WO2018101491A2 - Organic electroluminescent element and electronic device - Google Patents
Organic electroluminescent element and electronic device Download PDFInfo
- Publication number
- WO2018101491A2 WO2018101491A2 PCT/JP2018/010875 JP2018010875W WO2018101491A2 WO 2018101491 A2 WO2018101491 A2 WO 2018101491A2 JP 2018010875 W JP2018010875 W JP 2018010875W WO 2018101491 A2 WO2018101491 A2 WO 2018101491A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- general formula
- layer
- group
- organic
- light emitting
- Prior art date
Links
- 239000010410 layer Substances 0.000 claims abstract description 144
- 150000001875 compounds Chemical class 0.000 claims abstract description 64
- 230000005525 hole transport Effects 0.000 claims abstract description 30
- 239000012044 organic layer Substances 0.000 claims abstract description 19
- 125000004432 carbon atom Chemical group C* 0.000 claims description 21
- 239000002019 doping agent Substances 0.000 claims description 18
- 125000003118 aryl group Chemical group 0.000 claims description 16
- 238000005401 electroluminescence Methods 0.000 claims description 10
- CYRMSUTZVYGINF-UHFFFAOYSA-N trichlorofluoromethane Chemical compound FC(Cl)(Cl)Cl CYRMSUTZVYGINF-UHFFFAOYSA-N 0.000 claims description 10
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 7
- 125000000217 alkyl group Chemical group 0.000 claims description 6
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 5
- 125000000623 heterocyclic group Chemical group 0.000 claims description 5
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 5
- 125000006267 biphenyl group Chemical group 0.000 claims description 4
- 125000001624 naphthyl group Chemical group 0.000 claims description 4
- 125000006413 ring segment Chemical group 0.000 claims description 4
- 125000005561 phenanthryl group Chemical group 0.000 claims description 3
- 125000003914 fluoranthenyl group Chemical group C1(=CC=C2C=CC=C3C4=CC=CC=C4C1=C23)* 0.000 claims description 2
- 125000003983 fluorenyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3CC12)* 0.000 claims description 2
- 239000000463 material Substances 0.000 description 25
- 238000002347 injection Methods 0.000 description 23
- 239000007924 injection Substances 0.000 description 23
- 239000000126 substance Substances 0.000 description 18
- 238000000034 method Methods 0.000 description 16
- 239000000758 substrate Substances 0.000 description 12
- 229910052751 metal Inorganic materials 0.000 description 9
- 239000002184 metal Substances 0.000 description 9
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 8
- 239000011777 magnesium Substances 0.000 description 8
- 229910052749 magnesium Inorganic materials 0.000 description 8
- 229910052783 alkali metal Inorganic materials 0.000 description 6
- 150000001340 alkali metals Chemical class 0.000 description 6
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 6
- 150000001342 alkaline earth metals Chemical class 0.000 description 6
- 229910045601 alloy Inorganic materials 0.000 description 6
- 239000000956 alloy Substances 0.000 description 6
- -1 dibenzofuranyl group Chemical group 0.000 description 5
- 150000002739 metals Chemical class 0.000 description 5
- 150000002894 organic compounds Chemical class 0.000 description 5
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 4
- 125000006615 aromatic heterocyclic group Chemical group 0.000 description 4
- 125000000609 carbazolyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3NC12)* 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 229910052744 lithium Inorganic materials 0.000 description 4
- 150000002736 metal compounds Chemical class 0.000 description 4
- 238000004544 sputter deposition Methods 0.000 description 4
- 238000001771 vacuum deposition Methods 0.000 description 4
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 3
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 150000001412 amines Chemical class 0.000 description 3
- 150000001454 anthracenes Chemical class 0.000 description 3
- 229910052796 boron Inorganic materials 0.000 description 3
- 229910052792 caesium Inorganic materials 0.000 description 3
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical compound [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 description 3
- 229910052791 calcium Inorganic materials 0.000 description 3
- 239000011575 calcium Substances 0.000 description 3
- 150000004696 coordination complex Chemical class 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 229920000642 polymer Chemical class 0.000 description 3
- 229910052761 rare earth metal Inorganic materials 0.000 description 3
- 150000002910 rare earth metals Chemical class 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 229910052709 silver Inorganic materials 0.000 description 3
- 239000004332 silver Substances 0.000 description 3
- 238000004528 spin coating Methods 0.000 description 3
- 125000001424 substituent group Chemical group 0.000 description 3
- NVFINOHFZXRPAD-UHFFFAOYSA-N 9h-fluorene-1,2-diamine Chemical class C1=CC=C2CC3=C(N)C(N)=CC=C3C2=C1 NVFINOHFZXRPAD-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 229910052769 Ytterbium Inorganic materials 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- AZWHFTKIBIQKCA-UHFFFAOYSA-N [Sn+2]=O.[O-2].[In+3] Chemical compound [Sn+2]=O.[O-2].[In+3] AZWHFTKIBIQKCA-UHFFFAOYSA-N 0.000 description 2
- 150000001339 alkali metal compounds Chemical class 0.000 description 2
- 150000001341 alkaline earth metal compounds Chemical class 0.000 description 2
- 150000001491 aromatic compounds Chemical class 0.000 description 2
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 2
- QVQLCTNNEUAWMS-UHFFFAOYSA-N barium oxide Chemical compound [Ba]=O QVQLCTNNEUAWMS-UHFFFAOYSA-N 0.000 description 2
- GQVWHWAWLPCBHB-UHFFFAOYSA-L beryllium;benzo[h]quinolin-10-olate Chemical compound [Be+2].C1=CC=NC2=C3C([O-])=CC=CC3=CC=C21.C1=CC=NC2=C3C([O-])=CC=CC3=CC=C21 GQVWHWAWLPCBHB-UHFFFAOYSA-L 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- XJHCXCQVJFPJIK-UHFFFAOYSA-M caesium fluoride Chemical compound [F-].[Cs+] XJHCXCQVJFPJIK-UHFFFAOYSA-M 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 2
- 230000005281 excited state Effects 0.000 description 2
- 239000007850 fluorescent dye Substances 0.000 description 2
- 229910021389 graphene Inorganic materials 0.000 description 2
- PQXKHYXIUOZZFA-UHFFFAOYSA-M lithium fluoride Chemical compound [Li+].[F-] PQXKHYXIUOZZFA-UHFFFAOYSA-M 0.000 description 2
- FUJCRWPEOMXPAD-UHFFFAOYSA-N lithium oxide Chemical compound [Li+].[Li+].[O-2] FUJCRWPEOMXPAD-UHFFFAOYSA-N 0.000 description 2
- 229910001947 lithium oxide Inorganic materials 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- NDVLTYZPCACLMA-UHFFFAOYSA-N silver oxide Chemical compound [O-2].[Ag+].[Ag+] NDVLTYZPCACLMA-UHFFFAOYSA-N 0.000 description 2
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 2
- FHCPAXDKURNIOZ-UHFFFAOYSA-N tetrathiafulvalene Chemical compound S1C=CSC1=C1SC=CS1 FHCPAXDKURNIOZ-UHFFFAOYSA-N 0.000 description 2
- 229910001930 tungsten oxide Inorganic materials 0.000 description 2
- NAWDYIZEMPQZHO-UHFFFAOYSA-N ytterbium Chemical compound [Yb] NAWDYIZEMPQZHO-UHFFFAOYSA-N 0.000 description 2
- HTPBWAPZAJWXKY-UHFFFAOYSA-L zinc;quinolin-8-olate Chemical compound [Zn+2].C1=CN=C2C([O-])=CC=CC2=C1.C1=CN=C2C([O-])=CC=CC2=C1 HTPBWAPZAJWXKY-UHFFFAOYSA-L 0.000 description 2
- AFBZMKWCZFFWIC-HVEFNXCZSA-N (3s)-3-[[(2s)-2-[[(2s)-2-[[(2r)-2-[[(2s)-2-[[(2s)-2-[[(2s)-2-amino-3-methylbutanoyl]amino]-3-(4-hydroxyphenyl)propanoyl]amino]-3-(4-hydroxyphenyl)propanoyl]amino]-3-sulfanylpropanoyl]amino]-3-(1h-imidazol-5-yl)propanoyl]amino]-4-methylpentanoyl]amino]-4-[ Chemical compound C([C@@H](C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(O)=O)NC(=O)[C@H](CS)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@@H](N)C(C)C)C1=CNC=N1 AFBZMKWCZFFWIC-HVEFNXCZSA-N 0.000 description 1
- UWRZIZXBOLBCON-VOTSOKGWSA-N (e)-2-phenylethenamine Chemical class N\C=C\C1=CC=CC=C1 UWRZIZXBOLBCON-VOTSOKGWSA-N 0.000 description 1
- UOCMXZLNHQBBOS-UHFFFAOYSA-N 2-(1,3-benzoxazol-2-yl)phenol zinc Chemical compound [Zn].Oc1ccccc1-c1nc2ccccc2o1.Oc1ccccc1-c1nc2ccccc2o1 UOCMXZLNHQBBOS-UHFFFAOYSA-N 0.000 description 1
- MKYGXXIXMHTQFA-UHFFFAOYSA-N 6-fluoro-1h-benzimidazol-2-amine Chemical compound C1=C(F)C=C2NC(N)=NC2=C1 MKYGXXIXMHTQFA-UHFFFAOYSA-N 0.000 description 1
- 229910001148 Al-Li alloy Inorganic materials 0.000 description 1
- RKPPHBJIJYHCHW-UHFFFAOYSA-N C1=CC2=CN=C3C=CC=CC3=C2C2=C1C(N=CN1)=C1C=C2 Chemical class C1=CC2=CN=C3C=CC=CC3=C2C2=C1C(N=CN1)=C1C=C2 RKPPHBJIJYHCHW-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- YZCKVEUIGOORGS-OUBTZVSYSA-N Deuterium Chemical compound [2H] YZCKVEUIGOORGS-OUBTZVSYSA-N 0.000 description 1
- 229910052691 Erbium Inorganic materials 0.000 description 1
- 229910052693 Europium Inorganic materials 0.000 description 1
- 239000002879 Lewis base Substances 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- YZCKVEUIGOORGS-IGMARMGPSA-N Protium Chemical compound [1H] YZCKVEUIGOORGS-IGMARMGPSA-N 0.000 description 1
- 241000720974 Protium Species 0.000 description 1
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical class C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 1
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- JFBZPFYRPYOZCQ-UHFFFAOYSA-N [Li].[Al] Chemical compound [Li].[Al] JFBZPFYRPYOZCQ-UHFFFAOYSA-N 0.000 description 1
- XHCLAFWTIXFWPH-UHFFFAOYSA-N [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] XHCLAFWTIXFWPH-UHFFFAOYSA-N 0.000 description 1
- 229910000272 alkali metal oxide Inorganic materials 0.000 description 1
- 229910000287 alkaline earth metal oxide Inorganic materials 0.000 description 1
- REDXJYDRNCIFBQ-UHFFFAOYSA-N aluminium(3+) Chemical compound [Al+3] REDXJYDRNCIFBQ-UHFFFAOYSA-N 0.000 description 1
- 239000010405 anode material Substances 0.000 description 1
- NDMVXIYCFFFPLE-UHFFFAOYSA-N anthracene-9,10-diamine Chemical class C1=CC=C2C(N)=C(C=CC=C3)C3=C(N)C2=C1 NDMVXIYCFFFPLE-UHFFFAOYSA-N 0.000 description 1
- 229940058303 antinematodal benzimidazole derivative Drugs 0.000 description 1
- 229940054051 antipsychotic indole derivative Drugs 0.000 description 1
- 229940027991 antiseptic and disinfectant quinoline derivative Drugs 0.000 description 1
- 125000003785 benzimidazolyl group Chemical class N1=C(NC2=C1C=CC=C2)* 0.000 description 1
- 229910052790 beryllium Inorganic materials 0.000 description 1
- ATBAMAFKBVZNFJ-UHFFFAOYSA-N beryllium atom Chemical compound [Be] ATBAMAFKBVZNFJ-UHFFFAOYSA-N 0.000 description 1
- UFVXQDWNSAGPHN-UHFFFAOYSA-K bis[(2-methylquinolin-8-yl)oxy]-(4-phenylphenoxy)alumane Chemical compound [Al+3].C1=CC=C([O-])C2=NC(C)=CC=C21.C1=CC=C([O-])C2=NC(C)=CC=C21.C1=CC([O-])=CC=C1C1=CC=CC=C1 UFVXQDWNSAGPHN-UHFFFAOYSA-K 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 description 1
- 229910001634 calcium fluoride Inorganic materials 0.000 description 1
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 1
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 1
- 239000000292 calcium oxide Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 229910000423 chromium oxide Inorganic materials 0.000 description 1
- ILSGDBURWYKYHE-UHFFFAOYSA-N chrysene-1,2-diamine Chemical class C1=CC=CC2=CC=C3C4=CC=C(N)C(N)=C4C=CC3=C21 ILSGDBURWYKYHE-UHFFFAOYSA-N 0.000 description 1
- 150000001846 chrysenes Chemical class 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 229910052805 deuterium Inorganic materials 0.000 description 1
- 125000005509 dibenzothiophenyl group Chemical group 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- UYAHIZSMUZPPFV-UHFFFAOYSA-N erbium Chemical compound [Er] UYAHIZSMUZPPFV-UHFFFAOYSA-N 0.000 description 1
- OGPBJKLSAFTDLK-UHFFFAOYSA-N europium atom Chemical compound [Eu] OGPBJKLSAFTDLK-UHFFFAOYSA-N 0.000 description 1
- 150000002219 fluoranthenes Chemical class 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910000449 hafnium oxide Inorganic materials 0.000 description 1
- WIHZLLGSGQNAGK-UHFFFAOYSA-N hafnium(4+);oxygen(2-) Chemical compound [O-2].[O-2].[Hf+4] WIHZLLGSGQNAGK-UHFFFAOYSA-N 0.000 description 1
- 150000002391 heterocyclic compounds Chemical class 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 150000002460 imidazoles Chemical class 0.000 description 1
- 125000004857 imidazopyridinyl group Chemical class N1C(=NC2=C1C=CC=N2)* 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 150000002475 indoles Chemical class 0.000 description 1
- 238000007641 inkjet printing Methods 0.000 description 1
- 229940079865 intestinal antiinfectives imidazole derivative Drugs 0.000 description 1
- 238000007733 ion plating Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 125000002183 isoquinolinyl group Chemical class C1(=NC=CC2=CC=CC=C12)* 0.000 description 1
- 150000007527 lewis bases Chemical class 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- SJCKRGFTWFGHGZ-UHFFFAOYSA-N magnesium silver Chemical compound [Mg].[Ag] SJCKRGFTWFGHGZ-UHFFFAOYSA-N 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- AMWRITDGCCNYAT-UHFFFAOYSA-L manganese oxide Inorganic materials [Mn].O[Mn]=O.O[Mn]=O AMWRITDGCCNYAT-UHFFFAOYSA-L 0.000 description 1
- PPNAOCWZXJOHFK-UHFFFAOYSA-N manganese(2+);oxygen(2-) Chemical class [O-2].[Mn+2] PPNAOCWZXJOHFK-UHFFFAOYSA-N 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 229910000476 molybdenum oxide Inorganic materials 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- QGLKJKCYBOYXKC-UHFFFAOYSA-N nonaoxidotritungsten Chemical compound O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1 QGLKJKCYBOYXKC-UHFFFAOYSA-N 0.000 description 1
- MPQXHAGKBWFSNV-UHFFFAOYSA-N oxidophosphanium Chemical group [PH3]=O MPQXHAGKBWFSNV-UHFFFAOYSA-N 0.000 description 1
- PQQKPALAQIIWST-UHFFFAOYSA-N oxomolybdenum Chemical compound [Mo]=O PQQKPALAQIIWST-UHFFFAOYSA-N 0.000 description 1
- DYIZHKNUQPHNJY-UHFFFAOYSA-N oxorhenium Chemical compound [Re]=O DYIZHKNUQPHNJY-UHFFFAOYSA-N 0.000 description 1
- VVRQVWSVLMGPRN-UHFFFAOYSA-N oxotungsten Chemical class [W]=O VVRQVWSVLMGPRN-UHFFFAOYSA-N 0.000 description 1
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 150000005041 phenanthrolines Chemical class 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- JSTHREDTMPIBEX-UHFFFAOYSA-N pyrene-2,7-diamine Chemical class C1=C(N)C=C2C=CC3=CC(N)=CC4=CC=C1C2=C43 JSTHREDTMPIBEX-UHFFFAOYSA-N 0.000 description 1
- 150000003220 pyrenes Chemical class 0.000 description 1
- 229940083082 pyrimidine derivative acting on arteriolar smooth muscle Drugs 0.000 description 1
- 150000003230 pyrimidines Chemical class 0.000 description 1
- 150000003233 pyrroles Chemical class 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 150000003248 quinolines Chemical class 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 229910003449 rhenium oxide Inorganic materials 0.000 description 1
- 229910001925 ruthenium oxide Inorganic materials 0.000 description 1
- WOCIAKWEIIZHES-UHFFFAOYSA-N ruthenium(iv) oxide Chemical compound O=[Ru]=O WOCIAKWEIIZHES-UHFFFAOYSA-N 0.000 description 1
- 229910001923 silver oxide Inorganic materials 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 1
- 229910001936 tantalum oxide Inorganic materials 0.000 description 1
- 150000003518 tetracenes Chemical class 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- TVIVIEFSHFOWTE-UHFFFAOYSA-K tri(quinolin-8-yloxy)alumane Chemical compound [Al+3].C1=CN=C2C([O-])=CC=CC2=C1.C1=CN=C2C([O-])=CC=CC2=C1.C1=CN=C2C([O-])=CC=CC2=C1 TVIVIEFSHFOWTE-UHFFFAOYSA-K 0.000 description 1
- 150000003918 triazines Chemical class 0.000 description 1
- MXSVLWZRHLXFKH-UHFFFAOYSA-N triphenylborane Chemical class C1=CC=CC=C1B(C=1C=CC=CC=1)C1=CC=CC=C1 MXSVLWZRHLXFKH-UHFFFAOYSA-N 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 238000004506 ultrasonic cleaning Methods 0.000 description 1
- 229910001935 vanadium oxide Inorganic materials 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- OYQCBJZGELKKPM-UHFFFAOYSA-N zinc indium(3+) oxygen(2-) Chemical compound [O-2].[Zn+2].[O-2].[In+3] OYQCBJZGELKKPM-UHFFFAOYSA-N 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
- CJGUQZGGEUNPFQ-UHFFFAOYSA-L zinc;2-(1,3-benzothiazol-2-yl)phenolate Chemical compound [Zn+2].[O-]C1=CC=CC=C1C1=NC2=CC=CC=C2S1.[O-]C1=CC=CC=C1C1=NC2=CC=CC=C2S1 CJGUQZGGEUNPFQ-UHFFFAOYSA-L 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/11—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
- H10K50/12—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising dopants
Definitions
- the present invention relates to an organic electroluminescence element and an electronic device.
- an organic electroluminescence element hereinafter sometimes referred to as an organic EL element
- holes from the anode and electrons from the cathode are injected into the light emitting layer. Then, in the light emitting layer, the injected holes and electrons are recombined to form excitons.
- the organic EL element includes a light emitting layer between an anode and a cathode. Moreover, it may have a laminated structure including organic layers such as a hole injection layer, a hole transport layer, an electron injection layer, and an electron transport layer. As an organic EL element having a laminated structure of a plurality of organic layers, for example, there are organic EL elements described in Patent Document 1 and Patent Document 2.
- the following organic electroluminescence device is provided.
- the organic layer includes a light-emitting layer, and a hole transport region disposed between the anode and the light-emitting layer,
- the light emitting layer contains a compound represented by the following general formula (1):
- the hole transport region includes a compound represented by the following general formula (2).
- Ar 1 represents a substituted or unsubstituted aryl group having 6 to 20 ring carbon atoms.
- Ar 2 represents a substituted or unsubstituted aryl group having 6 to 20 carbon atoms
- R 1 to R 9 are each independently a hydrogen atom, a substituted or unsubstituted aryl group having 6 to 20 ring carbon atoms, a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, —NR 10 R 11 , Or a substituted or unsubstituted heterocyclic group having 3 to 20 ring atoms
- R 10 and R 11 each independently represents a substituted or unsubstituted aryl group having 6 to 20 ring carbon atoms.
- R 2 and R 3 may combine to form a ring structure of the following general formula (3-1) or general formula (3-2). ]
- R 1 and R 4 to R 9 are respectively synonymous with the groups in the general formula (2), Ph represents a phenyl group.
- an electronic apparatus including the organic electroluminescence element is provided.
- an organic electroluminescence element having light emission characteristics at a practical level
- an electronic apparatus including the organic electroluminescence element
- the organic electroluminescence device is The anode, A cathode, An organic layer disposed between the anode and the cathode, The organic layer includes a light-emitting layer, and a hole transport region disposed between the anode and the light-emitting layer,
- the light emitting layer contains a compound represented by the following general formula (1):
- the hole transport region includes a compound represented by the following general formula (2).
- Ar 1 represents a substituted or unsubstituted aryl group having 6 to 20 ring carbon atoms.
- Ar 2 represents a substituted or unsubstituted aryl group having 6 to 20 carbon atoms
- R 1 to R 9 are each independently a hydrogen atom, a substituted or unsubstituted aryl group having 6 to 20 ring carbon atoms, a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, —NR 10 R 11 , Or a substituted or unsubstituted heterocyclic group having 3 to 20 ring atoms
- R 10 and R 11 each independently represents a substituted or unsubstituted aryl group having 6 to 20 ring carbon atoms.
- R 2 and R 3 may combine to form a ring structure of the following general formula (3-1) or general formula (3-2). ]
- Examples of the aryl group having 6 to 20 ring carbon atoms in Ar 1 , Ar 2 , and R 1 to R 11 include a phenyl group, a biphenyl group, a naphthyl group, a phenanthryl group, a fluorenyl group, and a fluoranthenyl group.
- Ar 1 is preferably a phenyl group, a biphenyl group, a naphthyl group, a phenanthryl group, a 9,9′-dimethylolfluorenyl group, a 9,9′-diphenylfluorenyl group or a floranthenyl group.
- Examples of the alkyl group having 1 to 10 carbon atoms in R 1 to R 9 include a methyl group, an ethyl group, a propyl group, a t-butyl group, and an n-butyl group.
- Examples of the heterocyclic group having 3 to 20 ring atoms in R 1 to R 9 include a carbazolyl group, a dibenzofuranyl group, and a dibenzothiophenyl group.
- the “substituent” in “substituted or unsubstituted” of each group of Ar 1 , Ar 2 , and R 1 to R 11 is an alkyl group having 1 to 10 carbon atoms or an aryl having 6 to 20 ring carbon atoms Groups.
- Examples of the alkyl group having 1 to 10 carbon atoms as the “substituent” of each group of Ar 1 , Ar 2 , and R 1 to R 11 include, for example, a methyl group, an ethyl group, a propyl group, a t-butyl group, or n -A butyl group etc. are mentioned.
- Examples of the 6 to 20 aryl group as the “substituent” of each group of Ar 1 , Ar 2 , and R 1 to R 11 include a phenyl group, a biphenyl group, and a naphthyl group.
- the compound represented by the general formula (1) can be synthesized, for example, by the following production route.
- the compound represented by the general formula (2) can be synthesized, for example, by the following production route.
- the hydrogen atom includes light hydrogen (protium) and deuterium which are isotopes having different numbers of neutrons.
- FIG. 1 shows an outline of an example of the layer configuration of the organic EL element.
- the organic EL element 1 in FIG. 1 includes a substrate 2, an anode 3, a cathode 4, and a light emitting unit (organic layer) 10 disposed between the anode 3 and the cathode 4.
- the light emitting unit (organic layer) 10 includes at least one light emitting layer 5 and a hole transport region (hole injection layer, hole transport layer, etc.) 6 disposed between the anode 3 and the light emitting layer 5.
- An electron transport region (electron injection layer, electron transport layer, etc.) 7 may be formed between the light emitting layer 5 and the cathode 4.
- an electron blocking layer (not shown) may be provided on the light emitting layer 5 on the anode 3 side, and a hole blocking layer (not shown) may be provided on the light emitting layer 5 on the cathode 4 side.
- the organic EL device includes a compound represented by the general formula (1) in the light emitting layer 5, and the hole transport region (hole injection layer, hole transport layer, etc.) 6 has the general formula.
- the compound represented by (2) is included.
- the organic EL device according to the present invention is not limited to the layer configuration of the organic EL device 1 illustrated in FIG. 1.
- the hole transport region 6 may have a stacked configuration of two or more layers.
- the electron transport region 7 may also have a laminated structure of two or more layers.
- the organic EL device may be, for example, a fluorescent or phosphorescent monochromatic light emitting device or a fluorescent / phosphorescent white light emitting device. Further, it may be a simple type having a single light emitting unit or a tandem type having two or more light emitting units.
- the “light emitting unit” described in this specification includes an organic layer, and at least one of the organic layers is a light emitting layer, and emits light by recombination of injected holes and electrons. Say the smallest unit.
- the “light emitting layer” described in the present specification is an organic layer having a light emitting function.
- the light emitting layer is, for example, a phosphorescent light emitting layer, a fluorescent light emitting layer or the like, and may be one layer or two or more layers.
- the light emitting unit may be a laminated type having two or more phosphorescent light emitting layers or fluorescent light emitting layers. In this case, for example, a space for preventing excitons generated in the phosphorescent light emitting layer from diffusing into the fluorescent light emitting layer. You may have a layer between each light emitting layer.
- the layer structure of the organic EL element according to one embodiment of the present invention is not limited to these.
- the organic EL element has a hole injection layer and a hole transport layer
- a hole injection layer is provided between the hole transport layer and the anode.
- an organic EL element has an electron injection layer and an electron carrying layer
- the electron injection layer is provided between the electron carrying layer and the cathode.
- Each of the hole injection layer, the hole transport layer, the electron transport layer, and the electron injection layer may be composed of one layer, or may be composed of two or more layers.
- the substrate 2 is used as a support for the organic EL element.
- glass, quartz, plastic, or the like can be used as the substrate.
- a flexible substrate may be used.
- the flexible substrate is a substrate that can be bent (flexible), and examples thereof include a plastic substrate made of polycarbonate or polyvinyl chloride.
- anode As the anode 3, it is preferable to use, for example, a metal, an alloy, a conductive compound, a mixture thereof, or the like having a high work function (specifically, 4.0 eV or more).
- anode materials include indium tin oxide (ITO), indium oxide-tin oxide containing silicon or silicon oxide, indium oxide-zinc oxide, tungsten oxide, and oxide containing zinc oxide. Indium, graphene, and the like can be given.
- anode 3 gold, silver, platinum, nickel, tungsten, chromium, molybdenum, iron, cobalt, copper, palladium, titanium, nitrides of these metals (for example, titanium nitride), and the like can be given.
- the method for forming the anode 3 include sputtering, vacuum deposition, coating, ink jet, and spin coating.
- the hole injection layer formed in contact with the anode 3 is a layer containing a substance having a high hole injection property and has a function of injecting holes from the anode into the organic layer.
- substances having a high hole injection property include molybdenum oxide, titanium oxide, vanadium oxide, rhenium oxide, ruthenium oxide, chromium oxide, zirconium oxide, hafnium oxide, tantalum oxide, and silver oxide. Materials, tungsten oxides, manganese oxides, aromatic amine compounds, electron-withdrawing (acceptor) compounds, polymer compounds, and the like.
- the hole transport layer included in the hole transport region 6 is a layer containing a substance having a high hole transport property, and has a function of transporting holes from the anode 3 to the organic layer 10.
- the substance having a high hole transporting property is preferably a substance having a hole mobility of 10 ⁇ 6 cm 2 / (V ⁇ s) or more.
- the organic EL element which concerns on 1 aspect of this invention contains the compound represented by General formula (2) in the positive hole transport area
- the hole transport region 6 and the hole transport layer constituting the hole transport region 6 may be a single layer or two or more layers may be laminated. In this case, it is preferable to dispose a layer containing a substance having a larger energy gap among substances having a high hole transporting property on the side close to the light emitting layer.
- the organic EL element is represented by the general formula (2) in at least one layer constituting the hole transport region 6. Are included.
- the light emitting layer 5 is a layer containing a substance (dopant material) having a high light emitting property.
- a substance (dopant material) having a high light emitting property various materials can be used.
- a fluorescent compound (fluorescent dopant), a phosphorescent compound (phosphorescent dopant), or the like can be used.
- a fluorescent compound is a compound that can emit light from a singlet excited state, and a light-emitting layer containing the compound is called a fluorescent light-emitting layer.
- a phosphorescent compound is a compound that can emit light from a triplet excited state, and a light-emitting layer containing the compound is called a phosphorescent light-emitting layer.
- the light emitting layer 5 usually contains a dopant material and a host material for efficiently emitting light.
- the dopant material may be referred to as a guest material, an emitter, or a light-emitting material depending on the literature.
- the host material may be referred to as a matrix material depending on the literature.
- One light emitting layer may contain two or more dopant materials and two or more host materials. Further, the light emitting layer may be two or more.
- the organic EL device according to one embodiment of the present invention includes the compound represented by the general formula (1) in the light emitting layer 5.
- the compound represented by the general formula (1) functions as a host material.
- the host material combined with the fluorescent dopant is referred to as “fluorescent host”, and the host material combined with the phosphorescent dopant is referred to as “phosphorescent host”.
- the fluorescent host and the phosphorescent host are not classified only by the molecular structure.
- the phosphorescent host is a material for forming a phosphorescent light emitting layer containing a phosphorescent dopant, but does not mean that it cannot be used as a material for forming a fluorescent light emitting layer. The same applies to the fluorescent host.
- the content of the dopant material in the light emitting layer 5 is not particularly limited, but is preferably 0.1 to 99% by mass, for example, from the viewpoint of sufficient light emission and concentration quenching, and 0.1 to 70%. More preferably, it is more preferably 0.1 to 30% by mass.
- fluorescent dopant examples include condensed polycyclic aromatic derivatives, styrylamine derivatives, condensed ring amine derivatives, boron-containing compounds, pyrrole derivatives, indole derivatives, carbazole derivatives, and the like. Among these, condensed ring amine derivatives, boron-containing compounds, and carbazole derivatives are preferable.
- the condensed ring amine derivative examples include diaminopyrene derivatives, diaminochrysene derivatives, diaminoanthracene derivatives, diaminofluorene derivatives, diaminofluorene derivatives in which one or more benzofuro skeletons are condensed.
- the boron-containing compound include a pyromethene derivative and a triphenylborane derivative.
- fluorescent dopants include the compounds shown below.
- the compound represented by the general formula (1) functions as a host material in the light-emitting layer.
- a host material in a light emitting layer in addition to the compound represented by General formula (1), you may contain another host material.
- the fluorescent host that can be used in combination is preferably a compound having a singlet level higher than that of the fluorescent dopant, and examples thereof include a heterocyclic compound and a condensed aromatic compound.
- the condensed aromatic compound for example, anthracene derivatives, pyrene derivatives, chrysene derivatives, naphthacene derivatives and the like are preferable.
- the electron transport region 7 and the electron transport layer constituting the electron transport region 7 are layers containing a substance having a high electron transport property.
- the substance having a high electron transporting property is preferably a substance having an electron mobility of 10 ⁇ 6 cm 2 / Vs or more.
- the metal complex examples include an aluminum complex, a beryllium complex, and a zinc complex.
- tris (4-methyl-8-quinolinolato) aluminum (abbreviation: Almq3) bis (10-hydroxybenzo [h] quinolinato) beryllium (Abbreviation: BeBq2)
- bis (2-methyl-8-quinolinolato) (4-phenylphenolato) aluminum (III) abbreviation: BAlq
- aromatic heterocyclic compound examples include imidazole derivatives such as benzimidazole derivatives, imidazopyridine derivatives, and benzimidazophenanthridine derivatives; azine derivatives such as pyrimidine derivatives and triazine derivatives; quinoline derivatives, isoquinoline derivatives, phenanthroline derivatives, and the like.
- imidazole derivatives such as benzimidazole derivatives, imidazopyridine derivatives, and benzimidazophenanthridine derivatives
- azine derivatives such as pyrimidine derivatives and triazine derivatives
- quinoline derivatives isoquinoline derivatives, phenanthroline derivatives, and the like.
- examples thereof include compounds containing a nitrogen six-membered ring structure (including those having a phosphine oxide substituent in the heterocyclic ring).
- aromatic heterocyclic compound used for the electron transport layer include the following compounds.
- aromatic hydrocarbon compound examples include anthracene derivatives and fluoranthene derivatives.
- the electron transport layer examples include metals such as alkali metals, magnesium, alkaline earth metals, alloys containing two or more of these metals; alkali metal compounds such as 8-quinolinolato lithium (abbreviation: Liq), A metal compound such as an alkaline earth metal compound may be contained.
- a metal such as an alkali metal, magnesium, an alkaline earth metal, or an alloy containing two or more of these metals is contained in the electron transport layer, the content is not particularly limited, but 0 It is preferably 1 to 50% by mass, more preferably 0.1 to 20% by mass, and still more preferably 1 to 10% by mass.
- the content is preferably 1 to 99% by mass, more preferably 10 to 90% by mass. It is. Note that the layer on the light emitting layer side in the case where the electron transport layer is two or more layers can be formed of only these metal compounds.
- the electron injection layer is a layer containing a substance having a high electron injection property and has a function of efficiently injecting electrons from the cathode to the light emitting layer.
- the substance having a high electron injecting property include alkali metals, magnesium, alkaline earth metals, and compounds thereof. Specifically, lithium, cesium, calcium, lithium fluoride, cesium fluoride, calcium fluoride, lithium oxide, and the like can be given.
- an alkali metal, magnesium, alkaline earth metal, or a compound containing these compounds, for example, an Alq containing magnesium, or the like can also be used in a substance having an electron transporting property.
- a composite material including an organic compound and a donor compound can be used. Since an organic compound receives electrons from a donor compound, such a composite material is excellent in electron injecting property and electron transporting property.
- a substance having excellent transportability of received electrons is preferable.
- a metal complex or an aromatic heterocyclic compound which is the above-described substance having high electron transportability can be used.
- the donor compound may be any substance that can donate electrons to an organic compound, and examples thereof include alkali metals, magnesium, alkaline earth metals, and rare earth metals. Specifically, lithium, cesium, magnesium, calcium, erbium, ytterbium, and the like can be given.
- Alkali metal oxides and alkaline earth metal oxides are preferable, and specific examples include lithium oxide, calcium oxide, and barium oxide.
- a Lewis base such as magnesium oxide can also be used.
- an organic compound such as tetrathiafulvalene (abbreviation: TTF) can be used.
- the cathode is preferably a metal, an alloy, a conductive compound, a mixture thereof, or the like having a low work function (specifically, 3.8 eV or less).
- the material of the cathode include alkali metals such as lithium and cesium; magnesium; alkaline earth metals such as calcium and strontium; alloys containing these metals (for example, magnesium-silver, aluminum-lithium); europium, ytterbium, and the like Rare earth metals; alloys containing rare earth metals.
- the cathode is usually formed by vacuum deposition or sputtering. Moreover, when using a silver paste etc., the apply
- the cathode is formed using various conductive materials such as aluminum, silver, ITO, graphene, silicon or indium oxide-tin oxide containing silicon oxide regardless of the work function. Can be formed. These conductive materials can be formed by a sputtering method, an inkjet method, a spin coating method, or the like.
- the method for forming each layer of the organic EL element is not particularly limited unless otherwise specified.
- a forming method a known method such as a dry film forming method or a wet film forming method can be used.
- Specific examples of the dry film forming method include a vacuum deposition method, a sputtering method, a plasma method, and an ion plating method.
- Specific examples of the wet film forming method include various coating methods such as a spin coating method, a dipping method, a flow coating method, and an ink jet method.
- the thickness of each layer of the organic EL element is not particularly limited unless otherwise specified. If the film thickness is too small, defects such as pinholes are likely to occur, and sufficient light emission luminance cannot be obtained. On the other hand, if the film thickness is too large, a high driving voltage is required, and the efficiency is lowered. From such a viewpoint, the film thickness is usually preferably from 0.1 nm to 10 ⁇ m, preferably from 5 nm to 10 ⁇ m, and more preferably from 10 nm to 0.2 ⁇ m.
- An electronic device includes the above-described organic EL element according to one embodiment of the present invention.
- Specific examples of the electronic device include display components such as an organic EL panel module; display devices such as a television, a mobile phone, a smartphone, and a personal computer; lighting, a light emitting device for a vehicle lamp, and the like.
- Example 1 A 25 mm ⁇ 75 mm ⁇ 1.1 mm thick glass substrate with an ITO transparent electrode line (manufactured by Geomatic Co., Ltd.) was subjected to ultrasonic cleaning in isopropyl alcohol for 5 minutes and then UV ozone cleaning for 30 minutes.
- the film thickness of the ITO transparent electrode was 130 nm.
- the glass substrate with the transparent electrode line after washing is attached to the substrate holder of the vacuum deposition apparatus, and the compound HT1 and the compound HI are co-deposited so as to cover the transparent electrode on the surface where the transparent electrode line is formed. Then, a co-evaporated film layer (H-1 layer) having a thickness of 10 nm was formed.
- the concentration of compound HI in the H-1 layer was 3% by weight.
- the compound HT1 was vapor-deposited on the co-evaporated film layer to form an HT1 layer (H-2 layer) having a thickness of 80 nm.
- the compound HT2 was vapor-deposited to form a HT2 layer (H-3 layer) having a thickness of 10 nm.
- the compound GH1 as a host material and the compound GD1 as a light emitting dopant material (fluorescent dopant) were co-evaporated to form a light emitting layer having a thickness of 25 nm.
- the concentration of the compound GD1 in the light emitting layer was 4% by mass.
- the compound ET1 and the compound Liq were co-evaporated to form a 20 nm thick layer (E-1 layer).
- the concentration of Compound Liq in this layer was 30% by weight.
- a compound Liq was deposited on this layer at a film formation rate of 0.1 angstrom / min to form a Liq layer (E-2) having a thickness of 1 nm.
- Metal Al was vapor-deposited on this layer, and a metal cathode was formed with a film thickness of 80 nm.
- the organic EL element of Example 1 has the following layer structure.
- ITO (130 nm) / HT1 + HI (5 nm) / HT1 (80 nm) / HT2 (10 nm) / GH1: GD (25 nm) / ET1: Liq (20 nm) / Liq (1 nm) / Al (80 nm)
- voltage was applied to the obtained organic EL device, it showed light emission characteristics at a practical level.
- Example 2 to 12 An organic EL device was produced in the same manner as in Example 1 except that each compound shown in Table 1 was used as a material for the hole transport region, the light emitting layer, and the electron transport region. When voltage was applied to the organic EL elements obtained in Examples 2 to 12, all showed light emission characteristics at a practical level.
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Electroluminescent Light Sources (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
An organic electroluminescent element (1) provided with an anode (3), a cathode (4), and an organic layer (10) disposed between the anode (3) and the cathode (4), the organic layer (10) comprising an emissive layer (5) and a hole transport region (6) disposed between the anode (3) and the emissive layer (5), the emissive layer (5) comprising a compound represented by general formula (1), and the hole transport region (6) comprising a compound represented by general formula (2).
Description
本発明は、有機エレクトロルミネッセンス素子及び電子機器に関する。
The present invention relates to an organic electroluminescence element and an electronic device.
有機エレクトロルミネッセンス素子(以下、有機EL素子ということがある)に電圧を印加すると、陽極から正孔が、また陰極から電子が、それぞれ発光層に注入される。そして、発光層において、注入された正孔と電子とが再結合し、励起子が形成される。
When a voltage is applied to an organic electroluminescence element (hereinafter sometimes referred to as an organic EL element), holes from the anode and electrons from the cathode are injected into the light emitting layer. Then, in the light emitting layer, the injected holes and electrons are recombined to form excitons.
有機EL素子は、陽極と陰極の間に、発光層を含む。また、正孔注入層、正孔輸送層、電子注入層、電子輸送層等の有機層を含む積層構造を有する場合もある。複数の有機層の積層構造を有する有機EL素子としては、例えば、特許文献1や特許文献2に記載の有機EL素子がある。
The organic EL element includes a light emitting layer between an anode and a cathode. Moreover, it may have a laminated structure including organic layers such as a hole injection layer, a hole transport layer, an electron injection layer, and an electron transport layer. As an organic EL element having a laminated structure of a plurality of organic layers, for example, there are organic EL elements described in Patent Document 1 and Patent Document 2.
本発明の一態様によれば、以下の有機エレクトロルミネッセンス素子が提供される。
陽極と、
陰極と、
前記陽極と前記陰極の間に配された有機層と、を備え、
前記有機層は、発光層、及び、前記陽極と前記発光層との間に配された正孔輸送領域を含み、
前記発光層は、下記一般式(1)で表される化合物を含み、
前記正孔輸送領域は、下記一般式(2)で表される化合物を含む、
有機エレクトロルミネッセンス素子。 According to one aspect of the present invention, the following organic electroluminescence device is provided.
The anode,
A cathode,
An organic layer disposed between the anode and the cathode,
The organic layer includes a light-emitting layer, and a hole transport region disposed between the anode and the light-emitting layer,
The light emitting layer contains a compound represented by the following general formula (1):
The hole transport region includes a compound represented by the following general formula (2).
Organic electroluminescence device.
陽極と、
陰極と、
前記陽極と前記陰極の間に配された有機層と、を備え、
前記有機層は、発光層、及び、前記陽極と前記発光層との間に配された正孔輸送領域を含み、
前記発光層は、下記一般式(1)で表される化合物を含み、
前記正孔輸送領域は、下記一般式(2)で表される化合物を含む、
有機エレクトロルミネッセンス素子。 According to one aspect of the present invention, the following organic electroluminescence device is provided.
The anode,
A cathode,
An organic layer disposed between the anode and the cathode,
The organic layer includes a light-emitting layer, and a hole transport region disposed between the anode and the light-emitting layer,
The light emitting layer contains a compound represented by the following general formula (1):
The hole transport region includes a compound represented by the following general formula (2).
Organic electroluminescence device.
[一般式(1)中、
Ar1は、置換もしくは無置換の環形成炭素数6~20のアリール基を表す。] [In general formula (1),
Ar 1 represents a substituted or unsubstituted aryl group having 6 to 20 ring carbon atoms. ]
Ar1は、置換もしくは無置換の環形成炭素数6~20のアリール基を表す。] [In general formula (1),
Ar 1 represents a substituted or unsubstituted aryl group having 6 to 20 ring carbon atoms. ]
[一般式(2)中、
Ar2は、置換もしくは無置換の炭素数6~20のアリール基を表し、
R1~R9は、それぞれ独立に、水素原子、置換もしくは無置換の環形成炭素数6~20のアリール基、置換もしくは無置換の炭素数1~10のアルキル基、-NR10R11、又は置換もしくは無置換の環形成原子数3~20の複素環基を表し、
R10及びR11は、それぞれ独立に、置換もしくは無置換の環形成炭素数6~20のアリール基を表す。
R2とR3が結合して下記一般式(3-1)又は下記一般式(3-2)の環構造を形成してもよい。] [In general formula (2),
Ar 2 represents a substituted or unsubstituted aryl group having 6 to 20 carbon atoms,
R 1 to R 9 are each independently a hydrogen atom, a substituted or unsubstituted aryl group having 6 to 20 ring carbon atoms, a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, —NR 10 R 11 , Or a substituted or unsubstituted heterocyclic group having 3 to 20 ring atoms,
R 10 and R 11 each independently represents a substituted or unsubstituted aryl group having 6 to 20 ring carbon atoms.
R 2 and R 3 may combine to form a ring structure of the following general formula (3-1) or general formula (3-2). ]
Ar2は、置換もしくは無置換の炭素数6~20のアリール基を表し、
R1~R9は、それぞれ独立に、水素原子、置換もしくは無置換の環形成炭素数6~20のアリール基、置換もしくは無置換の炭素数1~10のアルキル基、-NR10R11、又は置換もしくは無置換の環形成原子数3~20の複素環基を表し、
R10及びR11は、それぞれ独立に、置換もしくは無置換の環形成炭素数6~20のアリール基を表す。
R2とR3が結合して下記一般式(3-1)又は下記一般式(3-2)の環構造を形成してもよい。] [In general formula (2),
Ar 2 represents a substituted or unsubstituted aryl group having 6 to 20 carbon atoms,
R 1 to R 9 are each independently a hydrogen atom, a substituted or unsubstituted aryl group having 6 to 20 ring carbon atoms, a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, —NR 10 R 11 , Or a substituted or unsubstituted heterocyclic group having 3 to 20 ring atoms,
R 10 and R 11 each independently represents a substituted or unsubstituted aryl group having 6 to 20 ring carbon atoms.
R 2 and R 3 may combine to form a ring structure of the following general formula (3-1) or general formula (3-2). ]
一般式(3-1) 一般式(3-2)
General formula (3-1) General formula (3-2)
[一般式(3-1)及び一般式(3-2)中、
R1、R4~R9は、それぞれ、前記一般式(2)における各基と同義であり、
Phはフェニル基を表す。] [In general formula (3-1) and general formula (3-2),
R 1 and R 4 to R 9 are respectively synonymous with the groups in the general formula (2),
Ph represents a phenyl group. ]
R1、R4~R9は、それぞれ、前記一般式(2)における各基と同義であり、
Phはフェニル基を表す。] [In general formula (3-1) and general formula (3-2),
R 1 and R 4 to R 9 are respectively synonymous with the groups in the general formula (2),
Ph represents a phenyl group. ]
本発明の他の態様によれば、上記有機エレクトロルミネッセンス素子を備える電子機器が提供される。
According to another aspect of the present invention, an electronic apparatus including the organic electroluminescence element is provided.
本発明の一態様によれば、実用レベルの発光特性を有する有機エレクトロルミネッセンス素子、及びそれを備えた電子機器を提供することが可能となる。
According to one embodiment of the present invention, it is possible to provide an organic electroluminescence element having light emission characteristics at a practical level, and an electronic apparatus including the organic electroluminescence element.
本発明の一態様に係る有機エレクトロルミネッセンス素子は、
陽極と、
陰極と、
前記陽極と前記陰極の間に配された有機層と、を備え、
前記有機層は、発光層、及び、前記陽極と前記発光層との間に配された正孔輸送領域を含み、
前記発光層は、下記一般式(1)で表される化合物を含み、
前記正孔輸送領域は、下記一般式(2)で表される化合物を含む。 The organic electroluminescence device according to one embodiment of the present invention is
The anode,
A cathode,
An organic layer disposed between the anode and the cathode,
The organic layer includes a light-emitting layer, and a hole transport region disposed between the anode and the light-emitting layer,
The light emitting layer contains a compound represented by the following general formula (1):
The hole transport region includes a compound represented by the following general formula (2).
陽極と、
陰極と、
前記陽極と前記陰極の間に配された有機層と、を備え、
前記有機層は、発光層、及び、前記陽極と前記発光層との間に配された正孔輸送領域を含み、
前記発光層は、下記一般式(1)で表される化合物を含み、
前記正孔輸送領域は、下記一般式(2)で表される化合物を含む。 The organic electroluminescence device according to one embodiment of the present invention is
The anode,
A cathode,
An organic layer disposed between the anode and the cathode,
The organic layer includes a light-emitting layer, and a hole transport region disposed between the anode and the light-emitting layer,
The light emitting layer contains a compound represented by the following general formula (1):
The hole transport region includes a compound represented by the following general formula (2).
Ar1は、置換もしくは無置換の環形成炭素数6~20のアリール基を表す。]
Ar 1 represents a substituted or unsubstituted aryl group having 6 to 20 ring carbon atoms. ]
[一般式(2)中、
Ar2は、置換もしくは無置換の炭素数6~20のアリール基を表し、
R1~R9は、それぞれ独立に、水素原子、置換もしくは無置換の環形成炭素数6~20のアリール基、置換もしくは無置換の炭素数1~10のアルキル基、-NR10R11、又は置換もしくは無置換の環形成原子数3~20の複素環基を表し、
R10及びR11は、それぞれ独立に、置換もしくは無置換の環形成炭素数6~20のアリール基を表す。
R2とR3が結合して下記一般式(3-1)又は下記一般式(3-2)の環構造を形成してもよい。] [In general formula (2),
Ar 2 represents a substituted or unsubstituted aryl group having 6 to 20 carbon atoms,
R 1 to R 9 are each independently a hydrogen atom, a substituted or unsubstituted aryl group having 6 to 20 ring carbon atoms, a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, —NR 10 R 11 , Or a substituted or unsubstituted heterocyclic group having 3 to 20 ring atoms,
R 10 and R 11 each independently represents a substituted or unsubstituted aryl group having 6 to 20 ring carbon atoms.
R 2 and R 3 may combine to form a ring structure of the following general formula (3-1) or general formula (3-2). ]
Ar2は、置換もしくは無置換の炭素数6~20のアリール基を表し、
R1~R9は、それぞれ独立に、水素原子、置換もしくは無置換の環形成炭素数6~20のアリール基、置換もしくは無置換の炭素数1~10のアルキル基、-NR10R11、又は置換もしくは無置換の環形成原子数3~20の複素環基を表し、
R10及びR11は、それぞれ独立に、置換もしくは無置換の環形成炭素数6~20のアリール基を表す。
R2とR3が結合して下記一般式(3-1)又は下記一般式(3-2)の環構造を形成してもよい。] [In general formula (2),
Ar 2 represents a substituted or unsubstituted aryl group having 6 to 20 carbon atoms,
R 1 to R 9 are each independently a hydrogen atom, a substituted or unsubstituted aryl group having 6 to 20 ring carbon atoms, a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, —NR 10 R 11 , Or a substituted or unsubstituted heterocyclic group having 3 to 20 ring atoms,
R 10 and R 11 each independently represents a substituted or unsubstituted aryl group having 6 to 20 ring carbon atoms.
R 2 and R 3 may combine to form a ring structure of the following general formula (3-1) or general formula (3-2). ]
[一般式(3-1)及び一般式(3-2)中、
R1、R4~R9は、それぞれ、前記一般式(2)における各基と同義であり、
Phはフェニル基を表す。]
[In general formula (3-1) and general formula (3-2),
R 1 and R 4 to R 9 are respectively synonymous with the groups in the general formula (2),
Ph represents a phenyl group. ]
Ar1、Ar2、R1~R11における環形成炭素数6~20のアリール基としては、フェニル基、ビフェニル基、ナフチル基、フェナントリル基、フルオレニル基又はフロランテニル基が挙げられる。
Ar1としては、フェニル基、ビフェニル基、ナフチル基、フェナントリル基、9,9‘-ジメリルフルオレニル基、9,9’-ジフェニルフルオレニル基又はフロランテニル基が好ましい。 Examples of the aryl group having 6 to 20 ring carbon atoms in Ar 1 , Ar 2 , and R 1 to R 11 include a phenyl group, a biphenyl group, a naphthyl group, a phenanthryl group, a fluorenyl group, and a fluoranthenyl group.
Ar 1 is preferably a phenyl group, a biphenyl group, a naphthyl group, a phenanthryl group, a 9,9′-dimethylolfluorenyl group, a 9,9′-diphenylfluorenyl group or a floranthenyl group.
Ar1としては、フェニル基、ビフェニル基、ナフチル基、フェナントリル基、9,9‘-ジメリルフルオレニル基、9,9’-ジフェニルフルオレニル基又はフロランテニル基が好ましい。 Examples of the aryl group having 6 to 20 ring carbon atoms in Ar 1 , Ar 2 , and R 1 to R 11 include a phenyl group, a biphenyl group, a naphthyl group, a phenanthryl group, a fluorenyl group, and a fluoranthenyl group.
Ar 1 is preferably a phenyl group, a biphenyl group, a naphthyl group, a phenanthryl group, a 9,9′-dimethylolfluorenyl group, a 9,9′-diphenylfluorenyl group or a floranthenyl group.
R1~R9における炭素数1~10のアルキル基としては、メチル基、エチル基、プロピル基、t-ブチル基又はn-ブチル基等が挙げられる。
R1~R9における環形成原子数3~20の複素環基としては、カルバゾリル基、ジベンゾフラニル基、ジベンゾチオフェニル基等が挙げられる。 Examples of the alkyl group having 1 to 10 carbon atoms in R 1 to R 9 include a methyl group, an ethyl group, a propyl group, a t-butyl group, and an n-butyl group.
Examples of the heterocyclic group having 3 to 20 ring atoms in R 1 to R 9 include a carbazolyl group, a dibenzofuranyl group, and a dibenzothiophenyl group.
R1~R9における環形成原子数3~20の複素環基としては、カルバゾリル基、ジベンゾフラニル基、ジベンゾチオフェニル基等が挙げられる。 Examples of the alkyl group having 1 to 10 carbon atoms in R 1 to R 9 include a methyl group, an ethyl group, a propyl group, a t-butyl group, and an n-butyl group.
Examples of the heterocyclic group having 3 to 20 ring atoms in R 1 to R 9 include a carbazolyl group, a dibenzofuranyl group, and a dibenzothiophenyl group.
Ar1、Ar2、及びR1~R11の各基の「置換もしくは無置換の」における「置換基」としては、炭素数1~10のアルキル基、又は環形成炭素数6~20のアリール基が挙げられる。
Ar1、Ar2、及びR1~R11の各基の「置換基」としての炭素数1~10のアルキル基としては、例えば、メチル基、エチル基、プロピル基、t-ブチル基又はn-ブチル基等が挙げられる。
Ar1、Ar2、及びR1~R11の各基の「置換基」としての6~20のアリール基としては、例えば、フェニル基、ビフェニル基又はナフチル基が挙げられる。 The “substituent” in “substituted or unsubstituted” of each group of Ar 1 , Ar 2 , and R 1 to R 11 is an alkyl group having 1 to 10 carbon atoms or an aryl having 6 to 20 ring carbon atoms Groups.
Examples of the alkyl group having 1 to 10 carbon atoms as the “substituent” of each group of Ar 1 , Ar 2 , and R 1 to R 11 include, for example, a methyl group, an ethyl group, a propyl group, a t-butyl group, or n -A butyl group etc. are mentioned.
Examples of the 6 to 20 aryl group as the “substituent” of each group of Ar 1 , Ar 2 , and R 1 to R 11 include a phenyl group, a biphenyl group, and a naphthyl group.
Ar1、Ar2、及びR1~R11の各基の「置換基」としての炭素数1~10のアルキル基としては、例えば、メチル基、エチル基、プロピル基、t-ブチル基又はn-ブチル基等が挙げられる。
Ar1、Ar2、及びR1~R11の各基の「置換基」としての6~20のアリール基としては、例えば、フェニル基、ビフェニル基又はナフチル基が挙げられる。 The “substituent” in “substituted or unsubstituted” of each group of Ar 1 , Ar 2 , and R 1 to R 11 is an alkyl group having 1 to 10 carbon atoms or an aryl having 6 to 20 ring carbon atoms Groups.
Examples of the alkyl group having 1 to 10 carbon atoms as the “substituent” of each group of Ar 1 , Ar 2 , and R 1 to R 11 include, for example, a methyl group, an ethyl group, a propyl group, a t-butyl group, or n -A butyl group etc. are mentioned.
Examples of the 6 to 20 aryl group as the “substituent” of each group of Ar 1 , Ar 2 , and R 1 to R 11 include a phenyl group, a biphenyl group, and a naphthyl group.
一般式(1)で表される化合物の具体例としては、例えば、下記に示す化合物が挙げられる。
Specific examples of the compound represented by the general formula (1) include the compounds shown below.
一般式(1)で表される化合物は、例えば、下記のような製造ルートで合成することができる。
The compound represented by the general formula (1) can be synthesized, for example, by the following production route.
一般式(2)で表される化合物の具体例としては、例えば、下記に示す化合物が挙げられる。
Specific examples of the compound represented by the general formula (2) include the compounds shown below.
一般式(2)で表される化合物は、例えば、下記のような製造ルートで合成することができる。
The compound represented by the general formula (2) can be synthesized, for example, by the following production route.
本明細書において、水素原子とは、中性子数が異なる同位体である軽水素(protium)、重水素(deuterium)を包含する。
In this specification, the hydrogen atom includes light hydrogen (protium) and deuterium which are isotopes having different numbers of neutrons.
図1に、有機EL素子の層構成の一例の概略を示す。
図1の有機EL素子1は、基板2、陽極3、陰極4、及び該陽極3と陰極4との間に配置された発光ユニット(有機層)10とを有する。発光ユニット(有機層)10は、少なくとも1つの発光層5と、陽極3と発光層5との間に配置された正孔輸送領域(正孔注入層、正孔輸送層等)6を有する。
発光層5と陰極4との間に電子輸送領域(電子注入層、電子輸送層等)7を形成してもよい。また、発光層5の陽極3側に電子阻止層(図示せず)を、発光層5の陰極4側に正孔阻止層(図示せず)をそれぞれ設けてもよい。これにより、電子や正孔を発光層5に閉じ込めて、発光層5における励起子の生成効率をさらに高めることができる。 FIG. 1 shows an outline of an example of the layer configuration of the organic EL element.
Theorganic EL element 1 in FIG. 1 includes a substrate 2, an anode 3, a cathode 4, and a light emitting unit (organic layer) 10 disposed between the anode 3 and the cathode 4. The light emitting unit (organic layer) 10 includes at least one light emitting layer 5 and a hole transport region (hole injection layer, hole transport layer, etc.) 6 disposed between the anode 3 and the light emitting layer 5.
An electron transport region (electron injection layer, electron transport layer, etc.) 7 may be formed between thelight emitting layer 5 and the cathode 4. Further, an electron blocking layer (not shown) may be provided on the light emitting layer 5 on the anode 3 side, and a hole blocking layer (not shown) may be provided on the light emitting layer 5 on the cathode 4 side. Thereby, electrons and holes can be confined in the light emitting layer 5 and the exciton generation efficiency in the light emitting layer 5 can be further increased.
図1の有機EL素子1は、基板2、陽極3、陰極4、及び該陽極3と陰極4との間に配置された発光ユニット(有機層)10とを有する。発光ユニット(有機層)10は、少なくとも1つの発光層5と、陽極3と発光層5との間に配置された正孔輸送領域(正孔注入層、正孔輸送層等)6を有する。
発光層5と陰極4との間に電子輸送領域(電子注入層、電子輸送層等)7を形成してもよい。また、発光層5の陽極3側に電子阻止層(図示せず)を、発光層5の陰極4側に正孔阻止層(図示せず)をそれぞれ設けてもよい。これにより、電子や正孔を発光層5に閉じ込めて、発光層5における励起子の生成効率をさらに高めることができる。 FIG. 1 shows an outline of an example of the layer configuration of the organic EL element.
The
An electron transport region (electron injection layer, electron transport layer, etc.) 7 may be formed between the
本発明の一態様に係る有機EL素子は、発光層5に一般式(1)で表される化合物を含み、正孔輸送領域(正孔注入層、正孔輸送層等)6に、一般式(2)で表される化合物を含む。
本発明に係る有機EL素子は、図1に図示した有機EL素子1の層構成に限定されるものではなく、例えば、正孔輸送領域6は2層以上の層の積層構成であってもよく、電子輸送領域7も2層以上の層の積層構成であってもよい。 The organic EL device according to one embodiment of the present invention includes a compound represented by the general formula (1) in thelight emitting layer 5, and the hole transport region (hole injection layer, hole transport layer, etc.) 6 has the general formula. The compound represented by (2) is included.
The organic EL device according to the present invention is not limited to the layer configuration of theorganic EL device 1 illustrated in FIG. 1. For example, the hole transport region 6 may have a stacked configuration of two or more layers. The electron transport region 7 may also have a laminated structure of two or more layers.
本発明に係る有機EL素子は、図1に図示した有機EL素子1の層構成に限定されるものではなく、例えば、正孔輸送領域6は2層以上の層の積層構成であってもよく、電子輸送領域7も2層以上の層の積層構成であってもよい。 The organic EL device according to one embodiment of the present invention includes a compound represented by the general formula (1) in the
The organic EL device according to the present invention is not limited to the layer configuration of the
本発明の一態様に係る有機EL素子は、例えば、蛍光又は燐光発光型の単色発光素子であってもよく、蛍光/燐光ハイブリッド型の白色発光素子であってもよい。また、単独の発光ユニットを有するシンプル型であってもよく、2以上の発光ユニットを有するタンデム型であってもよい。
なお、本明細書に記載の「発光ユニット」とは、有機層を含み、該有機層のうちの少なくとも1層が発光層であり、注入された正孔と電子が再結合することにより発光する最小単位を言う。
また、本明細書に記載の「発光層」とは、発光機能を有する有機層である。発光層は、例えば、燐光発光層、蛍光発光層等であり、また、1層でも2以上の層でもよい。
発光ユニットは、燐光発光層や蛍光発光層を2以上有する積層型であってもよく、この場合、例えば、燐光発光層で生成された励起子が蛍光発光層に拡散することを防ぐためのスペース層を各発光層の間に有していてもよい。 The organic EL device according to one embodiment of the present invention may be, for example, a fluorescent or phosphorescent monochromatic light emitting device or a fluorescent / phosphorescent white light emitting device. Further, it may be a simple type having a single light emitting unit or a tandem type having two or more light emitting units.
Note that the “light emitting unit” described in this specification includes an organic layer, and at least one of the organic layers is a light emitting layer, and emits light by recombination of injected holes and electrons. Say the smallest unit.
Further, the “light emitting layer” described in the present specification is an organic layer having a light emitting function. The light emitting layer is, for example, a phosphorescent light emitting layer, a fluorescent light emitting layer or the like, and may be one layer or two or more layers.
The light emitting unit may be a laminated type having two or more phosphorescent light emitting layers or fluorescent light emitting layers. In this case, for example, a space for preventing excitons generated in the phosphorescent light emitting layer from diffusing into the fluorescent light emitting layer. You may have a layer between each light emitting layer.
なお、本明細書に記載の「発光ユニット」とは、有機層を含み、該有機層のうちの少なくとも1層が発光層であり、注入された正孔と電子が再結合することにより発光する最小単位を言う。
また、本明細書に記載の「発光層」とは、発光機能を有する有機層である。発光層は、例えば、燐光発光層、蛍光発光層等であり、また、1層でも2以上の層でもよい。
発光ユニットは、燐光発光層や蛍光発光層を2以上有する積層型であってもよく、この場合、例えば、燐光発光層で生成された励起子が蛍光発光層に拡散することを防ぐためのスペース層を各発光層の間に有していてもよい。 The organic EL device according to one embodiment of the present invention may be, for example, a fluorescent or phosphorescent monochromatic light emitting device or a fluorescent / phosphorescent white light emitting device. Further, it may be a simple type having a single light emitting unit or a tandem type having two or more light emitting units.
Note that the “light emitting unit” described in this specification includes an organic layer, and at least one of the organic layers is a light emitting layer, and emits light by recombination of injected holes and electrons. Say the smallest unit.
Further, the “light emitting layer” described in the present specification is an organic layer having a light emitting function. The light emitting layer is, for example, a phosphorescent light emitting layer, a fluorescent light emitting layer or the like, and may be one layer or two or more layers.
The light emitting unit may be a laminated type having two or more phosphorescent light emitting layers or fluorescent light emitting layers. In this case, for example, a space for preventing excitons generated in the phosphorescent light emitting layer from diffusing into the fluorescent light emitting layer. You may have a layer between each light emitting layer.
ただし、本発明の一態様に係る有機EL素子の層構成は、これらに限定されるものではない。例えば、有機EL素子が、正孔注入層及び正孔輸送層を有する場合には、正孔輸送層と陽極との間に正孔注入層が設けられていることが好ましい。また、有機EL素子が、電子注入層及び電子輸送層を有する場合には、電子輸送層と陰極との間に電子注入層が設けられていることが好ましい。また、正孔注入層、正孔輸送層、電子輸送層、及び電子注入層のそれぞれは、1層で構成されていてもよく、2以上の層で構成されていてもよい。
However, the layer structure of the organic EL element according to one embodiment of the present invention is not limited to these. For example, when the organic EL element has a hole injection layer and a hole transport layer, it is preferable that a hole injection layer is provided between the hole transport layer and the anode. Moreover, when an organic EL element has an electron injection layer and an electron carrying layer, it is preferable that the electron injection layer is provided between the electron carrying layer and the cathode. Each of the hole injection layer, the hole transport layer, the electron transport layer, and the electron injection layer may be composed of one layer, or may be composed of two or more layers.
(基板)
基板2は、有機EL素子の支持体として用いられる。基板としては、例えば、ガラス、石英、プラスチックなどを用いることができる。また、可撓性基板を用いてもよい。可撓性基板とは、折り曲げることができる(フレキシブル)基板のことであり、例えば、ポリカーボネート、ポリ塩化ビニルからなるプラスチック基板等が挙げられる。 (substrate)
Thesubstrate 2 is used as a support for the organic EL element. For example, glass, quartz, plastic, or the like can be used as the substrate. Further, a flexible substrate may be used. The flexible substrate is a substrate that can be bent (flexible), and examples thereof include a plastic substrate made of polycarbonate or polyvinyl chloride.
基板2は、有機EL素子の支持体として用いられる。基板としては、例えば、ガラス、石英、プラスチックなどを用いることができる。また、可撓性基板を用いてもよい。可撓性基板とは、折り曲げることができる(フレキシブル)基板のことであり、例えば、ポリカーボネート、ポリ塩化ビニルからなるプラスチック基板等が挙げられる。 (substrate)
The
(陽極)
陽極3としては、例えば、金属、合金、導電性化合物、及びこれらの混合物等であって、仕事関数の大きい(具体的には、4.0eV以上)ものを用いることが好ましい。陽極の材料の具体例としては、酸化インジウム-酸化スズ(ITO:Indium Tin Oxide)、ケイ素もしくは酸化ケイ素を含有する酸化インジウム-酸化スズ、酸化インジウム-酸化亜鉛、酸化タングステン、酸化亜鉛を含有する酸化インジウム、グラフェン等が挙げられる。また、金、銀、白金、ニッケル、タングステン、クロム、モリブデン、鉄、コバルト、銅、パラジウム、チタン、及びこれらの金属の窒化物(例えば、窒化チタン)等が挙げられる。
陽極3の形成方法としては、スパッタリング法、真空蒸着法、塗布法、インクジェット法、スピンコート法等が挙げられる。 (anode)
As theanode 3, it is preferable to use, for example, a metal, an alloy, a conductive compound, a mixture thereof, or the like having a high work function (specifically, 4.0 eV or more). Specific examples of anode materials include indium tin oxide (ITO), indium oxide-tin oxide containing silicon or silicon oxide, indium oxide-zinc oxide, tungsten oxide, and oxide containing zinc oxide. Indium, graphene, and the like can be given. In addition, gold, silver, platinum, nickel, tungsten, chromium, molybdenum, iron, cobalt, copper, palladium, titanium, nitrides of these metals (for example, titanium nitride), and the like can be given.
Examples of the method for forming theanode 3 include sputtering, vacuum deposition, coating, ink jet, and spin coating.
陽極3としては、例えば、金属、合金、導電性化合物、及びこれらの混合物等であって、仕事関数の大きい(具体的には、4.0eV以上)ものを用いることが好ましい。陽極の材料の具体例としては、酸化インジウム-酸化スズ(ITO:Indium Tin Oxide)、ケイ素もしくは酸化ケイ素を含有する酸化インジウム-酸化スズ、酸化インジウム-酸化亜鉛、酸化タングステン、酸化亜鉛を含有する酸化インジウム、グラフェン等が挙げられる。また、金、銀、白金、ニッケル、タングステン、クロム、モリブデン、鉄、コバルト、銅、パラジウム、チタン、及びこれらの金属の窒化物(例えば、窒化チタン)等が挙げられる。
陽極3の形成方法としては、スパッタリング法、真空蒸着法、塗布法、インクジェット法、スピンコート法等が挙げられる。 (anode)
As the
Examples of the method for forming the
(正孔注入層)
陽極3に接して形成される正孔注入層は、正孔注入性の高い物質を含む層であり、陽極から有機層に正孔を注入する機能を有する。正孔注入性の高い物質としては、例えば、モリブデン酸化物、チタン酸化物、バナジウム酸化物、レニウム酸化物、ルテニウム酸化物、クロム酸化物、ジルコニウム酸化物、ハフニウム酸化物、タンタル酸化物、銀酸化物、タングステン酸化物、マンガン酸化物、芳香族アミン化合物、電子吸引性(アクセプター性)の化合物、高分子化合物等が挙げられる。 (Hole injection layer)
The hole injection layer formed in contact with theanode 3 is a layer containing a substance having a high hole injection property and has a function of injecting holes from the anode into the organic layer. Examples of substances having a high hole injection property include molybdenum oxide, titanium oxide, vanadium oxide, rhenium oxide, ruthenium oxide, chromium oxide, zirconium oxide, hafnium oxide, tantalum oxide, and silver oxide. Materials, tungsten oxides, manganese oxides, aromatic amine compounds, electron-withdrawing (acceptor) compounds, polymer compounds, and the like.
陽極3に接して形成される正孔注入層は、正孔注入性の高い物質を含む層であり、陽極から有機層に正孔を注入する機能を有する。正孔注入性の高い物質としては、例えば、モリブデン酸化物、チタン酸化物、バナジウム酸化物、レニウム酸化物、ルテニウム酸化物、クロム酸化物、ジルコニウム酸化物、ハフニウム酸化物、タンタル酸化物、銀酸化物、タングステン酸化物、マンガン酸化物、芳香族アミン化合物、電子吸引性(アクセプター性)の化合物、高分子化合物等が挙げられる。 (Hole injection layer)
The hole injection layer formed in contact with the
(正孔輸送層)
正孔輸送領域6に含まれる正孔輸送層は、正孔輸送性の高い物質を含む層であり、陽極3から有機層10に正孔を輸送する機能を有する。
正孔輸送性の高い物質としては、10-6cm2/(V・s)以上の正孔移動度を有する物質であることが好ましく、例えば、芳香族アミン化合物、カルバゾール誘導体、アントラセン誘導体、高分子化合物等が挙げられる。
電子輸送性よりも正孔輸送性の方が高い化合物であれば、正孔輸送層に、これら以外の物質を用いてもよい。本発明の一態様に係る有機EL素子は、正孔輸送領域(正孔注入層、正孔輸送層等)6に、一般式(2)で表される化合物を含む。 (Hole transport layer)
The hole transport layer included in thehole transport region 6 is a layer containing a substance having a high hole transport property, and has a function of transporting holes from the anode 3 to the organic layer 10.
The substance having a high hole transporting property is preferably a substance having a hole mobility of 10 −6cm 2 / (V · s) or more. For example, an aromatic amine compound, a carbazole derivative, an anthracene derivative, a polymer compound Etc.
If the compound has a higher hole transporting property than the electron transporting property, a substance other than these may be used for the hole transporting layer. The organic EL element which concerns on 1 aspect of this invention contains the compound represented by General formula (2) in the positive hole transport area | region (a positive hole injection layer, a positive hole transport layer, etc.) 6. FIG.
正孔輸送領域6に含まれる正孔輸送層は、正孔輸送性の高い物質を含む層であり、陽極3から有機層10に正孔を輸送する機能を有する。
正孔輸送性の高い物質としては、10-6cm2/(V・s)以上の正孔移動度を有する物質であることが好ましく、例えば、芳香族アミン化合物、カルバゾール誘導体、アントラセン誘導体、高分子化合物等が挙げられる。
電子輸送性よりも正孔輸送性の方が高い化合物であれば、正孔輸送層に、これら以外の物質を用いてもよい。本発明の一態様に係る有機EL素子は、正孔輸送領域(正孔注入層、正孔輸送層等)6に、一般式(2)で表される化合物を含む。 (Hole transport layer)
The hole transport layer included in the
The substance having a high hole transporting property is preferably a substance having a hole mobility of 10 −6
If the compound has a higher hole transporting property than the electron transporting property, a substance other than these may be used for the hole transporting layer. The organic EL element which concerns on 1 aspect of this invention contains the compound represented by General formula (2) in the positive hole transport area | region (a positive hole injection layer, a positive hole transport layer, etc.) 6. FIG.
正孔輸送領域6、及び正孔輸送領域6を構成する正孔輸送層は、単層でもよく、2層以上が積層されていてもよい。この場合、発光層に近い側に、正孔輸送性の高い物質のうち、エネルギーギャップのより大きい物質を含む層を配置することが好ましい。本発明の一態様に係る有機EL素子は、正孔輸送領域6が、2層以上が積層されて構成される場合、正孔輸送領域6を構成する少なくとも1層に一般式(2)で表される化合物が含まれる。
The hole transport region 6 and the hole transport layer constituting the hole transport region 6 may be a single layer or two or more layers may be laminated. In this case, it is preferable to dispose a layer containing a substance having a larger energy gap among substances having a high hole transporting property on the side close to the light emitting layer. In the organic EL device according to one embodiment of the present invention, when the hole transport region 6 is formed by stacking two or more layers, the organic EL element is represented by the general formula (2) in at least one layer constituting the hole transport region 6. Are included.
(発光層)
発光層5は、発光性の高い物質(ドーパント材料)を含む層である。ドーパント材料としては、種々の材料を用いることができ、例えば、蛍光発光性化合物(蛍光ドーパント)、燐光発光性化合物(燐光ドーパント)等を用いることができる。蛍光発光性化合物とは、一重項励起状態から発光可能な化合物であり、これを含む発光層は蛍光発光層と呼ばれる。また、燐光発光性化合物とは、三重項励起状態から発光可能な化合物であり、これを含む発光層は、燐光発光層と呼ばれる。 (Light emitting layer)
Thelight emitting layer 5 is a layer containing a substance (dopant material) having a high light emitting property. As the dopant material, various materials can be used. For example, a fluorescent compound (fluorescent dopant), a phosphorescent compound (phosphorescent dopant), or the like can be used. A fluorescent compound is a compound that can emit light from a singlet excited state, and a light-emitting layer containing the compound is called a fluorescent light-emitting layer. A phosphorescent compound is a compound that can emit light from a triplet excited state, and a light-emitting layer containing the compound is called a phosphorescent light-emitting layer.
発光層5は、発光性の高い物質(ドーパント材料)を含む層である。ドーパント材料としては、種々の材料を用いることができ、例えば、蛍光発光性化合物(蛍光ドーパント)、燐光発光性化合物(燐光ドーパント)等を用いることができる。蛍光発光性化合物とは、一重項励起状態から発光可能な化合物であり、これを含む発光層は蛍光発光層と呼ばれる。また、燐光発光性化合物とは、三重項励起状態から発光可能な化合物であり、これを含む発光層は、燐光発光層と呼ばれる。 (Light emitting layer)
The
発光層5は、通常、ドーパント材料、及びこれを効率よく発光させるためのホスト材料を含有する。なお、ドーパント材料は、文献によっては、ゲスト材料、エミッター、又は発光材料と称する場合もある。また、ホスト材料は、文献によっては、マトリックス材料と称する場合もある。
1つの発光層に、2以上のドーパント材料、及び2以上のホスト材料を含んでもよい。また、発光層が2以上であってもよい。
本発明の一態様に係る有機EL素子は、発光層5に一般式(1)で表される化合物を含む。一般式(1)で表される化合物はホスト材料として機能する。 Thelight emitting layer 5 usually contains a dopant material and a host material for efficiently emitting light. Note that the dopant material may be referred to as a guest material, an emitter, or a light-emitting material depending on the literature. The host material may be referred to as a matrix material depending on the literature.
One light emitting layer may contain two or more dopant materials and two or more host materials. Further, the light emitting layer may be two or more.
The organic EL device according to one embodiment of the present invention includes the compound represented by the general formula (1) in thelight emitting layer 5. The compound represented by the general formula (1) functions as a host material.
1つの発光層に、2以上のドーパント材料、及び2以上のホスト材料を含んでもよい。また、発光層が2以上であってもよい。
本発明の一態様に係る有機EL素子は、発光層5に一般式(1)で表される化合物を含む。一般式(1)で表される化合物はホスト材料として機能する。 The
One light emitting layer may contain two or more dopant materials and two or more host materials. Further, the light emitting layer may be two or more.
The organic EL device according to one embodiment of the present invention includes the compound represented by the general formula (1) in the
本明細書では、蛍光ドーパントと組み合わされたホスト材料を、「蛍光ホスト」と称し、燐光ドーパントと組み合わされたホスト材料を「燐光ホスト」と称する。なお、蛍光ホストと燐光ホストとは、分子構造のみで区分されるものではない。燐光ホストとは、燐光ドーパントを含有する燐光発光層を形成する材料であるが、蛍光発光層を形成する材料として利用できないことを意味するものではない。蛍光ホストについても同様である。
In this specification, the host material combined with the fluorescent dopant is referred to as “fluorescent host”, and the host material combined with the phosphorescent dopant is referred to as “phosphorescent host”. Note that the fluorescent host and the phosphorescent host are not classified only by the molecular structure. The phosphorescent host is a material for forming a phosphorescent light emitting layer containing a phosphorescent dopant, but does not mean that it cannot be used as a material for forming a fluorescent light emitting layer. The same applies to the fluorescent host.
発光層5におけるドーパント材料の含有量は、特に限定されるものではないが、十分な発光及び濃度消光の観点から、例えば、0.1~99質量%であることが好ましく、0.1~70質量%であることがより好ましく、0.1~30質量%であることがさらに好ましい。
The content of the dopant material in the light emitting layer 5 is not particularly limited, but is preferably 0.1 to 99% by mass, for example, from the viewpoint of sufficient light emission and concentration quenching, and 0.1 to 70%. More preferably, it is more preferably 0.1 to 30% by mass.
(蛍光ドーパント)
蛍光ドーパントとしては、例えば、縮合多環芳香族誘導体、スチリルアミン誘導体、縮合環アミン誘導体、ホウ素含有化合物、ピロール誘導体、インドール誘導体、カルバゾール誘導体等が挙げられる。これらの中でも、縮合環アミン誘導体、ホウ素含有化合物、カルバゾール誘導体が好ましい。
縮合環アミン誘導体としては、例えば、ジアミノピレン誘導体、ジアミノクリセン誘導体、ジアミノアントラセン誘導体、ジアミノフルオレン誘導体、ベンゾフロ骨格が1つ以上縮環したジアミノフルオレン誘導体等が挙げられる。
ホウ素含有化合物としては、例えば、ピロメテン誘導体、トリフェニルボラン誘導体等が挙げられる。 (Fluorescent dopant)
Examples of the fluorescent dopant include condensed polycyclic aromatic derivatives, styrylamine derivatives, condensed ring amine derivatives, boron-containing compounds, pyrrole derivatives, indole derivatives, carbazole derivatives, and the like. Among these, condensed ring amine derivatives, boron-containing compounds, and carbazole derivatives are preferable.
Examples of the condensed ring amine derivative include diaminopyrene derivatives, diaminochrysene derivatives, diaminoanthracene derivatives, diaminofluorene derivatives, diaminofluorene derivatives in which one or more benzofuro skeletons are condensed.
Examples of the boron-containing compound include a pyromethene derivative and a triphenylborane derivative.
蛍光ドーパントとしては、例えば、縮合多環芳香族誘導体、スチリルアミン誘導体、縮合環アミン誘導体、ホウ素含有化合物、ピロール誘導体、インドール誘導体、カルバゾール誘導体等が挙げられる。これらの中でも、縮合環アミン誘導体、ホウ素含有化合物、カルバゾール誘導体が好ましい。
縮合環アミン誘導体としては、例えば、ジアミノピレン誘導体、ジアミノクリセン誘導体、ジアミノアントラセン誘導体、ジアミノフルオレン誘導体、ベンゾフロ骨格が1つ以上縮環したジアミノフルオレン誘導体等が挙げられる。
ホウ素含有化合物としては、例えば、ピロメテン誘導体、トリフェニルボラン誘導体等が挙げられる。 (Fluorescent dopant)
Examples of the fluorescent dopant include condensed polycyclic aromatic derivatives, styrylamine derivatives, condensed ring amine derivatives, boron-containing compounds, pyrrole derivatives, indole derivatives, carbazole derivatives, and the like. Among these, condensed ring amine derivatives, boron-containing compounds, and carbazole derivatives are preferable.
Examples of the condensed ring amine derivative include diaminopyrene derivatives, diaminochrysene derivatives, diaminoanthracene derivatives, diaminofluorene derivatives, diaminofluorene derivatives in which one or more benzofuro skeletons are condensed.
Examples of the boron-containing compound include a pyromethene derivative and a triphenylborane derivative.
蛍光ドーパントの具体例としては、例えば、下記に示す化合物が挙げられる。
Specific examples of fluorescent dopants include the compounds shown below.
(蛍光ホスト)
本発明の一態様に係る有機EL素子において、一般式(1)で表される化合物は、発光層においてホスト材料として機能する。
発光層におけるホスト材料としては、一般式(1)で表される化合物に加えて、別のホスト材料を含んでいてもよい。
併用できる蛍光ホストとしては、蛍光ドーパントよりも高い一重項準位を有する化合物が好ましく、例えば、複素環化合物、縮合芳香族化合物等が挙げられる。縮合芳香族化合物としては、例えば、アントラセン誘導体、ピレン誘導体、クリセン誘導体、ナフタセン誘導体等が好ましい。 (Fluorescent host)
In the organic EL device according to one embodiment of the present invention, the compound represented by the general formula (1) functions as a host material in the light-emitting layer.
As a host material in a light emitting layer, in addition to the compound represented by General formula (1), you may contain another host material.
The fluorescent host that can be used in combination is preferably a compound having a singlet level higher than that of the fluorescent dopant, and examples thereof include a heterocyclic compound and a condensed aromatic compound. As the condensed aromatic compound, for example, anthracene derivatives, pyrene derivatives, chrysene derivatives, naphthacene derivatives and the like are preferable.
本発明の一態様に係る有機EL素子において、一般式(1)で表される化合物は、発光層においてホスト材料として機能する。
発光層におけるホスト材料としては、一般式(1)で表される化合物に加えて、別のホスト材料を含んでいてもよい。
併用できる蛍光ホストとしては、蛍光ドーパントよりも高い一重項準位を有する化合物が好ましく、例えば、複素環化合物、縮合芳香族化合物等が挙げられる。縮合芳香族化合物としては、例えば、アントラセン誘導体、ピレン誘導体、クリセン誘導体、ナフタセン誘導体等が好ましい。 (Fluorescent host)
In the organic EL device according to one embodiment of the present invention, the compound represented by the general formula (1) functions as a host material in the light-emitting layer.
As a host material in a light emitting layer, in addition to the compound represented by General formula (1), you may contain another host material.
The fluorescent host that can be used in combination is preferably a compound having a singlet level higher than that of the fluorescent dopant, and examples thereof include a heterocyclic compound and a condensed aromatic compound. As the condensed aromatic compound, for example, anthracene derivatives, pyrene derivatives, chrysene derivatives, naphthacene derivatives and the like are preferable.
(電子輸送層)
電子輸送領域7、及び電子輸送領域7を構成する電子輸送層は、電子輸送性の高い物質を含む層である。電子輸送性の高い物質としては、10-6cm2/Vs以上の電子移動度を有する物質であることが好ましく、例えば、金属錯体、芳香族複素環化合物、芳香族炭化水素化合物、高分子化合物等が挙げられる。 (Electron transport layer)
Theelectron transport region 7 and the electron transport layer constituting the electron transport region 7 are layers containing a substance having a high electron transport property. The substance having a high electron transporting property is preferably a substance having an electron mobility of 10 −6 cm 2 / Vs or more. For example, a metal complex, an aromatic heterocyclic compound, an aromatic hydrocarbon compound, a polymer compound Etc.
電子輸送領域7、及び電子輸送領域7を構成する電子輸送層は、電子輸送性の高い物質を含む層である。電子輸送性の高い物質としては、10-6cm2/Vs以上の電子移動度を有する物質であることが好ましく、例えば、金属錯体、芳香族複素環化合物、芳香族炭化水素化合物、高分子化合物等が挙げられる。 (Electron transport layer)
The
金属錯体としては、例えば、アルミニウム錯体、ベリリウム錯体、亜鉛錯体等が挙げられる。具体的には、トリス(8-キノリノラト)アルミニウム(III)(略称:Alq)、トリス(4-メチル-8-キノリノラト)アルミニウム(略称:Almq3)、ビス(10-ヒドロキシベンゾ[h]キノリナト)ベリリウム(略称:BeBq2)、ビス(2-メチル-8-キノリノラト)(4-フェニルフェノラト)アルミニウム(III)(略称:BAlq)、ビス(8-キノリノラト)亜鉛(II)(略称:Znq)、ビス[2-(2-ベンゾオキサゾリル)フェノラト]亜鉛(II)(略称:ZnPBO)、ビス[2-(2-ベンゾチアゾリル)フェノラト]亜鉛(II)(略称:ZnBTZ)等が挙げられる。
Examples of the metal complex include an aluminum complex, a beryllium complex, and a zinc complex. Specifically, tris (8-quinolinolato) aluminum (III) (abbreviation: Alq), tris (4-methyl-8-quinolinolato) aluminum (abbreviation: Almq3), bis (10-hydroxybenzo [h] quinolinato) beryllium (Abbreviation: BeBq2), bis (2-methyl-8-quinolinolato) (4-phenylphenolato) aluminum (III) (abbreviation: BAlq), bis (8-quinolinolato) zinc (II) (abbreviation: Znq), bis [2- (2-Benzoxazolyl) phenolato] zinc (II) (abbreviation: ZnPBO), bis [2- (2-benzothiazolyl) phenolato] zinc (II) (abbreviation: ZnBTZ), and the like.
芳香族複素環化合物としては、例えば、ベンズイミダゾール誘導体、イミダゾピリジン誘導体、ベンズイミダゾフェナントリジン誘導体等のイミダゾール誘導体;ピリミジン誘導体、トリアジン誘導体等のアジン誘導体;キノリン誘導体、イソキノリン誘導体、フェナントロリン誘導体等の含窒素六員環構造を含む化合物(複素環にホスフィンオキサイド系の置換基を有するものも含む。)等が挙げられる。
Examples of the aromatic heterocyclic compound include imidazole derivatives such as benzimidazole derivatives, imidazopyridine derivatives, and benzimidazophenanthridine derivatives; azine derivatives such as pyrimidine derivatives and triazine derivatives; quinoline derivatives, isoquinoline derivatives, phenanthroline derivatives, and the like. Examples thereof include compounds containing a nitrogen six-membered ring structure (including those having a phosphine oxide substituent in the heterocyclic ring).
電子輸送層に用いられる芳香族複素環化合物の具体例としては、例えば、下記に示す化合物が挙げられる。
Specific examples of the aromatic heterocyclic compound used for the electron transport layer include the following compounds.
芳香族炭化水素化合物としては、例えば、アントラセン誘導体、フルオランテン誘導体等が挙げられる。
Examples of the aromatic hydrocarbon compound include anthracene derivatives and fluoranthene derivatives.
電子輸送層には、例えば、アルカリ金属、マグネシウム、アルカリ土類金属、これらのうちの2以上の金属を含む合金等の金属;8-キノリノラトリチウム(略称:Liq)等のアルカリ金属化合物、アルカリ土類金属化合物等の金属化合物が含まれていてもよい。
アルカリ金属、マグネシウム、アルカリ土類金属、又はこれらのうちの2以上の金属を含む合金等の金属が、電子輸送層に含まれる場合、その含有量は、特に限定されるものではないが、0.1~50質量%であることが好ましく、より好ましくは0.1~20質量%、さらに好ましくは1~10質量%である。
アルカリ金属化合物、又はアルカリ土類金属化合物等の金属化合物の金属化合物が電子輸送層に含まれる場合、その含有量は、1~99質量%であることが好ましく、より好ましくは10~90質量%である。なお、電子輸送層が2以上の層である場合の発光層側にある層は、これらの金属化合物のみで形成することもできる。 Examples of the electron transport layer include metals such as alkali metals, magnesium, alkaline earth metals, alloys containing two or more of these metals; alkali metal compounds such as 8-quinolinolato lithium (abbreviation: Liq), A metal compound such as an alkaline earth metal compound may be contained.
When a metal such as an alkali metal, magnesium, an alkaline earth metal, or an alloy containing two or more of these metals is contained in the electron transport layer, the content is not particularly limited, but 0 It is preferably 1 to 50% by mass, more preferably 0.1 to 20% by mass, and still more preferably 1 to 10% by mass.
When a metal compound of a metal compound such as an alkali metal compound or an alkaline earth metal compound is contained in the electron transport layer, the content is preferably 1 to 99% by mass, more preferably 10 to 90% by mass. It is. Note that the layer on the light emitting layer side in the case where the electron transport layer is two or more layers can be formed of only these metal compounds.
アルカリ金属、マグネシウム、アルカリ土類金属、又はこれらのうちの2以上の金属を含む合金等の金属が、電子輸送層に含まれる場合、その含有量は、特に限定されるものではないが、0.1~50質量%であることが好ましく、より好ましくは0.1~20質量%、さらに好ましくは1~10質量%である。
アルカリ金属化合物、又はアルカリ土類金属化合物等の金属化合物の金属化合物が電子輸送層に含まれる場合、その含有量は、1~99質量%であることが好ましく、より好ましくは10~90質量%である。なお、電子輸送層が2以上の層である場合の発光層側にある層は、これらの金属化合物のみで形成することもできる。 Examples of the electron transport layer include metals such as alkali metals, magnesium, alkaline earth metals, alloys containing two or more of these metals; alkali metal compounds such as 8-quinolinolato lithium (abbreviation: Liq), A metal compound such as an alkaline earth metal compound may be contained.
When a metal such as an alkali metal, magnesium, an alkaline earth metal, or an alloy containing two or more of these metals is contained in the electron transport layer, the content is not particularly limited, but 0 It is preferably 1 to 50% by mass, more preferably 0.1 to 20% by mass, and still more preferably 1 to 10% by mass.
When a metal compound of a metal compound such as an alkali metal compound or an alkaline earth metal compound is contained in the electron transport layer, the content is preferably 1 to 99% by mass, more preferably 10 to 90% by mass. It is. Note that the layer on the light emitting layer side in the case where the electron transport layer is two or more layers can be formed of only these metal compounds.
(電子注入層)
電子注入層は、電子注入性の高い物質を含む層であり、陰極から発光層へ効率よく電子注入する機能を有する。電子注入性の高い物質としては、例えば、アルカリ金属、マグネシウム、アルカリ土類金属、これらの化合物等が挙げられる。具体的には、リチウム、セシウム、カルシウム、フッ化リチウム、フッ化セシウム、フッ化カルシウム、リチウム酸化物等が挙げられる。その他、電子輸送性を有する物質に、アルカリ金属、マグネシウム、アルカリ土類金属、又はこれらの化合物を含有させたもの、例えば、Alqにマグネシウムを含有させたもの等を用いることもできる。 (Electron injection layer)
The electron injection layer is a layer containing a substance having a high electron injection property and has a function of efficiently injecting electrons from the cathode to the light emitting layer. Examples of the substance having a high electron injecting property include alkali metals, magnesium, alkaline earth metals, and compounds thereof. Specifically, lithium, cesium, calcium, lithium fluoride, cesium fluoride, calcium fluoride, lithium oxide, and the like can be given. In addition, an alkali metal, magnesium, alkaline earth metal, or a compound containing these compounds, for example, an Alq containing magnesium, or the like can also be used in a substance having an electron transporting property.
電子注入層は、電子注入性の高い物質を含む層であり、陰極から発光層へ効率よく電子注入する機能を有する。電子注入性の高い物質としては、例えば、アルカリ金属、マグネシウム、アルカリ土類金属、これらの化合物等が挙げられる。具体的には、リチウム、セシウム、カルシウム、フッ化リチウム、フッ化セシウム、フッ化カルシウム、リチウム酸化物等が挙げられる。その他、電子輸送性を有する物質に、アルカリ金属、マグネシウム、アルカリ土類金属、又はこれらの化合物を含有させたもの、例えば、Alqにマグネシウムを含有させたもの等を用いることもできる。 (Electron injection layer)
The electron injection layer is a layer containing a substance having a high electron injection property and has a function of efficiently injecting electrons from the cathode to the light emitting layer. Examples of the substance having a high electron injecting property include alkali metals, magnesium, alkaline earth metals, and compounds thereof. Specifically, lithium, cesium, calcium, lithium fluoride, cesium fluoride, calcium fluoride, lithium oxide, and the like can be given. In addition, an alkali metal, magnesium, alkaline earth metal, or a compound containing these compounds, for example, an Alq containing magnesium, or the like can also be used in a substance having an electron transporting property.
また、電子注入層には、有機化合物及びドナー性の化合物を含む複合材料を用いることもできる。有機化合物がドナー性の化合物から電子を受け取るため、このような複合材料は電子注入性及び電子輸送性に優れている。
有機化合物としては、受け取った電子の輸送性に優れた物質が好ましく、例えば、上述した電子輸送性の高い物質である金属錯体や芳香族複素環化合物等を用いることができる。
ドナー性の化合物としては、有機化合物に電子を供与することができる物質であればよく、例えば、アルカリ金属、マグネシウム、アルカリ土類金属、希土類金属等が挙げられる。具体的には、リチウム、セシウム、マグネシウム、カルシウム、エルビウム、イッテルビウム等が挙げられる。また、アルカリ金属酸化物やアルカリ土類金属酸化物が好ましく、具体的には、リチウム酸化物、カルシウム酸化物、バリウム酸化物等が挙げられる。また、酸化マグネシウムのようなルイス塩基を用いることもできる。また、テトラチアフルバレン(略称:TTF)等の有機化合物を用いることもできる。 For the electron injection layer, a composite material including an organic compound and a donor compound can be used. Since an organic compound receives electrons from a donor compound, such a composite material is excellent in electron injecting property and electron transporting property.
As the organic compound, a substance having excellent transportability of received electrons is preferable. For example, a metal complex or an aromatic heterocyclic compound which is the above-described substance having high electron transportability can be used.
The donor compound may be any substance that can donate electrons to an organic compound, and examples thereof include alkali metals, magnesium, alkaline earth metals, and rare earth metals. Specifically, lithium, cesium, magnesium, calcium, erbium, ytterbium, and the like can be given. Alkali metal oxides and alkaline earth metal oxides are preferable, and specific examples include lithium oxide, calcium oxide, and barium oxide. A Lewis base such as magnesium oxide can also be used. Alternatively, an organic compound such as tetrathiafulvalene (abbreviation: TTF) can be used.
有機化合物としては、受け取った電子の輸送性に優れた物質が好ましく、例えば、上述した電子輸送性の高い物質である金属錯体や芳香族複素環化合物等を用いることができる。
ドナー性の化合物としては、有機化合物に電子を供与することができる物質であればよく、例えば、アルカリ金属、マグネシウム、アルカリ土類金属、希土類金属等が挙げられる。具体的には、リチウム、セシウム、マグネシウム、カルシウム、エルビウム、イッテルビウム等が挙げられる。また、アルカリ金属酸化物やアルカリ土類金属酸化物が好ましく、具体的には、リチウム酸化物、カルシウム酸化物、バリウム酸化物等が挙げられる。また、酸化マグネシウムのようなルイス塩基を用いることもできる。また、テトラチアフルバレン(略称:TTF)等の有機化合物を用いることもできる。 For the electron injection layer, a composite material including an organic compound and a donor compound can be used. Since an organic compound receives electrons from a donor compound, such a composite material is excellent in electron injecting property and electron transporting property.
As the organic compound, a substance having excellent transportability of received electrons is preferable. For example, a metal complex or an aromatic heterocyclic compound which is the above-described substance having high electron transportability can be used.
The donor compound may be any substance that can donate electrons to an organic compound, and examples thereof include alkali metals, magnesium, alkaline earth metals, and rare earth metals. Specifically, lithium, cesium, magnesium, calcium, erbium, ytterbium, and the like can be given. Alkali metal oxides and alkaline earth metal oxides are preferable, and specific examples include lithium oxide, calcium oxide, and barium oxide. A Lewis base such as magnesium oxide can also be used. Alternatively, an organic compound such as tetrathiafulvalene (abbreviation: TTF) can be used.
(陰極)
陰極は、金属、合金、導電性化合物、及びこれらの混合物等であって、仕事関数の小さい(具体的には、3.8eV以下)ものを用いることが好ましい。陰極の材料としては、例えば、リチウム、セシウム等のアルカリ金属;マグネシウム;カルシウム、ストロンチウム等のアルカリ土類金属;これらの金属を含む合金(例えば、マグネシウム-銀、アルミニウム-リチウム);ユーロピウム、イッテルビウム等の希土類金属;希土類金属を含む合金等が挙げられる。
陰極は、通常、真空蒸着法やスパッタリング法で形成される。また、銀ペースト等を用いる場合は、塗布法やインクジェット法等を用いることができる。 (cathode)
The cathode is preferably a metal, an alloy, a conductive compound, a mixture thereof, or the like having a low work function (specifically, 3.8 eV or less). Examples of the material of the cathode include alkali metals such as lithium and cesium; magnesium; alkaline earth metals such as calcium and strontium; alloys containing these metals (for example, magnesium-silver, aluminum-lithium); europium, ytterbium, and the like Rare earth metals; alloys containing rare earth metals.
The cathode is usually formed by vacuum deposition or sputtering. Moreover, when using a silver paste etc., the apply | coating method, the inkjet method, etc. can be used.
陰極は、金属、合金、導電性化合物、及びこれらの混合物等であって、仕事関数の小さい(具体的には、3.8eV以下)ものを用いることが好ましい。陰極の材料としては、例えば、リチウム、セシウム等のアルカリ金属;マグネシウム;カルシウム、ストロンチウム等のアルカリ土類金属;これらの金属を含む合金(例えば、マグネシウム-銀、アルミニウム-リチウム);ユーロピウム、イッテルビウム等の希土類金属;希土類金属を含む合金等が挙げられる。
陰極は、通常、真空蒸着法やスパッタリング法で形成される。また、銀ペースト等を用いる場合は、塗布法やインクジェット法等を用いることができる。 (cathode)
The cathode is preferably a metal, an alloy, a conductive compound, a mixture thereof, or the like having a low work function (specifically, 3.8 eV or less). Examples of the material of the cathode include alkali metals such as lithium and cesium; magnesium; alkaline earth metals such as calcium and strontium; alloys containing these metals (for example, magnesium-silver, aluminum-lithium); europium, ytterbium, and the like Rare earth metals; alloys containing rare earth metals.
The cathode is usually formed by vacuum deposition or sputtering. Moreover, when using a silver paste etc., the apply | coating method, the inkjet method, etc. can be used.
また、電子注入層が設けられる場合、仕事関数の大小に関わらず、アルミニウム、銀、ITO、グラフェン、ケイ素もしくは酸化ケイ素を含有する酸化インジウム-酸化スズ等、種々の導電性材料を用いて陰極を形成することができる。これらの導電性材料は、スパッタリング法やインクジェット法、スピンコート法等を用いて成膜することができる。
When the electron injection layer is provided, the cathode is formed using various conductive materials such as aluminum, silver, ITO, graphene, silicon or indium oxide-tin oxide containing silicon oxide regardless of the work function. Can be formed. These conductive materials can be formed by a sputtering method, an inkjet method, a spin coating method, or the like.
(層形成方法)
有機EL素子の各層の形成方法は、別途の記載がない限り、特に限定されるものではない。形成方法としては、乾式成膜法、湿式成膜法等の公知の方法を用いることができる。乾式成膜法の具体例としては、真空蒸着法、スパッタリング法、プラズマ法、イオンプレーティング法等が挙げられる。湿式成膜法の具体例としては、スピンコーティング法、ディッピング法、フローコーティング法、インクジェット法等の各種塗布法が挙げられる。 (Layer formation method)
The method for forming each layer of the organic EL element is not particularly limited unless otherwise specified. As a forming method, a known method such as a dry film forming method or a wet film forming method can be used. Specific examples of the dry film forming method include a vacuum deposition method, a sputtering method, a plasma method, and an ion plating method. Specific examples of the wet film forming method include various coating methods such as a spin coating method, a dipping method, a flow coating method, and an ink jet method.
有機EL素子の各層の形成方法は、別途の記載がない限り、特に限定されるものではない。形成方法としては、乾式成膜法、湿式成膜法等の公知の方法を用いることができる。乾式成膜法の具体例としては、真空蒸着法、スパッタリング法、プラズマ法、イオンプレーティング法等が挙げられる。湿式成膜法の具体例としては、スピンコーティング法、ディッピング法、フローコーティング法、インクジェット法等の各種塗布法が挙げられる。 (Layer formation method)
The method for forming each layer of the organic EL element is not particularly limited unless otherwise specified. As a forming method, a known method such as a dry film forming method or a wet film forming method can be used. Specific examples of the dry film forming method include a vacuum deposition method, a sputtering method, a plasma method, and an ion plating method. Specific examples of the wet film forming method include various coating methods such as a spin coating method, a dipping method, a flow coating method, and an ink jet method.
(膜厚)
有機EL素子の各層の膜厚は、別途の記載がない限り、特に限定されるものではない。膜厚が小さすぎると、ピンホール等の欠陥が生じやすく、十分な発光輝度が得られない。一方、膜厚が大きすぎると、高い駆動電圧が必要となり、効率が低下する。このような観点から、膜厚は、通常、0.1nm~10μmが好ましく、好ましくは5nm~10μmであり、さらに好ましくは10nm~0.2μmである。 (Film thickness)
The thickness of each layer of the organic EL element is not particularly limited unless otherwise specified. If the film thickness is too small, defects such as pinholes are likely to occur, and sufficient light emission luminance cannot be obtained. On the other hand, if the film thickness is too large, a high driving voltage is required, and the efficiency is lowered. From such a viewpoint, the film thickness is usually preferably from 0.1 nm to 10 μm, preferably from 5 nm to 10 μm, and more preferably from 10 nm to 0.2 μm.
有機EL素子の各層の膜厚は、別途の記載がない限り、特に限定されるものではない。膜厚が小さすぎると、ピンホール等の欠陥が生じやすく、十分な発光輝度が得られない。一方、膜厚が大きすぎると、高い駆動電圧が必要となり、効率が低下する。このような観点から、膜厚は、通常、0.1nm~10μmが好ましく、好ましくは5nm~10μmであり、さらに好ましくは10nm~0.2μmである。 (Film thickness)
The thickness of each layer of the organic EL element is not particularly limited unless otherwise specified. If the film thickness is too small, defects such as pinholes are likely to occur, and sufficient light emission luminance cannot be obtained. On the other hand, if the film thickness is too large, a high driving voltage is required, and the efficiency is lowered. From such a viewpoint, the film thickness is usually preferably from 0.1 nm to 10 μm, preferably from 5 nm to 10 μm, and more preferably from 10 nm to 0.2 μm.
[電子機器]
本発明の一態様に係る電子機器は、上述した本発明の一態様に係る有機EL素子を備えている。電子機器の具体例としては、有機ELパネルモジュール等の表示部品;テレビ、携帯電話、スマートフォン、パーソナルコンピュータ等の表示装置;照明、車両用灯具の発光装置等が挙げられる。 [Electronics]
An electronic device according to one embodiment of the present invention includes the above-described organic EL element according to one embodiment of the present invention. Specific examples of the electronic device include display components such as an organic EL panel module; display devices such as a television, a mobile phone, a smartphone, and a personal computer; lighting, a light emitting device for a vehicle lamp, and the like.
本発明の一態様に係る電子機器は、上述した本発明の一態様に係る有機EL素子を備えている。電子機器の具体例としては、有機ELパネルモジュール等の表示部品;テレビ、携帯電話、スマートフォン、パーソナルコンピュータ等の表示装置;照明、車両用灯具の発光装置等が挙げられる。 [Electronics]
An electronic device according to one embodiment of the present invention includes the above-described organic EL element according to one embodiment of the present invention. Specific examples of the electronic device include display components such as an organic EL panel module; display devices such as a television, a mobile phone, a smartphone, and a personal computer; lighting, a light emitting device for a vehicle lamp, and the like.
次に、実施例を挙げて本発明をさらに詳しく説明するが、本発明はこれらの実施例の記載内容に何ら制限されるものではない。
Next, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the description of these examples.
実施例で用いた化合物ET1、化合物ET2、化合物ET3、化合物GD1は、下記のルートで合成した。
Compound ET1, Compound ET2, Compound ET3, and Compound GD1 used in Examples were synthesized by the following route.
(実施例1)
25mm×75mm×厚さ1.1mmのITO透明電極ライン付きガラス基板(ジオマティック株式会社製)を、イソプロピルアルコール中で超音波洗浄を5分間行なった後、UVオゾン洗浄を30分間行った。ITO透明電極の膜厚は130nmとした。
洗浄後の透明電極ライン付きガラス基板を真空蒸着装置の基板ホルダーに装着し、透明電極ラインが形成されている側の面上に透明電極を覆うようにして、化合物HT1と化合物HIを共蒸着し、膜厚10nmの共蒸着膜層(H-1層)を成膜した。H-1層における化合物HIの濃度は3重量%であった。
次いで、この共蒸着膜層上に化合物HT1を蒸着し、膜厚80nmのHT1の層(H-2層)を成膜した。
続いて、化合物HT2を蒸着し、膜厚10nmのHT2の層(H-3層)を成膜した。
さらに、ホスト材料として化合物GH1と、発光ドーパント材料(蛍光ドーパント)としての化合物GD1とを共蒸着し、膜厚25nmの発光層を成膜した。発光層おける化合物GD1の濃度は4質量%であった。
この発光層上に、化合物ET1と化合物Liqとを共蒸着し、膜厚20nmの層(E-1層)を成膜した。この層における化合物Liqの濃度は30重量%であった。
さらに、この層の上に化合物Liqを成膜速度0.1オングストローム/minで蒸着し、膜厚1nmのLiq層(E-2)を形成した。この層上に金属Alを蒸着させ、金属陰極を膜厚80nmで形成した。
実施例1の有機EL素子は、次の層構成を有している。
ITO(130nm)/HT1+HI(5nm)/HT1(80nm)/HT2(10nm)/GH1:GD(25nm)/ET1:Liq(20nm)/Liq(1nm)/Al(80nm)
得られた有機EL素子に電圧を印加したところ、実用レベルの発光特性を示した。 Example 1
A 25 mm × 75 mm × 1.1 mm thick glass substrate with an ITO transparent electrode line (manufactured by Geomatic Co., Ltd.) was subjected to ultrasonic cleaning in isopropyl alcohol for 5 minutes and then UV ozone cleaning for 30 minutes. The film thickness of the ITO transparent electrode was 130 nm.
The glass substrate with the transparent electrode line after washing is attached to the substrate holder of the vacuum deposition apparatus, and the compound HT1 and the compound HI are co-deposited so as to cover the transparent electrode on the surface where the transparent electrode line is formed. Then, a co-evaporated film layer (H-1 layer) having a thickness of 10 nm was formed. The concentration of compound HI in the H-1 layer was 3% by weight.
Next, the compound HT1 was vapor-deposited on the co-evaporated film layer to form an HT1 layer (H-2 layer) having a thickness of 80 nm.
Subsequently, the compound HT2 was vapor-deposited to form a HT2 layer (H-3 layer) having a thickness of 10 nm.
Further, the compound GH1 as a host material and the compound GD1 as a light emitting dopant material (fluorescent dopant) were co-evaporated to form a light emitting layer having a thickness of 25 nm. The concentration of the compound GD1 in the light emitting layer was 4% by mass.
On this light emitting layer, the compound ET1 and the compound Liq were co-evaporated to form a 20 nm thick layer (E-1 layer). The concentration of Compound Liq in this layer was 30% by weight.
Further, a compound Liq was deposited on this layer at a film formation rate of 0.1 angstrom / min to form a Liq layer (E-2) having a thickness of 1 nm. Metal Al was vapor-deposited on this layer, and a metal cathode was formed with a film thickness of 80 nm.
The organic EL element of Example 1 has the following layer structure.
ITO (130 nm) / HT1 + HI (5 nm) / HT1 (80 nm) / HT2 (10 nm) / GH1: GD (25 nm) / ET1: Liq (20 nm) / Liq (1 nm) / Al (80 nm)
When voltage was applied to the obtained organic EL device, it showed light emission characteristics at a practical level.
25mm×75mm×厚さ1.1mmのITO透明電極ライン付きガラス基板(ジオマティック株式会社製)を、イソプロピルアルコール中で超音波洗浄を5分間行なった後、UVオゾン洗浄を30分間行った。ITO透明電極の膜厚は130nmとした。
洗浄後の透明電極ライン付きガラス基板を真空蒸着装置の基板ホルダーに装着し、透明電極ラインが形成されている側の面上に透明電極を覆うようにして、化合物HT1と化合物HIを共蒸着し、膜厚10nmの共蒸着膜層(H-1層)を成膜した。H-1層における化合物HIの濃度は3重量%であった。
次いで、この共蒸着膜層上に化合物HT1を蒸着し、膜厚80nmのHT1の層(H-2層)を成膜した。
続いて、化合物HT2を蒸着し、膜厚10nmのHT2の層(H-3層)を成膜した。
さらに、ホスト材料として化合物GH1と、発光ドーパント材料(蛍光ドーパント)としての化合物GD1とを共蒸着し、膜厚25nmの発光層を成膜した。発光層おける化合物GD1の濃度は4質量%であった。
この発光層上に、化合物ET1と化合物Liqとを共蒸着し、膜厚20nmの層(E-1層)を成膜した。この層における化合物Liqの濃度は30重量%であった。
さらに、この層の上に化合物Liqを成膜速度0.1オングストローム/minで蒸着し、膜厚1nmのLiq層(E-2)を形成した。この層上に金属Alを蒸着させ、金属陰極を膜厚80nmで形成した。
実施例1の有機EL素子は、次の層構成を有している。
ITO(130nm)/HT1+HI(5nm)/HT1(80nm)/HT2(10nm)/GH1:GD(25nm)/ET1:Liq(20nm)/Liq(1nm)/Al(80nm)
得られた有機EL素子に電圧を印加したところ、実用レベルの発光特性を示した。 Example 1
A 25 mm × 75 mm × 1.1 mm thick glass substrate with an ITO transparent electrode line (manufactured by Geomatic Co., Ltd.) was subjected to ultrasonic cleaning in isopropyl alcohol for 5 minutes and then UV ozone cleaning for 30 minutes. The film thickness of the ITO transparent electrode was 130 nm.
The glass substrate with the transparent electrode line after washing is attached to the substrate holder of the vacuum deposition apparatus, and the compound HT1 and the compound HI are co-deposited so as to cover the transparent electrode on the surface where the transparent electrode line is formed. Then, a co-evaporated film layer (H-1 layer) having a thickness of 10 nm was formed. The concentration of compound HI in the H-1 layer was 3% by weight.
Next, the compound HT1 was vapor-deposited on the co-evaporated film layer to form an HT1 layer (H-2 layer) having a thickness of 80 nm.
Subsequently, the compound HT2 was vapor-deposited to form a HT2 layer (H-3 layer) having a thickness of 10 nm.
Further, the compound GH1 as a host material and the compound GD1 as a light emitting dopant material (fluorescent dopant) were co-evaporated to form a light emitting layer having a thickness of 25 nm. The concentration of the compound GD1 in the light emitting layer was 4% by mass.
On this light emitting layer, the compound ET1 and the compound Liq were co-evaporated to form a 20 nm thick layer (E-1 layer). The concentration of Compound Liq in this layer was 30% by weight.
Further, a compound Liq was deposited on this layer at a film formation rate of 0.1 angstrom / min to form a Liq layer (E-2) having a thickness of 1 nm. Metal Al was vapor-deposited on this layer, and a metal cathode was formed with a film thickness of 80 nm.
The organic EL element of Example 1 has the following layer structure.
ITO (130 nm) / HT1 + HI (5 nm) / HT1 (80 nm) / HT2 (10 nm) / GH1: GD (25 nm) / ET1: Liq (20 nm) / Liq (1 nm) / Al (80 nm)
When voltage was applied to the obtained organic EL device, it showed light emission characteristics at a practical level.
(実施例2~12)
正孔輸送領域、発光層、及び電子輸送領域の材料として、表1に示す各化合物を用いた以外、実施例1と同様に、有機EL素子を作製した。
得られた実施例2~12有機EL素子に電圧を印加したところ、いずれも、実用レベルの発光特性を示した。 (Examples 2 to 12)
An organic EL device was produced in the same manner as in Example 1 except that each compound shown in Table 1 was used as a material for the hole transport region, the light emitting layer, and the electron transport region.
When voltage was applied to the organic EL elements obtained in Examples 2 to 12, all showed light emission characteristics at a practical level.
正孔輸送領域、発光層、及び電子輸送領域の材料として、表1に示す各化合物を用いた以外、実施例1と同様に、有機EL素子を作製した。
得られた実施例2~12有機EL素子に電圧を印加したところ、いずれも、実用レベルの発光特性を示した。 (Examples 2 to 12)
An organic EL device was produced in the same manner as in Example 1 except that each compound shown in Table 1 was used as a material for the hole transport region, the light emitting layer, and the electron transport region.
When voltage was applied to the organic EL elements obtained in Examples 2 to 12, all showed light emission characteristics at a practical level.
1・・有機EL素子、2・・基板、3・・陽極、4・・陰極、5・・発光層、6・・正孔輸送体域(正孔注入層、正孔輸送層等)、7・・電子輸送体域(電子注入層、電子輸送層等)10・・発光ユニット(有機層)
1 .... Organic EL element 2 .... Substrate 3 .... Anode 4 .... Cathode 5 .... Light emitting layer 6 .... Hole transporter area (hole injection layer, hole transport layer, etc.), 7・ ・ Electron transport area (electron injection layer, electron transport layer, etc.) 10 ・ ・ Light emitting unit (organic layer)
Claims (5)
- 陽極と、
陰極と、
前記陽極と前記陰極の間に配された有機層と、を備え、
前記有機層は、発光層、及び、前記陽極と前記発光層との間に配された正孔輸送領域を含み、
前記発光層は、下記一般式(1)で表される化合物を含み、
前記正孔輸送領域は、下記一般式(2)で表される化合物を含む、
有機エレクトロルミネッセンス素子。
Ar1は、置換もしくは無置換の環形成炭素数6~20のアリール基を表す。]
Ar2は、置換もしくは無置換の炭素数6~20のアリール基を表し、
R1~R9は、それぞれ独立に、水素原子、置換もしくは無置換の環形成炭素数6~20のアリール基、置換もしくは無置換の炭素数1~10のアルキル基、-NR10R11、又は置換もしくは無置換の環形成原子数3~20の複素環基を表し、
R10及びR11は、それぞれ独立に、置換もしくは無置換の環形成炭素数6~20のアリール基を表す。
R2とR3が結合して下記一般式(3-1)又は下記一般式(3-2)の環構造を形成してもよい。]
[一般式(3-1)及び一般式(3-2)中、
R1、R4~R9は、それぞれ、前記一般式(2)における各基と同義であり、
Phはフェニル基を表す。] The anode,
A cathode,
An organic layer disposed between the anode and the cathode,
The organic layer includes a light-emitting layer, and a hole transport region disposed between the anode and the light-emitting layer,
The light emitting layer contains a compound represented by the following general formula (1):
The hole transport region includes a compound represented by the following general formula (2).
Organic electroluminescence device.
Ar 1 represents a substituted or unsubstituted aryl group having 6 to 20 ring carbon atoms. ]
Ar 2 represents a substituted or unsubstituted aryl group having 6 to 20 carbon atoms,
R 1 to R 9 are each independently a hydrogen atom, a substituted or unsubstituted aryl group having 6 to 20 ring carbon atoms, a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, —NR 10 R 11 , Or a substituted or unsubstituted heterocyclic group having 3 to 20 ring atoms,
R 10 and R 11 each independently represents a substituted or unsubstituted aryl group having 6 to 20 ring carbon atoms.
R 2 and R 3 may combine to form a ring structure of the following general formula (3-1) or general formula (3-2). ]
[In general formula (3-1) and general formula (3-2),
R 1 and R 4 to R 9 are respectively synonymous with the groups in the general formula (2),
Ph represents a phenyl group. ] - Ar1における環形成炭素数6~20のアリール基が、フェニル基、ビフェニル基、ナフチル基、フェナントリル基、フルオレニル基又はフルオランテニル基である、
請求項1に記載の有機エレクトロルミネッセンス素子。 The aryl group having 6 to 20 ring carbon atoms in Ar 1 is a phenyl group, a biphenyl group, a naphthyl group, a phenanthryl group, a fluorenyl group, or a fluoranthenyl group.
The organic electroluminescent element according to claim 1. - 前記発光層が、さらに蛍光性ドーパントを含む、請求項1又は2に記載の有機エレクトロルミネッセンス素子。 The organic electroluminescent element according to claim 1, wherein the light emitting layer further contains a fluorescent dopant.
- 前記有機層が、前記陰極と前記発光層との間に配された電子輸送領域を含む、請求項1~3のいずれか一項に記載の有機エレクトロルミネッセンス素子。 The organic electroluminescent device according to any one of claims 1 to 3, wherein the organic layer includes an electron transport region disposed between the cathode and the light emitting layer.
- 請求項1~4のいずれか一項に記載の有機エレクトロルミネッセンス素子を備える電子機器。 An electronic apparatus comprising the organic electroluminescence element according to any one of claims 1 to 4.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2018/010875 WO2018101491A2 (en) | 2018-03-19 | 2018-03-19 | Organic electroluminescent element and electronic device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2018/010875 WO2018101491A2 (en) | 2018-03-19 | 2018-03-19 | Organic electroluminescent element and electronic device |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2018101491A2 true WO2018101491A2 (en) | 2018-06-07 |
WO2018101491A3 WO2018101491A3 (en) | 2018-07-26 |
Family
ID=62242916
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/010875 WO2018101491A2 (en) | 2018-03-19 | 2018-03-19 | Organic electroluminescent element and electronic device |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2018101491A2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021241738A1 (en) * | 2020-05-29 | 2021-12-02 | 出光興産株式会社 | Mixture, organic electroluminescence element, organic electroluminescence element manufacturing method, and electronic apparatus |
WO2022230843A1 (en) * | 2021-04-26 | 2022-11-03 | 出光興産株式会社 | Organic electroluminescent element, organic electroluminescent display apparatus, and electronic device |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101596547B1 (en) * | 2012-02-27 | 2016-02-23 | 주식회사 엘지화학 | Organic light emitting diode |
KR101566578B1 (en) * | 2012-02-27 | 2015-11-05 | 주식회사 엘지화학 | Organic light emitting diode |
KR101604168B1 (en) * | 2012-02-27 | 2016-03-16 | 주식회사 엘지화학 | Organic light emitting diode |
US10468678B2 (en) * | 2014-06-30 | 2019-11-05 | Basf Se | Process for making cathode materials for lithium ion batteries |
EP3229284B1 (en) * | 2014-12-05 | 2022-08-31 | Hodogaya Chemical Co., Ltd. | Organic electroluminescent element |
EP3240057B1 (en) * | 2014-12-24 | 2021-04-07 | Hodogaya Chemical Co., Ltd. | Organic electroluminescent element |
-
2018
- 2018-03-19 WO PCT/JP2018/010875 patent/WO2018101491A2/en active Application Filing
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021241738A1 (en) * | 2020-05-29 | 2021-12-02 | 出光興産株式会社 | Mixture, organic electroluminescence element, organic electroluminescence element manufacturing method, and electronic apparatus |
WO2022230843A1 (en) * | 2021-04-26 | 2022-11-03 | 出光興産株式会社 | Organic electroluminescent element, organic electroluminescent display apparatus, and electronic device |
Also Published As
Publication number | Publication date |
---|---|
WO2018101491A3 (en) | 2018-07-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5662994B2 (en) | Organic electroluminescence device | |
CN106232772B (en) | Multi-component host material and organic electroluminescent device comprising same | |
CN103907217B (en) | Organic electroluminescent device | |
JP6034600B2 (en) | Organic electroluminescence device | |
CN103797602B (en) | Organic electroluminescent device | |
TWI699365B (en) | Multi-component host material and organic electroluminescent device comprising the same | |
JP6894913B2 (en) | Organic electroluminescent device | |
JPWO2018139662A1 (en) | Organic electroluminescence device and electronic equipment | |
WO2007063796A1 (en) | Organic electroluminescent device | |
JP2011222831A (en) | Organic electroluminescent element | |
CN108475732B (en) | Organic electroluminescent element | |
KR101000355B1 (en) | Organic electroluminescence element | |
WO2021065774A1 (en) | Organic electroluminescent element and electronic device | |
WO2018173593A1 (en) | Organic electroluminescent element | |
WO2011033978A1 (en) | Organic electroluminescent element | |
WO2018101491A2 (en) | Organic electroluminescent element and electronic device | |
WO2018101492A2 (en) | Organic electroluminescent element and electronic device | |
JP2021061305A (en) | Organic electroluminescent element and electronic apparatus | |
JP5109054B2 (en) | Organic electroluminescence device | |
JP6648418B2 (en) | Organic electroluminescence device | |
WO2018101489A2 (en) | Organic electroluminescent element and electronic device | |
WO2018101490A2 (en) | Organic electroluminescent element and electronic device | |
WO2021065773A1 (en) | Organic electroluminescent element and electronic device | |
JP2017195373A (en) | Organic electroluminescent element | |
JP2024112326A (en) | Organic electroluminescent element, organic electroluminescent display device, and electronic apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18727646 Country of ref document: EP Kind code of ref document: A2 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18727646 Country of ref document: EP Kind code of ref document: A2 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |