Nothing Special   »   [go: up one dir, main page]

WO2018100830A1 - Nozzle head and electrospinning device - Google Patents

Nozzle head and electrospinning device Download PDF

Info

Publication number
WO2018100830A1
WO2018100830A1 PCT/JP2017/032475 JP2017032475W WO2018100830A1 WO 2018100830 A1 WO2018100830 A1 WO 2018100830A1 JP 2017032475 W JP2017032475 W JP 2017032475W WO 2018100830 A1 WO2018100830 A1 WO 2018100830A1
Authority
WO
WIPO (PCT)
Prior art keywords
nozzle
main body
belonging
nozzle group
nozzles
Prior art date
Application number
PCT/JP2017/032475
Other languages
French (fr)
Japanese (ja)
Inventor
静雄 木下
健哉 内田
聡美 坂井
佑磨 菊地
Original Assignee
株式会社 東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝 filed Critical 株式会社 東芝
Publication of WO2018100830A1 publication Critical patent/WO2018100830A1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D4/00Spinnerette packs; Cleaning thereof
    • D01D4/02Spinnerettes
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/04Dry spinning methods

Definitions

  • Embodiments of the present invention relate to a nozzle head and an electrospinning apparatus.
  • an electrospinning apparatus that deposits fine fibers on the surface of a member by an electrospinning method (also referred to as an electrospinning method, a charge induction spinning method, or the like).
  • the electrospinning apparatus is provided with a plurality of nozzle holes for discharging the raw material liquid.
  • the number of nozzle holes is increased, the amount of fibers generated per unit time or per unit area can be increased.
  • a nozzle head in which a plurality of nozzle holes are arranged in a line on the end surfaces of two plate-like portions provided so as to be parallel to each other. If the nozzle head has such a configuration, productivity can be improved.
  • the problem to be solved by the present invention is to provide a nozzle head and an electrospinning apparatus capable of reducing the size of the nozzle head and reducing the driving voltage.
  • the nozzle head according to the embodiment is connected to the main body having a space inside which the raw material liquid can be stored, the first nozzle group connected to the main body and including at least one nozzle, and the main body.
  • a second nozzle group including at least one nozzle. When viewed from the direction in which the main body extends, the nozzles belonging to the second nozzle group extend in a direction away from the nozzles belonging to the first nozzle group as becoming the tip side.
  • FIG. 1 It is a schematic diagram for illustrating the electrospinning apparatus according to the present embodiment. It is a model perspective view for illustrating the nozzle head concerning this embodiment. It is a model perspective view for illustrating the nozzle head concerning other embodiments.
  • (A), (b) is a schematic cross section of a nozzle.
  • the electrospinning apparatus 1 is provided with a nozzle head 2, a raw material liquid supply unit 3, a power source 4, a collection unit 5, and a control unit 6.
  • the nozzle head 2 includes a nozzle 20, a connection portion 21, a main body portion 22, and an attachment portion 23.
  • a plurality of nozzles 20 are provided.
  • the plurality of nozzles 20 are divided into a plurality of nozzle groups. In this case, at least one nozzle 20 is provided in one nozzle group.
  • the plurality of nozzles 20 are provided side by side in the X-axis direction.
  • the first nozzle group 12a includes a plurality of nozzles 20 that are connected to the main body portion 22 and arranged in the X-axis direction.
  • the second nozzle group 12b is connected to the main body portion 22 and includes a plurality of nozzles 20 arranged side by side in the X-axis direction.
  • the nozzle head 2 illustrated in FIGS. 1 and 2 is provided with eight nozzles 20 divided into two nozzle groups 12a and 12b.
  • the number of nozzle groups and the number of nozzles 20 belonging to one nozzle group are not limited to those illustrated, and can be changed as appropriate according to the size of the collecting body 51 and the like.
  • the positions of the plurality of nozzles 20 belonging to the first nozzle group 12a and the positions of the plurality of nozzles 20 belonging to the second nozzle group 12b are different in the X-axis direction. ing.
  • the plurality of nozzles 20 belonging to the first nozzle group 12a and the plurality of nozzles 20 belonging to the second nozzle group 12b can be provided at positions shifted from each other by 1 ⁇ 2 pitch. In this way, the region where the fiber 100 formed from the raw material liquid drawn from the one nozzle 20 belonging to the first nozzle group 12 a accumulates, and the raw material drawn from the nozzle 20 adjacent to the one nozzle 20. Between the region where the fiber 100 formed from the liquid is deposited, the fiber 100 formed from the raw material liquid drawn from the nozzle 20 belonging to the second nozzle group 12b can be deposited.
  • the pitch dimension of the plurality of nozzles 20 in the first nozzle group 12a and the pitch dimension of the plurality of nozzles 20 in the second nozzle group 12b are increased, the occurrence of unevenness in the deposit 110 is suppressed. be able to.
  • This also means that the apparent pitch dimension of the plurality of nozzles 20 in the X-axis direction can be shortened. Therefore, compared with the case where the same number of nozzles 20 are arranged in a line, the length of the main body 22 can be shortened, and the nozzle head 2 can be downsized.
  • the plurality of nozzles in the first nozzle group 12a are plural.
  • Electric field interference between the end surfaces of the nozzles 20 on the discharge port 20a side, electric field interference between the end surfaces on the discharge port 20a side of the plurality of nozzles 20 in the second nozzle group 12b, and the first nozzle group The electric field interference between the end surface on the discharge port 20a side of the nozzle 20 belonging to 12a and the end surface on the discharge port 20a side of the nozzle 20 belonging to the second nozzle group 12b can be suppressed. Therefore, the formation of the fiber 100 can be stabilized.
  • the plurality of nozzles 20 have a needle shape. Inside the nozzle 20, a hole for discharging the raw material liquid is provided. The hole for discharging the raw material liquid penetrates between the end surface of the nozzle 20 on the connection portion 21 side and the end surface (tip) of the nozzle 20 on the side where the raw material liquid is discharged. An opening of the hole provided in the nozzle 20 on the side from which the raw material liquid is discharged becomes a discharge port 20a.
  • the plurality of nozzles 20 belonging to the first nozzle group 12a are parallel to each other.
  • the plurality of nozzles 20 belonging to the second nozzle group 12b are parallel to each other.
  • the nozzles 20 belonging to the first nozzle group 12a and the nozzles 20 belonging to the second nozzle group 12b are parallel to each other.
  • the direction in which the plurality of nozzles 20 belonging to the second nozzle group 12b extends intersects the direction in which the plurality of nozzles 20 belonging to the first nozzle group 12a extends. That is, when viewed from the X-axis direction, the direction in which the plurality of nozzles 20 belonging to the second nozzle group 12b extends is not parallel to the direction in which the plurality of nozzles 20 belonging to the first nozzle group 12a extends.
  • the plurality of nozzles 20 belonging to the second nozzle group 12b are separated from the plurality of nozzles 20 belonging to the first nozzle group 12a toward the tip side (discharge port 20a side). It extends.
  • a distance L1 projected in the X-axis direction between the tips of the plurality of nozzles 20 belonging to the first nozzle group 12a and the tips of the plurality of nozzles 20 belonging to the second nozzle group 12b when viewed from the X-axis direction is The cross-sectional dimension L3 of the main body 22 is longer.
  • the first nozzle group 12a and the plurality of nozzles 20 belonging to the second nozzle group 12b are parallel to the first nozzle group 12a.
  • the distance L1 between the end surface on the discharge port 20a side of the plurality of nozzles 20 belonging to the nozzle group 12a and the end surface on the discharge port 20a side of the plurality of nozzles 20 belonging to the second nozzle group 12b may be increased. it can. Therefore, electric field interference occurs between the end surfaces on the discharge port 20a side of the plurality of nozzles 20 belonging to the first nozzle group 12a and the end surfaces on the discharge port 20a side of the plurality of nozzles 20 belonging to the second nozzle group 12b. Can be suppressed.
  • the angle ⁇ 1 projected in the direction is preferably 30 ° or more and 150 ° or less. If ⁇ 1 is 30 ° or more and 150 ° or less, the nozzle head 2 can be reduced in size, the electric field interference between the first nozzle group 12a and the second nozzle group 12b can be suppressed, and the stable fiber 100 on the member surface can be formed. It is suitable for realizing deposition. Furthermore, when improving the volatility of the raw material liquid and arranging a plurality of nozzle heads 2, ⁇ 1 is more preferably 45 ° or more and 75 ° or less.
  • a distance L2 between the end surface on the connection portion 21 side of the plurality of nozzles 20 belonging to the first nozzle group 12a and the end surface on the connection portion 21 side of the plurality of nozzles 20 belonging to the second nozzle group 12b, The distance can be shorter than the distance L1. Therefore, it becomes easy to make the cross-sectional dimension L3 of the main-body part 22 shorter than the distance L1. If the cross-sectional dimension L3 of the main body 22 can be made shorter than the distance L1, the nozzle head 2 can be reduced in size.
  • the outer shape of the nozzle 20 is not particularly limited, but by forming a needle shape, electric field concentration tends to occur on the end surface of the nozzle 20 on the discharge port 20a side. If electric field concentration occurs on the end surface of the nozzle 20 on the discharge port 20a side, the strength of the electric field formed between the nozzle 20 and the collector 51 can be increased. Therefore, the voltage applied by the power supply 4 can be lowered. That is, the drive voltage can be reduced. In this case, the cross-sectional dimension of the nozzle 20 can be about 1 mm, for example.
  • the cross-sectional dimension of the discharge port 20a (the cross-sectional dimension in the direction orthogonal to the discharge direction of the raw material liquid).
  • the cross-sectional dimension of the discharge port 20a can be appropriately changed according to the cross-sectional dimension of the fiber 100 to be formed.
  • the cross-sectional dimension of the discharge port 20a can be, for example, 200 ⁇ m or more.
  • the pitch dimension of the plurality of nozzles 20 belonging to the first nozzle group 12a can be set to about 20 mm, for example.
  • the pitch dimension of the plurality of nozzles 20 belonging to the second nozzle group 12b can be, for example, about 20 mm.
  • the nozzle 20 is made of a conductive material. It is preferable that the material of the nozzle 20 has conductivity and resistance to the raw material liquid.
  • the nozzle 20 can be formed from, for example, stainless steel.
  • connection portion 21 is provided between the main body portion 22 and the plurality of nozzles 20 belonging to the first nozzle group 12a and the plurality of nozzles 20 belonging to the second nozzle group 12b.
  • the end of the nozzle 20 on the connection part 21 side is fixed to the connection part 21.
  • the connection part 21 is detachably provided on the main body part 22. That is, the plurality of nozzles 20 belonging to the first nozzle group 12a and the plurality of nozzles 20 belonging to the second nozzle group 12b are detachably connected to the main body portion 22.
  • a male screw can be provided at the end of the connecting portion 21 on the main body 22 side
  • a female screw can be provided on the side surface of the main body 22.
  • connection part 21 can also be provided in the main-body part 22 detachably using a luer taper (it is also called a luer adapter, a luer lock, a luer connector, a luer fit etc.).
  • a luer taper it is also called a luer adapter, a luer lock, a luer connector, a luer fit etc.
  • a female luer can be provided on the side of the main body 22 of the connecting portion 21, and a male luer can be provided on the side surface of the main body 22. That is, the connection part 21 is connected to the main body part 22 using a screw or a luer taper.
  • connection portion 21 Inside the connection portion 21, a hole for supplying the raw material liquid from the main body portion 22 to the nozzle 20 is provided.
  • the hole provided in the connection portion 21 is connected to the hole provided in the nozzle 20 and the space 22 b provided in the main body portion 22.
  • the connection part 21 is formed from a conductive material. It is preferable that the material of the connection portion 21 has conductivity and resistance to the raw material liquid.
  • the connection part 21 can be formed from stainless steel etc., for example.
  • the discharged raw material liquid may adhere to the end surface of the nozzle 20 on the discharge port 20a side and the vicinity thereof.
  • the attached raw material liquid is hardened, there is a possibility that the amount of the raw material liquid to be discharged decreases or the raw material liquid is not discharged. Therefore, the end surface of the nozzle 20 on the discharge port 20a side and the vicinity thereof are cleaned as necessary or periodically.
  • the strength of the nozzle 20 is low because it has a needle shape, the plurality of nozzles 20 may be bent or broken when the nozzles 20 are collectively cleaned. Therefore, it is necessary to clean the plurality of nozzles 20 one by one.
  • the nozzle head 2 according to the present embodiment is provided with the connection portion 21, the plurality of nozzles 20 can be detached from the main body portion 22 one by one. Then, the plurality of removed nozzles 20 can be collectively cleaned using a solvent, or wiped before the attached raw material liquid is solidified.
  • the solvent used for cleaning can be the same as the solvent contained in the raw material liquid described later.
  • the main body 22 has a rod shape.
  • a space 22b in which the raw material liquid is stored is provided inside the main body 22.
  • the main body 22 is provided with a supply port 22a.
  • the raw material liquid supplied from the raw material liquid supply unit 3 is introduced into a space 22b provided inside the main body 22 through the supply port 22a.
