Nothing Special   »   [go: up one dir, main page]

WO2018122919A1 - Device for searching based on feeling word - Google Patents

Device for searching based on feeling word Download PDF

Info

Publication number
WO2018122919A1
WO2018122919A1 PCT/JP2016/088704 JP2016088704W WO2018122919A1 WO 2018122919 A1 WO2018122919 A1 WO 2018122919A1 JP 2016088704 W JP2016088704 W JP 2016088704W WO 2018122919 A1 WO2018122919 A1 WO 2018122919A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensitivity
vector
unit
information
proper name
Prior art date
Application number
PCT/JP2016/088704
Other languages
French (fr)
Japanese (ja)
Inventor
貴弘 大塚
咲子 二本柳
相川 勇之
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2016/088704 priority Critical patent/WO2018122919A1/en
Publication of WO2018122919A1 publication Critical patent/WO2018122919A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F40/00Handling natural language data
    • G06F40/20Natural language analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor

Definitions

  • the present invention relates to a search device using a sensitivity expression word that searches for a proper name using a sensitivity expression word.
  • the first method is to create impression data for each piece of data by measuring the impression given by the individual data in advance using an impression rating experiment using Kansei expression pairs, and input this impression data when searching This is a technique for matching with the sentiment expression word.
  • the second method is a method of matching physical quantities previously assigned to each data based on physical measurement values such as colors and shapes to be searched that satisfy the emotional expression words input at the time of the search.
  • the sensitivity expression words that can be used as search keys are limited to those used in the impression evaluation experiment. For this reason, the user needs to store the emotional expression words that can be used in advance or search for the corresponding emotional expression word from a separately prepared emotional expression word table and use it. For this reason, it has been impossible to perform input to the search device with an expression that matches the sense and sensibility that the user feels with respect to the data to be searched. In addition, when performing matching using impression data, it is necessary to evaluate impressions of all data to be searched in advance, which is extremely difficult when the number of data is large.
  • the physical measurement value extracted based on the emotional expression word does not necessarily sufficiently reflect the similarity to the subjective impression expressed as the emotional expression word. Therefore, the probability of obtaining a search result that satisfies the user's request is low.
  • a Kansei expression word is extracted by a natural language process from a search condition sentence expressed in a natural language as a search condition for image information to be searched.
  • search impression data corresponding to the emotional expression words input by the user is extracted from a subjective evaluation information dictionary in which subjective impressions are given to a plurality of emotional expression words.
  • the impression data integrated by the integration process is set as the search impression data.
  • Impression data for each emotional expression word stored in the subjective assessment information dictionary is a coordinate with each subjective impression element of the impression data as the coordinate axis by specifying the strength of each subjective impression element constituting the impression data. In space, it is determined as a multidimensional coordinate value (vector).
  • image information having impression data that is most similar to the extracted search impression data, that is, having the closest Euclidean distance is output as a search result from the subjective evaluation information dictionary.
  • Patent Literature 1 when a sensitivity expression word extracted from a search condition sentence expressed in a natural language is used as a search key and a degree adverb exists in the search condition sentence, impression data of the corresponding sensitivity expression word Is corrected to meet the degree required by the degree adverb.
  • search results that sufficiently reflect the similarity to subjective impressions, taking into account the phonetic features such as intensities of inflection when the utterance is input by the user's utterance, and the word order of the sensibility expressions There is a problem that cannot be obtained.
  • the present invention has been made to solve the above-described problems, and realizes a search apparatus using a Kansei expression word that can search for a proper name that better reflects a user's search conditions using the word order of Kansei expression words.
  • the purpose is to do.
  • an apparatus for searching for emotional expression words including information indicating a plurality of emotional expression words representing an impression, and a sensitivity vector indicating a degree of relationship with a plurality of typical emotional expression words for each of the emotional expression words.
  • Kansei space database including information to indicate, information indicating a plurality of proper names, and a proper name database including information indicating a sensitivity vector indicating a degree of relationship with a plurality of typical sensitivity expression words for each proper name
  • the character input unit for obtaining character information and the Kansei space database are referred to, the Kansei expression word extracting unit for extracting all Kansei expression words contained in the character information, and the Kansei space database are extracted by referring to the Kansei space database.
  • Kansei vector conversion unit that converts the sentiment expression words into sensitivity vectors, and when the sensitivity vector conversion unit obtains a plurality of sensitivity vectors, the order of the sensitivity expression words included in the character information
  • the proper name is obtained from the proper name database.
  • a unique name search unit for searching and a unique name information output unit for outputting information indicating the unique name searched by the unique name search unit are provided.
  • FIG. 1 It is a figure which shows the function structural example of the search device by the sensitivity expression word which concerns on Embodiment 1 of this invention. It is a figure which shows an example of the sensitivity space database in Embodiment 1 of this invention. It is a figure which shows an example of the proper name database in Embodiment 1 of this invention. It is a figure which shows the hardware structural example of the search device by the sensitivity expression word which concerns on Embodiment 1 of this invention. It is a flowchart which shows the operation example of the search device by the sensitivity expression word which concerns on Embodiment 1 of this invention. It is a figure which shows an example of the language information row
  • FIG. 7A is a diagram showing an example of sensitivity vector information output from the sensitivity vector conversion unit according to Embodiment 1 of the present invention
  • FIG. 7B is a sensitivity output from the sensitivity vector combination unit according to Embodiment 1 of the present invention.
  • FIG. 1 is a diagram showing an example of a functional configuration of a search device 1 using a sensitivity expression word according to Embodiment 1 of the present invention.
  • the retrieval apparatus 1 by a sensitivity expression word includes a sensitivity space database 101, a proper name database 102, a speech input unit 103, a speech recognition unit 104, a prosody information extraction unit 105, a sensitivity expression word extraction unit 106, A vector conversion unit 107, a sensitivity vector combination unit 108, a proper name search unit 109, and a proper name information output unit 110 are provided.
  • the Kansei space database 101 is information (Kansei vector information) indicating a Kansei vector indicating the degree of relationship between information indicating Kansei expression words (Kansei expression word information) and a plurality of representative Kansei expressions for each Kansei expression word.
  • the sensitivity expression word is a character string (language string) that is expressed in a natural language and represents an impression.
  • the representative sensitivity expression word is a typical sensitivity expression word that can express many sensitivity expression words among the sensitivity expression words.
  • the sensitivity vector includes, for example, a value indicating the strength of the relationship between the sensitivity expression word and a plurality of representative sensitivity expression words.
  • FIG. 2 shows an example of the sensitivity space database 101.
  • the Kansei expression word 21 is shown in each row
  • the representative Kansei expression word 22 is shown in each column
  • the corresponding Kansei expression word 21 and the corresponding cell are composed of each row and each column.
  • a value (1 to 5 in FIG. 2) indicating the strength of the relationship with the representative sensitivity expression word 22 is shown.
  • the value of a certain square is 1, it indicates that the relationship between the sensitivity expression word 21 of the row and the dimension (representative sensitivity expression word 22) of the column is weak.
  • the value of a certain square is 5 it indicates that the relationship between the sensitivity expression word 21 in the row and the dimension of the column (representative sensitivity expression word 22) is strong.
  • a value “indicating a relationship between the sensitivity expression word“ calm ”and each of the representative emotion expression words“ fun ”,“ excited ”,“ slow ”, and“ romantic ”. “2”, “1”, “5”, “3” are stored in the corresponding square. This is because the sensibility expression “settled” is strongly related to the representative sensation expression “slow”, and the relationship to the representative sensation expression “romantic” is somewhat strong, and the representative sensation expression “fun” and “excited” "Is a weak relationship.
  • the emotional expression word “settled” in FIG. 2 is associated with the four-dimensional sensitivity vector in which the value indicating the relationship between the emotional expression word and the representative emotional expression word is stored, and stored in the sensitivity space database 101. Is done.
  • the proper name database 102 includes information indicating a plurality of proper names (proprietary name information), and information indicating a sensitivity vector indicating a degree of relationship with a plurality of representative affective expression words for each proper name (sensitivity vector information).
  • the proper name is a character string (language string) or an identification number that represents content (search target) such as a person, a facility, a song, or a moving image.
  • the sensitivity vector includes, for example, a value indicating the strength of the relationship between the proper name and a plurality of representative sensitivity expression words.
  • FIG. 3 shows an example of the proper name database 102.
  • the proper name 31 is shown in each row
  • the representative sentiment expression word 32 is shown in each column
  • the proper unique name 31 and the relevant representative are shown in each cell composed of each row and each column.
  • a value (1 to 5 in FIG. 3) indicating the strength of the relationship with the sensitivity expression word 32 is shown.
  • the value of a certain cell is 1, it indicates that the relationship between the proper name 31 of the row and the dimension of the column (representative emotion expression word 32) is weak.
  • the value of a certain square is 5, it indicates that the relationship between the unique name 31 of the row and the dimension of the column (representative sensitivity expression word 32) is strong.
  • the proper name “ABC Nojima” has a strong relationship with the representative sensibility expression word “romantic”, and the relationship between the representative sensation expression words “fun” and “slow” is somewhat strong, and the representative sensation expression word “excited” "Is a weak relationship.
  • the proper name “ABC Nojima” in FIG. 3 is associated with the four-dimensional sensitivity vector in which the value indicating the relationship between the proper name and the representative sentiment expression word is stored, and held in the proper name database 102.
  • the voice input unit 103 receives voice input and obtains voice information 201. Note that the voice is input from the user to the search device 1 using the emotional expression word.
  • the voice information 201 obtained by the voice input unit 103 is transmitted to the voice recognition unit 104 and the prosody information extraction unit 105.
  • the voice recognition unit 104 performs voice recognition processing on the voice information 201 obtained by the voice input unit 103 and converts the voice information 201 into a language information string (character information) 202 representing the utterance content of the voice information 201.
  • This language information column 202 is character information representing a search condition subjectively expressed by the user.
  • the language information string 202 obtained by the voice recognition unit 104 is transmitted to the prosodic information extraction unit 105 and the emotional expression word extraction unit 106.
  • the prosodic information extraction unit 105 extracts prosody information 203 for the language information string 202 obtained by the speech recognition unit 104 from the speech information 201 obtained by the speech input unit 103.
  • the prosody information 203 includes information (speech feature information) indicating speech features with respect to the language information sequence 202 and information indicating the correspondence between the speech feature information and the language information sequence 202. Examples of the voice characteristics include inflection strength (sound pitch (pitch) and strength (power)), length (tone), speech speed, and at least the inflection strength.
  • the prosodic information 203 extracted by the prosodic information extracting unit 105 is transmitted to the sensitivity vector combining unit 108.
  • the emotional expression word extraction unit 106 refers to the sensitivity space database 101 and extracts all the emotional expression words included in the language information sequence 202 obtained by the speech recognition unit 104. That is, the emotional expression word extraction unit 106 analyzes the language information string 202 by natural language processing, and extracts all phrases that match the emotional expression words included in the emotional space database 101 as sensitivity expression words. Information (sensitivity expression word information 204) indicating the sensitivity expression word extracted by the sensitivity expression word extraction unit 106 is transmitted to the sensitivity vector conversion unit 107.
  • the sentiment vector conversion unit 107 refers to the sentiment space database 101 and converts the sentiment expression word extracted by the sentiment expression word extraction unit 106 into a sentiment vector. That is, the sentiment vector conversion unit 107 converts the sentiment expression word into a sentiment vector associated with the same sentiment expression word included in the sentiment space database 101. In the case where a plurality of sensitivity expression words are extracted by the sensitivity expression word extraction unit 106, the sensitivity vector conversion unit 107 performs conversion into a sensitivity vector for each of the sensitivity expression words. Information (sensitivity vector information 205) indicating the sensitivity vector obtained by the sensitivity vector conversion unit 107 is transmitted to the sensitivity vector combining unit 108.
  • the sentiment vector combining unit 108 when the sentiment vector conversion unit 107 obtains a plurality of sentiment vectors, the inflection strength included in the prosodic information 203 extracted by the prosodic information extraction unit 105 and the sentiment included in the language information sequence 202. Based on the word order of the expression words, a single sensitivity vector is calculated from the plurality of sensitivity vectors. That is, the sensibility vector combining unit 108 calculates the single sensibility vector by combining the sensibility vectors after giving weights based on the level of inflection and word order. Information (sensitivity vector information 206) indicating a single sensitivity vector obtained by the sensitivity vector combining unit 108 is transmitted to the unique name search unit 109.
  • the sensitivity vector combination unit 108 uses the sensitivity vector information 205 from the sensitivity vector conversion unit 107 as the sensitivity vector information 206 as it is and the proper name search unit 109. Send to.
  • the sensitivity vector combining unit 108 obtains the information indicating the word order (word order information) by referring to the prosodic information 203 and the sensitivity vector information 205.
  • the linguistic information string 202 is transmitted to the sensibility vector combination unit 108 in a form associated with the prosodic information 203 (for example, including language information corresponding to each prosodic information 203).
  • the sentiment expression word information 204 is transmitted in the attached form. Therefore, the sensibility vector combination unit 108 can acquire, as the word order, the order in which portions that match the respective sensibility expression words acquired from the sensibility vector information 205 appear in the language information string 202 acquired from the prosody information 203.
  • the sensitivity vector information 205 may be stored according to the appearance order of the sensitivity expression words. In this case, the sensitivity vector combination unit 108 may obtain the word order from the storage order.
  • the proper name search unit 109 searches for a proper name from the proper name database 102 based on the single sentiment vector obtained by the sentiment vector conversion unit 107 or the sentiment vector combination unit 108. That is, the proper name search unit 109 searches the proper name database 102 for a proper name associated with a sensitivity vector similar to the single sensitivity vector. Information (unique name information 207) indicating the unique name searched by the unique name search unit 109 is transmitted to the unique name information output unit 110.
  • the proper name information output unit 110 outputs information indicating the proper name searched by the proper name search unit 109 (proprietary name information 208). Note that the proper name information 208 is output from the search device 1 based on the emotional expression word.
  • the search device 1 based on the emotional expression word composed of the above functions is not limited to Japanese, and may be used in a foreign language such as English.
  • the speech input unit 103 speech recognition unit 104, prosodic information extraction unit 105, Kansei expression word extraction unit 106, Kansei vector conversion unit 107, Kansei vector combination unit 108, proper name search unit 109, and proper name information output unit 110
  • the processor 301 is an arithmetic device that executes a program stored in the program 302.
  • the speech input unit 103, speech recognition unit 104, prosody information extraction unit 105, sensitivity expression word extraction unit 106, sensitivity vector conversion unit 107, sensitivity vector combination unit 108, proper name search unit 109, and proper name information output unit 110 The function is realized by software, firmware, or a combination of software and firmware.
  • Software and firmware are described as programs and stored in the memory 302.
  • the processor 301 reads out and executes the program stored in the memory 302, thereby realizing the functions of the respective units.
  • the emotional expression word search device 1 includes a memory 302 for storing a program that, when executed by the processor 301, for example, causes each step shown in FIG. 5 to be described later to be executed as a result. .
  • These programs include a speech input unit 103, a speech recognition unit 104, a prosody information extraction unit 105, a sensitivity expression word extraction unit 106, a sensitivity vector conversion unit 107, a sensitivity vector combination unit 108, a proper name search unit 109, and a proper name.
  • the computer executes the procedure and method of the information output unit 110.
  • the memory 302 for example, a nonvolatile or volatile semiconductor memory such as a RAM (Random Access Memory), a ROM (Read Only Memory), a flash memory, an EPROM (Erasable Programmable ROM), an EEPROM (Electrically Programmable EPROM), or the like.
  • a magnetic disk a flexible disk, an optical disk, a compact disk, a mini disk, a DVD (Digital Versatile Disc), and the like.
  • the emotional space database 101 and the unique name database 102 are stored in a memory 302 that is a storage device.
  • the voice that is input to the search device 1 by the sensitivity expression word is input by the input interface 303 that is an input device.
  • the unique name information 208 that is output from the search device 1 based on the sensitivity expression word is output by the output interface 304 that is an output device.
  • the processing of the name information output unit 110 may be realized as an electric circuit.
  • step ST501 the voice input unit 103 receives voice input and obtains voice information 201.
  • step ST502 the speech recognition unit 104 converts the speech information 201 obtained by the speech input unit 103 into a language information sequence 202, and the prosodic information extraction unit 105 converts the language information sequence 202 from the speech information 201.
  • the prosodic information 203 is extracted.
  • the prosody information 203 includes at least information indicating the strength of intonation.
  • the voice recognizing unit 104 obtains a language information string “a lively and exciting place” as shown in FIG.
  • the prosodic information extraction unit 105 extracts prosodic information 203 indicating that the voice is spoken at a low volume until “lively”, and the subsequent “exciting place” is spoken at a louder volume than “lively”. .
  • the Kansei expression word extraction unit 106 refers to the Kansei space database 101 and extracts all Kansei expression words included in the language information string 202 obtained by the speech recognition unit 104.
  • the voice recognition unit 104 obtains the language information string “Busy and exciting” shown in FIG.
  • the Kansei space database 101 shown in FIG. 2 includes Kansei expression words “lively” and “exciting”.
  • the emotional expression word extraction unit 106 extracts two phrases “busy” and “exciting” as emotional expression words from the language information string “Busy and exciting” shown in FIG.
  • step ST504 the sentiment vector conversion unit 107 refers to the sentiment space database 101, and converts the sentiment expression word extracted by the sentiment expression word extraction unit 106 into a sentiment vector.
  • step ST505 the sensitivity vector conversion unit 107 determines whether all the sensitivity expression words extracted by the sensitivity expression word extraction unit 106 have been converted into sensitivity vectors. In this step ST505, when the emotion vector conversion unit 107 determines that there is a sensitivity expression word that has not been converted into a sensitivity vector, the sequence returns to step ST504 and repeats the above processing. On the other hand, when the emotion vector conversion unit 107 determines that all the emotion expression words have been converted into the sensitivity vectors, the sequence proceeds to step ST506.
  • the sentiment vector conversion unit 107 extracts the sentiment vector associated with each sentiment expression word from the sentiment space database 101 shown in FIG.
  • the sentiment vector conversion unit 107 converts the sensitivity expression word “lively” into a four-dimensional sensitivity vector (3, 2, 1, 1).
  • “2 3 1 2” is stored in each column of the row corresponding to the sentiment expression word “wakuwaku”.
  • the sensitivity vector conversion unit 107 converts the sensitivity expression word “wakuwaku” into a four-dimensional sensitivity vector (2, 3, 1, 2).
  • the sentiment vector conversion unit 107 transmits the sentiment vector information 205 as shown in FIG. 7A to the sentiment vector combination unit 108.
  • step ST506 the sensitivity vector combining unit 108 determines whether there are a plurality of sensitivity vectors obtained by the sensitivity vector conversion unit 107.
  • the emotion vector combining unit 108 determines that there are not a plurality of sensitivity vectors obtained by the sensitivity vector conversion unit 107, that is, the sensitivity vector information 205 from the sensitivity vector conversion unit 107. Is sent to the proper name search unit 109 as the sensitivity vector information 206 as it is, and the sequence proceeds to step ST510.
  • step ST506 when the emotion vector combining unit 108 determines that there are a plurality of sensitivity vectors obtained by the sensitivity vector conversion unit 107, the sequence proceeds to step ST507.
  • the sensitivity vector combining unit 108 performs sensitivity vector conversion based on the inflection included in the prosody information 203 extracted by the prosody information extraction unit 105 and the word order of the sensitivity expression words included in the language information sequence 202.
  • a weight is assigned to the sensitivity vector obtained by the unit 107.
  • the sensitivity vector combining unit 108 increases the weight when the inflection is strong, and decreases the weight when the intonation is weak. Also, the weight is increased when the word order is early, and the weight is decreased when the word order is later. Details of the processing in step ST507 will be described later.
  • step ST508 the sensitivity vector combining unit 108 determines whether or not weights have been given to all the sensitivity vectors obtained by the sensitivity vector conversion unit 107. In this step ST508, if the emotion vector combining unit 108 determines that there is an emotion vector to which no weight is given, the sequence returns to step ST507 and repeats the above processing. On the other hand, in step ST508, if the perception vector combining unit 108 determines that weights have been assigned to all perception vectors, the sequence proceeds to step ST509.
  • step ST509 the sensibility vector combining unit 108 combines all the sensibility vectors given weights in step ST507, and calculates a single sensibility vector.
  • the sensitivity vector combining unit 108 assigning weights to the sensitivity vectors in the sensitivity vector information 205 illustrated in FIG. 7, the sensitivity vector of the sensitivity expression word “lively” is (2.25, 1.5, 0). .75,0.75), and the sensitivity vector of the sensitivity expression word “wakuwaku” is (1.5, 2.25, 0.75, 1.5).
  • the sensitivity vector combining unit 108 calculates a single sensitivity vector (3.75, 3.75, 1.5, 2.25) by adding the two sensitivity vectors.
  • FIG. 7B shows sensitivity vector information 206 output by the sensitivity vector combination unit 108 in this case.
  • the proper name search unit 109 searches for the proper name from the proper name database 102 based on the single sentiment vector obtained by the sentiment vector conversion unit 107 or the sentiment vector combination unit 108. Specifically, using the single sensitivity vector as a search key, a sensitivity vector that is most similar to the search key is selected from the sensitivity vectors included in the unique name database 102 and is associated with the selected sensitivity vector. Extract unique names.
  • the speech recognition unit 104 obtains the linguistic information string “I want to be excited”
  • the Kansei expression word extraction unit 106 extracts the Kansei expression word “Waku Waku”
  • the Kansei vector conversion unit 107 uses a four-dimensional Kansei vector (2, 3 , 1, 2).
  • the proper name search unit 109 refers to the sensitivity vector of each row included in the proper name database 102 shown in FIG. 3, and the sensitivity vector having the most similar value to the sensitivity vector (2, 3, 1, 2).
  • the unique name associated with is searched. Similar sensitivity vectors are searched by using, for example, the similarity calculated using the cosine distance or the Euclidean distance.
  • the sensitivity vector (2, 3, 1, 2) of the emotional expression word “wakuwaku” has a slightly high “excited” value of “3” and “fun” and “romantic” values of “3”.
  • the value of “slow” is as low as “1”. Therefore, when the proper name search unit 109 searches the proper name database 102 shown in FIG. 3 using this sentiment vector as a search key, the sentiment vector (5, 4, 5) whose “excited” value is as high as “4”. 1, 2), the unique name “HIJ Land” associated with the emotional expression word “Wakuwaku” is extracted.
  • step ST511 the unique name information output unit 110 outputs information indicating the unique name searched by the unique name search unit 109 (proprietary name information 208).
  • the sensitivity vector combining unit 108 receives the prosody information 203 from the prosody information extraction unit 105, and receives the sensitivity vector information 205 from the sensitivity vector conversion unit 107.
  • the sensitivity vector combination unit 108 calculates a time series value of the fundamental frequency F0 of the sound corresponding to the sensitivity expression word from the information indicating the level of intonation included in the prosody information 203, and calculates the average value thereof. calculate.
  • step ST803 the sensitivity vector combining unit 108 determines whether the average value of the fundamental frequency F0 is equal to or greater than a preset threshold value.
  • the sequence proceeds to step ST804.
  • step ST803 if the perception vector combining unit 108 determines that the average value of the fundamental frequency F0 is equal to or greater than the threshold, the sequence proceeds to step ST805.
  • the sensitivity vector combining unit 108 determines the strength of the intonation.
  • the emotion vector combining unit 108 determines that the inflection is strong if the calculated average value of the fundamental frequency F0 is equal to or greater than the threshold value, and determines that the inflection is weak if the average value of the fundamental frequency F0 is less than the threshold value.
  • step ST804 the sensitivity vector combining unit 108 assigns a weight corresponding to the case where the inflection is weak to the sensitivity vector corresponding to the sensitivity expression word. That is, the sensitivity vector combining unit 108 reduces the weight for the sensitivity vector. Also, in step ST805, the sensitivity vector combining unit 108 assigns a weight according to the case where the inflection is strong to the sensitivity vector corresponding to the sensitivity expression word. That is, the sensitivity vector combining unit 108 increases the weight for the sensitivity vector.
  • step ST806 the affective vector combining unit 108 extracts the word order of the affective expression words included in the language information sequence 202.
  • step ST807 the affective vector combination unit 108 determines whether the word order is early.
  • step ST807 when the perceptual vector combination unit 108 determines that the word order is not early, the sequence moves to step ST808.
  • step ST807 when the perceptual vector combination unit 108 determines that the word order is early, the sequence proceeds to step ST809.
  • step ST808 the sensitivity vector combining unit 108 assigns a weight corresponding to the case where the word order is later to the sensitivity vector corresponding to the sensitivity expression word. That is, the sensitivity vector combining unit 108 reduces the weight for the sensitivity vector. Also, in step ST809, the sensitivity vector combining unit 108 assigns a weight corresponding to the sensitivity vector corresponding to the sensitivity expression word when the word order is early. That is, the sensitivity vector combining unit 108 increases the weight for the sensitivity vector.
  • the speech recognition unit 104 obtains the linguistic information string “buzzy and exciting” shown in FIG. 6, and the emotional expression word extraction unit 106 extracts the emotional expression words “lively” and “wakuwaku”, and the sensitivity vector conversion Assume that the unit 107 outputs the sensitivity vector information 205 shown in FIG. Further, it is assumed that the prosodic information extraction unit 105 extracts prosodic information 203 indicating that “lively” has weak inflection and “wakuwaku” has strong intonation. In this case, the sensitivity vector combining unit 108 weights the values (2, 3, 1, 2) of the sensitivity vectors corresponding to the sensitivity expression word “wakuwaku” according to the case where the inflection is strong (for example, 1.5).
  • the sensitivity vector combining unit 108 weights the values (3, 2, 1, 1) of the sensitivity vectors corresponding to the sensitivity expression word “lively” according to the case where the inflection is weak (for example, 0.5). Is assigned (multiplication), and the values of the columns of the sensitivity vector are (1.5, 1, 0.5, 0.5).
  • the emotion vector combining unit 108 compares the average values of the fundamental frequencies F0 corresponding to the respective emotional expression words, and determines the strength of the inflection based on the magnitude. May be.
  • the sensitivity vector combining unit 108 assigns a weight (for example, 0.5) to the value (3, 2, 1, 1) of the sensitivity vector corresponding to the sensitivity expression word “lively” when the inflection is weak. ) Is given (multiplied) to the values (1.5, 1, 0.5, 0.5) given (multiplied), and each weight of the sensitivity vector is given (multiplied). Let the column values be (2.25, 1.5, 0.75, 0.75).
  • the sensitivity vector combining unit 108 weights the values (2, 3, 1, 2) of the sensitivity vectors corresponding to the sensitivity expression word “wakuwaku” according to the case where the inflection is strong (for example, 1.5). Is assigned (multiplied) to the value (3, 4.5, 1.5, 3) obtained by adding (multiplying) to the values (3, 4.5, 1.5, 3). Is (1.5, 2.25, 0.75, 1.5).
  • the sensitivity vector combining unit 108 calculates the weight of the sensitivity vector corresponding to the sensitivity expression word that is in a down tone and has a slow speech speed based on the tone and the speech speed included in the prosody information 203. You may perform the process to make small. It is assumed that the user's certainty is low when the user makes an utterance that expresses hesitation or confusion and is high when the utterance does not express hesitation or confusion.
  • the speech recognition unit 104 obtains the language information string “Romantic ... Hmm, you can relax slowly!”
  • the prosodic information extraction unit 105 indicates that “romantic ... mm” is slow in speaking speed, especially “romantic ...” is in a down tone, and “slow, delicious place!” ⁇ ⁇ ”Is faster, especially“ delicious place! ”
  • Extracted prosodic information 203 indicating that the speech was spoken with strong inflection compared to“ romantic ... ”and“ can do it slowly ”
  • the prosodic information extraction unit 105 indicates that “romantic ... mm” is slow in speaking speed, especially “romantic ...” is in a down tone, and “slow, delicious place!” ⁇ ⁇ ”Is faster, especially“ delicious place! ”
  • Extracted prosodic information 203 indicating that the speech was spoken with strong inflection compared to“ romantic ... ”and“ can do it slowly ”
  • the sensitivity vector combining unit 108 assigns weights to the emotion expression words “romantic”, “slow”, and “delicious” extracted from the language information string 202 based on the prosodic information 203.
  • “romantic ...” is an utterance with a downward tone and a slow speaking speed, so the user is confusing or confused, that is, speaking with a low degree of certainty. Can be determined. Therefore, the sensitivity vector combining unit 108 sets the priority of the sensitivity expression word “romantic” as a word used for the search, that is, reduces the weight of the corresponding sensitivity vector.
  • the sensitivity vector combination unit 108 uses the sensitivity expression word “slow” as a reference for the sensitivity expression word used for the search, and does not assign a weight (the weight is set to “0”). In addition, the sensitivity vector combination unit 108 sets a high priority for the sensitivity expression word “delicious”, that is, increases the weight.
  • the sensitivity vector combining unit 108 performs processing to reduce the weight of the sensitivity vector corresponding to the sensitivity expression word uttered in an upward tone based on the prosodic information 203 or not to add the weight. May be. For example, when an upward utterance such as “romantic?” Is made, it can be determined that the user has expressed an utterance expressing dissatisfaction or disgust. Therefore, the sensitivity vector combination unit 108 does not assign a weight or a weight to the sensitivity expression word “romantic” in which the user expresses dissatisfaction or disgust.
  • the determination of the tone when each sensitivity expression word is uttered in the sensitivity vector combination unit 108 may be determined based on the degree of change in the tone corresponding to the sensitivity expression word, or may be included in the language information string 202. It may be determined by comparing with the tone corresponding to the sensibility expression word.
  • an operation example of weighting to the sensitivity vector based on the tone of the sound and the speech speed by the sensitivity vector combining unit 108 in step ST507 will be described with reference to FIG.
  • the flow shown in FIG. 10 is shown independently from the flow shown in FIG. 8, but the processing shown in FIG. 10 is performed together with the processing shown in FIG.
  • the sensitivity vector combining unit 108 receives the prosody information 203 from the prosody information extraction unit 105, and receives the sensitivity vector information 205 from the sensitivity vector conversion unit 107.
  • step ST1002 the sensitivity vector combining unit 108 calculates a time series value of the fundamental frequency F0 of the sound corresponding to the sensitivity expression word from the prosodic information 203.
  • the sensitivity vector combining unit 108 divides the section of the fundamental frequency F0, and extracts the value of the representative fundamental frequency F0 of each section. At this time, for example, the sensitivity vector combining unit 108 divides the section of the fundamental frequency F0 into two equal parts.
  • the representative value refers to a value such as a maximum value, an average value, or a median value of the fundamental frequency F0 in a section where the fundamental frequency F0 value is extracted.
  • step ST1004 the sensibility vector combining unit 108 calculates a difference in the value of the representative fundamental frequency F0 in each section.
  • the sensitivity vector combining unit 108 subtracts the value of the representative fundamental frequency F0 in the previous section from the value of the representative fundamental frequency F0 in the subsequent section.
  • step ST1005 the emotion vector combining unit 108 determines whether the absolute value of the difference is equal to or greater than a preset threshold value. In this step ST1005, when the emotion vector combining unit 108 determines that the absolute value of the difference is not equal to or greater than the threshold value, the sequence ends. On the other hand, in step ST1005, when the affective vector combination unit 108 determines that the absolute value of the difference is equal to or greater than the threshold, the sequence proceeds to step ST1006.
  • step ST1006 the emotion vector combining unit 108 determines whether the difference is a positive value.
  • step ST1006 when the perceptual vector combining unit 108 determines that the difference value is not positive, the sequence proceeds to step ST1007.
  • step ST1006 when the perceptual vector combining unit 108 determines that the difference value is positive, the sequence proceeds to step ST1009.
  • step ST1007 the affective vector combining unit 108 determines whether or not the utterance time length is greater than or equal to a preset threshold value.
  • the sequence ends.
  • the sequence proceeds to step ST1008.
  • step ST1008 the sensitivity vector combining unit 108 assigns a weight according to the case of the down tone to the sensitivity vector corresponding to the sensitivity expression word. That is, the sensitivity vector combining unit 108 reduces the weight for the sensitivity vector. Also, in step ST1009, the sensitivity vector combining unit 108 assigns a weight according to the upward tone to the sensitivity vector corresponding to the sensitivity expression word. That is, the sensitivity vector combination unit 108 reduces the weight for the sensitivity vector or sets it to zero.
  • the sensitivity vector combination unit 108 determines the tone based on the difference between the values of the representative fundamental frequency F0, both the absolute value of the difference and the threshold value, and the difference value magnitude (positive / negative) are both used. The case of judging was shown. However, the present invention is not limited to this, and the emotion vector combining unit 108 may perform only one of the above determinations.
  • the sensitivity vector combining unit 108 determines the tone using a difference in the value of the representative fundamental frequency F0 in other sensitivity expression words as a threshold value. You may go.
  • the sensibility vector combination unit 108 represents a representative basic extracted from each section of the basic frequency F0 corresponding to the first half “roman” and second half “tick” of the sensibility expression word “romantic”. It is assumed that “romantic” is determined to be in a down tone based on the difference in the value of the frequency F0.
  • the sensibility vector combining unit 108 extracts a difference in the value of the representative fundamental frequency F0 from each section of the fundamental frequency F0 corresponding to the first half “Yu” and the second half “Kuri” of the sensibility expression word “slow”, A “slow” tone is determined by comparison with a difference in the value of the representative fundamental frequency F0 of “romantic”.
  • the difference between the values of the fundamental frequency F0 of “slow” is smaller than that of “romantic”, it can be determined that “slow” is a simple tone.
  • the sensitivity vector combining unit 108 assigns weight values to the sensitivity vectors based on the prosodic information 203 corresponding to the sensitivity expression words when weighting the sensitivity vectors according to the pitch, strength, speech speed, length of the speech, and the like. May be given a preset uniform value, or may be given a value according to the degree of change in pitch, strength, etc. The degree of change such as the level of the sound or the strength may be set by calculating the degree of change from a preset threshold value, or the prosodic information 203 corresponding to other emotional expression words included in the language information string 202. May be calculated and set.
  • information indicating a plurality of sensitivity expression words and information indicating a sensitivity vector indicating a degree of relationship with a plurality of representative sensitivity expression words for each of the sensitivity expression words is extracted from the speech information 201.
  • a prosody information extraction unit 105 a sensitivity expression word extraction unit 106 that refers to the sensitivity space database 101 and extracts all the emotional expression words included in the language information string 202
  • the sensitivity space database 101 is referred to and the sensitivity vector conversion unit 107 that converts the sensitivity expression word extracted by the sensitivity expression word extraction unit 106 into a sensitivity vector
  • the sensitivity vector conversion unit 107 obtains a plurality of sensitivity vectors
  • a sensitivity vector combining unit 108 that calculates a single sensitivity vector from the plurality of sensitivity vectors based on the word order of the sensitivity expression words included in the prosody information 203 and the language information string 202
  • a sensitivity vector conversion unit 107 or a unique name search unit 109 for searching for a unique name from the unique name database 102 based on a single sensitivity vector obtained by the sensitivity vector combining unit 108, and information indicating a unique name searched by the unique name search unit 109
  • a proper name information output unit 110 that outputs the You
  • the proper name database 102 includes information indicating a plurality of proper names and information indicating a sensitivity vector indicating a degree of relationship with a plurality of representative affective expression words for each proper name.
  • the unique name may be a search target, and for example, a song name, a car name, a television program name, a font name, and the like are search targets. Therefore, the unique name database 102 can be easily created, expanded, exchanged, and diverted.
  • the sensitivity vector combining unit 108 increases the weight of the sensitivity vector corresponding to the emotion expression word having a strong inflection, and decreases the weight of the sensitivity vector corresponding to the sensitivity expression word having a weak intonation, Sensitivity vectors can be combined. As a result, a unique name that better reflects the user's intention to speak can be obtained.
  • the sensitivity vector combining unit 108 increases the weight of the sensitivity vector corresponding to the sensitivity expression word with the earlier word order, and decreases the weight of the sensitivity vector corresponding to the sensitivity expression word with the word order later. Sensitivity vectors can be combined. As a result, a unique name that better reflects the user's intention to speak can be obtained.
  • the sensitivity vector combining unit 108 can combine the sensitivity vectors by reducing the weight of the sensitivity vector corresponding to the sensitivity expression word having the falling tone and the slow speaking speed. Thereby, the priority of the sensitivity expression word contained in the search condition expressed by the user's utterance is set, and the proper name reflecting the certainty of the user's utterance can be obtained.
  • the sensitivity vector combining unit 108 can combine the sensitivity vectors without decreasing or giving a weight to the sensitivity vector corresponding to the emotion expression word having an upward tone. Thereby, a search condition is narrowed down from a user's utterance voice, and a proper name reflecting a user's intention can be obtained more accurately.
  • the voice input unit 103 obtains the voice information 201 and the voice recognition unit 104 converts the voice information 201 into the language information string 202.
  • the search device 1 based on emotional expression words may accept input of characters instead of voice.
  • a character input unit that receives a character input and obtains a language information string (character information) 202 is provided.
  • the prosodic information extraction unit 105 is not necessary.
  • the sensitivity vector conversion unit 107 obtains a plurality of sensitivity vectors
  • the sensitivity vector combining unit 108 generates a single from the plurality of sensitivity vectors based on the word order of the sensitivity expression words included in the language information sequence 202.
  • the sensitivity vector is calculated.
  • FIG. 11 is a diagram showing a functional configuration example of the search device 1b based on the sensitivity expression word according to Embodiment 2 of the present invention.
  • the search device 1b using the sensitivity expression word according to the second embodiment shown in FIG. 11 is changed from the search device 1 using the sensitivity expression word according to the first embodiment shown in FIG. 1 to the proper name database 102b.
  • the proper name search unit 109 is changed to the proper name search unit 109b, and a genre extraction unit 111 is added.
  • Other configurations are the same, and the same reference numerals are given and description thereof is omitted.
  • the proper name database 102b includes information indicating a plurality of proper names (proprietary name information), information indicating the genre for each proper name (genre information), and a degree of relationship between a plurality of representative affective expression words for each proper name.
  • Information indicating a sensitivity vector indicating the above.
  • the proper name is a character string (language string) or an identification number that represents content (search target) such as a person, a facility, a song, or a moving image.
  • the genre is a character string representing the classification of the proper name.
  • the sensitivity vector includes, for example, a value indicating the strength of the relationship between the proper name and a plurality of representative sensitivity expression words.
  • FIG. 12 shows an example of the proper name database 102b.
  • the proper name 31 and the genre 33 are shown in each row
  • the representative sentiment expression word 32 is shown in each column
  • the corresponding proper name 31 and the corresponding proper name 31 are shown in each cell.
  • a value (1 to 5 in FIG. 12) indicating the strength of the relationship with the corresponding representative sensibility expression word 32 is shown.
  • the value of a certain cell is 1, it indicates that the relationship between the proper name 31 of the row and the dimension of the column (representative emotion expression word 32) is weak.
  • the value of a certain square is 5, it indicates that the relationship between the proper name 31 of the row and the dimension of the column (representative sensibility expression word 32) is strong.
  • the proper name “ABC Nojima” is associated with the genre “walk”. As described above, the proper name “ABC Nojima” in FIG. 12 includes a genre “walk” for classifying proper names, and a four-dimensional sensitivity vector in which values indicating the relationship between proper names and representative affective expressions are stored. Are stored in the unique name database 102b.
  • the difference between the proper name database 102 in the first embodiment and the proper name database 102b in the second embodiment is that genre information is added to the proper name database 102 in the first embodiment.
  • the genre extraction unit 111 extracts a genre from the language information sequence 202 obtained by the speech recognition unit 104 with reference to the proper name database 102b. That is, the genre extraction unit 111 analyzes the linguistic information string 202 by natural language processing, and extracts a phrase that matches the genre included in the proper name database 102b as a genre. Information indicating the genre extracted by the genre extraction unit 111 (genre information 209) is transmitted to the unique name search unit 109b.
  • the proper name search unit 109b searches for the proper name from the proper name database 102 based on the single sentiment vector obtained by the sentiment vector conversion unit 107 or the sentiment vector combination unit 108 and the genre extracted by the genre extraction unit 111. . In other words, the proper name search unit 109b searches the proper name database 102b for proper names that are associated with sensitivity vectors similar to the single sensitivity vector and are classified into the genre. Information (unique name information 207) indicating the unique name searched by the unique name search unit 109b is transmitted to the unique name information output unit 110.
  • the configuration other than the genre extraction unit 111, the proper name search unit 109b, and the proper name database 102b is the same as that of the first embodiment, and a description thereof will be omitted.
  • the genre extraction unit 111 and the proper name search unit 109b are executed by the processor 301 which is an arithmetic device.
  • the proper name database 102b is stored in the memory 302 which is a storage device.
  • processing of the genre extraction unit 111 and the unique name search unit 109b may be realized as an electric circuit.
  • steps ST1301 to ST1303 are added to the flowchart shown in FIG.
  • the other processes are the same, and the same numbers are assigned and the description thereof is omitted.
  • a case in which the sensitivity space database 101 shown in FIG. 2 and the proper name database 102b shown in FIG. 12 are used is shown.
  • the genre extraction unit 111 refers to the unique name database 102b and extracts a genre from the language information string 202 obtained by the speech recognition unit 104.
  • the speech recognition unit 104 obtains the language information string “moist restaurant” shown in FIG.
  • the genre “restaurant” is included in the proper name database 102b shown in FIG.
  • the genre extraction unit 111 extracts the word “restaurant” from the language information string “moist restaurant” shown in FIG. 14 as a genre.
  • step ST1302 the proper name search unit 109b determines whether the genre is extracted by the genre extraction unit 111, that is, whether the genre information 209 is received. In step ST1302, if the proper name search unit 109b determines that the genre is not extracted by the genre extraction unit 111, the sequence proceeds to step ST510. On the other hand, when the unique name search unit 109b determines that the genre is extracted by the genre extraction unit 111, the sequence proceeds to step ST1303.
  • the unique name search unit 109b creates a unique name from the unique name database 102 based on the single sentiment vector obtained by the sentiment vector conversion unit 107 or the sentiment vector combination unit 108 and the genre extracted by the genre extraction unit 111. Search for a name. Specifically, the single sensitivity vector is used as a search key, the sensitivity vector most similar to the search key is selected from the sensitivity vectors classified into the genre included in the proper name database 102b, and the selected The unique name associated with the sensitivity vector is extracted.
  • the speech recognition unit 104 obtains the language information string “moist restaurant” shown in FIG. 14, the emotion expression word extraction unit 106 extracts the sensitivity expression word “moist”, and the sensitivity vector conversion unit 107 displays the language information string in FIG.
  • the sensibility space database 101 is converted into a four-dimensional sensibility vector (1, 1, 4, 5)
  • the genre extraction unit 111 extracts the genre “restaurant”.
  • the unique name search unit 109b refers to the sensitivity vector classified into the genre included in the proper name database 102b shown in FIG. 12, and is the value most similar to the sensitivity vector (1, 1, 4, 5). The unique name associated with the sensitivity vector having is searched.
  • the sensitivity vector (1, 1, 4, 5) of the sensitivity expression word “moist” has a high “romantic” value of “5” and a “slow” value of “4”.
  • the values of “fun” and “excited” are as low as “1”. Therefore, when the proper name search unit 109b searches the proper name database 102b shown in FIG. 12 using this sensitivity vector as a search key, it is classified into the genre “restaurant” and the value of “romantic” is as high as “5”.
  • the unique name “LMN kitchen” associated with the sentiment vector (2, 1, 4, 5) is extracted as a unique name having a strong relationship with the sentiment expression word “moist”.
  • the proper name database 102b also includes information indicating the genre for each proper name, refers to the proper name database 102b, and extracts a genre from the language information column 202.
  • the unique name search unit 109b includes a single sensitivity vector obtained by the sensitivity vector conversion unit 107 or the sensitivity vector combination unit 108, and the genre extracted by the genre extraction unit 111, from the proper name database 102b. Since the configuration is such that the proper name is searched, when the genre is included in the language information column 202, the proper name in the proper name database 102b to be searched is narrowed down by the genre. You can select a unique name to search from among the narrowed specific names, making it easier for users to speak Ku unique name that has been classified as a genre that reflects it is more possible to accurately search for.
  • the voice input unit 103 and the voice recognition unit 104 are used.
  • the present invention is not limited to this, and a character input unit may be provided instead of the voice input unit 103 and the voice recognition unit 104, as in the first embodiment.
  • the invention of the present application can be freely combined with each embodiment, modified with any component in each embodiment, or omitted with any component in each embodiment. .
  • the device for searching by emotional expression word is capable of searching for a proper name reflecting the user's search condition by using the word order of the sensitivity expression word, and searching by a sensitivity expression word for searching for a proper name by the sensitivity expression word Suitable for use in devices and the like.
  • 1,1b Sensitive expression search device 101 Kansei space database, 102, 102b proper name database, 103 speech input unit, 104 speech recognition unit, 105 prosodic information extraction unit, 106 sensitivity expression word extraction unit, 107 sensitivity vector conversion unit , 108 Kansei vector combination part, 109, 109b proper name search part, 110 proper name information output part, 111 genre extraction part, 201 speech information, 202 language information string, 203 prosodic information, 204 affective expression word information, 205 affective vector information , 206 Kansei vector information, 207 proper name information, 208 proper name information, 209 genre information, 301 processor, 302 memory, 303 input interface, 304 output interface.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Databases & Information Systems (AREA)
  • Data Mining & Analysis (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Computational Linguistics (AREA)
  • General Health & Medical Sciences (AREA)
  • Machine Translation (AREA)
  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)

Abstract

This device for searching based on a feeling word is provided with: a feeling space database (101) which includes both information indicating a plurality of feeling words, and information indicating feeling vectors that each indicate the degree of relationship between one of the feeling words and a plurality of representative feeling words; a proper noun database (102) which includes both information indicating a plurality of proper nouns, and information indicating feeling vectors that each indicate the degree of relationship between one of the proper nouns and the plurality of representative feeling words; a character input unit which acquires a word information string (202); a feeling word extraction unit (106) which refers to the feeling space database (101) and extracts all feeling words from the word information string (202); a feeling vector conversion unit (107) which refers to the feeling space database (101) and converts the extracted feeling words into one or more feeling vectors; a feeling vector combining unit (108) which, if the feeling vector conversion unit (107) has produced a plurality of feeling vectors, calculates a single feeling vector on the basis of the order of the feeling words in the word information string (202); a proper noun search unit (109) which searches the proper noun database (102) for a proper noun on the basis of the calculated single feeling vector; and a proper noun information output unit (110) which outputs information indicating the found proper noun.

Description

感性表現語による検索装置Retrieval device using Kansei expressions
 この発明は、感性表現語により固有名を検索する感性表現語による検索装置に関する。 The present invention relates to a search device using a sensitivity expression word that searches for a proper name using a sensitivity expression word.
 従来から、データベース等が保持するテキストや画像又はそれらを含むコンテンツ等のデータを、「きれいな」や「おいしい」等のように印象を表す感性表現語から検索する手法が種々提案されている。ここで、検索キーとなる感性表現語と検索対象となるデータとのマッチング手法としては、次の二つ手法が挙げられる。 Conventionally, various methods for searching data such as texts and images held in a database or the like or data including contents including them from emotional expressions that express an impression such as “beautiful” or “delicious” have been proposed. Here, there are the following two methods as a matching method between a sensitivity expression word as a search key and data to be searched.
 第一の手法は、予め個々のデータが与える印象を感性表現語対を用いた印象評定実験で実測することで当該データ毎の印象データを作成しておき、検索の際にこの印象データと入力された感性表現語とのマッチングを行う手法である。
 また、第二の手法は、検索の際に入力された感性表現語を満足する検索対象の色や形といった物理計測値に基づき、各データに予め付与した物理量とのマッチングを行う手法である。
The first method is to create impression data for each piece of data by measuring the impression given by the individual data in advance using an impression rating experiment using Kansei expression pairs, and input this impression data when searching This is a technique for matching with the sentiment expression word.
The second method is a method of matching physical quantities previously assigned to each data based on physical measurement values such as colors and shapes to be searched that satisfy the emotional expression words input at the time of the search.
 しかしながら、第一の手法によりマッチングを行う場合、検索キーとして用いることができる感性表現語が、印象評定実験で用いたものに限定されてしまう。そのため、ユーザは、予め使用可能な感性表現語を記憶しておくか、又は、別途作成しておいた感性表現語表から該当する感性表現語を探して使用する必要があった。このため、検索したいデータに対してユーザが感じている感覚及び感性に一致した表現で検索装置への入力を行うことができなかった。また、印象データによるマッチングを行う場合、予め検索対象となる全てのデータの印象を評価しておく必要があり、膨大なデータ件数を有する場合には極めて困難な作業となっていた。 However, when matching is performed by the first method, the sensitivity expression words that can be used as search keys are limited to those used in the impression evaluation experiment. For this reason, the user needs to store the emotional expression words that can be used in advance or search for the corresponding emotional expression word from a separately prepared emotional expression word table and use it. For this reason, it has been impossible to perform input to the search device with an expression that matches the sense and sensibility that the user feels with respect to the data to be searched. In addition, when performing matching using impression data, it is necessary to evaluate impressions of all data to be searched in advance, which is extremely difficult when the number of data is large.
 一方、第二の手法によりマッチングを行う場合、感性表現語に基づき抽出した物理計測値が、当該感性表現語として表される主観的印象に対する類似性を十分に反映しているとは限らない。よって、ユーザの要求を満たす検索結果を得る確率が低い。 On the other hand, when matching is performed by the second method, the physical measurement value extracted based on the emotional expression word does not necessarily sufficiently reflect the similarity to the subjective impression expressed as the emotional expression word. Therefore, the probability of obtaining a search result that satisfies the user's request is low.
 第二の手法における上記課題に対し、ユーザが自然言語で表現した条件文から、主観的な印象に対する類似性を十分に反映した検索結果を得ることが可能なデータ検索装置が提案されている(例えば特許文献1参照)。 In response to the above-described problem in the second method, a data search apparatus has been proposed that can obtain a search result that sufficiently reflects similarity to a subjective impression from a conditional sentence expressed by a user in natural language ( For example, see Patent Document 1).
 特許文献1に開示されたデータ検索装置では、検索対象であるイメージ情報の検索条件として、自然言語で表現された検索条件文から自然言語処理により感性表現語を抽出する。そして、予め複数の感性表現語に対する主観的な印象を付与した主観評価情報辞書から、ユーザにより入力された感性表現語に対応する検索印象データを抽出する。また、感性表現語が複数抽出された場合には、統合処理により統合した印象データを検索印象データとする。主観評価情報辞書に格納された各感性表現語に対する印象データは、印象データを構成する各主観的な印象要素の強さを指定することで、印象データの各主観的印象要素を座標軸とする座標空間において、多次元の座標値(ベクトル)として決定されている。そして、主観評価情報辞書から、抽出した検索印象データと最も類似する、即ち、ユークリッド距離が最も近い印象データを有するイメージ情報を、検索結果として出力する。 In the data search apparatus disclosed in Patent Document 1, a Kansei expression word is extracted by a natural language process from a search condition sentence expressed in a natural language as a search condition for image information to be searched. Then, search impression data corresponding to the emotional expression words input by the user is extracted from a subjective evaluation information dictionary in which subjective impressions are given to a plurality of emotional expression words. Further, when a plurality of emotion expression words are extracted, the impression data integrated by the integration process is set as the search impression data. Impression data for each emotional expression word stored in the subjective assessment information dictionary is a coordinate with each subjective impression element of the impression data as the coordinate axis by specifying the strength of each subjective impression element constituting the impression data. In space, it is determined as a multidimensional coordinate value (vector). Then, image information having impression data that is most similar to the extracted search impression data, that is, having the closest Euclidean distance, is output as a search result from the subjective evaluation information dictionary.
特開2001-101222号公報JP 2001-101222 A
 特許文献1に開示された手法では、自然言語で表現された検索条件文から抽出した感性表現語を検索キーとし、検索条件文に程度副詞が存在する場合に、該当する感性表現語の印象データを程度副詞による要求程度に合うように補正して検索を行っている。しかしながら、ユーザの発話により感性表現語の入力がなされた場合の抑揚の強弱等の音声的特徴や、感性表現語の語順等を考慮した、主観的な印象に対する類似性を十分に反映した検索結果は得られないという課題がある。 In the technique disclosed in Patent Literature 1, when a sensitivity expression word extracted from a search condition sentence expressed in a natural language is used as a search key and a degree adverb exists in the search condition sentence, impression data of the corresponding sensitivity expression word Is corrected to meet the degree required by the degree adverb. However, search results that sufficiently reflect the similarity to subjective impressions, taking into account the phonetic features such as intensities of inflection when the utterance is input by the user's utterance, and the word order of the sensibility expressions There is a problem that cannot be obtained.
 この発明は、上記のような課題を解決するためになされたもので、感性表現語の語順を利用し、ユーザによる検索条件をよりよく反映した固有名を検索できる感性表現語による検索装置を実現することを目的とする。 The present invention has been made to solve the above-described problems, and realizes a search apparatus using a Kansei expression word that can search for a proper name that better reflects a user's search conditions using the word order of Kansei expression words. The purpose is to do.
 この発明に係る感性表現語による検索装置は、印象を表す複数の感性表現語を示す情報、及び、当該感性表現語毎に、複数の代表的な感性表現語との関係度合いを示す感性ベクトルを示す情報を含む感性空間データベースと、複数の固有名を示す情報、及び、当該固有名毎に、複数の代表的な感性表現語との関係度合いを示す感性ベクトルを示す情報を含む固有名データベースと、文字情報を得る文字入力部と、感性空間データベースを参照し、文字情報に含まれる感性表現語を全て抽出する感性表現語抽出部と、感性空間データベースを参照し、感性表現語抽出部で抽出された感性表現語を感性ベクトルに変換する感性ベクトル変換部と、感性ベクトル変換部が複数の感性ベクトルを得た場合に、文字情報に含まれる感性表現語の語順に基づき、当該複数の感性ベクトルから単一の感性ベクトルを算出する感性ベクトル結合部と、感性ベクトル変換部又は感性ベクトル結合部で得られた単一の感性ベクトルに基づき、固有名データベースから固有名を検索する固有名検索部と、固有名検索部で検索された固有名を示す情報を出力する固有名情報出力部とを備えたことを特徴とする。 According to the present invention, there is provided an apparatus for searching for emotional expression words, including information indicating a plurality of emotional expression words representing an impression, and a sensitivity vector indicating a degree of relationship with a plurality of typical emotional expression words for each of the emotional expression words. Kansei space database including information to indicate, information indicating a plurality of proper names, and a proper name database including information indicating a sensitivity vector indicating a degree of relationship with a plurality of typical sensitivity expression words for each proper name, The character input unit for obtaining character information and the Kansei space database are referred to, the Kansei expression word extracting unit for extracting all Kansei expression words contained in the character information, and the Kansei space database are extracted by referring to the Kansei space database. Kansei vector conversion unit that converts the sentiment expression words into sensitivity vectors, and when the sensitivity vector conversion unit obtains a plurality of sensitivity vectors, the order of the sensitivity expression words included in the character information Based on the sensitivity vector combination unit that calculates a single sensitivity vector from the plurality of sensitivity vectors and the single sensitivity vector obtained by the sensitivity vector conversion unit or the sensitivity vector combination unit, the proper name is obtained from the proper name database. A unique name search unit for searching and a unique name information output unit for outputting information indicating the unique name searched by the unique name search unit are provided.
 この発明によれば、上記のように構成したので、感性表現語の語順を利用し、ユーザによる検索条件をよりよく反映した固有名を検索できる。 According to the present invention, since it is configured as described above, it is possible to search for a proper name that better reflects the search condition by the user by using the word order of the emotional expression words.
この発明の実施の形態1に係る感性表現語による検索装置の機能構成例を示す図である。It is a figure which shows the function structural example of the search device by the sensitivity expression word which concerns on Embodiment 1 of this invention. この発明の実施の形態1における感性空間データベースの一例を示す図である。It is a figure which shows an example of the sensitivity space database in Embodiment 1 of this invention. この発明の実施の形態1における固有名データベースの一例を示す図である。It is a figure which shows an example of the proper name database in Embodiment 1 of this invention. この発明の実施の形態1に係る感性表現語による検索装置のハードウェア構成例を示す図である。It is a figure which shows the hardware structural example of the search device by the sensitivity expression word which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る感性表現語による検索装置の動作例を示すフローチャートである。It is a flowchart which shows the operation example of the search device by the sensitivity expression word which concerns on Embodiment 1 of this invention. この発明の実施の形態1における言語情報列の一例を示す図である。It is a figure which shows an example of the language information row | line in Embodiment 1 of this invention. 図7Aはこの発明の実施の形態1における感性ベクトル変換部から出力される感性ベクトル情報の一例を示す図であり、図7Bはこの発明の実施の形態1における感性ベクトル結合部から出力される感性ベクトル情報の一例を示す図である。FIG. 7A is a diagram showing an example of sensitivity vector information output from the sensitivity vector conversion unit according to Embodiment 1 of the present invention, and FIG. 7B is a sensitivity output from the sensitivity vector combination unit according to Embodiment 1 of the present invention. It is a figure which shows an example of vector information. この発明の実施の形態1における感性ベクトル結合部による重み付与動作の一例を示すフローチャートである。It is a flowchart which shows an example of the weight provision operation | movement by the sensitivity vector coupling | bond part in Embodiment 1 of this invention. この発明の実施の形態1における言語情報列の別の一例を示す図である。It is a figure which shows another example of the language information sequence in Embodiment 1 of this invention. この発明の実施の形態1における感性ベクトル結合部による重み付与動作の別の一例を示すフローチャートである。It is a flowchart which shows another example of the weight provision operation | movement by the sensitivity vector coupling | bond part in Embodiment 1 of this invention. この発明の実施の形態2に係る感性表現語による検索装置の機能構成例を示す図である。It is a figure which shows the function structural example of the search device by the sensitivity expression word which concerns on Embodiment 2 of this invention. この発明の実施の形態2における固有名データベースの一例を示す図である。It is a figure which shows an example of the proper name database in Embodiment 2 of this invention. この発明の実施の形態2に係る感性表現語による検索装置の動作例を示すフローチャートである。It is a flowchart which shows the operation example of the search device by the sensitivity expression word which concerns on Embodiment 2 of this invention. この発明の実施の形態2における言語情報列の一例を示す図である。It is a figure which shows an example of the language information row | line in Embodiment 2 of this invention.
 以下、この発明の実施の形態について図面を参照しながら詳細に説明する。
実施の形態1.
 図1はこの発明の実施の形態1に係る感性表現語による検索装置1の機能構成例を示す図である。
 感性表現語による検索装置1は、図1に示すように、感性空間データベース101、固有名データベース102、音声入力部103、音声認識部104、韻律情報抽出部105、感性表現語抽出部106、感性ベクトル変換部107、感性ベクトル結合部108、固有名検索部109及び固有名情報出力部110を備えている。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
Embodiment 1 FIG.
FIG. 1 is a diagram showing an example of a functional configuration of a search device 1 using a sensitivity expression word according to Embodiment 1 of the present invention.
As shown in FIG. 1, the retrieval apparatus 1 by a sensitivity expression word includes a sensitivity space database 101, a proper name database 102, a speech input unit 103, a speech recognition unit 104, a prosody information extraction unit 105, a sensitivity expression word extraction unit 106, A vector conversion unit 107, a sensitivity vector combination unit 108, a proper name search unit 109, and a proper name information output unit 110 are provided.
 感性空間データベース101は、複数の感性表現語を示す情報(感性表現語情報)と、当該感性表現語毎の複数の代表感性表現語との関係度合いを示す感性ベクトルを示す情報(感性ベクトル情報)とを含む。
 なお、感性表現語は、自然言語で表現され、印象を表す文字列(言語列)である。また、代表感性表現語は、感性表現語のうちの、多くの感性表現語を表現可能な代表的な感性表現語である。また、感性ベクトルとしては、例えば、感性表現語と複数の代表感性表現語との関係の強さを示す値が挙げられる。
The Kansei space database 101 is information (Kansei vector information) indicating a Kansei vector indicating the degree of relationship between information indicating Kansei expression words (Kansei expression word information) and a plurality of representative Kansei expressions for each Kansei expression word. Including.
Note that the sensitivity expression word is a character string (language string) that is expressed in a natural language and represents an impression. The representative sensitivity expression word is a typical sensitivity expression word that can express many sensitivity expression words among the sensitivity expression words. The sensitivity vector includes, for example, a value indicating the strength of the relationship between the sensitivity expression word and a plurality of representative sensitivity expression words.
 図2に、感性空間データベース101の一例を示す。
 図2に示す感性空間データベース101では、各行に感性表現語21が示され、各列に代表感性表現語22が示され、各行及び各列から成る各マスに、該当する感性表現語21と該当する代表感性表現語22との関係の強さを示す値(図2では1~5)が示されている。ここで、あるマスの値が1であれば、その行の感性表現語21とその列の次元(代表感性表現語22)との関係が弱いことを示す。また、あるマスの値が5であれば、その行の感性表現語21とその列の次元(代表感性表現語22)との関係が強いことを示す。
FIG. 2 shows an example of the sensitivity space database 101.
In the Kansei space database 101 shown in FIG. 2, the Kansei expression word 21 is shown in each row, the representative Kansei expression word 22 is shown in each column, and the corresponding Kansei expression word 21 and the corresponding cell are composed of each row and each column. A value (1 to 5 in FIG. 2) indicating the strength of the relationship with the representative sensitivity expression word 22 is shown. Here, if the value of a certain square is 1, it indicates that the relationship between the sensitivity expression word 21 of the row and the dimension (representative sensitivity expression word 22) of the column is weak. Further, if the value of a certain square is 5, it indicates that the relationship between the sensitivity expression word 21 in the row and the dimension of the column (representative sensitivity expression word 22) is strong.
 図2に示す感性空間データベース101では、例えば、感性表現語「落ち着いた」と、代表感性表現語「たのしい」、「興奮した」、「ゆっくり」、「ロマンチック」のそれぞれとの関係を示す値「2」、「1」、「5」、「3」が該当するマスに格納されている。これは、感性表現語「落ち着いた」は、代表感性表現語「ゆっくり」との関係は強く、代表感性表現語「ロマンチック」との関係はやや強く、代表感性表現語「たのしい」及び「興奮した」との関係は弱いことを示している。このように、図2における感性表現語「落ち着いた」は、感性表現語と代表感性表現語との関係を示す値が格納された4次元の感性ベクトルと対応付けられ、感性空間データベース101に保持される。 In the sensitivity space database 101 shown in FIG. 2, for example, a value “indicating a relationship between the sensitivity expression word“ calm ”and each of the representative emotion expression words“ fun ”,“ excited ”,“ slow ”, and“ romantic ”. “2”, “1”, “5”, “3” are stored in the corresponding square. This is because the sensibility expression “settled” is strongly related to the representative sensation expression “slow”, and the relationship to the representative sensation expression “romantic” is somewhat strong, and the representative sensation expression “fun” and “excited” "Is a weak relationship. As described above, the emotional expression word “settled” in FIG. 2 is associated with the four-dimensional sensitivity vector in which the value indicating the relationship between the emotional expression word and the representative emotional expression word is stored, and stored in the sensitivity space database 101. Is done.
 固有名データベース102は、複数の固有名を示す情報(固有名情報)と、当該固有名毎の複数の代表感性表現語との関係度合いを示す感性ベクトルを示す情報(感性ベクトル情報)とを含む。
 なお、固有名は、人や施設又は楽曲や動画像等のコンテンツ(検索対象)を表す文字列(言語列)又は識別番号である。また、感性ベクトルとしては、例えば、固有名と複数の代表感性表現語との関係の強さを示す値が挙げられる。
The proper name database 102 includes information indicating a plurality of proper names (proprietary name information), and information indicating a sensitivity vector indicating a degree of relationship with a plurality of representative affective expression words for each proper name (sensitivity vector information). .
The proper name is a character string (language string) or an identification number that represents content (search target) such as a person, a facility, a song, or a moving image. The sensitivity vector includes, for example, a value indicating the strength of the relationship between the proper name and a plurality of representative sensitivity expression words.
 図3に、固有名データベース102の一例を示す。
 図3に示す固有名データベース102では、各行に固有名31が示され、各列に代表感性表現語32が示され、各行及び各列から成る各マスに、該当する固有名31と該当する代表感性表現語32との関係の強さを示す値(図3では1~5)が示されている。ここで、あるマスの値が1であれば、その行の固有名31とその列の次元(代表感性表現語32)との関係が弱いことを示す。また、あるマスの値が5であれば、その行の固有名31とその列の次元(代表感性表現語32)の関係が強いことを示す。
FIG. 3 shows an example of the proper name database 102.
In the proper name database 102 shown in FIG. 3, the proper name 31 is shown in each row, the representative sentiment expression word 32 is shown in each column, and the proper unique name 31 and the relevant representative are shown in each cell composed of each row and each column. A value (1 to 5 in FIG. 3) indicating the strength of the relationship with the sensitivity expression word 32 is shown. Here, if the value of a certain cell is 1, it indicates that the relationship between the proper name 31 of the row and the dimension of the column (representative emotion expression word 32) is weak. Further, if the value of a certain square is 5, it indicates that the relationship between the unique name 31 of the row and the dimension of the column (representative sensitivity expression word 32) is strong.
 図3に示す固有名データベース102では、例えば、固有名「ABCノ島」と、代表感性表現語「たのしい」、「興奮した」、「ゆっくり」、「ロマンチック」のそれぞれとの関係を示す値「3」、「1」、「3」、「4」が該当するマスに格納されている。これは、固有名「ABCノ島」は、代表感性表現語「ロマンチック」との関係は強く、代表感性表現語「たのしい」及び「ゆっくり」との関係はやや強く、代表感性表現語「興奮した」との関係は弱いことを示している。このように、図3における固有名「ABCノ島」は、固有名と代表感性表現語との関係を示す値が格納された4次元の感性ベクトルと対応付けられ、固有名データベース102に保持される。 In the proper name database 102 shown in FIG. 3, for example, the value “A” indicating the relationship between the proper name “ABC Nojima” and each of the representative sensibility expressions “fun”, “excited”, “slow”, and “romantic”. “3”, “1”, “3”, “4” are stored in the corresponding square. This is because the proper name “ABC Nojima” has a strong relationship with the representative sensibility expression word “romantic”, and the relationship between the representative sensation expression words “fun” and “slow” is somewhat strong, and the representative sensation expression word “excited” "Is a weak relationship. As described above, the proper name “ABC Nojima” in FIG. 3 is associated with the four-dimensional sensitivity vector in which the value indicating the relationship between the proper name and the representative sentiment expression word is stored, and held in the proper name database 102. The
 音声入力部103は、音声の入力を受付けて音声情報201を得る。なお、音声は、ユーザから感性表現語による検索装置1への入力となるものである。この音声入力部103により得られた音声情報201は、音声認識部104及び韻律情報抽出部105へ送信される。 The voice input unit 103 receives voice input and obtains voice information 201. Note that the voice is input from the user to the search device 1 using the emotional expression word. The voice information 201 obtained by the voice input unit 103 is transmitted to the voice recognition unit 104 and the prosody information extraction unit 105.
 音声認識部104は、音声入力部103により得られた音声情報201に対して音声認識処理を行い、当該音声情報201の発話内容を表す言語情報列(文字情報)202に変換する。この言語情報列202は、ユーザが主観的に表現した検索条件を表す文字情報である。この音声認識部104により得られた言語情報列202は、韻律情報抽出部105及び感性表現語抽出部106へ送信される。 The voice recognition unit 104 performs voice recognition processing on the voice information 201 obtained by the voice input unit 103 and converts the voice information 201 into a language information string (character information) 202 representing the utterance content of the voice information 201. This language information column 202 is character information representing a search condition subjectively expressed by the user. The language information string 202 obtained by the voice recognition unit 104 is transmitted to the prosodic information extraction unit 105 and the emotional expression word extraction unit 106.
 韻律情報抽出部105は、音声入力部103により得られた音声情報201から、音声認識部104により得られた言語情報列202に対する韻律情報203を抽出する。
 韻律情報203は、言語情報列202に対する音声的特徴を示す情報(音声的特徴情報)、及び、当該音声的特徴情報と言語情報列202との対応関係を示す情報を含む。音声的特徴としては、例えば、抑揚の強弱(音の高低(ピッチ)及び強弱(パワー))、間の長さ(調子)、話速が挙げられ、少なくとも抑揚の強弱が含まれる。この韻律情報抽出部105により抽出された韻律情報203は、感性ベクトル結合部108へ送信される。
The prosodic information extraction unit 105 extracts prosody information 203 for the language information string 202 obtained by the speech recognition unit 104 from the speech information 201 obtained by the speech input unit 103.
The prosody information 203 includes information (speech feature information) indicating speech features with respect to the language information sequence 202 and information indicating the correspondence between the speech feature information and the language information sequence 202. Examples of the voice characteristics include inflection strength (sound pitch (pitch) and strength (power)), length (tone), speech speed, and at least the inflection strength. The prosodic information 203 extracted by the prosodic information extracting unit 105 is transmitted to the sensitivity vector combining unit 108.
