Nothing Special   »   [go: up one dir, main page]

WO2018103281A1 - 一种高增益天线 - Google Patents

一种高增益天线 Download PDF

Info

Publication number
WO2018103281A1
WO2018103281A1 PCT/CN2017/087053 CN2017087053W WO2018103281A1 WO 2018103281 A1 WO2018103281 A1 WO 2018103281A1 CN 2017087053 W CN2017087053 W CN 2017087053W WO 2018103281 A1 WO2018103281 A1 WO 2018103281A1
Authority
WO
WIPO (PCT)
Prior art keywords
feeding point
radiating elements
disposed
radiating
feeding
Prior art date
Application number
PCT/CN2017/087053
Other languages
English (en)
French (fr)
Inventor
陈西杰
徐柏勇
杨登宇
Original Assignee
上海斐讯数据通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海斐讯数据通信技术有限公司 filed Critical 上海斐讯数据通信技术有限公司
Publication of WO2018103281A1 publication Critical patent/WO2018103281A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/20Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements characterised by the operating wavebands
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/50Feeding or matching arrangements for broad-band or multi-band operation

Definitions

  • the present invention relates to the field of communications technologies, and relates to wireless technologies, and in particular, to an antenna for wirelessly receiving and transmitting information.
  • WiFi frequency bands mainly include the 2.4GHz to 2.5GHz frequency band, hereinafter referred to as the 2.4G frequency band; and the 5.15GHz to 5.85GHz frequency band, hereinafter referred to as the 5G frequency band.
  • the antennas must be able to simultaneously transmit and receive signals in both bands.
  • dual-band antennas have problems such as difficulty in achieving high gain, difficulty in widening the bandwidth, and difficulty in integrating the two frequency bands. Therefore, how to provide a dual-frequency high-gain antenna with bandwidth to meet the needs has become a problem that researchers must solve.
  • a conventional dual-frequency antenna is generally in the form of a single dual-frequency dipole antenna with a small gain.
  • two dual-frequency dipole radiating elements can be used in series. Taking the PCB antenna as an example, the length of the antenna using one radiating element in the WiFi band is about 60 mm, but the gain can only reach 2.15 dBi. High gain antennas employing two radiating elements typically require a length of more than 90 mm.
  • a common dual-frequency high-gain antenna is to connect two or more dual-frequency radiating elements in series in the long axis direction of the PCB, thereby increasing the gain in a plane perpendicular to the long axis.
  • the antenna PCB is printed on both sides, and the two radiating elements are connected by parallel double wires. According to the position of the feeding point, it is divided into two methods: bottom feed and medium feed.
  • a dual frequency antenna employing two radiating elements of the bottom feed. It consists of two dual-frequency radiating elements, which are connected by parallel two-wires. Each dual-frequency radiating element contains 2.4G radiating elements and 5G radiating elements.
  • the feeding point 6 is arranged at the end of the parallel double line, and the feeding is performed by the coaxial welding, the through hole is punched at the welding point, the coaxial core wire is welded on the front side through the through hole from the back side, and the coaxial braid layer is welded on the back side.
  • n ⁇ /2 ( ⁇ is the medium wavelength of the corresponding frequency, and n is an integer greater than 0).
  • FIG. 2 there is shown a dual frequency antenna employing two radiating elements of the medium feed.
  • the difference from the bottom feed method is that the feed point 6 is located at the center of the antenna. In this way, it is only necessary to ensure that the feed point is equal to the distance between the two radiating elements, so that the current phases at the two radiating elements are the same, without the condition that the distance of the two radiating elements satisfies n ⁇ /2. Therefore, this method can reduce the pitch of the two radiating elements, thereby reducing the PCB length to some extent.
  • a similar patent scheme can be found in CN200820005238.3.
  • the feeder With the medium-feeding scheme, the feeder is directly connected to the middle of the radiator, and the route of the feeder has a significant influence on the performance of the antenna.
  • the feed line When the feed line is perpendicular to the PCB axis, the effect is small, as in the feed line direction A in the above figure.
  • this kind of routing method is not feasible in engineering practice, and more is to let the feeder line run vertically downwards, as shown in the feed line direction B in the above figure.
  • the feeder line By feeder In the direction B, the feeder line is close to the parallel double line, which easily deteriorates the performance of the antenna.
  • the present invention aims to solve the problem that the existing feed-forward dual-frequency WIFI antenna feed line inevitably affects the performance of the antenna, and proposes a solution to realize the small-sized and high-gain effect of the antenna.
  • the first technical solution provided by the present invention is: a high-gain antenna comprising at least three radiating elements, each radiating unit being connected to a feeding point by a parallel two-wire, individually or in groups, characterized in that the radiating element is at a substrate length
  • the direction is divided on both sides of the feeding point, wherein the radiation unit disposed on the first side of the feeding point is an even number, and each of the two radiating units disposed on the first side of the feeding point is symmetric in the width direction of the substrate
  • the feeding point is centrally disposed in the width direction of the substrate, and the feeding point is separated from the connecting line of the radiating unit disposed on the first side of the feeding point toward both sides in the width direction of the substrate, and the feeding line is from the feeding point to the length of the substrate
  • the direction is routed between the split lines and between the symmetrical radiating elements.
  • the radiating unit may be a single-frequency dipole radiating unit or a dual-frequency dipole radiating unit, preferably the radiating unit is a dual-frequency dipole radiating unit, and each radiating unit includes a low-frequency radiating vibrator and a high Frequency radiating oscillator, wherein the high frequency radiating element is located outside the low frequency radiating element.
  • the end of the low frequency radiation vibrator in the radiation unit has a curved shape.
  • one end of the substrate with the feeder line is provided with a through hole in the substrate width direction, and the feeder line is routed to the through hole and passes through the through hole.
  • the holes serve to fix the feeder.
  • the feed line is centered to prevent the feed line from being offset to the sides by either the radiating element or the parallel double line.
  • two radiating elements are disposed on the first side of the feeding point, and one or two radiating units disposed on the second side of the feeding point are disposed on the first side of the feeding point.
  • the two radiating elements are symmetrical with each other in the width direction of the substrate, and the two parallel double wires connecting the two radiating elements on the first side of the feeding point and the feeding point are respectively directed from the feeding point to the width direction of the substrate.
  • the two sides are obliquely routed, and the feeder line runs along the longitudinal direction of the substrate from the feeding point to the first side of the feeding point. .
  • a through hole is disposed in the left and right sides of the lower end of the substrate, and the feeding line is routed downward to the through hole and passes through the through hole.
  • the radiation unit disposed on the second side of the feeding point is one
  • the radiation unit disposed on the first side of the feeding point is centrally disposed on the left and right sides of the substrate, respectively connected to the feeding point and first set at the feeding point.
  • Two parallel double lines of the two radiating elements on the side and a parallel double line connecting the feed point and one radiating element on the second side of the feed point form a Y-shaped feed.
  • a matching regulator is provided on a connection line for connecting the parallel double wires of the radiation unit disposed on the second side of the feeding point.
  • the vibrating arm of the low-frequency radiation vibrator of the radiating element disposed on the second side of the feeding point away from the feeding point is a closed structure.
  • two radiating elements are symmetrically disposed above and below the feeding point, and four parallel double wires respectively connecting the four feeding units constitute an X-shaped feeding portion.
  • the radiation units disposed on the first side of the feeding point are two groups, and the radiation units disposed on the second side of the feeding point are one or two groups, and are disposed on the first side of the feeding point.
  • each set of radiating elements on the second side comprises at least two radiating elements arranged along the length direction of the substrate, and the two sets of radiating elements disposed on the first side of the feeding point are symmetric with each other in the width direction of the substrate for being disposed at the feeding point
  • Two or two sets of parallel double wires connected to the feeding point on the first side are obliquely inclined from the feeding point to the two sides in the width direction of the substrate, and the feeding line is from the feeding point to the length of the substrate. Trace the line along the first side of the feed point.
  • the radiating elements are all single-frequency dipole radiating units, or all dual-frequency dipole radiating units, or both single-frequency dipole radiating units and dual-frequency dipole radiating units.
  • the high frequency radiation vibrator in the dual frequency dipole radiation unit is located outside the low frequency radiation vibrator.
  • the end of the low frequency radiation vibrator in the dual frequency dipole radiation unit has a curved shape.
  • the radiation units disposed on the second side of the feeding point are two groups, respectively set at the feeding point first,
  • Each of the four sets of radiating elements on the second side includes two radiating elements, and the two radiating elements in each group are connected by parallel double wires through the intra-group connection, and the two ends of the parallel connecting double wires are respectively connected at one end.
  • a set of two sets of radiating elements disposed on the second side of the feeding point is connected with a midpoint of parallel double lines; respectively, the feeding point and the two sets of radiating elements disposed on the first side of the feeding point are connected in parallel
  • the two parallel double lines at the midpoint of the double line form a Y-shaped feed portion with a parallel double line connecting the feed point and the midpoint of the parallel double line.
  • the radiation unit disposed on the second side of the feeding point is two groups, and each of the four groups of radiation units respectively disposed on the first and second sides of the feeding point includes two radiation units, each group The two radiating elements in the group are connected by a parallel double wire through the intra-group connection, and the in-group connection of the feeding point and the four sets of radiating elements is respectively connected to the four parallel double lines of the midpoint of the parallel double line to form an X-shaped feeding portion.
  • the radiation units disposed on the second side of the feeding point are a group, and the group of radiation units disposed on the second side of the feeding point are centrally disposed in the width direction of the substrate, respectively, and are respectively disposed at the feeding point.
