WO2018198760A1 - 車両用照明灯具、及び車両用前照灯 - Google Patents
車両用照明灯具、及び車両用前照灯 Download PDFInfo
- Publication number
- WO2018198760A1 WO2018198760A1 PCT/JP2018/015112 JP2018015112W WO2018198760A1 WO 2018198760 A1 WO2018198760 A1 WO 2018198760A1 JP 2018015112 W JP2018015112 W JP 2018015112W WO 2018198760 A1 WO2018198760 A1 WO 2018198760A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- light
- diffraction grating
- optical system
- distribution pattern
- order
- Prior art date
Links
- 238000005286 illumination Methods 0.000 title claims abstract description 91
- 238000009826 distribution Methods 0.000 claims abstract description 500
- 230000003287 optical effect Effects 0.000 claims description 772
- 230000015572 biosynthetic process Effects 0.000 claims description 58
- 238000003786 synthesis reaction Methods 0.000 claims description 58
- 230000002194 synthesizing effect Effects 0.000 claims description 13
- 230000000740 bleeding effect Effects 0.000 description 27
- 230000004907 flux Effects 0.000 description 15
- 238000010586 diagram Methods 0.000 description 8
- 239000003550 marker Substances 0.000 description 8
- 230000002093 peripheral effect Effects 0.000 description 5
- 238000001816 cooling Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 239000011521 glass Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 239000003086 colorant Substances 0.000 description 2
- 230000001678 irradiating effect Effects 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- 238000007743 anodising Methods 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 230000004313 glare Effects 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21S—NON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
- F21S41/00—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
- F21S41/20—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
- F21S41/285—Refractors, transparent cover plates, light guides or filters not provided in groups F21S41/24 - F21S41/2805
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21S—NON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
- F21S41/00—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
- F21S41/10—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
- F21S41/14—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
- F21S41/16—Laser light sources
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21S—NON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
- F21S43/00—Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights
- F21S43/10—Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights characterised by the light source
- F21S43/13—Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights characterised by the light source characterised by the type of light source
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21S—NON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
- F21S43/00—Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights
- F21S43/20—Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights characterised by refractors, transparent cover plates, light guides or filters
- F21S43/26—Refractors, transparent cover plates, light guides or filters not provided in groups F21S43/235 - F21S43/255
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/09—Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
- G02B27/0905—Dividing and/or superposing multiple light beams
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/09—Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
- G02B27/0938—Using specific optical elements
- G02B27/0944—Diffractive optical elements, e.g. gratings, holograms
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/18—Diffraction gratings
- G02B5/1866—Transmission gratings characterised by their structure, e.g. step profile, contours of substrate or grooves, pitch variations, materials
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21W—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO USES OR APPLICATIONS OF LIGHTING DEVICES OR SYSTEMS
- F21W2102/00—Exterior vehicle lighting devices for illuminating purposes
- F21W2102/10—Arrangement or contour of the emitted light
- F21W2102/17—Arrangement or contour of the emitted light for regions other than high beam or low beam
- F21W2102/18—Arrangement or contour of the emitted light for regions other than high beam or low beam for overhead signs
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21Y—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
- F21Y2113/00—Combination of light sources
- F21Y2113/10—Combination of light sources of different colours
Definitions
- the present invention relates to a vehicular illumination lamp and a vehicular headlamp.
- Vehicle headlamps represented by automobile headlights are configured to emit at least a low beam for illuminating the front at night.
- a shade that blocks a part of the light emitted from the light source is used.
- Patent Document 1 listed below describes a vehicle headlamp that can form a low-beam light distribution pattern without using a shade.
- the vehicle headlamp includes a hologram element and a light source that irradiates the hologram element with reference light.
- the hologram element is calculated so that the diffracted light reproduced by irradiating the reference light forms a low beam light distribution pattern.
- the vehicle headlamp forms a low beam light distribution pattern by the hologram element as described above, and therefore does not require a shade and can be miniaturized.
- the vehicular illumination lamp of the present invention includes a light source and a diffraction grating that diffracts light incident from the light source, and the light diffracted by the diffraction grating is irradiated with a predetermined light distribution pattern.
- the projection area where the component that passes straight through the diffraction grating and is transmitted is projected below the light distribution pattern, and is within the range in which the vehicle driver's field of view is obstructed by the vehicle. It is characterized by being located.
- the component that travels straight through the diffraction grating corresponds to the above-mentioned zero-order light, and has a higher luminous intensity than the luminous intensity of the higher-order light after the first-order light.
- the projection area where the component corresponding to the 0th-order light is projected is located within a range in which the vehicle driver's field of view is obstructed by the vehicle. It is possible to prevent the driver's ability to call attention from deteriorating. For this reason, driving can be facilitated as compared with the case where the zero-order light is in the field of view of the driver of the automobile.
- the light distribution pattern may be a low beam light distribution pattern.
- the light diffracted by the diffraction grating is irradiated with the light distribution pattern of the low beam, so that the light distribution pattern of the low beam can be formed without using the shade. For this reason, it can reduce in size compared with the vehicle lighting device which uses a shade.
- the light distribution pattern may have a light intensity distribution.
- the light intensity distribution is such that the central portion of the light distribution pattern is bright and the peripheral portions other than the central portion are relatively dark, a natural light distribution pattern that does not give the driver a sense of incongruity can be obtained.
- the light emitting system includes a plurality of light emitting optical systems including one light source and one diffraction grating, and further includes a combining optical system that combines light emitted from the light emitting optical systems.
- the light sources emit light having predetermined wavelengths different from each other, and the diffraction gratings in the respective light-emitting optical systems emit light from the light sources so that the light synthesized by the synthesis optical system becomes a low beam light distribution pattern. May be diffracted.
- each light emitting optical system light having a predetermined wavelength emitted from the light source is diffracted by the diffraction grating to form a light distribution pattern.
- the light diffracted by the diffraction grating has a predetermined wavelength as described above. Therefore, even if the diffraction grating has wavelength dependence, the light emitted from each diffraction grating It is possible to suppress the occurrence of color bleeding near the edge of the light distribution pattern. In this way, light having a light distribution pattern in which color bleeding is suppressed is combined by a combining optical system to form a low beam light distribution pattern. Therefore, the low beam irradiated by the vehicular illumination lamp according to the present invention can suppress the color bleeding near the edge of the light distribution pattern.
- components that pass straight through the diffraction grating in each of the light-emitting optical systems may be combined by the combining optical system and projected onto the projection region.
- the components transmitted through the respective diffraction gratings can be the same color. Therefore, it is possible to reduce the pedestrians outside the vehicle from being unnecessarily aware of the projection area.
- the vehicular illumination lamp of the present invention includes a light source, a diffraction grating that diffracts light incident from the light source, a projection region of a light component that passes straight through the diffraction grating, and the diffraction grating.
- the light component that travels straight through the diffraction grating corresponds to the 0th-order light, and the light diffracted by the diffraction grating corresponds to the higher-order diffracted light. For this reason, light that travels straight through the diffraction grating tends to have a higher luminous intensity than that of the light diffracted by the diffraction grating.
- an optical element for reducing the energy density of light is disposed on the optical path of the light component between the projection region of the light component corresponding to the zero-order light and the diffraction grating. ing.
- the vehicular illumination lamp of the present invention can be easily driven as compared with the case where the optical element is not provided.
- a housing for housing the light source and the diffraction grating may be provided, and the optical element may be disposed in the housing.
- the emission of the light component corresponding to the 0th order light to the outside of the vehicle is reduced. Therefore, it is possible to suppress the projection area of the light component corresponding to the 0th-order light from being significantly bright outside the vehicle. As a result, it is possible to prevent the driver, the pedestrian, and the like from being aware of the projection area unnecessarily. can do.
- the optical element may be a light shielding element or a light diffusing element.
- a light-shielding element or a light diffusing element can be selected as the optical element according to the vehicle type on which the vehicular illumination lamp is mounted.
- the projection area may be located outside the light distribution pattern. In this case, it is possible to suppress a part of the light distribution pattern from becoming significantly brighter than when the projection region is located in the light distribution pattern, and as a result, it is possible to make the operation easier.
- the light distribution pattern has a predetermined light intensity distribution
- the projection region has a light intensity of light diffracted by the diffraction grating in the light distribution pattern. It may be included in a region where the luminous intensity is less than half the maximum luminous intensity in the distribution.
- the light intensity distribution of the light diffracted by the diffraction grating is the highest in the light intensity distribution of the light diffracted by the diffraction grating, compared to the case where the projection area is included in the area higher than the half value of the highest light intensity. It becomes easy to smoothly form the light intensity distribution of the light distribution pattern with reference to the position where the light intensity is high.
- a plurality of light-emitting optical systems including one light source and one diffraction grating, and combined light that combines light emitted from the light-emitting optical systems.
- the light source in each of the light emitting optical systems emits light having a predetermined wavelength different from each other, and the diffraction grating in each of the light emitting optical systems has the light combined by the combining optical system in the distribution.
- the light from the light source may be diffracted so as to form an optical pattern.
- each light emitting optical system light having a predetermined wavelength emitted from the light source is diffracted by the diffraction grating to form a light distribution pattern.
- the light diffracted by the diffraction grating has a predetermined wavelength as described above. Therefore, even if the diffraction grating has wavelength dependence, the light emitted from each diffraction grating It is possible to suppress the occurrence of color bleeding near the edge of the light distribution pattern. In this way, light having a light distribution pattern in which color bleeding is suppressed is combined by a combining optical system to form a low beam light distribution pattern. Therefore, the low beam irradiated by the vehicular illumination lamp according to the present invention can suppress the color bleeding near the edge of the light distribution pattern.
- step (b) when an optical element that reduces the energy density of light is provided, light components that pass straight through the diffraction grating in each of the light emitting optical systems are combined by the combining optical system, and the optical element is combined with the combining optical system. It is also possible to lower the energy density of the light component synthesized in step (b).
- the irradiation region of the light components irradiated on the optical element can be reduced. Therefore, it is possible to suppress the energy density of the light diffracted by the diffraction grating out of the light emitted from the diffraction grating from being lowered by the optical element.
- the vehicular illumination lamp of the present invention includes a light source, and a diffraction grating that diffracts light incident from the light source, and light that is diffracted by the diffraction grating and light that travels straight through the diffraction grating.
- a light distribution pattern having a predetermined light intensity distribution is formed in the light distribution pattern, and the projected area of light that passes straight through the diffraction grating in the light distribution pattern is the light intensity distribution of light diffracted by the diffraction grating. It is characterized by being located in a region where the luminous intensity is higher than the half value of the highest luminous intensity.
- the projection area of the light corresponding to the 0th-order light is within the area where the light intensity is higher than the half value of the highest light intensity in the light intensity distribution corresponding to the higher-order diffracted light.
- the vehicular headlamp according to the present invention has a projection area arranged outside the area where the luminous intensity is higher than the half value of the highest luminous intensity in the luminous intensity distribution of the light diffracted by the diffraction grating. Easy to drive.
- the projection area of light corresponding to the 0th order light is located in an area having a luminous intensity higher than the half value of the highest luminous intensity in the luminous intensity distribution of the light corresponding to the higher order diffracted light
- the projection area is It is preferable that the light intensity distribution is located avoiding a portion having the highest light intensity. In this case, it is possible to prevent the portion having the highest luminous intensity in the luminous intensity distribution corresponding to the higher-order diffracted light from becoming excessively bright.
- the projection area of light corresponding to the 0th-order light is located in an area where the luminous intensity is higher than the half value of the highest luminous intensity in the luminous intensity distribution of the light corresponding to the higher-order diffracted light, the area is hot A zone is preferred. In this case, while using the light corresponding to the 0th-order light as the light distribution pattern, it is possible to suppress the projection area from becoming significantly bright in the light distribution pattern.
- the light distribution pattern is The light distribution pattern may be a low beam.
- the light having a wavelength may be emitted, and the diffraction grating in each of the light emitting optical systems may emit the light from the light source so that the light synthesized by the synthesis optical system becomes the light distribution pattern.
- a light distribution pattern is formed through the diffraction grating of light having a predetermined wavelength emitted from each light source.
- the light diffracted by the diffraction grating has a predetermined wavelength. Therefore, even if the diffraction grating has wavelength dependence, the light distribution pattern of the light emitted from each diffraction grating It is possible to suppress the occurrence of color bleeding near the edge. In this way, light having a light distribution pattern in which color bleeding is suppressed is synthesized by the synthesis optical system to form a light distribution pattern. Therefore, it is possible to suppress the occurrence of color bleeding near the edge of the light distribution pattern.
- each of the light emitting optical elements Components that pass straight through the diffraction grating in the system may be combined by the combining optical system and irradiated onto the projection region.
- the 0th-order light transmitted through each diffraction grating can be the same color of white. Therefore, it is possible to reduce the unnecessary consciousness of the projection area by the driver, and it becomes easier to drive.
- the vehicular illumination lamp of the present invention includes a light source and a diffraction grating that diffracts light incident from the light source, and the light emitted from the diffraction grating has a light distribution pattern having a predetermined luminous intensity distribution.
- the light intensity of the light that is diffracted by the diffraction grating and applied to the projection region is irradiated to the outer periphery of the projection region. It is characterized by being made smaller than the luminous intensity of the light.
- Light that travels straight through the diffraction grating corresponds to the above-mentioned 0th-order light
- light that is diffracted by the diffraction grating corresponds to the above-mentioned high-order diffracted light.
- light that travels straight through the diffraction grating tends to have a higher luminous intensity than that of the light diffracted by the diffraction grating.
- the light intensity corresponding to the higher-order diffracted light is made smaller than the light intensity irradiated to the outer periphery of the projection region. ing.
- the vehicular illumination lamp of the present invention can be easily operated as compared with the case where the luminous intensity of the high-order diffracted light in the projection area is equal to or greater than the luminous intensity of the light irradiated to the outer periphery of the projection area.
- the light projection region corresponding to the 0th-order light when the light intensity corresponding to the higher-order diffracted light is smaller than the light intensity irradiated to the outer periphery of the projection region, the light is diffracted by the diffraction grating.
- the total value of the luminous intensity of the light irradiated on the projection area and the luminous intensity of the light traveling straight through the diffraction grating and irradiated on the projection area is the luminous intensity distribution of the light diffracted by the diffraction grating. It may be set lower than the highest light intensity.
- the luminous intensity distribution of the light distribution pattern can be easily formed with reference to the position where the luminous intensity distribution of the light diffracted by the diffraction grating has the highest luminous intensity.
- the light projection region corresponding to the 0th-order light when the light intensity corresponding to the higher-order diffracted light is smaller than the light intensity irradiated to the outer periphery of the projection region, the light is diffracted by the diffraction grating.
- the luminous intensity of the light applied to the projection area may be zero.
- the projection region when the light intensity corresponding to the higher-order diffracted light is smaller than the light intensity irradiated to the outer periphery of the projection region, the projection region is
- the light intensity distribution of light diffracted by the diffraction grating may be included in a region where the light intensity is higher than the half value of the highest light intensity.
- the projected area is noticeably brighter in the light distribution pattern than in the case where the projected area is included in the area below the half value of the highest luminous intensity in the luminous intensity distribution of the light diffracted by the diffraction grating. Can be reduced.
- the projection region corresponding to the 0th-order light when the light intensity corresponding to the higher-order diffracted light is smaller than the light intensity irradiated to the outer periphery of the projection region, the projection region is It is good also as including the position used as the highest luminous intensity in the luminous intensity distribution of the light diffracted by the diffraction grating.
- the brightest region in the light distribution pattern is almost unchanged regardless of whether the light intensity corresponding to the zero-order light is large. For this reason, the light intensity distribution of the light distribution pattern can be formed more smoothly with reference to the position having the highest light intensity among the light intensity distributions of the light diffracted by the diffraction grating.
- one light source and 1 A plurality of light-emitting optical systems including the two diffraction gratings, and further comprising a combining optical system that combines light emitted from the light-emitting optical systems, and the light sources in the light-emitting optical systems have predetermined wavelengths different from each other.
- the diffraction grating in each of the light emitting optical systems may emit light from the light source so that the light synthesized by the synthesis optical system becomes the light distribution pattern.
- each light emitting optical system light having a predetermined wavelength emitted from the light source is diffracted by the diffraction grating to form a light distribution pattern.
- the light diffracted by the diffraction grating has a predetermined wavelength as described above. Therefore, even if the diffraction grating has wavelength dependence, the light emitted from each diffraction grating It is possible to suppress the occurrence of color bleeding near the edge of the light distribution pattern. In this way, light having a light distribution pattern in which color bleeding is suppressed is synthesized by the synthesis optical system to form a light distribution pattern. Therefore, it is possible to suppress color bleeding from occurring near the edge of the light distribution pattern formed by the vehicular illumination lamp of the present invention.
- each of the light emitting optical systems may be synthesized by the synthesis optical system and irradiated onto the projection region.
- the components transmitted through the respective diffraction gratings can be the same color. Therefore, it is possible to reduce the unnecessary consciousness of the projection area by the driver, and it becomes easier to drive.
- one light source and 1 A plurality of light-emitting optical systems including the two diffraction gratings, the light sources in the light-emitting optical systems emit light having predetermined wavelengths different from each other, and the diffraction gratings in the light-emitting optical systems are Light from the light source may be emitted so as to be the light distribution pattern at a position separated by a predetermined distance.
- the vehicle headlamp of the present invention includes at least two light-emitting optical systems having a light source and a diffraction grating, and the light sources in the respective light-emitting optical systems emit light having predetermined wavelengths different from each other.
- the diffraction grating in the light emitting optical system diffracts the light from the light source so that light obtained by combining the light emitted from each light emitting optical system becomes a light distribution pattern for night illumination. It is.
- this vehicle headlamp can form a low-beam light distribution pattern without using a shade as in the vehicle headlamp described in Patent Document 1, the vehicle headlamp disclosed in Patent Document 1 is used. Similarly to the vehicle headlamp using a shade, it can be downsized.
- light having a predetermined wavelength emitted from the light source is diffracted by the diffraction grating to form a light distribution pattern.
- the light diffracted by the diffraction grating has a predetermined wavelength as described above.
- the low beam emitted by the vehicle headlamp according to the present invention has a color blur near the edge of the light distribution pattern, as compared with the case where white light is diffracted by the diffraction grating as in Patent Document 1. It can be suppressed from exiting.
- the synthesis of the light emitted from the respective light emitting optical systems may be performed inside the vehicle headlamp or outside the vehicle headlamp.
- At least two light emitting optical systems having a light source and a diffraction grating are provided, it is preferable that at least three light emitting optical systems are provided.
- the optical system may include at least one wavelength selection filter, and the wavelength selection filter may combine light that passes through the wavelength selection filter and light that reflects the wavelength selection filter.
- each light-emitting optical system since the light emitted from each light-emitting optical system is synthesized by the synthesis optical system and then emitted from the vehicle headlamp, the color of the light distribution pattern near the edge of the illuminated light distribution pattern is not affected by the distance from the vehicle. It is possible to further suppress bleeding.
- the light emitted from each light emitting optical system is synthesized by the combining optical system and then emitted from the vehicle headlamp, the light emitted from each light emitting optical system is not synthesized and is emitted from the vehicle headlamp. Compared with the case where it is emitted and synthesized outside the vehicle headlamp, the emission part of the vehicle headlamp from which the synthesized light is emitted can be reduced, and the degree of freedom in design can be improved. .
- FIG. 1 It is sectional drawing which shows the outline of a vehicle provided with the vehicle headlamp concerning 1st Embodiment of this invention. It is an enlarged view of the optical system unit of the vehicle headlamp of FIG. It is a figure which shows the light distribution pattern of a low beam. It is a figure which shows the projection area
- FIG. 1 is a cross-sectional view schematically showing a vehicle including a vehicle headlamp according to the present embodiment.
- the vehicle headlamp 1 according to the present embodiment includes a housing 10 and a lamp unit 20.
- the housing 10 includes a lamp housing 11, a front cover 12, and a back cover 13 as main components.
- the front of the lamp housing 11 is open, and the front cover 12 is fixed to the lamp housing 11 so as to close the opening.
- an opening smaller than the front is formed at the rear of the lamp housing 11, and the back cover 13 is fixed to the lamp housing 11 so as to close the opening.
- a space formed by the lamp housing 11, the front cover 12 that closes the front opening of the lamp housing 11, and the back cover 13 that closes the rear opening of the lamp housing 11 is a lamp chamber R.
- the lamp chamber R A lamp unit 20 is accommodated therein.
- the lamp unit 20 includes a heat sink 30, a cooling fan 40, and an optical system unit 50 as main components.
- the lamp unit 20 is fixed to the housing 10 by a configuration not shown.
- the heat sink 30 has a metal base plate 31 extending in a substantially horizontal direction, and a plurality of radiating fins 32 are provided integrally with the base plate 31 on the lower surface side of the base plate 31.
- the cooling fan 40 is disposed with a clearance from the heat radiation fin 32 and is fixed to the heat sink 30.
- the heat sink 30 is cooled by the airflow generated by the rotation of the cooling fan 40.
- An optical system unit 50 is disposed on the upper surface of the base plate 31 in the heat sink 30.
- the optical system unit 50 includes a first light emitting optical system 51R, a second light emitting optical system 51G, a third light emitting optical system 51B, a combining optical system 55, and a cover 59.