 感性表現語抽出部106は、感性空間データベース101を参照し、音声認識部104により得られた言語情報列202に含まれる感性表現語を全て抽出する。即ち、感性表現語抽出部106は、自然言語処理により言語情報列202を解析し、感性空間データベース101に含まれる感性表現語と一致する語句を感性表現語として全て抽出する。この感性表現語抽出部106により抽出された感性表現語を示す情報(感性表現語情報204)は、感性ベクトル変換部107へ送信される。 The emotional expression word extraction unit 106 refers to the sensitivity space database 101 and extracts all the emotional expression words included in the language information sequence 202 obtained by the speech recognition unit 104. That is, the emotional expression word extraction unit 106 analyzes the language information string 202 by natural language processing, and extracts all phrases that match the emotional expression words included in the emotional space database 101 as sensitivity expression words. Information (sensitivity expression word information 204) indicating the sensitivity expression word extracted by the sensitivity expression word extraction unit 106 is transmitted to the sensitivity vector conversion unit 107.
 感性ベクトル変換部107は、感性空間データベース101を参照し、感性表現語抽出部106により抽出された感性表現語を感性ベクトルに変換する。即ち、感性ベクトル変換部107は、上記感性表現語を、感性空間データベース101に含まれる同一の感性表現語に対応付けられた感性ベクトルに変換する。なお、感性ベクトル変換部107は、感性表現語抽出部106により複数の感性表現語が抽出された場合には、当該感性表現語毎に感性ベクトルへの変換を行う。この感性ベクトル変換部107により得られた感性ベクトルを示す情報(感性ベクトル情報205)は、感性ベクトル結合部108へ送信される。 The sentiment vector conversion unit 107 refers to the sentiment space database 101 and converts the sentiment expression word extracted by the sentiment expression word extraction unit 106 into a sentiment vector. That is, the sentiment vector conversion unit 107 converts the sentiment expression word into a sentiment vector associated with the same sentiment expression word included in the sentiment space database 101. In the case where a plurality of sensitivity expression words are extracted by the sensitivity expression word extraction unit 106, the sensitivity vector conversion unit 107 performs conversion into a sensitivity vector for each of the sensitivity expression words. Information (sensitivity vector information 205) indicating the sensitivity vector obtained by the sensitivity vector conversion unit 107 is transmitted to the sensitivity vector combining unit 108.
 感性ベクトル結合部108は、感性ベクトル変換部107が複数の感性ベクトルを得た場合に、韻律情報抽出部105により抽出された韻律情報203に含まれる抑揚の強弱及び言語情報列202に含まれる感性表現語の語順に基づき、当該複数の感性ベクトルから単一の感性ベクトルを算出する。即ち、感性ベクトル結合部108は、各感性ベクトルに対し、抑揚の強弱及び語順に基づく重みを付与した上で結合することで、上記単一の感性ベクトルを算出する。
 この感性ベクトル結合部108により得られた単一の感性ベクトルを示す情報(感性ベクトル情報206)は、固有名検索部109へ送信される。なお、感性ベクトル変換部107が単一の感性ベクトルを得た場合には、感性ベクトル結合部108は、感性ベクトル変換部107からの感性ベクトル情報205をそのまま感性ベクトル情報206として固有名検索部109へ送信する。
The sentiment vector combining unit 108, when the sentiment vector conversion unit 107 obtains a plurality of sentiment vectors, the inflection strength included in the prosodic information 203 extracted by the prosodic information extraction unit 105 and the sentiment included in the language information sequence 202. Based on the word order of the expression words, a single sensitivity vector is calculated from the plurality of sensitivity vectors. That is, the sensibility vector combining unit 108 calculates the single sensibility vector by combining the sensibility vectors after giving weights based on the level of inflection and word order.
Information (sensitivity vector information 206) indicating a single sensitivity vector obtained by the sensitivity vector combining unit 108 is transmitted to the unique name search unit 109. When the sensitivity vector conversion unit 107 obtains a single sensitivity vector, the sensitivity vector combination unit 108 uses the sensitivity vector information 205 from the sensitivity vector conversion unit 107 as the sensitivity vector information 206 as it is and the proper name search unit 109. Send to.
 なお、感性ベクトル結合部108は、上記語順を示す情報(語順情報)については、韻律情報203及び感性ベクトル情報205を参照することで得る。すなわち、感性ベクトル結合部108には、韻律情報203に対応付けられた形(例えば各韻律情報203に該当する言語情報を含む)で言語情報列202が送信され、また、感性ベクトル情報205に対応付けられた形で感性表現語情報204が送信される。よって、感性ベクトル結合部108は、韻律情報203から取得した言語情報列202の中で、感性ベクトル情報205から取得した各感性表現語と一致する箇所が出現した順序を、語順として取得できる。
 また、感性ベクトル情報205は、感性表現語の出現順序に従って格納されていてもよく、その場合には、感性ベクトル結合部108は、その格納順序から語順を得てもよい。
The sensitivity vector combining unit 108 obtains the information indicating the word order (word order information) by referring to the prosodic information 203 and the sensitivity vector information 205. In other words, the linguistic information string 202 is transmitted to the sensibility vector combination unit 108 in a form associated with the prosodic information 203 (for example, including language information corresponding to each prosodic information 203). The sentiment expression word information 204 is transmitted in the attached form. Therefore, the sensibility vector combination unit 108 can acquire, as the word order, the order in which portions that match the respective sensibility expression words acquired from the sensibility vector information 205 appear in the language information string 202 acquired from the prosody information 203.
In addition, the sensitivity vector information 205 may be stored according to the appearance order of the sensitivity expression words. In this case, the sensitivity vector combination unit 108 may obtain the word order from the storage order.
 固有名検索部109は、感性ベクトル変換部107又は感性ベクトル結合部108により得られた単一の感性ベクトルに基づき、固有名データベース102から固有名を検索する。即ち、固有名検索部109は、固有名データベース102から上記単一の感性ベクトルに類似する感性ベクトルに対応付けられた固有名を検索する。この固有名検索部109により検索された固有名を示す情報(固有名情報207)は、固有名情報出力部110へ送信される。 The proper name search unit 109 searches for a proper name from the proper name database 102 based on the single sentiment vector obtained by the sentiment vector conversion unit 107 or the sentiment vector combination unit 108. That is, the proper name search unit 109 searches the proper name database 102 for a proper name associated with a sensitivity vector similar to the single sensitivity vector. Information (unique name information 207) indicating the unique name searched by the unique name search unit 109 is transmitted to the unique name information output unit 110.
 固有名情報出力部110は、固有名検索部109により検索された固有名を示す情報(固有名情報208)を出力する。なお、固有名情報208は、感性表現語による検索装置1からの出力となるものである。 The proper name information output unit 110 outputs information indicating the proper name searched by the proper name search unit 109 (proprietary name information 208). Note that the proper name information 208 is output from the search device 1 based on the emotional expression word.
 なお、上記機能で構成される感性表現語による検索装置1は、日本語に限らず、例えば英語のような外国語で使用してもよい。 It should be noted that the search device 1 based on the emotional expression word composed of the above functions is not limited to Japanese, and may be used in a foreign language such as English.
 次に、感性表現語による検索装置1のハードウェア構成例について、図4を参照しながら説明する。
 音声入力部103、音声認識部104、韻律情報抽出部105、感性表現語抽出部106、感性ベクトル変換部107、感性ベクトル結合部108、固有名検索部109及び固有名情報出力部110は、メモリ302に格納されるプログラムを実行する演算装置であるプロセッサ301で実現される。
Next, an example of a hardware configuration of the search device 1 based on emotional expression words will be described with reference to FIG.
The speech input unit 103, speech recognition unit 104, prosodic information extraction unit 105, Kansei expression word extraction unit 106, Kansei vector conversion unit 107, Kansei vector combination unit 108, proper name search unit 109, and proper name information output unit 110 The processor 301 is an arithmetic device that executes a program stored in the program 302.
 なお、音声入力部103、音声認識部104、韻律情報抽出部105、感性表現語抽出部106、感性ベクトル変換部107、感性ベクトル結合部108、固有名検索部109及び固有名情報出力部110の機能は、ソフトウェア、ファームウェア、又はソフトウェアとファームウェアとの組み合わせにより実現される。ソフトウェアやファームウェアはプログラムとして記述され、メモリ302に格納される。プロセッサ301は、メモリ302に記憶されたプログラムを読み出して実行することにより、各部の機能を実現する。即ち、感性表現語による検索装置1は、プロセッサ301により実行されるときに、例えば後述する図5に示した各ステップが結果的に実行されることになるプログラムを格納するためのメモリ302を備える。また、これらのプログラムは、音声入力部103、音声認識部104、韻律情報抽出部105、感性表現語抽出部106、感性ベクトル変換部107、感性ベクトル結合部108、固有名検索部109及び固有名情報出力部110の手順や方法をコンピュータに実行させるものであるともいえる。ここで、メモリ302としては、例えば、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable ROM)、EEPROM(Electrically EPROM)等の、不揮発性又は揮発性の半導体メモリや、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク、DVD(Digital Versatile Disc)等が該当する。 Note that the speech input unit 103, speech recognition unit 104, prosody information extraction unit 105, sensitivity expression word extraction unit 106, sensitivity vector conversion unit 107, sensitivity vector combination unit 108, proper name search unit 109, and proper name information output unit 110 The function is realized by software, firmware, or a combination of software and firmware. Software and firmware are described as programs and stored in the memory 302. The processor 301 reads out and executes the program stored in the memory 302, thereby realizing the functions of the respective units. That is, the emotional expression word search device 1 includes a memory 302 for storing a program that, when executed by the processor 301, for example, causes each step shown in FIG. 5 to be described later to be executed as a result. . These programs include a speech input unit 103, a speech recognition unit 104, a prosody information extraction unit 105, a sensitivity expression word extraction unit 106, a sensitivity vector conversion unit 107, a sensitivity vector combination unit 108, a proper name search unit 109, and a proper name. It can be said that the computer executes the procedure and method of the information output unit 110. Here, as the memory 302, for example, a nonvolatile or volatile semiconductor memory such as a RAM (Random Access Memory), a ROM (Read Only Memory), a flash memory, an EPROM (Erasable Programmable ROM), an EEPROM (Electrically Programmable EPROM), or the like. And a magnetic disk, a flexible disk, an optical disk, a compact disk, a mini disk, a DVD (Digital Versatile Disc), and the like.
 また、感性空間データベース101及び固有名データベース102は、記憶装置であるメモリ302に記憶される。
 また、感性表現語による検索装置1への入力となる音声は、入力装置である入力インタフェース303により入力される。また、感性表現語による検索装置1からの出力となる固有名情報208は、出力装置である出力インタフェース304により出力される。
The emotional space database 101 and the unique name database 102 are stored in a memory 302 that is a storage device.
In addition, the voice that is input to the search device 1 by the sensitivity expression word is input by the input interface 303 that is an input device. In addition, the unique name information 208 that is output from the search device 1 based on the sensitivity expression word is output by the output interface 304 that is an output device.
 なお、演算装置で実現される音声入力部103と音声認識部104と韻律情報抽出部105、感性表現語抽出部106と感性ベクトル変換部107と感性ベクトル結合部108、固有名検索部109と固有名情報出力部110の処理は、電気回路として実現してもよい。 It should be noted that the speech input unit 103, speech recognition unit 104, prosody information extraction unit 105, Kansei expression word extraction unit 106, Kansei vector conversion unit 107, Kansei vector combination unit 108, unique name search unit 109, and unique name realized by the arithmetic device The processing of the name information output unit 110 may be realized as an electric circuit.
 次に、実施の形態1の感性表現語による検索装置1の動作例について、図5を参照しながら説明する。なお以下では、具体例として、図2に示す感性空間データベース101及び図3に示す固有名データベース102を用いる場合を示す。
 まず、ステップST501では、音声入力部103が、音声の入力を受付けて音声情報201を得る。
Next, an example of the operation of the search device 1 using the emotional expression word according to the first embodiment will be described with reference to FIG. In the following, as a specific example, a case where the sensitivity space database 101 shown in FIG. 2 and the unique name database 102 shown in FIG.
First, in step ST501, the voice input unit 103 receives voice input and obtains voice information 201.
 次いで、ステップST502では、音声認識部104が、音声入力部103により得られた音声情報201を言語情報列202に変換し、韻律情報抽出部105が、当該音声情報201から、当該言語情報列202に対する韻律情報203を抽出する。なお韻律情報203には、少なくとも抑揚の強弱を示す情報が含まれる。 Next, in step ST502, the speech recognition unit 104 converts the speech information 201 obtained by the speech input unit 103 into a language information sequence 202, and the prosodic information extraction unit 105 converts the language information sequence 202 from the speech information 201. The prosodic information 203 is extracted. The prosody information 203 includes at least information indicating the strength of intonation.
 例えば、ユーザが、小さい音量で「賑やかで」と発話し、続けて、大きな音量で「わくわくするところ」と発話したとする。この場合、音声認識部104は、図6に示すような言語情報列「賑やかで、わくわくするところ」を得る。また、韻律情報抽出部105は、「賑やかで」までは小さい音量で発話され、後続の「わくわくするところ」は「賑やかで」よりも大きい音量で発話されたことを示す韻律情報203を抽出する。 Suppose, for example, that a user utters “busy” at a low volume and then utters “exciting place” at a high volume. In this case, the voice recognizing unit 104 obtains a language information string “a lively and exciting place” as shown in FIG. Also, the prosodic information extraction unit 105 extracts prosodic information 203 indicating that the voice is spoken at a low volume until “lively”, and the subsequent “exciting place” is spoken at a louder volume than “lively”. .
 次いで、ステップST503では、感性表現語抽出部106が、感性空間データベース101を参照し、音声認識部104により得られた言語情報列202に含まれる感性表現語を全て抽出する。 Next, in step ST503, the Kansei expression word extraction unit 106 refers to the Kansei space database 101 and extracts all Kansei expression words included in the language information string 202 obtained by the speech recognition unit 104.
 例えば、音声認識部104が図6に示す言語情報列「賑やかで、わくわくするところ」を得たとする。また、図2に示す感性空間データベース101には、感性表現語「賑やか」及び「わくわく」が含まれている。この場合、感性表現語抽出部106は、図6に示す言語情報列「賑やかで、わくわくするところ」から、「賑やか」及び「わくわく」の2語句を感性表現語として抽出する。 For example, it is assumed that the voice recognition unit 104 obtains the language information string “Busy and exciting” shown in FIG. In addition, the Kansei space database 101 shown in FIG. 2 includes Kansei expression words “lively” and “exciting”. In this case, the emotional expression word extraction unit 106 extracts two phrases “busy” and “exciting” as emotional expression words from the language information string “Busy and exciting” shown in FIG.
 次いで、ステップST504では、感性ベクトル変換部107が、感性空間データベース101を参照し、感性表現語抽出部106により抽出された感性表現語を感性ベクトルに変換する。
 次いで、ステップST505では、感性ベクトル変換部107が、感性表現語抽出部106により抽出された全ての感性表現語を感性ベクトルに変換したかを判定する。このステップST505において、感性ベクトル変換部107が、感性ベクトルに変換していない感性表現語があると判定した場合には、シーケンスはステップST504に戻り、上記処理を繰り返す。一方、感性ベクトル変換部107が、全ての感性表現語を感性ベクトルに変換したと判定した場合には、シーケンスはステップST506へ移行する。
Next, in step ST504, the sentiment vector conversion unit 107 refers to the sentiment space database 101, and converts the sentiment expression word extracted by the sentiment expression word extraction unit 106 into a sentiment vector.
Next, in step ST505, the sensitivity vector conversion unit 107 determines whether all the sensitivity expression words extracted by the sensitivity expression word extraction unit 106 have been converted into sensitivity vectors. In this step ST505, when the emotion vector conversion unit 107 determines that there is a sensitivity expression word that has not been converted into a sensitivity vector, the sequence returns to step ST504 and repeats the above processing. On the other hand, when the emotion vector conversion unit 107 determines that all the emotion expression words have been converted into the sensitivity vectors, the sequence proceeds to step ST506.
 例えば、感性表現語抽出部106が感性表現語「賑やか」及び「わくわく」を抽出したとする。この場合、感性ベクトル変換部107は、図2に示す感性空間データベース101から、各感性表現語に対応付けられた感性ベクトルを抽出する。
 ここで、図2において、感性表現語「賑やか」に対応する行の各列には「3 2 1 1」がそれぞれ格納されている。そのため、感性ベクトル変換部107は、感性表現語「賑やか」を4次元の感性ベクトル(3,2,1,1)に変換する。また、図2において、感性表現語「わくわく」に対応する行の各列には「2 3 1 2」がそれぞれ格納されている。そのため、感性ベクトル変換部107は、感性表現語「わくわく」を4次元の感性ベクトル(2,3,1,2)に変換する。そして、感性ベクトル変換部107は、図7Aに示すような感性ベクトル情報205を感性ベクトル結合部108へ送信する。
For example, it is assumed that the sensitivity expression word extraction unit 106 extracts the sensitivity expression words “lively” and “wakuwaku”. In this case, the sentiment vector conversion unit 107 extracts the sentiment vector associated with each sentiment expression word from the sentiment space database 101 shown in FIG.
Here, in FIG. 2, “3 2 1 1” is stored in each column of the row corresponding to the emotional expression word “lively”. Therefore, the sensitivity vector conversion unit 107 converts the sensitivity expression word “lively” into a four-dimensional sensitivity vector (3, 2, 1, 1). In FIG. 2, “2 3 1 2” is stored in each column of the row corresponding to the sentiment expression word “wakuwaku”. Therefore, the sensitivity vector conversion unit 107 converts the sensitivity expression word “wakuwaku” into a four-dimensional sensitivity vector (2, 3, 1, 2). The sentiment vector conversion unit 107 transmits the sentiment vector information 205 as shown in FIG. 7A to the sentiment vector combination unit 108.
 次いで、ステップST506では、感性ベクトル結合部108が、感性ベクトル変換部107により得られた感性ベクトルが複数であるかを判定する。このステップST506において、感性ベクトル結合部108が、感性ベクトル変換部107により得られた感性ベクトルは複数ではない、即ち単数であると判定した場合には、感性ベクトル変換部107からの感性ベクトル情報205をそのまま感性ベクトル情報206として固有名検索部109へ送信し、シーケンスはステップST510へ移行する。一方、ステップST506において、感性ベクトル結合部108が、感性ベクトル変換部107により得られた感性ベクトルは複数であると判定した場合には、シーケンスはステップST507へ移行する。 Next, in step ST506, the sensitivity vector combining unit 108 determines whether there are a plurality of sensitivity vectors obtained by the sensitivity vector conversion unit 107. In this step ST506, when the emotion vector combining unit 108 determines that there are not a plurality of sensitivity vectors obtained by the sensitivity vector conversion unit 107, that is, the sensitivity vector information 205 from the sensitivity vector conversion unit 107. Is sent to the proper name search unit 109 as the sensitivity vector information 206 as it is, and the sequence proceeds to step ST510. On the other hand, in step ST506, when the emotion vector combining unit 108 determines that there are a plurality of sensitivity vectors obtained by the sensitivity vector conversion unit 107, the sequence proceeds to step ST507.
 次いで、ステップST507では、感性ベクトル結合部108が、韻律情報抽出部105により抽出された韻律情報203に含まれる抑揚の強弱及び言語情報列202に含まれる感性表現語の語順に基づき、感性ベクトル変換部107により得られた感性ベクトルに対して重みを付与する。この際、感性ベクトル結合部108は、上記感性ベクトルに対し、抑揚が強い場合には重みを大きくし、抑揚が弱い場合には重みを小さくする。また、上記感性ベクトルに対し、語順が早い場合には重みを大きくし、語順が後の場合には重みを小さくする。このステップST507における処理の詳細については後述する。 Next, in step ST507, the sensitivity vector combining unit 108 performs sensitivity vector conversion based on the inflection included in the prosody information 203 extracted by the prosody information extraction unit 105 and the word order of the sensitivity expression words included in the language information sequence 202. A weight is assigned to the sensitivity vector obtained by the unit 107. At this time, the sensitivity vector combining unit 108 increases the weight when the inflection is strong, and decreases the weight when the intonation is weak. Also, the weight is increased when the word order is early, and the weight is decreased when the word order is later. Details of the processing in step ST507 will be described later.
 次いで、ステップST508では、感性ベクトル結合部108が、感性ベクトル変換部107により得られた全ての感性ベクトルに対して重みを付与したかを判定する。このステップST508において、感性ベクトル結合部108が、重みを付与していない感性ベクトルがあると判定した場合には、シーケンスはステップST507に戻り、上記処理を繰り返す。一方、ステップST508において、感性ベクトル結合部108が、全ての感性ベクトルに対して重みを付与したと判定した場合には、シーケンスはステップST509へ移行する。 Next, in step ST508, the sensitivity vector combining unit 108 determines whether or not weights have been given to all the sensitivity vectors obtained by the sensitivity vector conversion unit 107. In this step ST508, if the emotion vector combining unit 108 determines that there is an emotion vector to which no weight is given, the sequence returns to step ST507 and repeats the above processing. On the other hand, in step ST508, if the perception vector combining unit 108 determines that weights have been assigned to all perception vectors, the sequence proceeds to step ST509.
 次いで、ステップST509では、感性ベクトル結合部108が、ステップST507において重みを付与した全ての感性ベクトルの結合を行い、単一の感性ベクトルを算出する。 Next, in step ST509, the sensibility vector combining unit 108 combines all the sensibility vectors given weights in step ST507, and calculates a single sensibility vector.
 例えば、感性ベクトル結合部108が、図7に示す感性ベクトル情報205における各感性ベクトルに対して重みを付与した結果、感性表現語「賑やか」の感性ベクトルが(2.25,1.5,0.75,0.75)となり、感性表現語「わくわく」の感性ベクトルが(1.5,2.25,0.75,1.5)となったとする。この場合、感性ベクトル結合部108は、この2つの感性ベクトルを加算することで、単一の感性ベクトル(3.75,3.75,1.5,2.25)を算出する。図7Bでは、この場合に感性ベクトル結合部108が出力する感性ベクトル情報206を示している。 For example, as a result of the sensitivity vector combining unit 108 assigning weights to the sensitivity vectors in the sensitivity vector information 205 illustrated in FIG. 7, the sensitivity vector of the sensitivity expression word “lively” is (2.25, 1.5, 0). .75,0.75), and the sensitivity vector of the sensitivity expression word “wakuwaku” is (1.5, 2.25, 0.75, 1.5). In this case, the sensitivity vector combining unit 108 calculates a single sensitivity vector (3.75, 3.75, 1.5, 2.25) by adding the two sensitivity vectors. FIG. 7B shows sensitivity vector information 206 output by the sensitivity vector combination unit 108 in this case.
 次いで、ステップST510では、固有名検索部109が、感性ベクトル変換部107又は感性ベクトル結合部108により得られた単一の感性ベクトルに基づき、固有名データベース102から固有名を検索する。具体的には、上記単一の感性ベクトルを検索キーとし、固有名データベース102に含まれる感性ベクトルの中から当該検索キーと最も類似する感性ベクトルを選択し、当該選択した感性ベクトルに対応付けられた固有名を抽出する。 Next, in step ST510, the proper name search unit 109 searches for the proper name from the proper name database 102 based on the single sentiment vector obtained by the sentiment vector conversion unit 107 or the sentiment vector combination unit 108. Specifically, using the single sensitivity vector as a search key, a sensitivity vector that is most similar to the search key is selected from the sensitivity vectors included in the unique name database 102 and is associated with the selected sensitivity vector. Extract unique names.
 例えば、音声認識部104が言語情報列「わくわくしたい」を得て、感性表現語抽出部106が感性表現語「わくわく」を抽出し、感性ベクトル変換部107が4次元の感性ベクトル(2,3,1,2)に変換したとする。この場合、固有名検索部109は、図3に示す固有名データベース102に含まれる各行の感性ベクトルを参照し、上記感性ベクトル(2,3,1,2)に最も類似する値を持つ感性ベクトルに対応付けられた固有名を検索する。類似する感性ベクトルは、例えば、コサイン距離又はユークリッド距離を用いて算出した類似度を用いることで検索する。上記の例では、感性表現語「わくわく」の感性ベクトル(2,3,1,2)は、「興奮した」の値が「3」とやや高く、「たのしい」と「ロマンチック」の値が「2」とやや低く、「ゆっくり」の値が「1」と低くなっている。そのため、固有名検索部109は、この感性ベクトルを検索キーとして図3に示す固有名データベース102を検索すると、「興奮した」の値が「4」と高くなっている感性ベクトル(5,4,1,2)に対応付けられている固有名「HIJランド」を、感性表現語「わくわく」と関係の強い固有名として抽出する。 For example, the speech recognition unit 104 obtains the linguistic information string “I want to be excited”, the Kansei expression word extraction unit 106 extracts the Kansei expression word “Waku Waku”, and the Kansei vector conversion unit 107 uses a four-dimensional Kansei vector (2, 3 , 1, 2). In this case, the proper name search unit 109 refers to the sensitivity vector of each row included in the proper name database 102 shown in FIG. 3, and the sensitivity vector having the most similar value to the sensitivity vector (2, 3, 1, 2). The unique name associated with is searched. Similar sensitivity vectors are searched by using, for example, the similarity calculated using the cosine distance or the Euclidean distance. In the above example, the sensitivity vector (2, 3, 1, 2) of the emotional expression word “wakuwaku” has a slightly high “excited” value of “3” and “fun” and “romantic” values of “3”. The value of “slow” is as low as “1”. Therefore, when the proper name search unit 109 searches the proper name database 102 shown in FIG. 3 using this sentiment vector as a search key, the sentiment vector (5, 4, 5) whose “excited” value is as high as “4”. 1, 2), the unique name “HIJ Land” associated with the emotional expression word “Wakuwaku” is extracted.
 次いで、ステップST511では、固有名情報出力部110が、固有名検索部109により検索された固有名を示す情報(固有名情報208)を出力する。 Next, in step ST511, the unique name information output unit 110 outputs information indicating the unique name searched by the unique name search unit 109 (proprietary name information 208).
 次に、ステップST507における感性ベクトル結合部108による抑揚の強弱及び語順に基づく感性ベクトルへの重み付与の動作例について、図8を参照しながら説明する。
