Nothing Special   »   [go: up one dir, main page]

WO2018120022A1 - 彩色滤光片、显示装置及制备彩色滤光片的方法 - Google Patents

彩色滤光片、显示装置及制备彩色滤光片的方法 Download PDF

Info

Publication number
WO2018120022A1
WO2018120022A1 PCT/CN2016/113512 CN2016113512W WO2018120022A1 WO 2018120022 A1 WO2018120022 A1 WO 2018120022A1 CN 2016113512 W CN2016113512 W CN 2016113512W WO 2018120022 A1 WO2018120022 A1 WO 2018120022A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
pixel layer
substrate
color filter
color
Prior art date
Application number
PCT/CN2016/113512
Other languages
English (en)
French (fr)
Inventor
萧毅豪
Original Assignee
东旭(昆山)显示材料有限公司
东旭光电科技股份有限公司
东旭集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东旭(昆山)显示材料有限公司, 东旭光电科技股份有限公司, 东旭集团有限公司 filed Critical 东旭(昆山)显示材料有限公司
Priority to PCT/CN2016/113512 priority Critical patent/WO2018120022A1/zh
Priority to KR1020197018444A priority patent/KR20190085124A/ko
Priority to CN201680091903.2A priority patent/CN110168436A/zh
Priority to US16/474,138 priority patent/US10802329B2/en
Priority to JP2019535299A priority patent/JP6854898B2/ja
Publication of WO2018120022A1 publication Critical patent/WO2018120022A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • G02F1/133516Methods for their manufacture, e.g. printing, electro-deposition or photolithography
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/201Filters in the form of arrays
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133357Planarisation layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133512Light shielding layers, e.g. black matrix
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • G02F1/133519Overcoatings
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • G02F1/13394Gaskets; Spacers; Sealing of cells spacers regularly patterned on the cell subtrate, e.g. walls, pillars
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • G02F1/13396Spacers having different sizes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/52RGB geometrical arrangements

Definitions

  • the present invention relates to a color filter and a display device therewith, and to a method of preparing the color filter of the present invention.
  • a color filter is an optical filter that expresses color. After the light source passes through the color module, it can accurately display the corresponding color and then display rich colors.
  • color filters includes the selection of color passbands and the maximum output power of displays (such as LCDs, liquid crystal displays) for monochrome displays (such as VF (Vacuum Fluorescent), EL (Electroluminescent), LEDs). (Light-emitting diode display), etc.) Perform contrast enhancement.
  • Broadband filters are used to improve the contrast and performance of optical scanners and red, yellow, and amber LED displays.
  • Medium-density three-slot filters and polarizers enhance the contrast of liquid crystal displays (LCDs) by reducing internal reflections and creating a large variable between the display output power and the background.
  • FIG. 1 shows a color filter as a key component of the colorization of a liquid crystal display.
  • the liquid crystal flat panel display is a non-active light emitting component, which generally includes a color filter 1, a liquid crystal panel 2, a TFT matrix 3, and a backlight module 4, and the color display thereof must pass through an internal backlight module (for example, a penetrating LCD) or
  • the external ambient incident light for example, a reflective or semi-transmissive LCD
  • the color patches R, G, B (where R represents red, G represents green, and B represents blue) the color layer provides a chroma (Chromacity), which ultimately forms a color display.
  • RGBW a technique called RGBW
  • the RGBW technology mainly uses one pixel corresponding to three sub-pixels in the original display screen, that is, one independent pixel corresponds to three sub-pixels of RGB, and RGBW means R (red), G (green), B (blue).
  • RGBW means R (red), G (green), B (blue).
  • add one transparent pixel let two independent pixels share five sub-pixels, so that the number of sub-pixels is significantly reduced at the same resolution, thereby saving cost and increasing the number of transparent sub-pixels. It can also improve the brightness of the screen, but it has a disadvantage that it may not be as good as the original arrangement in terms of color optimization.
  • the conventional pixel is composed of red (R), green (G), and blue (B).
  • the Full High Definition also referred to as the FHD panel, has 1,920 ⁇ 1,080 pixels, and each pixel is composed of 3 The seed pixels are composed, so the FHD panel has a total of about 6.2 million colors.
  • the Ultra High Definition also referred to as the UHD panel, has a resolution of 3,840 ⁇ 2,160, which means it has about 24.9 million colors. Therefore, the UHD resolution is 4 times that of the FHD panel, so the UHD panel Also known as 4K panel.
  • RGBW panel developed by the company is slightly different from the traditional UHD TV panel.
  • white (W) sub-pixels are added to the pixels.
  • the number of pixels per horizontal scan line of the UHD panel is 3,840, and the number of sub-pixels in the RGB architecture is 11,520.
  • the RGBW architecture panel since it is RGBW 4 sub-pixels to form 1 pixel, each horizontal scan line
  • the actual number of pixels is only 2,880.
  • the number of vertical pixels in the RGBW panel is still 2,160, which is the same as the UHD panel in RGB arrangement.
  • a conventional pixel consists of R (red), G (green), and B (blue).
  • the pixels of the FHD panel are 1920 ⁇ 1080, and each pixel is composed of three sub-pixels (R, G, B), so it has a total of 6.2 million colors.
  • the 4K panel has a resolution of 3840 ⁇ 2160, which means it has 24.9 million colors (3840 ⁇ 2160 pixels, each pixel consists of three sub-pixels). Therefore, the resolution of UHD (4K) is FHD (2K ⁇ 1K). Four times.
  • a red (R) photoresist is then applied and exposed through a reticle and UV, and through a development step, followed by red (R), green (G), and blue (B), respectively, and then a transparent color (W)
  • OC an OC flat layer
  • ITO indium tin oxide
  • PS photoresist spacer
  • the column layer in order to realize the combination of the flat layer and the W pixel in the same process (process), the column layer can also be made when the BM layer (black matrix) is simultaneously made. The collapse of the OC layer is avoided at the W pixel position.
  • this structure has a problem of lowering the light transmittance than the original design of RGBW (because the light is blocked by the BM), and its structure is shown in FIG.
  • 430 represents a color filter pattern
  • 430a, 430b and 430c denotes color filter patterns of red, green and blue, respectively
  • 420 denotes a black matrix
  • 422 denotes a dummy pattern
  • 425a, 425b and 425c denote first, second and third openings, respectively
  • 425d denotes a fourth opening
  • 410 denotes
  • the substrate, 440 represents a flat layer.
  • the conventional rate of light can be effectively increased, but the resolution is not reduced, and the color mixing effect is good.
  • the color filter provided by the present invention does not cause the columnar layer to be skewed, and does not eventually cause a liquid crystal gap mura problem on the formed liquid crystal display, and can achieve the Cell gap required by the liquid crystal panel manufacturer.
  • the difference between the requirements of less than 0.1 ⁇ m can effectively overcome the problem of color unevenness.
  • the invention also provides a preparation method of a color filter, according to which the color filter of the invention can be effectively obtained, the method is simple in operation, and the number of steps and materials used in the method are the same as the conventional production method. Does not significantly increase production costs.
  • the transparent pixels are not disposed outside the RGB pixels, the light transmittance can be improved, and the color mixing effect can be increased.
  • a color filter wherein the color filter comprises:
  • the color layer includes a red pixel layer, a green pixel layer, a blue pixel layer, and a transparent pixel layer,
  • the transparent pixel layer is covered by the red pixel layer, the green pixel layer, and the blue pixel layer in each of the red pixel layer, the green pixel layer, and the blue pixel layer.
  • a color filter wherein the color filter comprises:
  • the color layer includes a red pixel layer, a green pixel layer, a blue pixel layer, and a transparent pixel layer,
  • the transparent pixel layer is respectively covered by the red pixel layer, the green pixel layer and the blue pixel layer in each of the red pixel layer, the green pixel layer and the blue pixel layer.
  • the columnar layer includes a sub-columnar layer and a main columnar layer, and the height difference between the film thicknesses of the main columnar layers is controlled within a range of ⁇ 0.1 ⁇ m, that is, in the range of 0.2 ⁇ m.
  • a color filter wherein the color filter comprises:
  • the color layer includes a red pixel layer, a green pixel layer, a blue pixel layer, and a transparent pixel layer,
  • the transparent pixel layer is respectively covered by the red pixel layer, the green pixel layer and the blue pixel layer in each of the red pixel layer, the green pixel layer and the blue pixel layer.
  • the height (W height) of the transparent pixel layer formed on the substrate ⁇ the height (BM height) of the black matrix formed on the substrate + 0.2 ⁇ m, that is, the A value W high - BM height ⁇ 0.2 ⁇ m.
  • a display panel comprising the color filter according to any one of items 1 to 10.
  • a display device comprising the display panel of item 11.
  • a method of preparing a color filter comprising the steps of:
  • a gap between each of the black matrices formed on the front surface of the substrate forms a transparent pixel layer
  • a columnar layer is formed on the flat layer and over the corresponding black matrix.
  • a method of preparing a color filter comprising the steps of:
  • a gap between each of the black matrices formed on the front surface of the substrate forms a transparent pixel layer
  • a columnar layer is formed on the corresponding black matrix.
  • Figure 1 shows a color filter as a key component of the colorization of a liquid crystal flat panel display.
  • Figure 2 shows a schematic diagram of a color filter varying from RGB to RGBW.
  • FIG. 3 shows a schematic diagram of a production flow of a conventional RGBW technology.
  • FIG. 4 illustrates an RGBW design in the prior art.
  • FIG. 5 illustrates another RGBW design in the prior art.
  • Fig. 6(A) is a schematic cross-sectional view showing a problem of the RGBW structure in the prior art
  • Fig. 6(B) is a schematic cross-sectional view showing the structure of the RGBW of the present invention.
  • Figure 7 shows the steps of a method of preparing the color filter of the present invention.
  • Figure 8 is a schematic cross-sectional view showing the structure of the color filter shown in the comparative case herein.
  • Fig. 9 is a view showing the problem of uneven liquid crystal gap generated in the color filter.
  • Figure 10 (A) is a schematic cross-sectional view showing the structure of a color filter shown in an embodiment of the present invention
  • Figure 10 (B) shows the difference in height between the A value and the RGB layer and the flat layer, and the color of the formed liquid crystal. Schematic diagram of the relationship between the generation of unevenness.
  • Figure 11 is a cross-sectional view showing two embodiments of the present invention and a prior art color filter.
  • Fig. 12 is a view showing a RGB pixel layer forming process of a color filter of a preferred embodiment of the present invention.
  • FIG. 6(B) is a schematic cross-sectional view showing the RGBW structure according to the present invention, and the present invention provides a color filter, wherein the color filter comprises: a substrate, a black matrix formed on the substrate (indicated by BM), a colored layer formed on a substrate, and the color layer includes a red pixel layer (indicated by R), a green pixel layer (indicated by G), a blue pixel layer (indicated by B), and a transparent pixel a layer (indicated by W), a flat layer (indicated by OC) formed over the color layer and the black matrix, a columnar layer (represented by PS) formed on the planar layer and above the black matrix, wherein the transparent pixel layers are respectively red A pixel layer, a green pixel layer, and a blue pixel layer are coated inside each of the red pixel layer, the green pixel layer, and the blue pixel layer.
  • the color filter comprises: a substrate, a black matrix formed on the substrate (indicated by
  • the present invention is different in that transparent pixels (W pixels) are respectively formed at R, G, Inside the B pixel, a flat layer is formed on the color layer. Since the W pixel does not occupy the position, the resolution of the pixel can be improved, and the color mixing effect is good, and the process of fabricating the entire color filter can be simplified.
  • the color filter of the present invention further includes a conductive layer formed on the back of the substrate.
  • the conductive layer may be any conductive layer known in the art, preferably an ITO conductive layer.
  • the substrate of the present invention may be a glass substrate or any other type of suitable substrate.
  • the flat layer of the present invention can also be used to prevent ionic contamination (color difference) of color (color) pixels, in addition to uniformizing the fluctuation (height difference) of the film thickness of the R/G/B pixel, because the ion will This causes a change in the driving electrical properties of the liquid crystal to affect the light gray scale.
  • the chemical resistance of the pixel layer, the sputtering resistance of the conductive film, and the smoothness of the colored pixel layer can be enhanced.
  • the material for forming the black matrix for forming the respective colored pixel layers there is no particular limitation, and materials conventional in the art may be used.
  • the columnar layer includes a sub-columnar layer (sub-PS, sub PS) and a main columnar layer (main PS, Main PS), and the height difference between the thicknesses of the main columnar layers is controlled by ⁇ Within the range of 0.1 ⁇ m, that is, in the range of 0.2 ⁇ m.
  • the liquid crystal gap on the finally formed liquid crystal screen can be made smaller than 0.1 ⁇ m without color unevenness.
  • FIG. 9 shows a schematic diagram of color unevenness, and it can be seen that there is a case where the gray scale is uneven and the brightness is uneven after the panel is illuminated.
  • the calculation method of the height difference between the film thicknesses of the main columnar layers is well known to those skilled in the art, that is, the film thickness of the main PS may be, for example, from the bottom of the PS to 90% of its height.
  • the height of the time may also be the height from the bottom to the top of the main PS as long as it is characterized by a person skilled in the art using a unified calculation method.
  • the inventors have found that if the transparent pixel layer is made too large, as shown in FIG. 8, it is easy to cause variation and bulging after RGB pixel grinding. This causes the columnar layer (PS) on the flat layer to be skewed, thus causing the display to have a problem of uneven liquid crystal gap as shown in FIG. After the panel is illuminated, there will be uneven gray scale and uneven brightness. At this time, the excessively large transparent pixel layer means that the height of the transparent pixel layer itself is too high, causing the R, G, and B color pixel layers themselves to generate protrusions or ridges, which causes the R, G, and B pixel layers themselves to be larger than A height difference of 0.3 ⁇ m is shown in Fig. 8.
  • 10(A) and 10(B) respectively show the calculation method of the A value, and show the relationship between the A value and the height difference between the RGB pixel layer and the flat layer, and show the occurrence in each area. The severity of uneven color.
  • the film thickness of the R/G/B colored pixel of the present invention will be more uniformly controlled. In this case, it is possible to omit the flat layer, and thus the process of forming the flat layer is not required, thereby further reducing the production cost of the color filter.
  • the present invention also relates to a color filter, wherein the color filter comprises: a substrate, a black matrix formed on the substrate, a color layer formed on the substrate, and the color layer includes a red pixel layer, green a pixel layer, a blue pixel layer, and a transparent pixel layer are formed on the black matrix, wherein the transparent pixel layer is covered by the red pixel layer, the green pixel layer, and the blue pixel layer in each of the red pixel layer and the green pixel layer And the inside of the blue pixel layer, the columnar layer includes the sub-columnar layer and the main columnar layer, and the height difference between the film thicknesses of the main columnar layers is controlled within a range of ⁇ 0.1 ⁇ m, that is, in the range of 0.2 ⁇ m.
  • the height difference between the RGB pixel layer and the flat layer can be effectively controlled to be about 0.1 ⁇ m, and in this case, The color unevenness does not appear on the lower display, which can meet the requirements of the panel manufacturer. Further, since the present invention cleverly wraps the W pixels inside the R, G, and B pixel layers, the light transmittance is increased, and the resolution is not lowered, and the color mixing effect is also excellent. Further, the A value may also be a negative number, that is, the height of the transparent pigment layer may be smaller than the height of the BM.
  • the inventors have found through research that when forming transparent pixels, if continuous thin strips of transparent pixels are formed, the pixels may be contaminated with each other.
  • the RGBW structure of the present invention is further modified, the structure of which is shown in the lowermost diagram of FIG. That is, the transparent pixel layer formed on each of the red pixel layer, the green pixel layer, and the blue pixel layer formed on the substrate is broken.
  • the figure on the right side of Fig. 11 shows a top view, and it can be seen that in the top view it can be clearly shown that each transparent pixel layer is not continuous and is broken. It is further preferred that the distance between the transparent pixel layers that are disconnected from each other is 5 ⁇ m or more.
  • FIG. 12 The advantages brought by such a disconnect structure are shown in FIG. 12, as shown in the upper diagram of FIG. 12, because the relationship of transparent pixels causes the photoresist such as red pixels to be before the forming and baking (baking), It flows to the pixels next door, which can easily lead to unexpected overlays.
  • the transparent pixel structure can be disconnected, the red pixel photoresist does not flow to the pixels of the adjacent wall before the forming and baking (baking), because the transparent pixel is broken. More open gaps can receive more liquid photoresist.
  • the invention further relates to a display panel comprising the color filter of the invention.
  • the display panel described in the present invention may be, for example, a liquid crystal panel (LCD panel), an organic EL panel (OLED panel), a Micro LED panel, a reflective panel such as a Micro-cup, a Micro-particle panel, or the like.
  • LCD panel liquid crystal panel
  • OLED panel organic EL panel
  • Micro LED panel a reflective panel
  • Micro-cup a Micro-cup
  • Micro-particle panel a micro-particle panel
  • the present invention also relates to a display device comprising the above display panel of the present invention.
  • the present invention also provides a method of preparing a color filter, the method comprising the steps of: performing an ITO coating on a back surface of a substrate of a color filter; forming a black matrix on a front surface of the substrate; and forming each of the front surfaces of the substrate
  • the gap between the black matrices forms a transparent pixel layer; the covered transparent pixel layer forms a red pixel layer, a green pixel layer and a blue pixel layer on the substrate; above the red pixel layer, the green pixel layer and the blue pixel layer and the black matrix Forming a planar layer; and forming a columnar layer over the planar layer and over the corresponding black matrix.
  • the present invention also provides a method of preparing a color filter, comprising the steps of: performing ITO coating on the back surface of the substrate of the color filter, forming a black matrix on the front surface of the substrate, and forming each black matrix on the front surface of the substrate A gap is formed between the transparent pixel layer, and the transparent pixel layer forms a red pixel layer, a green pixel layer, and a blue pixel layer on the substrate, and a columnar layer is formed on the corresponding black matrix.
  • the method of the present invention comprises processing on the basis of a substrate.
  • the substrate generally used may be, for example, a glass substrate.
  • a black photoresist is coated on the glass substrate, and the black photoresist covers the surface of the glass substrate.
  • the black photoresist is usually made of a negative photoresist material, and unnecessary portions are removed by a process such as exposure and development, thereby leaving a black matrix photoresist line on the glass substrate, and the photoresist lines are enclosed into a matrix.
  • the shape of these rectangles is also aligned in rows and columns.
  • a transparent color photoresist is coated on the gap between the black matrices formed on the front surface of the substrate, and the transparent color resist is usually a negative photoresist, and the transparent color resist is removed by a process such as exposure and development.
  • the necessary portion and on the substrate, the gap between the black matrices forms a regularly distributed transparent color pixel layer, and the film thickness and shape of the transparent color pixel layer can be determined by the size of the pixel opening area required by different products (also referred to as resolution) Rate) and change its size.
  • the formed transparent pixel layer is not continuous and is broken, it is easier to allow the color photoresist in the next process to easily and uniformly flow into the disconnection region. In the middle, no ink accumulation occurs, and after the hot baking process, an irregular structure in which color pixels are protruded does not occur.
  • a red photoresist is coated on the substrate on which the black matrix and the transparent color pixel layer are formed, and the red photoresist is usually a negative photoresist, and unnecessary portions of the red photoresist are removed by a process such as exposure development.
  • the transparent color pixels are covered in a rectangular region surrounded by the photoresist lines of the black matrix to form a regularly distributed red pixel layer.
  • a plurality of mutually spaced and regularly distributed green pixel layers and blue pixel layers are formed in a rectangular region surrounded by the photoresist lines of the black matrix and coated with respective transparent color pixels.
  • the red pixel layer, the green pixel layer and the blue pixel layer respectively cover the transparent pixel layer and the number is equal and uniform
  • the ground is distributed at intervals.
  • the size and spacing of the colored pixels can be set according to the needs of the pixel size and the resolution.
  • the arrangement of the colored pixels and the black matrix of the photoresist lines can be applied to the process of the present invention which is suitable for the present invention.
  • the lithography process used in the present invention utilizes masking, exposure and development processes to obtain desired patterns on the photoresist layer and present on the glass substrate. .
  • the photoresist material mainly includes a positive photoresist and a negative photoresist.
  • the portion of the positive photoresist that is irradiated with light can be removed by the chemicals in the developing step, and the unexposed portion is not taken out by the developer, and thus remains on the glass substrate.
  • the negative type resist the portion of the negative resist which is irradiated with light is not removed by the chemical in the developing step, and the portion which is not irradiated with light is removed by the chemical in the developing step.
  • a negative photoresist material is preferably used.
  • the color resist comprises: a pigment dispersion, a binder resin such as an alkali-soluble resin, an unsaturated resin monomer, etc.; a photoinitiator; an organic solvent; and an additive.
  • the aromatic group-containing pigment powder being a mixture of blue and violet pigments, the blue pigment being one or more of a phthalocyanine pigment, an azo pigment, and a heterocyclic pigment, the purple
  • the pigment is one or more of a sulfonium pigment and a diazine pigment.
  • the binder resin is one or more of a polyester acrylate homopolymer, a modified styrene acrylic copolymer, and an anti-yellowing aldehyde resin;
  • the alkaline or neutral organic solvent is propylene glycol methyl ether.
  • the photoinitiator is one or more of a ketone ester photoinitiator, a benzil photoinitiator and an alkylphenone photoinitiator;
  • the organic solvent is propylene glycol methyl ether acetate, propylene glycol One or more of monomethyl ether, cyclohexane, propylene glycol diacetate, 2-heptanone, and cyclopentanone;
  • the additive is a leveling agent, a coupling agent, an antifoaming agent, and an ultraviolet absorber One or several.
  • Fig. 7 is a schematic flow chart showing a method of preparing a color filter of the present invention, and for convenience of comparison, a method of preparing a color filter having an RGBW structure in the prior art is also shown. It can be seen from Fig. 7 that the production method of the color filter of the present invention can be realized by preliminarily making transparent pixels in the respective colored pixels.
  • the transparent pixel Because different from the old structure technology (design outside RGB pixels), transparent pixels are included within the color pixel, the effect of improving the light transmittance and the effect of the color mixing are not affected.
  • the transparent pixel has the function of making any shaped structure, so that the light transmittance and color saturation required for different products can be changed, so that the color filter of the present invention is more easily used by all energy-saving displays. use.
  • Table 1 shows the conditions for fabricating color filters used in the examples and comparative examples, in which a high film thickness PS material, a photoresist material for forming each of BM, R, G, B, and W pixels is used.
  • the materials of Japanese JSR company were tested.
  • Any other commercially available negative photoresist material can be used to produce the color filter of the present invention, and will not be described herein.
  • a series of color filters are obtained by changing the magnitude of the A value, and a schematic sectional view of the obtained color filter is shown in Fig. 10(A). . And based on the A value and the height difference, the result is shown in Fig. 10(B). It can be seen that when the A value is less than or equal to 0.2 ⁇ m, the R, G, B layer and the flat layer can be well controlled.
  • the height difference is such that the height difference of the columnar layer (PS) above the flat layer, especially the main columnar layer, is within ⁇ 0.1 ⁇ m, so that the display does not cause the liquid crystal gap unevenness problem as shown in FIG. After lighting the panel, there will be no uneven gray scale and uneven brightness.
  • Embodiment 2 it was found that when a transparent pixel is formed, if a continuous elongated transparent pixel is formed, contamination of the pixels with each other may be caused. Therefore, we further improve the RGBW structure of the present invention, and the improved structure is as shown in the lowermost diagram of FIG. That is, the transparent pixel layer formed on each of the red pixel layer, the green pixel layer, and the blue pixel layer formed on the substrate is broken.
  • the figure on the right side of Fig. 11 shows a top view, and it can be seen that in the top view it can be clearly shown that each transparent pixel layer is not continuous and is broken. It is further preferred that the distance between the transparent pixel layers that are disconnected from each other is 5 ⁇ m or more.
  • the specific parameters in the production method are the same as in Table 1, except that the control transparent pixel layer is broken.
  • the resin-based material is a bonded resin material as described above which is not easily yellowed and has high transparency.
  • Figure 12 shows the advantages of such a disconnect structure, as shown in Figure 12.
  • the relationship of transparent pixels causes a photoresist such as a red pixel to flow to the pixels of the partition wall before forming and baking, which tends to cause unexpected color lamination.
  • the transparent pixel structure can be disconnected, the photoresist of the red pixel does not flow to the pixels of the partition wall before forming the grill, because the gap of the transparent pixel is broken. More and more can receive more liquid photoresist.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Liquid Crystal (AREA)
  • Optical Filters (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种彩色滤光片、显示装置及制备彩色滤光片的方法。其中彩色滤光片包括:基板,形成在基板上的黑色矩阵,形成在基板上的彩色层,彩色层包括红色像素层(R)、绿色像素层(G)、蓝色像素层(B)和透明像素层(W),形成在彩色层以及黑色矩阵上方的平坦层(OC),形成在平坦层(OC)上并位于黑色矩阵上方的柱状层(PS),其中透明像素层(W)分别被红色像素层(R)、绿色像素层(G)和蓝色像素层(B)包覆在各红色像素层(R)、绿色像素层(G)和蓝色像素层(B)的内部。

Description

彩色滤光片、显示装置及制备彩色滤光片的方法 技术领域
本发明涉及一种彩色滤光片及包括其的显示装置,以及涉及制备本发明彩色滤光片的方法。
背景技术
彩色滤光片(Color filter)是一种表现颜色的光学滤光片,在光源通过彩色模块之后可以精确的显示出相应的颜色,并进而呈现出丰富的色彩。
彩色滤光片的用途包括通过选色通带及显示器(例如LCD,液晶显示器)的最大输出功率对单色显示器(如VF(Vacuum Fluorescent真空荧光显示器)、EL(Electroluminescent电荧发光显示器)、LED(发光二极管显示器)等)进行反差增强。宽带滤光片用来提高光学扫描仪和红、黄、琥珀色发光二极管显示器的反差及性能。中密度三槽型滤光片及极化镜通过减少内部反射并在显示器输出功率及背景之间产生一个较大的变量从而增强液晶显示器(LCD)的反差。
图1示出了彩色滤光片为液晶平面显示器(Liquid Crystal Display)的彩色化的关键零部件。液晶平面显示器为非主动发光组件,其通常包括彩色滤光片1,液晶面板2、TFT矩阵3和背光模块4,其色彩的显示必需透过内部的背光模块(例如,穿透型LCD)或外部的环境入射光(例如,反射型或半穿透型LCD)提供光源,再搭配驱动IC(Drive IC,驱动芯片)与液晶面板2控制形成灰阶显示(Gray Scale),然后透过彩色滤光片的R、G、B(其中,R表示红色,G表示绿色、B表示蓝色)彩色层提供色相(Chromacity),最终形成彩色显示画面。
发明内容
近年来,为了提升面板亮度,通常会在彩色滤光片的结构上做变化,而有一种技术称为RGBW,其示意图如图2所示。
RGBW技术主要是在原本的显示屏幕中一个像素对应三个次像素,即一个独立的像素对应RGB三个次像素,RGBW的意思就是在R(红色)、G(绿色)、B(蓝 色)三个像素之外,增加一个透明像素,让两个独立像素共享五个次像素,这样在同样的分辨率的情况下,次像素的数量明显减少,从而节约成本,透明次像素的增加,也可以提升屏幕的亮度,但是其存在一个缺点就是在颜色的优化方面可能没有原本排列的方式好。
传统的像素是由红色(R)、绿色(G)和蓝色(B)构成,全高清面板(Full High Definition),也简称为FHD面板的像素为1,920×1,080,而每种像素是由3种子像素所组成,因此FHD面板共约有620万种颜色。而超高清面板((Ultra High Definition),也简称为UHD面板的分辨率为3,840×2,160,这表示其约有2,490万种颜色,因此,UHD的分辨率是FHD面板的4倍,因此UHD面板也称为4K面板。
虽然原理相同,一般公司开发的RGBW面板和传统UHD电视面板略有不同,除了RGB外,像素中又增加白色(W)的子像素。
简单来说,UHD面板每个水平扫描线的像素数为3,840,RGB架构下的子像素数为11,520;至于RGBW架构面板,因为是RGBW 4个子像素来构成1个像素,因此每条水平扫描线的真实像素数仅剩下2,880。而RGBW面板的垂直像素数仍是2,160,与RGB排列的UHD面板相同。
正如图一所示,传统的像素由R(红色)、G(绿色)和B(蓝色)构成。FHD面板的像素为1920×1080,而每种像素由三种子像素组成(R,G,B),因此它一共有620万种颜色。而4K面板的分辨率有3840×2160,这表示它具有2,490万种颜色(3840×2160种像素,每种像素由三种子像素构成)因此,UHD(4K)的分辨率是FHD(2K×1K)的四倍。
另外,许多公司为了提高画质,还在其RGBW面板中采用了GMA(色域映像算法)和SPR(子像素渲染)技术。但这种多了一个透明像素(White Pixel)的方式,需要再多一道形成透明光刻胶的工序,如图三的制造流程图,首先需要在中对玻璃基板进行清洗,然后涂布黑色矩阵(Black Matrix,以下简称为BM)光阻,并通过曝光显影步骤形成BM。随后涂布红色(R)光刻胶,并通过光罩和UV曝光,并通过显影步骤,随后分别形成红色(R)、绿色(G)和蓝色(B),并且随后形成透明色(W),随后在不同的像素层上形成OC平坦层(Over coat,以下简称为OC),并在背面形成ITO(铟锡氧化物)镀膜,经烘烤,形成光刻胶间隔物(Photo spacer,以下简称PS)柱状层(通常包括主柱状层和次柱状层)。因为多了一道透明色像素的制 造工序(包含微影/显影/硬化等设备),整个彩色滤光片的制造成本因此提高了约12%,由此影响了该技术的广泛推广。
在专利EP1844462B1中公开了一种传统的RGBW的设计,该专利中公开的RGBW设计方案如图4(该专利文本中的图1)所示,可以看出在该设计中W像素离R、G、B各像素太远,因此混色的效果不佳,色彩演算不易,不精确。
而以专利US7515225为例,为实现结合平坦层和W像素在同一个工序(制程)完成,可以在同时做BM Layer(黑色矩阵)时也做出柱状层。在W像素位置来避免平坦层(OC Layer)的坍塌。但该结构有比RGBW原先的设计的光穿透率降低的问题(因为光线被BM遮挡住),其结构显示在图5中,在该图中,430表示滤色片图案,430a、430b和430c分别表示红、绿和蓝色的滤色片图案,420表示黑色矩阵,422表示虚拟图案,425a、425b和425c分别表示第一、第二和第三开口,425d表示第四开口,410表示基板,440表示平坦层。
上述信息仅仅用于增强对本发明背景的理解,因此可能包含不构成在本领域普通技术人员公知的现有技术的信息。
鉴于上述已有的RGBW结构的问题,在本领域中急需提供一种有效的RGBW结构,其可以通过简单、不显著增加成本的方法来生产,并且具有显色效果良好,不会降低光穿透率等各种问题的彩色滤光片。
根据本发明提供的彩色滤光片,可以有效增加光的传统率,但是不会导致分辨率减少,并且混色效果好。
根据本发明提供的彩色滤光片,不会导致柱状层歪斜,并且不会最终导致所形成的液晶显示器上出现液晶间隙不均(cell gap mura)问题,能够达到液晶面板厂商所要求的Cell gap之间的差异小于0.1μm的要求,能够有效克服色彩不均的问题。
本发明还提供一种彩色滤光片的制备方法,根据该制备方法可以有效地获得本发明的彩色滤光片,该方法操作简单,方法涉及的步骤数及材料使用量跟传统生产方法一样,不会显着增加生产成本。
并且由于透明像素并非设置于RGB像素以外区域,因此可以提升光穿透率外,并可以增加混色效果。
本发明的目的是通过以下技术方案予以实现。
1.一种彩色滤光片,其中,该彩色滤光片包括:
基板,
形成在基板上的黑色矩阵,
形成在基板上的彩色层,并且所述彩色层包括红色像素层、绿色像素层、蓝色像素层和透明像素层,
形成在彩色层以及黑色矩阵上方的平坦层,
形成在平坦层上并在黑色矩阵上方的柱状层,
其中透明像素层分别被红色像素层、绿色像素层和蓝色像素层包覆在各红色像素层、绿色像素层和蓝色像素层的内部。
2.根据项1所述的彩色滤光片,其中,柱状层包括次柱状层和主柱状层,各主柱状层膜厚高度之间的高度差控制在±0.1μm的范围内,即在0.2μm的范围内。
3.根据项1或2所述的彩色滤光片,其中,形成在基板上的透明像素层的高度(在本发明中也用“W高”来表示)≤形成在基板上的黑色矩阵的高度(在本发明中也用“BM高”来表示)+0.2μm,即A值=W高-BM高≤0.2μm,其中,A值也可以为负数。
4.一种彩色滤光片,其中,该彩色滤光片包括:
基板,
形成在基板上的黑色矩阵,
形成在基板上的彩色层,并且所述彩色层包括红色像素层、绿色像素层、蓝色像素层和透明像素层,
形成在黑色矩阵上的柱状层,
其中透明像素层分别被红色像素层、绿色像素层和蓝色像素层包覆在各红色像素层、绿色像素层和蓝色像素层的内部,
柱状层包括次柱状层和主柱状层,各主柱状层膜厚高度之间的高度差控制在±0.1μm的范围内,即在0.2μm的范围内。
5.一种彩色滤光片,其中,该彩色滤光片包括:
基板,
形成在基板上的黑色矩阵,
形成在基板上的彩色层,并且所述彩色层包括红色像素层、绿色像素层、蓝色像素层和透明像素层,
形成在黑色矩阵上的柱状层,
其中透明像素层分别被红色像素层、绿色像素层和蓝色像素层包覆在各红色像素层、绿色像素层和蓝色像素层的内部,
形成在基板上的透明像素层的高度(W高)≤形成在基板上的黑色矩阵的高度(BM高)+0.2μm,即A值=W高-BM高≤0.2μm。
6.根据项1~5中任一项所述的彩色滤光片,其中,形成在基板上被包覆在每个红色像素层、绿色像素层和蓝色像素层内部的透明像素层是断开的。
7.根据项6所述的彩色滤光片,其中,彼此断开的透明像素层之间的距离为5μm以上。
8.根据项1~7中任一项所述的彩色滤光片,其中,所述基板为玻璃基板。
9.根据项1~8中任一项所述的彩色滤光片,其还包括形成在基板背部的导电层。
10.根据项1~9中任一项所述的彩色滤光片,其中,形成彩色滤光片的各结构中所采用的光刻胶材料是负型光刻胶材料。
11.一种显示面板,其包括项1~10中任一项所述的彩色滤光片。
12.一种显示装置,其包括项11所述的显示面板。
13.一种制备彩色滤光片的方法,包括如下步骤:
在彩色滤光片的基板的背面进行ITO镀膜,
在基板的正面上形成黑色矩阵,
在基板的正面上形成的各黑色矩阵之间的空隙形成透明像素层,
包覆透明像素层在基板上形成红色像素层、绿色像素层和蓝色像素层,
在红色像素层、绿色像素层和蓝色像素层和黑色矩阵上方形成平坦层;以及
在平坦层上并在对应的黑色矩阵上方形成柱状层。
14.一种制备彩色滤光片的方法,包括如下步骤:
在彩色滤光片的基板的背面进行ITO镀膜,
在基板的正面上形成黑色矩阵,
在基板的正面上形成的各黑色矩阵之间的空隙形成透明像素层,
包覆透明像素层在基板上形成红色像素层、绿色像素层和蓝色像素层,以及
在对应的黑色矩阵上形成柱状层。
15.根据项13或14所述的方法,其中形成在基板上的透明像素层的高度(W高)≤形成在基板上的黑色矩阵的高度(BM高)+0.2μm。
16.根据项13~15中任一项所述的方法,其中,在各黑色矩阵之间的空隙形成透明像素层时,形成的透明像素层是断开的透明像素层。
17.根据项16所述的方法,其中,彼此断开的透明像素层之间的距离为5μm以上。
18.根据项13~17中任一项所述的方法,其中,用于形成彩色滤光片的各结构中所采用的光刻胶材料是负型光刻胶材料。
19.根据项13或14所述的方法,其所制备的彩色滤光片是项1~10中任一项所述的彩色滤光片。
附图说明
通过阅读下文优选的具体实施方式中的详细描述,本发明各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。说明书附图仅用于示出优选实施方式的目的,而并不认为是对本发明的限制。显而易见地,下面描述的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。而且在整个附图中,用相同的附图标记表示相同的部件。
图1示出了彩色滤光片为液晶平面显示器的彩色化的关键零部件。
图2示出了彩色滤光片从RGB向RGBW变化的示意图。
图3示出了传统的RGBW技术的生产流程示意图。
图4示出了现有技术中的一种RGBW设计。
图5示出了现有技术中的另一种RGBW设计。
图6(A)示出现有技术中的RGBW结构存在的问题的示意剖面图,图6(B)示出本发明的RGBW的结构的大致示意剖面图。
图7示出制备本发明的彩色滤光片的方法的步骤。
图8本文中比较情况下的所显示的彩色滤光片的结构的示意剖面图。
图9显示出彩色滤光片中产生的液晶间隙不均问题的示意图。
图10(A)本发明实施例所显示的彩色滤光片的结构的示意剖面图,图10(B)示出A值与RGB层和平坦层之间的高度差、以及形成的液晶的色不均的产生之间的关系的示意图。
图11示出本发明的两种实施方式和现有技术的彩色滤光片的剖面示意图。
图12示出本发明的优选的实施方式的彩色滤光片的RGB像素层形成过程的示意图。
具体实施方式
下面将参照附图更详细地描述本发明的具体实施例。虽然附图中显示了本发明的具体实施例,然而应当理解,可以以各种形式实现本发明而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本发明,并且能够将本发明的范围完整的传达给本领域的技术人员。
如图6(A)所示的现有技术中存在的RGBW结构,如上所述为了要获得RGBW结构,需要多一道制备W透明像素的工序,如此则会新增生产成本。而且W像素离R、G、B像素距离远,其混色的效果不佳,色彩演算不易,不精确。虽然光穿透率有所增加,但分辨率会减少。
如图6(B)示出了本发明涉及的RGBW结构的大致示意剖面图,本发明提供了一种彩色滤光片,其中,该彩色滤光片包括:基板,形成在基板上的黑色矩阵(以BM表示),形成在基板上的彩色层,并且所述彩色层包括红色像素层(以R表示)、绿色像素层(以G表示)、蓝色像素层(以B表示)和透明像素层(以W表示),形成在彩色层以及黑色矩阵上方的平坦层(以OC表示),形成在平坦层上并在黑色矩阵上方的柱状层(以PS表示),其中透明像素层分别被红色像素层、绿色像素层和蓝色像素层包覆在各红色像素层、绿色像素层和蓝色像素层的内部。
由此可见,与图4,图5以及图6(A)中显示的现有技术中的RGBW的结构不同,本发明的不同之处在于将透明像素(W像素)分别形成在R、G、B像素的里面,然后在彩色层上形成平坦层,由于W像素不会占用位置,因此可以提高像素的分辨率,并且混色效果好,也能够将制作整个彩色滤光片的工序简化。
在本发明的彩色滤光片还包括形成在基板背部的导电层。其中导电层可以使用本领域已知的任意的导电层,优选为ITO导电层。
本发明的基板可以是玻璃基板或任何其他类型的合适的基板。
本发明的平坦层除可以均一化R/G/B像素的膜厚高低起伏的落差(高度差)外,还可用于防止彩色(有色)像素的离子污染(Ion impurities),这是因为离子会导致液晶的驱动电性产生变化进而影响光灰阶(Gray)。并且还可以增强像素层的抗化学性、抗导电膜溅射性并改善有色像素层的平滑性。
在本发明中,对于用于形成黑色矩阵、用于形成各有色像素层的材料没有具体的限定,可以使用本领域中常规的材料。
在本发明的具体的实施方式中,柱状层包括次柱状层(次PS,sub PS)和主柱状层(主PS,Main PS),各主柱状层膜厚高度之间的高度差控制在±0.1μm的范围内,即在0.2μm的范围内。通过实现这样的结构,可以让最终形成的液晶屏幕上的液晶间隙小于0.1μm,不会产生色不均。图9示出了色不均的示意图,可以看出点亮面板后,会有灰阶不均匀、亮度不均匀的情况。其中,对于各主柱状层膜厚高度之间的高度差的计算方法,是本领域技术人员所公知的,即主PS的膜厚高度例如可以是从PS的底部到其高度的90%的位置时的高度,也可以是从主PS的底部到顶部之间的高度,只要本领域技术人员采用统一的计算方法表征即可。
本发明人发现如果将透明像素层做的过大时,如图8所示,容易造成RGB像素磨后产生变异、隆起。导致平坦层上面的柱状层(PS)歪斜,因此导致显示器会产生如图9所示的液晶间隙不均问题。点亮面板后会有灰阶不均匀,亮度不均匀的现象。此时,将透明像素层做的过大是指,透明像素层本身的高度过高,导致R、G、B彩色像素层本身产生突起或隆起,其导致R、G、B像素层本身具有大于0.3μm的高度差,如图8所示。
本发明人在对RGBW结构进行研究时发现,如果控制形成在基板上的透明像素层的高度(W高)≤形成在基板上的黑色矩阵的高度(BM高)+0.2μm,即A值=W高-BM高≤0.2μm,可以有效地抑制液晶屏幕上的色不均。图10(A)和图10(B)分别显示出了A值的计算方法,并且显示了A值与RGB像素层与平坦层之间的高度差之间的关系,并显示出各个区域中出现色不均的严重程度。
另外,如果A值控制的妥当,则本发明的R/G/B有色像素的膜厚将被控制的更为均一。在此情况下,有可能省略掉平坦层,从而也不需要形成平坦层的工序,从而进一步降低彩色滤光片的生产成本。
即本发明还涉及一种彩色滤光片,其中,该彩色滤光片包括:基板,形成在基板上的黑色矩阵,形成在基板上的彩色层,并且所述彩色层包括红色像素层、绿色像素层、蓝色像素层和透明像素层,形成在黑色矩阵上的柱状层,其中透明像素层分别被红色像素层、绿色像素层和蓝色像素层包覆在各红色像素层、绿色像素层和蓝色像素层的内部,柱状层包括次柱状层和主柱状层,各主柱状层膜厚高度之间的高度差控制在±0.1μm的范围内,即在0.2μm的范围内。
本发明还涉及一种彩色滤光片,其中,该彩色滤光片包括:基板,形成在基板上的黑色矩阵,形成在基板上的彩色层,并且所述彩色层包括红色像素层、绿色像素层、蓝色像素层和透明像素层,形成在黑色矩阵上的柱状层,其中透明像素层分别被红色像素层、绿色像素层和蓝色像素层包覆在各红色像素层、绿色像素层和蓝色像素层的内部,形成在基板上的透明像素层的高度(W高)≤形成在基板上的黑色矩阵的高度(BM高)+0.2μm,即A值=W高-BM高≤0.2μm。
据图10(A)的剖面结构显示,当A值=W高-BM高≤0.2μm时,可以有效地控制RGB像素层与平坦层之间的高度差在0.1μm左右,并且在这种情况下显示屏上不会出现色不均,从而可以达到面板生产商的要求。并且本发明由于巧妙地将W像素包覆在R、G、B像素层内部,不但增加光穿透率,并且不会使分辨率降低,同时混色效果也非常良好。此外,A值也可以是负数,即透明色素层的高度可以小于BM的高度。
本发明人通过研究发现在形成透明像素时,如果形成连续的长条状的透明像素可能会导致像素彼此间的污染。在本发明的一个更优选地实施方式中,对本发明的RGBW结构进行进一步的改进,其结构如图11中的最下方的图所示。即形成在基板上被包覆在每个红色像素层、绿色像素层和蓝色像素层内部的透明像素层是断开的。图11右侧的图给出了俯视图,可以看出,在俯视图中可以明确地显示出各透明像素层不是连续的,是断开的。进一步优选彼此断开的透明像素层之间的距离为5μm以上。
如图12给出了这样的断开结构带来的优点,如图12中的上图所示,由于透明像素的关系会导致例如红色像素的光刻胶在成形固烤(烘烤)前,它流到隔壁的像素上,容易导致意外的迭色。
如图12的下图所示,因为透明像素结构可断开的关系,让红色像素的光刻胶在成形固烤(烘烤)前,它不会流到隔壁的像素上,因为透明像素断开了的空隙变多更可以接收更多的液态光刻胶。
本发明还涉及一种显示面板,其包括本发明所述的彩色滤光片。
在本发明中所述的显示面板,可以是例如液晶面板(LCD面板)、有机EL面板(OLED面板)、Micro LED面板、反射型面板例如Micro-cup、Micro-particle面板等。
本发明还涉及一种显示装置,其包括上述本发明的显示面板。
本发明还提供一种制备彩色滤光片的方法,该方法包括如下步骤:在彩色滤光片的基板的背面进行ITO镀膜;在基板的正面上形成黑色矩阵;在基板的正面上形成的各黑色矩阵之间的空隙形成透明像素层;包覆透明像素层在基板上形成红色像素层、绿色像素层和蓝色像素层;在红色像素层、绿色像素层和蓝色像素层和黑色矩阵上方形成平坦层;以及在平坦层上并在对应的黑色矩阵上方形成柱状层。
本发明还提供一种制备彩色滤光片的方法,包括如下步骤:在彩色滤光片的基板的背面进行ITO镀膜,在基板的正面上形成黑色矩阵,在基板的正面上形成的各黑色矩阵之间的空隙形成透明像素层,包覆透明像素层在基板上形成红色像素层、绿色像素层和蓝色像素层,以及在对应的黑色矩阵上形成柱状层。
具体来说,本发明的方法包括在基板的基础上进行加工,通常采用的基板可以是例如玻璃基板,首先在玻璃基板上涂布黑色光刻胶,该黑色光刻胶覆盖玻璃基板的表面,并且该黑色光刻胶通常采用负型光刻胶材料,在通过曝光显影等工艺除去不必要的部分,进而在玻璃基板上留下黑色矩阵的光刻胶线,该光刻胶线围成矩阵的形状,这些矩形的区域也按照行列对齐地排布。
然后在基板的正面上形成的各黑色矩阵之间的空隙涂布透明色光刻胶,该透明色光刻胶通常采用负型光刻胶,在通过曝光显影等工艺除去透明色光刻胶不必要的部分而在基板上,黑色矩阵之间的空隙形成规律分布的透明色像素层,且此透明色像素层的膜厚及形状可由不同产品所需的像素开口区的尺寸(也称为分辨率)而变更它的尺寸大小。
此外,在本发明的一个进一步优选的实施方式中,由于形成的透明像素层不是连续地,是断开的,因此更容易让下一道工序中的彩色光刻胶容易均匀地流入到断开区中,不产生积墨,在经过热烘烤工序后,不会产生彩色像素突出的不规则结构。
然后在形成有黑色矩阵和透明色像素层的基板上在涂布红色光刻胶,红色光刻胶通常采用负型光刻胶,在通过曝光显影等工艺除去红色光刻胶不必要的部分而在黑色矩阵的光刻胶线所围成的矩形区域内包覆透明色像素形成规律分布的红色像素层。同理,在黑色矩阵的光刻胶线所围成的矩形区域内并包覆各自的透明色像素形成多个相互间隔且有规律分布的绿色像素层和蓝色像素层。其中,红色像素层、绿色像素层和蓝色像素层各自包覆透明像素层且数量相等有规律均匀 地相互间隔地分布。
此外,可以根据对像素大小和分辨率高低的需要而设置有色像素的大小和间距,有色像素和黑色矩阵的光刻胶线的设置可以采用现有技术中适用于本发明的工艺方法。
本发明中使用的光刻的工艺,通过光学-化学反应原理和化学、物理蚀刻方法,利用掩膜、曝光和显影等工序意在光刻胶层上获得所需的图形并呈现在玻璃基板上。
而光刻胶材料主要包括正型光刻胶和负型光刻胶。正型光刻胶是被光照射到的部分可以被显影步骤中的化学品去除掉,而未曝光的部分则不会被显影液取出,因此会留存在玻璃基板上。而负型光刻胶则相反,被光照射的负型光刻胶部分不会被显影步骤中的化学品除去,而不被光照射的部分会被显影步骤中的化学品除去。
在本发明的制备方法中,优选使用负型光刻胶材料。
在本发明的制备方法中,彩色的光刻胶包含:颜料分散液、粘结型树脂,例如碱可溶性树脂、不饱和树脂单体等;光引发剂;有机溶剂;和添加剂。
颜料分散液,所述含有芳香基团的颜料粉为蓝色和紫色颜料的混合物,所述蓝色颜料为酞菁颜料、偶氮颜料和杂环颜料中的一种或几种,所述紫色颜料为硫靛颜料和二嗪颜料中的一种或几种。所述粘结型树脂为聚酯丙烯酸酯均聚物、改性苯乙烯丙烯酸共聚物和抗黄变醛类树脂中的一种或几种;所述碱性或中性有机溶剂为丙二醇甲醚醋酸酯、丙二醇单甲醚、环己烷、丙二醇二乙酸酯、2-庚酮和环戊酮中的一种或几种;所述醇溶剂为正丁醇。
所述光引发剂为酮肟酯类光引发剂、苯偶酰类光引发剂和烷基苯酮类光引发剂中的一种或几种;所述有机溶剂为丙二醇甲醚醋酸酯、丙二醇单甲醚、环己烷、丙二醇二乙酸酯、2-庚酮和环戊酮中的一种或几种;所述添加剂为流平剂、偶联剂、消泡剂和紫外吸收剂中的一种或几种。
图7示出了本发明的制备彩色滤光片的方法的示意流程图,为了便于比较,也同时显示了现有技术中制备具有RGBW结构的彩色滤光片的制备方法。由图7可以看出采用本发明的彩色滤光片的生产方法,可以实现在预先将透明像素制作在各有色像素里面。
因为不同于以往的旧结构技术(在RGB像素之外的设计),透明像素是被包含 在彩色像素内的,由此可以实现提升光穿透率效果,以及混色效益不受影响的优点。尤其透明像素具备做出任何异型结构体的功能,故能针对不同产品所需要的光穿透率及色彩饱和度来做变更,如此本发明的彩色滤光片将更容易被所有节能的显示器所采用。
实施例
表1给出了实施例和比较例中采用的制造彩色滤光片的各条件,其中高膜厚PS材料、用于形成BM、R、G、B、W各像素的光刻胶材料均采用日本JSR公司的材料进行实验。
另外任何其他可以商购的负型光刻胶材料均可以用于生产本发明的彩色滤光片,在此不再赘述。
表1
Figure PCTCN2016113512-appb-000001
实施例1
按照上述本发明说明书中描述的制备方法,具体参数参考表1,尝试制备了彩色滤光片。初步,本发明人发现如果将透明像素层做的过大时,如图8所示,容易造成RGB像素磨后产生变异、隆起。导致平坦层上面的柱状层(PS)歪斜,因此导致显示器会产生如图9所示的液晶间隙不均问题。点亮面板后会有灰阶不均匀,亮度不均匀的现象。
按照上表1所显示的条件,在本实施例1中,通过改变A值的大小,得到了一系列彩色滤光片,得到的彩色滤光片的示意剖面图如图10(A)所示。并且根据A值与高度差来做图,其结果如图10(B)所示,可以看出,当A值小于等于0.2μm时,可以良好地控制R、G、B层与平坦层之间高度差,从而可以使得平坦层上面的柱状层(PS),尤其是主柱状层的高度差在±0.1μm的范围内,从而不会导致显示器产生如图9所示的液晶间隙不均问题。点亮面板后不会有灰阶不均匀,亮度不均匀的现象。
实施例2
在实施例2中,发现在形成透明像素时,如果形成连续的长条状的透明像素可能会导致像素彼此间的污染。因此,我们进一步对本发明的RGBW结构进行改进,其改进的结构如图11中的最下方的图所示。即形成在基板上被包覆在每个红色像素层、绿色像素层和蓝色像素层内部的透明像素层是断开的。图11右侧的图给出了俯视图,可以看出,在俯视图中可以明确地显示出各透明像素层不是连续的,是断开的。进一步优选彼此断开的透明像素层之间的距离为5μm以上。除了控制透明像素层是断开的之外,生产方法中的具体参数与表1相同。
在实施例2中,为了进一步提升W像素的透明度,树脂类的材料采用的是不容易变黄以及高透明度的上述粘结型树脂材料。
如图12给出了这样的断开结构带来的优点,如图12中的上
图所示,由于透明像素的关系会导致例如红色像素的光刻胶在成形固烤前,它流到隔壁的像素上,容易导致意外的迭色。
如图12的下图所示,因为透明像素结构可断开的关系,让红色像素的光刻胶在成形固烤前,它不会流到隔壁的像素上,因为透明像素断开了的空隙变多更可以接收更多的液态光刻胶。
本申请接受各种修改和可替换的形式,具体的实施方式已经在附图中借助于实施例来显示并且已经在本申请详细描述。但是,本申请不意在受限于公开的特定形式。相反,本申请意在包括本申请范围内的所有修改形式、等价物、和可替换物,本申请的范围由所附权利要求及其法律等效物限定。

Claims (13)

  1. 一种彩色滤光片,其中,该彩色滤光片包括:
    基板,
    形成在基板上的黑色矩阵,
    形成在基板上的彩色层,所述彩色层包括红色像素层、绿色像素层、蓝色像素层和透明像素层,
    形成在彩色层以及黑色矩阵上方的平坦层,
    形成在平坦层上并位于黑色矩阵上方的柱状层,
    其中透明像素层分别被红色像素层、绿色像素层和蓝色像素层包覆在各红色像素层、绿色像素层和蓝色像素层的内部。
  2. 根据权利要求1所述的彩色滤光片,其中,柱状层包括次柱状层和主柱状层,各主柱状层膜厚高度之间的高度差控制在±0.1μm的范围内。
  3. 根据权利要求1或2所述的彩色滤光片,其中,形成在基板上的透明像素层的高度(W高)≤形成在基板上的黑色矩阵的高度(BM高)+0.2μm,即A值=W高-BM高≤0.2μm。
  4. 一种彩色滤光片,其中,该彩色滤光片包括:
    基板,
    形成在基板上的黑色矩阵,
    形成在基板上的彩色层,并且所述彩色层包括红色像素层、绿色像素层、蓝色像素层和透明像素层,
    形成在黑色矩阵上的柱状层,
    其中透明像素层分别被红色像素层、绿色像素层和蓝色像素层包覆在各红色像素层、绿色像素层和蓝色像素层的内部,
    柱状层包括次柱状层和主柱状层,各主柱状层膜厚高度之间的高度差控制在±0.1μm的范围内。
  5. 一种彩色滤光片,其中,该彩色滤光片包括:
    基板,
    形成在基板上的黑色矩阵,
    形成在基板上的彩色层,并且所述彩色层包括红色像素层、绿色像素层、蓝色像素层和透明像素层,
    形成在黑色矩阵上的柱状层,
    其中透明像素层分别被红色像素层、绿色像素层和蓝色像素层包覆在各红色像素层、绿色像素层和蓝色像素层的内部,
    形成在基板上的透明像素层的高度(W高)≤形成在基板上的黑色矩阵的高度(BM高)+0.2μm,即A值=W高-BM高≤0.2μm
  6. 根据权利要求1~5中任一项所述的彩色滤光片,其中,形成在基板上被包覆在每个红色像素层、绿色像素层和蓝色像素层内部的透明像素层是断开的。
  7. 根据权利要求6所述的彩色滤光片,其中,所述彼此断开的透明像素层之间的距离为5μm以上。
  8. 根据权利要求1~7中任一项所述的彩色滤光片,其中,所述基板为玻璃基板,以及还包括形成在基板背部的导电层。
  9. 根据权利要求1~8中任一项所述的彩色滤光片,其中,形成彩色滤光片的各结构中所采用的光刻胶材料是负型光刻胶材料。
  10. 一种显示面板,其包括权利要求1~9中任一项所述的彩色滤光片。
  11. 一种显示装置,其包括权利要求10所述的显示面板。
  12. 一种制备彩色滤光片的方法,包括如下步骤:
    在彩色滤光片的基板的背面进行ITO镀膜,
    在基板的正面上形成黑色矩阵,
    在基板的正面上形成的各黑色矩阵之间的空隙形成透明像素层,
    包覆透明像素层在基板上形成红色像素层、绿色像素层和蓝色像素层,
    任选在红色像素层、绿色像素层和蓝色像素层和黑色矩阵上方形成平坦层;以及
    在平坦层上并在对应的黑色矩阵上方形成柱状层或在没有平坦层的情况下在对应的黑色矩阵上形成柱状层。
  13. 根据权利要求12所述的方法,其所制备的彩色滤光片是权利要求1~9中任一项所述的彩色滤光片。
PCT/CN2016/113512 2016-12-30 2016-12-30 彩色滤光片、显示装置及制备彩色滤光片的方法 WO2018120022A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/CN2016/113512 WO2018120022A1 (zh) 2016-12-30 2016-12-30 彩色滤光片、显示装置及制备彩色滤光片的方法
KR1020197018444A KR20190085124A (ko) 2016-12-30 2016-12-30 컬러 필터, 디스플레이 장치 및 컬러 필터의 제조 방법
CN201680091903.2A CN110168436A (zh) 2016-12-30 2016-12-30 彩色滤光片、显示装置及制备彩色滤光片的方法
US16/474,138 US10802329B2 (en) 2016-12-30 2016-12-30 Colour filter, display apparatus and method for manufacturing colour filter
JP2019535299A JP6854898B2 (ja) 2016-12-30 2016-12-30 カラーフィルタ、表示装置及びカラーフィルタの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/113512 WO2018120022A1 (zh) 2016-12-30 2016-12-30 彩色滤光片、显示装置及制备彩色滤光片的方法

Publications (1)

Publication Number Publication Date
WO2018120022A1 true WO2018120022A1 (zh) 2018-07-05

Family

ID=62706535

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/113512 WO2018120022A1 (zh) 2016-12-30 2016-12-30 彩色滤光片、显示装置及制备彩色滤光片的方法

Country Status (5)

Country Link
US (1) US10802329B2 (zh)
JP (1) JP6854898B2 (zh)
KR (1) KR20190085124A (zh)
CN (1) CN110168436A (zh)
WO (1) WO2018120022A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114512524A (zh) * 2022-02-16 2022-05-17 湖北长江新型显示产业创新中心有限公司 一种显示面板及显示装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210147123A (ko) * 2020-05-27 2021-12-07 삼성디스플레이 주식회사 표시패널 및 표시패널의 제조방법
CN114063336B (zh) * 2020-07-31 2024-03-05 北京小米移动软件有限公司 黑矩阵及其制作方法、彩膜基板及其制作方法和显示屏
CN114914267B (zh) * 2022-04-29 2023-02-14 西安赛富乐斯半导体科技有限公司 可修复的全尺寸全彩led芯片及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1417626A (zh) * 2001-10-31 2003-05-14 奥博特瑞克斯株式会社 传导/反射的彩色液晶显示器和其衬底的制造方法
US20050134763A1 (en) * 2003-12-23 2005-06-23 Lg.Philips Lcd Co., Ltd. Liquid crystal display device and method of fabricating the same
CN1769973A (zh) * 2004-11-04 2006-05-10 Lg.菲利浦Lcd株式会社 液晶显示器件及其制造方法
CN1776467A (zh) * 2005-12-06 2006-05-24 彭冠璋 兼具发光亮度及光色对比度的彩色滤光片
CN101324728A (zh) * 2007-06-15 2008-12-17 中华映管股份有限公司 液晶显示面板及其制造方法
CN102819057A (zh) * 2012-08-24 2012-12-12 京东方科技集团股份有限公司 一种显示装置、彩色滤光片及其制作方法
CN106483707A (zh) * 2016-12-30 2017-03-08 东旭(昆山)显示材料有限公司 用于液晶显示器的滤色片及其制备方法和液晶显示器

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07181473A (ja) 1993-12-21 1995-07-21 Sekisui Chem Co Ltd 液晶ディスプレイ用カラーフィルタとその製造方法
CN1100279C (zh) * 1996-10-29 2003-01-29 日本电气株式会社 有源矩阵液晶显示屏
US6710834B2 (en) * 2000-03-27 2004-03-23 Nec Lcd Technologies, Ltd. IPS type color LCD panel having uniformly dispersed spacer particles
JP3741966B2 (ja) 2000-03-27 2006-02-01 秋田日本電気株式会社 横電界型カラー液晶表示素子
JP4099983B2 (ja) 2001-12-13 2008-06-11 東レ株式会社 半透過型液晶表示装置用カラーフィルターおよび半透過型液晶表示装置
JP5188825B2 (ja) 2008-02-14 2013-04-24 株式会社ジャパンディスプレイイースト 表示装置
JP5112260B2 (ja) 2008-11-12 2013-01-09 株式会社ジャパンディスプレイイースト タッチパネル
JP5659768B2 (ja) * 2010-12-16 2015-01-28 凸版印刷株式会社 斜め電界液晶表示装置
KR20150083956A (ko) * 2014-01-10 2015-07-21 삼성디스플레이 주식회사 표시장치 및 이의 제조방법
JP2016031513A (ja) 2014-07-30 2016-03-07 大日本印刷株式会社 高精細カラーフィルタ
CN104730756B (zh) * 2015-03-23 2018-04-03 京东方科技集团股份有限公司 彩膜基板及其制备方法、显示面板
CN205281079U (zh) 2015-12-31 2016-06-01 东旭(昆山)显示材料有限公司 一种彩膜基板、液晶面板及显示装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1417626A (zh) * 2001-10-31 2003-05-14 奥博特瑞克斯株式会社 传导/反射的彩色液晶显示器和其衬底的制造方法
US20050134763A1 (en) * 2003-12-23 2005-06-23 Lg.Philips Lcd Co., Ltd. Liquid crystal display device and method of fabricating the same
CN1769973A (zh) * 2004-11-04 2006-05-10 Lg.菲利浦Lcd株式会社 液晶显示器件及其制造方法
CN1776467A (zh) * 2005-12-06 2006-05-24 彭冠璋 兼具发光亮度及光色对比度的彩色滤光片
CN101324728A (zh) * 2007-06-15 2008-12-17 中华映管股份有限公司 液晶显示面板及其制造方法
CN102819057A (zh) * 2012-08-24 2012-12-12 京东方科技集团股份有限公司 一种显示装置、彩色滤光片及其制作方法
CN106483707A (zh) * 2016-12-30 2017-03-08 东旭(昆山)显示材料有限公司 用于液晶显示器的滤色片及其制备方法和液晶显示器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114512524A (zh) * 2022-02-16 2022-05-17 湖北长江新型显示产业创新中心有限公司 一种显示面板及显示装置

Also Published As

Publication number Publication date
JP2020505627A (ja) 2020-02-20
US10802329B2 (en) 2020-10-13
KR20190085124A (ko) 2019-07-17
JP6854898B2 (ja) 2021-04-07
US20190317363A1 (en) 2019-10-17
CN110168436A (zh) 2019-08-23

Similar Documents

Publication Publication Date Title
WO2017008369A1 (zh) Coa型液晶显示面板及其制作方法
TWI686645B (zh) 液晶顯示面板
CN105974651B (zh) 液晶显示面板的制作方法
US10295713B2 (en) Color filter substrate, preparing method thereof, and display device
US9097931B2 (en) Color filter substrate and liquid crystal display
CN105204217B (zh) 液晶显示面板
US20160223856A1 (en) Display substrate and display apparatus
CN102109628A (zh) 彩色滤光片构造及其制造方法
CN104536195A (zh) 图像显示装置
CN106842687B (zh) 彩膜基板及其制作方法
US9091879B2 (en) Liquid crystal display panel and liquid crystal display apparatus
US10365523B2 (en) Display panel and manufacturing method based on BOA technology
US20190049804A1 (en) Active switch array substrate, manufacturing method therfor, and display panel
KR20100077979A (ko) 액정표시장치의 칼라필터 어레이 및 그 제조방법
WO2018120022A1 (zh) 彩色滤光片、显示装置及制备彩色滤光片的方法
CN106526953A (zh) 彩色滤光层基板的制造方法
WO2016176882A1 (zh) 彩色滤光片及其制作方法、液晶显示面板
US9116297B2 (en) Color filter substrate, manufacturing method thereof and liquid crystal panel
WO2017152469A1 (zh) 彩膜基板的制作方法及制得的彩膜基板
US10429701B2 (en) Display panel and LCD panel and LCD apparatus using the same
TW200521492A (en) Color filter and fabricating method thereof
CN202141873U (zh) 彩色滤光片及液晶面板
US20210294007A1 (en) Color film substrate, manufacturing method of the same, display panel and display device
WO2017186095A1 (zh) 显示面板及其制备方法、显示装置
WO2014176904A1 (zh) 显示装置、彩膜基板及其制作方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16925008

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019535299

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197018444

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16925008

Country of ref document: EP

Kind code of ref document: A1