- FIG. 2 is an enlarged view of the optical system unit of the vehicle headlamp shown in FIG.
- the first light emitting optical system 51R includes a light source 52R, a collimator lens 53R, and a diffraction grating 54R.
- the light source 52R is a laser element that emits laser light having a predetermined wavelength. In this embodiment, the light source 52R emits red laser light having a power peak wavelength of, for example, 638 nm.
- the optical system unit 50 has a circuit board (not shown), and the light source 52R is mounted on the circuit board. Electric power is supplied to the light source 52R via this circuit board.
- the collimating lens 53R is a lens that collimates the fast axis direction and the slow axis direction of the laser light emitted from the light source 52R.
- a collimating lens that collimates the fast axis direction of the laser beam and a collimating lens that collimates the slow axis direction may be provided separately.
- the diffraction grating 54R emits laser light emitted from the collimating lens 53R so as to have a predetermined light distribution pattern.
- the diffraction grating 54R is configured such that light emitted from each of the first light-emitting optical system 51R, the second light-emitting optical system 51G, and the third light-emitting optical system 51B is arranged in a low beam L in a later-described synthesis optical system 55.
- the laser light incident from the collimating lens 53R is diffracted so as to form an optical pattern.
- This light distribution pattern includes a luminous intensity distribution.
- the diffraction grating 54R of the present embodiment has a light intensity distribution based on the light intensity distribution of the light distribution pattern of the low beam L and the laser light emitted from the diffraction grating 54R has the same external shape as the light distribution pattern of the low beam L.
- the laser beam incident from the collimating lens 53R is diffracted.
- the light diffracted by the diffraction grating 54R is high-order diffracted light having a first or higher order, and in addition to the high-order diffracted light, zero-order light that passes straight through the diffraction grating 54R without being diffracted is diffraction grating.
- the light is emitted from 54R. That is, the light emitted from the diffraction grating 54R includes high-order diffracted light that is a light component diffracted by the diffraction grating 54R and zero-order light that is a light component that travels straight through the diffraction grating 54R.
- the diffraction grating 54R is moved straight so that the projection region of the zero-order light beam LC emitted from the later-described synthesis optical system 55 is located within a predetermined range below the light distribution pattern of the low beam L. Transmitted through the diffraction grating 54R.
- the diffraction grating 54R may diffract the laser light incident from the collimating lens 53R so that the high-order diffracted light is emitted in a state shifted upward from the direction of the 0th-order light traveling straight through the diffraction grating 54R.
- the first light-emitting optical system 51R emits red-order high-order diffracted light in the low beam L and red-order 0-order light in the zero-order light beam LC.
- the second light emitting optical system 51G includes a light source 52G, a collimating lens 53G, and a diffraction grating 54G
- the third light emitting optical system 51B includes a light source 52B, a collimating lens 53B, and a diffraction grating 54B.
- Each of the light sources 52G and 52B is a laser element that emits laser light having a predetermined wavelength.
- the light source 52G emits green laser light having a power peak wavelength of, for example, 515 nm, and the light source 52B has power.
- a blue laser beam having a peak wavelength of, for example, 445 nm is emitted.
- the light sources 52G and 52B are respectively mounted on the circuit board, and power is supplied to the light sources 52G and 52B via the circuit board.
- the collimating lens 53G is a lens that collimates the fast axis direction and the slow axis direction of the laser light emitted from the light source 52G, and the collimating lens 53B collimates the fast axis direction and the slow axis direction of the laser light emitted from the light source 52B. It is a lens.
- a collimator lens that collimates the fast axis direction of the laser beam and a collimator lens that collimates the slow axis direction may be provided separately in the same manner as the collimator lens 53R.
- the diffraction grating 54G emits laser light emitted from the collimator lens 53G so as to have a predetermined light distribution pattern
- the diffraction grating 54B emits laser light emitted from the collimator lens 53B so as to have a predetermined light distribution pattern.
- the diffraction gratings 54G and 54B are arranged such that the light emitted from each of the first light-emitting optical system 51R, the second light-emitting optical system 51G, and the third light-emitting optical system 51B is arranged in the low beam L in the combining optical system 55.
- the laser beams incident from the collimating lenses 53G and 53B are diffracted so as to form an optical pattern.
- the light distribution pattern includes a light intensity distribution. Therefore, in the diffraction gratings 54G and 54B of the present embodiment, the respective laser beams emitted from the diffraction gratings 54G and 54B have the same outer shape as the low beam L light distribution pattern and the light intensity distribution of the low beam L light distribution pattern. The laser light incident from the collimating lenses 53G and 53B is diffracted so that the luminous intensity distribution is based on the above.
- the light diffracted by the diffraction grating 54G is a high-order diffracted light having an order of 1st or higher.
- the 0th-order light that passes straight through the diffraction grating 54G without being diffracted is transmitted to the diffraction grating.
- the light is emitted from 54G. That is, the light emitted from the diffraction grating 54G includes high-order diffracted light that is a light component diffracted by the diffraction grating 54G and zero-order light that is a light component that passes straight through the diffraction grating 54G.
- the diffraction grating 54G is moved straight so that the projection region of the zero-order light beam LC emitted from the later-described synthesis optical system 55 is located within a predetermined range below the light distribution pattern of the low beam L. Transmitted through the diffraction grating 54G.
- the diffraction grating 54G may diffract the laser light incident from the collimating lens 53G so that the high-order diffracted light is emitted in a state shifted upward from the direction of the 0th-order light traveling straight through the diffraction grating 54G.
- the light diffracted by the diffraction grating 54B is a high-order diffracted light having a first order or higher order, and in addition to the high-order diffracted light, the 0th-order light that passes straight through the diffraction grating 54B without being diffracted.
- the light emitted from the diffraction grating 54B includes high-order diffracted light that is a light component diffracted by the diffraction grating 54G and zero-order light that is a light component that passes straight through the diffraction grating 54B.
- the diffraction grating 54B is moved straight so that the projection region of the zero-order light beam LC emitted from the later-described synthesis optical system 55 is located within a predetermined range below the light distribution pattern of the low beam L. Transmitted through the diffraction grating 54B.
- the diffraction grating 54B may diffract the laser light incident from the collimating lens 53B so that high-order diffracted light is emitted in a state shifted upward from the direction of 0th-order light traveling straight through the diffraction grating 54B.
- the second light-emitting optical system 51G emits high-order diffracted light of the green component of the low beam L and emits zero-order light of the green component of the zero-order light beam LC.
- the third light-emitting optical system 51B emits high-order diffracted light of the blue component of the low beam L and emits zero-order light of the blue component of the zero-order light beam LC.
- the high-order diffracted light of the green component is emitted from the second light emitting optical system 51G and the second light L G, the 0-order light of the green component and the second 0-order light LC G, the third light emitting the high-order diffracted light of the blue component emitted from the optical system 51B and the third light L B, the 0-order light of the blue component and the third 0-order light LC B.
- the first light L R is most wavelengths longer second light L G, the wavelength in the order of the third optical L B becomes shorter.
- the first zero-order light LC R is most wavelengths longer second 0-order light LC G, the wavelength in the order of the third 0-order light LC B is shortened.
- the luminous intensity distribution based on the luminous intensity distribution of the light distribution pattern of the low beam L is the luminous intensity of each light emitted from the diffraction gratings 54R, 54G, and 54B at a portion where the luminous intensity of the light distribution pattern of the low beam L is high. It means high.
- the combining optical system 55 includes a first optical element 55f and a second optical element 55s.
- the first optical element 55f is an optical element for combining the first and the light L R emitted from the first light emitting optical system 51R, and a second light L G emitted from the second light emitting optical system 51G.
- the first optical element 55f has a first 0-order light LC R and, second 0-order light LC G and the optical element for synthesizing the emitted from the second light emitting optical system 51G emitted from the first light emitting optical system 51R But there is.
- the first optical element 55f synthesizes the first light L first light by reflecting the second light L G while transmitting the R L R and the second light L G combines the second first by reflecting the 0-order light LC G of the zero-order light LC R and second 0-order light LC G while passing through the first zero-order light LC R.
- the second optical element 55s is synthesized first and the light L R and the second light L G synthesized by the first optical element 55f, and a third light L B emitted from the third light emitting optical system 51B It is an optical element.
- the second optical element 55s has a first 0-order light LC R and a second 0-order light LC G synthesized by the first optical element 55f, a third zero-order emitted from the third light-emitting optical system 51B It is also an optical element that combines the light LC B.
- the second optical element 55s is first by reflecting the third light L B as well as transmitted through the first beam L R and the second light L G synthesized by the first optical element 55f 1 of the light L R and the second light L G and the third light L B is synthesized.
- the second optical element 55s reflects third 0-order light LC B while passing through the first zero-order light LC R and a second 0-order light LC G synthesized by the first optical element 55f It combines the first 0-order light LC R and second 0-order light LC G and the third 0-order light LC B by.
- first optical element 55f and second optical element 55s there can be mentioned a wavelength selective filter in which an oxide film is laminated on a glass substrate.
- a wavelength selective filter in which an oxide film is laminated on a glass substrate.
- the low beam L is emitted by the first and the light L R and the second light L G and the third light L B is synthesized, the first zero-order light LC R And the second 0th-order light LC G and the third 0th-order light LC B are combined to emit a 0th-order light beam LC.
- the cover 59 is fixed on the base plate 31 of the heat sink 30.
- the cover 59 has a substantially rectangular shape and is made of a metal such as aluminum.
- the first light emitting optical system 51R, the second light emitting optical system 51G, the third light emitting optical system 51B, and the combining optical system 55 are arranged in the space inside the cover 59.
- an opening 59H through which light emitted from the combining optical system 55 can be transmitted is formed in front of the cover 59.
- the inner wall of the cover 59 is preferably light-absorbing by black anodizing or the like.
- the inner wall of the cover 59 By making the inner wall of the cover 59 light-absorbing, it is possible to prevent light irradiated to the inner wall of the cover 59 from being reflected or refracted unintentionally and being emitted from the opening 59H in an unintended direction. .
- laser light is emitted from each of the light sources 52R, 52G, and 52B.
- red laser light is emitted from the light source 52R
- green laser light is emitted from the light source 52G
- blue laser light is emitted from the light source 52B.
- the respective laser beams are collimated by collimating lenses 53R, 53G, and 53B, and then enter the diffraction gratings 54R, 54G, and 54B.
- the respective laser beams are diffracted by the diffraction gratings 54R, 54G, and 54B as described above, and the first light L R that is the red component light of the low beam L light distribution pattern is emitted from the first light emitting optical system 51R.
- the second light emitting optical system 51G second optical L G is emitted the light of the green component of the light distribution pattern of the low beam L
- from the third light emitting optical system 51B of the light distribution pattern of the low beam L third light L B is a blue light component is emitted.
- a first 0-order light LC R is 0-order light of the red component emitted from the first light emitting optical system 51R
- the second zero-order light LC G that is the zero-order light of the green component is emitted from the second light-emitting optical system 51G
- the third zero-order light LC B that is the zero-order light of the blue component is the third light-emitting optical. The light exits from the system 51B.
- the combining optical system 55 first, the first light L R and the second light L G is emitted are combined by the first optical element 55f, a first 0-order light LC R and second 0-order light LC G is synthesized by the first optical element 55f and emitted.
- First light L R and the second light L G synthesized by the first optical element 55f is combined with the third light L B by the second optical element 55s, first synthesized in the first optical element 55f the 0-order light LC R and second 0-order light LC G is combined with a third zero-order light LC B by the second optical element 55s.
- each of the light L R, L G, L B is the outer shape is the same as the outer shape of the low beam L, is matched each light L R, L G, the outer shape of L B mutually synthesis .
- the outer shapes of the respective zero-order lights LC R , LC G , and LC B are the same, the outer shapes of the respective zero-order lights LC R , LC G , and LC B are combined with each other and synthesized.
- the first light L R contour and outer third light L B contour of the second light L G, and, the external shape of the first 0-order light LC R second 0-order light LC G The positions of the respective light emitting optical systems and the combining optical system are finely adjusted so that the outer shape of the third optical order and the outer shape of the third 0th-order light LC B are combined by the combining optical system as described above.
- the light of the first light L R of the red and green of the second light L G and the third light L B of the blue is synthesized becomes a white light.
- the light red first 0-order light LC R and green second 0-order light LC G and blue third of the zero-order light LC B is synthesized is the white of the zero-order light.
- the first light L R, the second light L G and the third light L B are the luminous intensity distribution based on intensity distribution of the light distribution pattern of the respective low beam L as described above, these light
- the white light combined with is a light intensity distribution of the low beam L.
- the synthesized white light is emitted from the opening 59H of the cover 59, and this light is emitted from the vehicle headlamp 1 to the front of the vehicle via the front cover 12. Since this light has the light distribution pattern of the low beam L, the irradiated light becomes the low beam L.
- FIG. 3 is a diagram showing a light distribution pattern of the low beam L in the present embodiment.
- S indicates a horizontal line
- a light distribution pattern is indicated by a bold line.
- the region LA1 is a region having the highest light intensity, and the light intensity decreases in the order of the region LA2 and the region LA3. That is, each diffraction grating 54R, 54G, 54B diffracts the light so that the combined light forms a light distribution pattern including the light intensity distribution of the low beam L.
- the synthesized white zero-order light is emitted from the opening 59H of the cover 59, and this light is emitted from the vehicle headlamp 1 to the front lower side of the vehicle via the front cover 12, and the low beam L is arranged. It is projected onto the lower projection area of the light pattern.
- FIG. 4 is a diagram showing a 0th-order light projection area.
- the projection area AR of the present embodiment is located within a range RNG in which the vehicle driver's field of view is blocked by the hood of the vehicle. That is, the projection area AR is located within a range RNG that is a blind spot of the driver of the automobile.
- the road surface illuminance in an area other than the 0th-order light projection area AR in the range RNG serving as the blind spot of the automobile driver is approximately 5 lux or less.
- the hologram element of the vehicle headlamp in Patent Document 1 is irradiated with primary light for forming a low beam light distribution pattern in front of the vehicle, and 0 toward the front other than the low beam light distribution pattern. It is calculated so that the next light is irradiated. For this reason, in the vehicle headlamp disclosed in Patent Document 1, it is possible to prevent the possibility that zero-order light causes glare.
- the 0th-order light tends to have a higher luminous intensity than the luminous intensity of the higher-order diffracted light having the first order or higher order.
- the vehicle headlamp 1 of this embodiment includes light sources 52R, 52G, and 52B and diffraction gratings 54R, 54G, and 54B that diffract light incident from the light sources 52R, 52G, and 52B.
- the projection area AR onto which the 0th-order light that is a component that passes straight through the diffraction gratings 54R, 54G, and 54B is projected is the diffraction gratings 54R, 54G, and 54B. It is below the light distribution pattern that is diffracted and irradiated by.
- the projection area AR is located in a range RNG where the field of view of the driver of the vehicle is blocked by the vehicle.
- the vehicle headlamp 1 according to the present embodiment can prevent the driver's ability to call attention from being reduced due to the 0th-order light having a higher light intensity than the high-order light intensity after the first-order light. For this reason, the vehicle headlamp 1 of the present embodiment can be driven more easily than when the zero-order light is in the field of view of the driver of the automobile.
- the light diffracted by the diffraction gratings 54R, 54G, and 54B is irradiated with the light distribution pattern of the low beam L. Since the light distribution pattern PTN L of the low beam L, as shown in FIG. 3, bright central portion of the light distribution pattern PTN L, a luminous intensity distribution peripheral portion other than the central portion is relatively dark, the driver However, it is possible to irradiate a natural light distribution pattern with no sense of incongruity.
- the vehicle headlamp 1 of the present embodiment can form the light distribution pattern PTN L of the low beam L without using a shade, it can be reduced in size as compared with the vehicle headlamp using a shade. it can.
- the vehicle headlamp 1 of the present embodiment has a plurality of light emitting optical systems including one light source and one diffraction grating.
- the vehicle headlamp 1 includes a first light emitting optical system 51R including one light source 52R and one diffraction grating 54R, and a second light emitting optical system 51G including one light source 52G and one diffraction grating 54G. And a third light-emitting optical system 51B including one light source 52B and one diffraction grating 54B.
- the vehicle headlamp 1 of the present embodiment further includes a combining optical system 55 that combines the light emitted from the respective light emitting optical systems 51R, 51G, and 51B.
- Each light source 52R, 52G, 52B emits light of a predetermined wavelength different from each other, and each diffraction grating 54R, 54G, 54B has a light distribution pattern PTN L in which the light synthesized by the synthesis optical system 55 is a low beam L.
- the light from the light sources 52R, 52G, and 52B is diffracted so that
- light having a predetermined wavelength emitted from each of the light sources 52R, 52G, and 52B is diffracted by the diffraction gratings 54R, 54G, and 54B to form a light distribution pattern PTN L.
- the diffraction gratings 54R, 54G, and 54B have wavelength dependency.
- the light having the light distribution pattern in which the color blur is suppressed is combined by the combining optical system 55 to form the light distribution pattern PTN L of the low beam L. Therefore, the low beam L irradiated by the vehicle headlamp 1 according to the present embodiment can suppress color blurring in the vicinity of the edge of the light distribution pattern PTN L.
- the 0th-order lights LC R , LC G , and LC B that pass straight through the respective diffraction gratings 54R, 54G, and 54B are synthesized by the synthesis optical system 55 and projected. Projected onto the area AR.
- the 0th-order lights LC R , LC G , and LC B that pass through the diffraction gratings 54R, 54G, and 54B are converted into white Can be the same color. Therefore, in the vehicle headlamp 1 of the present embodiment, it is possible to reduce the pedestrians and the like outside the vehicle from being unnecessarily aware of the projection area AR.
- FIG. 5 is a view showing the optical system unit of the vehicle headlamp according to the present embodiment in the same manner as FIG.
- the optical system unit 50 of the vehicle headlamp according to the present embodiment does not include the combining optical system 55, and the first light emitting optical system 51R, the second light emitting optical system 51G, and the third light emitting optical system 51B.
- the optical system unit 50 is different from the optical system unit 50 of the first embodiment in that the light emitted from the cover 59 is emitted from the cover 59 without being synthesized.
- the first light emitting optical system 51R, the second light emitting optical system 51G, and the third light emitting optical system 51B are configured such that the light emission direction is on the opening 59H side of the cover 59.
- the synthesized light is emitted so as to form a low beam L light distribution pattern.
- the first light L R emitted from the diffraction grating 54R, the second light L G emitted from the diffraction grating 54G, and the third light L B emitted from the diffraction grating 54B are respectively the openings 59H of the cover 59. From the vehicle, and is irradiated to the outside of the vehicle headlamp via the front cover 12.
- the first 0th-order light LC R emitted from the diffraction grating 54R, the second 0th-order light LC G emitted from the diffraction grating 54G, and the third 0th-order light LC B emitted from the diffraction grating 54B are:
- the light is emitted from the opening 59H of the cover 59 and irradiated to the outside of the vehicle headlamp via the front cover 12.
- the first light L R, the second light L G and the third light L B is irradiated to the outer shape of each light distribution pattern at a predetermined distance away focal position from the vehicle substantially match
- the distance from the vehicle is, for example, 25 m.
- first 0th-order light LC R , the second 0th-order light LC G, and the third 0th-order light LC B have outer shapes of their respective light distribution patterns within a range RNG that is a blind spot of the vehicle driver Irradiation is performed so as to approximately match. That is, in the present embodiment, the light emission directions of the first light emitting optical system 51R, the second light emitting optical system 51G, and the third light emitting optical system 51B are finely adjusted so that the outer shapes match as described above.
- the configuration can be simplified. Further, according to the vehicle headlamp 1 of the present embodiment, similarly to the first embodiment, the range in which the 0th-order light having a higher luminous intensity than the first-order and higher-order luminous intensity becomes the blind spot of the vehicle driver. Since irradiation is performed in the RNG, it is possible to prevent the driver's alerting ability from being lowered.
- the first light L R of the outer and the second light L G of the contour and the third light L B contour, and, 0 contour and a second of the first zero-order light LC R of this embodiment The outer shape of the second-order light LC G and the outer shape of the third zero-order light LC B tend to be slightly different from each other except for the focal position. However, the deviation of the outer shape can be suppressed as compared with the light obtained by entering white light into one diffraction grating. Therefore, according to the present embodiment as well, a vehicle headlamp capable of suppressing color bleeding while being downsized can be realized.
- a first light emitting optical system for emitting a first light L R of the red component
- a second light emitting optical system for emitting a second light L G of the green component
- a third light-emitting optical system for emitting a third light L B of the blue component.
- the light emitted from the light sources respectively included in the three light emitting optical systems is not limited to red, green, and blue as long as they have predetermined wavelengths different from each other.
- the number of light emitting optical systems may be one or two. Further, the number of light emitting optical systems may be three or more.
- a fourth light-emitting optical system that emits yellow component light of the low beam L may be provided.
- the fourth light-emitting optical system may emit light of the yellow component of the low beam L.
- the fourth light-emitting optical system may emit light having the same color component as that of the light having a low light intensity.
- a white balance adjustment circuit may be further provided.
- the white balance adjustment circuit includes a total light flux amount of light emitted from the light source 52R of the first light emission optical system 51R, a total light flux amount of light emitted from the light source 52G of the second light emission optical system 51G, and a third light emission optical system.
- a desired white balance can be achieved. For example, switching may be made so as to emit warm white light or blue white light within the scope of the law.
- the first optical element 55f has a first light L R by reflecting the second light L G with the first light transmitted through the first light L R a a second light L G synthesized
- the second optical element 55s is the third light L B as well as transmitted through the first beam L R and the second light L G synthesized by the first optical element 55f a first light L R by reflecting the second light L G was synthesized and third light L B.
- the third light L B and synthesized in the first optical element 55f in the second optical element 55s a second light L G and the first light L R may be configured to be synthesized.
- the positions of the first light emitting optical system 51R and the third light emitting optical system 51B in the first embodiment are switched.
- the third optical element 55f combines the third zero-order light LC B and the second zero-order light LC G
- the second optical element 55s combines the first optical element 55f with the third optical element 55f.
- 0 order light LC B and the second 0-order light LC G and the first 0-order light LC R is configured to be synthesized.
- a band pass filter that transmits light in a predetermined wavelength band and reflects light in other wavelength bands may be used for the first optical element 55f and the second optical element 55s.
- the combining optical system 55 may be combined by combining the outer shapes of the light emitted from the respective light emitting optical systems, and is not limited to the first embodiment.
- the 0th-order lights LC R , LC G , and LC B that pass straight through the diffraction gratings 54R, 54G, and 54B are synthesized by the synthesis optical system 55 and projected onto the projection area AR. It was. However, the zero-order lights LC R , LC G , and LC B may not be synthesized by the synthesizing optical system 55 and may be projected to different regions within the range RNG that becomes the blind spot of the vehicle driver. However, as described above, in order to reduce the unnecessary consciousness of the projection area AR by a pedestrian or the like outside the vehicle, the 0th-order light LC that passes straight through each diffraction grating 54R, 54G, 54B. R 1 , LC G , and LC B are preferably synthesized by the synthesis optical system 55 and projected onto the projection area AR.
- the light distribution pattern of the low beam L is formed as the light distribution pattern for dark place illumination.
- the light distribution pattern for dark place illumination is not limited to the low beam L light distribution pattern.
- the light distribution pattern for dark place illumination is used at night or in dark places such as tunnels.
- the light distribution pattern of the low beam L and the light distribution pattern of the light for visually recognizing the marker located outside for example, the outside of the light distribution pattern may be formed as the light distribution pattern for dark place illumination.
- the high-order diffracted light diffracted by the respective diffraction gratings 54R, 54G, and 54B includes the light for visually recognizing the marker.
- a high beam light distribution pattern may be formed as a light distribution pattern for dark place illumination.
- the vehicle headlamp 1 is exemplified as the vehicle headlamp 1.
- the first and second embodiments described above are not limited to automobile headlamps, and may be used as headlamps for other vehicles.
- the first and second embodiments are not limited to headlamps, and may be lamps such as rearlights, taillights, brake lights, and indicator lights.
- the present invention exemplified in the first and second embodiments may be any of the following vehicular illumination lamps. That is, the vehicular illumination lamp includes a light source and a diffraction grating that diffracts light incident from the light source. The light diffracted by the diffraction grating is irradiated with a predetermined light distribution pattern. Of the light incident on the diffraction grating, a projection region where a component that passes straight through the diffraction grating and is transmitted is projected more than the light distribution pattern. On the lower side, the field of view of the driver of the vehicle is located within a range that is obstructed by the vehicle. Such a vehicle illumination lamp can be easily driven.
- FIG. 6 is a cross-sectional view schematically illustrating a vehicle including the vehicle headlamp according to the present embodiment. As shown in FIG. 6, the vehicle headlamp 1 according to this embodiment is different in that an optical element 60 is provided.
- the optical system unit 50 of the present embodiment includes a first light emitting optical system 51R, a second light emitting optical system 51G, a third light emitting optical system 51B, a combining optical system 55, a cover 59, and an optical element 60. .
- the optical element 60 is an optical element that lowers the energy density of light.
- Examples of the optical element 60 include a light shielding element and a light diffusing element.
- Specific examples of the light-shielding element include a metal plate made of aluminum or the like and black anodized, or a material obtained by molding a light-shielding material such as carbon black and a base material.
- Specific examples of the light diffusing element include lenses and sheets that diffuse or scatter light.
- Such an optical element 60 is disposed on the optical path of the 0th-order light beam LC between the projection region of the 0th-order light beam LC and the diffraction gratings 54R, 54G, and 54B.
- the optical element 60 of this embodiment is disposed in the housing 10.
- the optical element 60 is disposed on the surface of the front cover 12 on the lamp chamber R side, and the distance of the optical path between the optical element 60 and the diffraction grating 54B closest to the optical element 60 is For example, it is set to 100 mm.
- the first embodiment power is supplied from a power source (not shown), and laser light is emitted from each of the light sources 52R, 52G, and 52B.
- laser light is emitted from each of the light sources 52R, 52G, and 52B.
- red laser light is emitted from the light source 52R
- green laser light is emitted from the light source 52G
- blue laser light is emitted from the light source 52B.
- the respective laser beams are collimated by collimating lenses 53R, 53G, and 53B, and then enter the diffraction gratings 54R, 54G, and 54B.
- the respective laser beams are diffracted by the diffraction gratings 54R, 54G, and 54B as described above, and the first light L R that is the red component light of the low beam L light distribution pattern is emitted from the first light emitting optical system 51R.
- the second light emitting optical system 51G second optical L G is emitted the light of the green component of the light distribution pattern of the low beam L
- from the third light emitting optical system 51B of the light distribution pattern of the low beam L third light L B is a blue light component is emitted.
- a first 0-order light LC R is 0-order light of the red component emitted from the first light emitting optical system 51R
- the second zero-order light LC G that is the zero-order light of the green component is emitted from the second light-emitting optical system 51G
- the third zero-order light LC B that is the zero-order light of the blue component is the third light-emitting optical. The light exits from the system 51B.
- the combining optical system 55 first, the first light L R and the second light L G is emitted are combined by the first optical element 55f, a first 0-order light LC R and second 0-order light LC G is synthesized by the first optical element 55f and emitted.
- First light L R and the second light L G synthesized by the first optical element 55f is combined with the third light L B by the second optical element 55s, first synthesized in the first optical element 55f the 0-order light LC R and second 0-order light LC G is combined with a third zero-order light LC B by the second optical element 55s.
- each of the light L R, L G, L B is the outer shape is the same as the outer shape of the low beam L, is matched each light L R, L G, the outer shape of L B mutually synthesis .
- the outer shapes of the respective zero-order lights LC R , LC G , and LC B are the same, the outer shapes of the respective zero-order lights LC R , LC G , and LC B are combined with each other and synthesized.
- the first light L R contour and outer third light L B contour of the second light L G, and, the external shape of the first 0-order light LC R second 0-order light LC G The positions of the respective light emitting optical systems and the combining optical system are finely adjusted so that the outer shape of the third optical order and the outer shape of the third 0th-order light LC B are combined by the combining optical system as described above.
- the light of the first light L R of the red and green of the second light L G and the third light L B of the blue is combined becomes white, low beam the white light from the synthesizing optical system 55 L To be emitted.
- the light red first 0-order light LC R and green second 0-order light LC G and blue third of the zero-order light LC B is synthesized becomes white, the white light is synthesized
- the light is emitted from the optical system 55 as a zero-order light beam LC.
- the 0th-order light beam LC emitted from the combining optical system 55 is emitted from the opening 59H of the cover 59, and is applied to the optical element 60 attached to the surface of the front cover 12 on the lamp chamber R side.
- the energy density of the light beam LC is lowered.
- the low beam L emitted from the combining optical system 55 is emitted from the opening 59H of the cover 59, emitted from the vehicle headlamp 1 to the front of the vehicle via the front cover 12, and irradiated with a predetermined light distribution pattern.
- irradiation is performed with the light distribution pattern PTN L of the low beam L shown in FIG.
- the vehicle headlamp 1 includes the light sources 52R, 52G, and 52B and the diffraction gratings 54R, 54G, and 54B that diffract the light incident from the light sources 52R, 52G, and 52B. .
- the diffraction gratings 54R, 54G, and 54B high-order diffracted light diffracted by the diffraction gratings 54R, 54G, and 54B is irradiated with the light distribution pattern PTN L of the low beam L.
- the vehicle headlamp 1 of the present embodiment includes an optical element 60.
- the optical element 60 is disposed on the optical path of the zero-order light beam LC between the projection region of the zero-order light beam LC and the diffraction gratings 54R, 54G, and 54B, and reduces the energy density of the zero-order light beam LC.
- the vehicle headlamp 1 according to the present embodiment even if the intensity of the 0th order light is higher than the intensity of the higher order diffracted light among the light emitted from the diffraction gratings 54R, 54G, 54B, The energy density is lowered by the optical element 60. For this reason, it is possible to suppress the projection region of the 0th-order light from being significantly brighter than the light distribution pattern PTN L by the higher-order diffracted light among the light emitted from the diffraction gratings 54R, 54G, and 54B. Thus, the vehicle headlamp 1 according to the present embodiment can be easily operated as compared with the case where the optical element 60 is not provided.
- the optical element 60 is arranged in the housing 10 as described above. For this reason, it is reduced that 0th-order light is emitted outside the vehicle. Therefore, it can suppress that the projection area
- the optical element 60 may be a light shielding element or a light diffusing element.
- a light shielding element or a light diffusing element can be selected as the optical element 60 according to the vehicle type or the like on which the vehicle headlamp 1 is mounted.
- the projection region is located outside the light distribution pattern PTN L of the low beam L.
- the projection area light distribution pattern PTN in L low beam L is located, it is possible to suppress the brighter stand out part of the light distribution pattern PTN L, as a result, more further Easy to drive.
- the vehicle headlamp 1 of the present embodiment has a plurality of light emitting optical systems including one light source and one diffraction grating.
- the vehicle headlamp 1 includes a first light emitting optical system 51R including one light source 52R and one diffraction grating 54R, and a second light emitting optical system 51G including one light source 52G and one diffraction grating 54G. And a third light-emitting optical system 51B including one light source 52B and one diffraction grating 54B.
- the vehicle headlamp 1 of the present embodiment further includes a combining optical system 55 that combines the light emitted from the respective light emitting optical systems 51R, 51G, and 51B.
- Each light source 52R, 52G, 52B emits light of a predetermined wavelength different from each other, and each diffraction grating 54R, 54G, 54B has a light distribution pattern PTN L in which the light synthesized by the synthesis optical system 55 is a low beam L.
- the light from the light sources 52R, 52G, and 52B is diffracted so that
- light having a predetermined wavelength emitted from each of the light sources 52R, 52G, and 52B is diffracted by the diffraction gratings 54R, 54G, and 54B to form a light distribution pattern PTN L.
- the diffraction gratings 54R, 54G, and 54B have wavelength dependency.
- the light having the light distribution pattern PTN L in which the color blur is suppressed is combined by the combining optical system 55 to form the light distribution pattern PTN L of the low beam L. Therefore, the low beam L irradiated by the vehicle headlamp 1 according to the present embodiment can suppress color blurring in the vicinity of the edge of the light distribution pattern PTN L.
- the 0th-order lights LC R , LC G , and LC B that pass straight through the respective diffraction gratings 54R, 54G, and 54B are synthesized by the synthesis optical system 55, and optical The element 60 reduces the energy density of the zero-order light beam LC synthesized by the synthesis optical system 55.
- the irradiation area of the 0th-order light that is applied to the optical element 60 can be reduced. Therefore, it is possible to prevent the optical element 60 from lowering the energy density of high-order diffracted light out of the light emitted from the diffraction gratings 54R, 54G, and 54B.
- FIG. 7 is a view showing an optical system unit of the vehicle headlamp according to the present embodiment in the same manner as FIG.
- the optical system unit 50 of the vehicle headlamp according to the present embodiment does not include the combining optical system 55, and includes the first light emitting optical system 51R, the second light emitting optical system 51G, and the third light emitting optical system 51B.
- the optical system unit 50 differs from the optical system unit 50 of the third embodiment in that the light emitted from the cover 59 is emitted from the cover 59 without being synthesized.
- the first light emitting optical system 51R, the second light emitting optical system 51G, and the third light emitting optical system 51B are configured such that the light emission direction is on the opening 59H side of the cover 59.
- each of the diffraction grating 54R of the first light emitting optical system 51R, the diffraction grating 54G of the second light emitting optical system 51G, and the diffraction grating 54B of the third light emitting optical system 51B is emitted so as to form a low beam L light distribution pattern.
- the first light L R emitted from the diffraction grating 54R, the second light L G emitted from the diffraction grating 54G, and the third light L B emitted from the diffraction grating 54B are respectively the openings 59H of the cover 59. From the vehicle, and is irradiated to the outside of the vehicle headlamp via the front cover 12.
- the first light L R , the second light L G , and the third light L B , the first zero-order light LC R , the second zero-order light LC G , and the third light L B The zero-order light LC B is irradiated so that the outer shapes of the respective light distribution patterns substantially coincide with each other at a focal position separated from the vehicle by a predetermined distance.
- the distance from the vehicle is, for example, 25 m. That is, in the present embodiment, the light emission directions of the first light emitting optical system 51R, the second light emitting optical system 51G, and the third light emitting optical system 51B are finely adjusted so that the outer shapes match as described above.
- the optical system unit 50 of the vehicle headlamp replaces the optical element 60 with an energy density of zero-order light emitted from the first light emitting optical system 51R, the second light emitting optical system 51G, and the third light emitting optical system 51B.
- This is different from the optical system unit 50 of the third embodiment in that it includes optical elements 60A to 60C for lowering the optical system.
- the optical element 60A is disposed on the optical path of the first zero-order light LC R between the projection region and the diffraction grating 54R of the first zero-order light LC R.
- the optical element 60B is disposed on the optical path of the second 0-order light LC G between the projection region and the diffraction grating 54G of the second 0-order light LC G, the optical element 60C, the third 0 disposed on the optical path of the third 0-order light LC B between the projection region and the diffraction grating 54B of the next light LC B.
- the arrangement positions of the optical elements 60A to 60C are the first light L R emitted from the diffraction grating 54R, the second light L G emitted from the diffraction grating 54G, and the third light L B emitted from the diffraction grating 54B. However, it may be a position that does not overlap.
- the optical elements 60A to 60C are disposed in the cover 59, and are fixed to the cover 59 via a fixture (not shown).
- the distance of the optical path between each of the optical elements 60A to 60C and the diffraction grating 54R is, for example, 100 mm. Therefore, it can be understood that the optical system unit 50 of the present embodiment has a larger configuration than the optical system unit 50 of the third embodiment.
- the combining optical system 55 of the third embodiment since the combining optical system 55 of the third embodiment is not used, a simple configuration can be achieved.
- the energy density of the 0th order light is lowered by the optical elements 60A to 60C.
- the synthesis optical system 55 is not used, similarly to the third embodiment, it is possible to suppress the projection area of the 0th-order light from becoming significantly brighter than the light distribution pattern PTN L by the higher-order diffracted light. Can do.
- a first light emitting optical system for emitting a first light L R of the red component a second light emitting optical system for emitting a second light L G of the green component, and a third light-emitting optical system for emitting a third light L B of the blue component.
- the light emitted from the light sources respectively included in the three light emitting optical systems is not limited to red, green, and blue as long as they have predetermined wavelengths different from each other.
- the number of light emitting optical systems may be one or two. Further, the number of light emitting optical systems may be three or more.
- a fourth light-emitting optical system that emits yellow component light of the low beam L may be provided.
- the fourth light-emitting optical system may emit light of the yellow component of the low beam L.
- the fourth light-emitting optical system may emit light having the same color component as that of the light having a low light intensity.
- a white balance adjustment circuit may be further provided.
- the white balance adjustment circuit includes a total light flux amount of light emitted from the light source 52R of the first light emission optical system 51R, a total light flux amount of light emitted from the light source 52G of the second light emission optical system 51G, and a third light emission optical system.
- a desired white balance can be achieved. For example, switching may be made so that warm white light is emitted or blue white light is emitted within a legal range.
- the first optical element 55f has a first light L R by reflecting the second light L G with the first light transmitted through the first light L R a a second light L G synthesized
- the second optical element 55s is the third light L B as well as transmitted through the first beam L R and the second light L G synthesized by the first optical element 55f a first light L R by reflecting the second light L G was synthesized and third light L B.
- the third light L B and synthesized in the first optical element 55f in the second optical element 55s a second light L G and the first light L R may be configured to be synthesized.
- the positions of the first light emitting optical system 51R and the third light emitting optical system 51B in the third embodiment are switched.
- the third optical element 55f combines the third zero-order light LC B and the second zero-order light LC G
- the second optical element 55s combines the first optical element 55f with the third optical element 55f.
- 0 order light LC B and the second 0-order light LC G and the first 0-order light LC R is configured to be synthesized.
- a bandpass filter that transmits light in a predetermined wavelength band and reflects light in other wavelength bands may be used for the first optical element 55f and the second optical element 55s.
- the combining optical system 55 may be combined by combining the outer shapes of the light emitted from the respective light emitting optical systems, and is not limited to the third embodiment.
- the 0th-order lights LC R , LC G , and LC B that pass straight through the diffraction gratings 54R, 54G, and 54B are not synthesized by the synthesis optical system 55, and the optical elements 60 are separated.
- the area may be irradiated.
- the projection region is located outside the light distribution pattern PTN L of the low beam L, but may be located in the light distribution pattern PTN L.
- the projection region is within the region of the light distribution pattern PTN L of the low beam L that has a light intensity equal to or less than half of the highest light intensity in the light intensity distribution of the high-order diffracted light diffracted by the diffraction gratings 54R, 54G, 54B. It is preferably included. In this way, compared with the case where the projection area is included in the area higher than the half value of the highest luminous intensity in the luminous intensity distribution of the higher-order diffracted light, the position where the luminous intensity is the highest in the luminous intensity distribution is used as a reference. The light intensity distribution of the light distribution pattern can be easily formed smoothly.
- the optical element 60 of the third and fourth embodiments has an energy density smaller than the energy density of the incident 0th-order light even when the energy density of the incident 0th-order light is zero. It may emit light.
- the optical element 60 that emits the 0th-order light at an energy density smaller than the energy density of the incident 0th-order light is provided. It is preferable to be adopted. In this way, while using the zero-order light as the light distribution pattern PTN L of the low beam L, it is possible to suppress the projection area of the zero-order light from becoming significantly bright in the light distribution pattern PTN L.
- the light distribution pattern PTN L of the low beam L is formed as the light distribution pattern for dark place illumination.
- the light distribution pattern for dark place illumination is not limited to the light distribution pattern PTN L of the low beam L.
- the light distribution pattern for dark place illumination is used at night or in dark places such as tunnels.
- the light distribution pattern PTN L of the low beam L and the light distribution pattern PTN S of the light for visually recognizing the sign positioned outside, for example, the outside of the light distribution pattern PTN L are for dark place illumination. May be formed as a light distribution pattern.
- the high-order diffracted light diffracted by the respective diffraction gratings 54R, 54G, and 54B includes the light for visually recognizing the marker.
- a high beam light distribution pattern PTN H may be formed as a light distribution pattern for dark place illumination.
- the region HA1 is a region having the highest luminous intensity
- the region HA2 is a region having a lower luminous intensity than the region HA1.
- each diffraction grating 54R, 54G, 54B diffracts the light so that the combined light forms a light distribution pattern PTN H including the high beam luminous intensity distribution.
- the vehicle headlamp 1 is exemplified as the vehicle headlamp 1.
- the third and fourth embodiments are not limited to automobile headlamps, and may be used as headlamps for other vehicles.
- the third and fourth embodiments are not limited to headlamps, and may be lamps such as rearlights, taillights, brake lights, and indicator lights.
- the present invention exemplified in the third and fourth embodiments may be any of the following vehicular illumination lamps. That is, the vehicular illumination lamp is disposed on the optical path of the light component between the light source, the diffraction grating that diffracts the light incident from the light source, and the projection area of the light component that passes straight through the diffraction grating and the diffraction grating. And an optical element for reducing the energy density of light. Of the light emitted from the diffraction grating, the light diffracted by the diffraction grating is irradiated with a predetermined light distribution pattern. Such a vehicle illumination lamp can be easily driven.
- FIG. 10 is a cross-sectional view schematically illustrating a vehicle including the vehicle headlamp according to the present embodiment.
- FIG. 11 is an enlarged view of the optical system unit of the vehicle headlamp shown in FIG.
- the configuration of the vehicle headlamp 1 in the present embodiment is the same as the configuration of the vehicle headlamp 1 in the first embodiment.
- the light distribution pattern of the light emitted from the headlamp 1 is different from the light distribution pattern of the light emitted from the vehicle headlamp 1 of the first embodiment.
- the diffraction grating 54R of the present embodiment diffracts the laser light incident from the collimating lens 53R so as to have a predetermined light distribution pattern.
- the light emitted from each of the first light-emitting optical system 51R, the second light-emitting optical system 51G, and the third light-emitting optical system 51B in the later-described synthesis optical system 55 is a diffracted light beam LD.
- the laser light incident from the collimating lens 53R is diffracted so as to obtain a light distribution pattern of.
- This light distribution pattern includes a luminous intensity distribution.