 まず、ステップST801では、感性ベクトル結合部108が、韻律情報抽出部105から韻律情報203を受信し、感性ベクトル変換部107から感性ベクトル情報205を受信する。
Next, an example of the operation of assigning weights to the sensitivity vector based on the level of inflection and word order by the sensitivity vector combining unit 108 in step ST507 will be described with reference to FIG.
First, in step ST801, the sensitivity vector combining unit 108 receives the prosody information 203 from the prosody information extraction unit 105, and receives the sensitivity vector information 205 from the sensitivity vector conversion unit 107.
 次いで、ステップST802では、感性ベクトル結合部108が、韻律情報203に含まれる抑揚の強弱を示す情報から、感性表現語に対応する音の基本周波数F0の時系列値を算出し、その平均値を算出する。 Next, in step ST802, the sensitivity vector combination unit 108 calculates a time series value of the fundamental frequency F0 of the sound corresponding to the sensitivity expression word from the information indicating the level of intonation included in the prosody information 203, and calculates the average value thereof. calculate.
 次いで、ステップST803では、感性ベクトル結合部108が、基本周波数F0の平均値が予め設定した閾値以上であるかを判定する。このステップST803において、感性ベクトル結合部108が基本周波数F0の平均値が閾値以上ではないと判定した場合には、シーケンスはステップST804へ移行する。一方、ステップST803において、感性ベクトル結合部108が基本周波数F0の平均値が閾値以上であると判定した場合には、シーケンスはステップST805へ移行する。これにより、感性ベクトル結合部108は抑揚の強弱を判定する。即ち、感性ベクトル結合部108は、算出した基本周波数F0の平均値が閾値以上であれば抑揚が強いと判定し、基本周波数F0の平均値が閾値より小さければ抑揚が弱いと判定する。 Next, in step ST803, the sensitivity vector combining unit 108 determines whether the average value of the fundamental frequency F0 is equal to or greater than a preset threshold value. In this step ST803, when the perceptual vector combining unit 108 determines that the average value of the fundamental frequency F0 is not equal to or greater than the threshold value, the sequence proceeds to step ST804. On the other hand, in step ST803, if the perception vector combining unit 108 determines that the average value of the fundamental frequency F0 is equal to or greater than the threshold, the sequence proceeds to step ST805. As a result, the sensitivity vector combining unit 108 determines the strength of the intonation. That is, the emotion vector combining unit 108 determines that the inflection is strong if the calculated average value of the fundamental frequency F0 is equal to or greater than the threshold value, and determines that the inflection is weak if the average value of the fundamental frequency F0 is less than the threshold value.
 次いで、ステップST804では、感性ベクトル結合部108が、感性表現語に対応する感性ベクトルに対し、抑揚が弱い場合に応じた重みを付与する。即ち、感性ベクトル結合部108は、上記感性ベクトルに対する重みを小さくする。
 また、ステップST805では、感性ベクトル結合部108が、感性表現語に対応する感性ベクトルに対し、抑揚が強い場合に応じた重みを付与する。即ち、感性ベクトル結合部108は、上記感性ベクトルに対する重みを大きくする。
Next, in step ST804, the sensitivity vector combining unit 108 assigns a weight corresponding to the case where the inflection is weak to the sensitivity vector corresponding to the sensitivity expression word. That is, the sensitivity vector combining unit 108 reduces the weight for the sensitivity vector.
Also, in step ST805, the sensitivity vector combining unit 108 assigns a weight according to the case where the inflection is strong to the sensitivity vector corresponding to the sensitivity expression word. That is, the sensitivity vector combining unit 108 increases the weight for the sensitivity vector.
 次いで、ステップST806では、感性ベクトル結合部108が、言語情報列202に含まれる感性表現語の語順を抽出する。 Next, in step ST806, the affective vector combining unit 108 extracts the word order of the affective expression words included in the language information sequence 202.
 次いで、ステップST807では、感性ベクトル結合部108が、語順が早いかを判定する。このステップST807において、感性ベクトル結合部108が語順が早くはないと判定した場合には、シーケンスはステップST808へ移行する。一方、ステップST807において、感性ベクトル結合部108が語順が早いと判定した場合には、シーケンスはステップST809へ移行する。 Next, in step ST807, the affective vector combination unit 108 determines whether the word order is early. In this step ST807, when the perceptual vector combination unit 108 determines that the word order is not early, the sequence moves to step ST808. On the other hand, in step ST807, when the perceptual vector combination unit 108 determines that the word order is early, the sequence proceeds to step ST809.
 次いで、ステップST808では、感性ベクトル結合部108が、感性表現語に対応する感性ベクトルに対し、語順が後の場合に応じた重みを付与する。即ち、感性ベクトル結合部108は、上記感性ベクトルに対する重みを小さくする。
 また、ステップST809では、感性ベクトル結合部108が、感性表現語に対応する感性ベクトルに対し、語順が早い場合には応じた重みを付与する。即ち、感性ベクトル結合部108は、上記感性ベクトルに対する重みを大きくする。
Next, in step ST808, the sensitivity vector combining unit 108 assigns a weight corresponding to the case where the word order is later to the sensitivity vector corresponding to the sensitivity expression word. That is, the sensitivity vector combining unit 108 reduces the weight for the sensitivity vector.
Also, in step ST809, the sensitivity vector combining unit 108 assigns a weight corresponding to the sensitivity vector corresponding to the sensitivity expression word when the word order is early. That is, the sensitivity vector combining unit 108 increases the weight for the sensitivity vector.
 例えば、音声認識部104が図6に示す言語情報列「賑やかで、わくわくするところ」を得て、感性表現語抽出部106が感性表現語「賑やか」及び「わくわく」を抽出し、感性ベクトル変換部107が図7に示す感性ベクトル情報205を出力したとする。また、韻律情報抽出部105は、「賑やか」は抑揚が弱く、「わくわく」は抑揚が強いことを示す韻律情報203を抽出したとする。この場合、感性ベクトル結合部108は、感性表現語「わくわく」に対応する感性ベクトルの各列の値(2,3,1,2)に、抑揚が強い場合に応じた重み(例えば1.5)を付与(乗算)し、感性ベクトルの各列の値を(3,4.5,1.5,3)とする。また、感性ベクトル結合部108は、感性表現語「賑やか」に対応する感性ベクトルの各列の値(3,2,1,1)に、抑揚が弱い場合に応じた重み(例えば0.5)を付与(乗算)し、感性ベクトルの各列の値を(1.5,1,0.5,0.5)とする。なお、言語情報列202に複数の感性表現語が含まれる場合、感性ベクトル結合部108は、各感性表現語に対応する基本周波数F0の平均値を比較し、その大小により抑揚の強弱を判定してもよい。 For example, the speech recognition unit 104 obtains the linguistic information string “buzzy and exciting” shown in FIG. 6, and the emotional expression word extraction unit 106 extracts the emotional expression words “lively” and “wakuwaku”, and the sensitivity vector conversion Assume that the unit 107 outputs the sensitivity vector information 205 shown in FIG. Further, it is assumed that the prosodic information extraction unit 105 extracts prosodic information 203 indicating that “lively” has weak inflection and “wakuwaku” has strong intonation. In this case, the sensitivity vector combining unit 108 weights the values (2, 3, 1, 2) of the sensitivity vectors corresponding to the sensitivity expression word “wakuwaku” according to the case where the inflection is strong (for example, 1.5). ) Is added (multiplied), and the value of each column of the sensitivity vector is (3, 4.5, 1.5, 3). In addition, the sensitivity vector combining unit 108 weights the values (3, 2, 1, 1) of the sensitivity vectors corresponding to the sensitivity expression word “lively” according to the case where the inflection is weak (for example, 0.5). Is assigned (multiplication), and the values of the columns of the sensitivity vector are (1.5, 1, 0.5, 0.5). When a plurality of emotional expression words are included in the language information string 202, the emotion vector combining unit 108 compares the average values of the fundamental frequencies F0 corresponding to the respective emotional expression words, and determines the strength of the inflection based on the magnitude. May be.
 また、図6に示す言語情報列「賑やかで、わくわくするところ」において、「賑やか」は1番目に出現し、「わくわく」は2番目に出現する。この場合、感性ベクトル結合部108は、感性表現語「賑やか」に対応する感性ベクトルの各列の値(3,2,1,1)に、抑揚が弱い場合に応じた重み(例えば0.5)を付与(乗算)した値(1.5,1,0.5,0.5)に、語順が早い場合に応じた重み(例えば1.5)を付与(乗算)し、感性ベクトルの各列の値を(2.25,1.5,0.75,0.75)とする。また、感性ベクトル結合部108は、感性表現語「わくわく」に対応する感性ベクトルの各列の値(2,3,1,2)に、抑揚が強い場合に応じた重み(例えば1.5)を付与(乗算)した値(3,4.5,1.5,3)に、語順が遅い場合に応じた重み(例えば0.5)を付与(乗算)し、感性ベクトルの各列の値を(1.5,2.25,0.75,1.5)とする。 Further, in the language information string “Busy and exciting place” shown in FIG. 6, “Buzzing” appears first and “Waku Waku” appears second. In this case, the sensitivity vector combining unit 108 assigns a weight (for example, 0.5) to the value (3, 2, 1, 1) of the sensitivity vector corresponding to the sensitivity expression word “lively” when the inflection is weak. ) Is given (multiplied) to the values (1.5, 1, 0.5, 0.5) given (multiplied), and each weight of the sensitivity vector is given (multiplied). Let the column values be (2.25, 1.5, 0.75, 0.75). In addition, the sensitivity vector combining unit 108 weights the values (2, 3, 1, 2) of the sensitivity vectors corresponding to the sensitivity expression word “wakuwaku” according to the case where the inflection is strong (for example, 1.5). Is assigned (multiplied) to the value (3, 4.5, 1.5, 3) obtained by adding (multiplying) to the values (3, 4.5, 1.5, 3). Is (1.5, 2.25, 0.75, 1.5).
 一方、ユーザによる発話は、ユーザの確信度が低い場合には、下がり調子となり、且つ、語の長さに対して長い時間長で発声される傾向がある。そこで、この傾向を利用し、感性ベクトル結合部108は、韻律情報203に含まれる調子及び話速に基づき、下がり調子であり、且つ、話速が遅い感性表現語に対応する感性ベクトルの重みを小さくする処理を行ってもよい。ユーザの確信度は、ユーザが迷い又は戸惑いを表す発話を行った場合は低く、迷いや戸惑いを表さない発話の場合は高いとする。 On the other hand, when the user's certainty is low, the user's utterance tends to be in a downward tone and uttered for a long time length with respect to the word length. Therefore, by using this tendency, the sensitivity vector combining unit 108 calculates the weight of the sensitivity vector corresponding to the sensitivity expression word that is in a down tone and has a slow speech speed based on the tone and the speech speed included in the prosody information 203. You may perform the process to make small. It is assumed that the user's certainty is low when the user makes an utterance that expresses hesitation or confusion and is high when the utterance does not express hesitation or confusion.
 例えば、音声認識部104で図9に示す言語情報列「ロマンチック・・・うーん、ゆっくりできる、おいしいところ!」を得たとする。また、韻律情報抽出部105が、「ロマンチック・・・うーん」は話速が遅く、特に「ロマンチック・・・」は下がり調子であり、また、「ゆっくりできる、おいしいところ!」は、「ロマンチック・・・」と比較して話速が速く、特に「おいしいところ!」は、「ロマンチック・・・」及び「ゆっくりできる」と比較して強い抑揚で発話されたことを示す韻律情報203を抽出したとする。 For example, suppose that the speech recognition unit 104 obtains the language information string “Romantic ... Hmm, you can relax slowly!” As shown in FIG. Also, the prosodic information extraction unit 105 indicates that “romantic ... mm” is slow in speaking speed, especially “romantic ...” is in a down tone, and “slow, delicious place!”・ ・ ”Is faster, especially“ delicious place! ”Extracted prosodic information 203 indicating that the speech was spoken with strong inflection compared to“ romantic ... ”and“ can do it slowly ” And
 この場合、感性ベクトル結合部108は、上記韻律情報203に基づき、上記言語情報列202から抽出された感性表現語「ロマンチック」、「ゆっくり」、「おいしい」に対して重みを付与する。ここで、「ロマンチック・・・」は、下がり調子であり、且つ、話速が遅い発話であることから、該発話をユーザは迷い又は戸惑いながら、即ち、確信度が低い状態で発話していると判定できる。従って、感性ベクトル結合部108は、感性表現語「ロマンチック」は検索のために用いる単語としての優先度を低く設定する、即ち、対応する感性ベクトルの重みを小さくする。また、「ゆっくりできる、おいしいところ!」は、「ロマンチック・・・」と比較して話速が速く、特に「おいしいところ!」は強い抑揚で発話されていることから、該発話をユーザは迷いなく、即ち、確信度が高い状態で発話していると判定できる。従って、感性ベクトル結合部108は、感性表現語「ゆっくり」は検索のために用いる感性表現語の基準とし、重みを付与しない(重みを「0」とする)。また、感性ベクトル結合部108は、感性表現語「おいしい」は優先度を高く設定する、即ち、重みを大きくする。 In this case, the sensitivity vector combining unit 108 assigns weights to the emotion expression words “romantic”, “slow”, and “delicious” extracted from the language information string 202 based on the prosodic information 203. Here, “romantic ...” is an utterance with a downward tone and a slow speaking speed, so the user is confusing or confused, that is, speaking with a low degree of certainty. Can be determined. Therefore, the sensitivity vector combining unit 108 sets the priority of the sensitivity expression word “romantic” as a word used for the search, that is, reduces the weight of the corresponding sensitivity vector. In addition, “slowly, delicious place!” Is faster than “romantic ...”, and especially “delicious place!” Is spoken with strong inflection, so the user is at a loss. That is, it can be determined that the user is speaking with high confidence. Therefore, the sensitivity vector combination unit 108 uses the sensitivity expression word “slow” as a reference for the sensitivity expression word used for the search, and does not assign a weight (the weight is set to “0”). In addition, the sensitivity vector combination unit 108 sets a high priority for the sensitivity expression word “delicious”, that is, increases the weight.
 加えて、ユーザによる発話は、不満又は嫌悪を表す場合には、上がり調子で発声される傾向がある。そこで、この傾向を利用し、感性ベクトル結合部108は、韻律情報203に基づき、上がり調子で発話された感性表現語に対応する感性ベクトルの重みを小さくする、又は、重みを付与しない処理を行ってもよい。例えば、「ロマンチックーー?」等の上がり調子の発話がなされた場合、当該発話をユーザは不満や嫌悪を表して発話したと判定できる。従って、感性ベクトル結合部108は、ユーザが不満や嫌悪を表した感性表現語「ロマンチック」については、重みを小さくする又は重みを付与しない。 In addition, utterances by the user tend to be uttered in a rising tone when they express dissatisfaction or disgust. Therefore, using this tendency, the sensitivity vector combining unit 108 performs processing to reduce the weight of the sensitivity vector corresponding to the sensitivity expression word uttered in an upward tone based on the prosodic information 203 or not to add the weight. May be. For example, when an upward utterance such as “romantic?” Is made, it can be determined that the user has expressed an utterance expressing dissatisfaction or disgust. Therefore, the sensitivity vector combination unit 108 does not assign a weight or a weight to the sensitivity expression word “romantic” in which the user expresses dissatisfaction or disgust.
 なお、感性ベクトル結合部108における各感性表現語が発話された際の調子の判定は、感性表現語に対応する調子の変化の程度で判定してもよいし、言語情報列202に含まれる他の感性表現語に対応する調子との比較を行って判定してもよい。
 以下、ステップST507における感性ベクトル結合部108による音の調子及び話速に基づく感性ベクトルへの重み付与の動作例について、図10を参照しながら説明する。なお図10に示すフローでは、図8に示すフローから独立して示しているが、図10に示す処理は図8に示す処理と共に実施される。
Note that the determination of the tone when each sensitivity expression word is uttered in the sensitivity vector combination unit 108 may be determined based on the degree of change in the tone corresponding to the sensitivity expression word, or may be included in the language information string 202. It may be determined by comparing with the tone corresponding to the sensibility expression word.
Hereinafter, an operation example of weighting to the sensitivity vector based on the tone of the sound and the speech speed by the sensitivity vector combining unit 108 in step ST507 will be described with reference to FIG. The flow shown in FIG. 10 is shown independently from the flow shown in FIG. 8, but the processing shown in FIG. 10 is performed together with the processing shown in FIG.
 まず、ステップST1001では、感性ベクトル結合部108が、韻律情報抽出部105から韻律情報203を受信し、感性ベクトル変換部107から感性ベクトル情報205を受信する。 First, in step ST1001, the sensitivity vector combining unit 108 receives the prosody information 203 from the prosody information extraction unit 105, and receives the sensitivity vector information 205 from the sensitivity vector conversion unit 107.
 次いで、ステップST1002では、感性ベクトル結合部108が、韻律情報203から感性表現語に対応する音の基本周波数F0の時系列値を算出する。 Next, in step ST1002, the sensitivity vector combining unit 108 calculates a time series value of the fundamental frequency F0 of the sound corresponding to the sensitivity expression word from the prosodic information 203.
 次いで、ステップST1003では、感性ベクトル結合部108が、基本周波数F0の区間を分割し、各区間の代表的な基本周波数F0の値を抽出する。この際、例えば、感性ベクトル結合部108は、基本周波数F0の区間を2等分する。また、代表的な値とは、基本周波数F0の値を抽出する区間における、基本周波数F0の値の最大値、平均値又は中央値等の値を指す。 Next, in step ST1003, the sensitivity vector combining unit 108 divides the section of the fundamental frequency F0, and extracts the value of the representative fundamental frequency F0 of each section. At this time, for example, the sensitivity vector combining unit 108 divides the section of the fundamental frequency F0 into two equal parts. The representative value refers to a value such as a maximum value, an average value, or a median value of the fundamental frequency F0 in a section where the fundamental frequency F0 value is extracted.
 次いで、ステップST1004では、感性ベクトル結合部108が、各区間の代表的な基本周波数F0の値の差分を算出する。ここでは、感性ベクトル結合部108は、後ろの区分における代表的な基本周波数F0の値から、前の区分における代表的な基本周波数F0の値を差し引くものとする。 Next, in step ST1004, the sensibility vector combining unit 108 calculates a difference in the value of the representative fundamental frequency F0 in each section. Here, it is assumed that the sensitivity vector combining unit 108 subtracts the value of the representative fundamental frequency F0 in the previous section from the value of the representative fundamental frequency F0 in the subsequent section.
 次いで、ステップST1005では、感性ベクトル結合部108が、差分の絶対値が予め設定した閾値以上であるかを判定する。このステップST1005において、感性ベクトル結合部108が差分の絶対値が閾値以上ではないと判定した場合には、シーケンスは終了する。一方、ステップST1005において、感性ベクトル結合部108が差分の絶対値が閾値以上であると判定した場合には、シーケンスはステップST1006へ移行する。 Next, in step ST1005, the emotion vector combining unit 108 determines whether the absolute value of the difference is equal to or greater than a preset threshold value. In this step ST1005, when the emotion vector combining unit 108 determines that the absolute value of the difference is not equal to or greater than the threshold value, the sequence ends. On the other hand, in step ST1005, when the affective vector combination unit 108 determines that the absolute value of the difference is equal to or greater than the threshold, the sequence proceeds to step ST1006.
 次いで、ステップST1006では、感性ベクトル結合部108が、差分が正の値であるかを判定する。このステップST1006において、感性ベクトル結合部108が差分の値が正ではないと判定した場合には、シーケンスはステップST1007へ移行する。一方、ステップST1006において、感性ベクトル結合部108が差分の値が正であると判定した場合には、シーケンスはステップST1009へ移行する。 Next, in step ST1006, the emotion vector combining unit 108 determines whether the difference is a positive value. In this step ST1006, when the perceptual vector combining unit 108 determines that the difference value is not positive, the sequence proceeds to step ST1007. On the other hand, in step ST1006, when the perceptual vector combining unit 108 determines that the difference value is positive, the sequence proceeds to step ST1009.
 次いで、ステップST1007では、感性ベクトル結合部108が、発話の時間長が予め設定した閾値以上であるかを判定する。このステップST1007において、感性ベクトル結合部108が発話の時間長が閾値以上ではないと判定した場合には、シーケンスは終了する。一方、ステップST1007において、感性ベクトル結合部108が発話の時間長が閾値以上であると判定した場合には、シーケンスはステップST1008へ移行する。 Next, in step ST1007, the affective vector combining unit 108 determines whether or not the utterance time length is greater than or equal to a preset threshold value. In this step ST1007, when the sensibility vector combining unit 108 determines that the utterance time length is not greater than or equal to the threshold value, the sequence ends. On the other hand, if it is determined in step ST1007 that the emotion vector combining unit 108 determines that the utterance time length is equal to or greater than the threshold, the sequence proceeds to step ST1008.
 次いで、ステップST1008では、感性ベクトル結合部108が、感性表現語に対応する感性ベクトルに対し、下がり調子の場合に応じた重みを付与する。即ち、感性ベクトル結合部108は、感性ベクトルに対する重みを小さくする。
 また、ステップST1009では、感性ベクトル結合部108が、感性表現語に対応する感性ベクトルに対し、上がり調子の場合に応じた重みを付与する。即ち、感性ベクトル結合部108は、感性ベクトルに対する重みを小さくする又は0とする。
Next, in step ST1008, the sensitivity vector combining unit 108 assigns a weight according to the case of the down tone to the sensitivity vector corresponding to the sensitivity expression word. That is, the sensitivity vector combining unit 108 reduces the weight for the sensitivity vector.
Also, in step ST1009, the sensitivity vector combining unit 108 assigns a weight according to the upward tone to the sensitivity vector corresponding to the sensitivity expression word. That is, the sensitivity vector combination unit 108 reduces the weight for the sensitivity vector or sets it to zero.
 なお上記では、感性ベクトル結合部108が代表的な基本周波数F0の値の差分で調子を判定する際に、差分の絶対値と閾値との比較、及び、差分の値の大小(正負)を両方判定する場合を示した。しかしながら、これに限らず、感性ベクトル結合部108は、上記両判定のうちの一方のみを行うようにしてもよい。 In the above, when the sensitivity vector combination unit 108 determines the tone based on the difference between the values of the representative fundamental frequency F0, both the absolute value of the difference and the threshold value, and the difference value magnitude (positive / negative) are both used. The case of judging was shown. However, the present invention is not limited to this, and the emotion vector combining unit 108 may perform only one of the above determinations.
 また、言語情報列202に複数の感性表現語が含まれている場合、感性ベクトル結合部108は、他の感性表現語における代表的な基本周波数F0の値の差分を閾値として、調子の判定を行ってもよい。例えば図9に示す言語情報列202において、感性ベクトル結合部108は、感性表現語「ロマンチック」の前半「ロマン」と後半「チック」に対応する基本周波数F0の各区間から抽出した代表的な基本周波数F0の値の差分により、「ロマンチック」は下がり調子であると判定したとする。次に、感性ベクトル結合部108は、感性表現語「ゆっくり」の前半「ゆっ」と後半「くり」に対応する基本周波数F0の各区間から代表的な基本周波数F0の値の差分を抽出し、「ロマンチック」の代表的な基本周波数F0の値の差分との比較を行うことで、「ゆっくり」の調子の判定を行う。ここで、「ロマンチック」と比較し、「ゆっくり」の基本周波数F0の値の差分が小さいため、「ゆっくり」は平易な調子と判定できる。 When the language information sequence 202 includes a plurality of emotional expression words, the sensitivity vector combining unit 108 determines the tone using a difference in the value of the representative fundamental frequency F0 in other sensitivity expression words as a threshold value. You may go. For example, in the linguistic information sequence 202 shown in FIG. 9, the sensibility vector combination unit 108 represents a representative basic extracted from each section of the basic frequency F0 corresponding to the first half “roman” and second half “tick” of the sensibility expression word “romantic”. It is assumed that “romantic” is determined to be in a down tone based on the difference in the value of the frequency F0. Next, the sensibility vector combining unit 108 extracts a difference in the value of the representative fundamental frequency F0 from each section of the fundamental frequency F0 corresponding to the first half “Yu” and the second half “Kuri” of the sensibility expression word “slow”, A “slow” tone is determined by comparison with a difference in the value of the representative fundamental frequency F0 of “romantic”. Here, since the difference between the values of the fundamental frequency F0 of “slow” is smaller than that of “romantic”, it can be determined that “slow” is a simple tone.
 また、感性ベクトル結合部108は、感性表現語に対応する韻律情報203に基づき、音の高低や強弱、話速や間の長さ等に応じて感性ベクトルに重みを付与する際、重みの値は予め設定した一律の値を付与してもよいし、音の高低や強弱等の変化の度合いに応じた値を付与してもよい。音の高低や強弱等の変化の度合いは、予め設定した閾値からの変化の程度を算出し設定してもよいし、言語情報列202に含まれる他の感性表現語に対応する韻律情報203との比較を行い算出して設定してもよい。 In addition, the sensitivity vector combining unit 108 assigns weight values to the sensitivity vectors based on the prosodic information 203 corresponding to the sensitivity expression words when weighting the sensitivity vectors according to the pitch, strength, speech speed, length of the speech, and the like. May be given a preset uniform value, or may be given a value according to the degree of change in pitch, strength, etc. The degree of change such as the level of the sound or the strength may be set by calculating the degree of change from a preset threshold value, or the prosodic information 203 corresponding to other emotional expression words included in the language information string 202. May be calculated and set.
 以上のように、この実施の形態1によれば、複数の感性表現語を示す情報、及び、当該感性表現語毎に、複数の代表感性表現語との関係度合いを示す感性ベクトルを示す情報を含む感性空間データベース101と、複数の固有名を示す情報、及び、当該固有名毎に、複数の代表感性表現語との関係度合いを示す感性ベクトルを示す情報を含む固有名データベース102と、音声情報201を得る音声入力部103と、音声情報201を言語情報列202に変換する音声認識部104と、音声情報201から、言語情報列202に対する抑揚の強弱を示す情報を含む韻律情報203を抽出する韻律情報抽出部105と、感性空間データベース101を参照し、言語情報列202に含まれる感性表現語を全て抽出する感性表現語抽出部106と、感性空間データベース101を参照し、感性表現語抽出部106で抽出された感性表現語を感性ベクトルに変換する感性ベクトル変換部107と、感性ベクトル変換部107が複数の感性ベクトルを得た場合に、韻律情報203に含まれる抑揚の強弱及び言語情報列202に含まれる感性表現語の語順に基づき、当該複数の感性ベクトルから単一の感性ベクトルを算出する感性ベクトル結合部108と、感性ベクトル変換部107又は感性ベクトル結合部108で得られた単一の感性ベクトルに基づき、固有名データベース102から固有名を検索する固有名検索部109と、固有名検索部109で検索された固有名を示す情報を出力する固有名情報出力部110とを備えたので、抑揚の強弱及び感性表現語の語順を利用し、ユーザによる検索条件をよりよく反映した固有名を検索できる。 As described above, according to the first embodiment, information indicating a plurality of sensitivity expression words and information indicating a sensitivity vector indicating a degree of relationship with a plurality of representative sensitivity expression words for each of the sensitivity expression words. Kansei space database 101, information indicating a plurality of proper names, and a proper name database 102 including information indicating a sensitivity vector indicating a degree of relationship with a plurality of representative affective expression words for each proper name, and voice information The speech input unit 103 that obtains 201, the speech recognition unit 104 that converts the speech information 201 into the language information sequence 202, and the prosody information 203 including information indicating the strength of the inflection with respect to the language information sequence 202 is extracted from the speech information 201. A prosody information extraction unit 105, a sensitivity expression word extraction unit 106 that refers to the sensitivity space database 101 and extracts all the emotional expression words included in the language information string 202, When the sensitivity space database 101 is referred to and the sensitivity vector conversion unit 107 that converts the sensitivity expression word extracted by the sensitivity expression word extraction unit 106 into a sensitivity vector, and the sensitivity vector conversion unit 107 obtains a plurality of sensitivity vectors, A sensitivity vector combining unit 108 that calculates a single sensitivity vector from the plurality of sensitivity vectors based on the word order of the sensitivity expression words included in the prosody information 203 and the language information string 202, and a sensitivity vector conversion unit 107 or a unique name search unit 109 for searching for a unique name from the unique name database 102 based on a single sensitivity vector obtained by the sensitivity vector combining unit 108, and information indicating a unique name searched by the unique name search unit 109 And a proper name information output unit 110 that outputs the You can search a unique name that reflects better the search conditions.
 特に、固有名データベース102は、複数の固有名を示す情報、及び、当該固有名毎に、複数の代表感性表現語との関係度合いを示す感性ベクトルを示す情報を含むものとした。また、固有名は検索対象であればよく、例えば楽曲名、車名、テレビ番組名、フォント名等が検索対象となる。よって、固有名データベース102は容易に作成、拡張、交換、流用が可能である。 In particular, the proper name database 102 includes information indicating a plurality of proper names and information indicating a sensitivity vector indicating a degree of relationship with a plurality of representative affective expression words for each proper name. Further, the unique name may be a search target, and for example, a song name, a car name, a television program name, a font name, and the like are search targets. Therefore, the unique name database 102 can be easily created, expanded, exchanged, and diverted.
 また、言語情報列202に複数の感性表現語が含まれる場合に、重要な語は大きな抑揚で発声される傾向がある。そこで、この傾向を利用し、感性ベクトル結合部108は、抑揚が強い感性表現語に対応する感性ベクトルの重みを大きくし、抑揚が弱い感性表現語に対応する感性ベクトルの重みを小さくして、感性ベクトルの結合を行うことができる。これにより、ユーザの発話意図をよりよく反映した固有名を得られる。 Also, when the language information sequence 202 includes a plurality of emotional expression words, important words tend to be uttered with great inflection. Therefore, by using this tendency, the sensitivity vector combining unit 108 increases the weight of the sensitivity vector corresponding to the emotion expression word having a strong inflection, and decreases the weight of the sensitivity vector corresponding to the sensitivity expression word having a weak intonation, Sensitivity vectors can be combined. As a result, a unique name that better reflects the user's intention to speak can be obtained.
 また、言語情報列202に複数の感性表現語が含まれる場合に、重要な語は早い語順で発声される傾向がある。そこで、この傾向を利用し、感性ベクトル結合部108は、語順の早い感性表現語に対応する感性ベクトルの重みを大きくし、語順が後の感性表現語に対応する感性ベクトルの重みを小さくして、感性ベクトルの結合を行うことができる。これにより、ユーザの発話意図をよりよく反映した固有名を得られる。 Also, when a plurality of emotional expression words are included in the language information column 202, important words tend to be uttered in early word order. Therefore, using this tendency, the sensitivity vector combining unit 108 increases the weight of the sensitivity vector corresponding to the sensitivity expression word with the earlier word order, and decreases the weight of the sensitivity vector corresponding to the sensitivity expression word with the word order later. Sensitivity vectors can be combined. As a result, a unique name that better reflects the user's intention to speak can be obtained.
 また、確信度が低い語は下がり調子で、且つ、語の長さに対して長い時間長で発声される傾向がある。そこで、この傾向を利用し、感性ベクトル結合部108は、下がり調子、且つ、話速が遅い感性表現語に対応する感性ベクトルの重みを小さくして、感性ベクトルの結合を行うことができる。これにより、ユーザが発話により表現した検索条件に含まれる感性表現語の優先度を設定し、ユーザの発話に対する確信度を反映した固有名を得られる。 Also, words with low confidence are in a down tone and tend to be uttered with a longer time length than the word length. Therefore, by using this tendency, the sensitivity vector combining unit 108 can combine the sensitivity vectors by reducing the weight of the sensitivity vector corresponding to the sensitivity expression word having the falling tone and the slow speaking speed. Thereby, the priority of the sensitivity expression word contained in the search condition expressed by the user's utterance is set, and the proper name reflecting the certainty of the user's utterance can be obtained.
 また、不満や嫌悪を表す語は上がり調子で発声される傾向がある。そこで、この傾向を利用し、感性ベクトル結合部108は、上がり調子の感性表現語に対応する感性ベクトルの重みを小さく又は重みを付与せずに、感性ベクトルの結合を行うことができる。これにより、ユーザの発話音声から検索条件を絞り込み、より精度良くユーザの意図を反映した固有名を得られる。 Also, words that indicate dissatisfaction and disgust tend to be uttered in a rising tone. Therefore, by using this tendency, the sensitivity vector combining unit 108 can combine the sensitivity vectors without decreasing or giving a weight to the sensitivity vector corresponding to the emotion expression word having an upward tone. Thereby, a search condition is narrowed down from a user's utterance voice, and a proper name reflecting a user's intention can be obtained more accurately.
 なお上記では、音声入力部103が音声情報201を得て、音声認識部104が当該音声情報201を言語情報列202に変換する場合を示した。しかしながら、これに限らず、感性表現語による検索装置1は、音声に代えて、文字の入力を受付けてもよい。この場合には、音声入力部103及び音声認識部104に代えて、文字の入力を受付けて言語情報列(文字情報)202を得る文字入力部を設ける。またこの場合には、韻律情報抽出部105は不要となる。また、感性ベクトル結合部108は、感性ベクトル変換部107が複数の感性ベクトルを得た場合に、上記言語情報列202に含まれる感性表現語の語順に基づき、当該複数の感性ベクトルから単一の感性ベクトルを算出する。このような構成とすることで、感性表現語の語順を利用し、ユーザによる検索条件をよりよく反映した固有名を検索できる。 In the above description, the voice input unit 103 obtains the voice information 201 and the voice recognition unit 104 converts the voice information 201 into the language information string 202. However, the present invention is not limited to this, and the search device 1 based on emotional expression words may accept input of characters instead of voice. In this case, instead of the voice input unit 103 and the voice recognition unit 104, a character input unit that receives a character input and obtains a language information string (character information) 202 is provided. In this case, the prosodic information extraction unit 105 is not necessary. Further, when the sensitivity vector conversion unit 107 obtains a plurality of sensitivity vectors, the sensitivity vector combining unit 108 generates a single from the plurality of sensitivity vectors based on the word order of the sensitivity expression words included in the language information sequence 202. The sensitivity vector is calculated. With such a configuration, it is possible to search for a proper name that better reflects the search condition by the user by using the word order of the emotional expression words.
実施の形態2.
 図11はこの発明の実施の形態2に係る感性表現語による検索装置1bの機能構成例を示す図である。この図11に示す実施の形態2に係る感性表現語による検索装置1bは、図1に示す実施の形態1に係る感性表現語による検索装置1に対し、固有名データベース102を固有名データベース102bに変更し、固有名検索部109を固有名検索部109bに変更し、ジャンル抽出部111を追加している。その他の構成は同様であり、同一の符号を付してその説明を省略する。
Embodiment 2.
FIG. 11 is a diagram showing a functional configuration example of the search device 1b based on the sensitivity expression word according to Embodiment 2 of the present invention. The search device 1b using the sensitivity expression word according to the second embodiment shown in FIG. 11 is changed from the search device 1 using the sensitivity expression word according to the first embodiment shown in FIG. 1 to the proper name database 102b. In this case, the proper name search unit 109 is changed to the proper name search unit 109b, and a genre extraction unit 111 is added. Other configurations are the same, and the same reference numerals are given and description thereof is omitted.
 固有名データベース102bは、複数の固有名を示す情報(固有名情報)と、当該固有名毎のジャンルを示す情報(ジャンル情報)と、当該固有名毎の複数の代表感性表現語との関係度合いを示す感性ベクトルを示す情報(感性ベクトル情報)とを含む。
 なお、固有名は、人や施設又は楽曲や動画像等のコンテンツ(検索対象)を表す文字列(言語列)又は識別番号である。また、ジャンルは、固有名の分類を表す文字列である。また、感性ベクトルとしては、例えば、固有名と複数の代表感性表現語との関係の強さを示す値が挙げられる。
The proper name database 102b includes information indicating a plurality of proper names (proprietary name information), information indicating the genre for each proper name (genre information), and a degree of relationship between a plurality of representative affective expression words for each proper name. Information (sensitivity vector information) indicating a sensitivity vector indicating the above.
The proper name is a character string (language string) or an identification number that represents content (search target) such as a person, a facility, a song, or a moving image. The genre is a character string representing the classification of the proper name. The sensitivity vector includes, for example, a value indicating the strength of the relationship between the proper name and a plurality of representative sensitivity expression words.
 図12に、固有名データベース102bの一例を示す。
 図12に示す固有名データベース102bでは、各行に固有名31及びジャンル33が示され、各列に代表感性表現語32が示され、各行及び各列から成る各マスに、該当する固有名31と該当する代表感性表現語32との関係の強さを示す値(図12では1~5)が示されている。ここで、あるマスの値が1であれば、その行の固有名31とその列の次元(代表感性表現語32)との関係が弱いことを示す。また、あるマスの値が5であれば、その行の固有名31とその列の次元(代表感性表現語32)との関係が強いことを示す。
FIG. 12 shows an example of the proper name database 102b.
In the proper name database 102b shown in FIG. 12, the proper name 31 and the genre 33 are shown in each row, the representative sentiment expression word 32 is shown in each column, and the corresponding proper name 31 and the corresponding proper name 31 are shown in each cell. A value (1 to 5 in FIG. 12) indicating the strength of the relationship with the corresponding representative sensibility expression word 32 is shown. Here, if the value of a certain cell is 1, it indicates that the relationship between the proper name 31 of the row and the dimension of the column (representative emotion expression word 32) is weak. Further, if the value of a certain square is 5, it indicates that the relationship between the proper name 31 of the row and the dimension of the column (representative sensibility expression word 32) is strong.
 図12に示す固有名データベース102bでは、例えば、固有名「ABCノ島」と、代表感性表現語「たのしい」、「興奮した」、「ゆっくり」、「ロマンチック」のそれぞれとの関係を示す値「3」、「1」、「3」、「4」が該当するマスに格納されている。これは、固有名「ABCノ島」は、代表感性表現語「ロマンチック」との関係は強く、代表感性表現語「たのしい」及び「ゆっくり」との関係はやや強く、代表感性表現語「興奮した」との関係は弱いことを示している。また、固有名「ABCノ島」は、ジャンル「散歩」と対応付けられている。このように、図12における固有名「ABCノ島」は、固有名を分類するジャンル「散歩」と、固有名と代表感性表現語との関係を示す値が格納された4次元の感性ベクトルとに対応付けられ、固有名データベース102bに保持される。 In the proper name database 102b shown in FIG. 12, for example, the value “A” indicating the relationship between the proper name “ABC Nojima” and each of the representative sensibility expressions “fun”, “excited”, “slow”, and “romantic”. “3”, “1”, “3”, “4” are stored in the corresponding square. This is because the proper name “ABC Nojima” has a strong relationship with the representative sensibility expression word “romantic”, and the relationship between the representative sensation expression words “fun” and “slow” is somewhat strong, and the representative sensation expression word “excited” "Is a weak relationship. The proper name “ABC Nojima” is associated with the genre “walk”. As described above, the proper name “ABC Nojima” in FIG. 12 includes a genre “walk” for classifying proper names, and a four-dimensional sensitivity vector in which values indicating the relationship between proper names and representative affective expressions are stored. Are stored in the unique name database 102b.
 このように、実施の形態1における固有名データベース102と実施の形態2における固有名データベース102bとの違いは、実施の形態1の固有名データベース102に対し、ジャンル情報を加えた点である。 As described above, the difference between the proper name database 102 in the first embodiment and the proper name database 102b in the second embodiment is that genre information is added to the proper name database 102 in the first embodiment.
 ジャンル抽出部111は、固有名データベース102bを参照し、音声認識部104により得られた言語情報列202からジャンルを抽出する。即ち、ジャンル抽出部111は、自然言語処理により言語情報列202を解析し、固有名データベース102bに含まれるジャンルと一致する語句をジャンルとして抽出する。このジャンル抽出部111により抽出されたジャンルを示す情報(ジャンル情報209)は、固有名検索部109bへ送信される。 The genre extraction unit 111 extracts a genre from the language information sequence 202 obtained by the speech recognition unit 104 with reference to the proper name database 102b. That is, the genre extraction unit 111 analyzes the linguistic information string 202 by natural language processing, and extracts a phrase that matches the genre included in the proper name database 102b as a genre. Information indicating the genre extracted by the genre extraction unit 111 (genre information 209) is transmitted to the unique name search unit 109b.
 固有名検索部109bは、感性ベクトル変換部107又は感性ベクトル結合部108により得られた単一の感性ベクトル及びジャンル抽出部111により抽出されたジャンルに基づき、固有名データベース102から固有名を検索する。即ち、固有名検索部109bは、固有名データベース102bから上記単一の感性ベクトルに類似する感性ベクトルに対応付けられ、且つ、上記ジャンルに分類された固有名を検索する。この固有名検索部109bにより検索された固有名を示す情報(固有名情報207)は、固有名情報出力部110へ送信される。 The proper name search unit 109b searches for the proper name from the proper name database 102 based on the single sentiment vector obtained by the sentiment vector conversion unit 107 or the sentiment vector combination unit 108 and the genre extracted by the genre extraction unit 111. . In other words, the proper name search unit 109b searches the proper name database 102b for proper names that are associated with sensitivity vectors similar to the single sensitivity vector and are classified into the genre. Information (unique name information 207) indicating the unique name searched by the unique name search unit 109b is transmitted to the unique name information output unit 110.
 次に、実施の形態2に係る感性表現語による検索装置1bのハードウェア構成例について、図2を参照しながら説明する。なお、ジャンル抽出部111、固有名検索部109b及び固有名データベース102b以外の構成は、実施の形態1と同様であり、その説明を省略する。
 ジャンル抽出部111及び固有名検索部109bは、演算装置であるプロセッサ301で実行される。
 固有名データベース102bは、記憶装置であるメモリ302に記憶される。
Next, an example of a hardware configuration of the search device 1b using the emotional expression word according to the second embodiment will be described with reference to FIG. The configuration other than the genre extraction unit 111, the proper name search unit 109b, and the proper name database 102b is the same as that of the first embodiment, and a description thereof will be omitted.
The genre extraction unit 111 and the proper name search unit 109b are executed by the processor 301 which is an arithmetic device.
The proper name database 102b is stored in the memory 302 which is a storage device.
 なお、ジャンル抽出部111と、固有名検索部109bの処理は、電気回路として実現してもよい。 Note that the processing of the genre extraction unit 111 and the unique name search unit 109b may be realized as an electric circuit.
 次に、実施の形態2に係る感性表現語による検索装置1bの動作例について、図13を参照しながら説明する。なお、図13に示すフローチャートでは、図5に示すフローチャートに対し、ステップST1301~1303を追加している。その他の処理は同様であり、同一の番号を付してその説明を省略する。また以下では、具体例として、図2に示す感性空間データベース101及び図12に示す固有名データベース102bを用いる場合を示す。 Next, an example of the operation of the search device 1b using the emotional expression word according to Embodiment 2 will be described with reference to FIG. In the flowchart shown in FIG. 13, steps ST1301 to ST1303 are added to the flowchart shown in FIG. The other processes are the same, and the same numbers are assigned and the description thereof is omitted. In the following, as a specific example, a case in which the sensitivity space database 101 shown in FIG. 2 and the proper name database 102b shown in FIG. 12 are used is shown.
 ステップST1301では、ジャンル抽出部111が、固有名データベース102bを参照し、音声認識部104により得られた言語情報列202からジャンルを抽出する。 In step ST1301, the genre extraction unit 111 refers to the unique name database 102b and extracts a genre from the language information string 202 obtained by the speech recognition unit 104.
 例えば、音声認識部104で図14に示す言語情報列「しっとりとしたレストラン」を得たとする。また、図12に示す固有名データベース102bには、ジャンル「レストラン」が含まれている。この場合、ジャンル抽出部111は、図14に示す言語情報列「しっとりとしたレストラン」から、「レストラン」の語句をジャンルとして抽出する。 For example, assume that the speech recognition unit 104 obtains the language information string “moist restaurant” shown in FIG. Also, the genre “restaurant” is included in the proper name database 102b shown in FIG. In this case, the genre extraction unit 111 extracts the word “restaurant” from the language information string “moist restaurant” shown in FIG. 14 as a genre.
 また、ステップST1302では、固有名検索部109bが、ジャンル抽出部111によりジャンルが抽出されたか、即ちジャンル情報209を受信したかを判定する。このステップST1302において、固有名検索部109bが、ジャンル抽出部111によりジャンルが抽出されていないと判定した場合には、シーケンスはステップST510へ移行する。一方、固有名検索部109bが、ジャンル抽出部111によりジャンルが抽出されたと判定した場合には、シーケンスはステップST1303へ移行する。 Also, in step ST1302, the proper name search unit 109b determines whether the genre is extracted by the genre extraction unit 111, that is, whether the genre information 209 is received. In step ST1302, if the proper name search unit 109b determines that the genre is not extracted by the genre extraction unit 111, the sequence proceeds to step ST510. On the other hand, when the unique name search unit 109b determines that the genre is extracted by the genre extraction unit 111, the sequence proceeds to step ST1303.
 ステップST1303では、固有名検索部109bが、感性ベクトル変換部107又は感性ベクトル結合部108により得られた単一の感性ベクトル及びジャンル抽出部111により抽出されたジャンルに基づき、固有名データベース102から固有名を検索する。具体的には、上記単一の感性ベクトルを検索キーとし、固有名データベース102bに含まれる上記ジャンルに分類された感性ベクトルの中から当該検索キーと最も類似する感性ベクトルを選択し、当該選択した感性ベクトルに対応付けられた固有名を抽出する。 In step ST1303, the unique name search unit 109b creates a unique name from the unique name database 102 based on the single sentiment vector obtained by the sentiment vector conversion unit 107 or the sentiment vector combination unit 108 and the genre extracted by the genre extraction unit 111. Search for a name. Specifically, the single sensitivity vector is used as a search key, the sensitivity vector most similar to the search key is selected from the sensitivity vectors classified into the genre included in the proper name database 102b, and the selected The unique name associated with the sensitivity vector is extracted.
 例えば、音声認識部104が図14に示す言語情報列「しっとりとしたレストラン」を得て、感性表現語抽出部106が感性表現語「しっとり」を抽出し、感性ベクトル変換部107が図2に示す感性空間データベース101から4次元の感性ベクトル(1,1,4,5)に変換し、ジャンル抽出部111がジャンル「レストラン」を抽出したとする。この場合、固有名検索部109bは、図12に示す固有名データベース102bに含まれる上記ジャンルに分類された感性ベクトルを参照し、上記感性ベクトル(1,1,4,5)に最も類似する値を持つ感性ベクトルに対応づけられた固有名を検索する。上記の例では、感性表現語「しっとり」の感性ベクトル(1,1,4,5)は、「ロマンチック」の値が「5」と高く、「ゆっくり」の値が「4」とやや高く、「たのしい」と「興奮した」の値が「1」と低くなっている。そのため、固有名検索部109bは、この感性ベクトルを検索キーとして図12に示す固有名データベース102bを検索すると、ジャンル「レストラン」に分類され、且つ、「ロマンチック」の値が「5」と高くなっている感性ベクトル(2,1,4,5)に対応付けられている固有名「LMNキッチン」を、感性表現語「しっとり」と関係の強い固有名として抽出する。 For example, the speech recognition unit 104 obtains the language information string “moist restaurant” shown in FIG. 14, the emotion expression word extraction unit 106 extracts the sensitivity expression word “moist”, and the sensitivity vector conversion unit 107 displays the language information string in FIG. It is assumed that the sensibility space database 101 is converted into a four-dimensional sensibility vector (1, 1, 4, 5), and the genre extraction unit 111 extracts the genre “restaurant”. In this case, the unique name search unit 109b refers to the sensitivity vector classified into the genre included in the proper name database 102b shown in FIG. 12, and is the value most similar to the sensitivity vector (1, 1, 4, 5). The unique name associated with the sensitivity vector having is searched. In the above example, the sensitivity vector (1, 1, 4, 5) of the sensitivity expression word “moist” has a high “romantic” value of “5” and a “slow” value of “4”. The values of “fun” and “excited” are as low as “1”. Therefore, when the proper name search unit 109b searches the proper name database 102b shown in FIG. 12 using this sensitivity vector as a search key, it is classified into the genre “restaurant” and the value of “romantic” is as high as “5”. The unique name “LMN kitchen” associated with the sentiment vector (2, 1, 4, 5) is extracted as a unique name having a strong relationship with the sentiment expression word “moist”.
 以上のように、この実施の形態2によれば、固有名データベース102bは、固有名毎のジャンルを示す情報も含み、固有名データベース102bを参照し、言語情報列202からジャンルを抽出するジャンル抽出部111を備え、固有名検索部109bは、感性ベクトル変換部107又は感性ベクトル結合部108で得られた単一の感性ベクトル及びジャンル抽出部111により抽出されたジャンルに基づき、固有名データベース102bから固有名を検索するように構成したので、実施の形態1に対し、言語情報列202にジャンルが含まれる場合に、検索対象である固有名データベース102bの固有名を当該ジャンルで絞り込むことで、当該絞り込んだ固有名の中から検索対象の固有名を選択可能となり、ユーザの発話意図をよりよく反映したジャンルに分類された固有名をより精度よく検索することができる。 As described above, according to the second embodiment, the proper name database 102b also includes information indicating the genre for each proper name, refers to the proper name database 102b, and extracts a genre from the language information column 202. The unique name search unit 109b includes a single sensitivity vector obtained by the sensitivity vector conversion unit 107 or the sensitivity vector combination unit 108, and the genre extracted by the genre extraction unit 111, from the proper name database 102b. Since the configuration is such that the proper name is searched, when the genre is included in the language information column 202, the proper name in the proper name database 102b to be searched is narrowed down by the genre. You can select a unique name to search from among the narrowed specific names, making it easier for users to speak Ku unique name that has been classified as a genre that reflects it is more possible to accurately search for.
 なお上記では、音声入力部103及び音声認識部104を用いた場合を示した。しかしながら、これに限らず、音声入力部103及び音声認識部104に代えて、文字入力部を設けてもよい点は実施の形態1と同様である。 In the above description, the voice input unit 103 and the voice recognition unit 104 are used. However, the present invention is not limited to this, and a character input unit may be provided instead of the voice input unit 103 and the voice recognition unit 104, as in the first embodiment.
 また、本願発明はその発明の範囲内において、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。 Further, within the scope of the present invention, the invention of the present application can be freely combined with each embodiment, modified with any component in each embodiment, or omitted with any component in each embodiment. .
 この発明に係る感性表現語による検索装置は、感性表現語の語順を利用し、ユーザによる検索条件をよりよく反映した固有名を検索でき、感性表現語により固有名を検索する感性表現語による検索装置等に用いるのに適している。 The device for searching by emotional expression word according to the present invention is capable of searching for a proper name reflecting the user's search condition by using the word order of the sensitivity expression word, and searching by a sensitivity expression word for searching for a proper name by the sensitivity expression word Suitable for use in devices and the like.
 1,1b 感性表現語による検索装置、101 感性空間データベース、102,102b 固有名データベース、103 音声入力部、104 音声認識部、105 韻律情報抽出部、106 感性表現語抽出部、107 感性ベクトル変換部、108 感性ベクトル結合部、109,109b 固有名検索部、110 固有名情報出力部、111 ジャンル抽出部、201 音声情報、202 言語情報列、203 韻律情報、204 感性表現語情報、205 感性ベクトル情報、206 感性ベクトル情報、207 固有名情報、208 固有名情報、209 ジャンル情報、301 プロセッサ、302 メモリ、303 入力インタフェース、304 出力インタフェース。 1,1b Sensitive expression search device, 101 Kansei space database, 102, 102b proper name database, 103 speech input unit, 104 speech recognition unit, 105 prosodic information extraction unit, 106 sensitivity expression word extraction unit, 107 sensitivity vector conversion unit , 108 Kansei vector combination part, 109, 109b proper name search part, 110 proper name information output part, 111 genre extraction part, 201 speech information, 202 language information string, 203 prosodic information, 204 affective expression word information, 205 affective vector information , 206 Kansei vector information, 207 proper name information, 208 proper name information, 209 genre information, 301 processor, 302 memory, 303 input interface, 304 output interface.

Claims (5)

  1.  印象を表す複数の感性表現語を示す情報、及び、当該感性表現語毎に、複数の代表的な感性表現語との関係度合いを示す感性ベクトルを示す情報を含む感性空間データベースと、
     複数の固有名を示す情報、及び、当該固有名毎に、前記複数の代表的な感性表現語との関係度合いを示す感性ベクトルを示す情報を含む固有名データベースと、
     文字情報を得る文字入力部と、
     前記感性空間データベースを参照し、前記文字情報に含まれる感性表現語を全て抽出する感性表現語抽出部と、
     前記感性空間データベースを参照し、前記感性表現語抽出部で抽出された感性表現語を感性ベクトルに変換する感性ベクトル変換部と、
     前記感性ベクトル変換部が複数の感性ベクトルを得た場合に、前記文字情報に含まれる感性表現語の語順に基づき、当該複数の感性ベクトルから単一の感性ベクトルを算出する感性ベクトル結合部と、
     前記感性ベクトル変換部又は前記感性ベクトル結合部で得られた単一の感性ベクトルに基づき、前記固有名データベースから固有名を検索する固有名検索部と、
     前記固有名検索部で検索された固有名を示す情報を出力する固有名情報出力部と
     を備えた感性表現語による検索装置。
    A sensitivity space database including information indicating a plurality of emotional expression words representing an impression, and information indicating a sensitivity vector indicating a degree of relationship with a plurality of typical sensitivity expression words for each of the sensitivity expression words;
    Information indicating a plurality of proper names, and a proper name database including information indicating a sensitivity vector indicating a degree of relationship with the plurality of representative sensitivity expression words for each proper name;
    A character input unit for obtaining character information;
    A Kansei expression word extraction unit that refers to the Kansei space database and extracts all Kansei expression words included in the character information;
    A sensitivity vector conversion unit that converts the sensitivity expression word extracted by the sensitivity expression word extraction unit into a sensitivity vector with reference to the sensitivity space database;
    A sensitivity vector combining unit for calculating a single sensitivity vector from the plurality of sensitivity vectors based on the word order of the sensitivity expression words included in the character information when the sensitivity vector conversion unit obtains a plurality of sensitivity vectors;
    Based on a single sensitivity vector obtained by the sensitivity vector conversion unit or the sensitivity vector combination unit, a proper name search unit that searches for a proper name from the proper name database,
    An apparatus for searching by emotional expression words, comprising: a proper name information output unit that outputs information indicating a proper name searched by the proper name search unit.
  2.  印象を表す複数の感性表現語を示す情報、及び、当該感性表現語毎に、複数の代表的な感性表現語との関係度合いを示す感性ベクトルを示す情報を含む感性空間データベースと、
     複数の固有名を示す情報、及び、当該固有名毎に、前記複数の代表的な感性表現語との関係度合いを示す感性ベクトルを示す情報を含む固有名データベースと、
     音声情報を得る音声入力部と、
     前記音声情報を文字情報に変換する音声認識部と、
     前記音声情報から、前記文字情報に対する抑揚の強弱を示す情報を含む韻律情報を抽出する韻律情報抽出部と、
     前記感性空間データベースを参照し、前記文字情報に含まれる感性表現語を全て抽出する感性表現語抽出部と、
     前記感性空間データベースを参照し、前記感性表現語抽出部で抽出された感性表現語を感性ベクトルに変換する感性ベクトル変換部と、
     前記感性ベクトル変換部が複数の感性ベクトルを得た場合に、前記韻律情報に含まれる抑揚の強弱及び前記文字情報に含まれる感性表現語の語順に基づき、当該複数の感性ベクトルから単一の感性ベクトルを算出する感性ベクトル結合部と、
     前記感性ベクトル変換部又は前記感性ベクトル結合部で得られた単一の感性ベクトルに基づき、前記固有名データベースから固有名を検索する固有名検索部と、
     前記固有名検索部で検索された固有名を示す情報を出力する固有名情報出力部と
     を備えた感性表現語による検索装置。
    A sensitivity space database including information indicating a plurality of emotional expression words representing an impression, and information indicating a sensitivity vector indicating a degree of relationship with a plurality of typical sensitivity expression words for each of the sensitivity expression words;
    Information indicating a plurality of proper names, and a proper name database including information indicating a sensitivity vector indicating a degree of relationship with the plurality of representative sensitivity expression words for each proper name;
    A voice input unit for obtaining voice information;
    A voice recognition unit for converting the voice information into character information;
    A prosody information extraction unit that extracts prosody information including information indicating the strength of intonation of the character information from the speech information;
    A Kansei expression word extraction unit that refers to the Kansei space database and extracts all Kansei expression words included in the character information;
    A sensitivity vector conversion unit that converts the sensitivity expression word extracted by the sensitivity expression word extraction unit into a sensitivity vector with reference to the sensitivity space database;
    When the Kansei vector conversion unit obtains a plurality of Kansei vectors, based on the intensities of intonation contained in the prosodic information and the word order of Kansei expression words contained in the character information, a single Kansei from the Kansei vectors Kansei vector combination part for calculating vector,
    Based on a single sensitivity vector obtained by the sensitivity vector conversion unit or the sensitivity vector combination unit, a proper name search unit that searches for a proper name from the proper name database,
    An apparatus for searching by emotional expression words, comprising: a proper name information output unit that outputs information indicating a proper name searched by the proper name search unit.
  3.  前記韻律情報は、調子及び話速を示す情報も含み、
     前記感性ベクトル結合部は、前記感性ベクトル変換部が複数の感性ベクトルを得た場合に、前記韻律情報に含まれる調子及び話速にも基づき、当該複数の感性ベクトルから単一の感性ベクトルを算出する
     ことを特徴とする請求項2記載の感性表現語による検索装置。
    The prosody information also includes information indicating tone and speech speed,
    The sensitivity vector combining unit calculates a single sensitivity vector from the plurality of sensitivity vectors based on the tone and speech speed included in the prosodic information when the sensitivity vector conversion unit obtains a plurality of sensitivity vectors. The search apparatus by a sensibility expression word according to claim 2.
  4.  前記固有名データベースは、前記固有名毎のジャンルを示す情報も含み、
     前記固有名データベースを参照し、前記文字情報からジャンルを抽出するジャンル抽出部を備え、
     前記固有名検索部は、前記感性ベクトル変換部又は前記感性ベクトル結合部で得られた単一の感性ベクトル及び前記ジャンル抽出部で抽出されたジャンルに基づき、前記固有名データベースから固有名を検索する
     ことを特徴とする請求項1記載の感性表現語による検索装置。
    The proper name database also includes information indicating a genre for each proper name,
    A genre extraction unit that refers to the unique name database and extracts a genre from the character information;
    The proper name search unit searches for a proper name from the proper name database based on the single sentiment vector obtained by the sentiment vector conversion unit or the sentiment vector combination unit and the genre extracted by the genre extraction unit. The apparatus according to claim 1, wherein the retrieval device is based on a sensibility expression word.
  5.  前記固有名データベースは、前記固有名毎のジャンルを示す情報も含み、
     前記固有名データベースを参照し、前記文字情報からジャンルを抽出するジャンル抽出部を備え、
     前記固有名検索部は、前記感性ベクトル変換部又は前記感性ベクトル結合部で得られた単一の感性ベクトル及び前記ジャンル抽出部で抽出されたジャンルに基づき、前記固有名データベースから固有名を検索する
     ことを特徴とする請求項2記載の感性表現語による検索装置。
    The proper name database also includes information indicating a genre for each proper name,
    A genre extraction unit that refers to the unique name database and extracts a genre from the character information;
    The proper name search unit searches for a proper name from the proper name database based on the single sentiment vector obtained by the sentiment vector conversion unit or the sentiment vector combination unit and the genre extracted by the genre extraction unit. 3. A search apparatus using a Kansei expression word according to claim 2.
PCT/JP2016/088704 2016-12-26 2016-12-26 Device for searching based on feeling word WO2018122919A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/088704 WO2018122919A1 (en) 2016-12-26 2016-12-26 Device for searching based on feeling word

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/088704 WO2018122919A1 (en) 2016-12-26 2016-12-26 Device for searching based on feeling word

Publications (1)

Publication Number Publication Date
WO2018122919A1 true WO2018122919A1 (en) 2018-07-05

Family

ID=62707123

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/088704 WO2018122919A1 (en) 2016-12-26 2016-12-26 Device for searching based on feeling word

Country Status (1)

Country Link
WO (1) WO2018122919A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111724765A (en) * 2020-06-30 2020-09-29 上海优扬新媒信息技术有限公司 Method and device for converting text into voice and computer equipment

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001101222A (en) * 1999-10-01 2001-04-13 Just Syst Corp Data retrieving device and storage medium in which program for data retrieval is stored
JP2006330060A (en) * 2005-05-23 2006-12-07 Univ Waseda Speech synthesizer, speech processor, and program
WO2007148493A1 (en) * 2006-06-23 2007-12-27 Panasonic Corporation Emotion recognizer
JP2010152862A (en) * 2008-11-27 2010-07-08 I Business Center:Kk Device for specifying text body and program for causing computer to specify text body
JP2011048527A (en) * 2009-08-26 2011-03-10 Nippon Telegr & Teleph Corp <Ntt> Sensitivity information extraction device, sensitivity retrieval device and method, and program
JP2011248020A (en) * 2010-05-25 2011-12-08 Sony Corp Search device, search method, and program

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001101222A (en) * 1999-10-01 2001-04-13 Just Syst Corp Data retrieving device and storage medium in which program for data retrieval is stored
JP2006330060A (en) * 2005-05-23 2006-12-07 Univ Waseda Speech synthesizer, speech processor, and program
WO2007148493A1 (en) * 2006-06-23 2007-12-27 Panasonic Corporation Emotion recognizer
JP2010152862A (en) * 2008-11-27 2010-07-08 I Business Center:Kk Device for specifying text body and program for causing computer to specify text body
JP2011048527A (en) * 2009-08-26 2011-03-10 Nippon Telegr & Teleph Corp <Ntt> Sensitivity information extraction device, sensitivity retrieval device and method, and program
JP2011248020A (en) * 2010-05-25 2011-12-08 Sony Corp Search device, search method, and program

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111724765A (en) * 2020-06-30 2020-09-29 上海优扬新媒信息技术有限公司 Method and device for converting text into voice and computer equipment

Similar Documents

Publication Publication Date Title
US20180137109A1 (en) Methodology for automatic multilingual speech recognition
CN107590135B (en) Automatic translation method, device and system
TWI532035B (en) Method for building language model, speech recognition method and electronic apparatus
JP5480760B2 (en) Terminal device, voice recognition method and voice recognition program
TWI539441B (en) Speech recognition method and electronic apparatus
KR100998566B1 (en) Method And Apparatus Of Translating Language Using Voice Recognition
TWI582754B (en) Language pattern generating means, language pattern generating method and program, voice recognizing apparatus, and voice recognition method and program thereof
TW201517015A (en) Method for building acoustic model, speech recognition method and electronic apparatus
US20140350934A1 (en) Systems and Methods for Voice Identification
JP5824829B2 (en) Speech recognition apparatus, speech recognition method, and speech recognition program
WO2016008128A1 (en) Speech recognition using foreign word grammar
JP2018159788A (en) Information processing device, method and program
CN108346426B (en) Speech recognition device and speech recognition method
CN112634865B (en) Speech synthesis method, apparatus, computer device and storage medium
JP5073024B2 (en) Spoken dialogue device
JP2006277676A (en) Information search device, information search method, and information search program
JP7034027B2 (en) Recognition device, recognition method and recognition program
JP5396530B2 (en) Speech recognition apparatus and speech recognition method
KR101460447B1 (en) Apparatus of learning intonations for learning foreign language and method thereof
US11295733B2 (en) Dialogue system, dialogue processing method, translating apparatus, and method of translation
WO2018122919A1 (en) Device for searching based on feeling word
KR20160104243A (en) Method, apparatus and computer-readable recording medium for improving a set of at least one semantic units by using phonetic sound
JP6289950B2 (en) Reading apparatus, reading method and program
CN112397048A (en) Pronunciation stability evaluation method, device and system for speech synthesis and storage medium
JP6003127B2 (en) Language model creation program and language model creation device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16925903

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16925903

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP