WO2018105473A1 - 鉄心及びモータ - Google Patents
鉄心及びモータ Download PDFInfo
- Publication number
- WO2018105473A1 WO2018105473A1 PCT/JP2017/042978 JP2017042978W WO2018105473A1 WO 2018105473 A1 WO2018105473 A1 WO 2018105473A1 JP 2017042978 W JP2017042978 W JP 2017042978W WO 2018105473 A1 WO2018105473 A1 WO 2018105473A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- iron core
- oxide film
- core according
- colored
- nanocrystal
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/02—Details of the magnetic circuit characterised by the magnetic material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/14—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
- H01F1/147—Alloys characterised by their composition
- H01F1/153—Amorphous metallic alloys, e.g. glassy metals
- H01F1/15333—Amorphous metallic alloys, e.g. glassy metals containing nanocrystallites, e.g. obtained by annealing
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F3/00—Cores, Yokes, or armatures
- H01F3/04—Cores, Yokes, or armatures made from strips or ribbons
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/02—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
- H01F41/0206—Manufacturing of magnetic cores by mechanical means
- H01F41/0213—Manufacturing of magnetic circuits made from strip(s) or ribbon(s)
- H01F41/0226—Manufacturing of magnetic circuits made from strip(s) or ribbon(s) from amorphous ribbons
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/06—Details of the magnetic circuit characterised by the shape, form or construction
- H02K1/12—Stationary parts of the magnetic circuit
- H02K1/14—Stator cores with salient poles
- H02K1/146—Stator cores with salient poles consisting of a generally annular yoke with salient poles
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/06—Details of the magnetic circuit characterised by the shape, form or construction
- H02K1/12—Stationary parts of the magnetic circuit
- H02K1/18—Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures
- H02K1/185—Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures to outer stators
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K15/00—Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
- H02K15/02—Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
Definitions
- the present invention relates to an iron core in which soft magnetic ribbons are laminated and a motor using the iron core as a stator.
- the manufacturing method of the stator core of Patent Document 1 is as follows. First, an amorphous alloy ribbon manufactured by a liquid quenching method such as a single roll method or a twin roll method is processed into a predetermined shape by a method such as winding, cutting, punching, or etching. Next, the processed material is formed by being laminated.
- a liquid quenching method such as a single roll method or a twin roll method
- the thickness of the nanocrystal ribbon is about one tenth of that of a normally used electromagnetic steel sheet. For this reason, when the heat treatment is performed one by one, the handling amount is about 10 times that of the conventional method.
- the heat treatment and the subsequent laminating process have a problem that the productivity for obtaining the same laminating thickness is about 10 times that in the case of electrical steel sheets.
- the present invention solves the conventional problems, and an object of the present invention is to provide a nanocrystalline ribbon core and a motor having stable magnetic properties without impairing productivity.
- a laminate comprising a plurality of nanocrystal ribbons laminated, a substrate, and a fastening portion for fastening the laminate to the substrate, wherein at least one of the upper and lower surfaces of the laminate
- an iron core having a colored oxide film and an uncolored oxide film.
- the iron core is used in which the region of the colored oxide film is wider than the region of the non-colored oxide film.
- a motor using the iron core described above as a stator is used.
- the laminated amorphous alloy ribbon is heat treated at one time to form a nanocrystalline ribbon, and this is laminated, so that the core and motor of the nanocrystalline ribbon with stable magnetic properties are maintained without sacrificing productivity. Can be provided.
- the iron core and motor of the present invention it is possible to provide a nanocrystalline ribbon iron core and motor having stable magnetic properties without impairing productivity.
- FIG. 1A is a side view of an iron core and a motor according to Embodiment 1 of the present invention.
- FIG. 1B is a top view of FIG. 1A.
- FIG. 2A is a diagram showing the upper and lower surfaces of a laminate mainly composed of a visible oxide film according to Embodiment 1 of the present invention.
- FIG. 2B is a diagram showing an interlayer surface of a laminate mainly including an invisible oxide film according to Embodiment 1 of the present invention.
- FIG. 3A is a side view of the iron core and the motor according to Embodiment 2 of the present invention.
- FIG. 3B is a top view of FIG. 3A.
- FIG. 4 is a side view of the iron core and the motor according to the third embodiment of the present invention.
- FIG. 4 is a side view of the iron core and the motor according to the third embodiment of the present invention.
- FIG. 5A is a top view of the laminated body bonded in Embodiment 3 of the present invention.
- FIG. 5B is a side view of FIG. 5A.
- FIG. 6A is a top view of the laminated body mechanically fastened in the fourth embodiment of the present invention.
- 6B is a cross-sectional view taken along the line AA ′ of FIG. 6A.
- FIG. 7 is a side view of the iron core and the motor according to the fifth embodiment of the present invention.
- FIG. 1A and 1B are diagrams showing configurations of the iron core and the motor according to Embodiment 1 of the present invention, and specifically show a brushless motor.
- FIG. 1A is a side view of an iron core and a motor
- FIG. 1B is a top view.
- a fastening mechanism composed of a laminate 1 of nanocrystalline ribbons 2, bolts 5 that penetrate the laminate 1 and fasten them to a metal substrate 7, and fastening portions 6; Prepare and become an iron core. Winding 9 is applied to this iron core to form a stator.
- a rotor 8 is provided in the inner diameter portion of the stator, and the motor is driven by energization.
- the laminate 1 is an iron core member of a motor stator.
- the laminated body 1 becomes a laminated body 1 of the nanocrystalline ribbon 2 by laminating the nanocrystalline ribbon 2 which is an amorphous alloy ribbon without using an adhesive between the layers and performing heat treatment. By not using an adhesive, the space factor can be increased.
- the amorphous alloy ribbon before the heat treatment is an iron-based alloy having a plate thickness of 10 ⁇ m to 60 ⁇ m and containing at least one of boron and silicon.
- the amorphous alloy ribbon is manufactured by rapidly cooling the molten iron-based alloy by pouring it onto the surface of a rotating cooling drum and stretching it into a ribbon shape.
- the region of the oxide film 12 that shows a metallic luster and cannot be visually recognized may remain in the vicinity of the corresponding part due to the influence of a component for fixing the laminate.
- the region of the oxide film 11 that can be seen is wider than the region of the oxide film 12 that cannot be seen.
- the through hole 10 is a through hole for passing the bolt 5. Visible colors tend to have good magnetic properties in the visible range such as glossy brown, blue, purple, etc. with the naked eye. However, there is no strict correlation between color and magnetic properties.