- the diffraction grating 54R of the present embodiment is based on the light intensity distribution of the light distribution pattern of the diffracted light beam LD and the light diffracted by the diffraction grating 54R has the same outer shape as the light distribution pattern of the diffracted light beam LD.
- the laser light incident from the collimator lens 53R is diffracted so as to obtain a luminous intensity distribution.
- the light diffracted by the diffraction grating 54R is high-order diffracted light having a first or higher order, and in addition to the high-order diffracted light, zero-order light that passes straight through the diffraction grating 54R without being diffracted is diffraction grating.
- the light is emitted from 54R.
- the projection region of the 0th-order light beam LC emitted from the later-described synthesis optical system 55 is located in the light distribution pattern of the low beam L formed by the 0th-order light beam LC and the diffracted light beam LD.
- the 0th order light is emitted from the diffraction grating 54R.
- the first light-emitting optical system 51R emits red-order high-order diffracted light in the low beam L and red-order 0-order light in the zero-order light beam LC.
- the diffraction grating 54G diffracts the laser light incident from the collimator lens 53G so as to have a predetermined light distribution pattern
- the diffraction grating 54B diffracts the laser light incident from the collimator lens 53B so as to have a predetermined light distribution pattern.
- the diffraction gratings 54G and 54B are configured so that the light emitted from each of the first light emitting optical system 51R, the second light emitting optical system 51G, and the third light emitting optical system 51B in the combining optical system 55 is diffracted light beam LD.
- the laser beams incident from the collimating lenses 53G and 53B are diffracted so as to obtain a light distribution pattern of.
- the light distribution pattern includes a light intensity distribution. Therefore, in the diffraction gratings 54G and 54B of the present embodiment, the respective laser beams emitted from the diffraction gratings 54G and 54B have the same outer shape as the outer shape of the light distribution pattern of the diffracted light beam LD and the light distribution of the diffracted light beam LD.
- the laser light incident from the collimating lenses 53G and 53B is diffracted so that the light intensity distribution is based on the light intensity distribution of the pattern.
- the light diffracted by the diffraction grating 54G is a high-order diffracted light having an order of 1st or higher.
- the 0th-order light that passes straight through the diffraction grating 54G without being diffracted is transmitted to the diffraction grating.
- the light is emitted from 54G.
- the projection region of the 0th-order light beam LC emitted from the later-described synthesis optical system 55 is located in the light distribution pattern of the low beam L formed by the 0th-order light beam LC and the diffracted light beam LD.
- the 0th order light is emitted from the diffraction grating 54G.
- the light diffracted by the diffraction grating 54B is a high-order diffracted light having a first order or higher order, and in addition to the high-order diffracted light, the 0th-order light that passes straight through the diffraction grating 54B without being diffracted.
- the projection region of the 0th-order light beam LC emitted from the later-described synthesis optical system 55 is located in the light distribution pattern of the low beam L formed by the 0th-order light beam LC and the diffracted light beam LD.
- the 0th order light is emitted from the diffraction grating 54B.
- the second light-emitting optical system 51G emits high-order diffracted light of the green component of the low beam L and emits zero-order light of the green component of the zero-order light beam LC.
- the third light-emitting optical system 51B emits high-order diffracted light of the blue component of the low beam L and emits zero-order light of the blue component of the zero-order light beam LC.
- the high-order diffracted light of the green component emitted from the second light-emitting optical system 51G is the second light LD G
- the zero-order light of the green component is the second zero-order light LC G
- the third light emission The blue component high-order diffracted light emitted from the optical system 51B is referred to as third light LD B
- the blue component zero-order light is referred to as third zero-order light LC B.
- the first light LD R is most wavelengths longer second light LD G
- the wavelength in the order of the third optical LD B is shortened.
- the first zero-order light LC R is most wavelengths longer second 0-order light LC G
- the wavelength in the order of the third 0-order light LC B is shortened.
- the light intensity distribution based on the light intensity distribution of the light distribution pattern of the diffracted light beam LD is a light intensity distribution in the light distribution pattern of the diffracted light beam LD that is emitted from the diffraction gratings 54R, 54G, and 54B. This means that the intensity of high-order diffracted light is also high.
- the combining optical system 55 includes a first optical element 55f and a second optical element 55s.
- the first optical element 55f is an optical element for combining the first and the light LD R emitted from the first light emitting optical system 51R, and a second light LD G emitted from the second light emitting optical system 51G.
- the first optical element 55f has a first 0-order light LC R and, second 0-order light LC G and the optical element for synthesizing the emitted from the second light emitting optical system 51G emitted from the first light emitting optical system 51R But there is.
- the first optical element 55f synthesizes the first light LD first light by reflecting the second light LD G while transmitting the R LD R and the second optical LD G combines the second first by reflecting the 0-order light LC G of the zero-order light LC R and second 0-order light LC G while passing through the first zero-order light LC R.
- the second optical element 55s is synthesized first and the optical LD R and the second light LD G synthesized by the first optical element 55f, and a third light LD B emitted from the third light emitting optical system 51B It is an optical element.
- the second optical element 55s has a first 0-order light LC R and a second 0-order light LC G synthesized by the first optical element 55f, a third zero-order emitted from the third light-emitting optical system 51B It is also an optical element that combines the light LC B.
- the second optical element 55s is first by reflecting the third light LD B as well as transmitted through the first beam LD R and the second light LD G synthesized by the first optical element 55f 1 of the light LD R and the second light LD G and third light LD B synthesized.
- the second optical element 55s reflects third 0-order light LC B while passing through the first zero-order light LC R and a second 0-order light LC G synthesized by the first optical element 55f It combines the first 0-order light LC R and second 0-order light LC G and the third 0-order light LC B by.
- first optical element 55f and second optical element 55s there can be mentioned a wavelength selective filter in which an oxide film is laminated on a glass substrate.
- a wavelength selective filter in which an oxide film is laminated on a glass substrate.
- the first light LD R and the second light LD G and the third diffracted light beams LD by the light LD B are combined is emitted, a first 0-order light LC R and second 0-order light LC G and 0-order light beam LC by a third zero-order light LC B are combined is emitted.
- laser light is emitted from each of the light sources 52R, 52G, and 52B.
- red laser light is emitted from the light source 52R
- green laser light is emitted from the light source 52G
- blue laser light is emitted from the light source 52B.
- the respective laser beams are collimated by collimating lenses 53R, 53G, and 53B, and then enter the diffraction gratings 54R, 54G, and 54B.
- the diffraction grating 54R as described above, 54G are diffracted respective laser beam 54B, the first light LD R from the first light emitting optical system 51R is a red component of the diffracted light beams LD emits, The second light LD G that is the green component of the diffracted light beam LD is emitted from the second light emitting optical system 51G, and the third light LD B that is the blue component of the diffracted light beam LD is emitted from the third light emitting optical system 51B. Is emitted.
- the diffraction grating 54R as described above, 54G, 54B was transmitted straight respectively, the first 0-order light LC R from the first light emitting optical system 51R is a red component of the 0-order light beam LC is emitted , from the second light emitting optical system 51G 0 order light beam and a second 0-order light LC G is green component emission of LC, from the third light-emitting optical system 51B is the blue component of the 0-order light beam LC first 3 0th-order light LC B is emitted.
- first, the first light LD R and the second light LD G is emitted are combined by the first optical element 55f, a first 0-order light LC R and the second 0-order light LC G is synthesized by the first optical element 55f and emitted.
- First light LD R and the second light LD G synthesized by the first optical element 55f is combined with the third light LD B by the second optical element 55s, first synthesized in the first optical element 55f the 0-order light LC R and second 0-order light LC G is combined with a third zero-order light LC B by the second optical element 55s.
- the external shapes of the light beams LD R , LD G , and LD B are the same as the external shape of the diffracted light beam LD, the external shapes of the light beams LD R , LD G , and LD B are matched with each other and combined. Is done.
- the outer shapes of the respective zero-order lights LC R , LC G , and LC B are the same, the outer shapes of the respective zero-order lights LC R , LC G , and LC B are combined with each other and synthesized.
- the first light LD R contour and outer third light LD B contour of the second light LD G, and the outline of the first 0-order light LC R second 0-order light LC G The positions of the respective light emitting optical systems and the combining optical system are finely adjusted so that the outer shape of the third optical order and the outer shape of the third 0th-order light LC B are combined by the combining optical system as described above.
- the light of the first light LD R of red and green of the second light LD G and third light LD B of blue is combined becomes white, the white light is diffracted light from the synthesizing optical system 55 It is emitted as a beam LD.
- the light red first 0-order light LC R and green second 0-order light LC G and blue third of the zero-order light LC B is synthesized becomes white, the white light is synthesized The light is emitted from the optical system 55 as a zero-order light beam LC.
- the diffracted light beam LD and the 0th-order light beam LC emitted from the synthesis optical system 55 are emitted from the opening 59H of the cover 59, and emitted from the vehicle headlamp 1 to the front of the vehicle via the front cover 12.
- the light distribution pattern of the low beam L is formed by the diffracted light beam LD and the zero-order light beam LC.
- FIG. 12 is a diagram showing a low beam light distribution pattern and a light intensity distribution of the light distribution pattern in the present embodiment.
- the light distribution pattern PTN L of the low beam L includes a first area LA1, a second area LA2, and a third area LA3, and the first area LA1, the second area LA2, The light intensity decreases in the order of the third region LA3.
- the first region LA1 is a region having a light intensity higher than the first light intensity threshold in the light intensity distribution of the diffracted light beam LD that is higher-order diffracted light.
- the first area LA1 the light intensity of the diffracted light beam LD is obtained.
- a site P having the highest luminous intensity L H in the distribution is included.
- the second area LA2 is an area that is lower than the first light intensity threshold in the light intensity distribution of the diffracted light beam LD and has a light intensity higher than the second light intensity threshold set lower than the first light intensity threshold.
- the region LA3 is a region that is less than or equal to the second light intensity threshold in the light intensity distribution of the diffracted light beam LD.
- the first intensity threshold for example, are half the highest luminosity L H among the light intensity distribution of the diffracted light beams LD.
- the projection area PAR of the zero-order light irradiated with the zero-order light beam LC is located in the first area LA1, and further, the first area LA1. It is located in a narrower hot zone HZ.
- the 0th-order light projection region PAR is located avoiding the portion P having the highest light intensity L H in the light intensity distribution of the diffracted light beam LD.
- the luminous intensity of the projection region PAR is the total value of the luminous intensity of the diffracted light beam LD and the luminous intensity of the zeroth-order light beam LC. In the example shown in FIG.
- the luminous intensity of the projection region PAR is higher than the highest luminous intensity L H in the luminous intensity distribution of the diffracted light beam LD, but may be lower than the luminous intensity L H.
- the diffracted light beams LD in the projection region PAR is turned into the non-irradiation may reduce the intensity of the projection area PAR than the luminosity L H.
- the vehicle headlamp 1 includes the light sources 52R, 52G, and 52B and the diffraction gratings 54R, 54G, and 54B that diffract the light incident from the light sources 52R, 52G, and 52B. .
- the light diffracted by the diffraction gratings 54R, 54G, and 54B is synthesized by the synthesis optical system 55 and emitted from the synthesis optical system 55 as a diffracted light beam LD. Further, light that travels straight through the diffraction gratings 54R, 54G, and 54B is synthesized by the synthesis optical system 55, and is emitted from the synthesis optical system 55 as a zero-order light beam LC.
- a light distribution pattern of a low beam L is formed by the diffracted light beam LD and the zero-order light beam LC. As shown in FIG. 12, the projection region PAR of 0-order light beam LC among light distribution pattern is higher luminosity than the highest luminosity L H half among the light intensity distribution of the diffracted light beams LD is higher-order diffracted light Located in the region.
- the vehicle headlamp 1 of the embodiment when the projection region PAR is located outside the region to be a high luminous intensity than half of the highest intensity L H among the light intensity distribution of the diffracted light beams LD Compared to driving easier.
- the projection region PAR is located avoiding the portion P having the highest light intensity L H in the light intensity distribution of the diffracted light beam LD. Therefore, it is possible to suppress the portion P having the highest luminous intensity L H in the light distribution pattern PTN L of the diffracted light beam LD from being excessively bright.
- the projection region PAR is arranged in the hot zone HZ, the projection region PAR stands out in the light distribution pattern PTN L while using the zero-order light beam LC as the light distribution pattern PTN L of the low beam L. Brightness can be suppressed.
- the vehicle headlamp 1 of the present embodiment has a plurality of light emitting optical systems including one light source and one diffraction grating.
- the vehicle headlamp 1 includes a first light emitting optical system 51R including one light source 52R and one diffraction grating 54R, and a second light emitting optical system 51G including one light source 52G and one diffraction grating 54G. And a third light-emitting optical system 51B including one light source 52B and one diffraction grating 54B.
- the vehicle headlamp 1 of the present embodiment further includes a combining optical system 55 that combines the light emitted from the respective light emitting optical systems 51R, 51G, and 51B.
- Each light source 52R, 52G, 52B emits light having a predetermined wavelength different from each other, and each diffraction grating 54R, 54G, 54B has a light distribution pattern PTN L in which the light synthesized by the synthesis optical system 55 is a low beam L.
- the light from the light sources 52R, 52G, and 52B is emitted so that
- the light distribution pattern PTN L is formed through the diffraction gratings 54R, 54G, and 54B with light having a predetermined wavelength emitted from the respective light sources 52R, 52G, and 52B.
- the diffraction gratings 54R, 54G, and 54B have wavelength dependency.
- the light having the light distribution pattern PTN L in which the color blur is suppressed is combined by the combining optical system 55 to form the light distribution pattern PTN L of the low beam L. Therefore, the low beam L irradiated by the vehicle headlamp 1 according to the present embodiment can suppress color blurring in the vicinity of the edge of the light distribution pattern PTN L.
- the 0th-order lights LC R , LC G , and LC B that pass straight through the respective diffraction gratings 54R, 54G, and 54B are synthesized by the synthesis optical system 55 and projected.
- the region PAR is irradiated.
- the 0th-order lights LC R , LC G , and LC B that pass through the diffraction gratings 54R, 54G, and 54B are converted into white Can be the same color. Therefore, in the vehicle headlamp 1 of the present embodiment, it is possible to reduce the driver's unawareness of the projection area PAR, and it is easier to drive.
- FIG. 13 is a view showing the optical system unit of the vehicle headlamp according to the present embodiment in the same manner as FIG.
- the optical system unit 50 of the vehicle headlamp of the present embodiment does not include the combining optical system 55, and the first light emitting optical system 51R, the second light emitting optical system 51G, and the third light emitting optical system 51B.
- the optical system unit 50 is different from the optical system unit 50 of the fifth embodiment in that the light emitted from the cover 59 is emitted from the cover 59 without being synthesized.
- the first light emitting optical system 51R, the second light emitting optical system 51G, and the third light emitting optical system 51B are configured such that the light emission direction is on the opening 59H side of the cover 59.
- the synthesized light is emitted so as to form a low beam L light distribution pattern.
- the first 0th-order light LC R emitted from the diffraction grating 54R, the second 0th-order light LC G emitted from the diffraction grating 54G, and the third 0th-order light LC B emitted from the diffraction grating 54B are: The light is emitted from the opening 59H of the cover 59 and irradiated to the outside of the vehicle headlamp via the front cover 12.
- the first light LD R , the second light LD G , and the third light LD B , the first zero-order light LC R , the second zero-order light LC G , and the third light LD B The zero-order light LC B is irradiated so that the outer shapes of the respective light distribution patterns substantially coincide with each other at a focal position separated from the vehicle by a predetermined distance.
- the distance from the vehicle is, for example, 25 m. Therefore, a light distribution pattern of the low beam L is formed at a position away from the vehicle by a predetermined distance.
- This light distribution pattern is the light distribution pattern PTN L shown in FIG. 12, and has the same luminous intensity distribution as the luminous intensity distribution shown in FIG.
- the 0th-order light projection region PAR in the light distribution pattern PTN L has the highest half-value of the light intensity L H in the light intensity distribution of the diffracted light beam LD, which is a high-order diffracted light. It is located in the region where the luminous intensity is higher than that.
- the zero-order light projection region PAR is located in a region where the luminous intensity is higher than the half value of the highest luminous intensity L H in the luminous intensity distribution of the high-order diffracted light. Therefore, similarly to the fifth embodiment, it is possible to suppress the projection area PAR from becoming brighter.
- the first light LD R contour and the second light LD G outline and third light LD B contour, and, 0 contour and a second of the first zero-order light LC R of this embodiment
- the outer shape of the second-order light LC G and the outer shape of the third zero-order light LC B tend to be slightly different from each other except for the focal position.
- the deviation of the outer shape can be suppressed as compared with the light obtained by entering white light into one diffraction grating. Therefore, according to the present embodiment as well, a vehicle headlamp capable of suppressing color bleeding while being downsized can be realized.
- the fifth, the sixth embodiment a first light emitting optical system for emitting a first light LD R of the red component, a second light emitting optical system for emitting a second light LD G of the green component, and a third light-emitting optical system for emitting a third light LD B of the blue component.
- the light emitted from the light sources respectively included in the three light-emitting optical systems is limited to red, green, and blue as long as the wavelengths are different from each other. Absent.
- the number of light emitting optical systems may be one or two. Further, the number of light emitting optical systems may be three or more.
- a fourth light-emitting optical system that emits yellow component light of the low beam L may be provided.
- the fourth light-emitting optical system may emit light of the yellow component of the low beam L.
- the fourth light-emitting optical system may emit light having the same color component as that of the light having a low light intensity.
- a white balance adjustment circuit may be further provided.
- the white balance adjustment circuit includes a total light flux amount of light emitted from the light source 52R of the first light emission optical system 51R, a total light flux amount of light emitted from the light source 52G of the second light emission optical system 51G, and a third light emission optical system.
- a desired white balance can be achieved. For example, switching may be made so as to emit warm white light or blue white light within the scope of the law.
- the first optical element 55f has a first light LD R by reflecting the second light LD G with the first light transmitted through the first optical LD R a a second light LD G synthesized
- the second optical element 55s is the third light LD B as well as transmitted through the first beam LD R and the second light LD G synthesized by the first optical element 55f a first optical LD R by reflecting the second light LD G were synthesized and third light LD B.
- the third light LD B and synthesized in the first optical element 55f in the second optical element 55s may be configured to be synthesized.
- the positions of the first light emitting optical system 51R and the third light emitting optical system 51B in the fifth embodiment are switched.
- the third optical element 55f combines the third zero-order light LC B and the second zero-order light LC G
- the second optical element 55s combines the first optical element 55f with the third optical element 55f.
- 0 order light LC B and the second 0-order light LC G and the first 0-order light LC R is configured to be synthesized.
- a bandpass filter that transmits light in a predetermined wavelength band and reflects light in other wavelength bands may be used for the first optical element 55f and the second optical element 55s.
- the combining optical system 55 may be combined by combining the outer shapes of the light emitted from the respective light emitting optical systems, and is not limited to the fifth embodiment.
- the 0th-order lights LC R , LC G , and LC B that pass straight through the respective diffraction gratings 54R, 54G, and 54B are not synthesized by the synthesizing optical system 55, and are separated in the projection areas PAR.
- the area may be irradiated.
- G and LC B are preferably synthesized.
- the projection region PAR is located avoiding the position where the luminous intensity L H is the highest in the luminous intensity distribution of the high-order diffracted light. good.
- the brightest region in the light distribution pattern PTN L of the low beam L is almost unchanged regardless of whether the 0th-order light intensity is large. For this reason, it becomes easier to form the light intensity distribution of the light distribution pattern PTN L of the low beam L more smoothly with reference to the position where the light intensity distribution is the highest in the light intensity distribution of the diffracted light beam LD.
- in is preferably positioned to avoid the highest luminosity L H a position.
- the light distribution pattern PTN L of the low beam L is formed as the light distribution pattern for dark place illumination.
- the light distribution pattern for dark place illumination is not limited to the light distribution pattern PTN L of the low beam L.
- the light distribution pattern for dark place illumination is used at night or in dark places such as tunnels.
- a light distribution pattern PTN L of a low beam L and a light distribution pattern PTN S for light for visually recognizing a sign positioned outside, for example, the outside of the light distribution pattern PTN L are used for dark place illumination. May be formed as a light distribution pattern.
- the high-order diffracted light diffracted by the respective diffraction gratings 54R, 54G, and 54B includes the light for visually recognizing the marker.
- a high beam light distribution pattern may be formed as a light distribution pattern for dark place illumination.
- the vehicle headlamp 1 is exemplified as the vehicle headlamp 1.
- the fifth and sixth embodiments are not limited to automobile headlamps, and may be used as headlamps for other vehicles. Further, the fifth and sixth embodiments are not limited to headlamps, but may be lamps such as rearlights, taillights, brake lights, and indicator lights.
- the present invention illustrated in the fifth and sixth embodiments may be any of the following vehicular illumination lamps. That is, the vehicular illumination lamp includes a light source and a diffraction grating that diffracts light incident from the light source. A light distribution pattern having a predetermined luminous intensity distribution is formed by the light diffracted by the diffraction grating and the light that travels straight through the diffraction grating. In this light distribution pattern, the projected area of light that passes straight through the diffraction grating is located in an area where the luminous intensity is higher than the half maximum of the highest luminous intensity in the luminous intensity distribution of the light diffracted by the diffraction grating. . Such a vehicle illumination lamp can be easily driven.
