム31と、その一方の表面に積層されるヘイズ付与層32とを含む。すなわち、図2の例において介在層30は、ヘイズの発現を主に担うヘイズ付与層32と、それを支持する基材フィルム31とからなる。図2の例においてヘイズ付与層32は、基材フィルム31の一方の表面にのみ設けられているが、基材フィルム31の両面に設けられる等、介在層30は、2以上のヘイズ付与層を有していてもよい。基材フィルム31とヘイズ付与層32との間に他の層(例えば、接着剤層、プライマー層、樹脂層等)を有していてもよい。
FIG. 2 is a schematic cross-sectional view showing another example of the optical laminate according to the present invention. In the optical laminate 200 shown in FIG. 2, the intervening layer 30 includes a base film 31 and a haze imparting layer 32 laminated on one surface thereof. That is, in the example of FIG. 2, the intervening layer 30 includes a haze-imparting layer 32 that mainly bears the expression of haze and a base film 31 that supports it. In the example of FIG. 2, the haze imparting layer 32 is provided only on one surface of the base film 31, but the intervening layer 30 includes two or more haze imparting layers, such as provided on both surfaces of the base film 31. You may have. You may have another layer (For example, an adhesive bond layer, a primer layer, a resin layer, etc.) between the base film 31 and the haze provision layer 32. FIG.
基材フィルム31は、例えば熱可塑性樹脂から構成することができ、中でも光学的な透明性等に優れる熱可塑性樹脂から構成することが好ましい。このような熱可塑性樹脂の具体例は、例えば、鎖状ポリオレフィン系樹脂、環状ポリオレフィン系樹脂(ノルボルネン系樹脂等)のようなポリオレフィン系樹脂;ポリエステル系樹脂;(メタ)アクリル系樹脂;セルローストリアセテート、セルロースジアセテートのようなセルロースエステル系樹脂;ポリカーボネート系樹脂;ポリビニルアルコール系樹脂;ポリ酢酸ビニル系樹脂;ポリアリレート系樹脂;ポリスチレン系樹脂;ポリエーテルスルホン系樹脂;ポリスルホン系樹脂;ポリアミド系樹脂;ポリイミド系樹脂;及びこれらの混合物、共重合物等を含む。
The base film 31 can be made of, for example, a thermoplastic resin, and is preferably made of a thermoplastic resin having excellent optical transparency. Specific examples of such thermoplastic resins include, for example, polyolefin resins such as chain polyolefin resins and cyclic polyolefin resins (norbornene resins, etc.); polyester resins; (meth) acrylic resins; cellulose triacetate, Cellulose ester resins such as cellulose diacetate; Polycarbonate resins; Polyvinyl alcohol resins; Polyvinyl acetate resins; Polyarylate resins; Polystyrene resins; Polyethersulfone resins; Polysulfone resins; Polyamide resins; System resins; and mixtures and copolymers thereof.
本明細書において「(メタ)アクリル」とは、アクリル及びメタクリルから選択される少なくとも一方を意味する。「(メタ)アクリロイル」、「(メタ)アクリレート」等においても同様である。
In this specification, “(meth) acryl” means at least one selected from acrylic and methacrylic. The same applies to “(meth) acryloyl”, “(meth) acrylate”, and the like.
鎖状ポリオレフィン系樹脂としては、ポリエチレン樹脂(エチレンの単独重合体であるポリエチレン樹脂や、エチレンを主体とする共重合体)、ポリプロピレン樹脂(プロピレンの単独重合体であるポリプロピレン樹脂や、プロピレンを主体とする共重合体)のような鎖状オレフィンの単独重合体の他、2種以上の鎖状オレフィンからなる共重合体を挙げることができる。
As the chain polyolefin-based resin, polyethylene resin (polyethylene resin which is a homopolymer of ethylene or a copolymer mainly composed of ethylene), polypropylene resin (polypropylene resin which is a homopolymer of propylene, or propylene as a main component) And a copolymer composed of two or more chain olefins in addition to a chain olefin homopolymer such as
環状ポリオレフィン系樹脂は、環状オレフィンを重合単位として重合される樹脂の総称であり、例えば、特開平1-240517号公報、特開平3-14882号公報、特開平3-122137号公報等に記載されている樹脂が挙げられる。環状ポリオレフィン系樹脂の具体例を挙げれば、環状オレフィンの開環(共)重合体、環状オレフィンの付加重合体、環状オレフィンとエチレン、プロピレンのような鎖状オレフィンとの共重合体(代表的にはランダム共重合体)、及びこれらを不飽和カルボン酸やその誘導体で変性したグラフト重合体、並びにそれらの水素化物である。中でも、環状オレフィンとしてノルボルネンや多環ノルボルネン系モノマーのようなノルボルネン系モノマーを用いたノルボルネン系樹脂が好ましく用いられる。
The cyclic polyolefin resin is a general term for resins that are polymerized using a cyclic olefin as a polymerization unit, and is described in, for example, JP-A-1-240517, JP-A-3-14882, JP-A-3-122137, and the like. Resin. Specific examples of cyclic polyolefin resins include ring-opening (co) polymers of cyclic olefins, addition polymers of cyclic olefins, copolymers of cyclic olefins and chain olefins such as ethylene and propylene (typically Are random copolymers), graft polymers obtained by modifying them with unsaturated carboxylic acids or their derivatives, and hydrides thereof. Among these, norbornene resins using norbornene monomers such as norbornene and polycyclic norbornene monomers as cyclic olefins are preferably used.
ポリエステル系樹脂は、下記セルロースエステル系樹脂を除く、エステル結合を有する樹脂であり、多価カルボン酸又はその誘導体と多価アルコールとの重縮合体からなるものが一般的である。多価カルボン酸又はその誘導体としては2価のジカルボン酸又はその誘導体を用いることができ、例えばテレフタル酸、イソフタル酸、ジメチルテレフタレート、ナフタレンジカルボン酸ジメチルが挙げられる。多価アルコールとしては2価のジオールを用いることができ、例えばエチレングリコール、プロパンジオール、ブタンジオール、ネオペンチルグリコール、シクロヘキサンジメタノールが挙げられる。ポリエステル系樹脂の代表例として、テレフタル酸とエチレングリコールの重縮合体であるポリエチレンテレフタレートが挙げられる。
The polyester-based resin is a resin having an ester bond except for the following cellulose ester-based resin, and is generally made of a polycondensate of a polyvalent carboxylic acid or a derivative thereof and a polyhydric alcohol. As the polyvalent carboxylic acid or a derivative thereof, a divalent dicarboxylic acid or a derivative thereof can be used, and examples thereof include terephthalic acid, isophthalic acid, dimethyl terephthalate, and dimethyl naphthalenedicarboxylate. As the polyhydric alcohol, a divalent diol can be used, and examples thereof include ethylene glycol, propanediol, butanediol, neopentyl glycol, and cyclohexanedimethanol. A typical example of the polyester resin is polyethylene terephthalate which is a polycondensate of terephthalic acid and ethylene glycol.
(メタ)アクリル系樹脂は、(メタ)アクリロイル基を有する化合物を主な構成モノマーとする樹脂である。(メタ)アクリル系樹脂の具体例は、例えば、ポリメタクリル酸メチルのようなポリ(メタ)アクリル酸エステル;メタクリル酸メチル-(メタ)アクリル酸共重合体;メタクリル酸メチル-(メタ)アクリル酸エステル共重合体;メタクリル酸メチル-アクリル酸エステル-(メタ)アクリル酸共重合体;(メタ)アクリル酸メチル-スチレン共重合体(MS樹脂等);メタクリル酸メチルと脂環族炭化水素基を有する化合物との共重合体(例えば、メタクリル酸メチル-メタクリル酸シクロヘキシル共重合体、メタクリル酸メチル-(メタ)アクリル酸ノルボルニル共重合体等)を含む。好ましくは、ポリ(メタ)アクリル酸メチルのようなポリ(メタ)アクリル酸C1-6アルキルエステルを主成分とする重合体が用いられ、より好ましくは、メタクリル酸メチルを主成分(50~100重量%、好ましくは70~100重量%)とするメタクリル酸メチル系樹脂が用いられる。
The (meth) acrylic resin is a resin containing a compound having a (meth) acryloyl group as a main constituent monomer. Specific examples of the (meth) acrylic resin include, for example, poly (meth) acrylic acid esters such as polymethyl methacrylate; methyl methacrylate- (meth) acrylic acid copolymer; methyl methacrylate- (meth) acrylic acid Ester copolymer; methyl methacrylate-acrylate ester- (meth) acrylic acid copolymer; (meth) methyl acrylate-styrene copolymer (MS resin, etc.); methyl methacrylate and alicyclic hydrocarbon group And a copolymer with the compound (for example, methyl methacrylate-cyclohexyl methacrylate copolymer, methyl methacrylate- (meth) acrylate norbornyl copolymer, etc.). Preferably, a polymer based on a poly (meth) acrylic acid C 1-6 alkyl ester such as poly (meth) acrylic acid methyl is used, and more preferably methyl methacrylate is used as a main component (50 to 100). % Methyl methacrylate-based resin is used.
セルロースエステル系樹脂は、セルロースと脂肪酸とのエステルである。セルロースエステル系樹脂の具体例は、セルローストリアセテート、セルロースジアセテート、セルローストリプロピオネート、セルロースジプロピオネートを含む。また、これらの共重合物や、水酸基の一部が他の置換基で修飾されたものも挙げられる。これらの中でも、セルローストリアセテート(トリアセチルセルロース)が特に好ましい。
The cellulose ester resin is an ester of cellulose and a fatty acid. Specific examples of the cellulose ester resin include cellulose triacetate, cellulose diacetate, cellulose tripropionate, and cellulose dipropionate. Further, these copolymers and those in which a part of the hydroxyl group is modified with other substituents are also included. Among these, cellulose triacetate (triacetyl cellulose) is particularly preferable.
ポリカーボネート系樹脂は、カルボナート基を介してモノマー単位が結合された重合体からなるエンジニアリングプラスチックである。
Polycarbonate-based resin is an engineering plastic made of a polymer in which monomer units are bonded via a carbonate group.
基材フィルム30の厚みは、通常1~300μmであり、光学積層体100及び表示装置の薄型化、並びにフィルム強度の観点から、好ましくは2~200μm、より好ましくは5~150μm、さらに好ましくは5~100μm(例えば80μm以下)である。
The thickness of the base film 30 is usually 1 to 300 μm, and preferably 2 to 200 μm, more preferably 5 to 150 μm, and still more preferably 5 from the viewpoint of thinning the optical laminate 100 and the display device and film strength. ˜100 μm (for example, 80 μm or less).
ヘイズ付与層32は、硬化性樹脂を含有する硬化性樹脂組成物を基材フィルム31上に塗工し、必要に応じて乾燥させた後に硬化させてなる硬化物層であることができる。硬化性樹脂としては、紫外線、可視光、電子線、X線等の活性エネルギー線の照射によって硬化する活性エネルギー線硬化性樹脂、熱により硬化する熱硬化性樹脂が挙げられる。中でも、生産性、硬化物層の硬度等の観点から、硬化性樹脂は、活性エネルギー線硬化性樹脂であることが好ましく、紫外線硬化性樹脂等の光硬化性樹脂であることがより好ましい。
ただし、光硬化性樹脂は、紫外線より波長の長い可視光で硬化が可能な可視光硬化性樹脂であってもよい。また、硬化性樹脂は、硬化物層が高硬度(ハードコート)となるものから選定されることが好ましい。光硬化性樹脂を使用する場合、硬化性樹脂組成物は通常、光重合開始剤をさらに含む。 The haze-impartinglayer 32 can be a cured product layer formed by applying a curable resin composition containing a curable resin on the base film 31 and drying it as necessary. Examples of the curable resin include an active energy ray curable resin that is cured by irradiation with active energy rays such as ultraviolet rays, visible light, an electron beam, and X-rays, and a thermosetting resin that is cured by heat. Among these, from the viewpoint of productivity, hardness of the cured product layer, and the like, the curable resin is preferably an active energy ray curable resin, and more preferably a photocurable resin such as an ultraviolet curable resin.
However, the photocurable resin may be a visible light curable resin that can be cured with visible light having a wavelength longer than that of ultraviolet rays. Moreover, it is preferable that curable resin is selected from what a hardened | cured material layer becomes high hardness (hard coat). When using a photocurable resin, the curable resin composition usually further includes a photopolymerization initiator.
ただし、光硬化性樹脂は、紫外線より波長の長い可視光で硬化が可能な可視光硬化性樹脂であってもよい。また、硬化性樹脂は、硬化物層が高硬度(ハードコート)となるものから選定されることが好ましい。光硬化性樹脂を使用する場合、硬化性樹脂組成物は通常、光重合開始剤をさらに含む。 The haze-imparting
However, the photocurable resin may be a visible light curable resin that can be cured with visible light having a wavelength longer than that of ultraviolet rays. Moreover, it is preferable that curable resin is selected from what a hardened | cured material layer becomes high hardness (hard coat). When using a photocurable resin, the curable resin composition usually further includes a photopolymerization initiator.
光硬化性樹脂としては、例えば、ウレタン(メタ)アクリレート、ポリオール(メタ)アクリレート、水酸基を2個以上含むアルキル基を有する(メタ)アクリルポリマー等が挙げられる。これらの(メタ)アクリル系化合物は、それぞれ単独で、又は必要に応じて2種以上組み合わせて用いることができる。
Examples of the photocurable resin include urethane (meth) acrylate, polyol (meth) acrylate, and (meth) acrylic polymer having an alkyl group containing two or more hydroxyl groups. These (meth) acrylic compounds can be used alone or in combination of two or more as required.
ウレタン(メタ)アクリレートは、好ましくは(メタ)アクリル酸及び/又は(メタ)アクリル酸エステル、ポリオール、並びにジイソシアネートを用いて調製される。例えば、(メタ)アクリル酸及び/又は(メタ)アクリル酸エステル並びにポリオールから、水酸基を少なくとも1つ有するヒドロキシ(メタ)アクリレートを調製し、これをジイソシアネートと反応させることによってウレタン(メタ)アクリレートを得ることができる。
これら(メタ)アクリル酸及び/又は(メタ)アクリル酸エステル、ポリオール、並びにジイソシアネートは、それぞれ1種のみを単独で用いてもよく、2種以上を組み合わせて用いてもよい。 The urethane (meth) acrylate is preferably prepared using (meth) acrylic acid and / or (meth) acrylic ester, polyol, and diisocyanate. For example, urethane (meth) acrylate is obtained by preparing hydroxy (meth) acrylate having at least one hydroxyl group from (meth) acrylic acid and / or (meth) acrylic acid ester and polyol, and reacting it with diisocyanate. be able to.
These (meth) acrylic acid and / or (meth) acrylic acid ester, polyol, and diisocyanate may be used alone or in combination of two or more.
これら(メタ)アクリル酸及び/又は(メタ)アクリル酸エステル、ポリオール、並びにジイソシアネートは、それぞれ1種のみを単独で用いてもよく、2種以上を組み合わせて用いてもよい。 The urethane (meth) acrylate is preferably prepared using (meth) acrylic acid and / or (meth) acrylic ester, polyol, and diisocyanate. For example, urethane (meth) acrylate is obtained by preparing hydroxy (meth) acrylate having at least one hydroxyl group from (meth) acrylic acid and / or (meth) acrylic acid ester and polyol, and reacting it with diisocyanate. be able to.
These (meth) acrylic acid and / or (meth) acrylic acid ester, polyol, and diisocyanate may be used alone or in combination of two or more.
(メタ)アクリル酸エステルとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、ブチル(メタ)アクリレート等のアルキル(メタ)アクリレート;シクロヘキシル(メタ)アクリレート等のシクロアルキル(メタ)アクリレートが挙げられる。
Examples of the (meth) acrylic acid ester include alkyl (meth) acrylates such as methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, isopropyl (meth) acrylate, and butyl (meth) acrylate; cyclohexyl ( And cycloalkyl (meth) acrylates such as (meth) acrylate.
ポリオールは、水酸基を少なくとも2つ有する化合物であり、例えば、エチレングリコール、1,3-プロピレングリコール、1,2-プロピレングリコール、ジエチレングリコール、ジプロピレングリコール、ネオペンチルグリコール、1,3-ブタンジオール、1,4-ブタンジオール、1,6-ヘキサンジオール、1,9-ノナンジオール、1,10-デカングリコール、2,2,4-トリメチル-1,3-ペンタンジオール、3-メチル-1,5-ペンタンジオール、ヒドロキシピバリン酸ネオペンチルグリコールエステル、シクロヘキサンジメチロール、1,4-シクロヘキサンジオール、スピログリコール、トリシクロデカンメチロール、水添ビスフェノールA、エチレンオキサイド付加ビスフェノールA、プロピレンオキサイド付加ビスフェノールA、トリメチロールエタン、トリジメチロールプロパン、グリセリン、3-メチルペンタン-1,3,5-トリオール、ペンタエリスリトール、ジペンタエリスリトール、トリペンタエリスリトール、グルコース類を挙げることができる。
A polyol is a compound having at least two hydroxyl groups, such as ethylene glycol, 1,3-propylene glycol, 1,2-propylene glycol, diethylene glycol, dipropylene glycol, neopentyl glycol, 1,3-butanediol, , 4-butanediol, 1,6-hexanediol, 1,9-nonanediol, 1,10-decane glycol, 2,2,4-trimethyl-1,3-pentanediol, 3-methyl-1,5- Pentanediol, hydroxypivalic acid neopentyl glycol ester, cyclohexanedimethylol, 1,4-cyclohexanediol, spiroglycol, tricyclodecanemethylol, hydrogenated bisphenol A, ethylene oxide-added bisphenol A, propylene oxide De addition bisphenol A, trimethylolethane, trimethylolpropane dimethylol propane, glycerin, 3-methylpentane-1,3,5-triol, pentaerythritol, can be exemplified dipentaerythritol, tripentaerythritol, glucose ethers.
ジイソシアネートとしては、例えば、芳香族、脂肪族又は脂環族の各種ジイソシアネート類を使用することができる。具体例としては、テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート、イソホロンジイソシアネート、2,4-トリレンジイソシアネート、4,4-ジフェニルジイソシアネート、1,5-ナフタレンジイソシアネート、3,3-ジメチル-4,4-ジフェニルジイソシアネート、キシレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、4,4-ジフェニルメタンジイソシアネート、およびこれらの水添物等を挙げることができる。
As the diisocyanate, for example, various aromatic, aliphatic or alicyclic diisocyanates can be used. Specific examples include tetramethylene diisocyanate, hexamethylene diisocyanate, isophorone diisocyanate, 2,4-tolylene diisocyanate, 4,4-diphenyl diisocyanate, 1,5-naphthalene diisocyanate, 3,3-dimethyl-4,4-diphenyl diisocyanate. Xylene diisocyanate, trimethylhexamethylene diisocyanate, 4,4-diphenylmethane diisocyanate, and hydrogenated products thereof.
ポリオール(メタ)アクリレートとしては、例えば、トリメチロールプロパントリアクリレート、ペンタエリスリトールジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、1,6-ヘキサンジオール(メタ)アクリレート等が挙げられる。これらは単独で用いてもよく、組み合わせて用いてもよい。
Examples of the polyol (meth) acrylate include trimethylolpropane triacrylate, pentaerythritol di (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate, 1 , 6-hexanediol (meth) acrylate and the like. These may be used alone or in combination.
水酸基を2個以上含むアルキル基を有する(メタ)アクリルポリマーとしては、例えば、2,3-ジヒドロキシプロピル基を有する(メタ)アクリルポリマーや、2-ヒドロキシエチル基および2,3-ジヒドロキシプロピル基を有する(メタ)アクリルポリマーが挙げられる。
Examples of the (meth) acrylic polymer having an alkyl group containing two or more hydroxyl groups include a (meth) acrylic polymer having a 2,3-dihydroxypropyl group, a 2-hydroxyethyl group, and a 2,3-dihydroxypropyl group. The (meth) acrylic polymer which has is mentioned.
上で例示したような(メタ)アクリル系の光硬化性樹脂を用いることにより、ヘイズ付与層32と基材フィルム31との密着性を向上させることができるとともに、機械的強度がより向上され、表面の傷付きをより効果的に防止できるヘイズ付与層32を得ることができる。
By using a (meth) acrylic photocurable resin as exemplified above, the adhesion between the haze-imparting layer 32 and the base film 31 can be improved, and the mechanical strength is further improved. It is possible to obtain the haze imparting layer 32 that can more effectively prevent the surface from being scratched.
上記光重合開始剤としては、アセトフェノン系、ベンゾフェノン系、ベンゾインエーテル系、アミン系、ホスフィンオキサイド系等、各種のものを用いることができる。アセトフェノン系光重合開始剤に分類される化合物の例は、2,2-ジメトキシ-2-フェニルアセトフェノン(別名ベンジルジメチルケタール)、2,2-ジエトキシアセトフェノン、1-(4-イソプロピルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、1-ヒドロキシシクロヘキシル フェニル ケトン、2-メチル-2-モルホリノ-1-(4-メチルチオフェニル)プロパン-1-オンを含む。ベンゾフェノン系光重合開始剤に分類される化合物の例は、ベンゾフェノン、4-クロロベンゾフェノン、4,4’-ジメトキシベンゾフェノンを含む。ベンゾインエーテル系光重合開始剤に分類される化合物の例は、ベンゾインメチルエーテル、ベンゾインプロピルエーテルを含む。アミン系光重合開始剤に分類される化合物の例は、N,N,N’,N’-テトラメチル-4,4’-ジアミノベンゾフェノン(別名ミヒラーズケトン)を含む。ホスフィンオキサイド系光重合開始剤の例は、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキサイドを含む。ほかに、キサントン系化合物やチオキサント系化合物等も、光重合開始剤として用いることができる。光重合開始剤の代表的な市販品の例を商品名で挙げると、ドイツのBASF社から販売されている「イルガキュア 907」、「イルガキュア 184」、「ルシリン TPO」等がある。
As the photopolymerization initiator, various types such as acetophenone, benzophenone, benzoin ether, amine, and phosphine oxide can be used. Examples of compounds classified as acetophenone photopolymerization initiators include 2,2-dimethoxy-2-phenylacetophenone (also known as benzyldimethyl ketal), 2,2-diethoxyacetophenone, 1- (4-isopropylphenyl) -2 -Hydroxy-2-methylpropan-1-one, 1-hydroxycyclohexyl phenyl ketone, 2-methyl-2-morpholino-1- (4-methylthiophenyl) propan-1-one. Examples of compounds classified as benzophenone-based photopolymerization initiators include benzophenone, 4-chlorobenzophenone, and 4,4'-dimethoxybenzophenone. Examples of compounds classified as benzoin ether photopolymerization initiators include benzoin methyl ether and benzoin propyl ether. Examples of compounds classified as amine photopolymerization initiators include N, N, N ′, N′-tetramethyl-4,4′-diaminobenzophenone (also known as Michler's ketone). Examples of the phosphine oxide photopolymerization initiator include 2,4,6-trimethylbenzoyldiphenylphosphine oxide. In addition, xanthone compounds and thioxant compounds can also be used as photopolymerization initiators. Examples of typical commercially available photopolymerization initiators include “Irgacure 907”, “Irgacure 184”, and “Lucirin TPO” sold by BASF Germany.
硬化性樹脂組成物は、必要に応じて溶剤を含むことができる。溶剤としては、例えば、酢酸エチル、酢酸ブチルのような、硬化性樹脂組成物を構成する各成分を溶解し得る任意の有機溶剤を用いることができる。2種以上の有機溶剤を混合して用いることもできる。
The curable resin composition can contain a solvent as needed. As a solvent, arbitrary organic solvents which can melt | dissolve each component which comprises curable resin composition like ethyl acetate and butyl acetate can be used, for example. Two or more organic solvents can be mixed and used.
また硬化性樹脂組成物は、レベリング剤を含有してもよく、例えば、フッ素系又はシリコーン系のレベリング剤を用いることができる。シリコーン系のレベリング剤には、反応性シリコーン、ポリジメチルシロキサン、ポリエーテル変性ポリジメチルシロキサン、ポリメチルアルキルシロキサン等がある。シリコーン系レベリング剤の中でも好ましいものは、反応性シリコーン及びシロキサン系のレベリング剤である。反応性シリコーンを用いることにより、ヘイズ付与層表面に滑り性が付与され、優れた耐擦傷性を長期間持続させることができる。また、シロキサン系のレベリング剤を用いると、膜成形性を向上させることができる。
Further, the curable resin composition may contain a leveling agent, and for example, a fluorine-based or silicone-based leveling agent can be used. Examples of the silicone leveling agent include reactive silicone, polydimethylsiloxane, polyether-modified polydimethylsiloxane, and polymethylalkylsiloxane. Among the silicone leveling agents, preferred are reactive silicone and siloxane leveling agents. By using reactive silicone, slipperiness is imparted to the surface of the haze imparting layer, and excellent scratch resistance can be maintained for a long period of time. In addition, when a siloxane leveling agent is used, film formability can be improved.
上述のように、ヘイズ付与層32は、光散乱を生じさせる粒子を含有していてもよい。
粒子としては、例えば、シリカ、コロイダルシリカ、アルミナ、アルミナゾル、アルミノシリケート、アルミナ-シリカ複合酸化物、カオリン、タルク、マイカ、炭酸カルシウム、リン酸カルシウム等の無機粒子;架橋ポリアクリル酸粒子、メタクリル酸メチル/スチレン共重合体樹脂粒子、架橋ポリスチレン粒子、架橋ポリメチルメタクリレート粒子、シリコーン樹脂粒子、ポリイミド粒子等の有機粒子が挙げられる。 As described above, thehaze imparting layer 32 may contain particles that cause light scattering.
Examples of the particles include inorganic particles such as silica, colloidal silica, alumina, alumina sol, aluminosilicate, alumina-silica composite oxide, kaolin, talc, mica, calcium carbonate, calcium phosphate; crosslinked polyacrylic acid particles, methyl methacrylate / Examples thereof include organic particles such as styrene copolymer resin particles, crosslinked polystyrene particles, crosslinked polymethyl methacrylate particles, silicone resin particles, and polyimide particles.
粒子としては、例えば、シリカ、コロイダルシリカ、アルミナ、アルミナゾル、アルミノシリケート、アルミナ-シリカ複合酸化物、カオリン、タルク、マイカ、炭酸カルシウム、リン酸カルシウム等の無機粒子;架橋ポリアクリル酸粒子、メタクリル酸メチル/スチレン共重合体樹脂粒子、架橋ポリスチレン粒子、架橋ポリメチルメタクリレート粒子、シリコーン樹脂粒子、ポリイミド粒子等の有機粒子が挙げられる。 As described above, the
Examples of the particles include inorganic particles such as silica, colloidal silica, alumina, alumina sol, aluminosilicate, alumina-silica composite oxide, kaolin, talc, mica, calcium carbonate, calcium phosphate; crosslinked polyacrylic acid particles, methyl methacrylate / Examples thereof include organic particles such as styrene copolymer resin particles, crosslinked polystyrene particles, crosslinked polymethyl methacrylate particles, silicone resin particles, and polyimide particles.
上記粒子としては、平均粒径が0.1~10μmで、硬化後の硬化性樹脂との屈折率差が0.02~0.2であるものを用いることが好ましい。平均粒径及び屈折率差がこの範囲内にある粒子を用いることにより、効果的にヘイズを発現させることができる。この微粒子の平均粒径は、動的光散乱法等によって求めることができる。この場合の平均粒径は、重量平均粒径となる。
As the above-mentioned particles, it is preferable to use particles having an average particle diameter of 0.1 to 10 μm and a refractive index difference with the curable resin after curing of 0.02 to 0.2. By using particles having an average particle diameter and a refractive index difference within these ranges, haze can be effectively expressed. The average particle diameter of the fine particles can be obtained by a dynamic light scattering method or the like. The average particle diameter in this case is a weight average particle diameter.
表面凹凸を有するヘイズ付与層32は、1)上記硬化性樹脂及び上記粒子を含有する硬化性樹脂組成物を基材フィルム31上に塗工して塗膜を形成し、当該粒子に基づく凹凸を設ける方法、2)粒子を含有するか、又は含有しない硬化性樹脂組成物を基材フィルム31上に塗工して塗膜を形成した後、表面に凹凸形状が付与された金型(ロール等)に押し当てて凹凸形状を転写する方法(「エンボス法」とも呼ばれる。)、等によって形成することができる。
The haze imparting layer 32 having surface irregularities 1) forms a coating film by applying the curable resin composition containing the curable resin and the particles on the base film 31, and has irregularities based on the particles. Method of providing, 2) A mold (roll or the like) having a concavo-convex shape on its surface after coating a curable resin composition containing or not containing particles on the base film 31 to form a coating film ) To transfer the concavo-convex shape (also referred to as “embossing method”) or the like.
上記1)の方法においては、硬化性樹脂と粒子とを含む硬化性樹脂組成物を基材フィルム31上に塗工し、紫外線等の光照射又は加熱によって塗膜を硬化させることによりヘイズ付与層32を形成することができる。
In the above method 1), a curable resin composition containing a curable resin and particles is applied onto the substrate film 31, and the coating film is cured by irradiation with light such as ultraviolet rays or heating, thereby providing a haze-imparting layer. 32 can be formed.
一方、上記2)の方法(エンボス法)においては、表面に凹凸形状が形成された金型を用いて、金型の当該形状を基材フィルム31上に形成された塗膜(樹脂層)に転写する。
凹凸形状が転写される塗膜は、上記粒子を含有していてもよいし、含有していなくてもよい。エンボス法では、光硬化性樹脂を含む硬化性樹脂組成物を基材フィルム31上に塗工し、形成された塗膜を金型の凹凸面に押し付けながら硬化させることで、金型の凹凸面が塗膜に転写される。より具体的には、硬化性樹脂組成物を基材フィルム31上に塗工し、形成された塗膜を金型の凹凸面に密着させた状態で、基材フィルム31側から紫外線等の光を照射して塗膜を硬化させ、硬化後の塗膜(ヘイズ付与層32)を有する基材フィルム31を金型から剥離することにより、金型の凹凸形状をヘイズ付与層32に転写する。 On the other hand, in the above method 2) (embossing method), a mold having a concavo-convex shape formed on the surface is used, and the shape of the mold is applied to the coating film (resin layer) formed on thebase film 31. Transcript.
The coating film to which the uneven shape is transferred may or may not contain the particles. In the embossing method, a curable resin composition containing a photocurable resin is applied onto thebase film 31, and the formed coating film is cured while being pressed against the concavo-convex surface of the mold. Is transferred to the coating film. More specifically, in the state where the curable resin composition is applied onto the base film 31 and the formed coating film is in close contact with the uneven surface of the mold, light such as ultraviolet rays is transmitted from the base film 31 side. Is applied to cure the coating film, and the substrate film 31 having the cured coating film (haze imparting layer 32) is peeled off from the mold to transfer the uneven shape of the mold to the haze imparting layer 32.
凹凸形状が転写される塗膜は、上記粒子を含有していてもよいし、含有していなくてもよい。エンボス法では、光硬化性樹脂を含む硬化性樹脂組成物を基材フィルム31上に塗工し、形成された塗膜を金型の凹凸面に押し付けながら硬化させることで、金型の凹凸面が塗膜に転写される。より具体的には、硬化性樹脂組成物を基材フィルム31上に塗工し、形成された塗膜を金型の凹凸面に密着させた状態で、基材フィルム31側から紫外線等の光を照射して塗膜を硬化させ、硬化後の塗膜(ヘイズ付与層32)を有する基材フィルム31を金型から剥離することにより、金型の凹凸形状をヘイズ付与層32に転写する。 On the other hand, in the above method 2) (embossing method), a mold having a concavo-convex shape formed on the surface is used, and the shape of the mold is applied to the coating film (resin layer) formed on the
The coating film to which the uneven shape is transferred may or may not contain the particles. In the embossing method, a curable resin composition containing a photocurable resin is applied onto the
ヘイズ付与層32の厚みは、例えば2~30μmであり、好ましくは3~30μmである。ヘイズ付与層32の厚みが2μm未満であると、十分な硬度が得られず、また、表面が傷付きやすくなる傾向にある。ヘイズ付与層32の厚みが30μmを超えると、割れやすくなったり、ヘイズ付与層32形成時の硬化収縮により介在層30がカールしてその生産性が低下したりする傾向がある。また、十分なヘイズを付与するうえでも上記範囲の厚みは好適である。
The thickness of the haze imparting layer 32 is, for example, 2 to 30 μm, and preferably 3 to 30 μm. When the thickness of the haze imparting layer 32 is less than 2 μm, sufficient hardness cannot be obtained and the surface tends to be easily damaged. When the thickness of the haze-giving layer 32 exceeds 30 μm, it tends to break or the intervening layer 30 curls due to curing shrinkage when forming the haze-giving layer 32 and the productivity tends to decrease. Also, the thickness in the above range is suitable for providing sufficient haze.
介在層30は、ヘイズ付与層32に基づくヘイズを有していることが好ましいが、ヘイズ付与層32に基づくヘイズとともに、基材フィルム31に基づくヘイズを有していてもよい。基材フィルム31に基づくヘイズは、例えば、当該フィルムに上述の粒子を分散させることによって発現させることができる。
The intervening layer 30 preferably has a haze based on the haze imparting layer 32, but may have a haze based on the base film 31 together with the haze based on the haze imparted layer 32. The haze based on the base film 31 can be expressed, for example, by dispersing the above-described particles in the film.
また、介在層30が単層構造である場合の一例として、介在層30は、上述の粒子が分散された基材フィルム31のみからなる(ヘイズ付与層32のみからなるともいえる。)ことができる。上述の粒子が分散された基材フィルム31のみからなる介在層30の厚みは、好ましくは20~200μmであり、より好ましくは20~120μmである。
As an example of the case where the intervening layer 30 has a single-layer structure, the intervening layer 30 can be composed of only the base film 31 in which the above-described particles are dispersed (it can be said that the intervening layer 30 is composed of only the haze imparting layer 32). . The thickness of the intervening layer 30 consisting only of the base film 31 in which the above-mentioned particles are dispersed is preferably 20 to 200 μm, more preferably 20 to 120 μm.
(3)第1粘着剤層及び第2粘着剤層
第1粘着剤層40及び第2粘着剤層50はそれぞれ、(メタ)アクリル系、ゴム系、ウレタン系、エステル系、シリコーン系、ポリビニルエーテル系のような樹脂を主成分とする粘着剤組成物で構成することができる。中でも、透明性、耐候性、耐熱性等に優れる(メタ)アクリル系樹脂をベースポリマーとする粘着剤組成物が好適である。粘着剤組成物は、活性エネルギー線硬化型又は熱硬化型であってもよい。 (3) First pressure-sensitive adhesive layer and second pressure-sensitive adhesive layer The first pressure-sensitive adhesive layer 40 and the second pressure-sensitive adhesive layer 50 are (meth) acrylic, rubber-based, urethane-based, ester-based, silicone-based, and polyvinyl ether, respectively. It can be comprised with the adhesive composition which has resin like a system as a main component. Especially, the adhesive composition which uses (meth) acrylic resin excellent in transparency, weather resistance, heat resistance, etc. as a base polymer is suitable. The pressure-sensitive adhesive composition may be an active energy ray curable type or a thermosetting type.
第1粘着剤層40及び第2粘着剤層50はそれぞれ、(メタ)アクリル系、ゴム系、ウレタン系、エステル系、シリコーン系、ポリビニルエーテル系のような樹脂を主成分とする粘着剤組成物で構成することができる。中でも、透明性、耐候性、耐熱性等に優れる(メタ)アクリル系樹脂をベースポリマーとする粘着剤組成物が好適である。粘着剤組成物は、活性エネルギー線硬化型又は熱硬化型であってもよい。 (3) First pressure-sensitive adhesive layer and second pressure-sensitive adhesive layer The first pressure-
粘着剤組成物に用いられる(メタ)アクリル系樹脂(ベースポリマー)としては、例えば、(メタ)アクリル酸ブチル、(メタ)アクリル酸エチル、(メタ)アクリル酸イソオクチル、(メタ)アクリル酸2-エチルヘキシルのような(メタ)アクリル酸エステルの1種又は2種以上をモノマーとする重合体又は共重合体が好適に用いられる。ベースポリマーには、極性モノマーを共重合させることが好ましい。極性モノマーとしては、例えば、(メタ)アクリル酸、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸ヒドロキシエチル、(メタ)アクリルアミド、N,N-ジメチルアミノエチル(メタ)アクリレート、グリシジル(メタ)アクリレートのような、カルボキシル基、水酸基、アミド基、アミノ基、エポキシ基等を有するモノマーを挙げることができる。
Examples of the (meth) acrylic resin (base polymer) used in the pressure-sensitive adhesive composition include butyl (meth) acrylate, ethyl (meth) acrylate, isooctyl (meth) acrylate, and (meth) acrylic acid 2- A polymer or copolymer having one or more (meth) acrylic acid esters such as ethylhexyl as a monomer is preferably used. The base polymer is preferably copolymerized with a polar monomer. Examples of polar monomers include (meth) acrylic acid, 2-hydroxypropyl (meth) acrylate, hydroxyethyl (meth) acrylate, (meth) acrylamide, N, N-dimethylaminoethyl (meth) acrylate, glycidyl ( Mention may be made of monomers having a carboxyl group, a hydroxyl group, an amide group, an amino group, an epoxy group and the like, such as (meth) acrylate.
粘着剤組成物は、上記ベースポリマーのみを含むものであってもよいが、通常は架橋剤をさらに含有する。架橋剤としては、2価以上の金属イオンであって、カルボキシル基との間でカルボン酸金属塩を形成するもの;ポリアミン化合物であって、カルボキシル基との間でアミド結合を形成するもの;ポリエポキシ化合物やポリオールであって、カルボキシル基との間でエステル結合を形成するもの;ポリイソシアネート化合物であって、カルボキシル基との間でアミド結合を形成するものが例示される。中でも、ポリイソシアネート化合物が好ましい。
The pressure-sensitive adhesive composition may contain only the above base polymer, but usually further contains a crosslinking agent. As a crosslinking agent, a metal ion having a valence of 2 or more, which forms a carboxylic acid metal salt with a carboxyl group; a polyamine compound, which forms an amide bond with a carboxyl group; Examples thereof include epoxy compounds and polyols that form ester bonds with carboxyl groups; polyisocyanate compounds that form amide bonds with carboxyl groups. Of these, polyisocyanate compounds are preferred.
活性エネルギー線硬化型粘着剤組成物とは、紫外線や電子線のような活性エネルギー線の照射を受けて硬化する性質を有しており、活性エネルギー線照射前においても粘着性を有してフィルム等の被着体に密着させることができ、活性エネルギー線の照射によって硬化して密着力の調整ができる性質を有する粘着剤組成物である。活性エネルギー線硬化型粘着剤組成物は、紫外線硬化型であることが好ましい。活性エネルギー線硬化型粘着剤組成物は、ベースポリマー、架橋剤に加えて、活性エネルギー線重合性化合物をさらに含有する。さらに必要に応じて、光重合開始剤や光増感剤等を含有させることもできる。
The active energy ray-curable pressure-sensitive adhesive composition has a property of being cured by irradiation with active energy rays such as ultraviolet rays and electron beams, and has an adhesive property even before irradiation with active energy rays. It is a pressure-sensitive adhesive composition having such a property that it can be adhered to an adherend such as the like and can be cured by irradiation with active energy rays to adjust the adhesion. The active energy ray-curable pressure-sensitive adhesive composition is preferably ultraviolet curable. The active energy ray-curable pressure-sensitive adhesive composition further contains an active energy ray-polymerizable compound in addition to the base polymer and the crosslinking agent. Furthermore, if necessary, a photopolymerization initiator, a photosensitizer, and the like can be contained.
光学積層体100に上記所定の範囲のヘイズを付与するために、第1粘着剤層40及び第2粘着剤層50の少なくとも一方は、ゼロでないヘイズを有していてもよい。この場合における第1粘着剤層40及び/又は第2粘着剤層50が有するヘイズは、例えば0.1~5%である。第1粘着剤層40と第2粘着剤層50とは、同じヘイズ値を有していてもよいし、互いに異なるヘイズ値を有していてもよい。例えば、粘着剤組成物に上述の粒子を含有させることによって粘着剤層にヘイズを付与することができる。
In order to impart the above-mentioned predetermined range of haze to the optical laminate 100, at least one of the first pressure-sensitive adhesive layer 40 and the second pressure-sensitive adhesive layer 50 may have a non-zero haze. In this case, the haze of the first pressure-sensitive adhesive layer 40 and / or the second pressure-sensitive adhesive layer 50 is, for example, 0.1 to 5%. The first pressure-sensitive adhesive layer 40 and the second pressure-sensitive adhesive layer 50 may have the same haze value or may have different haze values. For example, haze can be imparted to the pressure-sensitive adhesive layer by incorporating the above-described particles into the pressure-sensitive adhesive composition.
第1粘着剤層40及び第2粘着剤層50は、他の添加剤を含んでいてもよい。他の添加剤としては、例えば、ビーズ(樹脂ビーズ、ガラスビーズ等)、ガラス繊維、ベースポリマー以外の樹脂、粘着性付与剤、充填剤(金属粉やその他の無機粉末等)、酸化防止剤、紫外線吸収剤、染料、顔料、着色剤、消泡剤、腐食防止剤、光重合開始剤等を挙げることができる。
The first pressure-sensitive adhesive layer 40 and the second pressure-sensitive adhesive layer 50 may contain other additives. Examples of other additives include beads (resin beads, glass beads, etc.), glass fibers, resins other than the base polymer, tackifiers, fillers (metal powder and other inorganic powders, etc.), antioxidants, Examples include ultraviolet absorbers, dyes, pigments, colorants, antifoaming agents, corrosion inhibitors, and photopolymerization initiators.
第1粘着剤層40及び第2粘着剤層50の厚みは、それぞれ1~40μmであることができるが、光学積層体100及び表示装置の薄型化の観点、及び良好な加工性を保ちつつ寸法変化を抑制する観点から、3~25μm(例えば3~20μm、さらには3~15μm)とすることが好ましい。
The thicknesses of the first pressure-sensitive adhesive layer 40 and the second pressure-sensitive adhesive layer 50 can be 1 to 40 μm, respectively. However, the thickness of the optical laminate 100 and the display device can be reduced, and the dimensions can be maintained while maintaining good processability. From the viewpoint of suppressing the change, the thickness is preferably 3 to 25 μm (for example, 3 to 20 μm, more preferably 3 to 15 μm).
第1粘着剤層40と第2粘着剤層50とは、同じ構成を有していてもよいし、厚み、材質、光拡散性等の光学特性等において異なっていてもよい。
The first pressure-sensitive adhesive layer 40 and the second pressure-sensitive adhesive layer 50 may have the same configuration, or may differ in thickness, material, optical characteristics such as light diffusibility, and the like.
第1粘着剤層40及び第2粘着剤層50は、上記粘着剤組成物の有機溶剤希釈液を基材上に塗工し、乾燥させることにより形成することができる。基材は、第1反射型偏光子層10、第2反射型偏光子層20、介在層30、セパレートフィルム(剥離フィルム)等であることができる。活性エネルギー線硬化型粘着剤組成物を用いた場合は、形成された粘着剤層に、活性エネルギー線を照射することにより所望の硬化度を有する粘着剤層とすることができる。
The first pressure-sensitive adhesive layer 40 and the second pressure-sensitive adhesive layer 50 can be formed by applying an organic solvent diluted solution of the pressure-sensitive adhesive composition on a substrate and drying it. The base material can be the first reflective polarizer layer 10, the second reflective polarizer layer 20, the intervening layer 30, a separate film (release film), or the like. When the active energy ray-curable pressure-sensitive adhesive composition is used, a pressure-sensitive adhesive layer having a desired degree of curing can be obtained by irradiating the formed pressure-sensitive adhesive layer with active energy rays.
セパレートフィルムは、粘着剤層が積層される側の表面に対して離型処理を施したフィルムを用いることができる。離型処理の例は、シリコーン処理、長鎖アルキル処理、フッ素処理等である。フィルムの材質は、例えば、ポリエチレン等のポリエチレン系樹脂、ポリプロピレン等のポリプロピレン系樹脂、ポリエチレンテレフタレート等のポリエステル系樹脂等である。
As the separate film, a film in which a release treatment is applied to the surface on which the pressure-sensitive adhesive layer is laminated can be used. Examples of the mold release treatment are silicone treatment, long chain alkyl treatment, fluorine treatment and the like. The material of the film is, for example, a polyethylene resin such as polyethylene, a polypropylene resin such as polypropylene, or a polyester resin such as polyethylene terephthalate.
(4)光学積層体の変形例
図3を参照して、光学積層体は、第1反射型偏光子層10及び第2反射型偏光子層20の少なくとも一方の外面に積層される粘着剤層である第3粘着剤層60をさらに含むことができる。第3粘着剤層60は、光学積層体を他の部材に貼合するために用いることができる。他の部材としては、他の光学フィルム、表示装置(画像表示装置)に含まれるいずれかの光学部材、例えば、表示装置(画像表示装置)の最表面に配置されている光学部材を挙げることができる。第3粘着剤層60の具体的構成については、第1粘着剤層40及び第2粘着剤層50についての上記(3)の記述が引用される。 (4) Modification of Optical Laminate Referring to FIG. 3, the optical laminate is a pressure-sensitive adhesive layer that is laminated on at least one outer surface of the firstreflective polarizer layer 10 and the second reflective polarizer layer 20. The third pressure-sensitive adhesive layer 60 can be further included. The 3rd adhesive layer 60 can be used in order to bond an optical laminated body to another member. Examples of the other member include other optical films and any optical member included in the display device (image display device), for example, an optical member disposed on the outermost surface of the display device (image display device). it can. Regarding the specific configuration of the third pressure-sensitive adhesive layer 60, the description of the above (3) about the first pressure-sensitive adhesive layer 40 and the second pressure-sensitive adhesive layer 50 is cited.
図3を参照して、光学積層体は、第1反射型偏光子層10及び第2反射型偏光子層20の少なくとも一方の外面に積層される粘着剤層である第3粘着剤層60をさらに含むことができる。第3粘着剤層60は、光学積層体を他の部材に貼合するために用いることができる。他の部材としては、他の光学フィルム、表示装置(画像表示装置)に含まれるいずれかの光学部材、例えば、表示装置(画像表示装置)の最表面に配置されている光学部材を挙げることができる。第3粘着剤層60の具体的構成については、第1粘着剤層40及び第2粘着剤層50についての上記(3)の記述が引用される。 (4) Modification of Optical Laminate Referring to FIG. 3, the optical laminate is a pressure-sensitive adhesive layer that is laminated on at least one outer surface of the first
図3に示される光学積層体300において第3粘着剤層60は、第1反射型偏光子層10の外面に積層されているが、これに限定されるものではなく、第2反射型偏光子層20の外面に積層されていてもよいし、第1反射型偏光子層10の外面及び第2反射型偏光子層20の外面の双方に積層されていてもよい。
In the optical laminate 300 shown in FIG. 3, the third pressure-sensitive adhesive layer 60 is laminated on the outer surface of the first reflective polarizer layer 10. However, the present invention is not limited to this, and the second reflective polarizer is used. It may be laminated on the outer surface of the layer 20, or may be laminated on both the outer surface of the first reflective polarizer layer 10 and the outer surface of the second reflective polarizer layer 20.
粘着剤層を介して第1反射型偏光子層10と第2反射型偏光子層20とを貼合した3層構造の光学積層体も、本発明に係る光学積層体となり得る。この場合、当該粘着剤層が介在層(ヘイズ付与層)に相当する。この実施形態において当該粘着剤層は、光学積層体に上記所定の範囲のヘイズを付与するために、上述の粒子を含有させた光拡散性の粘着剤層であることが好ましい。この場合、粒子の含有量の調整によって光学積層体のヘイズを調整することができる。
An optical laminate having a three-layer structure in which the first reflective polarizer layer 10 and the second reflective polarizer layer 20 are bonded via an adhesive layer can also be an optical laminate according to the present invention. In this case, the pressure-sensitive adhesive layer corresponds to an intervening layer (haze imparting layer). In this embodiment, the pressure-sensitive adhesive layer is preferably a light-diffusible pressure-sensitive adhesive layer containing the above-described particles in order to give the optical laminate a haze in the predetermined range. In this case, the haze of the optical layered body can be adjusted by adjusting the content of the particles.
粘着剤層の代わりに接着剤層を用いてもよい。接着剤層を形成する接着剤としては、後述する(5)に記載の接着剤を同様に用いることができる。接着剤層を用いる場合においても同様に、当該接着剤層は、光学積層体に上記所定の範囲のヘイズを付与するために、上述の粒子を含有させた光拡散性の接着剤層であることが好ましい。
¡An adhesive layer may be used instead of the adhesive layer. As the adhesive for forming the adhesive layer, the adhesive described in (5) described later can be similarly used. Similarly, in the case of using an adhesive layer, the adhesive layer is a light diffusing adhesive layer containing the above-described particles in order to give the optical laminate a haze in the predetermined range. Is preferred.
図4を参照して、光学積層体は、第1反射型偏光子層10の外側又は第2反射型偏光子層20の外側に配置される基材層70をさらに含むことができる。基材層70は、光学積層体を支持する部材である。図4に示される光学積層体400において基材層70は、第1反射型偏光子層10側に積層されているが、これに限定されるものではなく、第2反射型偏光子層20側に積層されていてもよい。
Referring to FIG. 4, the optical laminate may further include a base material layer 70 disposed on the outer side of the first reflective polarizer layer 10 or the outer side of the second reflective polarizer layer 20. The base material layer 70 is a member that supports the optical laminate. In the optical laminate 400 shown in FIG. 4, the base material layer 70 is laminated on the first reflective polarizer layer 10 side, but is not limited to this, and the second reflective polarizer layer 20 side is not limited thereto. It may be laminated.
基材層70としては、特に制限されず、例えば、ガラス板や熱可塑性樹脂フィルム等を挙げることができる。基材層70は、典型的には、表示装置の最表面に配置される部材であり、例えば、表示装置の視認側に配置される吸収型偏光板;視認側の吸収型偏光板の視認側に配置され、表示装置の最表面に配置される前面板;タッチ入力式表示装置の最表面に配置されるタッチパネル素子等が挙げられる。
The substrate layer 70 is not particularly limited, and examples thereof include a glass plate and a thermoplastic resin film. The base material layer 70 is typically a member disposed on the outermost surface of the display device, for example, an absorption-type polarizing plate disposed on the viewing side of the display device; a viewing side of the viewing-side absorption polarizing plate And a front plate disposed on the outermost surface of the display device; a touch panel element disposed on the outermost surface of the touch input type display device, and the like.
吸収型偏光板は、延伸されたポリビニルアルコール系樹脂フィルムにヨウ素、二色性有機染料等の二色性色素が吸着配向している偏光子を少なくとも含むものであることができる。吸収型偏光板は、偏光子の片面又は両面に、熱可塑性樹脂等からなる保護フィルムが接着されたものであってもよい。偏光子の厚みは、例えば2~30μmであり、好ましくは2~10μmである。保護フィルムの厚みは、例えば2~150μmであり、好ましくは5~100μmである。保護フィルムは、位相差フィルムであってもよい。
The absorption polarizing plate may include at least a polarizer in which a dichroic dye such as iodine or a dichroic organic dye is adsorbed and oriented on a stretched polyvinyl alcohol-based resin film. The absorption polarizing plate may be one in which a protective film made of a thermoplastic resin or the like is bonded to one side or both sides of a polarizer. The thickness of the polarizer is, for example, 2 to 30 μm, preferably 2 to 10 μm. The thickness of the protective film is, for example, 2 to 150 μm, preferably 5 to 100 μm. The protective film may be a retardation film.
(5)光学積層体の製造方法
図1に示される光学積層体100は、介在層30の一方の面に第1粘着剤層40を介して第1反射型偏光子層10を積層し、介在層30の他方の面に第2粘着剤層50を介して第2反射型偏光子層20を積層することにより製造することができる。これらの層の積層に先立って、第1反射型偏光子層10における第1粘着剤層40との貼合面、介在層30における第1粘着剤層40との貼合面、介在層30における第2粘着剤層50との貼合面、及び第2反射型偏光子層20における第2粘着剤層50との貼合面からなる群より選択される少なくとも1つの貼合面、好ましくは2以上の貼合面、より好ましくはすべての貼合面に表面活性化処理を施してもよい。これらの貼合面に加えて、又はこれらの貼合面に代わって、第1粘着剤層40における第1反射型偏光子層10との貼合面、第1粘着剤層40における介在層30との貼合面、第2粘着剤層50における第2反射型偏光子層20との貼合面、及び第2粘着剤層50における介在層30との貼合面からなる群より選択される少なくとも1つの貼合面、好ましくは2以上の貼合面、より好ましくはすべての貼合面に表面活性化処理を施してもよい。表面活性化処理を施すことは、層剥離が生じにくい、湿熱耐久性に優れた光学積層体を得るうえで有利である。 (5) Manufacturing method of optical laminated body The opticallaminated body 100 shown by FIG. 1 laminates | stacks the 1st reflection type polarizer layer 10 on the one surface of the interposition layer 30 via the 1st adhesive layer 40, and interposes. It can be produced by laminating the second reflective polarizer layer 20 on the other surface of the layer 30 via the second pressure-sensitive adhesive layer 50. Prior to the lamination of these layers, the bonding surface of the first reflective polarizer layer 10 with the first pressure-sensitive adhesive layer 40, the bonding surface of the intervening layer 30 with the first pressure-sensitive adhesive layer 40, and the intervening layer 30. At least one bonding surface selected from the group consisting of a bonding surface with the second pressure-sensitive adhesive layer 50 and a bonding surface with the second pressure-sensitive adhesive layer 50 in the second reflective polarizer layer 20, preferably 2. You may perform a surface activation process to the above bonding surface, More preferably, all the bonding surfaces. In addition to or instead of these bonding surfaces, the bonding surface with the first reflective polarizer layer 10 in the first pressure-sensitive adhesive layer 40 and the intervening layer 30 in the first pressure-sensitive adhesive layer 40. Selected from the group consisting of: a bonding surface with the second reflective polarizer layer 20 in the second pressure-sensitive adhesive layer 50; and a bonding surface with the intervening layer 30 in the second pressure-sensitive adhesive layer 50. The surface activation treatment may be performed on at least one bonding surface, preferably two or more bonding surfaces, more preferably all bonding surfaces. The surface activation treatment is advantageous for obtaining an optical layered body that is less susceptible to delamination and has excellent wet heat durability.
図1に示される光学積層体100は、介在層30の一方の面に第1粘着剤層40を介して第1反射型偏光子層10を積層し、介在層30の他方の面に第2粘着剤層50を介して第2反射型偏光子層20を積層することにより製造することができる。これらの層の積層に先立って、第1反射型偏光子層10における第1粘着剤層40との貼合面、介在層30における第1粘着剤層40との貼合面、介在層30における第2粘着剤層50との貼合面、及び第2反射型偏光子層20における第2粘着剤層50との貼合面からなる群より選択される少なくとも1つの貼合面、好ましくは2以上の貼合面、より好ましくはすべての貼合面に表面活性化処理を施してもよい。これらの貼合面に加えて、又はこれらの貼合面に代わって、第1粘着剤層40における第1反射型偏光子層10との貼合面、第1粘着剤層40における介在層30との貼合面、第2粘着剤層50における第2反射型偏光子層20との貼合面、及び第2粘着剤層50における介在層30との貼合面からなる群より選択される少なくとも1つの貼合面、好ましくは2以上の貼合面、より好ましくはすべての貼合面に表面活性化処理を施してもよい。表面活性化処理を施すことは、層剥離が生じにくい、湿熱耐久性に優れた光学積層体を得るうえで有利である。 (5) Manufacturing method of optical laminated body The optical
表面活性化処理としては、コロナ処理、プラズマ処理、放電処理(グロー放電処理等)、火炎処理、オゾン処理、UVオゾン処理、電離活性線処理(紫外線処理、電子線処理等)のような乾式処理;水やアセトン等の溶媒を用いた超音波処理、アルカリ処理、アンカーコート処理のような湿式処理を挙げることができる。これらの処理は、単独で行ってもよいし、2つ以上を組み合わせてもよい。中でも、フィルムロールから巻き出したフィルムを連続的に処理するうえでは、コロナ処理、プラズマ処理が好ましい。
As the surface activation treatment, dry treatment such as corona treatment, plasma treatment, discharge treatment (glow discharge treatment, etc.), flame treatment, ozone treatment, UV ozone treatment, ionizing active ray treatment (ultraviolet treatment, electron beam treatment, etc.) And wet treatment such as ultrasonic treatment using a solvent such as water and acetone, alkali treatment, and anchor coat treatment. These processes may be performed alone or in combination of two or more. Among these, corona treatment and plasma treatment are preferable for continuously treating the film unwound from the film roll.
第1反射型偏光子層10及び第2反射型偏光子層20と介在層30との貼合は、接着剤を用いて行ってもよい。この場合、第1反射型偏光子層10と介在層30との間、及び第2反射型偏光子層20と介在層30との間に配置されるのは接着剤層である。第1反射型偏光子層10及び第2反射型偏光子層20と介在層30との貼合は、一方を接着剤層を介して行い、もう一方を粘着剤層を介して行ってもよい。
The first reflective polarizer layer 10 and the second reflective polarizer layer 20 may be bonded to the intervening layer 30 using an adhesive. In this case, an adhesive layer is disposed between the first reflective polarizer layer 10 and the intervening layer 30 and between the second reflective polarizer layer 20 and the intervening layer 30. The first reflective polarizer layer 10 and the second reflective polarizer layer 20 may be bonded to the intervening layer 30 through one adhesive layer and the other through an adhesive layer. .
接着剤層を形成する接着剤としては、紫外線、可視光、電子線、X線のような活性エネルギー線の照射によって硬化する硬化性化合物を含有する活性エネルギー線硬化性接着剤(好ましくは紫外線硬化性接着剤)、ポリビニルアルコール系樹脂のような接着剤成分を水に溶解又は分散させた水系接着剤を挙げることができる。
The adhesive forming the adhesive layer includes an active energy ray-curable adhesive containing a curable compound that is cured by irradiation with active energy rays such as ultraviolet rays, visible light, electron beams, and X-rays (preferably ultraviolet curing) Adhesive) and an aqueous adhesive in which an adhesive component such as a polyvinyl alcohol resin is dissolved or dispersed in water.
上記硬化性化合物は、カチオン重合性の硬化性化合物やラジカル重合性の硬化性化合物であることができる。カチオン重合性の硬化性化合物としては、例えば、エポキシ系化合物(分子内に1個又は2個以上のエポキシ基を有する化合物)や、オキセタン系化合物(分子内に1個又は2個以上のオキセタン環を有する化合物)、又はこれらの組み合わせを挙げることができる。ラジカル重合性の硬化性化合物としては、例えば、(メタ)アクリル系化合物(分子内に1個又は2個以上の(メタ)アクリロイルオキシ基を有する化合物)や、ラジカル重合性の二重結合を有するその他のビニル系化合物、又はこれらの組み合わせを挙げることができる。カチオン重合性の硬化性化合物とラジカル重合性の硬化性化合物とを併用してもよい。活性エネルギー線硬化性接着剤は通常、上記硬化性化合物の硬化反応を開始させるためのカチオン重合開始剤及び/又はラジカル重合開始剤をさらに含む。
The curable compound can be a cationic polymerizable curable compound or a radical polymerizable curable compound. Examples of the cationic polymerizable curable compound include an epoxy compound (a compound having one or more epoxy groups in the molecule) and an oxetane compound (one or two or more oxetane rings in the molecule). Or a combination thereof. Examples of the radical polymerizable curable compound include (meth) acrylic compounds (compounds having one or more (meth) acryloyloxy groups in the molecule) and radical polymerizable double bonds. Other vinyl compounds or combinations thereof can be mentioned. A cationic polymerizable curable compound and a radical polymerizable curable compound may be used in combination. The active energy ray-curable adhesive usually further includes a cationic polymerization initiator and / or a radical polymerization initiator for initiating a curing reaction of the curable compound.
上記(4)に記載の変形例に係る光学積層体も、以上に示した方法と同様にして製造することができる。
The optical layered body according to the modified example described in (4) above can also be manufactured in the same manner as described above.
(6)光学積層体の特性等
本発明に係る光学積層体によれば、表示装置の視認側に配置された場合であっても虹ムラの発生を効果的に抑制でき、また、良好な視認性を与えることができる。上述のように、ここでいう視認性とは、表示装置の電源をONにして画面を白表示(ディスプレイモード)とし、この表示装置を画面に画像を表示するデバイスとして使用するときの当該画像の視認性と、電源をOFFにして画面を黒表示(ミラーモード)とし、表示装置をミラーとして使用するときの視認性とを含む。 (6) Characteristics of optical laminated body, etc. According to the optical laminated body according to the present invention, the occurrence of rainbow unevenness can be effectively suppressed even when the optical laminated body is arranged on the viewing side of the display device, and good visual recognition is achieved. Can give sex. As described above, the visibility here means that the display device is turned on and the screen is displayed in white (display mode), and the image is displayed when the display device is used as a device for displaying an image on the screen. Visibility and visibility when the power is turned off and the screen is displayed in black (mirror mode) and the display device is used as a mirror are included.
本発明に係る光学積層体によれば、表示装置の視認側に配置された場合であっても虹ムラの発生を効果的に抑制でき、また、良好な視認性を与えることができる。上述のように、ここでいう視認性とは、表示装置の電源をONにして画面を白表示(ディスプレイモード)とし、この表示装置を画面に画像を表示するデバイスとして使用するときの当該画像の視認性と、電源をOFFにして画面を黒表示(ミラーモード)とし、表示装置をミラーとして使用するときの視認性とを含む。 (6) Characteristics of optical laminated body, etc. According to the optical laminated body according to the present invention, the occurrence of rainbow unevenness can be effectively suppressed even when the optical laminated body is arranged on the viewing side of the display device, and good visual recognition is achieved. Can give sex. As described above, the visibility here means that the display device is turned on and the screen is displayed in white (display mode), and the image is displayed when the display device is used as a device for displaying an image on the screen. Visibility and visibility when the power is turned off and the screen is displayed in black (mirror mode) and the display device is used as a mirror are included.
上記白表示(ディスプレイモード)に視認性とは、主に、画面に映し出された画像(透過像)の鮮明性をいう。上記黒表示(ミラーモード)に視認性とは、主に、画面に映し込まれた反射像及びその色相の鮮明さをいう。
The visibility in the white display (display mode) mainly means the sharpness of the image (transmission image) projected on the screen. The visibility in the black display (mirror mode) mainly means the sharpness of the reflected image reflected on the screen and its hue.
黒表示(ミラーモード)での視認性を高めるために、光学積層体の表面(表示装置に適用されたときに外側に向けられる表面)は、良好な反射特性を有することが好ましい。当該反射特性は、反射輝度率として評価することができる。反射輝度率とは、正反射光込み方式で測定される視感反射率RSCIのことである。本発明に係る光学積層体によれば、白表示(ディスプレイモード)での高い視認性と、高い反射輝度率(したがって、黒表示(ミラーモード)での高い視認性)とを両立させることが可能である。
In order to improve the visibility in black display (mirror mode), the surface of the optical laminate (the surface directed outward when applied to a display device) preferably has good reflection characteristics. The reflection characteristic can be evaluated as a reflection luminance rate. And the reflection luminance factor is that of the measured luminous reflectance R SCI in the regular reflection inclusive manner. According to the optical layered body of the present invention, it is possible to achieve both high visibility in white display (display mode) and high reflection luminance rate (thus high visibility in black display (mirror mode)). It is.
正反射光込み方式で測定される視感反射率RSCIの測定方法について、図5を参照して説明する。図5は、視感反射率RSCIを測定するための光学系を模式的に示す断面図である。図5に示される光学系は、拡散照明方式の光学系である。拡散照明方式は、積分球等を使って、測定サンプルをあらゆる方向から均等に照明する方法であり、図5では、積分球80(光をほぼ完全に拡散反射する硫酸バリウム等の白い塗料を内面に塗布した球)が設置されている。光源81から出た光は、積分球80の内部で拡散され、測定サンプル82の表面で反射される。図5に示される光学系は、受光部に対して正反射方向の光も含めたあらゆる方向の光が測定サンプル表面にあたるように構成されているため、正反射光込みモード(SCI)モードと呼ばれる。
Measurement method of the measured luminous reflectance R SCI for a positive reflection light inclusive method will be described with reference to FIG. FIG. 5 is a cross-sectional view schematically showing an optical system for measuring the luminous reflectance RSCI . The optical system shown in FIG. 5 is a diffuse illumination optical system. The diffuse illumination method is a method of illuminating a measurement sample uniformly from all directions using an integrating sphere. In FIG. 5, an integrating sphere 80 (white paint such as barium sulfate that diffuses and reflects light almost completely on the inner surface is used. Spheres coated on) are installed. The light emitted from the light source 81 is diffused inside the integrating sphere 80 and reflected by the surface of the measurement sample 82. Since the optical system shown in FIG. 5 is configured so that light in all directions including light in the specular reflection direction with respect to the light receiving unit is incident on the surface of the measurement sample, it is referred to as a specular reflection light entering mode (SCI) mode. .
なお、これに対して、受光部に対して正反射方向にある積分球80の位置にライトトラップ(ここに入った光は吸収されて積分球80中には戻らない)を設置するなどして、受光部に対して正反射方向の光が、測定サンプル表面にはあたらないように構成されている光学系は、正反射光除去モード(SCEモード)と呼ばれる。
On the other hand, a light trap (the light entering here is absorbed and does not return into the integrating sphere 80) is installed at the position of the integrating sphere 80 in the regular reflection direction with respect to the light receiving unit. The optical system configured so that light in the regular reflection direction does not strike the surface of the measurement sample with respect to the light receiving unit is called a regular reflection light removal mode (SCE mode).
図5に示される光学系を用いて測定サンプルの反射スペクトルを取得し、この反射スペクトルからJIS Z8722:2009「色の測定方法-反射及び透過物体色」に規定される方法に従って計算される視感反射率が、正反射光込み方式で測定される視感反射率RSCIである。
The optical spectrum shown in FIG. 5 is used to obtain the reflection spectrum of the measurement sample, and the visual sensation calculated from this reflection spectrum according to the method defined in JIS Z8722: 2009 “Color Measurement Method—Reflection and Transmission Object Color” reflectance, a luminous reflectance R SCI measured by specular light included schemes.
光学積層体の反射輝度率は、55%以上であることが好ましく、60%以上であってもよい。また、反射輝度率は、85%以下であることが好ましく、80%以下であってもよい。上記範囲の反射輝度率を有することは、白表示(ディスプレイモード)及び黒表示(ミラーモード)における視認性を両立させるうえで有利である。
The reflection luminance rate of the optical laminate is preferably 55% or more, and may be 60% or more. The reflection luminance rate is preferably 85% or less, and may be 80% or less. Having a reflection luminance rate in the above range is advantageous in achieving both visibility in white display (display mode) and black display (mirror mode).
<表示装置>
上記光学積層体は、表示装置に適用することができる。表示装置(画像表示装置)は、表示素子(画像表示素子)と、その視認側に配置される上記光学積層体とを含むことが好ましい。本発明に係る光学積層体によれば、表示装置の視認側に配置された場合であっても虹ムラの発生を効果的に抑制でき、また、良好な視認性を与えることができる。 <Display device>
The optical layered body can be applied to a display device. The display device (image display device) preferably includes a display element (image display element) and the optical layered body disposed on the viewing side. According to the optical layered body of the present invention, it is possible to effectively suppress the occurrence of rainbow unevenness even when it is disposed on the viewing side of the display device, and it is possible to provide good visibility.
上記光学積層体は、表示装置に適用することができる。表示装置(画像表示装置)は、表示素子(画像表示素子)と、その視認側に配置される上記光学積層体とを含むことが好ましい。本発明に係る光学積層体によれば、表示装置の視認側に配置された場合であっても虹ムラの発生を効果的に抑制でき、また、良好な視認性を与えることができる。 <Display device>
The optical layered body can be applied to a display device. The display device (image display device) preferably includes a display element (image display element) and the optical layered body disposed on the viewing side. According to the optical layered body of the present invention, it is possible to effectively suppress the occurrence of rainbow unevenness even when it is disposed on the viewing side of the display device, and it is possible to provide good visibility.
表示素子は、特に制限されず、液晶表示装置における液晶セル、有機EL装置における有機EL素子、タッチ入力式表示装置におけるタッチパネル素子等が挙げられる。光学積層体の表示装置への取り付けは、粘着剤層(例えば、上記第3粘着剤層60)を介して行うことができる。
The display element is not particularly limited, and examples thereof include a liquid crystal cell in a liquid crystal display device, an organic EL element in an organic EL device, and a touch panel element in a touch input display device. Attachment of the optical laminate to the display device can be performed via an adhesive layer (for example, the third adhesive layer 60).
表示装置が表示素子の視認側に吸収型偏光板を有しており、その視認側に光学積層体を配置する場合、光学積層体に含まれる第1反射型偏光子層10及び第2反射型偏光子層20のうち上記吸収型偏光板により近い位置に配置される反射型偏光子層の反射軸と、上記吸収型偏光板の吸収軸とがなす角度は、略0°であることが好ましい。「略」とは、±10°、好ましくは±5°の範囲内のずれを許容することを意味する。
When the display device has an absorptive polarizing plate on the viewing side of the display element and the optical laminate is disposed on the viewing side, the first reflective polarizer layer 10 and the second reflective type included in the optical laminate. The angle formed by the reflection axis of the reflective polarizer layer disposed closer to the absorption polarizing plate in the polarizer layer 20 and the absorption axis of the absorption polarizing plate is preferably about 0 °. . “Abbreviated” means to allow a deviation within a range of ± 10 °, preferably ± 5 °.
以下、実施例及び比較例を示して本発明をさらに具体的に説明するが、本発明はこれらの例によって限定されるものではない。
Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples, but the present invention is not limited to these examples.
<実施例1>
(1)紫外線硬化性樹脂組成物の調製
ペンタエリスリトールトリアクリレート及び多官能ウレタン化アクリレート(ヘキサメチレンジイソシアネートとペンタエリスリトールトリアクリレートとの反応生成物)を含有し、前者/後者の重量比が60/40であり、両者の合計濃度が60重量%となるように酢酸エチルに溶解されており、レベリング剤がさらに配合されている紫外線硬化性樹脂組成物1を用意した。紫外線硬化性樹脂組成物1に含有される上記ペンタエリスリトールトリアクリレート及び多官能ウレタン化アクリレートをまとめて、「硬化性成分」という。紫外線硬化性樹脂組成物1の硬化性成分100重量部に対して、平均粒径が2.7μmであるメタクリル酸メチル/スチレン共重合体樹脂粒子を1重量部加えて分散させ、さらに硬化性成分と樹脂粒子との合計濃度が30重量%となるように酢酸エチルで希釈して、紫外線硬化性樹脂組成物2を得た。紫外線硬化性樹脂組成物2に、硬化性アクリレート100重量部に対して光重合開始剤(チバ社製の商品名「イルガキュアー(登録商標)184」)を1重量部加えて、紫外線硬化性樹脂組成物3を得た。 <Example 1>
(1) Preparation of UV-curable resin composition Contains pentaerythritol triacrylate and polyfunctional urethanized acrylate (reaction product of hexamethylene diisocyanate and pentaerythritol triacrylate), and the weight ratio of the former / the latter is 60/40 An ultravioletcurable resin composition 1 was prepared, which was dissolved in ethyl acetate so that the total concentration of both was 60% by weight, and a leveling agent was further blended. The pentaerythritol triacrylate and polyfunctional urethanized acrylate contained in the ultraviolet curable resin composition 1 are collectively referred to as a “curable component”. 1 part by weight of methyl methacrylate / styrene copolymer resin particles having an average particle diameter of 2.7 μm is added to 100 parts by weight of the curable component of the ultraviolet curable resin composition 1 and dispersed therein. The resin particles were diluted with ethyl acetate so that the total concentration of the resin particles was 30% by weight to obtain an ultraviolet curable resin composition 2. 1 part by weight of a photopolymerization initiator (trade name “Irgacure (registered trademark) 184” manufactured by Ciba) is added to 100 parts by weight of the curable acrylate to the ultraviolet curable resin composition 2 to obtain an ultraviolet curable resin. Composition 3 was obtained.
(1)紫外線硬化性樹脂組成物の調製
ペンタエリスリトールトリアクリレート及び多官能ウレタン化アクリレート(ヘキサメチレンジイソシアネートとペンタエリスリトールトリアクリレートとの反応生成物)を含有し、前者/後者の重量比が60/40であり、両者の合計濃度が60重量%となるように酢酸エチルに溶解されており、レベリング剤がさらに配合されている紫外線硬化性樹脂組成物1を用意した。紫外線硬化性樹脂組成物1に含有される上記ペンタエリスリトールトリアクリレート及び多官能ウレタン化アクリレートをまとめて、「硬化性成分」という。紫外線硬化性樹脂組成物1の硬化性成分100重量部に対して、平均粒径が2.7μmであるメタクリル酸メチル/スチレン共重合体樹脂粒子を1重量部加えて分散させ、さらに硬化性成分と樹脂粒子との合計濃度が30重量%となるように酢酸エチルで希釈して、紫外線硬化性樹脂組成物2を得た。紫外線硬化性樹脂組成物2に、硬化性アクリレート100重量部に対して光重合開始剤(チバ社製の商品名「イルガキュアー(登録商標)184」)を1重量部加えて、紫外線硬化性樹脂組成物3を得た。 <Example 1>
(1) Preparation of UV-curable resin composition Contains pentaerythritol triacrylate and polyfunctional urethanized acrylate (reaction product of hexamethylene diisocyanate and pentaerythritol triacrylate), and the weight ratio of the former / the latter is 60/40 An ultraviolet
紫外線硬化性樹脂組成物1に、硬化性アクリレート100重量部に対して上記の光重合開始剤を1重量部加えて製膜し、紫外線を照射して硬化させた硬化物の屈折率は1.53であった。上記メタクリル酸メチル/スチレン共重合体樹脂粒子の屈折率は1.49であった。したがって、両者の屈折率差は0.04であった。
The refractive index of the cured product obtained by adding 1 part by weight of the photopolymerization initiator to 100 parts by weight of the curable acrylate to the ultraviolet curable resin composition 1 and curing it by irradiating with ultraviolet rays is 1. 53. The refractive index of the methyl methacrylate / styrene copolymer resin particles was 1.49. Therefore, the refractive index difference between them was 0.04.
(2)基材フィルムと硬化物層との積層構造を有するフィルムの作製
基材フィルムとしてのトリアセチルセルロース(TAC)フィルム(富士フイルム株式会社製の商品名「TD60」、厚み60μm)の表面に、上記(1)で調製した紫外線硬化性樹脂組成物3を乾燥後の膜厚が5μmとなるように塗工し、60℃に設定した乾燥機中で3分間保持して、その塗膜を乾燥させた。乾燥後、フィルムの塗膜側より、強度20mW/cm2の高圧水銀灯からの紫外線をh線換算光量で200mJ/cm2となるように照射し、紫外線硬化性樹脂組成物3の塗膜を硬化させて、基材フィルムと硬化物層(ヘイズ付与層)との積層構造を有するフィルムを得た。 (2) Production of a film having a laminated structure of a base film and a cured product layer On the surface of a triacetyl cellulose (TAC) film (trade name “TD60” manufactured by Fuji Film Co., Ltd.,thickness 60 μm) as a base film The UV curable resin composition 3 prepared in the above (1) was applied so that the film thickness after drying was 5 μm, and held for 3 minutes in a dryer set at 60 ° C. Dried. After drying, the coating film of the UV curable resin composition 3 is cured by irradiating UV light from a high pressure mercury lamp with an intensity of 20 mW / cm 2 to 200 mJ / cm 2 in terms of h-ray equivalent from the film coating side of the film. Thus, a film having a laminated structure of a base film and a cured product layer (haze imparting layer) was obtained.
基材フィルムとしてのトリアセチルセルロース(TAC)フィルム(富士フイルム株式会社製の商品名「TD60」、厚み60μm)の表面に、上記(1)で調製した紫外線硬化性樹脂組成物3を乾燥後の膜厚が5μmとなるように塗工し、60℃に設定した乾燥機中で3分間保持して、その塗膜を乾燥させた。乾燥後、フィルムの塗膜側より、強度20mW/cm2の高圧水銀灯からの紫外線をh線換算光量で200mJ/cm2となるように照射し、紫外線硬化性樹脂組成物3の塗膜を硬化させて、基材フィルムと硬化物層(ヘイズ付与層)との積層構造を有するフィルムを得た。 (2) Production of a film having a laminated structure of a base film and a cured product layer On the surface of a triacetyl cellulose (TAC) film (trade name “TD60” manufactured by Fuji Film Co., Ltd.,
基材フィルムと硬化物層との積層構造を有するフィルムの基材フィルム面に光学的に透明な(メタ)アクリル系粘着剤層を貼合し、この粘着剤層を介して光学積層体を無アルカリガラス基板(コーニング社製の商品名「イーグルXG」)に貼合して、これを測定サンプルとした。この測定サンプルについて、ガラス基板側から光を入射させ、JIS K 7136:2000「プラスチック-透明材料のヘーズの求め方」に準拠した(株)村上色彩技術研究所製のヘイズメーター「HM-150」型を用いて、ヘイズを測定したところ、1.0%であった。
An optically transparent (meth) acrylic pressure-sensitive adhesive layer is bonded to the surface of the base film of a film having a laminated structure of the base film and the cured product layer, and the optical laminate is not formed via this pressure-sensitive adhesive layer. The sample was bonded to an alkali glass substrate (trade name “Eagle XG” manufactured by Corning) and used as a measurement sample. With respect to this measurement sample, light is incident from the glass substrate side, and a haze meter “HM-150” manufactured by Murakami Color Research Laboratory Co., Ltd. conforming to JIS K 7136: 2000 “How to determine haze of plastic-transparent material”. When the haze was measured using a mold, it was 1.0%.
(3)光学積層体の作製
反射型偏光子(3M社製の商品名「APF-v3」、厚み26μm)から20cm×30cmサイズの枚葉体を切り出し、これを第1反射型偏光子層とした。第1反射型偏光子層において、その短辺と反射軸とがなす角度は0°である。上記反射型偏光子から20cm×30cmサイズの枚葉体を切り出し、これを第2反射型偏光子層とした。第2反射型偏光子層において、その短辺と反射軸とがなす角度は50°である。上記(2)で得られた基材フィルムと硬化物層との積層構造を有するフィルムから20cm×30cmサイズの枚葉体を切り出し、これを介在層とした。 (3) Production of optical layered body A 20 cm × 30 cm sheet is cut out from a reflective polarizer (trade name “APF-v3” manufactured by 3M, thickness 26 μm), and this is cut into a first reflective polarizer layer. did. In the first reflective polarizer layer, the angle formed between the short side and the reflection axis is 0 °. A sheet body having a size of 20 cm × 30 cm was cut out from the reflective polarizer and used as a second reflective polarizer layer. In the second reflective polarizer layer, the angle formed between the short side and the reflection axis is 50 °. A sheet of 20 cm × 30 cm size was cut out from the film having a laminated structure of the base film and the cured product layer obtained in (2) above, and this was used as an intervening layer.
反射型偏光子(3M社製の商品名「APF-v3」、厚み26μm)から20cm×30cmサイズの枚葉体を切り出し、これを第1反射型偏光子層とした。第1反射型偏光子層において、その短辺と反射軸とがなす角度は0°である。上記反射型偏光子から20cm×30cmサイズの枚葉体を切り出し、これを第2反射型偏光子層とした。第2反射型偏光子層において、その短辺と反射軸とがなす角度は50°である。上記(2)で得られた基材フィルムと硬化物層との積層構造を有するフィルムから20cm×30cmサイズの枚葉体を切り出し、これを介在層とした。 (3) Production of optical layered body A 20 cm × 30 cm sheet is cut out from a reflective polarizer (trade name “APF-v3” manufactured by 3M, thickness 26 μm), and this is cut into a first reflective polarizer layer. did. In the first reflective polarizer layer, the angle formed between the short side and the reflection axis is 0 °. A sheet body having a size of 20 cm × 30 cm was cut out from the reflective polarizer and used as a second reflective polarizer layer. In the second reflective polarizer layer, the angle formed between the short side and the reflection axis is 50 °. A sheet of 20 cm × 30 cm size was cut out from the film having a laminated structure of the base film and the cured product layer obtained in (2) above, and this was used as an intervening layer.
第1反射型偏光子層の上に、厚み20μmの(メタ)アクリル系粘着剤層(20cm×30cmサイズ)を介して上記介在層を積層した。この際、介在層の基材フィルムが(メタ)アクリル系粘着剤層に接するように介在層を積層した。積層に先立って、第1反射型偏光子層における粘着剤層との貼合面、及び介在層における粘着剤層との貼合面にコロナ処理を施した。次いで、介在層の上に、厚み20μmの(メタ)アクリル系粘着剤層(20cm×30cmサイズ)を介して第2反射型偏光子層を積層して、20cm×30cmサイズの光学積層体を得た。積層に先立って、第2反射型偏光子層における粘着剤層との貼合面、及び介在層における粘着剤層との貼合面にコロナ処理を施した。第1反射型偏光子層の反射軸と第2反射型偏光子層の反射軸とがなす角度(反射軸の相対角度)は50°である。
The intervening layer was laminated on the first reflective polarizer layer via a (meth) acrylic pressure-sensitive adhesive layer (20 cm × 30 cm size) having a thickness of 20 μm. At this time, the intervening layer was laminated so that the base film of the intervening layer was in contact with the (meth) acrylic pressure-sensitive adhesive layer. Prior to lamination, corona treatment was applied to the bonding surface of the first reflective polarizer layer with the pressure-sensitive adhesive layer and the bonding surface of the intervening layer with the pressure-sensitive adhesive layer. Next, a second reflective polarizer layer is laminated on the intervening layer via a (meth) acrylic pressure-sensitive adhesive layer (20 cm × 30 cm size) having a thickness of 20 μm to obtain an optical laminate having a size of 20 cm × 30 cm. It was. Prior to lamination, corona treatment was applied to the bonding surface of the second reflective polarizer layer with the adhesive layer and the bonding surface of the intervening layer with the adhesive layer. The angle formed by the reflection axis of the first reflective polarizer layer and the reflection axis of the second reflective polarizer layer (relative angle of the reflection axis) is 50 °.
(4)光学積層体の反射輝度率の測定
光学積層体の第1反射型偏光子層の外面に光学的に透明な(メタ)アクリル系粘着剤層を貼合し、この粘着剤層を介して光学積層体を黒色のアクリル板に貼合して、これを測定サンプルとした。この測定サンプルについて、分光測色計(コニカミノルタ(株)製の「CM-2600d」)を用い、温度23℃でSCIモードで測定を行うことにより、正反射光込み方式で測定される視感反射率RSCIとして反射輝度率を得た。結果を表1に示す。 (4) Measurement of reflection luminance factor of optical laminated body An optically transparent (meth) acrylic pressure-sensitive adhesive layer is bonded to the outer surface of the first reflective polarizer layer of the optical laminated body, and this pressure-sensitive adhesive layer is interposed therebetween. The optical laminate was bonded to a black acrylic plate and used as a measurement sample. Using this spectrophotometer (“CM-2600d” manufactured by Konica Minolta Co., Ltd.), the measurement sample is measured in the SCI mode at a temperature of 23 ° C., so that the visual sensation measured in the specular reflection light-incorporated method. The reflection luminance rate was obtained as the reflectance R SCI . The results are shown in Table 1.
光学積層体の第1反射型偏光子層の外面に光学的に透明な(メタ)アクリル系粘着剤層を貼合し、この粘着剤層を介して光学積層体を黒色のアクリル板に貼合して、これを測定サンプルとした。この測定サンプルについて、分光測色計(コニカミノルタ(株)製の「CM-2600d」)を用い、温度23℃でSCIモードで測定を行うことにより、正反射光込み方式で測定される視感反射率RSCIとして反射輝度率を得た。結果を表1に示す。 (4) Measurement of reflection luminance factor of optical laminated body An optically transparent (meth) acrylic pressure-sensitive adhesive layer is bonded to the outer surface of the first reflective polarizer layer of the optical laminated body, and this pressure-sensitive adhesive layer is interposed therebetween. The optical laminate was bonded to a black acrylic plate and used as a measurement sample. Using this spectrophotometer (“CM-2600d” manufactured by Konica Minolta Co., Ltd.), the measurement sample is measured in the SCI mode at a temperature of 23 ° C., so that the visual sensation measured in the specular reflection light-incorporated method. The reflection luminance rate was obtained as the reflectance R SCI . The results are shown in Table 1.
(5)光学積層体のヘイズの測定
光学積層体の第1反射型偏光子層の外面に(メタ)アクリル系粘着剤層を貼合し、この粘着剤層を介して光学積層体を無アルカリガラス基板(コーニング社製の商品名「イーグルXG」)に貼合して、これを測定サンプルとした。この測定サンプルについて、ガラス基板側から光を入射させ、JIS K 7136:2000「プラスチック-透明材料のヘーズの求め方」に準拠した(株)村上色彩技術研究所製のヘイズメーター「HM-150」型を用いて、ヘイズを測定した。結果を表1に示す。 (5) Measurement of haze of optical laminated body A (meth) acrylic pressure-sensitive adhesive layer is bonded to the outer surface of the first reflective polarizer layer of the optical laminated body, and the optical laminated body is alkali-free through this pressure-sensitive adhesive layer. This was bonded to a glass substrate (trade name “Eagle XG” manufactured by Corning) and used as a measurement sample. With respect to this measurement sample, light is incident from the glass substrate side, and a haze meter “HM-150” manufactured by Murakami Color Research Laboratory Co., Ltd. conforming to JIS K 7136: 2000 “Plastics—How to Obtain Haze of Transparent Materials” The haze was measured using a mold. The results are shown in Table 1.
光学積層体の第1反射型偏光子層の外面に(メタ)アクリル系粘着剤層を貼合し、この粘着剤層を介して光学積層体を無アルカリガラス基板(コーニング社製の商品名「イーグルXG」)に貼合して、これを測定サンプルとした。この測定サンプルについて、ガラス基板側から光を入射させ、JIS K 7136:2000「プラスチック-透明材料のヘーズの求め方」に準拠した(株)村上色彩技術研究所製のヘイズメーター「HM-150」型を用いて、ヘイズを測定した。結果を表1に示す。 (5) Measurement of haze of optical laminated body A (meth) acrylic pressure-sensitive adhesive layer is bonded to the outer surface of the first reflective polarizer layer of the optical laminated body, and the optical laminated body is alkali-free through this pressure-sensitive adhesive layer. This was bonded to a glass substrate (trade name “Eagle XG” manufactured by Corning) and used as a measurement sample. With respect to this measurement sample, light is incident from the glass substrate side, and a haze meter “HM-150” manufactured by Murakami Color Research Laboratory Co., Ltd. conforming to JIS K 7136: 2000 “Plastics—How to Obtain Haze of Transparent Materials” The haze was measured using a mold. The results are shown in Table 1.
(6)光学積層体の虹ムラの評価
光学積層体の第1反射型偏光子層の外面に光学的に透明な(メタ)アクリル系粘着剤層を貼合し、この粘着剤層を介して光学積層体を黒色のアクリル板に貼合して、これを測定サンプルとした。この測定サンプルの第2反射型偏光子層の表面に、三波長管蛍光灯からの光を該表面に対して入射角60°及び90°で入射し、該表面に映り込んだ三波長管蛍光灯の像に虹ムラが発生しているかどうかを目視で観察した。結果を表1に示す。いずれの入射角においても虹ムラが全く認められなかった場合を「AA」、いずれの入射角においても虹ムラがほぼ認められなかった場合を「A」、少なくとも一方の入射角で虹ムラが認められた場合を「B」とした。 (6) Evaluation of rainbow unevenness of optical laminated body An optically transparent (meth) acrylic pressure-sensitive adhesive layer is bonded to the outer surface of the first reflective polarizer layer of the optical laminated body, and the adhesive layer is interposed therebetween. The optical laminate was bonded to a black acrylic plate and used as a measurement sample. The light from the three-wavelength tube fluorescent lamp is incident on the surface of the second reflective polarizer layer of this measurement sample at an incident angle of 60 ° and 90 ° with respect to the surface, and the three-wavelength tube fluorescence reflected on the surface is reflected. It was visually observed whether or not rainbow unevenness occurred in the lamp image. The results are shown in Table 1. When no rainbow unevenness is observed at any incident angle, “AA”, when almost no rainbow unevenness is observed at any incident angle, “A”, rainbow unevenness is recognized at at least one incident angle. The case where it was answered was designated as “B”.
光学積層体の第1反射型偏光子層の外面に光学的に透明な(メタ)アクリル系粘着剤層を貼合し、この粘着剤層を介して光学積層体を黒色のアクリル板に貼合して、これを測定サンプルとした。この測定サンプルの第2反射型偏光子層の表面に、三波長管蛍光灯からの光を該表面に対して入射角60°及び90°で入射し、該表面に映り込んだ三波長管蛍光灯の像に虹ムラが発生しているかどうかを目視で観察した。結果を表1に示す。いずれの入射角においても虹ムラが全く認められなかった場合を「AA」、いずれの入射角においても虹ムラがほぼ認められなかった場合を「A」、少なくとも一方の入射角で虹ムラが認められた場合を「B」とした。 (6) Evaluation of rainbow unevenness of optical laminated body An optically transparent (meth) acrylic pressure-sensitive adhesive layer is bonded to the outer surface of the first reflective polarizer layer of the optical laminated body, and the adhesive layer is interposed therebetween. The optical laminate was bonded to a black acrylic plate and used as a measurement sample. The light from the three-wavelength tube fluorescent lamp is incident on the surface of the second reflective polarizer layer of this measurement sample at an incident angle of 60 ° and 90 ° with respect to the surface, and the three-wavelength tube fluorescence reflected on the surface is reflected. It was visually observed whether or not rainbow unevenness occurred in the lamp image. The results are shown in Table 1. When no rainbow unevenness is observed at any incident angle, “AA”, when almost no rainbow unevenness is observed at any incident angle, “A”, rainbow unevenness is recognized at at least one incident angle. The case where it was answered was designated as “B”.
(7)視認性の評価
光学積層体の第1反射型偏光子層の外面に光学的に透明な(メタ)アクリル系粘着剤層を貼合し、この粘着剤層を介して光学積層体を、IPSモードの液晶表示装置(LGエレクトロニクス社製の商品名「22MP57VQ-P」の画面上に貼合した。この際、第1反射型偏光子層の反射軸と、液晶表示装置の視認側偏光板の吸収軸とが平行になるように貼合を行った。液晶表示装置の電源をONにして画面を白表示(ディスプレイモード)とし、文字を入力してこれを画面上に映し出して、該文字の視認性(透過像の視認性)を目視で評価した。結果を表1における「視認性の評価」「透過像」の欄に示す。文字を非常に鮮明に視認できた場合を「AA」、文字を鮮明に視認できた場合を「A」、文字が不鮮明であった場合を「B」とした。 (7) Evaluation of visibility An optically transparent (meth) acrylic pressure-sensitive adhesive layer is bonded to the outer surface of the first reflective polarizer layer of the optical layered body, and the optical layered body is attached via this pressure-sensitive adhesive layer. IPS mode liquid crystal display (bonded on the screen of LG Electronics, product name “22MP57VQ-P”. At this time, the reflection axis of the first reflective polarizer layer and the viewing side polarization of the liquid crystal display Bonding was performed so that the absorption axis of the plate was parallel, the liquid crystal display device was turned on, the screen was displayed in white (display mode), characters were input, and this was displayed on the screen. The visibility of the characters (visibility of the transmission image) was visually evaluated, and the results are shown in the columns of “Evaluation of Visibility” and “Transmission Image” in Table 1. A case where the characters could be viewed very clearly was “AA” ”,“ A ”when the character was clearly visible, and the character was unclear The case was designated as “B”.
光学積層体の第1反射型偏光子層の外面に光学的に透明な(メタ)アクリル系粘着剤層を貼合し、この粘着剤層を介して光学積層体を、IPSモードの液晶表示装置(LGエレクトロニクス社製の商品名「22MP57VQ-P」の画面上に貼合した。この際、第1反射型偏光子層の反射軸と、液晶表示装置の視認側偏光板の吸収軸とが平行になるように貼合を行った。液晶表示装置の電源をONにして画面を白表示(ディスプレイモード)とし、文字を入力してこれを画面上に映し出して、該文字の視認性(透過像の視認性)を目視で評価した。結果を表1における「視認性の評価」「透過像」の欄に示す。文字を非常に鮮明に視認できた場合を「AA」、文字を鮮明に視認できた場合を「A」、文字が不鮮明であった場合を「B」とした。 (7) Evaluation of visibility An optically transparent (meth) acrylic pressure-sensitive adhesive layer is bonded to the outer surface of the first reflective polarizer layer of the optical layered body, and the optical layered body is attached via this pressure-sensitive adhesive layer. IPS mode liquid crystal display (bonded on the screen of LG Electronics, product name “22MP57VQ-P”. At this time, the reflection axis of the first reflective polarizer layer and the viewing side polarization of the liquid crystal display Bonding was performed so that the absorption axis of the plate was parallel, the liquid crystal display device was turned on, the screen was displayed in white (display mode), characters were input, and this was displayed on the screen. The visibility of the characters (visibility of the transmission image) was visually evaluated, and the results are shown in the columns of “Evaluation of Visibility” and “Transmission Image” in Table 1. A case where the characters could be viewed very clearly was “AA” ”,“ A ”when the character was clearly visible, and the character was unclear The case was designated as “B”.
また、液晶表示装置の電源をOFFにして画面を黒表示とし、ミラーモードにおける反射像の視認性を目視で評価した。結果を表1における「視認性の評価」「反射像」の欄に示す。反射像及びその色が非常に鮮明であった場合を「AA」、反射像及びその色が鮮明であった場合を「A」、反射像又はその色が不鮮明であった場合を「B」とした。
In addition, the power of the liquid crystal display device was turned off to display the screen in black, and the visibility of the reflected image in the mirror mode was visually evaluated. The results are shown in the columns “Evaluation of visibility” and “Reflected image” in Table 1. “AA” when the reflected image and its color are very clear, “A” when the reflected image and its color are clear, and “B” when the reflected image or its color is unclear. did.
<実施例2~9、比較例1~4>
介在層の構成、介在層のヘイズ及び反射軸の相対角度を表1に示されるとおりとしたこと以外は実施例1と同様にして光学積層体を作製し、実施例1と同様にして実施例1の(4)~(7)の測定及び評価を実施した。結果を表1に示す。介在層のヘイズの測定結果も表1に併せて示す。介在層のヘイズは、紫外線硬化性樹脂組成物1へのメタクリル酸メチル/スチレン共重合体樹脂粒子の添加量を変化させることによって調整した。硬化物層の厚みは実施例1と同じである。比較例1~3においては、介在層の硬化物層にメタクリル酸メチル/スチレン共重合体樹脂粒子を含有させていない。 <Examples 2 to 9, Comparative Examples 1 to 4>
An optical layered body was prepared in the same manner as in Example 1 except that the configuration of the intervening layer, the haze of the intervening layer, and the relative angle of the reflection axis were as shown in Table 1. 1) (4) to (7) were measured and evaluated. The results are shown in Table 1. The measurement result of the haze of the intervening layer is also shown in Table 1. The haze of the intervening layer was adjusted by changing the amount of methyl methacrylate / styrene copolymer resin particles added to the ultravioletcurable resin composition 1. The thickness of the cured product layer is the same as in Example 1. In Comparative Examples 1 to 3, the cured product layer of the intervening layer does not contain methyl methacrylate / styrene copolymer resin particles.
介在層の構成、介在層のヘイズ及び反射軸の相対角度を表1に示されるとおりとしたこと以外は実施例1と同様にして光学積層体を作製し、実施例1と同様にして実施例1の(4)~(7)の測定及び評価を実施した。結果を表1に示す。介在層のヘイズの測定結果も表1に併せて示す。介在層のヘイズは、紫外線硬化性樹脂組成物1へのメタクリル酸メチル/スチレン共重合体樹脂粒子の添加量を変化させることによって調整した。硬化物層の厚みは実施例1と同じである。比較例1~3においては、介在層の硬化物層にメタクリル酸メチル/スチレン共重合体樹脂粒子を含有させていない。 <Examples 2 to 9, Comparative Examples 1 to 4>
An optical layered body was prepared in the same manner as in Example 1 except that the configuration of the intervening layer, the haze of the intervening layer, and the relative angle of the reflection axis were as shown in Table 1. 1) (4) to (7) were measured and evaluated. The results are shown in Table 1. The measurement result of the haze of the intervening layer is also shown in Table 1. The haze of the intervening layer was adjusted by changing the amount of methyl methacrylate / styrene copolymer resin particles added to the ultraviolet
表1において、「ACフィルム」とは、厚み100μmの(メタ)アクリル系樹脂フィルムを意味する。「COPフィルム」とは、厚み100μmの環状ポリオレフィン系樹脂フィルムを意味する。
In Table 1, “AC film” means a (meth) acrylic resin film having a thickness of 100 μm. “COP film” means a cyclic polyolefin resin film having a thickness of 100 μm.
<比較例5~9>
介在層として、光学的に透明な厚み20μmの(メタ)アクリル系粘着剤層(表1において「透明粘着剤層」という。)を用いたこと、及び、反射軸の相対角度を表1に示されるとおりとしたこと以外は実施例1と同様にして光学積層体を作製し、実施例1と同様にして実施例1の(4)~(7)の測定及び評価を実施した。結果を表1に示す。 <Comparative Examples 5 to 9>
As an intervening layer, an optically transparent (meth) acrylic pressure-sensitive adhesive layer having a thickness of 20 μm (referred to as “transparent pressure-sensitive adhesive layer” in Table 1) and the relative angle of the reflection axis are shown in Table 1. An optical layered body was produced in the same manner as in Example 1 except that it was as described above, and the measurements and evaluations (4) to (7) in Example 1 were carried out in the same manner as in Example 1. The results are shown in Table 1.
介在層として、光学的に透明な厚み20μmの(メタ)アクリル系粘着剤層(表1において「透明粘着剤層」という。)を用いたこと、及び、反射軸の相対角度を表1に示されるとおりとしたこと以外は実施例1と同様にして光学積層体を作製し、実施例1と同様にして実施例1の(4)~(7)の測定及び評価を実施した。結果を表1に示す。 <Comparative Examples 5 to 9>
As an intervening layer, an optically transparent (meth) acrylic pressure-sensitive adhesive layer having a thickness of 20 μm (referred to as “transparent pressure-sensitive adhesive layer” in Table 1) and the relative angle of the reflection axis are shown in Table 1. An optical layered body was produced in the same manner as in Example 1 except that it was as described above, and the measurements and evaluations (4) to (7) in Example 1 were carried out in the same manner as in Example 1. The results are shown in Table 1.
<比較例10及び11>
介在層として、厚み20μmの光拡散性粘着剤層を用いたこと以外は実施例1と同様にして光学積層体を作製し、実施例1と同様にして実施例1の(4)~(7)の測定及び評価を実施した。結果を表1に示す。光拡散性粘着剤層は、光学的に透明な(メタ)アクリル系粘着剤層中に光拡散粒子を分散させたものである。光拡散性粘着剤層のヘイズは、光拡散粒子の添加量を変化させることによって調整した。 <Comparative Examples 10 and 11>
An optical laminate was prepared in the same manner as in Example 1 except that a light-diffusing pressure-sensitive adhesive layer having a thickness of 20 μm was used as the intervening layer, and (4) to (7) in Example 1 as in Example 1. ) Was measured and evaluated. The results are shown in Table 1. The light diffusing pressure-sensitive adhesive layer is obtained by dispersing light diffusing particles in an optically transparent (meth) acrylic pressure-sensitive adhesive layer. The haze of the light diffusing pressure-sensitive adhesive layer was adjusted by changing the addition amount of the light diffusing particles.
介在層として、厚み20μmの光拡散性粘着剤層を用いたこと以外は実施例1と同様にして光学積層体を作製し、実施例1と同様にして実施例1の(4)~(7)の測定及び評価を実施した。結果を表1に示す。光拡散性粘着剤層は、光学的に透明な(メタ)アクリル系粘着剤層中に光拡散粒子を分散させたものである。光拡散性粘着剤層のヘイズは、光拡散粒子の添加量を変化させることによって調整した。 <Comparative Examples 10 and 11>
An optical laminate was prepared in the same manner as in Example 1 except that a light-diffusing pressure-sensitive adhesive layer having a thickness of 20 μm was used as the intervening layer, and (4) to (7) in Example 1 as in Example 1. ) Was measured and evaluated. The results are shown in Table 1. The light diffusing pressure-sensitive adhesive layer is obtained by dispersing light diffusing particles in an optically transparent (meth) acrylic pressure-sensitive adhesive layer. The haze of the light diffusing pressure-sensitive adhesive layer was adjusted by changing the addition amount of the light diffusing particles.
10 第1反射型偏光子層、20 第2反射型偏光子層、30 介在層、31 基材フィルム、32 ヘイズ付与層、40 第1粘着剤層、50 第2粘着剤層、60 第3粘着剤層、70 基材層、80 積分球、81 光源、82 測定サンプル、100,200,300,400 光学積層体。
10 First reflective polarizer layer, 20 Second reflective polarizer layer, 30 Intervening layer, 31 Base film, 32 Haze imparting layer, 40 First adhesive layer, 50 Second adhesive layer, 60 Third adhesive Agent layer, 70 base layer, 80 integrating sphere, 81 light source, 82 measurement sample, 100, 200, 300, 400 optical laminate.
Claims (9)
- 第1反射型偏光子層、第2反射型偏光子層、及び前記第1反射型偏光子層と前記第2反射型偏光子層との間に配置される介在層を含み、
前記第1反射型偏光子層の反射軸と前記第2反射型偏光子層の反射軸とがなす角度は、20°以上70°以下であり、
ヘイズが0.4%以上20%以下である、光学積層体。 A first reflective polarizer layer, a second reflective polarizer layer, and an intervening layer disposed between the first reflective polarizer layer and the second reflective polarizer layer,
The angle formed by the reflection axis of the first reflective polarizer layer and the reflection axis of the second reflective polarizer layer is 20 ° or more and 70 ° or less,
An optical laminate having a haze of 0.4% to 20%. - 反射輝度率が55%以上85%以下である、請求項1に記載の光学積層体。 The optical laminate according to claim 1, wherein the reflection luminance ratio is 55% or more and 85% or less.
- 前記介在層のヘイズが0.8%以上20%以下である、請求項1又は2に記載の光学積層体。 The optical laminated body according to claim 1 or 2, wherein the haze of the intervening layer is 0.8% or more and 20% or less.
- 前記介在層が2以上の層を含む、請求項1~3のいずれか1項に記載の光学積層体。 4. The optical laminate according to claim 1, wherein the intervening layer includes two or more layers.
- 前記2以上の層は、互いに異なるヘイズを有する、請求項4に記載の光学積層体。 The optical laminate according to claim 4, wherein the two or more layers have different hazes.
- 前記第1反射型偏光子層の外側又は前記第2反射型偏光子層の外側に配置される基材層をさらに含む、請求項1~5のいずれか1項に記載の光学積層体。 The optical laminate according to any one of claims 1 to 5, further comprising a base material layer disposed outside the first reflective polarizer layer or outside the second reflective polarizer layer.
- 前記基材層が吸収型偏光子層を含む、請求項6に記載の光学積層体。 The optical layered body according to claim 6, wherein the base material layer includes an absorptive polarizer layer.
- 前記第1反射型偏光子層及び前記第2反射型偏光子層の少なくとも一方の外面に積層される粘着剤層をさらに含む、請求項1~7のいずれか1項に記載の光学積層体。 The optical laminate according to any one of claims 1 to 7, further comprising an adhesive layer laminated on at least one outer surface of the first reflective polarizer layer and the second reflective polarizer layer.
- 表示素子の視認側に配置される、請求項1~8のいずれか1項に記載の光学積層体。 The optical laminated body according to any one of claims 1 to 8, which is disposed on the viewing side of the display element.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-255799 | 2016-12-28 | ||
JP2016255799A JP2018106125A (en) | 2016-12-28 | 2016-12-28 | Optical laminate |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018123457A1 true WO2018123457A1 (en) | 2018-07-05 |
Family
ID=62710434
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/043548 WO2018123457A1 (en) | 2016-12-28 | 2017-12-05 | Optical laminate |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP2018106125A (en) |
TW (1) | TW201830106A (en) |
WO (1) | WO2018123457A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020178923A1 (en) * | 2019-03-01 | 2020-09-10 | シャープ株式会社 | Display device |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001133769A (en) * | 1999-11-02 | 2001-05-18 | Citizen Watch Co Ltd | Liquid crystal display device |
JP2004511811A (en) * | 2000-04-18 | 2004-04-15 | スリーエム イノベイティブ プロパティズ カンパニー | Transflective display with non-inverted image |
WO2014112525A1 (en) * | 2013-01-16 | 2014-07-24 | シャープ株式会社 | Mirror display, half mirror plate, and electronic device |
WO2015141350A1 (en) * | 2014-03-19 | 2015-09-24 | シャープ株式会社 | Mirror display and electronic device |
US20160313555A1 (en) * | 2015-04-22 | 2016-10-27 | Innolux Corporation | Mirror display device |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005308988A (en) * | 2004-04-20 | 2005-11-04 | Nitto Denko Corp | Circularly polarized reflection polarizing plate, optical element, convergent back light system, and liquid crystal display apparatus |
-
2016
- 2016-12-28 JP JP2016255799A patent/JP2018106125A/en active Pending
-
2017
- 2017-12-05 WO PCT/JP2017/043548 patent/WO2018123457A1/en active Application Filing
- 2017-12-14 TW TW106143978A patent/TW201830106A/en unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001133769A (en) * | 1999-11-02 | 2001-05-18 | Citizen Watch Co Ltd | Liquid crystal display device |
JP2004511811A (en) * | 2000-04-18 | 2004-04-15 | スリーエム イノベイティブ プロパティズ カンパニー | Transflective display with non-inverted image |
WO2014112525A1 (en) * | 2013-01-16 | 2014-07-24 | シャープ株式会社 | Mirror display, half mirror plate, and electronic device |
WO2015141350A1 (en) * | 2014-03-19 | 2015-09-24 | シャープ株式会社 | Mirror display and electronic device |
US20160313555A1 (en) * | 2015-04-22 | 2016-10-27 | Innolux Corporation | Mirror display device |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020178923A1 (en) * | 2019-03-01 | 2020-09-10 | シャープ株式会社 | Display device |
Also Published As
Publication number | Publication date |
---|---|
TW201830106A (en) | 2018-08-16 |
JP2018106125A (en) | 2018-07-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6935463B2 (en) | Protective film for polarizing plate and polarizing plate using it | |
JP2009163216A (en) | Set of polarizing plate, and liquid crystal panel and liquid crystal display using the same | |
WO2012043410A1 (en) | Light-diffusing polarizing plate and liquid crystal display device | |
WO2012046790A1 (en) | Light diffusion film and process for production thereof, light-diffusing polarizing plate, and liquid crystal display device | |
JP2009169389A (en) | Set of polarizing plate, liquid crystal panel using the same and liquid crystal display device | |
JP2009157347A (en) | Set of polarizing plate, and liquid crystal panel and liquid crystal display device using the same | |
JP2010217844A (en) | Polarizing plate set, liquid crystal panel using the same, and liquid crystal display device | |
JP6143917B2 (en) | Convex-side polarizing plate for curved image display panel | |
KR102519866B1 (en) | Laminate and liquid crystal dispaly device | |
JP2012027460A (en) | Light diffusing polarizer and liquid crystal display device | |
JP5258016B2 (en) | Set of polarizing plates, and liquid crystal panel and liquid crystal display device using the same | |
JP2016218478A (en) | Acrylic resin film and polarizing plate | |
JP2010211196A (en) | Polarizer, and liquid crystal panel and liquid crystal display device each including the same | |
KR102169534B1 (en) | A set of polarizer, and a liquid crystal panel and a liquid display apparatus using the set of polarizer | |
TWI453123B (en) | A set of polarizer, and a liquid crystal panel and an apparatus of liquid crystal display used thereof | |
JP2011242582A (en) | Polarizing plate set, liquid crystal panel using polarizing plate set and liquid crystal display device using polarizing plate set | |
JP2014133408A (en) | Surface-treated laminate film and polarizing plate using the same | |
JP2012212120A (en) | Polarizer protective film | |
WO2018123457A1 (en) | Optical laminate | |
KR20170021754A (en) | Polarizing plate for curved image display panel | |
JP6009013B2 (en) | Method for producing laminate and method for producing acrylic resin film | |
JP6893407B2 (en) | Polarizing plate and its manufacturing method | |
JP2012027461A (en) | Light diffusing polarizer and liquid crystal display device | |
JP2013210640A (en) | Set of polarizing plate, and liquid crystal panel and liquid crystal display device using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17889348 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17889348 Country of ref document: EP Kind code of ref document: A1 |