- the nanocrystal ribbon 2 in FIG. 2B shows the interlayer surface of the laminate 1. It has a region of the oxide film 12 that shows metallic luster and is not visible. Between the surfaces of the nanocrystal ribbons 2 between the nanocrystal ribbons 2, the nanocrystal ribbons 2 are in contact with each other, or the gap between the nanocrystal ribbons 2 is very narrow. For this reason, it becomes difficult for air or the like to enter between the surfaces of the nanocrystal ribbons 2 between the nanocrystal ribbons 2. For this reason, it is considered that the region of the oxide film 12 that shows metallic luster and cannot be visually recognized remains on the surface of the nanocrystal ribbon 2 as before the heat treatment.
- being visible means that it is colored and means that it is not metallic luster, white, black, or transparent. When it cannot be visually recognized, it indicates that the coloring is not performed.
- a visible oxide film that is, a colored oxide film
- a non-visible oxide film that is, an uncolored oxide film
- the region of the oxide film 12 that shows metallic luster and cannot be visually recognized is surrounded by the region of the oxide film 11 whose peripheral portion can be visually recognized. Since this is close to the outer peripheral portion of the nanocrystalline ribbon 2, it can be considered that the atmosphere has entered from a slight gap between the layers of the nanocrystalline ribbon 2. Even if the laminated nanocrystal ribbons 2 are heat-treated, each nanocrystal ribbon 2 obtains predetermined magnetic properties as long as the number is less than the upper limit. If the number is equal to or greater than the upper limit, the difference in temperature distribution in the thickness direction becomes large, and good magnetic properties cannot be obtained.
- the nanocrystal ribbon 2 on the surface of the laminate 1 mainly has the oxide film 11 whose one surface is visible, and the other surface mainly has the oxide film 12 which shows metallic luster and cannot be visually recognized.
- the nanocrystal ribbon 2 inside the laminate 1 mainly has an oxide film 12 whose both surfaces are metallic and cannot be visually recognized.
- the nanocrystal ribbon 2 having a single laminate 1 mainly has an oxide film whose both surfaces are visible.
- the nanocrystal ribbon 2 of the laminate 1 may include any of the nanocrystal ribbons 2 described above.
- ⁇ A part of the region is pressurized with the fastening portion 6 and heat-treated without using an adhesive between the nanocrystal ribbons 2 and can be heat-treated in a laminated state to obtain characteristics.
- the thickness of the nanocrystalline ribbon 2 is about one-tenth that of an electromagnetic steel plate, and therefore the productivity is reduced to about one-tenth when it is processed one by one. However, since 10 or more sheets can be processed at once, this can be solved. Therefore, the laminated body 1 of the nanocrystalline ribbon 2 having stable magnetic characteristics can be manufactured without impairing productivity.
- FIG. 3A and 3B are diagrams showing configurations of the iron core and the motor in the second embodiment of the present invention.
- FIG. 3A is a side view of the iron core and the motor
- FIG. 3B is a top view thereof.
- 3A and 3B differ from Embodiment 1 in that a metal plate 4 is provided between the laminate 1 in which the nanocrystal ribbons 2 are laminated and the bolt 5 and the fastening portion 6 that is a washer. It is.
- the nanocrystalline ribbon 2 is brittle, if an electromagnetic steel plate of the same soft magnetic material is used for the metal plate 4, the nanocrystal is obtained from the fastening force from the bolt 5 and the fastening portion 6, the fastening force of the winding 9, or other external force.
- the ribbon 2 can be protected.
- the metal plate 4 can be used as the other material if it is a non-magnetic material because it does not affect the magnetic properties of the iron core. In FIG. 3, although the metal plate 4 is provided up and down, either one may be sufficient if the objective is achieved.
- a metal plate 4 is provided on the surface.
- FIG. 4 is a side view of the iron core and the motor according to the third embodiment of the present invention.
- FIG. 4 differs from the first embodiment in that the entire laminated portion 20 is laminated with the same two first laminated bodies 21a and 21b in which the nanocrystal ribbon 2 has a predetermined number of layers and a predetermined number of layers. It has a three-stage structure in which a small number of second stacked bodies 22 are stacked.
- the stacked portion 20 is formed by stacking a plurality of stacked bodies.
- the thickness of the laminated portion 20 When the thickness of the laminated portion 20 is thicker than one laminated body, one or a plurality of laminated bodies are laminated.
- the amount of lamination of the nanocrystalline ribbon 2 in the lamination unit 20 is managed by weight or thickness at the time of fastening. Strictly speaking, the thicknesses of the nanocrystalline ribbons 2 are different, and it is difficult to keep the thickness constant in managing the number of stacked layers.
- first, two of the first stacked bodies 21a and 21b are stacked and the weight is measured. After confirming that when the other first laminated body 21a or the first laminated body 21b is laminated, a predetermined weight is exceeded, the second laminated body having a smaller number of laminated layers than the first laminated body 21a and the first laminated body 21b. 22 is laminated and the difference in weight is adjusted. Since various values arise in the difference in weight, a plurality of stacked bodies having different numbers or weights are prepared in advance, and the second stacked body 22 having an appropriate weight is stacked according to the difference in weight. In the case of thickness management, the difference in thickness can be adjusted similarly.
- the second laminated body 22 having a smaller number of stacked nanocrystalline ribbons 2 than the first laminated body 21 having a larger number of nanocrystalline ribbons 2 has a smaller number of stacked layers, a more uniform heat treatment can be performed. Therefore, the magnetic characteristics are more stable. As a result, the second stacked body 22 can not only adjust the difference in weight and thickness, but also stabilize the magnetic characteristics.
- the metal plate 4 may be provided between the laminated portion 20 and the fastening portion including the bolt 5 and the fastening portion 6.
- FIG. 5A is a top view of the first stacked body 21 or the second stacked body 22, and FIG. 5B is a side view.
- the adhesive 23 is applied to the outer peripheral portions of the first laminate 21 and the second laminate 22 and cured.
- the purpose of providing the adhesive 23 is to integrate the first laminate 21 or the second laminate 22 so that the first laminate 21 or the second laminate 22 can be easily handled. Therefore, as long as integration can be ensured, the place to be bonded can be bonded to the entire outer periphery as shown in FIG.
- the nanocrystal ribbon layers may be bonded.
- the amorphous alloy ribbon may be bonded first to form the first laminated body 21 or the second laminated body 22, and then heat treatment may be performed, or the nanocrystalline ribbon 2 may be stacked and bonded.
- the type of the adhesive 23 there is no particular restriction on the type of the adhesive 23, but since it is often heated to 350 ° C. or higher by heat treatment, a polyimide system with high heat resistance is desirable.
- the adhesive has a low heat-resistant temperature such as an epoxy type, a heat history remains in the adhesive. Further, a room temperature curable adhesive or an ultraviolet curable adhesive may be used.