- a seventh embodiment of the present invention will be described. Note that the same or equivalent components as those in the fifth embodiment are denoted by the same reference numerals, unless otherwise described, and redundant description is omitted.
- the configuration of the vehicle headlamp 1 in the present embodiment is the same as the configuration of the vehicle headlamp 1 in the fifth embodiment, but the distribution of the light emitted by the vehicle headlamp 1 of the present embodiment is the same.
- the light pattern is different from the light distribution pattern of the light emitted from the vehicle headlamp 1 of the fifth embodiment.
- the diffraction grating 54R of the present embodiment emits laser light incident from the collimating lens 53R so as to have a predetermined light distribution pattern.
- the diffraction grating 54R is configured so that the light emitted from each of the first light-emitting optical system 51R, the second light-emitting optical system 51G, and the third light-emitting optical system 51B in the combining optical system 55 is the distribution of the diffracted light beam LD.
- Laser light incident from the collimating lens 53R is emitted so as to form an optical pattern.
- This light distribution pattern includes a luminous intensity distribution.
- the diffraction grating 54R of the present embodiment is based on the light intensity distribution of the light distribution pattern of the diffracted light beam LD and the light diffracted by the diffraction grating 54R has the same outer shape as the light distribution pattern of the diffracted light beam LD.
- the laser beam incident from the collimator lens 53R is emitted so as to obtain a luminous intensity distribution.
- the light diffracted by the diffraction grating 54R is high-order diffracted light having a first or higher order, and in addition to the high-order diffracted light, zero-order light that passes straight through the diffraction grating 54R without being diffracted is diffraction grating.
- the light is emitted from 54R.
- the projection region of the 0th-order light beam LC emitted from the synthesis optical system 55 is positioned within the light distribution pattern of the low beam L formed by the 0th-order light beam LC and the diffracted light beam LD.
- the 0th order light is emitted from the diffraction grating 54R.
- the diffraction grating 54R of the present embodiment emits laser light incident from the collimating lens 53R so that the high-order diffracted light diffracted by the diffraction grating 54R is not irradiated in the projection region of the zero-order light beam LC. Accordingly, in the projection region of the 0th-order light beam LC in the light distribution pattern of the low beam L, the luminous intensity of the high-order diffracted light diffracted by the diffraction grating 54R is zero.
- the first light-emitting optical system 51R emits red-order high-order diffracted light in the low beam L and red-order 0-order light in the zero-order light beam LC.
- the diffraction grating 54G emits laser light incident from the collimating lens 53G so as to have a predetermined light distribution pattern
- the diffraction grating 54B emits laser light incident from the collimating lens 53B so as to have a predetermined light distribution pattern.
- the diffraction gratings 54G and 54B are configured so that the light emitted from each of the first light emitting optical system 51R, the second light emitting optical system 51G, and the third light emitting optical system 51B in the combining optical system 55 is diffracted light beam LD.
- the laser beams incident from the collimating lenses 53G and 53B are diffracted so as to obtain a light distribution pattern of.
- the light distribution pattern includes a light intensity distribution. Therefore, in the diffraction gratings 54G and 54B of the present embodiment, the respective laser beams emitted from the diffraction gratings 54G and 54B have the same outer shape as the outer shape of the light distribution pattern of the diffracted light beam LD and the light distribution of the diffracted light beam LD.
- the laser light incident from the collimating lenses 53G and 53B is diffracted so that the light intensity distribution is based on the light intensity distribution of the pattern.
- the light diffracted by the diffraction grating 54G is a high-order diffracted light having an order of 1st or higher.
- the 0th-order light that passes straight through the diffraction grating 54G without being diffracted is transmitted to the diffraction grating.
- the light is emitted from 54G.
- the projection region of the 0th-order light beam LC emitted from the synthesis optical system 55 is positioned within the light distribution pattern of the low beam L formed by the 0th-order light beam LC and the diffracted light beam LD.
- the 0th order light is emitted from the diffraction grating 54G.
- the diffraction grating 54G of the present embodiment emits laser light incident from the collimating lens 53G so that the high-order diffracted light diffracted by the diffraction grating 54G is not irradiated in the projection region of the zero-order light beam LC. Accordingly, in the projection region of the 0th-order light beam LC in the light distribution pattern of the low beam L, the luminous intensity of the high-order diffracted light diffracted by the diffraction grating 54G is zero.
- the light diffracted by the diffraction grating 54B is a high-order diffracted light having a first order or higher order, and in addition to the high-order diffracted light, the 0th-order light that passes straight through the diffraction grating 54B without being diffracted.
- the projection region of the 0th-order light beam LC emitted from the synthesis optical system 55 is positioned within the light distribution pattern of the low beam L formed by the 0th-order light beam LC and the diffracted light beam LD.
- the 0th order light is emitted from the diffraction grating 54B.
- the diffraction grating 54B of the present embodiment emits laser light incident from the collimator lens 53B so that the high-order diffracted light diffracted by the diffraction grating 54B is not irradiated in the projection region of the zero-order light beam LC. Therefore, in the projection region of the zero-order light beam LC in the low beam L light distribution pattern, the luminous intensity of the high-order diffracted light diffracted by the diffraction grating 54B is zero.
- the second light-emitting optical system 51G emits high-order diffracted light of the green component of the low beam L and emits zero-order light of the green component of the zero-order light beam LC.
- the third light-emitting optical system 51B emits high-order diffracted light of the blue component of the low beam L and emits zero-order light of the blue component of the zero-order light beam LC.
- the high-order diffracted light of the green component emitted from the second light-emitting optical system 51G is the second light LD G
- the zero-order light of the green component is the second zero-order light LC G
- the third light emission The blue component high-order diffracted light emitted from the optical system 51B is referred to as third light LD B
- the blue component zero-order light is referred to as third zero-order light LC B.
- the first light LD R is most wavelengths longer second light LD G
- the wavelength in the order of the third optical LD B is shortened.
- the first zero-order light LC R is most wavelengths longer second 0-order light LC G
- the wavelength in the order of the third 0-order light LC B is shortened.
- laser light is emitted from each of the light sources 52R, 52G, and 52B.
- red laser light is emitted from the light source 52R
- green laser light is emitted from the light source 52G
- blue laser light is emitted from the light source 52B.
- the respective laser beams are collimated by collimating lenses 53R, 53G, and 53B, and then enter the diffraction gratings 54R, 54G, and 54B.
- the diffraction grating 54R as described above, 54G are diffracted respective laser beam 54B, the first light LD R from the first light emitting optical system 51R is a red component of the diffracted light beams LD emits, The second light LD G that is the green component of the diffracted light beam LD is emitted from the second light emitting optical system 51G, and the third light LD B that is the blue component of the diffracted light beam LD is emitted from the third light emitting optical system 51B. Is emitted.
- the diffraction grating 54R as described above, 54G, 54B was transmitted straight respectively, the first 0-order light LC R from the first light emitting optical system 51R is a red component of the 0-order light beam LC is emitted , from the second light emitting optical system 51G 0 order light beam and a second 0-order light LC G is green component emission of LC, from the third light-emitting optical system 51B is the blue component of the 0-order light beam LC first 3 0th-order light LC B is emitted.
- first, the first light LD R and the second light LD G is emitted are combined by the first optical element 55f, a first 0-order light LC R and the second 0-order light LC G is synthesized by the first optical element 55f and emitted.
- First light LD R and the second light LD G synthesized by the first optical element 55f is combined with the third light LD B by the second optical element 55s, first synthesized in the first optical element 55f the 0-order light LC R and second 0-order light LC G is combined with a third zero-order light LC B by the second optical element 55s.
- the external shapes of the light beams LD R , LD G , and LD B are the same as the external shape of the diffracted light beam LD, the external shapes of the light beams LD R , LD G , and LD B are matched with each other and combined. Is done.
- the outer shapes of the respective zero-order lights LC R , LC G , and LC B are the same, the outer shapes of the respective zero-order lights LC R , LC G , and LC B are combined with each other and synthesized.
- the first light LD R contour and outer third light LD B contour of the second light LD G, and the outline of the first 0-order light LC R second 0-order light LC G The positions of the respective light emitting optical systems and the combining optical system are finely adjusted so that the outer shape of the third optical order and the outer shape of the third 0th-order light LC B are combined by the combining optical system as described above.
- the light of the first light LD R of red and green of the second light LD G and third light LD B of blue is combined becomes white, the white light is diffracted light from the synthesizing optical system 55 It is emitted as a beam LD.
- the light red first 0-order light LC R and green second 0-order light LC G and blue third of the zero-order light LC B is synthesized becomes white, the white light is synthesized The light is emitted from the optical system 55 as a zero-order light beam LC.
- the diffracted light beam LD and the 0th-order light beam LC emitted from the synthesis optical system 55 are emitted from the opening 59H of the cover 59, and emitted from the vehicle headlamp 1 to the front of the vehicle via the front cover 12.
- the light distribution pattern of the low beam L is formed by the diffracted light beam LD and the zero-order light beam LC.
- FIG. 15 is a diagram illustrating a low beam light distribution pattern and a light intensity distribution of the light distribution pattern according to the present embodiment.
- the light distribution pattern PTN L of the low beam L includes a first region LA1, a second region LA2, and a third region LA3, and the first region LA1, the second region LA2, The light intensity decreases in the order of the third region LA3.
- the first region LA1 is a region having a light intensity higher than the first light intensity threshold in the light intensity distribution of the diffracted light beam LD that is higher-order diffracted light.
- the first area LA1 the light intensity of the diffracted light beam LD is obtained.
- a site P having the highest luminous intensity L H in the distribution is included.
- the second area LA2 is an area that is lower than the first light intensity threshold in the light intensity distribution of the diffracted light beam LD and has a light intensity higher than the second light intensity threshold set lower than the first light intensity threshold.
- the region LA3 is a region that is less than or equal to the second light intensity threshold in the light intensity distribution of the diffracted light beam LD.
- the first intensity threshold for example, are half the highest luminosity L H among the light intensity distribution of the diffracted light beams LD.
- the 0th-order light projection area PAR irradiated with the 0th-order light beam LC is included in the second area LA2 and is a part of the first area LA1. It overlaps with. Further, light intensity of the projection area PAR of 0-order light is lower than the highest luminosity L H among the light intensity distribution of the diffracted light beams LD.
- FIG. 16 is a diagram illustrating the light distribution pattern of the low beam L and the luminous intensity distribution of the light distribution pattern when the zero-order light beam LC is not irradiated.
- the zero-order light beam LC is not irradiated.
- the 0th-order light projection area PAR looks like a dark hole.
- the luminous intensity of the projection area PAR is the total value of the luminous intensity of the diffracted light beam LD and the luminous intensity of the zero-order light beam LC.
- the vehicle headlamp 1 includes the light sources 52R, 52G, and 52B and the diffraction gratings 54R, 54G, and 54B that diffract the light incident from the light sources 52R, 52G, and 52B. .
- Lights emitted from the diffraction gratings 54R, 54G, and 54B are synthesized by the synthesis optical system 55 and emitted from the synthesis optical system 55 as a diffracted light beam LD and a zero-order light beam LC.
- a low beam L is obtained by the diffracted light beam LD and the zero-order light beam LC, and the low beam L is irradiated with a light distribution pattern PTN L having a predetermined light intensity distribution.
- the diffracted light beam LD is not irradiated.
- the diffracted light beam LD is higher-order diffracted light diffracted by the diffraction gratings 54R, 54G, and 54B.
- the luminous intensity of the high-order diffracted light in the projection area PAR is smaller than the luminous intensity of the light irradiated on the outer periphery of the projection area PAR. For this reason, even if the 0th-order light having a light intensity higher than that of the high-order diffracted light is irradiated to the projection area PAR, the projection area PAR is reduced from being significantly bright in the light distribution pattern PTN L of the low beam L. be able to. Therefore, the vehicle headlamp 1 according to the present embodiment can be operated more easily than the case where the luminous intensity of the high-order diffracted light in the projection area PAR is equal to or greater than the luminous intensity of the light irradiated on the outer periphery of the projection area PAR. .
- the diffracted light beam LD is not irradiated on the projection region PAR as described above, the luminous intensity of the high-order diffracted light irradiated on the projection region PAR is zero. Therefore, in the present embodiment, even when the difference between the light intensity of the 0th-order light and the light intensity of the high-order diffracted light is large, the projection region PAR is noticeably bright in the light distribution pattern PTN L of the low beam L. It becomes easy to form a smooth luminous intensity distribution as the whole light distribution pattern PTN L.
- the luminous intensity of the projection area PAR becomes the luminous intensity of the zero-order light.
- Light intensity of the 0-order light is lower than the highest luminosity L H among the light intensity distribution of the diffracted light beams LD is higher-order diffracted light. Therefore, in the present embodiment, it is easy to smoothly form the light intensity distribution of the light distribution pattern PTN L with reference to the portion P that has the highest light intensity L H in the light intensity distribution of the high-order diffracted light.
- the light distribution pattern PTN L of the low beam L has a first region LA1, a second region LA2 lower luminosity than its intensity in the first region LA1, the second region A third region LA3 having a light intensity lower than that of LA2.
- the projection area PAR is included in the second area LA2, and a part of the projection area PAR overlaps the first area LA1. Therefore, as compared with the case where the most luminous intensity among the light distribution pattern PTN L of the low beam L is included projection region PAR in the third region LA3 is lower region, among the light distribution pattern PTN L low beam L It can reduce that the projection area
- the vehicle headlamp 1 of the present embodiment has a plurality of light emitting optical systems including one light source and one diffraction grating.
- the vehicle headlamp 1 includes a first light emitting optical system 51R including one light source 52R and one diffraction grating 54R, and a second light emitting optical system 51G including one light source 52G and one diffraction grating 54G. And a third light-emitting optical system 51B including one light source 52B and one diffraction grating 54B.
- the vehicle headlamp 1 of the present embodiment further includes a combining optical system 55 that combines the light emitted from the respective light emitting optical systems 51R, 51G, and 51B.
- Each light source 52R, 52G, and 52B emits light of a predetermined wavelength different from each other, and each diffraction grating 54R, 54G, and 54B forms a light distribution pattern of the low beam L by the light synthesized by the synthesis optical system 55. Thus, the light from the light sources 52R, 52G, and 52B is emitted.
- each of the light sources 52R, 52G, and 52B is diffracted by the diffraction gratings 54R, 54G, and 54B to form a light distribution pattern.
- the diffraction gratings 54R, 54G, and 54B have wavelength dependency.
- the light having the light distribution pattern in which the color blur is suppressed is combined by the combining optical system 55 to form the light distribution pattern of the low beam L. Therefore, the low beam L irradiated by the vehicle headlamp 1 according to the present embodiment can suppress color blurring in the vicinity of the edge of the light distribution pattern.
- the 0th-order lights LC R , LC G , and LC B that pass straight through the respective diffraction gratings 54R, 54G, and 54B are synthesized by the synthesis optical system 55 and projected.
- the region PAR is irradiated.
- the 0th-order lights LC R , LC G , and LC B that pass through the diffraction gratings 54R, 54G, and 54B are converted into white Can be the same color. Therefore, in the vehicle headlamp 1 of the present embodiment, it is possible to reduce the driver's unawareness of the projection area PAR, and it is easier to drive.
- the optical system unit 50 of the vehicle headlamp of the present embodiment does not include the combining optical system 55, and the first light emitting optical system 51R, the second light emitting optical system 51G, and the third light emitting optical system 51B.
- the optical system unit 50 is different from the optical system unit 50 of the seventh embodiment in that the light emitted from the cover 59 is emitted from the cover 59 without being synthesized.
- the first light emitting optical system 51R, the second light emitting optical system 51G, and the third light emitting optical system 51B are configured such that the light emission direction is on the opening 59H side of the cover 59.
- each of the diffraction grating 54R of the first light emitting optical system 51R, the diffraction grating 54G of the second light emitting optical system 51G, and the diffraction grating 54B of the third light emitting optical system 51B is emitted so as to form a low beam L light distribution pattern.
- the first 0th-order light LC R emitted from the diffraction grating 54R, the second 0th-order light LC G emitted from the diffraction grating 54G, and the third 0th-order light LC B emitted from the diffraction grating 54B are: The light is emitted from the opening 59H of the cover 59 and irradiated to the outside of the vehicle headlamp via the front cover 12.
- the first light LD R , the second light LD G , and the third light LD B , the first zero-order light LC R , the second zero-order light LC G , and the third light LD B The zero-order light LC B is irradiated so that the outer shapes of the respective light distribution patterns substantially coincide with each other at a focal position separated from the vehicle by a predetermined distance.
- the distance from the vehicle is, for example, 25 m. Therefore, a light distribution pattern of the low beam L is formed at a position away from the vehicle by a predetermined distance.
- This light distribution pattern is the light distribution pattern PTN L shown in FIG. 15, and has the same luminous intensity distribution as the luminous intensity distribution shown in FIG.
- the diffracted light beam LD is not irradiated in the 0th-order light projection area PAR, and the luminous intensity of the higher-order diffracted light in the projection area PAR is irradiated to the outer periphery of the projection area PAR. Smaller than light intensity.
- the configuration can be simplified.
- the luminous intensity of the high-order diffracted light in the projection area PAR is smaller than the luminous intensity of the light irradiated on the outer periphery of the projection area PAR, and thus the same as in the seventh embodiment.
- the first light LD R contour and the second light LD G outline and third light LD B contour, and, 0 contour and a second of the first zero-order light LC R of this embodiment
- the outer shape of the second-order light LC G and the outer shape of the third zero-order light LC B tend to be slightly different from each other except for the focal position.
- the deviation of the outer shape can be suppressed as compared with the light obtained by entering white light into one diffraction grating. Therefore, according to the present embodiment as well, a vehicle headlamp capable of suppressing color bleeding while being downsized can be realized.
- the seventh, the eighth embodiment a first light emitting optical system for emitting a first light LD R of the red component, a second light emitting optical system for emitting a second light LD G of the green component, and a third light-emitting optical system for emitting a third light LD B of the blue component.
- the light emitted from the light sources respectively included in the three light emitting optical systems is limited to red, green, and blue as long as they have predetermined wavelengths different from each other. Absent.
- the number of light emitting optical systems may be one or two. Further, the number of light emitting optical systems may be three or more.
- a fourth light-emitting optical system that emits yellow component light of the low beam L may be provided.
- the fourth light-emitting optical system may emit light of the yellow component of the low beam L.
- the fourth light-emitting optical system may emit light having the same color component as that of the light having a low light intensity.
- a white balance adjustment circuit may be further provided.
- the white balance adjustment circuit includes a total light flux amount of light emitted from the light source 52R of the first light emission optical system 51R, a total light flux amount of light emitted from the light source 52G of the second light emission optical system 51G, and a third light emission optical system.
- a desired white balance can be achieved. For example, switching may be made so as to emit warm white light or blue white light within the scope of the law.
- the first optical element 55f has a first light LD R by reflecting the second light LD G with the first light transmitted through the first optical LD R a a second light LD G synthesized
- the second optical element 55s is the third light LD B as well as transmitted through the first beam LD R and the second light LD G synthesized by the first optical element 55f a first optical LD R by reflecting the second light LD G were synthesized and third light LD B.
- the third light LD B and synthesized in the first optical element 55f in the second optical element 55s may be configured to be synthesized.
- the positions of the first light emitting optical system 51R and the third light emitting optical system 51B in the seventh embodiment are switched.
- the third optical element 55f combines the third zero-order light LC B and the second zero-order light LC G
- the second optical element 55s combines the first optical element 55f with the third optical element 55f.
- 0 order light LC B and the second 0-order light LC G and the first 0-order light LC R is configured to be synthesized.
- a band pass filter that transmits light in a predetermined wavelength band and reflects light in other wavelength bands may be used for the first optical element 55f and the second optical element 55s.
- the combining optical system 55 may be combined by combining the outer shapes of the light emitted from the respective light emitting optical systems, and is not limited to the above embodiment.
- the high-order diffracted light diffracted by the diffraction gratings 54R, 54G, and 54B and emitted from the diffraction gratings 54R, 54G, and 54B is not irradiated to the projection area PAR, and the projection area PAR Then, the luminous intensity of high-order diffracted light was set to zero. However, as long as the luminous intensity of the high-order diffracted light irradiated to the projection area PAR is smaller than the luminous intensity of the light irradiated to the outer periphery of the projection area PAR, the luminous intensity of the high-order diffracted light irradiated to the projection area PAR is zero. It may be made larger.
- the 0th-order lights LC R , LC G , and LC B that pass straight through the respective diffraction gratings 54R, 54G, and 54B are not synthesized by the synthesis optical system 55, and are separated in the projection areas PAR.
- the area may be irradiated.
- G and LC B are preferably synthesized.
- the projection area PAR overlaps with a part of the first area LA1, but it may be included in the first area LA1.
- the projection region PAR did not contain the most high a luminosity L H positions among the light intensity distribution of the higher-order diffracted light, it may include the position.
- the brightest region in the light distribution pattern PTN L of the low beam L is almost unchanged regardless of whether the 0th-order light intensity is large. For this reason, the light intensity distribution of the light distribution pattern PTN L of the low beam L can be formed more smoothly with reference to the position where the light intensity is the highest in the light intensity distribution of the high-order diffracted light.
- the luminous intensity of the projection region PAR is set lower than the highest luminous intensity L H in the luminous intensity distribution of the high-order diffracted light.
- light intensity of the projection area PAR may be the highest luminosity L H or among the light intensity distribution of the higher-order diffracted light.
- the projection area PAR is included in the first area LA1, and the projection area PAR is included in a position where the luminous intensity L H is the highest in the luminous intensity distribution of the high-order diffracted light. More preferred.
- the light distribution pattern PTN L of the low beam L is formed as the light distribution pattern for dark place illumination.
- the light distribution pattern for dark place illumination is not limited to the light distribution pattern PTN L of the low beam L.
- the light distribution pattern for dark place illumination is used at night or in dark places such as tunnels.
- the light distribution pattern of the low beam L and the light distribution pattern of the light for visually recognizing the sign positioned outside the light distribution pattern may be formed as the light distribution pattern for dark place illumination.
- the high-order diffracted light diffracted by the respective diffraction gratings 54R, 54G, and 54B includes the light for visually recognizing the marker.
- a high beam light distribution pattern may be formed as a light distribution pattern for dark place illumination.
- the vehicle headlamp 1 is exemplified as the vehicle headlamp 1.
- the seventh and eighth embodiments are not limited to automobile headlamps, and may be used as headlamps for other vehicles.
- the seventh and eighth embodiments are not limited to headlamps, but may be lamps such as rearlights, taillights, brake lights, and indicator lights.
- the present invention exemplified in the seventh and eighth embodiments may be any of the following vehicular illumination lamps. That is, the vehicular illumination lamp includes a light source and a diffraction grating that diffracts light incident from the light source. Light emitted from the diffraction grating is irradiated with a light distribution pattern having a predetermined luminous intensity distribution. And, in the projection area of light that passes straight through the diffraction grating in the light distribution pattern, the luminous intensity of the light diffracted by the diffraction grating and applied to the projection area is greater than the luminous intensity of the light applied to the outer periphery of the projection area. It is made smaller. Such a vehicle illumination lamp can be easily driven.
- FIG. 17 is a cross-sectional view schematically illustrating a vehicle including the vehicle headlamp according to the present embodiment.
- FIG. 18 is an enlarged view of the optical system unit 50 of the vehicle headlamp 1 shown in FIG.
- the configuration of the vehicle headlamp 1 in the present embodiment is the same as the configuration of the vehicle headlamp 1 in the first embodiment, but the vehicle headlamp of the present embodiment is the same.
- the light distribution pattern of the light emitted from the headlamp 1 is different from the light distribution pattern of the light emitted from the vehicle headlamp 1 according to the first embodiment.
- the diffraction grating 54R of this embodiment diffracts the laser light emitted from the collimating lens 53R so as to have a predetermined light distribution pattern.
- the diffraction grating 54R has a low-beam distribution of light emitted from each of the first light-emitting optical system 51R, the second light-emitting optical system 51G, and the third light-emitting optical system 51B in the later-described synthesis optical system 55.
- the laser beam incident from the collimating lens 53R is diffracted so as to form a pattern.
- This light distribution pattern includes a luminous intensity distribution.
- the diffraction grating 54R of the present embodiment has a light intensity distribution based on the light intensity distribution of the light distribution pattern of the low beam L and the laser light emitted from the diffraction grating 54R has the same external shape as the light distribution pattern of the low beam L.
- the laser beam incident from the collimating lens 53R is diffracted.
- the red light component of the light distribution pattern of the low beam L is emitted from the first light emitting optical system 51R.
- the diffraction grating 54G diffracts the laser light emitted from the collimator lens 53G so as to have a predetermined light distribution pattern
- the diffraction grating 54B diffracts the laser light emitted from the collimator lens 53B so as to have a predetermined light distribution pattern.
- the diffraction gratings 54G and 54B are arranged such that the light emitted from each of the first light-emitting optical system 51R, the second light-emitting optical system 51G, and the third light-emitting optical system 51B is arranged in the low beam L in the combining optical system 55.
- the laser beams incident from the collimating lenses 53G and 53B are diffracted so as to form an optical pattern.
- the light distribution pattern includes a light intensity distribution. Therefore, in the diffraction gratings 54G and 54B of the present embodiment, the respective laser beams emitted from the diffraction gratings 54G and 54B have the same outer shape as the low beam L light distribution pattern and the light intensity distribution of the low beam L light distribution pattern.
- the laser light incident from the collimating lenses 53G and 53B is diffracted so that the luminous intensity distribution is based on the above.
- the green light of the low beam L light distribution pattern is emitted from the second light emitting optical system 51G
- the blue light of the low beam L light distribution pattern is emitted from the third light emitting optical system 51B.
- the light of the green component is emitted from the second light emitting optical system 51G and the second light L G
- the first light L R is most wavelengths longer second light L G, the wavelength in the order of the third optical L B becomes shorter.
- the combining optical system 55 includes a first optical element 55f and a second optical element 55s.
- the first optical element 55f is an optical element for combining the first and the light L R emitted from the first light emitting optical system 51R, and a second light L G emitted from the second light emitting optical system 51G.
- the first optical element 55f combines the first light L R and the second light L G by reflecting the second light L G as well as transmitted through the first beam L R .
- the second optical element 55s, the first and the light L R and the second light L G synthesized by the first optical element 55f, the third and the light L B emitted from the third light emitting optical system 51B An optical element to be synthesized.
- the second optical element 55s is first by reflecting the third light L B as well as transmitted through the first beam L R and the second light L G synthesized by the first optical element 55f 1 of the light L R and the second light L G and the third light L B is synthesized.
- the first optical element 55f and the second optical element 55s include a wavelength selection filter in which an oxide film is stacked on a glass substrate. By controlling the type and thickness of the oxide film, it is possible to transmit light having a wavelength longer than a predetermined wavelength and reflect light having a wavelength shorter than this wavelength.
- the first light L R and the second light L G and the third light and the light L B is synthesized is emitted.
- laser light is emitted from each of the light sources 52R, 52G, and 52B.
- red laser light is emitted from the light source 52R
- green laser light is emitted from the light source 52G
- blue laser light is emitted from the light source 52B.
- the respective laser beams are collimated by collimating lenses 53R, 53G, and 53B, and then enter the diffraction gratings 54R, 54G, and 54B.
- the respective laser beams are diffracted by the diffraction gratings 54R, 54G, and 54B as described above, and the first light L R that is the red component light of the low beam L light distribution pattern is emitted from the first light emitting optical system 51R.
- the second light emitting optical system 51G second optical L G is emitted the light of the green component of the light distribution pattern of the low beam L
- from the third light emitting optical system 51B of the light distribution pattern of the low beam L third light L B is a blue light component is emitted.
- the combining optical system 55 firstly, the first light L R and the second light L G is emitted are combined by the first optical element 55f. First light L R and the second light L G synthesized by the first optical element 55f is combined with the third light L B by the second optical element 55s. At this time, since the external shapes of the respective lights are the same as the external shape of the low beam L, the external shapes of the respective lights are combined and combined. That is, the outer shape of the first light L R and the outer shape of the second light L G and the outline of the third light L B is, as mate with a synthetic optical system as described above, the light emitting optical system and combining optical The system position has been tweaked.
- the light of the first light L R of the red and green of the second light L G and the third light L B of the blue is synthesized becomes a white light.
- the first light L R, the second light L G and the third light L B are the luminous intensity distribution based on intensity distribution of the light distribution pattern of the respective low beam L as described above, these light
- the white light combined with is a light intensity distribution of the low beam L.
- the synthesized white light is emitted from the opening 59H of the cover 59, and this light is emitted from the vehicle headlamp 1 via the front cover 12. Since this light has the light distribution pattern of the low beam L, the irradiated light becomes the low beam L.
- FIG. 19 is a diagram showing a light distribution pattern for night illumination in the present embodiment.
- FIG. 19A is a diagram showing a low beam light distribution pattern
- FIG. 19B is a diagram showing a high beam distribution pattern. It is a figure which shows a light distribution pattern.
- S indicates a horizontal line
- the light distribution pattern is indicated by a bold line.
- the region LA1 is the region with the highest luminous intensity, and the luminous intensity decreases in the order of the region LA2 and the region LA3.
- each diffraction grating 54R, 54G, 54B diffracts the light so that the combined light forms a light distribution pattern including the light intensity distribution of the low beam L.
- the light with a light intensity lower than the low beam L may be irradiated from the vehicle headlamp 1 above the position where the low beam L is irradiated. This light is used as a light OHS for visually recognizing a sign.
- the diffracted light emitted from each of the diffraction gratings 54R, 54G, and 54B includes the mark-observing light OHS.
- the light distribution pattern for night illumination is formed by the low beam L and the light OHS for visually recognizing the sign.
- the light distribution pattern for night illumination is not used only at night, but is also used in a dark place such as a tunnel.
- white reference light is incident from a light source on the hologram element of the vehicle headlamp disclosed in Patent Document 1, and a low beam light distribution pattern is formed by the diffracted light.
- white light is light obtained by combining light of a plurality of wavelengths.
- a hologram element which is a kind of diffraction grating has wavelength dependency. Accordingly, light of different wavelengths included in white tends to have different light distribution patterns depending on the hologram element. For this reason, when a low beam is irradiated by the vehicle headlamp described in Patent Document 1, blurring of light from which different colors of light emerge near the edge of the light distribution pattern of the low beam. For this reason, there is a request to suppress color bleeding while reducing the size.
- the vehicle headlamp 1 includes three first light-emitting optical systems 51R, second light-emitting optical systems 51G, and third light-emitting optical elements each having light sources 52R, 52G, and 52B and diffraction gratings 54R, 54G, and 54B.
- a system 51B and a synthesis optical system 55 that synthesizes light emitted from the respective light-emitting optical systems are provided.
- the light sources 52R, 52G, and 52B in the respective light emitting optical systems emit light having predetermined wavelengths different from each other, and the diffraction gratings 54R, 54G, and 54B in the respective light emitting optical systems are light synthesized by the combining optical system 55. Diffracts the light from each of the light sources 52R, 52G, and 52B so that the light distribution pattern of the low beam L becomes.
- the vehicle headlamp 1 of the present embodiment can form a light distribution pattern of the low beam L without using a shade, the vehicle headlamp 1 can be reduced in size as compared with a vehicle headlamp using a shade.
- light having a predetermined wavelength emitted from the light sources 52R, 52G, and 52B is individually diffracted by the diffraction gratings 54R, 54G, and 54B to form a light distribution pattern.
- the light diffracted by the diffraction gratings 54R, 54G, and 54B has a predetermined wavelength as described above.
- the diffraction gratings 54R, 54G, and 54B have wavelength dependence. Further, it is possible to suppress the occurrence of color bleeding near the edge of the light distribution pattern in the light emitted from each of the diffraction gratings 54R, 54G, and 54B.
- the light having the light distribution pattern in which the color blur is suppressed is combined by the combining optical system 55 to form the light distribution pattern of the low beam L. Therefore, the low beam L irradiated by the vehicle headlamp 1 according to the present embodiment can suppress color blurring in the vicinity of the edge of the light distribution pattern.
- light of a desired color is emitted by adjusting the luminous intensity of the light emitted from each light emitting optical system. Can do.
- the respective light emitted from the first light emitting optical system 51R, the second light emitting optical system 51G, and the third light emitting optical system 51B are combined by the combining optical system 55 and combined.
- the emitted light is emitted from the vehicle headlamp 1.
- emitted from each 1st light emission optical system 51R, 2nd light emission optical system 51G, and 3rd light emission optical system 51B is separately radiate
- the light emitted from each light emitting optical system is synthesized by the synthesis optical system 55 and then emitted from the vehicle headlamp, the light emission part of the vehicle headlamp 1 can be reduced, The degree of freedom in design can be improved.
- FIG. 20 is a view showing the optical system unit of the vehicle headlamp according to the present embodiment in the same manner as FIG.
- the optical system unit 50 of the vehicle headlamp according to the present embodiment does not include the combining optical system 55, and the first light emitting optical system 51R, the second light emitting optical system 51G, and the third light emitting optical system 51B.
- the optical system unit 50 of the ninth embodiment is different from the optical system unit 50 of the ninth embodiment in that the light emitted from the cover 59 is emitted from the cover 59 without being synthesized.
- the first light emitting optical system 51R, the second light emitting optical system 51G, and the third light emitting optical system 51B are configured such that the light emission direction is on the opening 59H side of the cover 59.
- each of the diffraction grating 54R of the first light emitting optical system 51R, the diffraction grating 54G of the second light emitting optical system 51G, and the diffraction grating 54B of the third light emitting optical system 51B is diffracted so that the combined light forms a low beam L light distribution pattern.
- the first light L R emitted from the diffraction grating 54R, the second light L G emitted from the diffraction grating 54G, and the third light L B emitted from the diffraction grating 54B are emitted from the opening 59H of the cover 59, respectively.
- the light is irradiated to the outside of the vehicle headlamp via the front cover 12.
- the first light L R , the second light L G , and the third light L B are such that the outer shapes of the respective light distribution patterns substantially coincide with each other at a focal position separated from the vehicle by a predetermined distance. Irradiated.
- This focal position is, for example, a position 25 m away from the vehicle. That is, in the present embodiment, the light emission directions of the first light emitting optical system 51R, the second light emitting optical system 51G, and the third light emitting optical system 51B are finely adjusted so that the outer shapes match as described above. Also in the present embodiment, as shown by a broken line in FIG.
- the light OHS for visually recognizing a sign may be emitted.
- the diffracted light emitted from the diffraction gratings 54R, 54G, and 54B includes the light OHS for visually recognizing the marker.
- the vehicle headlamp of the present embodiment since the combining optical system 55 of the ninth embodiment is not used, a simple configuration can be achieved.
- the outer shape of the first light L R of the present embodiment and the outline of the second light L G and the external shape of the third light L B is slightly shifted tendency to one another except in the focal position of the.
- the deviation of the outer shape can be suppressed. Therefore, according to the present embodiment as well, a vehicle headlamp capable of suppressing color bleeding while being downsized can be realized.
- the low beam L is emitted from the vehicle headlamp 1.
- the high beam H may be emitted from the vehicle headlamp 1.
- the region HA1 is a region having the highest luminous intensity
- the region HA2 is a region having a luminous intensity lower than that of the region HA1. That is, each diffraction grating diffracts the light so that the combined light forms a light distribution pattern including the luminous intensity distribution of the high beam H.
- the ninth, the tenth embodiment a first light emitting optical system for emitting a first light L R of the red component, a second light emitting optical system for emitting a second light L G of the green component, and a third light-emitting optical system for emitting a third light L B of the blue component.
- at least two light-emitting optical systems each have a light source that emits light of a predetermined wavelength different from each other, and the synthesized light is used for night illumination.
- the number of light-emitting optical systems and the light emitted from the light source are not limited.
- one light-emitting optical system may emit green light, and the other light-emitting optical system may emit red light to be yellow night illumination light, or
- One light-emitting optical system may emit blue light, and the other light-emitting optical system may emit yellow light, which may be white night illumination light.
- the number of light emitting optical systems may be three or more.
- a fourth light-emitting optical system that emits yellow component light of the low beam L may be provided.
- the fourth light-emitting optical system may emit light of the yellow component of the low beam L.
- the fourth light-emitting optical system may emit light having the same color component as that of the light having a low light intensity.
- a white balance adjustment circuit may be further provided.
- the white balance adjustment circuit includes a total light flux amount of light emitted from the light source 52R of the first light emission optical system 51R, a total light flux amount of light emitted from the light source 52G of the second light emission optical system 51G, and a third light emission optical system.
- a desired white balance can be achieved. For example, switching may be made so that warm white light is emitted or blue white light is emitted within a legal range.
- the first optical element 55f the first of the first by reflecting the second light L G with the light transmitted through the first light L R of the light L R and the second and of combining the light L G
- the second optical element 55s is reflected third light L B as well as transmitted through the first beam L R and the second light L G synthesized by the first optical element 55f first the light L R and the second light L G and the third light L B was synthesized by.
- the third light L B and synthesized in the first optical element 55f in the second optical element 55s a second light L G and the first light L R may be configured to be synthesized.
- the positions of the first light emitting optical system 51R and the third light emitting optical system 51B in the ninth embodiment are switched.
- a band pass filter that transmits light in a predetermined wavelength band and reflects light in other wavelength bands may be used for the first optical element 55f and the second optical element 55s.
- the combining optical system 55 may be combined by combining the outer shapes of the light emitted from the respective light emitting optical systems, and is not limited to the configuration of the ninth embodiment or the above configuration.
- a vehicular illumination lamp that is easy to drive, a vehicular headlamp that can suppress color bleeding while being miniaturized, and is used in the fields of vehicular illumination lamps such as automobiles. Is possible.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Optics & Photonics (AREA)
- General Physics & Mathematics (AREA)
- Non-Portable Lighting Devices Or Systems Thereof (AREA)
- Diffracting Gratings Or Hologram Optical Elements (AREA)
Abstract
車両用照明灯具の一形態である車両用前照灯(1)は、光源(52R,52G,52B)と、当該光源(52R,52G,52B)から入射する光を回折する回折格子(54R,54G,54B)とを備える。回折格子(54R,54G,54B)により回折される光は、所定の配光パターンで照射される。回折格子(54R,54G,54B)に入射する光のうち回折格子(54R,54G,54B)を直進して透過する成分(LCR,LCG,LCB)が投影される投影領域(AR)は、配光パターンよりも下側であり、車両の運転者の視界が前記車両により妨げられる範囲(RNG)内に位置する。
Description
本発明は、車両用照明灯具、及び車両用前照灯に関する。
自動車用ヘッドライトに代表される車両用前照灯は、夜間に前方を照らすためのロービームを少なくとも照射する構成とされている。このロービームの配光パターンを形成するために光源から出射する光の一部を遮蔽するシェードが用いられている。しかし、車両のデザインの多様化により、車両用前照灯に対して小型化の要請がある。
下記特許文献1には、シェードを用いずともロービームの配光パターンを形成し得る車両用前照灯が記載されている。この車両用前照灯は、ホログラム素子と、このホログラム素子に参照光を照射する光源とを備えている。ホログラム素子は、参照光が照射されることで再生される回折光がロービームの配光パターンを形成するように計算されている。この車両用前照灯は、この様にホログラム素子によりロービームの配光パターンを形成するため、シェードが不要であり、小型化が可能であるとされる。
本発明の車両用照明灯具は、光源と、前記光源から入射する光を回折する回折格子と、を備え、前記回折格子により回折される光は、所定の配光パターンで照射され、前記回折格子に入射する光のうち前記回折格子を直進して透過する成分が投影される投影領域は、前記配光パターンよりも下側であり、車両の運転者の視界が前記車両により妨げられる範囲内に位置することを特徴とするものである。
回折格子を直進して透過する成分は、上記の0次光に相当し、1次光以降の高次光の光度に比べ高い光度を有する。しかし、本発明の車両用照明灯具では、0次光に相当する成分が投影される投影領域は、車両の運転者の視界が車両により妨げられる範囲内に位置するため、当該成分に起因して運転者の注意喚起の能力が低下することを抑止できる。このため、0次光が自動車の運転者の視界にある場合に比べて運転し易くできる。
また、前記配光パターンは、ロービームの配光パターンであることとしても良い。この場合、本発明の車両用照明灯具では、回折格子により回折される光がロービームの配光パターンで照射されることで、シェードを用いずともロービームの配光パターンを形成することができる。このため、シェードを用いる車両用照明灯具に比べて小型化することができる。
また、前記配光パターンは、光度分布を有することとしても良い。この場合、配光パターンの中央部が明るく、当該中央部以外の周辺部が相対的に暗くなる光度分布とすれば、運転者にとって違和感のない自然な配光パターンにすることができる。
また、1つの前記光源と1つの前記回折格子とを含む発光光学系を複数有し、それぞれの前記発光光学系から出射する光を合成する合成光学系を更に備え、それぞれの前記発光光学系における前記光源は互いに異なる所定の波長の光を出射し、それぞれの前記発光光学系における前記回折格子は、前記合成光学系で合成された光がロービームの配光パターンとなるように前記光源からの光を回折することとしても良い。
この場合、それぞれの発光光学系において、光源から出射する所定の波長の光が回折格子により回折されて配光パターンが形成される。この際、それぞれの発光光学系において、回折格子により回折される光は上記のように所定の波長であるため、回折格子が波長依存性を有しても、それぞれの回折格子から出射する光における配光パターンの縁近傍で色のにじみが生じることを抑制することができる。この様に色のにじみが抑制された配光パターンを有する光が合成光学系で合成されてロービームの配光パターンが形成される。従って、本発明の車両用照明灯具により照射されるロービームは、配光パターンの縁近傍で色のにじみが出ることを抑制することができる。
また、それぞれの前記発光光学系における前記回折格子を直進して透過する成分は前記合成光学系で合成され、前記投影領域に投影されることとしても良い。この場合、上記のように回折格子が波長依存性を有しても、それぞれの回折格子を透過する成分を同色にすることができる。従って、車外の歩行者等が投影領域を無用に意識してしまうことを低減することができる。
また、本発明の車両用照明灯具は、光源と、前記光源から入射する光を回折する回折格子と、前記回折格子を直進して透過する光成分の投影領域と前記回折格子との間における前記光成分の光路上に配置され、光のエネルギー密度を下げる光学素子と、を備え、前記回折格子から出射される光のうち前記回折格子により回折される光は、所定の配光パターンで照射されることを特徴とするものである。
回折格子を直進して透過する光成分は、上記の0次光に相当し、回折格子により回折される光は、上記の高次回折光に相当する。このため、回折格子を直進して透過する光は、回折格子により回折される光の光度に比べ高い光度を有する傾向にある。しかし、本発明の車両用照明灯具の場合、この0次光に相当する光成分の投影領域と回折格子との間における光成分の光路上には、光のエネルギー密度を下げる光学素子が配置されている。従って、回折格子から出射される光のうち、回折格子により回折される光の光度よりも回折格子を直進して透過する光成分の光度が高くても、その光成分のエネルギー密度は光学素子により下げられる。このため、回折格子から出射される光のうち回折格子により回折される光による配光パターンよりも、当該回折格子を直進して透過する光成分の投影領域が際立って明るくなることを抑制することができる。こうして、本発明の車両用照明灯具は、上記の光学素子を備えていない場合に比べて運転し易くできる。
また、光のエネルギー密度を下げる光学素子を備える場合、前記光源及び前記回折格子を収容する筐体を備え、前記光学素子は、前記筐体内に配置されることとしても良い。この場合、0次光に相当する光成分が車外に出射することが低減される。従って、0次光に相当する光成分の投影領域が車外において際立って明るくなることを抑制することができ、この結果、運転者や歩行者等が投影領域を無用に意識してしまうことを抑制することができる。
また、光のエネルギー密度を下げる光学素子を備える場合、前記光学素子は、遮光素子であることとしても良く、光拡散素子であることとしても良い。このため本発明の車両用照明灯具では、当該車両用照明灯具が搭載される車種等に応じて、光学素子として遮光素子又は光拡散素子を選択し得る。
また、光のエネルギー密度を下げる光学素子を備える場合、前記投影領域は、前記配光パターンの外側に位置することとしても良い。この場合、配光パターン内に投影領域が位置する場合に比べて配光パターンの一部が際立って明るくなることを抑制することができ、この結果、より一段と運転し易くできる。
また、光のエネルギー密度を下げる光学素子を備える場合、前記配光パターンは、所定の光度分布を有し、前記投影領域は、前記配光パターンのうち、前記回折格子により回折される光の光度分布のなかで最も高い光度の半値以下の光度となる領域内に含まれることとしても良い。
この場合、回折格子により回折される光の光度分布のなかで最も高い光度の半値よりも高い領域に投影領域が含まれる場合に比べて、回折格子により回折される光の光度分布のなかで最も高い光度となる位置を基準として、配光パターンの光度分布を滑らかに形成し易くなる。
また、光のエネルギー密度を下げる光学素子を備える場合、1つの前記光源と1つの前記回折格子とを含む発光光学系を複数有し、それぞれの前記発光光学系から出射する光を合成する合成光学系を更に備え、それぞれの前記発光光学系における前記光源は互いに異なる所定の波長の光を出射し、それぞれの前記発光光学系における前記回折格子は、前記合成光学系で合成された光が前記配光パターンとなるように前記光源からの光を回折することとしても良い。
この場合、それぞれの発光光学系において、光源から出射する所定の波長の光が回折格子により回折されて配光パターンが形成される。この際、それぞれの発光光学系において、回折格子により回折される光は上記のように所定の波長であるため、回折格子が波長依存性を有しても、それぞれの回折格子から出射する光における配光パターンの縁近傍で色のにじみが生じることを抑制することができる。この様に色のにじみが抑制された配光パターンを有する光が合成光学系で合成されてロービームの配光パターンが形成される。従って、本発明の車両用照明灯具により照射されるロービームは、配光パターンの縁近傍で色のにじみが出ることを抑制することができる。
また、光のエネルギー密度を下げる光学素子を備える場合、それぞれの前記発光光学系における前記回折格子を直進して透過する光成分は前記合成光学系で合成され、前記光学素子は、前記合成光学系で合成された光成分のエネルギー密度を下げることとしても良い。
この場合、それぞれの発光光学系における回折格子を直進して透過する光成分が合成されない場合に比べると、光学素子に照射される光成分の照射領域を小さくできる。従って、回折格子から出射される光のうち回折格子により回折される光のエネルギー密度が光学素子で下げられることを抑制することができる。
また、本発明の車両用照明灯具は、光源と、前記光源から入射する光を回折する回折格子と、を備え、前記回折格子により回折される光と前記回折格子を直進して透過する光とで所定の光度分布を有する配光パターンが形成され、前記配光パターンのなかで前記回折格子を直進して透過する光の投影領域は、前記回折格子により回折される光の光度分布のなかで最も高い光度の半値よりも高い光度となる領域内に位置することを特徴とするものである。
回折格子を直進して透過する光は上記の0次光に相当し、回折格子により回折される光は上記の高次回折光に相当する。このため、回折格子を直進して透過する光は、回折格子により回折される光の光度に比べ高い光度を有する傾向にある。しかし、本発明の車両用照明灯具の場合、0次光に相当する光の投影領域は、高次回折光に相当する光の光度分布のなかで最も高い光度の半値よりも高い光度となる領域内に位置する。従って、0次光に相当する光が投影領域に照射されても、配光パターンのなかで投影領域が際立って明るくなることを抑制することができる。従って、本発明の車両用前照灯は、回折格子により回折される光の光度分布のなかで最も高い光度の半値よりも高い光度となる領域の外側に投影領域が配置される場合に比べて運転し易くできる。
また、0次光に相当する光の投影領域が、高次回折光に相当する光の光度分布のなかで最も高い光度の半値よりも高い光度となる領域内に位置する場合、前記投影領域は、前記光度分布のなかで最も高い光度となる部位を避けて位置することが好ましい。この場合、高次回折光に相当する光の光度分布のなかで最も高い光度となる部位が過度に明るくなることを抑制することができる。
また、0次光に相当する光の投影領域が、高次回折光に相当する光の光度分布のなかで最も高い光度の半値よりも高い光度となる領域内に位置する場合、前記領域は、ホットゾーンであることが好ましい。この場合、0次光に相当する光を配光パターンとして利用しつつも、当該配光パターンにおいて投影領域が際立って明るくなることを抑制し得る。
また、0次光に相当する光の投影領域が、高次回折光に相当する光の光度分布のなかで最も高い光度の半値よりも高い光度となる領域内に位置する場合、前記配光パターンは、ロービームの配光パターンであることとしても良い。
また、0次光に相当する光の投影領域が、高次回折光に相当する光の光度分布のなかで最も高い光度の半値よりも高い光度となる領域内に位置する場合、1つの前記光源と1つの前記回折格子とを含む発光光学系を複数有し、それぞれの前記発光光学系から出射する光を合成する合成光学系を更に備え、それぞれの前記発光光学系における前記光源は互いに異なる所定の波長の光を出射し、それぞれの前記発光光学系における前記回折格子は、前記合成光学系で合成された光が前記配光パターンとなるように前記光源からの光を出射することとしても良い。
この場合、それぞれの光源から出射する所定の波長の光が回折格子を通じて配光パターンが形成される。この際、それぞれの発光光学系において、回折格子により回折される光は所定の波長であるため、回折格子が波長依存性を有しても、それぞれの回折格子から出射する光における配光パターンの縁近傍で色のにじみが生じることを抑制することができる。この様に色のにじみが抑制された配光パターンを有する光が合成光学系で合成されて配光パターンが形成される。従って、配光パターンの縁近傍で色のにじみが出ることを抑制することができる。
また、0次光に相当する光の投影領域が、高次回折光に相当する光の光度分布のなかで最も高い光度の半値よりも高い光度となる領域内に位置する場合、それぞれの前記発光光学系における前記回折格子を直進して透過する成分は前記合成光学系で合成され、前記投影領域に照射されることとしても良い。この場合、上記のように回折格子が波長依存性を有しても、それぞれの回折格子を透過する0次光を白の同色にすることができる。従って、運転者が投影領域を無用に意識してしまうことを低減することができ、より一段と運転し易くできる。
また、本発明の車両用照明灯具は、光源と、前記光源から入射する光を回折する回折格子と、を備え、前記回折格子から出射される光は、所定の光度分布を有する配光パターンで照射され、前記配光パターンのうち前記回折格子を直進して透過する光の投影領域では、前記回折格子により回折され前記投影領域に照射される光の光度が前記投影領域の外側周縁に照射される光の光度よりも小さくされることを特徴とするものである。
回折格子を直進して透過する光は上記の0次光に相当し、回折格子により回折される光は上記の高次回折光に相当する。このため、回折格子を直進して透過する光は、回折格子により回折される光の光度に比べ高い光度を有する傾向にある。しかし、本発明の車両用照明灯具の場合、0次光に相当する光の投影領域では、高次回折光に相当する光の光度が投影領域の外側周縁に照射される光の光度よりも小さくされている。このため、投影領域に0次光に相当する光が照射されても、配光パターンのなかで投影領域が際立って明るくなることを低減することができる。従って、本発明の車両用照明灯具は、投影領域での高次回折光の光度がその投影領域の外側周縁に照射される光の光度以上である場合に比べて運転し易くできる。
また、0次光に相当する光の投影領域において、高次回折光に相当する光の光度が投影領域の外側周縁に照射される光の光度よりも小さくされている場合、前記回折格子により回折され前記投影領域に照射される光の光度と、前記回折格子を直進して透過し前記投影領域に照射される光の光度との合計値は、前記回折格子により回折される光の光度分布のなかで最も高い光度よりも低くされることとしても良い。
この場合、回折格子により回折される光の光度分布のなかで最も高い光度となる位置を基準として、配光パターンの光度分布を滑らかに形成し易くなる。
また、0次光に相当する光の投影領域において、高次回折光に相当する光の光度が投影領域の外側周縁に照射される光の光度よりも小さくされている場合、前記回折格子により回折され前記投影領域に照射される光の光度は、ゼロであることとしても良い。
この場合、0次光に相当する光の光度と高次回折光に相当する光の光度との差が大きい場合であっても、配光パターンのなかで投影領域が際立って明るくなることを低減し、当該配光パターン全体として滑らかな光度分布を形成し易くなる。
また、0次光に相当する光の投影領域において、高次回折光に相当する光の光度が投影領域の外側周縁に照射される光の光度よりも小さくされている場合、前記投影領域は、前記回折格子により回折される光の光度分布のなかで最も高い光度の半値よりも高い光度となる領域内に含まれることとしても良い。
この場合、回折格子により回折される光の光度分布のなかで最も高い光度の半値以下の領域に投影領域が含まれる場合に比べて、配光パターンのなかで投影領域が際立って明るくなることを低減することができる。
また、0次光に相当する光の投影領域において、高次回折光に相当する光の光度が投影領域の外側周縁に照射される光の光度よりも小さくされている場合、前記投影領域は、前記回折格子により回折される光の光度分布のなかで最も高い光度となる位置を含んでいることとしても良い。
この場合、0次光に相当する光の光度が大きいか否かにかかわらず、配光パターンのなかで最も明るい領域は概ね変化しなくなる。このため、回折格子により回折される光の光度分布のなかで最も高い光度となる位置を基準として、配光パターンの光度分布をより滑らかに形成し得る。
また、0次光に相当する光の投影領域において、高次回折光に相当する光の光度が投影領域の外側周縁に照射される光の光度よりも小さくされている場合、1つの前記光源と1つの前記回折格子とを含む発光光学系を複数有し、それぞれの前記発光光学系から出射する光を合成する合成光学系を更に備え、それぞれの前記発光光学系における前記光源は互いに異なる所定の波長の光を出射し、それぞれの前記発光光学系における前記回折格子は、前記合成光学系で合成された光が前記配光パターンとなるように前記光源からの光を出射することとしても良い。
この場合、それぞれの発光光学系において、光源から出射する所定の波長の光が回折格子により回折されて配光パターンが形成される。この際、それぞれの発光光学系において、回折格子により回折される光は上記のように所定の波長であるため、回折格子が波長依存性を有しても、それぞれの回折格子から出射する光における配光パターンの縁近傍で色のにじみが生じることを抑制することができる。この様に色のにじみが抑制された配光パターンを有する光が合成光学系で合成されて配光パターンが形成される。従って、本発明の車両用照明灯具により形成される配光パターンの縁近傍で色のにじみが出ることを抑制することができる。
また、0次光に相当する光の投影領域において、高次回折光に相当する光の光度が投影領域の外側周縁に照射される光の光度よりも小さくされている場合、それぞれの前記発光光学系における前記回折格子を直進して透過する成分は前記合成光学系で合成され、前記投影領域に照射されることとしても良い。この場合、上記のように回折格子が波長依存性を有しても、それぞれの回折格子を透過する成分を同色にすることができる。従って、運転者が投影領域を無用に意識してしまうことを低減することができ、より一段と運転し易くできる。
また、0次光に相当する光の投影領域において、高次回折光に相当する光の光度が投影領域の外側周縁に照射される光の光度よりも小さくされている場合、1つの前記光源と1つの前記回折格子とを含む発光光学系を複数有し、それぞれの前記発光光学系における前記光源は互いに異なる所定の波長の光を出射し、それぞれの前記発光光学系における前記回折格子は、車両から所定の距離離れた位置において前記配光パターンとなるように前記光源からの光を出射することとしても良い。
この場合、上記の合成光学系を用いないため、簡易な構成とすることができる。
また、本発明の車両用前照灯は、光源及び回折格子を有する少なくとも2つの発光光学系を備え、それぞれの前記発光光学系における前記光源は互いに異なる所定の波長の光を出射し、それぞれの前記発光光学系における前記回折格子は、それぞれの発光光学系から出射する光が合成された光が夜間照明用の配光パターンとなるように前記光源からの光を回折することを特徴とするものである。
この車両用前照灯は上記特許文献1に記載の車両用前照灯と同様にシェードを用いずともロービームの配光パターンを形成することができるため、上記特許文献1の車両用前照灯と同様にシェードを用いる車両用前照灯と比べて小型化することができる。また、それぞれの前記発光光学系において、光源から出射する所定の波長の光が回折格子により回折されて配光パターンが形成される。この際、それぞれの発光光学系において、回折格子により回折される光は上記のように所定の波長であるため、回折格子が波長依存性を有しても、それぞれの回折格子から出射する光における配光パターンの縁近傍で色のにじみが生じることを抑制することができる。この様に色のにじみが抑制された配光パターンを有する光が合成されてロービームやハイビームといった夜間照明用の配光パターンが形成される。従って、本発明の車両用前照灯により照射されるロービームは、上記特許文献1のように白色の光が回折格子で回折される場合と比べて、配光パターンの縁近傍で色のにじみが出ることを抑制することができる。なお、それぞれの発光光学系から出射する光の合成は、車両用前照灯内で行われても車両用前照灯外で行われてもよい。
また、光源及び回折格子を有する少なくとも2つの発光光学系を備える場合、前記発光光学系を少なくとも3つ備えることが好ましい。
この場合、三原色の光を用いることができる。従って、それぞれの発光光学系から出射する光の光度を調整することにより、所望の色の光を照射することができる。
また、光源及び回折格子を有する少なくとも2つの発光光学系を備える場合、それぞれの前記発光光学系から出射する光の外形を合わせて合成する合成光学系を更に備えることが好ましく、この場合、前記合成光学系は、少なくとも1つの波長選択フィルタを有し、前記波長選択フィルタは、当該波長選択フィルタを透過する光と、当該波長選択フィルタを反射する光とを合成することとしても良い。
この場合、それぞれの発光光学系から出射する光が合成光学系で合成されてから車両用前照灯から出射するため、車両からの距離によらず照射される配光パターンの縁近傍で色のにじみが出ることを更に抑制することができる。また、それぞれの発光光学系から出射する光が合成光学系で合成されてから車両用前照灯から出射するため、それぞれの発光光学系から出射する光が合成されずに車両用前照灯から出射して車両用前照灯外で合成される場合と比べて、合成された光が出射する車両用前照灯の出射部位を小さくすることができ、デザインの自由度を向上させることができる。
以下、本発明に係る車両用照明灯具、及び車両用前照灯を実施するための形態が添付図面とともに例示される。以下に例示する実施形態は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。本発明は、その趣旨を逸脱することなく、以下の実施形態から変更、改良することができる。
まず、本実施形態の車両用照明灯具の構成について説明する。
(第1実施形態)
図1は、本実施形態にかかる車両用前照灯を備える車両の概略を示す断面図である。本実施形態の車両用前照灯1は、筐体10と、灯具ユニット20とを備える。
図1は、本実施形態にかかる車両用前照灯を備える車両の概略を示す断面図である。本実施形態の車両用前照灯1は、筐体10と、灯具ユニット20とを備える。
筐体10は、ランプハウジング11、フロントカバー12及びバックカバー13を主な構成要素として備える。ランプハウジング11の前方は開口しており、当該開口を塞ぐようにフロントカバー12がランプハウジング11に固定されている。また、ランプハウジング11の後方には前方よりも小さな開口が形成されており、当該開口を塞ぐようにバックカバー13がランプハウジング11に固定されている。
ランプハウジング11と、当該ランプハウジング11の前方の開口を塞ぐフロントカバー12と、当該ランプハウジング11の後方の開口を塞ぐバックカバー13とによって形成される空間は灯室Rであり、この灯室R内に灯具ユニット20が収容されている。
灯具ユニット20は、ヒートシンク30と、冷却ファン40と、光学系ユニット50とを主な構成要素として備える。なお、灯具ユニット20は、不図示の構成により筐体10に固定されている。
ヒートシンク30は、概ね水平方向に延在する金属製のベース板31を有し、当該ベース板31の下方の面側には複数の放熱フィン32がベース板31と一体に設けられている。冷却ファン40は放熱フィン32と隙間を隔てて配置され、ヒートシンク30に固定されている。この冷却ファン40の回転による気流によりヒートシンク30は冷却される。
ヒートシンク30におけるベース板31の上面には光学系ユニット50が配置されている。光学系ユニット50は、第1発光光学系51Rと、第2発光光学系51Gと、第3発光光学系51Bと、合成光学系55と、カバー59とを備える。