  • the supply port 22 a can be provided on the side surface of the main body portion 22, or can be provided on the attachment portion 23.
  • the cross-sectional shape of the main body portion 22 is preferably a regular polygon in consideration of providing a plurality of connection portions 21. Since the regular polygon is a line-symmetric figure, it is easy to provide a plurality of nozzles 20 divided into a plurality of groups.
  • the cross-sectional shape of the main body 22 illustrated in FIGS. 1 and 2 is a regular hexagon. In this case, a plurality of nozzles 20 belonging to the first nozzle group 12a are provided on one side surface of the main body portion 22, and a plurality of nozzles 20 belonging to the second nozzle group 12a are provided on the side surface adjacent to the main body portion 22.
  • the above-described angle ⁇ 1 can be set to 60 °.
  • the cross-sectional shape of the main body portion 22 may be circular, and a flat portion (seat surface) may be provided in a portion where the plurality of connection portions 21 are provided.
  • the attachment portions 23 are provided at both ends of the main body portion 22.
  • the attachment portion 23 may have a cylindrical shape.
  • the attachment portion 23 is detachably held by a holder (not shown) provided at a predetermined position above the collection body 51. That is, the nozzle head 2 is detachably provided at a predetermined position above the collecting body 51.
  • FIG. 3 is a schematic perspective view for illustrating a nozzle head 2a according to another embodiment.
  • 4A and 4B are schematic cross-sectional views of the nozzle 120.
  • the nozzle head 2 a includes a nozzle 120, a connection portion 21, a main body portion 22, and an attachment portion 23.
  • the nozzle 20 described above has a needle shape, but the nozzle 120 has a conical shape.
  • the cross-sectional dimension of the tip of the nozzle 120 can be, for example, about 1 mm. If the nozzle 120 has a conical shape, the mechanical strength of the nozzle 120 itself can be increased.
  • the tip of the nozzle 120 can be sharpened, electric field concentration tends to occur on the end surface of the nozzle 120 on the discharge port 20a side. Therefore, since the strength of the electric field formed between the nozzle 120 and the collecting body 51 can be increased, the voltage applied by the power source 4 can be reduced as compared with the case where the nozzle has a cylindrical shape. That is, the drive voltage can be reduced. However, if the needle-like nozzle 20 is used, the drive voltage can be further reduced.
  • the cross-sectional dimension of the hole 120a provided in the nozzle 120 can be increased.
  • the cross-sectional dimension can increase gradually as the hole 120a leaves
  • the cross-sectional dimension can also be made to become large in steps as the hole 120a leaves
  • the raw material liquid supply unit 3 includes a storage unit 31, a supply unit 32, a raw material liquid control unit 33, and a pipe 34.
  • the storage unit 31 stores the raw material liquid.
  • the accommodating part 31 is formed from the material which has the tolerance with respect to a raw material liquid.
  • the accommodating part 31 can be formed from stainless steel etc., for example.
  • the raw material liquid is obtained by dissolving a polymer substance in a solvent.
  • a polymer substance there is no particular limitation on the polymer substance, and it can be changed as appropriate according to the material of the fiber 100 to be formed.
  • the polymer substance include polypropylene, polyethylene, polystyrene, polyethylene terephthalate, polyvinyl chloride, polycarbonate, nylon, and aramid.
  • the solvent may be any solvent that can dissolve the polymer substance.
  • the solvent can be appropriately changed according to the polymer substance to be dissolved.
  • the solvent can be, for example, methanol, ethanol, isopropyl alcohol, acetone, benzene, toluene, and the like.
  • the polymer substance and the solvent are not limited to those illustrated.
  • the raw material liquid is allowed to stay in the vicinity of the discharge port 20a due to surface tension. Therefore, the viscosity of the raw material liquid can be appropriately changed according to the size of the discharge port 20a.
  • the viscosity of the raw material liquid can be obtained by performing experiments and simulations.
  • the viscosity of the raw material liquid can be controlled by the mixing ratio of the solvent and the polymer material.
  • the supply unit 32 supplies the raw material liquid stored in the storage unit 31 to the main body unit 22.
  • the supply unit 32 can be, for example, a pump having resistance to the raw material liquid.
  • the supply unit 32 may supply gas to the storage unit 31 and pump the raw material liquid stored in the storage unit 31, for example.
  • the raw material liquid control unit 33 controls the flow rate, pressure, and the like of the raw material liquid supplied to the main body 22, and when a new raw material liquid is supplied into the main body 22, the raw material in the main body 22 The liquid is prevented from being pushed out from the discharge port 20a.
  • the control amount for the raw material liquid control unit 33 can be changed as appropriate depending on the size of the discharge port 20a, the viscosity of the raw material liquid, and the like.
  • the control amount for the raw material liquid control unit 33 can be obtained through experiments and simulations.
  • the raw material liquid control part 33 can also switch the start of supply of a raw material liquid, and the stop of supply.
  • the supply part 32 and the raw material liquid control part 33 are not necessarily required.
  • the storage unit 31 is provided at a position higher than the position of the main body 22, the raw material liquid can be supplied to the main body 22 using gravity. And the raw material liquid inside the main-body part 22 is prevented from being extruded from the discharge port 20a by setting the height position of the accommodating part 31 suitably.
  • the height position of the accommodating part 31 can be suitably changed with the dimension of the discharge port 20a, the viscosity of a raw material liquid, etc.
  • the height position of the storage unit 31 can be obtained by performing experiments and simulations.
  • the piping 34 is provided between the storage unit 31 and the supply unit 32, between the supply unit 32 and the raw material liquid control unit 33, and between the raw material liquid control unit 33 and the main body unit 22.
  • the pipe 34 serves as a flow path for the raw material liquid.
  • the pipe 34 is made of a material having resistance to the raw material liquid.
  • the power supply 4 applies a voltage to the nozzle 20 via the main body 22 and the connection part 21.
  • a terminal (not shown) electrically connected to the plurality of nozzles 20 may be provided.
  • the power supply 4 applies a voltage to the nozzle 20 via a terminal (not shown). That is, it is only necessary that a voltage can be applied from the power source 4 to the plurality of nozzles 20.
  • the polarity of the voltage (drive voltage) applied to the nozzle 20 can be positive or negative. However, if a negative voltage is applied to the nozzle 20, electrons are emitted from the tip of the nozzle 20, so abnormal discharge is likely to occur. Therefore, as shown in FIG. 1, the polarity of the voltage applied to the nozzle 20 is preferably positive.
  • the voltage applied to the nozzle 20 can be appropriately changed according to the type of the polymer substance contained in the raw material liquid, the distance between the nozzle 20 and the collecting body 51, and the like.
  • the power supply 4 can apply a voltage to the nozzle 20 so that the potential difference between the nozzle 20 and the collector 51 is 10 kV or more. In this case, if a plate-like nozzle is used, the voltage applied to the nozzle is about 70 kV.
  • the voltage applied to the nozzle 20 can be reduced to 50 kV or less. Therefore, the drive voltage can be reduced.
  • the power source 4 can be a DC high voltage power source, for example.
  • the power source 4 can output a DC voltage of 10 kV to 100 kV, for example.
  • the collection unit 5 includes a collection body 51, a deposition adjustment unit 52, and a power supply 53.
  • the collecting body 51 is provided on the side from which the raw material liquid of the plurality of nozzles 20 is discharged.
  • the collector 51 is grounded.
  • a voltage having a reverse polarity to the voltage applied to the nozzle 20 may be applied to the collecting body 51.
  • the collector 51 can be formed from a conductive material. It is preferable that the material of the collecting body 51 has conductivity and resistance to the raw material liquid.
  • the material of the collecting body 51 can be stainless steel, for example.
  • the collector 51 illustrated in FIG. 1 has a strip shape. One end of the collecting body 51 is provided on the rotating roller 51a, and the other end of the collecting body 51 is provided on the rotating roller 51b. A driving mechanism such as a motor is connected to the rotating rollers 51a and 51b. The collector 51 can reciprocate between the pair of rotating rollers 51a and 51b. In addition, you may make it the collection body 51 move between a pair of rotating rollers 51a and 51b like a belt conveyor.
  • the collecting body 51 may be a rotating drum, for example.
  • the collecting body 51 may have a plate shape or a sheet shape and may not move. However, if the collector 51 is moved, a continuous deposition operation can be performed. Therefore, the production efficiency of the deposit 110 made of the fiber 100 can be improved.
  • the deposit 110 formed on the collector 51 is removed from the collector 51 by the operator.
  • the deposit 110 is used for a nonwoven fabric, a filter, etc., for example.
  • the use of the deposit 110 is not limited to the example illustrated.
  • the collecting body 51 can be omitted.
  • the deposit 110 made of the fiber 100 can be directly formed on the surface of a member having conductivity.
  • the conductive member may be grounded, or a voltage having a polarity opposite to that applied to the nozzle 20 may be applied to the conductive member.
  • the accumulation adjusting unit 52 is provided on the side of the collecting body 51 opposite to the side on which the nozzle 20 is provided.
  • the deposition adjusting unit 52 is made of a conductive material.
  • the deposition adjusting unit 52 can be formed of a metal such as stainless steel, for example.
  • the end of the accumulation adjusting unit 52 on the collecting body 51 side is pointed. If the end of the accumulation adjusting unit 52 on the collector 51 side is sharp, electric field concentration is likely to occur. Therefore, it becomes easy to form an electric field between the nozzle 20 and the deposition adjusting unit 52.
  • the power supply 53 applies a voltage to the deposition adjusting unit 52.
  • the power supply 53 applies a voltage having a polarity opposite to the voltage applied to the nozzle 20 to the deposition adjusting unit 52.
  • the power source 53 can be, for example, a DC high voltage power source.
  • the power supply 53 can output a DC voltage of 10 kV or more and 100 kV or less, for example.
  • an electric field is also formed between the nozzle 20 and the deposition adjusting unit 52.
  • the electric field formed between the nozzle 20 and the collecting body 51 changes under the influence of the electric field formed between the nozzle 20 and the deposition adjusting unit 52.
  • the raw material liquid in the vicinity of the discharge port 20a of the nozzle 20 is drawn out by the electrostatic force acting along the lines of electric force. Therefore, if the electric field formed between the nozzle 20 and the collecting body 51 is changed, the region where the fiber 100 is deposited can be changed. That is, the deposition adjusting unit 52 changes the region where the fiber 100 is deposited by changing the electric field formed between the nozzle 20 and the collector 51.
  • the deposition adjusting unit 52 and the power source 53 are provided, it becomes easy to deposit the fiber 100 in the region to be deposited. Further, if the deposition adjusting unit 52 and the power source 53 are provided, the thickness of the deposited body 110 can be made uniform, the fiber 100 can be deposited locally, and the opening portion such as a pinhole formed in the deposited body 110 can be repaired. It can be carried out.
  • the electric field formed between the nozzle 20 and the deposition adjusting unit 52 is controlled. be able to.
  • a driving device (not shown) that moves the deposition adjusting unit 52 can be provided. If the deposition adjustment unit 52 is moved, the electric field can be controlled more easily. 1 is provided for each of the plurality of nozzles 20 belonging to the first nozzle group 12a and the plurality of nozzles 20 belonging to the second nozzle group 12b. It has been. Note that only one set of the deposition adjusting unit 52 and the power source 53 may be provided, or only one power source 53 may be provided for the plurality of deposition adjusting units 52.
  • the control unit 6 controls the operation of the drive unit connected to the supply unit 32, the raw material liquid control unit 33, the power source 4, the power source 53, and the rotating rollers 51a and 51b.
  • the control unit 6 can be, for example, a computer having a CPU (Central Processing Unit) and a memory.
  • the raw material liquid remains in the vicinity of the discharge port 20a of the nozzle 20 due to surface tension.
  • the power source 4 applies a voltage to the nozzle 20.
  • the raw material liquid in the vicinity of the discharge port 20a is charged with a predetermined polarity. In the case illustrated in FIG. 1, the raw material liquid in the vicinity of the discharge port 20a is positively charged.
  • the collecting body 51 Since the collecting body 51 is grounded, an electric field is formed between the nozzle 20 and the collecting body 51.
  • the electrostatic force acting along the lines of electric force becomes larger than the surface tension, the raw material liquid in the vicinity of the discharge port 20a is drawn toward the collector 51 by the electrostatic force.
  • the drawn raw material liquid is stretched and the fiber 100 is formed by volatilization of the solvent contained in the raw material liquid.
  • the formed fiber 100 is deposited on the collection body 51, whereby the deposition body 110 is formed. Further, by controlling at least one of the voltage applied to the deposition adjusting unit 52 and the position of the deposition adjusting unit 52, the region in which the fiber 100 is deposited can be changed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Abstract

The problem to be addressed by the present invention is to provide a nozzle head and an electrospinning device in which the nozzle head can be miniaturized and the driving voltage can be reduced. This nozzle head (2) is provided with: a main body part (22) having a space (22b) thereinside that is capable of accommodating a raw liquid; a first nozzle group (12a) that is connected to the main body part (22) and includes at least one nozzle (20); and a second nozzle group (12b) that is connected to the main body part (22) and includes at least one nozzle (20). The nozzle (20) belonging to the second nozzle group (12b) extends in a direction which is gradually away from the nozzle (20) belonging to the first nozzle group (12a) toward the tip side as viewed from the direction in which the main body part (22) extends.

Description

ノズルヘッド、および電界紡糸装置Nozzle head and electrospinning apparatus
 本発明の実施形態は、ノズルヘッド、および電界紡糸装置に関する。 Embodiments of the present invention relate to a nozzle head and an electrospinning apparatus.
 エレクトロスピニング法(電界紡糸法、電荷誘導紡糸法などとも称される)により、微細なファイバを部材の表面に堆積させる電界紡糸装置がある。
 電界紡糸装置には、原料液を排出する複数のノズル孔が設けられている。この場合、ノズル孔の数を増やせば、単位時間あたり、または単位面積あたりのファイバの生成量を増加させることができる。そのため、互いに平行となるように設けられた2つの板状部の端面に複数のノズル孔を一列に並べて設けたノズルヘッドが提案されている。この様な構成を有するノズルヘッドとすれば、生産性を向上させることができる。
There is an electrospinning apparatus that deposits fine fibers on the surface of a member by an electrospinning method (also referred to as an electrospinning method, a charge induction spinning method, or the like).
The electrospinning apparatus is provided with a plurality of nozzle holes for discharging the raw material liquid. In this case, if the number of nozzle holes is increased, the amount of fibers generated per unit time or per unit area can be increased. For this reason, there has been proposed a nozzle head in which a plurality of nozzle holes are arranged in a line on the end surfaces of two plate-like portions provided so as to be parallel to each other. If the nozzle head has such a configuration, productivity can be improved.
 ところが、互いに平行となるように設けられた2つの板状部において板状部同士の間の距離を短くすると、2つの板状部同士の間で電界干渉が生じ、ファイバの形成が不安定になる。そのため、2つの板状部同士の間の距離をある程度長くする必要があり、ノズルヘッドの小型化が困難となっていた。また、板状部にノズル孔を設けると、ノズル孔が開口する部分において電界集中が生じ難くなるので、駆動電圧を低くすることが困難となっていた。
 そのため、ノズルヘッドの小型化と駆動電圧の低減とを図ることができる技術の開発が望まれていた。
However, if the distance between the plate-like portions is shortened in the two plate-like portions provided so as to be parallel to each other, electric field interference occurs between the two plate-like portions, and the fiber formation becomes unstable. Become. Therefore, it is necessary to increase the distance between the two plate-like portions to some extent, and it is difficult to reduce the size of the nozzle head. In addition, when nozzle holes are provided in the plate-like portion, electric field concentration is unlikely to occur in the portion where the nozzle holes are opened, and thus it is difficult to reduce the drive voltage.
Therefore, it has been desired to develop a technique that can reduce the size of the nozzle head and reduce the driving voltage.
特開2012-184518号公報JP 2012-184518 A 特開2013-231247号公報JP 2013-231247 A
 本発明が解決しようとする課題は、ノズルヘッドの小型化と駆動電圧の低減とを図ることができるノズルヘッド、および電界紡糸装置を提供することである。 The problem to be solved by the present invention is to provide a nozzle head and an electrospinning apparatus capable of reducing the size of the nozzle head and reducing the driving voltage.
 実施形態に係るノズルヘッドは、原料液が収納可能な空間を内部に有する本体部と、前記本体部と接続され、少なくとも1つのノズルを含む第1のノズル群と、前記本体部と接続され、少なくとも1つのノズルを含む第2のノズル群と、を備えている。前記本体部が延びる方向から見て、前記第2のノズル群に属する前記ノズルは、先端側になるに従い前記第1のノズル群に属する前記ノズルから離れる方向に延びている。 The nozzle head according to the embodiment is connected to the main body having a space inside which the raw material liquid can be stored, the first nozzle group connected to the main body and including at least one nozzle, and the main body. A second nozzle group including at least one nozzle. When viewed from the direction in which the main body extends, the nozzles belonging to the second nozzle group extend in a direction away from the nozzles belonging to the first nozzle group as becoming the tip side.
本実施の形態に係る電界紡糸装置を例示するための模式図である。It is a schematic diagram for illustrating the electrospinning apparatus according to the present embodiment. 本実施の形態に係るノズルヘッドを例示するための模式斜視図である。It is a model perspective view for illustrating the nozzle head concerning this embodiment. 他の実施形態に係るノズルヘッドを例示するための模式斜視図である。It is a model perspective view for illustrating the nozzle head concerning other embodiments. (a)、(b)は、ノズルの模式断面図である。(A), (b) is a schematic cross section of a nozzle.
 以下、図面を参照しつつ、実施の形態について例示をする。なお、各図面中、同様の構成要素には同一の符号を付して詳細な説明は適宜省略する。
 なお、図1~図3中のX軸、Y軸は互いに直交する方向を表している。この場合、X軸は、本体部22が延びる方向(軸方向)を表している。
 図1に示すように、電界紡糸装置1には、ノズルヘッド2、原料液供給部3、電源4、収集部5、および制御部6が設けられている。
Hereinafter, embodiments will be illustrated with reference to the drawings. In addition, in each drawing, the same code | symbol is attached | subjected to the same component and detailed description is abbreviate | omitted suitably.
1 to 3, the X axis and the Y axis represent directions orthogonal to each other. In this case, the X axis represents the direction (axial direction) in which the main body portion 22 extends.
As shown in FIG. 1, the electrospinning apparatus 1 is provided with a nozzle head 2, a raw material liquid supply unit 3, a power source 4, a collection unit 5, and a control unit 6.
 図1および図2に示すように、ノズルヘッド2は、ノズル20、接続部21、本体部22、および取付部23を有する。
 ノズル20は、複数設けられている。複数のノズル20は、複数のノズル群に分けて設けられている。この場合、1つのノズル群には少なくとも1つのノズル20が設けられている。なお、以下においては、一例として、1つのノズル群に複数のノズル20が設けられる場合を説明する。
 1つのノズル群において、複数のノズル20は、X軸方向に並べて設けられている。例えば、第1のノズル群12aは、本体部22と接続され、X軸方向に並べて設けられた複数のノズル20を含んでいる。第2のノズル群12bは、本体部22と接続され、X軸方向に並べて設けられた複数のノズル20を含んでいる。図1および図2に例示をしたノズルヘッド2は、8つのノズル20が2つのノズル群12a、12bに分けて設けられている。なお、ノズル群の数、1つのノズル群に属するノズル20の数は例示をしたものに限定されるわけではなく、収集体51の大きさなどに応じて適宜変更することができる。
As shown in FIGS. 1 and 2, the nozzle head 2 includes a nozzle 20, a connection portion 21, a main body portion 22, and an attachment portion 23.
A plurality of nozzles 20 are provided. The plurality of nozzles 20 are divided into a plurality of nozzle groups. In this case, at least one nozzle 20 is provided in one nozzle group. In the following, a case where a plurality of nozzles 20 are provided in one nozzle group will be described as an example.
In one nozzle group, the plurality of nozzles 20 are provided side by side in the X-axis direction. For example, the first nozzle group 12a includes a plurality of nozzles 20 that are connected to the main body portion 22 and arranged in the X-axis direction. The second nozzle group 12b is connected to the main body portion 22 and includes a plurality of nozzles 20 arranged side by side in the X-axis direction. The nozzle head 2 illustrated in FIGS. 1 and 2 is provided with eight nozzles 20 divided into two nozzle groups 12a and 12b. The number of nozzle groups and the number of nozzles 20 belonging to one nozzle group are not limited to those illustrated, and can be changed as appropriate according to the size of the collecting body 51 and the like.
 また、図2に示すように、X軸方向において、第1のノズル群12aに属する複数のノズル20の位置と、第2のノズル群12bに属する複数のノズル20の位置とが異なるものとなっている。例えば、第1のノズル群12aに属する複数のノズル20と、第2のノズル群12bに属する複数のノズル20が、互いに1/2ピッチずれた位置に設けられるようにすることができる。この様にすれば、第1のノズル群12aに属する一のノズル20から引き出された原料液から形成されたファイバ100が堆積する領域と、一のノズル20に隣接するノズル20から引き出された原料液から形成されたファイバ100が堆積する領域との間に、第2のノズル群12bに属するノズル20から引き出された原料液から形成されたファイバ100を堆積させることができる。 Further, as shown in FIG. 2, the positions of the plurality of nozzles 20 belonging to the first nozzle group 12a and the positions of the plurality of nozzles 20 belonging to the second nozzle group 12b are different in the X-axis direction. ing. For example, the plurality of nozzles 20 belonging to the first nozzle group 12a and the plurality of nozzles 20 belonging to the second nozzle group 12b can be provided at positions shifted from each other by ½ pitch. In this way, the region where the fiber 100 formed from the raw material liquid drawn from the one nozzle 20 belonging to the first nozzle group 12 a accumulates, and the raw material drawn from the nozzle 20 adjacent to the one nozzle 20. Between the region where the fiber 100 formed from the liquid is deposited, the fiber 100 formed from the raw material liquid drawn from the nozzle 20 belonging to the second nozzle group 12b can be deposited.
 そのため、第1のノズル群12aにおける複数のノズル20のピッチ寸法と、第2のノズル群12bにおける複数のノズル20のピッチ寸法とを長くしたとしても、堆積体110にムラが生じるのを抑制することができる。また、このことは、複数のノズル20の、X軸方向における見かけ上のピッチ寸法を短くすることができることを意味する。そのため、同じ数のノズル20を一列に並べた場合に比べて、本体部22の長さを短くすることができ、ひいてはノズルヘッド2の小型化を図ることができる。 Therefore, even if the pitch dimension of the plurality of nozzles 20 in the first nozzle group 12a and the pitch dimension of the plurality of nozzles 20 in the second nozzle group 12b are increased, the occurrence of unevenness in the deposit 110 is suppressed. be able to. This also means that the apparent pitch dimension of the plurality of nozzles 20 in the X-axis direction can be shortened. Therefore, compared with the case where the same number of nozzles 20 are arranged in a line, the length of the main body 22 can be shortened, and the nozzle head 2 can be downsized.
 また、第1のノズル群12aにおける複数のノズル20のピッチ寸法と、第2のノズル群12bにおける複数のノズル20のピッチ寸法とを長くすることができるので、第1のノズル群12a内における複数のノズル20の排出口20a側の端面同士の間の電界干渉、第2のノズル群12b内における複数のノズル20の排出口20a側の端面同士の間の電界干渉、および、第1のノズル群12aに属するノズル20の排出口20a側の端面と第2のノズル群12bに属するノズル20の排出口20a側の端面との間の電界干渉を抑制することができる。そのため、ファイバ100の形成を安定させることができる。 In addition, since the pitch dimension of the plurality of nozzles 20 in the first nozzle group 12a and the pitch dimension of the plurality of nozzles 20 in the second nozzle group 12b can be increased, the plurality of nozzles in the first nozzle group 12a are plural. Electric field interference between the end surfaces of the nozzles 20 on the discharge port 20a side, electric field interference between the end surfaces on the discharge port 20a side of the plurality of nozzles 20 in the second nozzle group 12b, and the first nozzle group The electric field interference between the end surface on the discharge port 20a side of the nozzle 20 belonging to 12a and the end surface on the discharge port 20a side of the nozzle 20 belonging to the second nozzle group 12b can be suppressed. Therefore, the formation of the fiber 100 can be stabilized.
 複数のノズル20は、針状を呈している。ノズル20の内部には、原料液を排出するための孔が設けられている。原料液を排出するための孔は、ノズル20の接続部21側の端面と、ノズル20の原料液が排出される側の端面(先端)との間を貫通している。ノズル20の内部に設けられた孔の、原料液が排出される側の開口が排出口20aとなる。 The plurality of nozzles 20 have a needle shape. Inside the nozzle 20, a hole for discharging the raw material liquid is provided. The hole for discharging the raw material liquid penetrates between the end surface of the nozzle 20 on the connection portion 21 side and the end surface (tip) of the nozzle 20 on the side where the raw material liquid is discharged. An opening of the hole provided in the nozzle 20 on the side from which the raw material liquid is discharged becomes a discharge port 20a.
 また、第1のノズル群12aに属する複数のノズル20は、互いに平行となっている。第2のノズル群12bに属する複数のノズル20は、互いに平行となっている。 Further, the plurality of nozzles 20 belonging to the first nozzle group 12a are parallel to each other. The plurality of nozzles 20 belonging to the second nozzle group 12b are parallel to each other.
 また、Y軸方向から見て、第1のノズル群12aに属するノズル20と、第2のノズル群12bに属するノズル20とは、互いに平行となっている。 Further, as viewed from the Y-axis direction, the nozzles 20 belonging to the first nozzle group 12a and the nozzles 20 belonging to the second nozzle group 12b are parallel to each other.
 ただし、X軸方向から見て、第2のノズル群12bに属する複数のノズル20が延びる方向は、第1のノズル群12aに属する複数のノズル20が延びる方向と交差している。すなわち、X軸方向から見て、第2のノズル群12bに属する複数のノズル20が延びる方向は、第1のノズル群12aに属する複数のノズル20が延びる方向と平行とはなっていない。 However, when viewed from the X-axis direction, the direction in which the plurality of nozzles 20 belonging to the second nozzle group 12b extends intersects the direction in which the plurality of nozzles 20 belonging to the first nozzle group 12a extends. That is, when viewed from the X-axis direction, the direction in which the plurality of nozzles 20 belonging to the second nozzle group 12b extends is not parallel to the direction in which the plurality of nozzles 20 belonging to the first nozzle group 12a extends.
 また、X軸方向から見て、第2のノズル群12bに属する複数のノズル20は、先端側(排出口20a側)になるに従い第1のノズル群12aに属する複数のノズル20から離れる方向に延びている。X軸方向から見て、第1のノズル群12aに属する複数のノズル20の先端と、第2のノズル群12bに属する複数のノズル20の先端との間のX軸方向に投影した距離L1は、本体部22の断面寸法L3よりも長い。
 この様にすれば、X軸方向から見て、第1のノズル群12aに属する複数のノズル20と、第2のノズル群12bに属する複数のノズル20とを平行とした場合よりも、第1のノズル群12aに属する複数のノズル20の排出口20a側の端面と、第2のノズル群12bに属する複数のノズル20の排出口20a側の端面との間の距離L1を、長くすることができる。そのため、第1のノズル群12aに属する複数のノズル20の排出口20a側の端面と、第2のノズル群12bに属する複数のノズル20の排出口20a側の端面との間で電界干渉が生じるのを抑制することができる。その結果、ファイバ100の形成を安定させることができる。
 本発明者らの得た知見によれば、第1のノズル群12aに属する複数のノズル20が延びる方向と、第2のノズル群12bに属する複数のノズル20が延びる方向との間のX軸方向に投影した角度θ1は、30°以上、150°以下とすることが好ましい。
 θ1を30°以上、150°以下とすれば、ノズルヘッド2の小型化と、第1のノズル群12aと第2のノズル群12bの電界干渉の抑制と、部材表面への安定したファイバ100の堆積とを実現するのに好適である。さらに、原料液の揮発性を向上させるとともに、複数のノズルヘッド2を配置する場合には、θ1は、45°以上、75°以下とすることがより好適である。
In addition, when viewed from the X-axis direction, the plurality of nozzles 20 belonging to the second nozzle group 12b are separated from the plurality of nozzles 20 belonging to the first nozzle group 12a toward the tip side (discharge port 20a side). It extends. A distance L1 projected in the X-axis direction between the tips of the plurality of nozzles 20 belonging to the first nozzle group 12a and the tips of the plurality of nozzles 20 belonging to the second nozzle group 12b when viewed from the X-axis direction is The cross-sectional dimension L3 of the main body 22 is longer.
In this way, when viewed from the X-axis direction, the first nozzle group 12a and the plurality of nozzles 20 belonging to the second nozzle group 12b are parallel to the first nozzle group 12a. The distance L1 between the end surface on the discharge port 20a side of the plurality of nozzles 20 belonging to the nozzle group 12a and the end surface on the discharge port 20a side of the plurality of nozzles 20 belonging to the second nozzle group 12b may be increased. it can. Therefore, electric field interference occurs between the end surfaces on the discharge port 20a side of the plurality of nozzles 20 belonging to the first nozzle group 12a and the end surfaces on the discharge port 20a side of the plurality of nozzles 20 belonging to the second nozzle group 12b. Can be suppressed. As a result, the formation of the fiber 100 can be stabilized.
According to the knowledge obtained by the present inventors, the X axis between the direction in which the plurality of nozzles 20 belonging to the first nozzle group 12a extends and the direction in which the plurality of nozzles 20 belonging to the second nozzle group 12b extends. The angle θ1 projected in the direction is preferably 30 ° or more and 150 ° or less.
If θ1 is 30 ° or more and 150 ° or less, the nozzle head 2 can be reduced in size, the electric field interference between the first nozzle group 12a and the second nozzle group 12b can be suppressed, and the stable fiber 100 on the member surface can be formed. It is suitable for realizing deposition. Furthermore, when improving the volatility of the raw material liquid and arranging a plurality of nozzle heads 2, θ1 is more preferably 45 ° or more and 75 ° or less.
 また、第1のノズル群12aに属する複数のノズル20の接続部21側の端面と、第2のノズル群12bに属する複数のノズル20の接続部21側の端面との間の距離L2を、距離L1より短くすることができる。そのため、本体部22の断面寸法L3を距離L1より短くすることが容易となる。本体部22の断面寸法L3を距離L1より短くすることができれば、ノズルヘッド2の小型化を図ることができる。 In addition, a distance L2 between the end surface on the connection portion 21 side of the plurality of nozzles 20 belonging to the first nozzle group 12a and the end surface on the connection portion 21 side of the plurality of nozzles 20 belonging to the second nozzle group 12b, The distance can be shorter than the distance L1. Therefore, it becomes easy to make the cross-sectional dimension L3 of the main-body part 22 shorter than the distance L1. If the cross-sectional dimension L3 of the main body 22 can be made shorter than the distance L1, the nozzle head 2 can be reduced in size.
 ノズル20の外形には特に限定はないが、針状とすることで、ノズル20の排出口20a側の端面において電界集中が生じ易くなる。ノズル20の排出口20a側の端面において電界集中が生じれば、ノズル20と収集体51の間に形成される電界の強度を高めることができる。そのため、電源4により印加される電圧を低くすることができる。すなわち、駆動電圧を低減させることができる。この場合、ノズル20の断面寸法は、例えば、1mm程度とすることができる。 The outer shape of the nozzle 20 is not particularly limited, but by forming a needle shape, electric field concentration tends to occur on the end surface of the nozzle 20 on the discharge port 20a side. If electric field concentration occurs on the end surface of the nozzle 20 on the discharge port 20a side, the strength of the electric field formed between the nozzle 20 and the collector 51 can be increased. Therefore, the voltage applied by the power supply 4 can be lowered. That is, the drive voltage can be reduced. In this case, the cross-sectional dimension of the nozzle 20 can be about 1 mm, for example.
 排出口20aの断面寸法(原料液の排出方向に対して直交する方向の断面の寸法)には特に限定はない。排出口20aの断面寸法は、形成したいファイバ100の断面寸法に応じて適宜変更することができる。排出口20aの断面寸法は、例えば、200μm以上とすることができる。
 ノズル20の長さ寸法には特に限定はない。
 第1のノズル群12aに属する複数のノズル20のピッチ寸法は、例えば、20mm程度とすることができる。第2のノズル群12bに属する複数のノズル20のピッチ寸法は、例えば、20mm程度とすることができる。
There is no particular limitation on the cross-sectional dimension of the discharge port 20a (the cross-sectional dimension in the direction orthogonal to the discharge direction of the raw material liquid). The cross-sectional dimension of the discharge port 20a can be appropriately changed according to the cross-sectional dimension of the fiber 100 to be formed. The cross-sectional dimension of the discharge port 20a can be, for example, 200 μm or more.
There is no particular limitation on the length of the nozzle 20.
The pitch dimension of the plurality of nozzles 20 belonging to the first nozzle group 12a can be set to about 20 mm, for example. The pitch dimension of the plurality of nozzles 20 belonging to the second nozzle group 12b can be, for example, about 20 mm.
 ノズル20は、導電性材料から形成されている。ノズル20の材料は、導電性と原料液に対する耐性を有するものとすることが好ましい。ノズル20は、例えば、ステンレスなどから形成することができる。 The nozzle 20 is made of a conductive material. It is preferable that the material of the nozzle 20 has conductivity and resistance to the raw material liquid. The nozzle 20 can be formed from, for example, stainless steel.
 接続部21は、第1のノズル群12aに属する複数のノズル20、および第2のノズル群12bに属する複数のノズル20と、本体部22とのそれぞれの間に設けられている。
ノズル20の接続部21側の端部は、接続部21に固定されている。接続部21は、本体部22に着脱自在に設けられている。すなわち、第1のノズル群12aに属する複数のノズル20、および第2のノズル群12bに属する複数のノズル20は、本体部22と着脱自在に接続されている。例えば、接続部21の本体部22側の端部に雄ネジを設け、本体部22の側面に雌ネジを設けるようにすることができる。また、ルアーテーパ(luer taper)(ルアーアダプタ、ルアーロック、ルアーコネクタ、ルアーフィットなどとも称される)を用いて、接続部21を本体部22に着脱自在に設けることもできる。例えば、接続部21の本体部22側にメスルアー(female luer)を設け、本体部22の側面にオスルアー(male luer)を設けるようにすることができる。すなわち、接続部21は、ネジまたはルアーテーパを用いて本体部22に接続されている。
The connection portion 21 is provided between the main body portion 22 and the plurality of nozzles 20 belonging to the first nozzle group 12a and the plurality of nozzles 20 belonging to the second nozzle group 12b.
The end of the nozzle 20 on the connection part 21 side is fixed to the connection part 21. The connection part 21 is detachably provided on the main body part 22. That is, the plurality of nozzles 20 belonging to the first nozzle group 12a and the plurality of nozzles 20 belonging to the second nozzle group 12b are detachably connected to the main body portion 22. For example, a male screw can be provided at the end of the connecting portion 21 on the main body 22 side, and a female screw can be provided on the side surface of the main body 22. Moreover, the connection part 21 can also be provided in the main-body part 22 detachably using a luer taper (it is also called a luer adapter, a luer lock, a luer connector, a luer fit etc.). For example, a female luer can be provided on the side of the main body 22 of the connecting portion 21, and a male luer can be provided on the side surface of the main body 22. That is, the connection part 21 is connected to the main body part 22 using a screw or a luer taper.
 接続部21の内部には、原料液を本体部22からノズル20に供給するための孔が設けられている。接続部21の内部に設けられた孔は、ノズル20の内部に設けられた孔、および、本体部22の内部に設けられた空間22bと繋がっている。
 接続部21は、導電性材料から形成されている。接続部21の材料は、導電性と原料液に対する耐性を有するものとすることが好ましい。接続部21は、例えば、ステンレスなどから形成することができる。
Inside the connection portion 21, a hole for supplying the raw material liquid from the main body portion 22 to the nozzle 20 is provided. The hole provided in the connection portion 21 is connected to the hole provided in the nozzle 20 and the space 22 b provided in the main body portion 22.
The connection part 21 is formed from a conductive material. It is preferable that the material of the connection portion 21 has conductivity and resistance to the raw material liquid. The connection part 21 can be formed from stainless steel etc., for example.
 ここで、排出された原料液が、ノズル20の排出口20a側の端面およびその近傍に付着する場合がある。付着した原料液が固まると、排出される原料液の量が少なくなったり、原料液が排出されなくなったりするおそれがある。そのため、必要に応じて、あるいは定期的に、ノズル20の排出口20a側の端面およびその近傍をクリーニングしている。この場合、ノズル20は針状を呈しているため強度が低くなるので、複数のノズル20を一括してクリーニングすると複数のノズル20が曲がったり折れたりするおそれがある。そのため、複数のノズル20を一本ずつクリーニングする必要がある。
 本実施の形態に係るノズルヘッド2には、接続部21が設けられているので、複数のノズル20を本体部22から一本ずつ取り外すことができる。そして、取り外した複数のノズル20を溶媒を用いて一括洗浄したり、付着した原料液が固化する前に拭き取ったりすることができる。なお、クリーニングに用いる溶媒は、後述する原料液に含まれる溶媒と同じとすることができる。
Here, the discharged raw material liquid may adhere to the end surface of the nozzle 20 on the discharge port 20a side and the vicinity thereof. When the attached raw material liquid is hardened, there is a possibility that the amount of the raw material liquid to be discharged decreases or the raw material liquid is not discharged. Therefore, the end surface of the nozzle 20 on the discharge port 20a side and the vicinity thereof are cleaned as necessary or periodically. In this case, since the strength of the nozzle 20 is low because it has a needle shape, the plurality of nozzles 20 may be bent or broken when the nozzles 20 are collectively cleaned. Therefore, it is necessary to clean the plurality of nozzles 20 one by one.
Since the nozzle head 2 according to the present embodiment is provided with the connection portion 21, the plurality of nozzles 20 can be detached from the main body portion 22 one by one. Then, the plurality of removed nozzles 20 can be collectively cleaned using a solvent, or wiped before the attached raw material liquid is solidified. In addition, the solvent used for cleaning can be the same as the solvent contained in the raw material liquid described later.
 本体部22は、棒状を呈している。本体部22の内部には、原料液が収納される空間22bが設けられている。また、本体部22には、供給口22aが設けられている。原料液供給部3から供給された原料液は、供給口22aを介して本体部22の内部に設けられた空間22bに導入される。供給口22aの配設位置と数には、特に限定はない。例えば、供給口22aは、本体部22の側面に設けることもできるし、取付部23に設けることもできる。 The main body 22 has a rod shape. A space 22b in which the raw material liquid is stored is provided inside the main body 22. The main body 22 is provided with a supply port 22a. The raw material liquid supplied from the raw material liquid supply unit 3 is introduced into a space 22b provided inside the main body 22 through the supply port 22a. There are no particular restrictions on the location and number of the supply ports 22a. For example, the supply port 22 a can be provided on the side surface of the main body portion 22, or can be provided on the attachment portion 23.
 本体部22の断面形状には特に限定はないが、複数の接続部21を設けることを考慮すると、本体部22の断面形状は正多角形とすることが好ましい。正多角形は、線対称な図形であるため、複数のノズル20を複数の群に分けて設けるのが容易となる。例えば、図1および図2に例示をした本体部22の断面形状は、正六角形である。この場合、本体部22の一の側面に第1のノズル群12aに属する複数のノズル20を設け、本体部22の隣接する側面に第2のノズル群12aに属する複数のノズル20を設けるようにすれば、前述した角度θ1が60°となるようにすることができる。本体部22の断面形状を円形とし、複数の接続部21が設けられる部分に平面部(座面)を設けるようにしてもよい。 Although there is no particular limitation on the cross-sectional shape of the main body portion 22, the cross-sectional shape of the main body portion 22 is preferably a regular polygon in consideration of providing a plurality of connection portions 21. Since the regular polygon is a line-symmetric figure, it is easy to provide a plurality of nozzles 20 divided into a plurality of groups. For example, the cross-sectional shape of the main body 22 illustrated in FIGS. 1 and 2 is a regular hexagon. In this case, a plurality of nozzles 20 belonging to the first nozzle group 12a are provided on one side surface of the main body portion 22, and a plurality of nozzles 20 belonging to the second nozzle group 12a are provided on the side surface adjacent to the main body portion 22. In this case, the above-described angle θ1 can be set to 60 °. The cross-sectional shape of the main body portion 22 may be circular, and a flat portion (seat surface) may be provided in a portion where the plurality of connection portions 21 are provided.
 また、第1のノズル群12aに属する複数のノズル20を設ける面と、第2のノズル群12aに属する複数のノズル20を設ける面とがなす角度をθ2とすれば、前述した角度θ1は以下の式で表すことができる。
 θ1=180°-θ2
Further, if the angle formed by the surface on which the plurality of nozzles 20 belonging to the first nozzle group 12a and the surface on which the plurality of nozzles 20 belonging to the second nozzle group 12a are provided is θ2, the angle θ1 described above is as follows: It can be expressed by the following formula.
θ1 = 180 ° −θ2
 図2に示すように、取付部23は、本体部22の両端に設けられている。取付部23は、例えば、円柱状を呈したものとすることができる。取付部23は、収集体51の上方の所定の位置に設けられた図示しない保持具に着脱自在に保持される。すなわち、ノズルヘッド2は、収集体51の上方の所定の位置に着脱自在に設けられている。なお、取付部23に雌ネジや雄ネジなどの締結手段を設けるようにしてもよい。 As shown in FIG. 2, the attachment portions 23 are provided at both ends of the main body portion 22. For example, the attachment portion 23 may have a cylindrical shape. The attachment portion 23 is detachably held by a holder (not shown) provided at a predetermined position above the collection body 51. That is, the nozzle head 2 is detachably provided at a predetermined position above the collecting body 51. In addition, you may make it provide fastening means, such as a female screw and a male screw, in the attachment part 23. FIG.
 図3は、他の実施形態に係るノズルヘッド2aを例示するための模式斜視図である。
 図4(a)、(b)は、ノズル120の模式断面図である。
 図3に示すように、ノズルヘッド2aは、ノズル120、接続部21、本体部22、および取付部23を有する。
 前述したノズル20は針状を呈しているが、ノズル120は円錐状を呈している。ノズル120の先端の断面寸法は、例えば、1mm程度とすることができる。円錐状を呈したノズル120とすればノズル120自体の機械的強度を高めることができる。また、ノズル120の先端を尖らせることができるので、ノズル120の排出口20a側の端面において電界集中が生じ易くなる。そのため、ノズル120と収集体51の間に形成される電界の強度を高めることができるので、円筒状を呈するノズルとした場合に比べて、電源4により印加される電圧を低くすることができる。すなわち、駆動電圧を低減することができる。ただし、針状のノズル20とすれば、駆動電圧をより低くすることができる。
FIG. 3 is a schematic perspective view for illustrating a nozzle head 2a according to another embodiment.
4A and 4B are schematic cross-sectional views of the nozzle 120. FIG.
As illustrated in FIG. 3, the nozzle head 2 a includes a nozzle 120, a connection portion 21, a main body portion 22, and an attachment portion 23.
The nozzle 20 described above has a needle shape, but the nozzle 120 has a conical shape. The cross-sectional dimension of the tip of the nozzle 120 can be, for example, about 1 mm. If the nozzle 120 has a conical shape, the mechanical strength of the nozzle 120 itself can be increased. In addition, since the tip of the nozzle 120 can be sharpened, electric field concentration tends to occur on the end surface of the nozzle 120 on the discharge port 20a side. Therefore, since the strength of the electric field formed between the nozzle 120 and the collecting body 51 can be increased, the voltage applied by the power source 4 can be reduced as compared with the case where the nozzle has a cylindrical shape. That is, the drive voltage can be reduced. However, if the needle-like nozzle 20 is used, the drive voltage can be further reduced.
 また、図4(a)、(b)に示すように、円錐状を呈したノズル120とすれば、ノズル120の内部に設けられた孔120aの断面寸法を大きくすることができる。この場合、図4(a)に示すように、孔120aは排出口20aから離れるに従い断面寸法が漸増するようにすることができる。また、図4(b)に示すように、孔120aは排出口20aから離れるに従い断面寸法が段階的に大きくなるようにすることもできる。孔120aは原料液の流路となるので孔120aの断面寸法を大きくすることができれば、流路抵抗を低減させることができる。そのため、原料液の供給が円滑となるようにすることができる。 Further, as shown in FIGS. 4A and 4B, if the nozzle 120 has a conical shape, the cross-sectional dimension of the hole 120a provided in the nozzle 120 can be increased. In this case, as shown to Fig.4 (a), the cross-sectional dimension can increase gradually as the hole 120a leaves | separates from the discharge port 20a. Moreover, as shown in FIG.4 (b), the cross-sectional dimension can also be made to become large in steps as the hole 120a leaves | separates from the discharge port 20a. Since the hole 120a serves as a flow path for the raw material liquid, the flow path resistance can be reduced if the cross-sectional dimension of the hole 120a can be increased. Therefore, the supply of the raw material liquid can be made smooth.
 図1に示すように、原料液供給部3は、収納部31、供給部32、原料液制御部33、および配管34を有する。
 収納部31は、原料液を収納する。収納部31は、原料液に対する耐性を有する材料から形成されている。収納部31は、例えば、ステンレスなどから形成することができる。
As shown in FIG. 1, the raw material liquid supply unit 3 includes a storage unit 31, a supply unit 32, a raw material liquid control unit 33, and a pipe 34.
The storage unit 31 stores the raw material liquid. The accommodating part 31 is formed from the material which has the tolerance with respect to a raw material liquid. The accommodating part 31 can be formed from stainless steel etc., for example.
 原料液は、高分子物質を溶媒に溶解したものである。
 高分子物質には特に限定がなく、形成したいファイバ100の材質に応じて適宜変更することができる。高分子物質は、例えば、ポリプロピレン、ポリエチレン、ポリスチレン、ポリエチレンテレフタレート、ポリ塩化ビニル、ポリカーボネート、ナイロン、アラミドなどとすることができる。
The raw material liquid is obtained by dissolving a polymer substance in a solvent.
There is no particular limitation on the polymer substance, and it can be changed as appropriate according to the material of the fiber 100 to be formed. Examples of the polymer substance include polypropylene, polyethylene, polystyrene, polyethylene terephthalate, polyvinyl chloride, polycarbonate, nylon, and aramid.
 溶媒は、高分子物質を溶解することができるものであればよい。溶媒は、溶解させる高分子物質に応じて適宜変更することができる。溶媒は、例えば、メタノール、エタノール、イソプロピルアルコール、アセトン、ベンゼン、トルエンなどとすることができる。
 なお、高分子物質および溶媒は、例示をしたものに限定されるわけではない。
The solvent may be any solvent that can dissolve the polymer substance. The solvent can be appropriately changed according to the polymer substance to be dissolved. The solvent can be, for example, methanol, ethanol, isopropyl alcohol, acetone, benzene, toluene, and the like.
The polymer substance and the solvent are not limited to those illustrated.
 原料液は、表面張力により排出口20aの近傍に留まる様にされる。そのため、原料液の粘度は、排出口20aの寸法などに応じて適宜変更することができる。原料液の粘度は、実験やシミュレーションを行うことで求めることができる。また、原料液の粘度は、溶媒と高分子物質の混合割合により制御することができる。 The raw material liquid is allowed to stay in the vicinity of the discharge port 20a due to surface tension. Therefore, the viscosity of the raw material liquid can be appropriately changed according to the size of the discharge port 20a. The viscosity of the raw material liquid can be obtained by performing experiments and simulations. The viscosity of the raw material liquid can be controlled by the mixing ratio of the solvent and the polymer material.
 供給部32は、収納部31に収納されている原料液を本体部22に供給する。供給部32は、例えば、原料液に対する耐性を有するポンプなどとすることができる。また、供給部32は、例えば、収納部31にガスを供給し、収納部31に収納されている原料液を圧送するものとすることもできる。 The supply unit 32 supplies the raw material liquid stored in the storage unit 31 to the main body unit 22. The supply unit 32 can be, for example, a pump having resistance to the raw material liquid. The supply unit 32 may supply gas to the storage unit 31 and pump the raw material liquid stored in the storage unit 31, for example.
 原料液制御部33は、本体部22に供給される原料液の流量、圧力などを制御して、新しい原料液が本体部22の内部に供給された際に、本体部22の内部にある原料液が排出口20aから押し出されないようにする。なお、原料液制御部33に対する制御量は、排出口20aの寸法や原料液の粘度などにより適宜変更することができる。原料液制御部33に対する制御量は、実験やシミュレーションを行うことで求めることができる。
 また、原料液制御部33は、原料液の供給の開始と、供給の停止を切り替えるものとすることもできる。
The raw material liquid control unit 33 controls the flow rate, pressure, and the like of the raw material liquid supplied to the main body 22, and when a new raw material liquid is supplied into the main body 22, the raw material in the main body 22 The liquid is prevented from being pushed out from the discharge port 20a. The control amount for the raw material liquid control unit 33 can be changed as appropriate depending on the size of the discharge port 20a, the viscosity of the raw material liquid, and the like. The control amount for the raw material liquid control unit 33 can be obtained through experiments and simulations.
Moreover, the raw material liquid control part 33 can also switch the start of supply of a raw material liquid, and the stop of supply.
 なお、供給部32および原料液制御部33は、必ずしも必要ではない。例えば、本体部22の位置より高い位置に収納部31を設けるようにすれば、重力を利用して原料液を本体部22に供給することができる。そして、収納部31の高さ位置を適宜設定することで、本体部22の内部にある原料液が排出口20aから押し出されないようにする。なお、収納部31の高さ位置は、排出口20aの寸法や原料液の粘度などにより適宜変更することができる。収納部31の高さ位置は、実験やシミュレーションを行うことで求めることができる。 In addition, the supply part 32 and the raw material liquid control part 33 are not necessarily required. For example, if the storage unit 31 is provided at a position higher than the position of the main body 22, the raw material liquid can be supplied to the main body 22 using gravity. And the raw material liquid inside the main-body part 22 is prevented from being extruded from the discharge port 20a by setting the height position of the accommodating part 31 suitably. In addition, the height position of the accommodating part 31 can be suitably changed with the dimension of the discharge port 20a, the viscosity of a raw material liquid, etc. The height position of the storage unit 31 can be obtained by performing experiments and simulations.
 配管34は、収納部31と供給部32との間、供給部32と原料液制御部33との間、原料液制御部33と本体部22との間に設けられている。配管34は、原料液の流路となる。配管34は、原料液に対する耐性を有する材料から形成されている。 The piping 34 is provided between the storage unit 31 and the supply unit 32, between the supply unit 32 and the raw material liquid control unit 33, and between the raw material liquid control unit 33 and the main body unit 22. The pipe 34 serves as a flow path for the raw material liquid. The pipe 34 is made of a material having resistance to the raw material liquid.
 電源4は、本体部22および接続部21を介してノズル20に電圧を印加する。なお、複数のノズル20と電気的に接続された図示しない端子を設けるようにしてもよい。この場合、電源4は、図示しない端子を介してノズル20に電圧を印加する。すなわち、電源4から複数のノズル20に電圧が印加できるようになっていればよい。 The power supply 4 applies a voltage to the nozzle 20 via the main body 22 and the connection part 21. A terminal (not shown) electrically connected to the plurality of nozzles 20 may be provided. In this case, the power supply 4 applies a voltage to the nozzle 20 via a terminal (not shown). That is, it is only necessary that a voltage can be applied from the power source 4 to the plurality of nozzles 20.
 ノズル20に印加する電圧(駆動電圧)の極性は、プラスとすることもできるし、マイナスとすることもできる。ただし、ノズル20にマイナスの電圧を印加すれば、ノズル20の先端から電子が放出されるので異常放電が発生しやすくなる。そのため、図1に示すように、ノズル20に印加する電圧の極性はプラスとすることが好ましい。 The polarity of the voltage (drive voltage) applied to the nozzle 20 can be positive or negative. However, if a negative voltage is applied to the nozzle 20, electrons are emitted from the tip of the nozzle 20, so abnormal discharge is likely to occur. Therefore, as shown in FIG. 1, the polarity of the voltage applied to the nozzle 20 is preferably positive.
 ノズル20に印加する電圧は、原料液に含まれる高分子物質の種類、ノズル20と収集体51との間の距離などに応じて適宜変更することができる。例えば、電源4は、ノズル20と収集体51との間の電位差が10kV以上となるように、ノズル20に電圧を印加するものとすることができる。この場合、板状のノズルとすれば、ノズルに印加する電圧は70kV程度となる。一方、本実施の形態に係る針状のノズル20とすれば、ノズル20に印加する電圧を50kV以下にすることができる。そのため、駆動電圧の低減を図ることができる。
 電源4は、例えば、直流高圧電源とすることができる。電源4は、例えば、10kV以上100kV以下の直流電圧を出力するものとすることができる。
The voltage applied to the nozzle 20 can be appropriately changed according to the type of the polymer substance contained in the raw material liquid, the distance between the nozzle 20 and the collecting body 51, and the like. For example, the power supply 4 can apply a voltage to the nozzle 20 so that the potential difference between the nozzle 20 and the collector 51 is 10 kV or more. In this case, if a plate-like nozzle is used, the voltage applied to the nozzle is about 70 kV. On the other hand, with the needle-like nozzle 20 according to the present embodiment, the voltage applied to the nozzle 20 can be reduced to 50 kV or less. Therefore, the drive voltage can be reduced.
The power source 4 can be a DC high voltage power source, for example. The power source 4 can output a DC voltage of 10 kV to 100 kV, for example.
 収集部5は、収集体51、堆積調整部52、および電源53を有する。
 収集体51は、複数のノズル20の原料液が排出される側に設けられている。収集体51は、接地されている。収集体51には、ノズル20に印加する電圧と逆極性の電圧を印加するようにしてもよい。収集体51は、導電性材料から形成することができる。収集体51の材料は、導電性と原料液に対する耐性を有するものとすることが好ましい。収集体51の材料は、例えば、ステンレスなどとすることができる。
The collection unit 5 includes a collection body 51, a deposition adjustment unit 52, and a power supply 53.
The collecting body 51 is provided on the side from which the raw material liquid of the plurality of nozzles 20 is discharged. The collector 51 is grounded. A voltage having a reverse polarity to the voltage applied to the nozzle 20 may be applied to the collecting body 51. The collector 51 can be formed from a conductive material. It is preferable that the material of the collecting body 51 has conductivity and resistance to the raw material liquid. The material of the collecting body 51 can be stainless steel, for example.
 図1に例示をした収集体51は、帯状を呈している。収集体51の一方の端部は回転ローラ51aに設けられ、収集体51の他方の端部は回転ローラ51bに設けられている。回転ローラ51a、51bには、モータなどの駆動機構が接続されている。収集体51は、一対の回転ローラ51a、51bの間を往復移動するものとすることができる。なお、ベルトコンベアのように一対の回転ローラ51a、51bの間を収集体51が移動するようにしてもよい。 The collector 51 illustrated in FIG. 1 has a strip shape. One end of the collecting body 51 is provided on the rotating roller 51a, and the other end of the collecting body 51 is provided on the rotating roller 51b. A driving mechanism such as a motor is connected to the rotating rollers 51a and 51b. The collector 51 can reciprocate between the pair of rotating rollers 51a and 51b. In addition, you may make it the collection body 51 move between a pair of rotating rollers 51a and 51b like a belt conveyor.
 また、収集体51は、例えば、回転するドラムとしてもよい。
 収集体51は、例えば、板状やシート状を呈し、移動しないものとすることもできる。ただし、収集体51を移動させるようにすれば、連続的な堆積作業が可能となる。そのため、ファイバ100からなる堆積体110の生産効率を向上させることができる。
Further, the collecting body 51 may be a rotating drum, for example.
For example, the collecting body 51 may have a plate shape or a sheet shape and may not move. However, if the collector 51 is moved, a continuous deposition operation can be performed. Therefore, the production efficiency of the deposit 110 made of the fiber 100 can be improved.
 収集体51の上に形成された堆積体110は、作業者により収集体51から取り外される。堆積体110は、例えば、不織布やフィルタなどに用いられる。なお、堆積体110の用途は例示をしたものに限定されるわけではない。 The deposit 110 formed on the collector 51 is removed from the collector 51 by the operator. The deposit 110 is used for a nonwoven fabric, a filter, etc., for example. In addition, the use of the deposit 110 is not limited to the example illustrated.
 また、収集体51は、省くこともできる。例えば、導電性を有する部材の表面に、ファイバ100からなる堆積体110を直接形成することもできる。この様な場合には、導電性を有する部材を接地したり、導電性を有する部材にノズル20に印加する電圧と逆極性の電圧を印加したりすればよい。 Also, the collecting body 51 can be omitted. For example, the deposit 110 made of the fiber 100 can be directly formed on the surface of a member having conductivity. In such a case, the conductive member may be grounded, or a voltage having a polarity opposite to that applied to the nozzle 20 may be applied to the conductive member.
 堆積調整部52は、収集体51の、ノズル20が設けられる側とは反対側に設けられている。堆積調整部52は、導電性材料から形成されている。堆積調整部52は、例えば、ステンレスなどの金属から形成することができる。堆積調整部52の収集体51側の端部は尖っている。堆積調整部52の収集体51側の端部が尖っていれば、電界集中が生じ易くなる。そのため、ノズル20と堆積調整部52の間に電界を形成するのが容易となる。 The accumulation adjusting unit 52 is provided on the side of the collecting body 51 opposite to the side on which the nozzle 20 is provided. The deposition adjusting unit 52 is made of a conductive material. The deposition adjusting unit 52 can be formed of a metal such as stainless steel, for example. The end of the accumulation adjusting unit 52 on the collecting body 51 side is pointed. If the end of the accumulation adjusting unit 52 on the collector 51 side is sharp, electric field concentration is likely to occur. Therefore, it becomes easy to form an electric field between the nozzle 20 and the deposition adjusting unit 52.
 電源53は、堆積調整部52に電圧を印加する。電源53は、ノズル20に印加される電圧と逆極性の電圧を堆積調整部52に印加する。電源53は、例えば、直流高圧電源とすることができる。電源53は、例えば、10kV以上100kV以下の直流電圧を出力するものとすることができる。 The power supply 53 applies a voltage to the deposition adjusting unit 52. The power supply 53 applies a voltage having a polarity opposite to the voltage applied to the nozzle 20 to the deposition adjusting unit 52. The power source 53 can be, for example, a DC high voltage power source. The power supply 53 can output a DC voltage of 10 kV or more and 100 kV or less, for example.
 ノズル20に印加する電圧と逆極性の電圧が堆積調整部52に印加されると、ノズル20と堆積調整部52の間にも電界が形成される。ノズル20と収集体51の間に形成された電界は、ノズル20と堆積調整部52の間に形成された電界の影響を受けて変化する。ノズル20の排出口20aの近傍にある原料液は、電気力線に沿って作用する静電力によって引き出される。そのため、ノズル20と収集体51の間に形成される電界を変化させれば、ファイバ100を堆積させる領域を変化させることができる。すなわち、堆積調整部52は、ノズル20と収集体51の間に形成される電界を変化させて、ファイバ100を堆積させる領域を変化させる。 When a voltage having a polarity opposite to the voltage applied to the nozzle 20 is applied to the deposition adjusting unit 52, an electric field is also formed between the nozzle 20 and the deposition adjusting unit 52. The electric field formed between the nozzle 20 and the collecting body 51 changes under the influence of the electric field formed between the nozzle 20 and the deposition adjusting unit 52. The raw material liquid in the vicinity of the discharge port 20a of the nozzle 20 is drawn out by the electrostatic force acting along the lines of electric force. Therefore, if the electric field formed between the nozzle 20 and the collecting body 51 is changed, the region where the fiber 100 is deposited can be changed. That is, the deposition adjusting unit 52 changes the region where the fiber 100 is deposited by changing the electric field formed between the nozzle 20 and the collector 51.
 堆積調整部52および電源53を設ける様にすれば、堆積させたい領域にファイバ100を堆積させることが容易となる。また、堆積調整部52および電源53を設ける様にすれば、堆積体110の厚みの均一化、ファイバ100の局所的な堆積、堆積体110に形成されたピンホール等の開口部分の補修などを行うことができる。 If the deposition adjusting unit 52 and the power source 53 are provided, it becomes easy to deposit the fiber 100 in the region to be deposited. Further, if the deposition adjusting unit 52 and the power source 53 are provided, the thickness of the deposited body 110 can be made uniform, the fiber 100 can be deposited locally, and the opening portion such as a pinhole formed in the deposited body 110 can be repaired. It can be carried out.
 また、堆積調整部52に印加される電圧を制御することで、ノズル20と堆積調整部52の間に形成される電界、ひいては、ノズル20と収集体51の間に形成される電界を制御することができる。 In addition, by controlling the voltage applied to the deposition adjusting unit 52, the electric field formed between the nozzle 20 and the deposition adjusting unit 52, and consequently, the electric field formed between the nozzle 20 and the collector 51 is controlled. be able to.
 また、堆積調整部52を移動させる図示しない駆動装置を設けることができる。堆積調整部52を移動させる様にすれば、電界の制御がより容易となる。
 また、図1に例示をした堆積調整部52および電源53は、第1のノズル群12aに属する複数のノズル20、および第2のノズル群12bに属する複数のノズル20に対してそれぞれ1組設けられている。なお、堆積調整部52および電源53は、1組だけ設けるようにしてもよいし、複数の堆積調整部52に対して電源53を1つだけ設けるようにしてもよい。
In addition, a driving device (not shown) that moves the deposition adjusting unit 52 can be provided. If the deposition adjustment unit 52 is moved, the electric field can be controlled more easily.
1 is provided for each of the plurality of nozzles 20 belonging to the first nozzle group 12a and the plurality of nozzles 20 belonging to the second nozzle group 12b. It has been. Note that only one set of the deposition adjusting unit 52 and the power source 53 may be provided, or only one power source 53 may be provided for the plurality of deposition adjusting units 52.
 制御部6は、供給部32、原料液制御部33、電源4、電源53、および、回転ローラ51a、51bに接続された駆動機構の動作を制御する。制御部6は、例えば、CPU(Central Processing Unit)やメモリなどを備えたコンピュータとすることができる。 The control unit 6 controls the operation of the drive unit connected to the supply unit 32, the raw material liquid control unit 33, the power source 4, the power source 53, and the rotating rollers 51a and 51b. The control unit 6 can be, for example, a computer having a CPU (Central Processing Unit) and a memory.
 次に、電界紡糸装置1の作用について説明する。
 原料液は、表面張力によりノズル20の排出口20aの近傍に留まっている。
 電源4は、ノズル20に電圧を印加する。すると、排出口20aの近傍にある原料液が所定の極性に帯電する。図1に例示をしたものの場合には、排出口20aの近傍にある原料液がプラスに帯電する。
Next, the operation of the electrospinning apparatus 1 will be described.
The raw material liquid remains in the vicinity of the discharge port 20a of the nozzle 20 due to surface tension.
The power source 4 applies a voltage to the nozzle 20. Then, the raw material liquid in the vicinity of the discharge port 20a is charged with a predetermined polarity. In the case illustrated in FIG. 1, the raw material liquid in the vicinity of the discharge port 20a is positively charged.
 収集体51は、接地されているので、ノズル20と収集体51の間に電界が形成される。そして、電気力線に沿って作用する静電力が表面張力より大きくなると、排出口20aの近傍にある原料液が静電力により収集体51に向けて引き出される。引き出された原料液は、引き伸ばされ、原料液に含まれる溶媒が揮発することでファイバ100が形成される。形成されたファイバ100が収集体51の上に堆積することで、堆積体110が形成される。また、堆積調整部52に印加する電圧、および堆積調整部52の位置の少なくともいずれかを制御することで、ファイバ100を堆積させる領域を変化させることができる。 Since the collecting body 51 is grounded, an electric field is formed between the nozzle 20 and the collecting body 51. When the electrostatic force acting along the lines of electric force becomes larger than the surface tension, the raw material liquid in the vicinity of the discharge port 20a is drawn toward the collector 51 by the electrostatic force. The drawn raw material liquid is stretched and the fiber 100 is formed by volatilization of the solvent contained in the raw material liquid. The formed fiber 100 is deposited on the collection body 51, whereby the deposition body 110 is formed. Further, by controlling at least one of the voltage applied to the deposition adjusting unit 52 and the position of the deposition adjusting unit 52, the region in which the fiber 100 is deposited can be changed.
 以上、本発明のいくつかの実施形態を例示したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更などを行うことができる。これら実施形態やその変形例は、発明の範囲や要旨に含まれるとともに、請求の範囲に記載された発明とその均等の範囲に含まれる。また、前述の各実施形態は、相互に組み合わせて実施することができる。 As mentioned above, although some embodiment of this invention was illustrated, these embodiment is shown as an example and is not intending limiting the range of invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, changes, and the like can be made without departing from the spirit of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof. Further, the above-described embodiments can be implemented in combination with each other.

Claims (8)

  1.  原料液が収納可能な空間を内部に有する本体部と、
     前記本体部と接続され、少なくとも1つのノズルを含む第1のノズル群と、
     前記本体部と接続され、少なくとも1つのノズルを含む第2のノズル群と、
     を備え、
     前記本体部が延びる方向から見て、前記第2のノズル群に属する前記ノズルは、先端側になるに従い前記第1のノズル群に属する前記ノズルから離れる方向に延びているノズルヘッド。
    A main body having a space in which the raw material liquid can be stored, and
    A first nozzle group connected to the main body and including at least one nozzle;
    A second nozzle group connected to the main body and including at least one nozzle;
    With
    The nozzle head belonging to the second nozzle group extends in a direction away from the nozzle belonging to the first nozzle group as viewed from a direction in which the main body extends.
  2.  前記第1のノズル群に属する前記ノズル、および前記第2のノズル群に属する前記ノズルは、前記本体部と着脱自在に接続されている請求項1記載のノズルヘッド。 The nozzle head according to claim 1, wherein the nozzle belonging to the first nozzle group and the nozzle belonging to the second nozzle group are detachably connected to the main body.
  3.  前記本体部が延びる方向から見て、前記第1のノズル群に属する前記ノズルの先端と、前記第2のノズル群に属する前記ノズルの先端との間の前記本体部が延びる方向に投影した距離は、前記本体部の断面寸法よりも長い請求項1または2に記載のノズルヘッド。 The distance projected in the direction in which the main body extends between the tip of the nozzle belonging to the first nozzle group and the tip of the nozzle belonging to the second nozzle group, as viewed from the direction in which the main body extends. The nozzle head according to claim 1, wherein is longer than a cross-sectional dimension of the main body.
  4.  前記本体部が延びる方向から見て、前記第1のノズル群に属する前記ノズルが延びる方向と、前記第2のノズル群に属する前記ノズルが延びる方向との間の前記本体部が延びる方向に投影した角度は、30°以上、150°以下である請求項1~3のいずれか1つに記載のノズルヘッド。 When viewed from the direction in which the main body extends, the projection is performed in the direction in which the main body extends between the direction in which the nozzles belonging to the first nozzle group extend and the direction in which the nozzles belonging to the second nozzle group extend. The nozzle head according to any one of claims 1 to 3, wherein the angle is not less than 30 ° and not more than 150 °.
  5.  前記第1のノズル群に属する前記ノズル、および前記第2のノズル群に属する前記ノズルと、前記本体部とのそれぞれの間に設けられた接続部をさらに備え、
     前記接続部は、ネジまたはルアーテーパを用いて前記本体部に接続されている請求項1~4のいずれか1つに記載のノズルヘッド。
    The nozzle further belonging to the first nozzle group, the nozzle belonging to the second nozzle group, and a connection portion provided between the main body portion, and
    The nozzle head according to any one of claims 1 to 4, wherein the connection portion is connected to the main body portion using a screw or a luer taper.
  6.  前記第1のノズル群に属する前記ノズル、および前記第2のノズル群に属する前記ノズルは、針状または円錐状を呈している請求項1~5のいずれか1つに記載のノズルヘッド。 The nozzle head according to any one of claims 1 to 5, wherein the nozzle belonging to the first nozzle group and the nozzle belonging to the second nozzle group have a needle shape or a cone shape.
  7.  前記第1のノズル群は、前記本体部が延びる方向に並べて設けられた複数のノズルを含み、
     前記第2のノズル群は、前記本体部が延びる方向に並べて設けられた複数のノズルを含む請求項1~6のいずれか1つに記載のノズルヘッド。
    The first nozzle group includes a plurality of nozzles arranged side by side in a direction in which the main body portion extends,
    The nozzle head according to any one of claims 1 to 6, wherein the second nozzle group includes a plurality of nozzles arranged side by side in a direction in which the main body portion extends.
  8.  請求項1~7のいずれか1つに記載のノズルヘッドと、
     前記ノズルヘッドに原料液を供給可能な原料液供給部と、
     前記ノズルヘッドに所定の極性の電圧を印加可能な電源と、
     を備えた電界紡糸装置。
    Nozzle head according to any one of claims 1 to 7,
    A raw material liquid supply unit capable of supplying the raw material liquid to the nozzle head;
    A power source capable of applying a voltage of a predetermined polarity to the nozzle head;
    An electrospinning apparatus comprising:
PCT/JP2017/032475 2016-12-02 2017-09-08 Nozzle head and electrospinning device WO2018100830A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-234931 2016-12-02
JP2016234931A JP6322688B1 (en) 2016-12-02 2016-12-02 Nozzle head and electrospinning apparatus

Publications (1)

Publication Number Publication Date
WO2018100830A1 true WO2018100830A1 (en) 2018-06-07

Family

ID=62106103

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/032475 WO2018100830A1 (en) 2016-12-02 2017-09-08 Nozzle head and electrospinning device

Country Status (2)

Country Link
JP (1) JP6322688B1 (en)
WO (1) WO2018100830A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7242353B2 (en) * 2019-03-12 2023-03-20 株式会社東芝 Electrospinning head and electrospinning device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007532790A (en) * 2004-04-08 2007-11-15 リサーチ・トライアングル・インスティチュート Electrospinning of fibers using a rotatable spray head
JP2007303015A (en) * 2006-05-10 2007-11-22 Univ Of Shiga Prefecture Static spinning apparatus
JP2008174853A (en) * 2007-01-16 2008-07-31 Matsushita Electric Ind Co Ltd Nozzle for producing polymer fiber and polymer fiber production apparatus using the nozzle
JP2009097112A (en) * 2007-10-17 2009-05-07 Panasonic Corp Method and apparatus for producing nanofiber and polymer web
WO2013100638A1 (en) * 2011-12-30 2013-07-04 (주)엠엔에스이십일 Apparatus and method for preparing nanofiber web

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007532790A (en) * 2004-04-08 2007-11-15 リサーチ・トライアングル・インスティチュート Electrospinning of fibers using a rotatable spray head
JP2007303015A (en) * 2006-05-10 2007-11-22 Univ Of Shiga Prefecture Static spinning apparatus
JP2008174853A (en) * 2007-01-16 2008-07-31 Matsushita Electric Ind Co Ltd Nozzle for producing polymer fiber and polymer fiber production apparatus using the nozzle
JP2009097112A (en) * 2007-10-17 2009-05-07 Panasonic Corp Method and apparatus for producing nanofiber and polymer web
WO2013100638A1 (en) * 2011-12-30 2013-07-04 (주)엠엔에스이십일 Apparatus and method for preparing nanofiber web

Also Published As

Publication number Publication date
JP2018090924A (en) 2018-06-14
JP6322688B1 (en) 2018-05-09

Similar Documents

Publication Publication Date Title
JP6577889B2 (en) Electrospinning device
JP6612715B2 (en) Electrospinning device
CN107429428B (en) Nozzle head module and electric field spinning device
JP6389910B1 (en) Cleaning device and electrospinning device
US20170260652A1 (en) Nozzle head and electrospinning apparatus
CN103194806B (en) Polymer solution electrostatic spinning component, device and method
US20210207291A1 (en) Apparatus and process for uniform deposition of polymeric nanofibers on substrate
WO2018100830A1 (en) Nozzle head and electrospinning device
US20170268131A1 (en) Nozzle head module and electrospinning apparatus
JP6740419B2 (en) Nozzle head and electrospinning device
JP6378229B2 (en) Nozzle head and electrospinning apparatus
WO2017134852A1 (en) Electrospinning device
WO2017141472A1 (en) Nozzle head and electrospinning apparatus
EP3235928B1 (en) Apparatus and method for producing nano-fibers
US12060656B2 (en) Capillary type multi-jet nozzle for fabricating high throughput nanofibers
JP2019194387A (en) Electrospinning device
JP2022059343A (en) Electrospinning head, electrospinning device and electrospinning head cleaning method
CN203229597U (en) Polymer solution electrostatic spinning assembly and polymer solution electrostatic spinning device
JP2012219420A (en) Apparatus for producing nanofiber, and method for producing nanofiber
KR20050041199A (en) A nozzle for electrostatic spinning comprising a wire and a producing method of nano fiber using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17875085

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17875085

Country of ref document: EP

Kind code of ref document: A1