- FIG. 4 is a top view of the mechanically fastened laminate in Embodiment 4 of the present invention
- FIG. 6B is a cross-sectional view taken along line AA ′ in FIG. 6A.
- 6A and 6B are different from the third embodiment in that two places are fixed by the caulking material 24.
- FIG. Adhesion causes disadvantages such as the magnetic properties being influenced by heat other than heat treatment due to heating for curing, and the processing time for curing being long.
- the use of mechanical means such as caulking has the advantage that it can be fixed in a short time just by crushing at room temperature.
- the mechanical fastening method may be a mechanism that sandwiches eyelets or laminated end faces.
- FIG. 7 is a side view of the iron core and the motor according to the fifth embodiment of the present invention.
- FIG. 7 is different from FIG. 4 of the third embodiment in that the laminated portion 25 is fixed to the two first laminated bodies 21a and 21b having the same number of laminated nanocrystal ribbons 2 and the nanocrystal ribbon 2
- the layer 26 in which the nanocrystal ribbons are laminated is stacked one by one without taking the form of the laminated body.
- the stacking amount of the nanocrystalline ribbon 2 in the stacking portion 25 is managed by the weight or the thickness at the time of fastening. Also in FIG. 7, first, the first laminates 21a and 21b are stacked and the weight is measured, and the nanocrystal ribbons 2 are stacked one by one to adjust the difference in weight. Therefore, the number of the layers 26 on which the nanocrystalline ribbons are stacked is from 1 or more to less than the number of the first stacked bodies 21a and 21b.
- the number of sheets may be larger than that of the first laminates 21a and 21b.
- the nanocrystal ribbons 2 to be added may be heat-treated one by one in a separate process, or may be taken and laminated one by one from the first laminates 21a and 21b before being fixed.
- the nanocrystal ribbon 2 that has been heat-treated one by one is in a state in which both surfaces are mainly composed of the visible oxide film 11 shown in FIG. 2A.
- One type is a state in which the one side is mainly in the state shown in FIG.
- the layer 26 in which the nanocrystal ribbons are stacked is configured to include any one of these three types of nanocrystal ribbons or two or more of them.
- the metal plate 4 may be provided between the laminated portion 25 and the fastening portion including the bolt 5 and the fastening portion 6.
- Embodiments 1 to 5 can be combined.
- the iron core according to the present invention is useful as a stator for a motor. Furthermore, the iron core according to the present invention can be applied to uses of magnetic parts such as transformers in addition to motors.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Dispersion Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Iron Core Of Rotating Electric Machines (AREA)
- Manufacture Of Motors, Generators (AREA)
- Soft Magnetic Materials (AREA)
- Manufacturing Cores, Coils, And Magnets (AREA)
Abstract
複数のナノ結晶薄帯を積層した積層体と、基板と、上記積層体と上記基板とを締結する締結部と、を含み、上記積層体の上下面の少なくとも一方は、着色した酸化膜と、着色していない酸化膜とを有する鉄心を用いる。また、上記着色した酸化膜の領域が、上記着色していない酸化膜の領域より広い上記鉄心を用いる。さらに、上記記載の鉄心を固定子に用いたモータを用いる。
Description
本発明は、軟磁性薄帯を積層した鉄心及び該鉄心を固定子として用いたモータに関する。
従来のモータ用の鉄心(固定子)における磁性板の積層体としては、純鉄や電磁鋼板が用いられている。また、より効率化を目的としたモータでは、非晶質やナノ結晶粒を有する薄帯を鉄心に用いたものもある(例えば、特許文献1参照)。
特許文献1の固定子鉄心の製法は以下である。まず、単ロール法、双ロール法等の液体急冷法により作製された非晶質合金薄帯を巻回、切断、打ち抜き、エッチング等の方法で所定の形状に加工する。次に、加工したものを、積層して形成されている。
しかしながら、非晶質合金薄帯をより軟磁気特性が優れるとされるナノ結晶薄帯にするには、さらに、熱処理が必要である。ここで、ナノ結晶薄帯の厚みは、通常用いられる電磁鋼板の10分の1程度である。このため、1枚ずつ熱処理をすると、取り扱い量が、従来の約10倍となる。
結果、熱処理と、それに続く積層工程では、同一の積層厚さを得るための生産性が電磁鋼板の場合の約10倍かかるという課題を有している。
本発明は、従来の課題を解決するもので、生産性を損ねることなく、安定した磁気特性のナノ結晶薄帯の鉄心及びモータを提供することを目的とする。
上記目的を達成するために、複数のナノ結晶薄帯を積層した積層体と、基板と、上記積層体と上記基板とを締結する締結部と、を含み、上記積層体の上下面の少なくとも一方は、着色した酸化膜と、着色していない酸化膜とを有する鉄心を用いる。また、上記着色した酸化膜の領域が、上記着色していない酸化膜の領域より広い上記鉄心を用いる。さらに、上記記載の鉄心を固定子に用いたモータを用いる。
本構成によって、積層した非晶質合金薄帯を一度に熱処理してナノ結晶薄帯とし、これを積層するので、生産性を損ねることなく、安定した磁気特性のナノ結晶薄帯の鉄心及びモータを提供することができる。
本発明の鉄心及びモータによれば、生産性を損ねることなく、安定した磁気特性のナノ結晶薄帯の鉄心及びモータを提供することができる。
以下本発明の実施の形態について、図面を参照しながら説明する。
(実施の形態1)
<構造>
図1Aと図1Bは、本発明の実施の形態1における鉄心及びモータの構成を示す図であって、具体的にはブラシレスモータについて示している。図1Aは鉄心及びモータの側面図であり、図1Bは、上面図である。
<構造>
図1Aと図1Bは、本発明の実施の形態1における鉄心及びモータの構成を示す図であって、具体的にはブラシレスモータについて示している。図1Aは鉄心及びモータの側面図であり、図1Bは、上面図である。
図1Aと図1Bとに示すように、ナノ結晶薄帯2の積層体1と、積層体1を貫き、これらを金属基板7に締結するボルト5および締結部6とにより構成される締結機構と備え、鉄心となる。この鉄心に巻線9を施し、固定子とする。この固定子の内径部に回転子8を設け、通電することでモータは駆動する。
積層体1は、モータの固定子の鉄心部材である。積層体1は、非晶質合金薄帯であるナノ結晶薄帯2を層間に接着剤を用いることなく積層し、熱処理することでナノ結晶薄帯2の積層体1になる。接着剤を用いないことで、占積率を高めることができる。熱処理前の非晶質合金薄帯は、板厚が10μm~60μmで、ホウ素かケイ素の少なくともどちらか一方を含む鉄系合金である。非晶質合金薄帯は、溶融した前記鉄系合金を、回転する冷却ドラムの表面に注湯して、リボン状に引き伸ばすことで、急冷して製作される。
<製法>
所定の重量または積層厚さになるように準備された非晶質合金薄帯を積層し、熱処理すると、上下面の少なくとも一方の面は、図2Aのナノ結晶薄帯2に示すように、ほとんど全面に視認可能な酸化膜11を有する領域が得られる。
所定の重量または積層厚さになるように準備された非晶質合金薄帯を積層し、熱処理すると、上下面の少なくとも一方の面は、図2Aのナノ結晶薄帯2に示すように、ほとんど全面に視認可能な酸化膜11を有する領域が得られる。
ただし、積層物を固定する部品などの影響で、該当部位の近傍で、金属光沢を示し視認できない酸化膜12の領域が残ることもある。視認可能な酸化膜11の領域は、視認できない酸化膜12の領域より広い。
貫通穴10は、ボルト5を通すための貫通穴である。視認可能な色は、肉眼で光沢のある褐色、青色、紫色などに見える範囲が良好な磁気特性が得られる傾向にある。しかし、色と磁気特性の間に厳密な相関があるわけではない。
図2Bのナノ結晶薄帯2は、積層体1の層間面のものを示す。金属光沢を示し視認できない酸化膜12の領域を有している。ナノ結晶薄帯2間のナノ結晶薄帯2の面間では、ナノ結晶薄帯2が相互に接するか、ナノ結晶薄帯2間の隙間が非常に狭い状態となる。このため、ナノ結晶薄帯2間のナノ結晶薄帯2の面間には、大気等が入りにくい状態となる。このため、熱処理前と同様に、ナノ結晶薄帯2の表面に、金属光沢を示し視認できない酸化膜12の領域が残ったと考えられる。
なお、視認可能なとは、着色していることを示し、金属光沢、白色、黒色、透明でないことを意味する。視認できないとは、上記着色をしていないことを示す。
また、形成される酸化膜の膜厚に関して、視認可能な、つまり、着色している酸化膜と、視認できない、つまり、着色していない酸化膜とは、ほぼ同じ厚みである。
着色しているかどうかは、原則、通常の健常者なら、肉眼でわかる。
また、金属光沢を示し視認できない酸化膜12の領域は、その外周部を視認可能な酸化膜11の領域に囲まれる。これはナノ結晶薄帯2の外周部に近いため、ナノ結晶薄帯2の層間のわずかな隙間から大気が入り込んできた影響であると考えられる。積層したナノ結晶薄帯2を熱処理しても、上限以下の枚数であれば、それぞれのナノ結晶薄帯2は所定の磁気特性を得る。上限以上の枚数であると、厚さ方向の温度分布の差が大きくなり、良好な磁気特性が得られない。
よって、積層体1の表面のナノ結晶薄帯2では、片面が視認可能な酸化膜11を主体に有し、他方の面は金属光沢を示し視認できない酸化膜12を主体に有する。
積層体1の内部のナノ結晶薄帯2では、両面が金属光沢を示し視認できない酸化膜12を主体に有する。
積層体1が1枚のナノ結晶薄帯2は、両面が視認可能な酸化膜を主体に有する。
積層体1のナノ結晶薄帯2は、上記いずれのナノ結晶薄帯2を含んでもよい。
また、結晶化にともなう自己発熱による熱が、積層したナノ結晶薄帯2間に蓄積されやすくなり、過剰な温度上昇によって、磁気特性がかえって悪くなるだけでなく、脆化して容易に破損したりする。目標の磁気特性や、熱処理条件により異なるが、10枚以上のナノ結晶薄帯2を積層し熱処理しても、良好な磁気特性を得ることができる。
ナノ結晶薄帯2間に接着剤を用いず、一部の領域を締結部6で加圧し熱処理することで、積層状態で熱処理でき、特性が得られる。
これにより、熱処理や積層などの工程を10枚以上で一度に処理できる。ナノ結晶薄帯2の板厚は、電磁鋼板に比べて板厚が約10分の1に薄いため、1枚ずつ処理すると生産性が約10分の1に悪くなるという問題がある。しかし、10枚以上を一度に処理できるので、これは解決できる。したがって、生産性を損ねることなく、安定した磁気特性のナノ結晶薄帯2の積層体1を製造することができる。
(実施の形態2)
図3Aと図3Bは、本発明の実施の形態2における鉄心及びモータの構成を示す図である。図3Aは、鉄心及びモータの側面図であり、図3Bは、その上面図である。図3A、図3Bが、実施の形態1と異なる点は、ナノ結晶薄帯2を積層した積層体1と、ボルト5とワッシャである締結部6との間に、金属板4を設けたことである。
図3Aと図3Bは、本発明の実施の形態2における鉄心及びモータの構成を示す図である。図3Aは、鉄心及びモータの側面図であり、図3Bは、その上面図である。図3A、図3Bが、実施の形態1と異なる点は、ナノ結晶薄帯2を積層した積層体1と、ボルト5とワッシャである締結部6との間に、金属板4を設けたことである。
ナノ結晶薄帯2は脆いので、同じ軟磁性体の電磁鋼板を金属板4に用いれば、ボルト5と締結部6からの締結力や、巻線9の締め付け力、あるいはその他の外力からナノ結晶薄帯2を保護することができる。
金属板4には、他の材料として、非磁性材であれば、鉄心の磁気特性に影響を与えないので使用できる。図3において、金属板4は上下に設けているが、目的が達せられるのであれば、どちらか一方でも良い。
また、積層体1でなく、ナノ結晶薄帯2の1枚、複数枚を用いる場合は、その面に金属板4を設ける。
(実施の形態3)
図4は、本発明の実施の形態3における鉄心及びモータの側面図である。図4が実施の形態1と異なる点は、全体の積層部20が、ナノ結晶薄帯2が所定の積層数である同じ2個の第1積層体21a、21bと、所定の積層数より積層数が少ない第2積層体22を積み重ねた3段構造としている。
図4は、本発明の実施の形態3における鉄心及びモータの側面図である。図4が実施の形態1と異なる点は、全体の積層部20が、ナノ結晶薄帯2が所定の積層数である同じ2個の第1積層体21a、21bと、所定の積層数より積層数が少ない第2積層体22を積み重ねた3段構造としている。
ナノ結晶薄帯2を熱処理する際には、ナノ結晶薄帯2の積層数が多くなると、積層方向の温度均一性の確保が困難になり、ナノ結晶薄帯2間で各種磁気特性の分布の幅が大きくなる。このため、ナノ結晶薄帯2の積層厚さには制限があり、ある所定数の積層数の積層体ごとに熱処理をする。
そのため、複数の積層体を積層して積層部20を形成する。
積層部20の厚みが、1つの積層体よりも厚い場合には、1個または複数の積層体を積層する。積層部20におけるナノ結晶薄帯2の積層量は、重量または締結時の厚さで管理する。ナノ結晶薄帯2はそれぞれ厳密には板厚が異なるため、積層する枚数の管理では厚さを一定にすることは難しい。
図4では、まず、第1積層体21a、21bの2個を積層して重量を測定する。もう1個の第1積層体21aまたは第1積層体21bを積層すると所定の重量を超えることを確認した後、第1積層体21a、第1積層体21bよりも積層数の少ない第2積層体22を積層して重量の差分を調整する。重量の差分には色々な値が生じるので、積層数または重量の異なる複数の積層体をあらかじめ準備しておき、重量の差分に応じて適切な重量の第2積層体22を積層する。厚さ管理の場合も、同様にして厚さの差分を調整できる。
ナノ結晶薄帯2の枚数の多い第1積層体21よりも、ナノ結晶薄帯2の積層数の少ない第2積層体22は、積層数が少ないので、より均質な熱処理ができる。そのため、より磁気特性が安定している。結果、第2積層体22は、重量や厚さの差分を調整できるだけでなく、磁気特性を安定化する。
また、図3と同様に、積層部20と、ボルト5と締結部6からなる締結部、との間に、金属板4を設けても良い。
<接着剤>
図5Aは、第1積層体21、または、第2積層体22の上面図であり、図5Bは、側面図である。第1積層体21、第2積層体22の外周部に接着剤23が塗布され硬化している。接着剤23を設ける目的は、第1積層体21または第2積層体22の取り扱いが容易なように、一体化することが目的である。したがって、一体化さえ確保できれば、接着する場所は、図5のように外周部全面を接着しても、外周部を部分的に接着しても、他の内側の部分などの積層端面を接着しても、ナノ結晶薄帯の層間を接着しても良い。また、先に非晶質合金薄帯を接着し第1積層体21や第2積層体22としてから熱処理しても良いし、ナノ結晶薄帯2を積層して接着しても良い。
図5Aは、第1積層体21、または、第2積層体22の上面図であり、図5Bは、側面図である。第1積層体21、第2積層体22の外周部に接着剤23が塗布され硬化している。接着剤23を設ける目的は、第1積層体21または第2積層体22の取り扱いが容易なように、一体化することが目的である。したがって、一体化さえ確保できれば、接着する場所は、図5のように外周部全面を接着しても、外周部を部分的に接着しても、他の内側の部分などの積層端面を接着しても、ナノ結晶薄帯の層間を接着しても良い。また、先に非晶質合金薄帯を接着し第1積層体21や第2積層体22としてから熱処理しても良いし、ナノ結晶薄帯2を積層して接着しても良い。
ただし、非晶質合金薄帯の層間を接着すると、占積率が低くなったり、熱処理時に積層方向の熱伝導が悪くなり、ナノ結晶薄帯2間の磁気特性の分布の幅が大きくなったり、層間接着に材料や時間を要するなどの不利が生じる。
接着剤23の種類に特に制約は無いが、熱処理で350℃以上に加熱する場合が多いことから、耐熱性の高いポリイミド系が望ましい。また、エポキシ系など耐熱温度が低い接着剤であれば、接着剤に熱履歴が残る。また、室温硬化型や紫外線硬化型の接着剤でも良い。
(実施の形態4)
図6Aは、本発明の実施の形態4における機械的に締結した積層体の上面図であり、図6Bは、図6AにおけるA-A‘間の断面図である。図6A、図6Bが実施の形態3と異なる点は、カシメ材24で2箇所を固定していることである。接着では、硬化のための加熱により磁気特性が熱処理以外の影響を受けたり、硬化のための処理時間が長い、などの不利が生じる。しかし、カシメのような機械的手段を用いると、室温で押しつぶすだけの短時間で固定できるという利点がある。機械的締結方法は、カシメ以外に、ハトメや積層端面を挟む機構でも良い。
図6Aは、本発明の実施の形態4における機械的に締結した積層体の上面図であり、図6Bは、図6AにおけるA-A‘間の断面図である。図6A、図6Bが実施の形態3と異なる点は、カシメ材24で2箇所を固定していることである。接着では、硬化のための加熱により磁気特性が熱処理以外の影響を受けたり、硬化のための処理時間が長い、などの不利が生じる。しかし、カシメのような機械的手段を用いると、室温で押しつぶすだけの短時間で固定できるという利点がある。機械的締結方法は、カシメ以外に、ハトメや積層端面を挟む機構でも良い。
(実施の形態5)
図7は、本発明の実施の形態5における鉄心及びモータの側面図である。図7が、実施の形態3の図4と異なる点は、積層部25が、ナノ結晶薄帯2の積層数が同じ2個の第1積層体21a、21bと、ナノ結晶薄帯2が固定された積層体の形態をとらずに、1枚、1枚で、ナノ結晶薄帯が積層された層26と、を積み重ねていることである。
図7は、本発明の実施の形態5における鉄心及びモータの側面図である。図7が、実施の形態3の図4と異なる点は、積層部25が、ナノ結晶薄帯2の積層数が同じ2個の第1積層体21a、21bと、ナノ結晶薄帯2が固定された積層体の形態をとらずに、1枚、1枚で、ナノ結晶薄帯が積層された層26と、を積み重ねていることである。
図4でも述べたように、積層部25におけるナノ結晶薄帯2の積層量は、重量または締結時の厚さで管理する。図7においても、まず、第1積層体21a、21bと、を積層して重量を測定し、ナノ結晶薄帯2を1枚ずつ積層して重量の差分を調整する。したがって、ナノ結晶薄帯が積層された層26の積層枚数は、1枚以上から第1積層体21a、21bの積層枚数未満になる。
ただし、板厚が薄いものが用いられた場合には、第1積層体21a、21bよりも枚数が多くなることもある。追加するナノ結晶薄帯2は、別工程で1枚ずつ熱処理したものを用いても良いし、固定化される前の第1積層体21a、21bから一枚ずつ取り、積層しても良い。一枚ずつ熱処理されたナノ結晶薄帯2は、両面が図2Aに示した視認可能な酸化膜11を主体とした状態となる。固定化される前の第1積層体21a、21bから抜き取る場合は、ナノ結晶薄帯2の外観には2種類ある。1種類は、片面が図2Aの状態で、他面が図2Bの金属光沢を示し視認できない酸化膜12を主体にする状態である。もう1種類は、両面が図2Bの状態である。これより、これら3種類のナノ結晶薄帯の、どれか1種類か、2種類以上を含んで、ナノ結晶薄帯が積層された層26は構成される。
また、図3と同様に、積層部25と、ボルト5と締結部6からなる締結部、との間に、金属板4を設けても良い。
(全体として)
実施の形態1~5は組み合わせることができる。
実施の形態1~5は組み合わせることができる。
本発明に係る鉄心は、モータの固定子として有用である。さらに、本発明に係る鉄心は、モータ以外にトランス等の磁気応用した電子部品の用途にも適用できる。
1 積層体
2 ナノ結晶薄帯
4 金属板
5 ボルト
6 締結部
7 金属基板
8 回転子
9 巻線
10 貫通穴
11 視認可能な酸化膜
12 視認できない酸化膜
20 積層部
21,21a,21b 第1積層体
22 第2積層体
23 接着剤
24 カシメ材
25 積層部
26 ナノ結晶薄帯が積層された層
2 ナノ結晶薄帯
4 金属板
5 ボルト
6 締結部
7 金属基板
8 回転子
9 巻線
10 貫通穴
11 視認可能な酸化膜
12 視認できない酸化膜
20 積層部
21,21a,21b 第1積層体
22 第2積層体
23 接着剤
24 カシメ材
25 積層部
26 ナノ結晶薄帯が積層された層
Claims (18)
- 複数のナノ結晶薄帯を積層した積層体と、
基板と、
前記積層体と前記基板とを締結する締結部と、を含み、
前記積層体の上下面の少なくとも一方は、着色した酸化膜と、着色していない酸化膜とを有する鉄心。 - 前記着色した酸化膜の領域が、前記着色していない酸化膜の領域より広い請求項1記載の鉄心。
- 前記複数のナノ結晶薄帯間の面では、前記着色していない酸化膜が、前記着色した酸化膜より多い請求項1または2記載の鉄心。
- 前記複数のナノ結晶薄帯は、片面が着色した酸化膜を主体に有し、他方の面は金属光沢を示し着色していない酸化膜を主体に有する請求項1~3のいずれか1項に記載の鉄心。
- 前記積層体の前記ナノ結晶薄帯は、両面が金属光沢を示し着色していない酸化膜を主体に有する請求項1~3のいずれか1項に記載の鉄心。
- 前記積層体の前記ナノ結晶薄帯は、両面が着色した酸化膜を主体に有する請求項1~3のいずれか1項に記載の鉄心。
- 両面が着色した酸化膜を主体に有するナノ結晶薄帯と、両面が着色した酸化膜を主体に有するナノ結晶薄帯と、片面が着色した酸化膜を主体に有し他方の面は金属光沢を示し着色していない酸化膜を主体に有するナノ結晶薄帯と、のうち2種類以上含む請求項1~3のいずれか1項に記載の鉄心。
- 前記積層体と前記基板との間、または、前記積層体と前記締結部との間に、金属板を有する1~7のいずれか1項に記載の鉄心。
- 前記積層体は、複数の積層体を含む請求項1~8のいずれか1項に記載の鉄心。
- 前記複数の積層体は、前記ナノ結晶薄帯の積層数が異なる請求項9に記載の鉄心。
- 前記複数の積層体は、1枚の前記ナノ結晶薄帯を含む請求項9に記載の鉄心。
- 前記積層体は、固定手段により一体化されている請求項1~11のいずれか1項に記載の鉄心。
- 前記固定手段は接着剤である請求項12に記載の鉄心。
- 前記接着剤は前記積層体の積層端面に塗布されている請求項13に記載の鉄心。
- 前記接着剤は熱履歴を受けている請求項13に記載の鉄心。
- 前記固定手段は機械的締結機構である請求項12記載の鉄心。
- 前記積層体、または、前記ナノ結晶薄帯の層の上下の最外層となる少なくともどちらか一方に、金属板を設けた請求項1~16のいずれか1項に記載の鉄心。
- 前記請求項1から17に記載の鉄心を固定子に用いたモータ。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201780051502.9A CN109643603B (zh) | 2016-12-07 | 2017-11-30 | 铁芯和电动机 |
EP17877845.2A EP3553799B1 (en) | 2016-12-07 | 2017-11-30 | Method to produce an iron core |
JP2018541376A JP6490313B2 (ja) | 2016-12-07 | 2017-11-30 | 鉄心及びモータ |
US16/268,439 US11025103B2 (en) | 2016-12-07 | 2019-02-05 | Iron core and motor |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016237248 | 2016-12-07 | ||
JP2016-237248 | 2016-12-07 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/268,439 Continuation US11025103B2 (en) | 2016-12-07 | 2019-02-05 | Iron core and motor |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018105473A1 true WO2018105473A1 (ja) | 2018-06-14 |
Family
ID=62491891
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/042978 WO2018105473A1 (ja) | 2016-12-07 | 2017-11-30 | 鉄心及びモータ |
Country Status (5)
Country | Link |
---|---|
US (1) | US11025103B2 (ja) |
EP (1) | EP3553799B1 (ja) |
JP (1) | JP6490313B2 (ja) |
CN (1) | CN109643603B (ja) |
WO (1) | WO2018105473A1 (ja) |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020100527A1 (ja) * | 2018-11-16 | 2020-05-22 | パナソニックIpマネジメント株式会社 | モータ、圧縮機、およびモータの製造方法 |
JP2020189774A (ja) * | 2019-05-23 | 2020-11-26 | トヨタ自動車株式会社 | 金属箔の製造方法 |
JPWO2020129940A1 (ja) * | 2018-12-17 | 2021-10-21 | 日本製鉄株式会社 | 積層コアおよび回転電機 |
JP2021536211A (ja) * | 2018-08-31 | 2021-12-23 | チェジャン パングット パワー テクノロジー カンパニー リミテッド | セグメントコア及びディスクモータ |
WO2022054725A1 (ja) * | 2020-09-09 | 2022-03-17 | アルプスアルパイン株式会社 | 磁性コアおよび磁気部品 |
WO2022054722A1 (ja) * | 2020-09-09 | 2022-03-17 | アルプスアルパイン株式会社 | 磁性コアおよび磁気部品 |
US11710990B2 (en) | 2018-12-17 | 2023-07-25 | Nippon Steel Corporation | Laminated core with circumferentially spaced adhesion parts on teeth |
US11742129B2 (en) | 2018-12-17 | 2023-08-29 | Nippon Steel Corporation | Adhesively-laminated core, manufacturing method thereof, and electric motor |
US11855485B2 (en) | 2018-12-17 | 2023-12-26 | Nippon Steel Corporation | Laminated core, method of manufacturing same, and electric motor |
US11863017B2 (en) | 2018-12-17 | 2024-01-02 | Nippon Steel Corporation | Laminated core and electric motor |
US11915860B2 (en) | 2018-12-17 | 2024-02-27 | Nippon Steel Corporation | Laminated core and electric motor |
US11973369B2 (en) | 2018-12-17 | 2024-04-30 | Nippon Steel Corporation | Laminated core with center electrical steel sheets adhered with adhesive and some electrical steel sheets fixed to each other on both ends of the center sheets |
US11979059B2 (en) | 2018-12-17 | 2024-05-07 | Nippon Steel Corporation | Laminated core and electric motor |
US11990795B2 (en) | 2018-12-17 | 2024-05-21 | Nippon Steel Corporation | Adhesively-laminated core for stator, method of manufacturing same, and electric motor |
US11996231B2 (en) | 2018-12-17 | 2024-05-28 | Nippon Steel Corporation | Laminated core and electric motor |
US12068097B2 (en) | 2018-12-17 | 2024-08-20 | Nippon Steel Corporation | Laminated core, core block, electric motor and method of producing core block |
US12074476B2 (en) | 2018-12-17 | 2024-08-27 | Nippon Steel Corporation | Adhesively-laminated core for stator and electric motor |
US12081068B2 (en) | 2018-12-17 | 2024-09-03 | Nippon Steel Corporation | Laminated core with some electrical steel sheets adhered with adhesive and some electrical steel sheets fixed to each other |
US12104096B2 (en) | 2018-12-17 | 2024-10-01 | Nippon Steel Corporation | Laminated core, laminated core manufacturing method, and electric motor |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008133302A1 (ja) * | 2007-04-25 | 2008-11-06 | Hitachi Metals, Ltd. | 軟磁性薄帯、その製造方法、磁性部品、およびアモルファス薄帯 |
JP2012012699A (ja) * | 2010-03-23 | 2012-01-19 | Nec Tokin Corp | 合金組成物、Fe基ナノ結晶合金及びその製造方法、並びに磁性部品 |
JP2014240516A (ja) * | 2013-06-12 | 2014-12-25 | 日立金属株式会社 | ナノ結晶軟磁性合金及びこれを用いた磁性部品 |
WO2017006868A1 (ja) * | 2015-07-03 | 2017-01-12 | 国立大学法人東北大学 | 積層磁芯及びその製造方法 |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61205241U (ja) * | 1985-06-14 | 1986-12-24 | ||
JPH06145917A (ja) | 1992-11-09 | 1994-05-27 | Hitachi Metals Ltd | モータ |
JP2668636B2 (ja) | 1993-06-29 | 1997-10-27 | 株式会社三協精機製作所 | モータ |
KR100240995B1 (ko) | 1995-12-19 | 2000-03-02 | 이구택 | 절연피막의 밀착성이 우수한 무방향성 전기강판의 제조방법 |
US5929545A (en) * | 1997-11-26 | 1999-07-27 | Emerson Electric Co. | End shield for an electric motor, electric motor construction, and method of assembling electric motor |
FR2788455B1 (fr) * | 1999-01-19 | 2001-04-06 | Imphy Ugine Precision | Procede de traitement d'une bande mince metallique fragile et pieces magnetiques realisees a partir d'une bande en alliage nanocristallin |
JP2004353090A (ja) * | 1999-04-15 | 2004-12-16 | Hitachi Metals Ltd | 合金薄帯並びにそれを用いた部材 |
EP1045402B1 (en) * | 1999-04-15 | 2011-08-31 | Hitachi Metals, Ltd. | Soft magnetic alloy strip, manufacturing method and use thereof |
US6562473B1 (en) * | 1999-12-03 | 2003-05-13 | Kawasaki Steel Corporation | Electrical steel sheet suitable for compact iron core and manufacturing method therefor |
US6737951B1 (en) * | 2002-11-01 | 2004-05-18 | Metglas, Inc. | Bulk amorphous metal inductive device |
US7235910B2 (en) * | 2003-04-25 | 2007-06-26 | Metglas, Inc. | Selective etching process for cutting amorphous metal shapes and components made thereof |
JP2005103874A (ja) * | 2003-09-30 | 2005-04-21 | Kawaguchiko Seimitsu Co Ltd | 装飾部品及びその製造方法とそれを備えた電子機器 |
CN101657868B (zh) * | 2007-04-13 | 2013-08-28 | 日立金属株式会社 | 用于天线的磁芯、制造用于天线的磁芯的方法及天线 |
US8809201B2 (en) * | 2009-03-26 | 2014-08-19 | Lintec Corporation | Method of forming metal oxide film and metal oxide film |
CN102868241A (zh) * | 2012-09-20 | 2013-01-09 | 安泰科技股份有限公司 | 定子铁心及其制造方法 |
CN105074843B (zh) * | 2013-02-15 | 2018-06-08 | 日立金属株式会社 | 使用了Fe基纳米晶体软磁性合金的环状磁芯、以及使用其的磁性部件 |
JP6517844B2 (ja) * | 2016-02-09 | 2019-05-22 | 株式会社東北マグネットインスティテュート | アモルファス合金薄帯の積層体の熱処理装置および軟磁性コア |
CN105821369A (zh) * | 2016-05-17 | 2016-08-03 | 山东大学 | 一种在钛合金表面制备氧化钛微纳米晶体的方法 |
-
2017
- 2017-11-30 CN CN201780051502.9A patent/CN109643603B/zh active Active
- 2017-11-30 WO PCT/JP2017/042978 patent/WO2018105473A1/ja unknown
- 2017-11-30 EP EP17877845.2A patent/EP3553799B1/en active Active
- 2017-11-30 JP JP2018541376A patent/JP6490313B2/ja active Active
-
2019
- 2019-02-05 US US16/268,439 patent/US11025103B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008133302A1 (ja) * | 2007-04-25 | 2008-11-06 | Hitachi Metals, Ltd. | 軟磁性薄帯、その製造方法、磁性部品、およびアモルファス薄帯 |
JP2012012699A (ja) * | 2010-03-23 | 2012-01-19 | Nec Tokin Corp | 合金組成物、Fe基ナノ結晶合金及びその製造方法、並びに磁性部品 |
JP2014240516A (ja) * | 2013-06-12 | 2014-12-25 | 日立金属株式会社 | ナノ結晶軟磁性合金及びこれを用いた磁性部品 |
WO2017006868A1 (ja) * | 2015-07-03 | 2017-01-12 | 国立大学法人東北大学 | 積層磁芯及びその製造方法 |
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11929641B2 (en) | 2018-08-31 | 2024-03-12 | Zhejiang Pangood Power Technology Co., Ltd. | Segmented core with laminated core installed in SMC embedded groove |
JP2021536211A (ja) * | 2018-08-31 | 2021-12-23 | チェジャン パングット パワー テクノロジー カンパニー リミテッド | セグメントコア及びディスクモータ |
EP3883091A4 (en) * | 2018-11-16 | 2021-12-29 | Panasonic Intellectual Property Management Co., Ltd. | Motor, compressor, and motor manufacturing method |
WO2020100527A1 (ja) * | 2018-11-16 | 2020-05-22 | パナソニックIpマネジメント株式会社 | モータ、圧縮機、およびモータの製造方法 |
US11990795B2 (en) | 2018-12-17 | 2024-05-21 | Nippon Steel Corporation | Adhesively-laminated core for stator, method of manufacturing same, and electric motor |
US11915860B2 (en) | 2018-12-17 | 2024-02-27 | Nippon Steel Corporation | Laminated core and electric motor |
US12104096B2 (en) | 2018-12-17 | 2024-10-01 | Nippon Steel Corporation | Laminated core, laminated core manufacturing method, and electric motor |
US12081068B2 (en) | 2018-12-17 | 2024-09-03 | Nippon Steel Corporation | Laminated core with some electrical steel sheets adhered with adhesive and some electrical steel sheets fixed to each other |
JP7311791B2 (ja) | 2018-12-17 | 2023-07-20 | 日本製鉄株式会社 | 積層コアおよび回転電機 |
US11710990B2 (en) | 2018-12-17 | 2023-07-25 | Nippon Steel Corporation | Laminated core with circumferentially spaced adhesion parts on teeth |
US11742129B2 (en) | 2018-12-17 | 2023-08-29 | Nippon Steel Corporation | Adhesively-laminated core, manufacturing method thereof, and electric motor |
US11855485B2 (en) | 2018-12-17 | 2023-12-26 | Nippon Steel Corporation | Laminated core, method of manufacturing same, and electric motor |
US11863017B2 (en) | 2018-12-17 | 2024-01-02 | Nippon Steel Corporation | Laminated core and electric motor |
US12074476B2 (en) | 2018-12-17 | 2024-08-27 | Nippon Steel Corporation | Adhesively-laminated core for stator and electric motor |
US11923130B2 (en) | 2018-12-17 | 2024-03-05 | Nippon Steel Corporation | Laminated core and electric motor |
JPWO2020129940A1 (ja) * | 2018-12-17 | 2021-10-21 | 日本製鉄株式会社 | 積層コアおよび回転電機 |
US11973369B2 (en) | 2018-12-17 | 2024-04-30 | Nippon Steel Corporation | Laminated core with center electrical steel sheets adhered with adhesive and some electrical steel sheets fixed to each other on both ends of the center sheets |
US11979059B2 (en) | 2018-12-17 | 2024-05-07 | Nippon Steel Corporation | Laminated core and electric motor |
US12068097B2 (en) | 2018-12-17 | 2024-08-20 | Nippon Steel Corporation | Laminated core, core block, electric motor and method of producing core block |
US11996231B2 (en) | 2018-12-17 | 2024-05-28 | Nippon Steel Corporation | Laminated core and electric motor |
JP2020189774A (ja) * | 2019-05-23 | 2020-11-26 | トヨタ自動車株式会社 | 金属箔の製造方法 |
JP7095654B2 (ja) | 2019-05-23 | 2022-07-05 | トヨタ自動車株式会社 | 金属箔の製造方法 |
WO2022054725A1 (ja) * | 2020-09-09 | 2022-03-17 | アルプスアルパイン株式会社 | 磁性コアおよび磁気部品 |
WO2022054722A1 (ja) * | 2020-09-09 | 2022-03-17 | アルプスアルパイン株式会社 | 磁性コアおよび磁気部品 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2018105473A1 (ja) | 2018-12-20 |
CN109643603A (zh) | 2019-04-16 |
US11025103B2 (en) | 2021-06-01 |
EP3553799B1 (en) | 2021-07-14 |
JP6490313B2 (ja) | 2019-03-27 |
EP3553799A4 (en) | 2019-11-20 |
CN109643603B (zh) | 2021-04-13 |
US20190173328A1 (en) | 2019-06-06 |
EP3553799A1 (en) | 2019-10-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6490313B2 (ja) | 鉄心及びモータ | |
US10566857B2 (en) | Iron core and motor | |
US10636567B2 (en) | Heat treatment apparatus for laminated body of amorphous alloy ribbon and soft magnetic core | |
US11594356B2 (en) | Magnetic field shielding sheet, method for manufacturing magnetic field shielding sheet, and antenna module using same | |
TW202032900A (zh) | 積層鐵芯及旋轉電機 | |
TW202030082A (zh) | 積層鐵芯及旋轉電機 | |
CZ20012582A3 (cs) | Způsob zpracování nejméně jednoho tenkého kovového pásu a magnetické výrobky obsahující kovovou slitinu v nanokrystalické formě | |
JP6438498B2 (ja) | 磁性板の積層体及びモータ | |
JP6086098B2 (ja) | 積層電磁鋼板およびその製造方法 | |
WO2018150807A1 (ja) | 薄帯部品とその製造方法、および、薄帯部品を用いたモータ | |
US10461589B2 (en) | Magnetic-plate laminated body and motor | |
WO2018155206A1 (ja) | 積層部材とその製造方法と、積層体およびモータ | |
JP4752613B2 (ja) | 積層部品の製造方法 | |
JP6655787B2 (ja) | モータ | |
JP5121632B2 (ja) | 回転電機およびその固定子鉄心並びに固定子鉄心の製造方法 | |
JP2020080629A (ja) | モータコア | |
WO2019049656A1 (ja) | 鉄心とその鉄心を用いたモータ | |
JP2017081149A5 (ja) | ||
JP2017099158A (ja) | 磁性板の積層体及びモータ | |
JP2018125475A (ja) | 積層鉄心とその製造方法およびその積層鉄心を用いた電磁部品 | |
CN110556929A (zh) | 层叠芯及定子芯 | |
JP6984998B2 (ja) | 高性能モータ用無方向性電磁鋼板 | |
CN110404747B (zh) | 电磁钢板 | |
JPS63115313A (ja) | 非晶質磁性合金薄帯積層板を使用したコアの製造方法 | |
JP2018160502A (ja) | 巻鉄心の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2018541376 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17877845 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2017877845 Country of ref document: EP Effective date: 20190708 |