  • the radiating elements in each of the three groups of radiating elements on the second side are connected in series by parallel two wires, respectively connecting the feeding point and the two parallel double wires of the last two radiating elements on the first side of the feeding point and the connecting feed.
  • the electrical point and a parallel double line of the nearest radiating element on the second side of the feed point form a Y-shaped feed.
  • a matching regulator is disposed on one of the parallel double wires connecting the nearest radiating elements on the second side of the feeding point.
  • the vibrating arm of the low frequency radiating element of the radiating unit farthest from the second side of the feeding point away from the feeding point is a closed structure.
  • the radiation units disposed on the second side of the feeding point are two groups, and each of the four groups of radiation units respectively disposed on the first and second sides of the feeding point passes through the parallel double line.
  • the parallel double lines connecting the feeding points to the four radiating elements closest to the first and second sides of the feeding point respectively constitute an X-shaped feeding portion.
  • a through hole is disposed in the left and right sides of the lower end of the substrate, and the feeding line is routed downward to the through hole and passes through the through hole.
  • the holes serve to fix the feeder.
  • the feed line is centered to prevent the feed line from being offset to the sides by either the radiating element or the parallel double line.
  • the antenna of the present invention is a printed circuit board type dipole antenna, and the main radiator of the antenna is printed on both sides of the PCB substrate.
  • the feeder is soldered to the feed point in such a manner that a small pad is provided at the feed point of the first surface of the PCB, and a large pad is provided at the feed point of the second surface 1B of the PCB.
  • Coaxial wire feeding is used to feed through holes at the solder joints, and the coaxial core wires are soldered from the second surface through the through holes to the first surface small pads, and the coaxial wire braid is soldered to the second surface large pads. on.
  • the invention solves the problem that the current feed-through dual-frequency WIFI antenna feed line affects the performance of the antenna, and the high-gain antenna of the invention can realize the technical effect of small size and high gain of the antenna.
  • FIG. 1 is a schematic structural view of a common bottom feed antenna.
  • FIG. 2 is a schematic structural view of a common feedforward antenna.
  • Fig. 3 is a schematic view showing the structure of a PCB of a preferred embodiment of the antenna of the present invention.
  • Fig. 4 is a view showing an overall configuration of an antenna of the present invention.
  • Figure 5 shows the standing wave ratio of the 2.4G band.
  • Figure 6 is a 3D pattern of 2.45 GHz frequency.
  • Figure 7 is an E-plane pattern of the 2.45 GHz frequency (unit: dBi).
  • Figure 8 is a H-plane pattern of the 2.45 GHz frequency (unit: dBi).
  • Figure 9 is the 5G band standing wave ratio.
  • Figure 10 is a 3D pattern of 5.5 GHz frequency.
  • Fig. 11 is a view showing the E-plane pattern of the 5.5 GHz frequency (unit: dBi).
  • Fig. 12 is a H-plane pattern of the 5.5 GHz frequency (unit: dBi).
  • Figure 13 is an exemplary model employing an X-shaped feed.
  • the invention mainly relates to a printed circuit board type dipole antenna, which adopts a medium feed mode.
  • the radiation unit is arranged substantially symmetrically in the longitudinal direction of the substrate with the feeding point as the center.
  • the radiating elements may be three, four, six, seven, eight ..., each radiating element may be a single-vibrator radiating unit or a double-vibrator radiating unit, and the vibrating arm of the radiating vibrator may be a linear vibrating arm, It can be a bending arm.
  • the following examples illustrate the structural characteristics of different numbers and different frequency radiating elements.
  • the antenna prints the main radiator on the PCB substrate 1.
  • the PCB substrate is made of PTFE, and has a length of 75 mm and a thickness of 0.75 mm.
  • the antenna comprises three dual-frequency radiating elements, the radiating element 2 is on the upper half of the PCB (the second side of the feeding point), and the radiating element 3 and the radiating element 4 are symmetric on the left and right sides of the lower half of the PCB (the first side of the feeding point) distributed.
  • Each radiating element comprises a first frequency (eg 2.4G) radiating element 8 and a second frequency (eg 5G) radiating element 7, each radiating element length being a quarter wavelength of the corresponding frequency value, the low frequency radiating element (example 2.4 G) Near the inside of the PCB, the high-frequency radiating oscillator (Example 5G) is close to the outside of the PCB.
  • the end of the low frequency radiating element is bent to reduce the length of the PCB while the length of the vibrator is constant.
  • the upper arm 7A and the lower arm 7B of each radiating element are spaced apart by 0.5 to 2 mm (recommended value: 1 mm).
  • the first frequency (example 2.4G) radiating vibrator 8 has a trace width of 0.5 to 1 mm (recommended 0.5 mm)
  • the second frequency (example 5G) radiating vibrator 7 has a trace width of 1 to 2 mm (recommended 1.2 mm).
  • the upper ends of the upper arms of the low frequency radiating elements of the upper half of the radiating element 2 are connected to form a closed structure.
  • the upper half of the radiating element 2 and the lower half of the radiating elements 3, 4 are connected by an inverted "Y" shaped feeding portion 5, and the printing position of the first surface 5A of the inverted “Y” shaped feeding portion and the inverted “Y” shape
  • the printing position of the second surface 5B of the power feeding portion overlaps in the normal direction of the substrate.
  • the width of the first surface 5A of the inverted "Y"-shaped feeding portion is recommended to be 0.5 to 0.7 mm
  • the width of the second surface of the inverted "Y"-shaped feeding portion 5B is recommended to be 0.7 to 0.9 mm.
  • the inverted "Y” shaped feed portion 5 has a height of about 38 mm.
  • the feed point 6 is disposed 2 to 4 mm above the center position of the inverted "Y" shaped feed portion 5.
  • This feeding method eliminates the requirement that the distance between the upper half and the lower half of the radiating element satisfies n ⁇ /2, and only needs to satisfy the length of the parallel double line of the feeding point to each radiating element, so that the upper half can be The distance between the partial and the lower half of the radiating element is appropriately reduced, thereby achieving the effect of shortening the length of the PCB.
  • the distance between the upper half and the lower half of the radiating element is 38 mm.
  • a small pad is disposed at the feed point of the first surface 1A of the PCB, and a large pad is disposed at the feed point of the second surface 1B of the PCB.
  • Coaxial wire feeding is used to feed through holes at the solder joints, and the coaxial core wires are soldered from the second surface through the through holes to the first surface small pads, and the coaxial wire braid is soldered to the second surface large pads. on.
  • a square matching adjuster 10 is disposed on the upper portion of the second surface 5B of the inverted "Y" shaped feeding portion.
  • the impedance and bandwidth of the antenna can be conveniently adjusted, especially for the high frequency portion (for example) 5G) The effect is obvious. It is recommended here that the size of the matching adjuster 10 is 10 mm x 3 mm.
  • FIG. 4b is a model with a coaxial feed and a full antenna model with an example housing.
  • Figure 5-12 shows the simulation results of the typical example of the antenna shown in Figure 3-4, where the Z-axis direction is along the long axis of the antenna, the E-plane is a plane parallel to the long axis of the antenna, and the X-plane is perpendicular to the length of the antenna.
  • the face of the shaft As can be seen from the results of the above typical example, the gain of 2.45 GHz can reach 2.85 dBi, and the bandwidth of the standing wave ratio less than 2 can reach 300 MHz.
  • the 5.5 GHz gain is up to 7.15 dBi, and the VSWR is less than 2 and the bandwidth is up to 1.9 GHz.
  • the two frequency bands are well integrated, and both gain and bandwidth characteristics are obtained in both frequency bands.
  • the inverted "Y" shaped feeding part and the perforated fixed feeding line the influence of the feeding line on the performance of the antenna is avoided.
  • the antenna of the present embodiment also prints the main radiator on the PCB substrate 1.
  • the PCB substrate is made of PTFE, the length is 75 mm, and the thickness is 0.75 mm.
  • the antenna comprises four dual-frequency radiating elements, and the radiating elements 21, 22 are symmetrically distributed on the left and right sides of the upper half of the PCB, and the radiating elements 23, 24 are symmetrically distributed on the left and right sides of the lower half of the PCB.
  • Each radiating element comprises a first frequency (eg 2.4G) radiating element 8 and a second frequency (eg 5G) radiating element 7, each radiating element length being a quarter wavelength of the corresponding frequency value, the low frequency radiating element (example 2.4 G) Near the inside of the PCB, the high-frequency radiating oscillator (Example 5G) is close to the outside of the PCB.
  • the end of the low frequency radiating element is bent to reduce the length of the PCB while the length of the vibrator is constant.
  • the upper arm 7A and the lower arm 7B of each radiating element are spaced apart by 0.5 to 2 mm (recommended value: 1 mm).
  • the first frequency (example 2.4G) radiating vibrator 8 has a trace width of 0.5 to 1 mm (recommended 0.5 mm)
  • the second frequency (example 5G) radiating vibrator 7 has a trace width of 1 to 2 mm (recommended 1.2 mm).
  • the two radiating elements 21, 22 of the upper half and the two radiating elements 23, 24 of the lower half are connected by an "X" shaped feed portion 25, the printing position of the first surface 25A of the "X” shaped feed portion and " The printing position of the X-shaped feed portion second surface 25B overlaps in the substrate normal direction.
  • the "X" shaped feed portion first surface 25A has a recommended width of 0.5 to 0.7 mm
  • the "X" shaped feed portion has a second surface 25B with a recommended width of 0.7 to 0.9 mm.
  • the "X” shaped feed portion 25 has a height of about 38 mm.
  • the feed point 6 is disposed at the intersection of the "X" shaped feed portion 25, and the four arm lengths of the "X" shaped feed portion 25 are equal.
  • This feeding method eliminates the requirement that the distance between the upper half and the lower half of the radiating element satisfies n ⁇ /2, and only needs to satisfy the length of the parallel double line of the feeding point to each radiating element, so that the upper half can be The distance between the partial and the lower half of the radiating element is appropriately reduced, thereby achieving the effect of shortening the length of the PCB.
  • the distance between the upper half and the lower half of the radiating element is 38 mm.
  • a small pad is disposed at the feed point of the first surface 1A of the PCB, and a large pad is disposed at the feed point of the second surface 1B of the PCB.
  • the coaxial wire is used for feeding, and the through hole is punched at the solder joint.
  • the coaxial core wire is soldered from the second surface through the through hole on the first surface small pad, and the coaxial wire braid is soldered on the second surface large pad.
  • a through hole 9 is disposed at the lower end of the PCB substrate, and the feed line is passed through the through hole 9, thereby fixing the position of the feeder line, thereby avoiding the situation in which the feeder line is disturbed and the antenna consistency is deteriorated.
  • the antenna of this embodiment also prints the main radiator on the PCB substrate 1, and also includes four dual-frequency radiation units.
  • the first and second radiating elements are symmetrically distributed on the left and right sides of the upper half of the PCB, and the third and fourth radiating elements are symmetrically distributed on the left and right sides of the lower half of the PCB.
  • Each radiating element comprises a first frequency (eg 2.4G) radiating element 8 and a second frequency (eg 5G) radiating element 7, each radiating element length being a quarter wavelength of the corresponding frequency value, the low frequency radiating element (example 2.4 G) Near the inside of the PCB, the high-frequency radiating oscillator (Example 5G) is close to the outside of the PCB.
  • the end of the low frequency radiating element is bent to reduce the length of the PCB while the length of the vibrator is constant.
  • the upper and lower arms of the vibrator of each radiating element are separated by 0.5 to 2 mm (recommended value: 1 mm).
  • the first frequency (example 2.4G) radiating vibrator 8 has a trace width of 0.5 to 1 mm (recommended 0.5 mm)
  • the second frequency (example 5G) radiating vibrator 7 has a trace width of 1 to 2 mm (recommended 1.2 mm).
  • the two radiating elements of the upper half and the two radiating elements of the lower half are connected by a four-arm feeding portion, the printing position of the first surface of the four-arm feeding portion and the printing position of the second surface of the four-arm feeding portion Overlapping in the normal direction of the substrate.
  • the width of the first surface of the four-arm feeder is recommended to be 0.5 to 0.7 mm, and the width of the second surface of the four-arm feeder is recommended to be 0.7 to 0.9 mm.
  • the height of the four-arm power feeding unit 25 is about 38 mm.
  • the four-arm feeding portion includes two left-right symmetric upper arms coupled to each other at the lower end and two left-right symmetrically disposed lower arms coupled to each other at the lower end, and a coupling point of the two upper arms and a coupling point of the two lower arms pass through the middle section Vertical connection segments are connected.
  • the feed point 6 is located at the lower end of the vertical connection section.
  • a square matching adjuster 10 is disposed on the vertical connecting section of the second arm surface 35B of the four-arm feeder. By changing the length and width of the matching adjuster 10, the antenna impedance and bandwidth can be conveniently adjusted.
  • a small pad is provided at the feed point of the first surface 1A of the PCB, and a large pad is provided at the feed point of the second surface 1B of the PCB.
  • the coaxial wire is used for feeding, and the through hole is punched at the solder joint.
  • the coaxial core wire is soldered from the second surface through the through hole on the first surface small pad, and the coaxial wire braid is soldered on the second surface large pad.
  • a through hole 9 is provided at the lower end of the PCB, and the feed line is passed through the through hole 9, thereby fixing the position of the feed line, thereby avoiding the situation in which the feeder line is disturbed and the antenna consistency is deteriorated.
  • the antenna of the embodiment also prints the main radiator on the PCB substrate 1, and also includes three radiation units.
  • the first radiation unit is centered on the upper half of the PCB, and the second and third radiations are The unit is symmetrically distributed on the left and right sides of the lower half of the PCB.
  • each radiating element is a single-frequency radiating element and contains only one frequency of radiating elements.
  • the length of the radiation array is 1/4 medium wavelength corresponding to the frequency value, and the end of the radiation vibrator is bent to reduce the length of the PCB when the length of the vibrator is constant.
  • the upper and lower arms of the vibrator of each radiating element are separated by 0.5 to 2 mm (recommended value: 1 mm).
  • One radiating element of the upper half and two radiating elements of the lower half are connected by an inverted "Y" shaped feeding portion 5, the printing position of the first surface 5A of the inverted “Y” shaped feeding portion and the inverted “Y”
  • the printing position of the second surface 5B of the shape feeding portion overlaps in the normal direction of the substrate.
  • the width of the first surface 5A of the inverted "Y"-shaped feeding portion is recommended to be 0.5 to 0.7 mm, and the width of the second surface of the inverted "Y"-shaped feeding portion 5B is recommended to be 0.7 to 0.9 mm.
  • the feed point 6 is disposed 2 to 4 mm above the center position of the inverted "Y" shaped feed portion 5.
  • This feeding method eliminates the requirement that the distance between the upper half and the lower half of the radiating element satisfies n ⁇ /2, and only needs to satisfy the length of the parallel double line of the feeding point to each radiating element, so that the upper half can be The distance between the partial and the lower half of the radiating element is appropriately reduced, thereby achieving the effect of shortening the length of the PCB.
  • a small pad is disposed at the feed point of the first surface 1A of the PCB, and a large pad is disposed at the feed point of the second surface 1B of the PCB.
  • Coaxial wire feeding is used to feed through holes at the solder joints, and the coaxial core wires are soldered from the second surface through the through holes to the first surface small pads, and the coaxial wire braid is soldered to the second surface large pads. on.
  • a square matching adjuster 10 is disposed on the upper portion of the second surface 5B of the inverted "Y" shaped feeding portion. By changing the length and width of the matching adjuster 10, the impedance and bandwidth of the antenna can be conveniently adjusted, especially for the high frequency portion (for example) 5G) The effect is obvious.
  • a through hole 9 is disposed at the lower end of the PCB substrate, and the feed line is passed through the through hole 9, thereby fixing the position of the feeder line, thereby avoiding the situation in which the feeder line is disturbed and the antenna consistency is deteriorated.
  • the antenna of the embodiment also prints the main radiator on the PCB substrate 1, and also includes four radiation units, and the first and second radiation units are symmetrically distributed on the left and right sides of the upper half of the PCB.
  • the third and fourth radiating elements are symmetrically distributed on the left and right sides of the lower half of the PCB.
  • each radiating element is a single-frequency radiation single
  • the element contains only one frequency of the radiating element.
  • the length of the radiation array is 1/4 medium wavelength corresponding to the frequency value, and the end of the radiation vibrator is bent to reduce the length of the PCB when the length of the vibrator is constant.
  • the upper and lower arms of the vibrator of each radiating element are separated by 0.5 to 2 mm (recommended value: 1 mm).
  • the two radiating elements of the upper half and the two radiating elements of the lower half are connected by an "X" shaped feed portion 25, the printing position of the first surface 25A of the "X” shaped feed portion and the "X” shaped feed
  • the printing position of the second surface 25B of the electric portion overlaps in the normal direction of the substrate.
  • the "X" shaped feed portion first surface 25A has a recommended width of 0.5 to 0.7 mm
  • the "X" shaped feed portion has a second surface 25B with a recommended width of 0.7 to 0.9 mm.
  • the feed point 6 is disposed at the intersection of the "X" shaped feed portion 25, and the four arm lengths of the "X" shaped feed portion 25 are equal.
  • This feeding method eliminates the requirement that the distance between the upper half and the lower half of the radiating element satisfies n ⁇ /2, and only needs to satisfy the length of the parallel double line of the feeding point to each radiating element, so that the upper half can be The distance between the partial and the lower half of the radiating element is appropriately reduced, thereby achieving the effect of shortening the length of the PCB.
  • a small pad is disposed at the feed point of the first surface 1A of the PCB, and a large pad is disposed at the feed point of the second surface 1B of the PCB.
  • the coaxial wire is used for feeding, and the through hole is punched at the solder joint.
  • the coaxial core wire is soldered from the second surface through the through hole on the first surface small pad, and the coaxial wire braid is soldered on the second surface large pad.
  • a through hole 9 is disposed at the lower end of the PCB substrate, and the feed line is passed through the through hole 9, thereby fixing the position of the feeder line, thereby avoiding the situation in which the feeder line is disturbed and the antenna consistency is deteriorated.
  • the antenna of the embodiment also prints the main radiator on the PCB substrate 1, except that it comprises six radiating elements, and the first and second radiating elements are centrally disposed on the left and right sides of the PCB substrate.
  • the third, fourth, fifth, and sixth radiating elements are symmetrically distributed on the left and right sides of the lower half of the PCB.
  • the first and second radiating elements are connected in series by a vertical parallel double line, and the third and fifth radiating elements on the left side are connected in series through a vertical parallel double line, and the fourth and sixth parts are located on the right side.
  • the radiating elements are connected in series by a vertical parallel double line.
  • the second radiating unit of the upper half of the substrate and the third and fourth radiating elements of the lower half are connected by an inverted "Y" shaped feeding portion 5, the printing position of the first surface 5A of the inverted “Y” shaped feeding portion
  • the printing position of the second surface 5B of the inverted "Y"-shaped power feeding portion overlaps in the normal direction of the substrate.
  • the width of the first surface 5A of the inverted "Y"-shaped feeding portion is recommended to be 0.5 to 0.7 mm, and the width of the second surface of the inverted "Y"-shaped feeding portion 5B is recommended to be 0.7 to 0.9 mm.
  • the feeding point 6 is disposed at a position 2 to 4 mm above the center position of the inverted "Y"-shaped feeding portion 5, and the feeder line is vertically routed from the feeding point downward.
  • Each radiating element is a single-frequency radiating element that contains only one frequency of radiating elements.
  • the length of the radiation array is 1/4 medium wavelength corresponding to the frequency value, and the end of the radiation vibrator is bent to reduce the length of the PCB when the length of the vibrator is constant.
  • the upper and lower arms of the vibrator of each radiating element are separated by 0.5 to 2 mm (recommended value: 1 mm).
  • the antenna of the embodiment also prints the main radiator on the PCB substrate 1, and also includes six radiation units.
  • the first and second radiation units are centrally disposed on the left and right sides of the PCB substrate, and the third
  • the fourth, fifth, and sixth radiating elements are symmetrically distributed on the left and right sides of the lower half of the PCB.
  • the first and second radiating elements are connected in series by a vertical parallel double line, and the third and fifth radiating elements on the left side are connected in series through a vertical parallel double line, and the fourth and sixth parts are located on the right side.
  • the radiating elements are connected in series by a vertical parallel double line.
  • the second radiating unit of the upper half of the substrate and the third and fourth radiating elements of the lower half are connected by an inverted "Y" shaped feeding portion 5, the printing position of the first surface 5A of the inverted “Y” shaped feeding portion
  • the printing position of the second surface 5B of the inverted "Y"-shaped power feeding portion overlaps in the normal direction of the substrate.
  • the width of the first surface 5A of the inverted "Y"-shaped feeding portion is recommended to be 0.5 to 0.7 mm, and the width of the second surface of the inverted "Y"-shaped feeding portion 5B is recommended to be 0.7 to 0.9 mm.
  • the feeding point 6 is disposed at a position 2 to 4 mm above the center position of the inverted "Y"-shaped feeding portion 5, and the feeder line is vertically routed from the feeding point downward.
  • each radiating element is a dual-frequency radiating unit, that is, each radiating element includes a first frequency (example 2.4G) radiating element 8 and a second frequency (example 5G) radiating element 7, each Radiation array length is For the 1/4 medium wavelength of the corresponding frequency value, the low-frequency radiating oscillator (example 2.4G) is close to the inner side of the PCB, and the high-frequency radiating vibrator (example 5G) is close to the outer side of the PCB. The end of the low frequency radiation vibrator is bent. The upper and lower arms of the vibrator of each radiating element are separated by 0.5 to 2 mm (recommended value: 1 mm).
  • the antenna of the present embodiment also prints the main radiator on the PCB substrate 1, except that it includes eight radiating elements, and the first to fourth radiating elements are symmetric on the left and right sides of the upper half of the PCB substrate. Distribution, the fifth to eighth radiating elements are symmetrically distributed on the left and right sides of the lower half of the PCB.
  • the first and third radiating elements on the upper left side are connected in series through the vertical parallel double lines, and the second and fourth radiating elements on the upper right side are connected in series through the vertical parallel double lines, on the lower left side.
  • the fifth and seventh radiating elements are connected in series by a vertical parallel double line, and the sixth and eighth radiating elements located on the lower right side are connected in series through a vertical parallel double line.
  • the third and fourth radiating elements at the lowermost portion of the upper half of the substrate and the fifth and sixth radiating elements at the uppermost portion of the lower half are connected by an "X" shaped feeding portion 25, and the "X" shaped feeding portion is first
  • the printing position of the surface 25A and the printing position of the "X"-shaped feeding portion second surface 25B overlap in the substrate normal direction.
  • the "X" shaped feed portion first surface 25A has a recommended width of 0.5 to 0.7 mm
  • the "X" shaped feed portion has a second surface 25B with a recommended width of 0.7 to 0.9 mm.
  • the feed point 6 is disposed at the intersection of the "X" shaped feed portion 25, and the four arm lengths of the "X" shaped feed portion 25 are equal.
  • the feeder is routed vertically from the feed point.
  • Each radiating element is a single-frequency radiating element that contains only one frequency of radiating elements.
  • the length of the radiation array is 1/4 medium wavelength corresponding to the frequency value, and the end of the radiation vibrator is bent to reduce the length of the PCB when the length of the vibrator is constant.
  • the upper and lower arms of the vibrator of each radiating element are separated by 0.5 to 2 mm (recommended value: 1 mm).
  • the antenna of the embodiment also prints the main radiator on the PCB substrate 1 and includes eight radiating elements.
  • the first to fourth radiating elements are symmetrically distributed on the left and right sides of the upper half of the PCB substrate.
  • the fifth to eighth radiating elements are symmetrically distributed on the left and right sides of the lower half of the PCB.
  • the first and third radiating elements on the upper left side are connected in series through the vertical parallel double lines, and the second and fourth radiating elements on the upper right side are connected in series through the vertical parallel double lines, on the lower left side.
  • the fifth and seventh radiating elements are connected in series by a vertical parallel double line, and the sixth and eighth radiating elements located on the lower right side are connected in series through a vertical parallel double line.
  • the third and fourth radiating elements at the lowermost portion of the upper half of the substrate and the fifth and sixth radiating elements at the uppermost portion of the lower half are connected by an "X" shaped feeding portion 25, and the "X" shaped feeding portion is first
  • the printing position of the surface 25A and the printing position of the "X"-shaped feeding portion second surface 25B overlap in the substrate normal direction.
  • the "X" shaped feed portion first surface 25A has a recommended width of 0.5 to 0.7 mm
  • the "X" shaped feed portion has a second surface 25B with a recommended width of 0.7 to 0.9 mm.
  • the feed point 6 is disposed at the intersection of the "X" shaped feed portion 25, and the four arm lengths of the "X" shaped feed portion 25 are equal.
  • the feeder is routed vertically from the feed point.
  • each radiating element is a dual-frequency radiating unit, that is, each radiating element includes a first frequency (example 2.4G) radiating element 8 and a second frequency (example 5G) radiating element 7, each The length of the radiation array is 1/4 medium wavelength corresponding to the frequency value, the low frequency radiation oscillator (example 2.4G) is close to the inner side of the PCB, and the high frequency radiation oscillator (example 5G) is close to the outer side of the PCB. The end of the low frequency radiation vibrator is bent. The upper and lower arms of the vibrator of each radiating element are separated by 0.5 to 2 mm (recommended value: 1 mm).
  • the antenna of the embodiment also prints the main radiator on the PCB substrate 1 and includes eight radiating elements.
  • the first to fourth radiating elements are symmetrically distributed on the left and right sides of the upper half of the PCB substrate.
  • the fifth to eighth radiating elements are symmetrically distributed on the left and right sides of the lower half of the PCB.
  • the first and third radiation units on the upper left side are the first group
  • the second and fourth radiation units on the upper right side are the second group
  • the fifth and seventh radiation units on the lower left side are the third group.
  • the fourth group of the sixth and eighth radiating elements on the lower right side two radiating elements in each group Connected in parallel by a vertical pair of parallel lines.
  • the intra-group connection of the first set of radiating elements in the upper half of the substrate is connected to the in-group connection of the first set of radiating elements by the midpoint of the first set of radiating elements by a parallel double line through a horizontal inter-group connection.
  • the inter-group connection of the upper half of the substrate is performed by the midpoint of the parallel double line, the midpoint of the parallel double line connecting the third group of radiating elements, and the midpoint of the parallel double line connecting the fourth group of radiating elements.
  • the inverted "Y" shaped feeds are connected, and the feed distance from the feed point to the eight radiating elements is equal.
  • the feeder is routed vertically from the feed point.
  • Each radiating element is a dual-frequency radiating unit or a single-frequency radiating unit, or a part of the radiating unit uses a dual-frequency radiating unit, and another part of the radiating unit uses a single-frequency radiating unit.
  • the antenna of the embodiment also prints the main radiator on the PCB substrate 1 and includes eight radiating elements.
  • the first to fourth radiating elements are symmetrically distributed on the left and right sides of the upper half of the PCB substrate.
  • the fifth to eighth radiating elements are symmetrically distributed on the left and right sides of the lower half of the PCB.
  • the first and third radiation units on the upper left side are the first group
  • the second and fourth radiation units on the upper right side are the second group
  • the fifth and seventh radiation units on the lower left side are the third group.
  • the fourth group of the sixth and eighth radiating elements located at the lower right side, and the two radiating elements in each group are connected in series by parallel parallel lines through the vertical intra-group connection.
  • Embodiment 10 The only difference from Embodiment 10 is that the first and second sets of radiating elements are not directly connected.
  • the midpoint of the parallel double line connecting the first group of radiating elements, the midpoint of the parallel double line connecting the second group of radiating elements, the midpoint of the parallel double line connecting the third group of radiating elements, and the fourth The four points of the parallel two-wire connection in the group of radiating elements are connected by an "X"-shaped feeder, and the feeding point is set at the intersection of the "X"-shaped feeders, the "X"-shaped feeder
  • the four arms are of equal length. The feeder is routed vertically from the feed point.
  • each of the radiating elements is a dual-frequency radiating unit or a single-frequency radiating unit, or a part of the radiating elements is a dual-frequency radiating unit, and the other part of the radiating unit is a single-frequency radiating unit.
  • connection manner adopted in Embodiments 10-11 can ensure that the feeding point to the same path of each radiating element is the same, and the signals of the respective radiating elements are of the same phase, and the condition of n ⁇ /2 does not need to be satisfied.
  • the antenna of the present invention can be made of various conventional materials such as FR4 and CEM1, or other available substrates. When using different materials, it is only necessary to finely adjust the size of the radiator. However, the use of a substrate with poor loss characteristics may result in a decrease in gain. As an example, the above is a design according to the WiFi band. It is not difficult to think that the antenna size can be adjusted according to a certain ratio, and it can work in other frequency bands.
  • the feeding point is centered, shortening the length of the parallel double line of the feeding part, and bending the end of the low-frequency radiation vibrator to further shorten the length of the antenna, which is beneficial to miniaturization of the product.
  • the radiating elements below the feeding point are symmetrically arranged on the left and right sides, and the parallel double lines connected with the radiating elements below the feeding point are divided to the left and right sides, and the feeding line is routed downward from the blank space directly below the feeding point to avoid
  • the direct contact with the parallel two lines avoids the influence of the feeder on the performance of the antenna, ensures the stability and consistency of the antenna performance, and achieves high gain of the antenna.
  • a matching adjuster is designed on the upper surface of the second surface of the inverted "Y" shaped feeding portion.
  • the feeder is fixed by passing the feeder through the substrate to ensure the stability of the antenna.
  • the utility model antenna can obtain higher gain and wider bandwidth in a smaller size.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Details Of Aerials (AREA)

Abstract

本发明属于通信技术领域,公开了一种高增益天线,包括至少三个辐射单元,各辐射单元单独或分组与馈电点通过平行双线连接,辐射单元在基板长度方向上分设在馈电点的两侧,设置在馈电点第一侧的辐射单元为偶数个,设置在馈电点第一侧的辐射单元中每两个辐射单元在基板宽度方向上对称,馈电点在基板宽度方向上居中设置,馈电点与馈电点第一侧的辐射单元的连接线向基板宽度方向上的两侧岔开,馈线从馈电点起顺基板长度方向从岔开的连接线之间及对称的辐射单元之间走线。本发明采中馈方式,馈电点与馈电点下方的辐射单元连接的平行双线分向左右两侧,馈线从馈电点正下方空白处向下走线,避免了与平行双线的直接接触,实现天线的高增益。

Description

一种高增益天线 技术领域
本发明属于通信技术领域,涉及无线技术,具体涉及一种用于无线接收和发射信息的天线。
背景技术
常用的WiFi频段主要包括2.4GHz~2.5GHz频段,以下简称2.4G频段;和5.15GHz~5.85GHz频段,以下简称5G频段。随着越来越多的通讯芯片上同时包含了2.4G频段和5G频段,天线也相应地必须能够同时收发两个频段的信号。但一般来说,双频天线具有增益难以做高,带宽难以展宽以及两个频段难以整合等问题。因此,如何提供一种带宽满足需求的双频高增益天线成为研究人员必须解决的问题。
在产品设计过程中,除了考虑性能之外,往往还需要考虑造型的美观性以及成本的问题,需要在保证性能的同时尽量缩减尺寸。如何在满足性能的情况下设计出尺寸较小的天线,是天线设计过程中比较关注的问题之一。普通的双频天线一般是单个双频偶极子天线的形式,其增益较小。若要增大增益,可采用两个双频偶极子辐射单元串联的形式。以PCB天线为例,在WiFi频段采用一个辐射单元的天线长度为60mm左右,但增益仅能达到2.15dBi。采用两个辐射单元的高增益天线一般需要的长度为90mm以上。
大多数天线采用同轴线进行馈电,由于同轴线表面存在一定的表面电流,这不可避免的会存在同轴线与天线主体之间产生相互影响导致天线性能恶化的情况。因此,如何合理地安排同轴线走线的位置并固定,使其对天线性能的影响降到最小,是天线设计中必须考虑的问题之一。
以PCB天线为例,常见的双频高增益天线是将两个或两个以上的双频辐射单元在PCB长轴方向上串联,从而增大垂直于长轴的平面内的增益。这种天线PCB采用双面印刷,两个辐射单元用平行双线进行连接。根据馈电点位置的不同,又分为底馈和中馈两种方式。
参照图1,所示为采用底馈的两个辐射单元的双频天线。包含两个双频辐射单元,通过平行双线连接,每个双频辐射单元又包含2.4G辐射振子和5G辐射振子。在平行双线末端设置馈电点6,采用同轴线焊接馈电,焊点处打通孔,同轴线芯线从背面穿过通孔在正面焊接,同轴线编织层在背面焊接。为了保持两个辐射单元上电流相位相同,要求两个辐射单元距离接近nλ/2(λ为对应频点的介质波长,n为大于0的整数)。这种方案的优点是馈线远离了辐射体,可以有效避免馈线扰动时对天线的影响,天线性能比较稳定。
但是,这种方案由于需要两个辐射单元距离接近nλ/2,这一方面限制了其长度不可缩小。另一方面由于2.4G和5G频段的波长λ差异较大,实际设计时难以兼顾两个频段都能较好的满足此条件,即很难在两个频段都达到较好的性能。此外,此方案从馈电点到末端辐射单元距离较大,通过平行双线引入的损耗不可忽略。
参照图2,所示为采用中馈的两个辐射单元的双频天线。与底馈方式区别在于馈电点6位置在天线中心位置。这种方式只需要保证馈电点与两个辐射单元距离相等即可实现两个辐射单元处的电流相位相同,而不需要两个辐射单元距离满足nλ/2的条件。因此,这种方式可以缩小两个辐射单元的间距,从而一定程度上减小PCB长度。类似的专利方案可参考CN200820005238.3。
采用中馈的方案,馈线直接连接到辐射体中部,馈线的走线方式对天线性能影响十分明显。当馈线垂直于PCB轴向时,影响较小,如上图中馈线方向A。但这种走线方式在工程实践中可行性不高,更多的是让馈线竖直向下走线,如上图中馈线方向B。按馈线 方向B这种方式,馈线紧贴平行双线,容易使天线性能恶化。
发明内容
本发明目的在于针对现有中馈式双频WIFI天线馈线难免影响天线性能的问题,提出一种解决方案,以实现天线小尺寸高增益效果。
为实现上述目的,本发明所采用的技术方案是:
本发明提供的第一种技术方案:一种高增益天线,包括至少三个辐射单元,各辐射单元单独或分组与馈电点通过平行双线连接,其特征在于,所述辐射单元在基板长度方向上分设在馈电点的两侧,其中设置在馈电点第一侧的辐射单元为偶数个,设置在馈电点第一侧的辐射单元中每两个辐射单元在基板宽度方向上对称,馈电点在基板宽度方向上居中设置,馈电点与设置在馈电点第一侧的辐射单元的连接线向基板宽度方向上的两侧岔开,馈线从馈电点起顺基板长度方向从岔开的连接线之间及对称的辐射单元之间走线。
进一步地,所述辐射单元可以是单频偶极子辐射单元、或者双频偶极子辐射单元,优选所述辐射单元为双频偶极子辐射单元,每个辐射单元包括低频辐射振子和高频辐射振子,其中高频辐射振子位于低频辐射振子外侧。
进一步地,辐射单元中低频辐射振子末端为弯曲形状。
进一步地,所述基板上有馈线走线的一端在基板宽度方向上居中设有通孔,馈线走线至通孔处,从通孔中穿过。孔对馈线起固定作用。将馈线限定在中央,防止馈线向两侧偏移靠近辐射单元或平行双线。
为了缩小开线尺寸,作为优选,设置在馈电点第一侧的辐射单元为两个,设置在馈电点第二侧的辐射单元为一个或两个,设置在馈电点第一侧的两个辐射单元在基板宽度方向上相互对称,用于设置在馈电点第一侧的两个辐射单元与馈电点连接的两条平行双线从馈电点起分别向基板宽度方向上的两侧倾斜走线,馈线从馈电点起顺基板长度方向向馈电点第一侧沿直线走线。。
进一步地,所述基板下端左右居中设有通孔,馈线向下走线至通孔处,从通孔中穿过。作为一种选择,设置在馈电点第二侧的辐射单元为一个,设置在馈电点第一侧的辐射单元在基板上左右居中设置,分别连接馈电点和设置在馈电点第一侧两个辐射单元的两条平行双线与连接馈电点和馈电点第二侧一个辐射单元的一条平行双线构成Y形馈电部。
进一步地,用于连接设置在馈电点第二侧的辐射单元的平行双线中的一连接线上设有匹配调节器。
进一步地,设置在馈电点第二侧的辐射单元的低频辐射振子的远离馈电点的振臂为闭合结构。
作为另一种选择,所述馈电点上方左右对称设置两个辐射单元,分别连接四个馈电单元的四条平行双线构成X形馈电部。
为了提高天线的功率,作为优选,设置在馈电点第一侧的辐射单元为两组,设置在馈电点第二侧的辐射单元为一组或两组,分设在馈电点第一侧和第二侧的每组辐射单元包括至少两个沿基板长度方向排列的辐射单元,设置在馈电点第一侧的两组辐射单元在基板宽度方向上相互对称,用于设置在馈电点第一侧的两组辐射单元与馈电点连接的两条或两组平行双线从馈电点起分别向基板宽度方向上的两侧倾斜走线,馈线从馈电点起顺基板长度方向向馈电点第一侧沿直线走线。
进一步地,所述辐射单元全部为单频偶极子辐射单元、或者全部为双频偶极子辐射单元,或者同时包含单频偶极子辐射单元和双频偶极子辐射单元。
进一步地,所述双频偶极子辐射单元中高频辐射振子位于低频辐射振子的外侧。
进一步地,所述双频偶极子辐射单元中低频辐射振子末端为弯曲形状。
作为一种选择,设置在馈电点第二侧的辐射单元为两组,分别设置在馈电点第一、 第二侧的共四组辐射单元中每组包括两个辐射单元,每组内的两个辐射单元通过组内连接用平行双线连接,一组间连接用平行双线的两端分别连接在设置在馈电点第二侧的两组辐射单元的组内连接用平行双线的中点;分别连接馈电点和设置在馈电点第一侧的两组辐射单元的组内连接用平行双线的中点的两条平行双线与连接馈电点和组间连接用平行双线的中点的一条平行双线构成Y形馈电部。
作为另一种选择,设置在馈电点第二侧的辐射单元为两组,分别设置在馈电点第一、第二侧的共四组辐射单元中每组包括两个辐射单元,每组内的两个辐射单元通过组内连接用平行双线连接,分别连接馈电点与四组辐射单元的组内连接用平行双线的中点的四条平行双线构成X形馈电部。
作为第三种选择,设置在馈电点第二侧的辐射单元为一组,设置在馈电点第二侧的一组辐射单元在基板的宽度方向上居中设置,分别设置在馈电点第一、第二侧的共三组辐射单元中每组内各辐射单元通过平行双线串联,分别连接馈电点和馈电点第一侧最近两个辐射单元的两条平行双线与连接馈电点和馈电点第二侧最近一个辐射单元的一条平行双线构成Y形馈电部。
进一步地,连接馈电点第二侧最近辐射单元的平行双线中的一连接线上设有匹配调节器。
进一步地,馈电点第二侧最远的辐射单元的低频辐射振子的远离馈电点的振臂为闭合结构。
作为第四种选择,设置在馈电点第二侧的辐射单元为两组,分别设置在馈电点第一、第二侧的共四组辐射单元中每组内各辐射单元通过平行双线串联,馈电点分别与馈电点第一、第二侧最近的四个辐射单元连接的平行双线构成X形馈电部。
进一步地,所述基板下端左右居中设有通孔,馈线向下走线至通孔处,从通孔中穿过。孔对馈线起固定作用。将馈线限定在中央,防止馈线向两侧偏移靠近辐射单元或平行双线。
以上方案通用地,本发明所述天线为印刷电路板式偶极子天线,天线主辐射体印刷在PCB基板两面上。馈线采用如下方式与馈电点焊接:在PCB第一表面馈电点处设置小焊盘,PCB第二表面1B馈电点处设置大焊盘。采用同轴线焊接馈电,焊点处打通孔,同轴线芯线从第二表面穿过通孔焊接在第一表面小焊盘上,同轴线编织层焊接在第二表面大焊盘上。
本发明解决了目前中馈式双频WIFI天线馈线影响天线性能的问题,本发明高增益天线能够实现天线小尺寸、高增益的技术效果。
附图说明
图1是常见底馈天线结构示意图。
图2是常见中馈天线结构示意图。
图3是本发明天线一种优选实例的PCB结构示意图。
其中:1,PCB;1A,PCB第一表面;1B,PCB第二表面;2,第一辐射单元;3,第二辐射单元;4,第三辐射单元;5,倒“Y”形馈电部;5A,倒“Y”形馈电部第一表面;5B,倒“Y”形馈电部第二表面;6,馈电点;7,5G辐射振子;7A,5G辐射振子上臂;7B,5G辐射振子下臂;8,2.4G辐射振子;9,通孔;10,匹配调节器。
图4是本发明天线整体示例结构图。
图5是2.4G频段驻波比。
图6是2.45GHz频点3D方向图。
图7是2.45GHz频点E面方向图(单位:dBi)。
图8是2.45GHz频点H面方向图(单位:dBi)。
图9是5G频段驻波比。
图10是5.5GHz频点3D方向图。
图11是5.5GHz频点E面方向图(单位:dBi)。
图12是5.5GHz频点H面方向图(单位:dBi)。
图13是采用X形馈电部的示例模型。
具体实施方式
下面结合附图对本发明优选实施例作详细说明。
本发明主要涉及印刷电路板式偶极子天线,采用中馈的方式,整体上,辐射单元在基板长度方向上,以馈电点为中心,基本对称布置。辐射单元可以是3个、4个、6个、7个、8个……,每个辐射单元可以是单振子辐射单元,也可以是双振子辐射单元,辐射振子的振臂可以是直线振臂,也可以是弯曲振臂,下面例举几个实例分别说明不同数量、不同频率辐射单元的结构特点。
实施例1
参照图3-4,作为示例,以覆盖2.4G频段和5G频段的双频高增益PCB天线进行说明。该天线将主辐射体印刷在PCB基板1上,PCB基材为PTFE材质,长度为75mm,厚度为0.75mm。
天线包含三个双频辐射单元,辐射单元2在PCB上半部分(馈电点第二侧),辐射单元3和辐射单元4在PCB下半部分(馈电点第一侧)左右两侧对称分布。每个辐射单元包含第一频率(例2.4G)辐射振子8和第二频率(例5G)辐射振子7,每个辐射阵子长度为对应频率值的1/4介质波长,低频辐射振子(例2.4G)靠近PCB内侧,高频辐射振子(例5G)靠近PCB外侧。将低频辐射振子末端进行弯折处理,目的是在振子走线长度不变的情况下减小PCB长度。每个辐射单元的振子上臂7A和下臂7B间隔0.5~2mm(推荐值1mm)。第一频率(例2.4G)辐射振子8走线宽度0.5~1mm(推荐0.5mm),第二频率(例5G)辐射振子7走线宽度1~2mm(推荐1.2mm)。
上半部分的辐射单元2的低频辐射振子上臂的两个末端连接,形成闭合结构。
上半部分的辐射单元2和下半部分的辐射单元3、4通过倒“Y”形馈电部5连接,倒“Y”形馈电部第一表面5A的印刷位置和倒“Y”形馈电部第二表面5B的印刷位置在基板法线方向上重叠。倒“Y”形馈电部第一表面5A走线宽度推荐0.5~0.7mm,倒“Y”形馈电部第二表面5B走线宽度推荐0.7~0.9mm。倒“Y”形馈电部5高度为38mm左右。通过倒“Y”形馈电部5的设计,同轴馈线沿竖直向下方向走线时,可避免与馈电部直接接触,可大大减弱由于同轴馈线的影响而引起的性能恶化。
馈电点6设置在倒“Y”形馈电部5中心位置偏上2~4mm处。这种馈电方式,无需上半部分的和下半部分的辐射单元距离满足nλ/2的条件,只需满足馈电点至各个辐射单元的平行双线长度接近即可,因此可以将上半部分的和下半部分的辐射单元距离适当缩小,从而达到缩短PCB长度的效果。在此示例中,上半部分的和下半部分的辐射单元距离为38mm。
在PCB第一表面1A馈电点处设置小焊盘,PCB第二表面1B馈电点处设置大焊盘。采用同轴线焊接馈电,焊点处打通孔,同轴线芯线从第二表面穿过通孔焊接在第一表面小焊盘上,同轴线编织层焊接在第二表面大焊盘上。
倒“Y”形馈电部第二表面5B上部设置了方形匹配调节器10,通过改变匹配调节器10的长度和宽度,可以方便的对天线阻抗和带宽进行调节,尤其对高频部分(例5G)效果明显。此处推荐匹配调节器10的尺寸为10mm×3mm。
在PCB基板下端设置了通孔9,将馈线穿过通孔9,从而将馈线位置固定,避免馈线扰动使天线一致性变差的情况。图4b是带同轴馈线的模型和带示例壳体的整支天线模型。
图5-12是图3-4所示天线典型示例的仿真结果,其中,Z轴方向为沿天线长轴方向,E面为平行于天线长轴的某个面,X面为垂直于天线长轴的面。从上述典型示例的结果可见,2.45GHz增益可达2.85dBi,驻波比小于2的带宽可达300MHz。5.5GHz增益可达7.15dBi,驻波比小于2的带宽可达1.9GHz。在尺寸较小的情况下,将两个频段很好的整合到了一起,在两个频段都得到了较好的增益和带宽特性。同时,通过倒“Y”形馈电部和打孔固定馈线等设计,避免了馈线对天线性能的影响。
实施例2
参照图13,与实施例1相类似,本实施例天线也将主辐射体印刷在PCB基板1上,PCB基材为PTFE材质,长度为75mm,厚度为0.75mm。
该例中,天线包含四个双频辐射单元,辐射单元21、22在PCB上半部分左右两侧对称分布,辐射单元23、24在PCB下半部分左右两侧对称分布。每个辐射单元包含第一频率(例2.4G)辐射振子8和第二频率(例5G)辐射振子7,每个辐射阵子长度为对应频率值的1/4介质波长,低频辐射振子(例2.4G)靠近PCB内侧,高频辐射振子(例5G)靠近PCB外侧。将低频辐射振子末端进行弯折处理,目的是在振子走线长度不变的情况下减小PCB长度。每个辐射单元的振子上臂7A和下臂7B间隔0.5~2mm(推荐值1mm)。第一频率(例2.4G)辐射振子8走线宽度0.5~1mm(推荐0.5mm),第二频率(例5G)辐射振子7走线宽度1~2mm(推荐1.2mm)。
上半部分的两个辐射单元21、22和下半部分的两个辐射单元23、24通过“X”形馈电部25连接,“X”形馈电部第一表面25A的印刷位置和“X”形馈电部第二表面25B的印刷位置在基板法线方向上重叠。“X”形馈电部第一表面25A走线宽度推荐0.5~0.7mm,“X”形馈电部第二表面25B走线宽度推荐0.7~0.9mm。“X”形馈电部25高度为38mm左右。通过“X”形馈电部25的设计,同轴馈线沿竖直向下方向走线时,同样可以避免与馈电部直接接触,可大大减弱由于同轴馈线的影响而引起的性能恶化。
馈电点6设置在“X”形馈电部25交叉点位置,“X”形馈电部25的四个臂长度相等。这种馈电方式,无需上半部分的和下半部分的辐射单元距离满足nλ/2的条件,只需满足馈电点至各个辐射单元的平行双线长度接近即可,因此可以将上半部分的和下半部分的辐射单元距离适当缩小,从而达到缩短PCB长度的效果。在此示例中,上半部分的和下半部分的辐射单元距离为38mm。
在PCB第一表面1A馈电点处设置小焊盘,PCB第二表面1B馈电点处设置大焊盘。采用同轴线焊接馈电,焊点处打通孔,同轴线芯线从第二表面穿过通孔在第一表面小焊盘焊接,同轴线编织层在第二表面大焊盘焊接。
在PCB基板下端设置了通孔9,将馈线穿过通孔9,从而将馈线位置固定,避免馈线扰动使天线一致性变差的情况。
实施例3
与实施例2相类似,本实施例天线也将主辐射体印刷在PCB基板1上,而且也同样包含四个双频辐射单元。第一、第二辐射单元在PCB上半部分左右两侧对称分布,第三、第四辐射单元在PCB下半部分左右两侧对称分布。每个辐射单元包含第一频率(例2.4G)辐射振子8和第二频率(例5G)辐射振子7,每个辐射阵子长度为对应频率值的1/4介质波长,低频辐射振子(例2.4G)靠近PCB内侧,高频辐射振子(例5G)靠近PCB外侧。将低频辐射振子末端进行弯折处理,目的是在振子走线长度不变的情况下减小PCB长度。每个辐射单元的振子上臂和下臂间隔0.5~2mm(推荐值1mm)。第一频率(例2.4G)辐射振子8走线宽度0.5~1mm(推荐0.5mm),第二频率(例5G)辐射振子7走线宽度1~2mm(推荐1.2mm)。
上半部分的两个辐射单元和下半部分的两个辐射单元通过四臂馈电部连接,所述四臂馈电部第一表面的印刷位置和四臂馈电部第二表面的印刷位置在基板法线方向上重叠。四臂馈电部第一表面走线宽度推荐0.5~0.7mm,四臂馈电部第二表面走线宽度推荐0.7~0.9mm。四臂馈电部25高度为38mm左右。
所述四臂馈电部包括下端相互联接的两条左右对称的上臂和上端相互联接的两条左右对对称设置的下臂,两条上臂的联接点和两条下臂的联接点通过中间一段竖直连接段连接。馈电点6位于竖直连接段下端。这种馈电方式,无需上半部分的和下半部分的辐射单元距离满足nλ/2的条件,只需满足馈电点至各个辐射单元的平行双线长度接近即可,因此可以将上半部分的和下半部分的辐射单元距离适当缩小,从而达到缩短PCB长度的效果。
四臂馈电部第二表面35B的竖直连接段上设置了方形匹配调节器10,通过改变匹配调节器10的长度和宽度,可以方便的对天线阻抗和带宽进行调节。
在此示例中,在PCB第一表面1A馈电点处设置小焊盘,PCB第二表面1B馈电点处设置大焊盘。采用同轴线焊接馈电,焊点处打通孔,同轴线芯线从第二表面穿过通孔在第一表面小焊盘焊接,同轴线编织层在第二表面大焊盘焊接。
在PCB下端设置了通孔9,将馈线穿过通孔9,从而将馈线位置固定,避免馈线扰动使天线一致性变差的情况。
实施例4
与实施例1相类似,本实施例天线也将主辐射体印刷在PCB基板1上,且也同样包含三个辐射单元,第一辐射单元在PCB上半部分左右居中,第二、第三辐射单元在PCB下半部分左右两侧对称分布。不同在于,每个辐射单元均为单频辐射单元,仅包含一个频率的辐射振子。辐射阵子长度为对应频率值的1/4介质波长,辐射振子末端进行弯折处理,在振子走线长度不变的情况下减小PCB长度。每个辐射单元的振子上臂和下臂间隔0.5~2mm(推荐值1mm)。
上半部分的一个辐射单元和下半部分的两个辐射单元通过倒“Y”形馈电部5连接,所述倒“Y”形馈电部第一表面5A的印刷位置和倒“Y”形馈电部第二表面5B的印刷位置在基板法线方向上重叠。倒“Y”形馈电部第一表面5A走线宽度推荐0.5~0.7mm,倒“Y”形馈电部第二表面5B走线宽度推荐0.7~0.9mm。
馈电点6设置在倒“Y”形馈电部5中心位置偏上2~4mm处。这种馈电方式,无需上半部分的和下半部分的辐射单元距离满足nλ/2的条件,只需满足馈电点至各个辐射单元的平行双线长度接近即可,因此可以将上半部分的和下半部分的辐射单元距离适当缩小,从而达到缩短PCB长度的效果。
在PCB第一表面1A馈电点处设置小焊盘,PCB第二表面1B馈电点处设置大焊盘。采用同轴线焊接馈电,焊点处打通孔,同轴线芯线从第二表面穿过通孔焊接在第一表面小焊盘上,同轴线编织层焊接在第二表面大焊盘上。
倒“Y”形馈电部第二表面5B上部设置了方形匹配调节器10,通过改变匹配调节器10的长度和宽度,可以方便的对天线阻抗和带宽进行调节,尤其对高频部分(例5G)效果明显。在PCB基板下端设置了通孔9,将馈线穿过通孔9,从而将馈线位置固定,避免馈线扰动使天线一致性变差的情况。
实施例5
与实施例2相类似,本实施例天线也将主辐射体印刷在PCB基板1上,且也同样包含四个辐射单元,第一、第二辐射单元在PCB上半部分左右两侧对称分布,第三、第四辐射单元在PCB下半部分左右两侧对称分布。不同在于,每个辐射单元均为单频辐射单 元,仅包含一个频率的辐射振子。辐射阵子长度为对应频率值的1/4介质波长,辐射振子末端进行弯折处理,在振子走线长度不变的情况下减小PCB长度。每个辐射单元的振子上臂和下臂间隔0.5~2mm(推荐值1mm)。
上半部分的两个辐射单元和下半部分的两个辐射单元通过“X”形馈电部25连接,所述“X”形馈电部第一表面25A的印刷位置和“X”形馈电部第二表面25B的印刷位置在基板法线方向上重叠。“X”形馈电部第一表面25A走线宽度推荐0.5~0.7mm,“X”形馈电部第二表面25B走线宽度推荐0.7~0.9mm。
馈电点6设置在“X”形馈电部25交叉点位置,“X”形馈电部25的四个臂长度相等。这种馈电方式,无需上半部分的和下半部分的辐射单元距离满足nλ/2的条件,只需满足馈电点至各个辐射单元的平行双线长度接近即可,因此可以将上半部分的和下半部分的辐射单元距离适当缩小,从而达到缩短PCB长度的效果。在PCB第一表面1A馈电点处设置小焊盘,PCB第二表面1B馈电点处设置大焊盘。采用同轴线焊接馈电,焊点处打通孔,同轴线芯线从第二表面穿过通孔在第一表面小焊盘焊接,同轴线编织层在第二表面大焊盘焊接。
在PCB基板下端设置了通孔9,将馈线穿过通孔9,从而将馈线位置固定,避免馈线扰动使天线一致性变差的情况。
实施例6
与实施例4相类似,本实施例天线也将主辐射体印刷在PCB基板1上,不同在于,其包括六个辐射单元,第一、第二辐射单元在PCB基板上半部分左右居中设置,第三、第四、第五、第六辐射单元在PCB下半部分两两左右两侧对称分布。第一、第二辐射单元通过竖直的平行双线上下串连,位于左侧的第三、第五辐射单元通过竖直的平行双线上下串连,位于右侧的第四、第六第辐射单元通过竖直的平行双线上下串连。
基板上半部分的第二辐射单元和下半部分的第三、第四辐射单元通过倒“Y”形馈电部5连接,所述倒“Y”形馈电部第一表面5A的印刷位置和倒“Y”形馈电部第二表面5B的印刷位置在基板法线方向上重叠。倒“Y”形馈电部第一表面5A走线宽度推荐0.5~0.7mm,倒“Y”形馈电部第二表面5B走线宽度推荐0.7~0.9mm。馈电点6设置在倒“Y”形馈电部5中心位置偏上2~4mm处,馈线从馈电点向下竖直走线。
每个辐射单元均为单频辐射单元,仅包含一个频率的辐射振子。辐射阵子长度为对应频率值的1/4介质波长,辐射振子末端进行弯折处理,在振子走线长度不变的情况下减小PCB长度。每个辐射单元的振子上臂和下臂间隔0.5~2mm(推荐值1mm)。
实施例7
与实施例6相类似,本实施例天线也将主辐射体印刷在PCB基板1上,且同样包括六个辐射单元,第一、第二辐射单元在PCB基板上半部分左右居中设置,第三、第四、第五、第六辐射单元在PCB下半部分两两左右两侧对称分布。第一、第二辐射单元通过竖直的平行双线上下串连,位于左侧的第三、第五辐射单元通过竖直的平行双线上下串连,位于右侧的第四、第六第辐射单元通过竖直的平行双线上下串连。
基板上半部分的第二辐射单元和下半部分的第三、第四辐射单元通过倒“Y”形馈电部5连接,所述倒“Y”形馈电部第一表面5A的印刷位置和倒“Y”形馈电部第二表面5B的印刷位置在基板法线方向上重叠。倒“Y”形馈电部第一表面5A走线宽度推荐0.5~0.7mm,倒“Y”形馈电部第二表面5B走线宽度推荐0.7~0.9mm。馈电点6设置在倒“Y”形馈电部5中心位置偏上2~4mm处,馈线从馈电点向下竖直走线。
与实施例6不同之处在于,每个辐射单元均为双频辐射单元,即每个辐射单元包含第一频率(例2.4G)辐射振子8和第二频率(例5G)辐射振子7,每个辐射阵子长度为 对应频率值的1/4介质波长,低频辐射振子(例2.4G)靠近PCB内侧,高频辐射振子(例5G)靠近PCB外侧。低频辐射振子末端进行弯折处理。每个辐射单元的振子上臂和下臂间隔0.5~2mm(推荐值1mm)。
实施例8
与实施例7相类似,本实施例天线也将主辐射体印刷在PCB基板1上,不同在于,其包括八个辐射单元,第一至第四辐射单元在PCB基板上半部分左右两侧对称分布,第五至第八辐射单元在PCB下半部分两两左右两侧对称分布。位于上部左侧的第一、第三辐射单元通过竖直的平行双线上下串连,位于上部右侧的第二、第四辐射单元通过竖直的平行双线上下串连,位于下部左侧的第五、第七辐射单元通过竖直的平行双线上下串连,位于下部右侧的第六、第八辐射单元通过竖直的平行双线上下串连。
基板上半部分最下方的第三、第四辐射单元和下半部分最上方的第五、第六辐射单元通过“X”形馈电部25连接,所述“X”形馈电部第一表面25A的印刷位置和“X”形馈电部第二表面25B的印刷位置在基板法线方向上重叠。“X”形馈电部第一表面25A走线宽度推荐0.5~0.7mm,“X”形馈电部第二表面25B走线宽度推荐0.7~0.9mm。馈电点6设置在“X”形馈电部25交叉点位置,“X”形馈电部25的四个臂长度相等。馈线从馈电点向下竖直走线。
每个辐射单元均为单频辐射单元,仅包含一个频率的辐射振子。辐射阵子长度为对应频率值的1/4介质波长,辐射振子末端进行弯折处理,在振子走线长度不变的情况下减小PCB长度。每个辐射单元的振子上臂和下臂间隔0.5~2mm(推荐值1mm)。
实施例9
与实施例8相类似,本实施例天线也将主辐射体印刷在PCB基板1上,且包括八个辐射单元,第一至第四辐射单元在PCB基板上半部分左右两侧对称分布,第五至第八辐射单元在PCB下半部分两两左右两侧对称分布。位于上部左侧的第一、第三辐射单元通过竖直的平行双线上下串连,位于上部右侧的第二、第四辐射单元通过竖直的平行双线上下串连,位于下部左侧的第五、第七辐射单元通过竖直的平行双线上下串连,位于下部右侧的第六、第八辐射单元通过竖直的平行双线上下串连。
基板上半部分最下方的第三、第四辐射单元和下半部分最上方的第五、第六辐射单元通过“X”形馈电部25连接,所述“X”形馈电部第一表面25A的印刷位置和“X”形馈电部第二表面25B的印刷位置在基板法线方向上重叠。“X”形馈电部第一表面25A走线宽度推荐0.5~0.7mm,“X”形馈电部第二表面25B走线宽度推荐0.7~0.9mm。馈电点6设置在“X”形馈电部25交叉点位置,“X”形馈电部25的四个臂长度相等。馈线从馈电点向下竖直走线。
与实施例8不同之处在于,每个辐射单元均为双频辐射单元,即每个辐射单元包含第一频率(例2.4G)辐射振子8和第二频率(例5G)辐射振子7,每个辐射阵子长度为对应频率值的1/4介质波长,低频辐射振子(例2.4G)靠近PCB内侧,高频辐射振子(例5G)靠近PCB外侧。低频辐射振子末端进行弯折处理。每个辐射单元的振子上臂和下臂间隔0.5~2mm(推荐值1mm)。
实施例10
与实施例9相类似,本实施例天线也将主辐射体印刷在PCB基板1上,且包括八个辐射单元,第一至第四辐射单元在PCB基板上半部分左右两侧对称分布,第五至第八辐射单元在PCB下半部分两两左右两侧对称分布。位于上部左侧的第一、第三辐射单元为第一组,位于上部右侧的第二、第四辐射单元为第二组,位于下部左侧的第五、第七辐射单元为第三组,位于下部右侧的第六、第八辐射单元第四组,每组内的两个辐射单元 通过竖直的组内连接用平行双线上下串连。
基板上半部分第一组辐射单元的组内连接用平行双线的中点与第一组辐射单元的组内连接用平行双线的中点通过一水平组间连接用平行双线连接。
基板上半部分的组间连接用平行双线的中点、第三组辐射单元组内连接用平行双线的中点、第四组辐射单元组内连接用平行双线的中点三者通过倒“Y”形馈电部连接,馈电点到八个辐射单元的馈电距离相等。馈线从馈电点向下竖直走线。
每个辐射单元均为双频辐射单元或单频辐射单元,或者一部分辐射单元选用双频辐射单元,另一部分辐射单元选用单频辐射单元。
实施例11
与实施例10相类似,本实施例天线也将主辐射体印刷在PCB基板1上,且包括八个辐射单元,第一至第四辐射单元在PCB基板上半部分左右两侧对称分布,第五至第八辐射单元在PCB下半部分两两左右两侧对称分布。位于上部左侧的第一、第三辐射单元为第一组,位于上部右侧的第二、第四辐射单元为第二组,位于下部左侧的第五、第七辐射单元为第三组,位于下部右侧的第六、第八辐射单元第四组,每组内的两个辐射单元通过竖直的组内连接用平行双线上下串连。
与实施例10不之处在于,第一、第二组辐射单元不直接连接。第一组辐射单元组内连接用平行双线的中点、第二组辐射单元组内连接用平行双线的中点、第三组辐射单元组内连接用平行双线的中点、第四组辐射单元组内连接用平行双线的中点四者通过“X”形馈电部连接,馈电点设置在“X”形馈电部交叉点位置,所述“X”形馈电部的四个臂长度相等。馈线从馈电点向下竖直走线。
与实施例10相同地,每个辐射单元均为双频辐射单元或单频辐射单元,或者一部分辐射单元选用双频辐射单元,另一部分辐射单元选用单频辐射单元。
与实施例6-9相比,实施例10-11所采用的连接方式,可保证馈电点到各个辐射单元路径相同,各个辐射单元信号相位相同,无需满足nλ/2的条件。
可以理解的是,本发明所述天线,PCB材质可用FR4、CEM1等各种常规材质,或其它可用基材,采用不同材质基材时,只需对辐射体尺寸进行微调即可。但采用损耗特性较差的基材可能会导致增益下降。作为示例,以上是按照WiFi频段而进行的设计,不难想到按照一定比例对天线尺寸进行调整,完全可以工作于其他频段。
本发明技术方案所具有的有益效果如下:
1、馈电点中置,缩短馈电部平行双线的长度,并将低频辐射振子末端进行弯折处理等方式,进一步缩短了天线长度,有利于产品小型化。
2、馈电点下方的辐射单元对称设置在左右两侧,与馈电点下方的辐射单元连接的平行双线分向左右两侧,馈线从馈电点正下方空白处向下走线,避免了与平行双线的直接接触,避免了馈线对天线性能的影响,保证了天线性能的稳定性和一致性,实现天线的高增益。
3、在倒“Y”形馈电部第二表面上部设计了匹配调节器,通过改变匹配调节器的长度和宽度,可以方便地对天线阻抗和带宽进行调节。通过示例证明,调整优化后可以获得比较宽的带宽。
4、通过让馈线穿过基板方式固定馈线,保证天线的稳定性。
5、通过软件仿真表现,此实用新型天线可以在尺寸较小的情况下获得较高的增益和较宽的带宽。
6、通过实际样品测试,测试结果稳定,一致性较好,受馈线影响较小。
本文中所描述的具体实施例仅仅是对本发明精神作举例说明。本发明所属技术领域的技术人员可以对所描述的具体实施例做各种的修改或补充或采用类似的方式替代,但并不会偏离本发明的精神或者超越所附权利要求书所定义的范围。

Claims (17)

  1. 一种高增益天线,包括至少三个辐射单元,各辐射单元单独或分组与馈电点通过平行双线连接,其特征在于,所述辐射单元在基板长度方向上分设在馈电点的两侧,其中设置在馈电点第一侧的辐射单元为偶数个,设置在馈电点第一侧的辐射单元中每两个辐射单元在基板宽度方向上对称,馈电点在基板宽度方向上居中设置,馈电点与设置在馈电点第一侧的辐射单元的连接线向基板宽度方向上的两侧岔开,馈线从馈电点起顺基板长度方向从岔开的连接线之间及对称的辐射单元之间走线。
  2. 根据权利要求1所述的高增益天线,其特征在于,所述辐射单元为双频偶极子辐射单元,每个辐射单元包括低频辐射振子和高频辐射振子,其中高频辐射振子位于低频辐射振子外侧。
  3. 根据权利要求2所述的高增益天线,其特征在于,辐射单元中低频辐射振子末端为弯曲形状。
  4. 根据权利要求1所述的高增益天线,其特征在于,所述基板上有馈线走线的一端在基板宽度方向上居中设有通孔,馈线走线至通孔处,从通孔中穿过。
  5. 根据权利要求1所述的高增益天线,其特征在于,设置在馈电点第一侧的辐射单元为两个,设置在馈电点第二侧的辐射单元为一个或两个,设置在馈电点第一侧的两个辐射单元在基板宽度方向上相互对称,用于设置在馈电点第一侧的两个辐射单元与馈电点连接的两条平行双线从馈电点起分别向基板宽度方向上的两侧倾斜走线,馈线从馈电点起顺基板长度方向向馈电点第一侧沿直线走线。
  6. 根据权利要求5所述的高增益天线,其特征在于,设置在馈电点第二侧的辐射单元为一个,设置在馈电点第二侧的辐射单元在基板宽度方向上居中设置,分别连接馈电点和设置在馈电点第一侧两个辐射单元的两条平行双线与连接馈电点和馈电点第二侧一个辐射单元的一条平行双线构成Y形馈电部。
  7. 根据权利要求6所述的高增益天线,其特征在于,用于连接设置在馈电点第二侧的辐射单元的平行双线中的一连接线上设有匹配调节器。
  8. 根据权利要求6所述的高增益天线,其特征在于,设置在馈电点第二侧的辐射单元的低频辐射振子的远离馈电点的振臂为闭合结构。
  9. 根据权利要求5所述的高增益天线,其特征在于,设置在馈电点第二侧的辐射单元为两个,设置在馈电点第二侧的两个辐射单元在基板宽度方向上相互对称,分别连接设置在馈电点第一、第二侧的共四个辐射单元的四条平行双线构成X形馈电部。
  10. 根据权利要求1所述的高增益天线,其特征在于,设置在馈电点第一侧的辐射单元为两组,设置在馈电点第二侧的辐射单元为一组或两组,分设在馈电点第一侧和第 二侧的每组辐射单元包括至少两个沿基板长度方向排列的辐射单元,设置在馈电点第一侧的两组辐射单元在基板宽度方向上相互对称,用于设置在馈电点第一侧的两组辐射单元与馈电点连接的两条或两组平行双线从馈电点起分别向基板宽度方向上的两侧倾斜走线,馈线从馈电点起顺基板长度方向向馈电点第一侧沿直线走线。
  11. 根据权利要求10所述的高增益天线,其特征在于,所述辐射单元全部为单频偶极子辐射单元、或者全部为双频偶极子辐射单元,或者同时包含单频偶极子辐射单元和双频偶极子辐射单元。
  12. 根据权利要求10所述的高增益天线,其特征在于,设置在馈电点第二侧的辐射单元为两组,分别设置在馈电点第一、第二侧的共四组辐射单元中每组包括两个辐射单元,每组内的两个辐射单元通过组内连接用平行双线连接,一组间连接用平行双线的两端分别连接在设置在馈电点第二侧的两组辐射单元的组内连接用平行双线的中点;分别连接馈电点和设置在馈电点第一侧的两组辐射单元的组内连接用平行双线的中点的两条平行双线与连接馈电点和组间连接用平行双线的中点的一条平行双线构成Y形馈电部。
  13. 根据权利要求10所述的高增益天线,其特征在于,设置在馈电点第二侧的辐射单元为两组,分别设置在馈电点第一、第二侧的共四组辐射单元中每组包括两个辐射单元,每组内的两个辐射单元通过组内连接用平行双线连接,分别连接馈电点与四组辐射单元的组内连接用平行双线的中点的四条平行双线构成X形馈电部。
  14. 根据权利要求10所述的高增益天线,其特征在于,设置在馈电点第二侧的辐射单元为一组,设置在馈电点第二侧的一组辐射单元在基板的宽度方向上居中设置,分别设置在馈电点第一、第二侧的共三组辐射单元中每组内各辐射单元通过平行双线串联,分别连接馈电点和设置在馈电点第一侧的最近两个辐射单元的两条平行双线与连接馈电点和设置在馈电点第二侧的最近一个辐射单元的一条平行双线构成Y形馈电部。
  15. 根据权利要求14所述的高增益天线,其特征在于,连接馈电点和馈电点第二侧最近辐射单元的平行双线中的一连接线上设有匹配调节器。
  16. 根据权利要求14所述的高增益天线,其特征在于,馈电点第二侧最远的辐射单元的低频辐射振子的远离馈电点的振臂为闭合结构。
  17. 根据权利要求10所述的高增益天线,其特征在于,设置在馈电点第二侧的辐射单元为两组,分别设置在馈电点第一、第二侧的共四组辐射单元中每组内各辐射单元通过平行双线串联,馈电点分别与馈电点第一、第二侧最近的四个辐射单元连接的平行双线构成X形馈电部。
PCT/CN2017/087053 2016-12-09 2017-06-02 一种高增益天线 WO2018103281A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611130376.X 2016-12-09
CN201611130376.XA CN106684564A (zh) 2016-12-09 2016-12-09 一种高增益天线

Publications (1)

Publication Number Publication Date
WO2018103281A1 true WO2018103281A1 (zh) 2018-06-14

Family

ID=58868518

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/087053 WO2018103281A1 (zh) 2016-12-09 2017-06-02 一种高增益天线

Country Status (2)

Country Link
CN (1) CN106684564A (zh)
WO (1) WO2018103281A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109546330A (zh) * 2018-12-26 2019-03-29 东莞市仁丰电子科技有限公司 一种集成合路器的双频三馈天线
CN109888497A (zh) * 2019-03-18 2019-06-14 深圳市共进电子股份有限公司 一种平面偶极子双频段天线及天线装置
CN111162376A (zh) * 2020-01-21 2020-05-15 江西省仁富电子科技有限公司 一种高增益的多频三馈天线
CN112563731A (zh) * 2020-11-30 2021-03-26 深圳市中联云达科技有限公司 一种全向小型化双频双馈天线
CN112909504A (zh) * 2021-03-22 2021-06-04 深圳市道通智能航空技术股份有限公司 天线、其调试方法、外置式天线结构及无人机

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106684564A (zh) * 2016-12-09 2017-05-17 上海斐讯数据通信技术有限公司 一种高增益天线
CN107634322B (zh) * 2017-08-09 2024-07-09 广东通宇通讯股份有限公司 双频高增益全向天线
CN110323557B (zh) * 2018-03-29 2021-02-12 华为技术有限公司 一种天线及电子设备
CN108777349B (zh) * 2018-04-28 2024-04-05 江西省仁富电子科技有限公司 一种一体式多流阵列天线
CN110148835B (zh) * 2019-06-04 2024-03-19 深圳市友华通信技术有限公司 双频高增益智能网关天线
CN110676575B (zh) * 2019-09-27 2020-11-24 西安电子科技大学 一种小型化的高增益双频wifi天线
CN114843750B (zh) * 2021-02-02 2024-09-06 诺赛特国际有限公司 一种天线组件、天线及通信设备
CN114122690B (zh) * 2021-11-11 2023-09-19 京信通信技术(广州)有限公司 辐射单元、天线及基站

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030231138A1 (en) * 2002-06-17 2003-12-18 Weinstein Michael E. Dual-band directional/omnidirectional antenna
CN101527392A (zh) * 2009-04-23 2009-09-09 哈尔滨工程大学 双频宽带e形微带天线
CN101908670A (zh) * 2010-06-30 2010-12-08 苏州市吴通天线有限公司 三分支多频平面偶极子天线
CN106684564A (zh) * 2016-12-09 2017-05-17 上海斐讯数据通信技术有限公司 一种高增益天线

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004282606A (ja) * 2003-03-18 2004-10-07 Iwatsu Electric Co Ltd セクタアンテナ装置とその給電回路
CN1747234A (zh) * 2004-09-06 2006-03-15 合勤科技股份有限公司 无线网络装置的双频平面天线
CN201226372Y (zh) * 2008-03-25 2009-04-22 寰波科技股份有限公司 一种双频高增益天线
CN201590486U (zh) * 2010-01-22 2010-09-22 中国计量学院 紧凑型高增益微带阵列天线
CN101888017B (zh) * 2010-06-17 2013-04-03 清华大学 Gsm850/dcs/pcs三频段的并馈式全向天线阵列
CN203895598U (zh) * 2014-04-25 2014-10-22 信邦电子股份有限公司 高增益双频阵列天线
CN104795630A (zh) * 2015-04-24 2015-07-22 普联技术有限公司 双频wifi全向天线

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030231138A1 (en) * 2002-06-17 2003-12-18 Weinstein Michael E. Dual-band directional/omnidirectional antenna
CN101527392A (zh) * 2009-04-23 2009-09-09 哈尔滨工程大学 双频宽带e形微带天线
CN101908670A (zh) * 2010-06-30 2010-12-08 苏州市吴通天线有限公司 三分支多频平面偶极子天线
CN106684564A (zh) * 2016-12-09 2017-05-17 上海斐讯数据通信技术有限公司 一种高增益天线

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109546330A (zh) * 2018-12-26 2019-03-29 东莞市仁丰电子科技有限公司 一种集成合路器的双频三馈天线
CN109546330B (zh) * 2018-12-26 2024-03-15 东莞市仁丰电子科技有限公司 一种集成合路器的双频三馈天线
CN109888497A (zh) * 2019-03-18 2019-06-14 深圳市共进电子股份有限公司 一种平面偶极子双频段天线及天线装置
CN109888497B (zh) * 2019-03-18 2024-03-22 深圳市共进电子股份有限公司 一种平面偶极子双频段天线及天线装置
CN111162376A (zh) * 2020-01-21 2020-05-15 江西省仁富电子科技有限公司 一种高增益的多频三馈天线
CN112563731A (zh) * 2020-11-30 2021-03-26 深圳市中联云达科技有限公司 一种全向小型化双频双馈天线
CN112563731B (zh) * 2020-11-30 2023-03-21 深圳市中联云达科技有限公司 一种全向小型化双频双馈天线
CN112909504A (zh) * 2021-03-22 2021-06-04 深圳市道通智能航空技术股份有限公司 天线、其调试方法、外置式天线结构及无人机

Also Published As

Publication number Publication date
CN106684564A (zh) 2017-05-17

Similar Documents

Publication Publication Date Title
WO2018103281A1 (zh) 一种高增益天线
KR100638621B1 (ko) 광대역 내장형 안테나
CN102918705B (zh) 多频带天线的双极化辐射元件
JP6763372B2 (ja) マルチバンドアンテナ及び無線通信装置
JP5060588B2 (ja) 偏波ダイバーシチアンテナ
JP2014082797A (ja) 広帯域ダイポールアンテナ
US11264730B2 (en) Quad-port radiating element
CN113178685B (zh) 辐射单元、天线及基站
US7138948B2 (en) Antenna array of printed circuit board
CN101895014A (zh) 双频宽带壁挂式天线
CN107275757A (zh) 用于多频基站天线中的低剖面宽频双极化辐射装置
CN110048216B (zh) 小型双极化天线辐射装置及通信设备
CN112768895A (zh) 天线、低频振子及辐射单元
WO2019183798A1 (zh) 一种天线
CN109962336B (zh) 全向性的路由器板载式双频mimo天线
CN213753054U (zh) 天线振子单元
JP2005347958A (ja) アンテナ装置
CN108539409A (zh) 全波振子水平极化全向天线
US11196166B2 (en) Antenna device
CN208256906U (zh) 一种小型化宽带高增益全向天线
JP5708473B2 (ja) アンテナ装置
CN114284744A (zh) 天线、低频振子及滤波频段调节方法
JP2007142570A (ja) パッチアレイアンテナ
CN201904441U (zh) 双频宽带壁挂式天线
CN114784488B (zh) 天线以及无线网关

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17879461

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17879461

Country of ref document: EP

Kind code of ref document: A1