図2は、図1の車両用前照灯の光学系ユニットの拡大図である。図2に示すように、第1発光光学系51Rは、光源52Rと、コリメートレンズ53Rと、回折格子54Rとを備える。光源52Rは、所定の波長のレーザ光を出射するレーザ素子とされ、本実施形態では、パワーのピーク波長が例えば638nmの赤色のレーザ光を出射する。また、光学系ユニット50は、不図示の回路基板を有しており、光源52Rは当該回路基板に実装されている。この回路基板を介して光源52Rに電力が供給される。
コリメートレンズ53Rは、光源52Rから出射するレーザ光のファスト軸方向、スロー軸方向をコリメートするレンズである。レーザ光のファスト軸方向をコリメートするコリメートレンズとスロー軸方向をコリメートするコリメートレンズとが個別に設けられていても良い。
回折格子54Rは、コリメートレンズ53Rから出射するレーザ光を所定の配光パターンとなるように出射する。具体的には、回折格子54Rは、後述の合成光学系55において、第1発光光学系51Rと第2発光光学系51Gと第3発光光学系51Bとのそれぞれから出射する光がロービームLの配光パターンとなるようにコリメートレンズ53Rから入射するレーザ光を回折する。この配光パターンには光度分布も含まれる。このため、本実施形態の回折格子54Rは、回折格子54Rから出射するレーザ光がロービームLの配光パターンの外形と同じ外形になると共にロービームLの配光パターンの光度分布に基づいた光度分布となるように、コリメートレンズ53Rから入射するレーザ光を回折する。
この回折格子54Rにより回折される光は1次以上の次数を有する高次回折光であり、当該高次回折光の他に、回折格子54Rを回折することなく直進して透過する0次光が回折格子54Rから出射する。つまり、回折格子54Rから出射する光は、回折格子54Rにより回折される光成分である高次回折光と、当該回折格子54Rを直進して透過する光成分である0次光とを含む。本実施形態では、後述の合成光学系55から出射する0次光ビームLCの投影領域がロービームLの配光パターンよりも下側の所定の範囲内に位置するように、回折格子54Rを直進して透過する0次光が回折格子54Rから出射する。例えば、回折格子54Rは、回折格子54Rを直進する0次光の方向よりも上側にずれた状態で高次回折光が出射するように、コリメートレンズ53Rから入射するレーザ光を回折すればよい。
こうして、第1発光光学系51Rからは、ロービームLのうちの赤色成分の高次回折光が出射すると共に、0次光ビームLCのうちの赤色成分の0次光が出射する。本実施形態では、第1発光光学系51Rから出射する赤色成分の高次回折光を第1の光LRとし、当該赤色成分の0次光を第1の0次光LCRとする。
第2発光光学系51Gは、光源52Gと、コリメートレンズ53Gと、回折格子54Gとを備え、第3発光光学系51Bは、光源52Bと、コリメートレンズ53Bと、回折格子54Bとを備える。光源52G,52Bは、それぞれ所定の波長のレーザ光を出射するレーザ素子とされ、本実施形態では、光源52Gはパワーのピーク波長が例えば515nmの緑色のレーザ光を出射し、光源52Bはパワーのピーク波長が例えば445nmの青色のレーザ光を出射する。また、光源52G,52Bはそれぞれ上記回路基板に実装されており、当該回路基板を介して光源52G,52Bに電力が供給される。
コリメートレンズ53Gは、光源52Gから出射するレーザ光のファスト軸方向、スロー軸方向をコリメートするレンズであり、コリメートレンズ53Bは、光源52Bから出射するレーザ光のファスト軸方向、スロー軸方向をコリメートするレンズである。これらコリメートレンズ53G,53Bにおいて、コリメートレンズ53Rと同様にして、レーザ光のファスト軸方向をコリメートするコリメートレンズとスロー軸方向をコリメートするコリメートレンズとが個別に設けられていても良い。
回折格子54Gは、コリメートレンズ53Gから出射するレーザ光を所定の配光パターンとなるように出射し、回折格子54Bは、コリメートレンズ53Bから出射するレーザ光を所定の配光パターンとなるように出射する。具体的には、回折格子54G,54Bは、合成光学系55において、第1発光光学系51Rと第2発光光学系51Gと第3発光光学系51Bとのそれぞれから出射する光がロービームLの配光パターンとなるようにコリメートレンズ53G,53Bから入射するレーザ光をそれぞれ回折する。上記のように配光パターンには光度分布も含まれる。このため、本実施形態の回折格子54G,54Bは、回折格子54G,54Bから出射するそれぞれのレーザ光がロービームLの配光パターンの外形と同じ外形になると共にロービームLの配光パターンの光度分布に基づいた光度分布となるように、コリメートレンズ53G,53Bから入射するレーザ光をそれぞれ回折する。
この回折格子54Gにより回折される光は1次以上の次数を有する高次回折光であり、当該高次回折光の他に、回折格子54Gを回折することなく直進して透過する0次光が回折格子54Gから出射する。つまり、回折格子54Gから出射する光は、回折格子54Gにより回折される光成分である高次回折光と、当該回折格子54Gを直進して透過する光成分である0次光とを含む。本実施形態では、後述の合成光学系55から出射する0次光ビームLCの投影領域がロービームLの配光パターンよりも下側の所定の範囲内に位置するように、回折格子54Gを直進して透過する0次光が回折格子54Gから出射する。例えば、回折格子54Gは、回折格子54Gを直進する0次光の方向よりも上側にずれた状態で高次回折光が出射するように、コリメートレンズ53Gから入射するレーザ光を回折すればよい。
同様に、この回折格子54Bにより回折される光は1次以上の次数を有する高次回折光であり、当該高次回折光の他に、回折格子54Bを回折することなく直進して透過する0次光が回折格子54Bから出射する。つまり、回折格子54Bから出射する光は、回折格子54Gにより回折される光成分である高次回折光と、当該回折格子54Bを直進して透過する光成分である0次光とを含む。本実施形態では、後述の合成光学系55から出射する0次光ビームLCの投影領域がロービームLの配光パターンよりも下側の所定の範囲内に位置するように、回折格子54Bを直進して透過する0次光が回折格子54Bから出射する。例えば、回折格子54Bは、回折格子54Bを直進する0次光の方向よりも上側にずれた状態で高次回折光が出射するように、コリメートレンズ53Bから入射するレーザ光を回折すればよい。
こうして、第2発光光学系51GからはロービームLのうちの緑色成分の高次回折光が出射すると共に、0次光ビームLCのうちの緑色成分の0次光が出射する。また、第3発光光学系51BからはロービームLのうちの青色成分の高次回折光が出射すると共に、0次光ビームLCのうちの青色成分の0次光が出射する。本実施形態では、第2発光光学系51Gから出射する緑色成分の高次回折光を第2の光LGとし、当該緑色成分の0次光を第2の0次光LCGとし、第3発光光学系51Bから出射する青色成分の高次回折光を第3の光LBとし、当該青色成分の0次光を第3の0次光LCBとする。従って、本実施形態では、第1の光LRが最も波長が長く、第2の光LG、第3の光LBの順に波長が短くなる。同様に、第1の0次光LCRが最も波長が長く、第2の0次光LCG、第3の0次光LCBの順に波長が短くなる。
なお、上記のロービームLの配光パターンの光度分布に基づいた光度分布とは、ロービームLの配光パターンにおける光度が高い部位では、回折格子54R,54G,54Bから出射するそれぞれの光の光度も高いという意味である。
合成光学系55は、第1光学素子55fと第2光学素子55sとを有する。第1光学素子55fは、第1発光光学系51Rから出射する第1の光LRと、第2発光光学系51Gから出射する第2の光LGとを合成する光学素子である。また第1光学素子55fは、第1発光光学系51Rから出射する第1の0次光LCRと、第2発光光学系51Gから出射する第2の0次光LCGとを合成する光学素子でもある。本実施形態では、第1光学素子55fは、第1の光LRを透過すると共に第2の光LGを反射することで第1の光LRと第2の光LGとを合成し、第1の0次光LCRを透過すると共に第2の0次光LCGを反射することで第1の0次光LCRと第2の0次光LCGとを合成する。
第2光学素子55sは、第1光学素子55fで合成された第1の光LR及び第2の光LGと、第3発光光学系51Bから出射する第3の光LBとを合成する光学素子である。また第2光学素子55sは、第1光学素子55fで合成された第1の0次光LCR及び第2の0次光LCGと、第3発光光学系51Bから出射する第3の0次光LCBとを合成する光学素子でもある。本実施形態では、第2光学素子55sは、第1光学素子55fで合成された第1の光LR及び第2の光LGを透過すると共に第3の光LBを反射することで第1の光LRと第2の光LGと第3の光LBとを合成する。また、第2光学素子55sは、第1光学素子55fで合成された第1の0次光LCR及び第2の0次光LCGを透過すると共に第3の0次光LCBを反射することで第1の0次光LCRと第2の0次光LCGと第3の0次光LCBとを合成する。
この様な第1光学素子55f、第2光学素子55sとしては、ガラス基板上に酸化膜が積層された波長選択フィルタを挙げることができる。この酸化膜の種類や厚みをコントロールすることで、所定の波長よりも長い波長の光を透過し、この波長よりも短い波長の光を反射する構成とすることができる。
こうして、合成光学系55からは、第1の光LRと第2の光LGと第3の光LBとが合成されることでロービームLが出射し、第1の0次光LCRと第2の0次光LCGと第3の0次光LCBとが合成されることで0次光ビームLCが出射する。
カバー59は、ヒートシンク30のベース板31上に固定されている。カバー59は概ね矩形の形状をしており、例えばアルミニウム等の金属から成る。カバー59の内側の空間には、上記の第1発光光学系51R、第2発光光学系51G、第3発光光学系51B、合成光学系55が配置されている。また、カバー59の前方には合成光学系55から出射する光が透過可能な開口59Hが形成されている。なお、カバー59の内壁は、黒アルマイト加工等による光吸収性とされることが好ましい。カバー59の内壁が光吸収性とされることで、意図しない反射や屈折等によりカバー59の内壁に照射された光が反射して開口59Hから意図しない方向に出射することを抑制することができる。
次に本実施形態の車両用前照灯1による光の出射について説明する。
まず不図示の電源から電力が供給されることで、それぞれの光源52R,52G,52Bからレーザ光が出射する。上記のように光源52Rからは赤色のレーザ光が出射し、光源52Gからは緑色のレーザ光が出射し、光源52Bからは青色のレーザ光が出射する。それぞれのレーザ光は、コリメートレンズ53R,53G,53Bでコリメートされた後、回折格子54R,54G,54Bに入射する。そして、上記のように回折格子54R,54G,54Bでそれぞれのレーザ光が回折されて、第1発光光学系51RからはロービームLの配光パターンの赤色成分の光である第1の光LRが出射し、第2発光光学系51GからはロービームLの配光パターンの緑色成分の光である第2の光LGが出射し、第3発光光学系51BからはロービームLの配光パターンの青色成分の光である第3の光LBが出射する。また、上記のように回折格子54R,54G,54Bをそれぞれ直進して透過する0次光として、赤色成分の0次光である第1の0次光LCRが第1発光光学系51Rから出射し、緑色成分の0次光である第2の0次光LCGが第2発光光学系51Gから出射し、青色成分の0次光である第3の0次光LCBが第3発光光学系51Bから出射する。
合成光学系55では、まず、第1の光LRと第2の光LGが第1光学素子55fで合成されて出射すると共に、第1の0次光LCRと第2の0次光LCGが第1光学素子55fで合成されて出射する。第1光学素子55fで合成された第1の光LR及び第2の光LGは第2光学素子55sで第3の光LBと合成され、第1光学素子55fで合成された第1の0次光LCRと第2の0次光LCGは第2光学素子55sで第3の0次光LCBと合成される。このとき、それぞれの光LR,LG,LBは外形がロービームLの外形と同様にされているため、それぞれの光LR,LG,LBの外形が互いに一致されて合成される。また、それぞれの0次光LCR,LCG,LCBの外形も同様にされているため、それぞれの0次光LCR,LCG,LCBの外形が互いに一致されて合成される。つまり、第1の光LRの外形と第2の光LGの外形と第3の光LBの外形、及び、第1の0次光LCRの外形と第2の0次光LCGの外形と第3の0次光LCBの外形が、上記のように合成光学系で合わさるように、各発光光学系や合成光学系の位置が微調整されている。
こうして、赤色の第1の光LRと緑色の第2の光LGと青色の第3の光LBとが合成された光は白色の光となる。また、赤色の第1の0次光LCRと緑色の第2の0次光LCGと青色の第3の0次光LCBとが合成された光は白色の0次光となる。なお、第1の光LR、第2の光LG及び第3の光LBは、上記のようにそれぞれロービームLの配光パターンの光度分布に基づいた光度分布であるため、これらの光が合成された白色の光はロービームLの光度分布となる。
こうして、合成された白色の光は、カバー59の開口59Hから出射し、この光はフロントカバー12を介して車両用前照灯1から車両の前方に出射する。この光はロービームLの配光パターンを有しているため、照射される光はロービームLとなる。
図3は本実施形態におけるロービームLの配光パターンを示す図である。図3においてSは水平線を示し、配光パターンが太線で示される。このロービームLの配光パターンPTNLのうち、領域LA1は最も光度が高い領域であり、領域LA2、領域LA3の順に光度が低くなる。つまり、それぞれの回折格子54R,54G,54Bは、合成された光がロービームLの光度分布を含む配光パターンを形成するように光を回折する。
また、合成された白色の0次光は、カバー59の開口59Hから出射し、この光はフロントカバー12を介して車両用前照灯1から車両の前方下側に出射し、ロービームLの配光パターンの下側の投影領域に投影される。
図4は、0次光の投影領域を示す図である。図4に示すように、本実施形態の投影領域ARは、自動車の運転者の視界がその車両のボンネットにより妨げられる範囲RNG内に位置する。つまり、投影領域ARは、自動車の運転者の死角となる範囲RNG内に位置している。なお、自動車の運転者の死角となる範囲RNGのうち、0次光の投影領域AR以外の領域の路面照度は、概ね5ルクス以下とされる。
ところで、上記特許文献1における車両用前照灯のホログラム素子は、ロービームの配光パターンの形成用となる1次光が車両前方に照射され、そのロービームの配光パターン以外の前方に向けて0次光が照射されるように、計算されている。このため、上記特許文献1における車両用前照灯では、0次光がグレアの原因となる可能性を防止し得るとされる。0次光は、1次以上の次数を有する高次回折光の光度に比べ高い光度を有する傾向にある。しかし、上記特許文献1における車両用前照灯では、ホログラム素子から出射する0次光がロービームの配光パターン以外ではあるが車両前方に向けて0次光が照射されている。このため、運転をより容易にしたいとの要請がある。
そこで、本実施形態の車両用前照灯1は、光源52R,52G,52Bと、光源52R,52G,52Bから入射する光を回折する回折格子54R,54G,54Bと、を備える。
この回折格子54R,54G,54Bに入射する光のうち回折格子54R,54G,54Bを直進して透過する成分である0次光が投影される投影領域ARは、当該回折格子54R,54G,54Bにより回折され照射される配光パターンよりも下側である。これに加えて投影領域ARは、自動車の運転者の視界がその自動車により妨げられる範囲RNG内に位置する。
従って、本実施形態の車両用前照灯1は、1次光以降の高次光の光度に比べ高い光度を有する0次光に起因して運転者の注意喚起の能力が低下することを抑止できる。このため本実施形態の車両用前照灯1は、0次光が自動車の運転者の視界にある場合に比べて運転し易くできる。
なお、回折格子54R,54G,54Bにより回折される光は、本実施形態では、ロービームLの配光パターンで照射される。このロービームLの配光パターンPTNLは、図3に示すように、配光パターンPTNLの中央部が明るく、当該中央部以外の周辺部が相対的に暗くなる光度分布であるため、運転者に対し違和感のない自然な配光パターンを照射し得る。
従って、本実施形態の車両用前照灯1はシェードを用いずともロービームLの配光パターンPTNLを形成することができるため、シェードを用いる車両用前照灯と比べて小型化することができる。
また、本実施形態の車両用前照灯1は、1つの光源と1つの回折格子とを含む発光光学系を複数有する。すなわち、車両用前照灯1は、1つの光源52Rと1つの回折格子54Rとを含む第1発光光学系51Rと、1つの光源52Gと1つの回折格子54Gとを含む第2発光光学系51Gと、1つの光源52Bと1つの回折格子54Bとを含む第3発光光学系51Bとを有する。これに加えて本実施形態の車両用前照灯1は、それぞれの発光光学系51R,51G,51Bから出射する光を合成する合成光学系55を更に備える。そして、それぞれの光源52R,52G,52Bは互いに異なる所定の波長の光を出射し、それぞれの回折格子54R,54G,54Bは合成光学系55で合成された光がロービームLの配光パターンPTNLとなるように光源52R,52G,52Bからの光を回折する。
この場合、それぞれの光源52R,52G,52Bから出射する所定の波長の光が回折格子54R,54G,54Bにより回折されて配光パターンPTNLが形成される。この際、それぞれの発光光学系51R,51G,51Bにおいて、回折格子54R,54G,54Bにより回折される光は所定の波長であるため、回折格子54R,54G,54Bが波長依存性を有しても、それぞれの回折格子54R,54G,54Bから出射する光における配光パターンPTNLの縁近傍で色のにじみが生じることを抑制することができる。この様に色のにじみが抑制された配光パターンを有する光が合成光学系55で合成されてロービームLの配光パターンPTNLが形成される。従って、本実施形態の車両用前照灯1により照射されるロービームLは、配光パターンPTNLの縁近傍で色のにじみが出ることを抑制することができる。
また、本実施形態の車両用前照灯1では、それぞれの回折格子54R,54G,54Bを直進して透過する0次光LCR,LCG,LCBは合成光学系55で合成され、投影領域ARに投影される。この場合、上記のように回折格子54R,54G,54Bが波長依存性を有しても、それぞれの回折格子54R,54G,54Bを透過する0次光LCR,LCG,LCBを白の同色にすることができる。従って、本実施形態の車両用前照灯1では、車外の歩行者等が投影領域ARを無用に意識してしまうことを低減することができる。
(第2実施形態)
次に、本発明の第2実施形態について図5を参照して詳細に説明する。なお、第1実施形態と同一又は同等の構成要素については、特に説明する場合を除き、同一の参照符号を付して重複する説明は省略する。
次に、本発明の第2実施形態について図5を参照して詳細に説明する。なお、第1実施形態と同一又は同等の構成要素については、特に説明する場合を除き、同一の参照符号を付して重複する説明は省略する。
図5は、本実施形態にかかる車両用前照灯の光学系ユニットを図2と同様に示す図である。図5に示すように本実施形態の車両用前照灯の光学系ユニット50は、合成光学系55を備えず、第1発光光学系51R、第2発光光学系51G、第3発光光学系51Bから出射するそれぞれの光が合成されない状態で、カバー59から出射する点において、第1実施形態の光学系ユニット50と異なる。本実施形態では、第1発光光学系51R、第2発光光学系51G、第3発光光学系51Bは、光の出射方向がカバー59の開口59H側とされている。
本実施形態においても、第1実施形態と同様にして、第1発光光学系51Rの回折格子54R、第2発光光学系51Gの回折格子54G、第3発光光学系51Bの回折格子54Bのそれぞれにおいて、合成された光がロービームLの配光パターンを形成するように光を出射する。
すなわち、回折格子54Rから出射する第1の光LR、回折格子54Gから出射する第2の光LG、及び、回折格子54Bから出射する第3の光LBは、それぞれカバー59の開口59Hから出射し、フロントカバー12を介して車両用前照灯の外部に照射される。また、回折格子54Rから出射する第1の0次光LCR、回折格子54Gから出射する第2の0次光LCG、及び、回折格子54Bから出射する第3の0次光LCBは、それぞれカバー59の開口59Hから出射し、フロントカバー12を介して車両用前照灯の外部に照射される。このとき、第1の光LR、第2の光LG及び第3の光LBは、車両から所定の距離離れた焦点位置においてそれぞれの配光パターンの外形が概ね一致するように照射される。この車両からの距離は、例えば25mとされる。また、第1の0次光LCR、第2の0次光LCG及び第3の0次光LCBは、自動車の運転者の死角となる範囲RNG内においてそれぞれの配光パターンの外形が概ね一致するように照射される。つまり、本実施形態では、上記のように外形が一致するように、第1発光光学系51R、第2発光光学系51G、第3発光光学系51Bの光の出射方向が微調整されている。
本実施形態の車両用前照灯によれば、第1実施形態の合成光学系55を用いないため、簡易な構成とすることができる。また本実施形態の車両用前照灯1によれば、第1実施形態と同様に、1次光以降の高次光の光度に比べ高い光度を有する0次光を自動車の運転者の死角となる範囲RNG内に照射するため、運転者の注意喚起の能力が低下することを抑止できる。なお、本実施形態の第1の光LRの外形と第2の光LGの外形と第3の光LBの外形、及び、第1の0次光LCRの外形と第2の0次光LCGの外形と第3の0次光LCBの外形とは、上記の焦点位置以外では互いに僅かにずれる傾向にある。しかし、白色の光を1つの回折格子に入射して得られる光と比べると、この外形のずれを抑制することができる。従って、本実施形態によっても、小型化しつつ色のにじみを抑制し得る車両用前照灯が実現され得る。
なお、上記第1、第2実施形態では、赤色成分の第1の光LRを出射する第1発光光学系と、緑色成分の第2の光LGを出射する第2発光光学系と、青色成分の第3の光LBを出射する第3発光光学系とを備えた。しかし、上記第1、第2実施形態では、3つの発光光学系がそれぞれ有する光源から出射する光は、それぞれ互いに異なる所定の波長であれば、赤色、緑色、青色に限らない。
また、発光光学系は1つ又は2つであっても良い。さらに、発光光学系は3つ以上であっても良い。この場合、例えば、ロービームLの黄色成分の光を出射する第4発光光学系を備えても良い。この場合、上記の赤色、緑色、青色の発光光学系に加えて、第4発光光学系は、ロービームLの黄色成分の光を出射するものとしても良い。また、赤色、緑色、青色の一部の光度が低い場合、第4発光光学系が光度の低い色と同じ色成分の光を出射するものとしても良い。
また、上記第1、第2実施形態では、ホワイトバランス調整回路が更に設けられても良い。このホワイトバランス調整回路は、第1発光光学系51Rの光源52Rから出射する光の全光束量と、第2発光光学系51Gの光源52Gから出射する光の全光束量と、第3発光光学系51Bの光源52Bから出射する光の全光束量と、を制御することで、所望のホワイトバランスとすることができる。例えば、法規の範囲内で、暖色系の白色の光を出射したり、青色系の白色の光を出射するように、切り換えが可能にしても良い。
また、上記第1実施形態では、第1光学素子55fは、第1の光を第1の光LRを透過すると共に第2の光LGを反射することで第1の光LRと第2の光LGとを合成し、第2光学素子55sは、第1光学素子55fで合成された第1の光LR及び第2の光LGを透過すると共に第3の光LBを反射することで第1の光LRと第2の光LGと第3の光LBとを合成した。しかし、例えば、第1光学素子55fにおいて第3の光LBと第2の光LGとが合成され、第2光学素子55sにおいて第1光学素子55fで合成された第3の光LB及び第2の光LGと第1の光LRとが合成される構成とされても良い。この場合、上記第1実施形態の第1発光光学系51Rと第3発光光学系51Bとの位置が入れ替わる。またこの場合、第1光学素子55fにおいて第3の0次光LCBと第2の0次光LCGとが合成され、第2光学素子55sにおいて第1光学素子55fで合成された第3の0次光LCB及び第2の0次光LCGと第1の0次光LCRとが合成される構成とされる。また、上記第1実施形態において、所定の波長帯域の光を透過し、他の波長帯域の光を反射するバンドパスフィルタが第1光学素子55fや第2光学素子55sに用いられても良い。また、合成光学系55は、それぞれの発光光学系から出射する光の外形を合わせて合成すれば良く、上記第1実施形態に限定されない。
また、上記第1実施形態では、それぞれの回折格子54R,54G,54Bを直進して透過する0次光LCR,LCG,LCBは合成光学系55で合成され、投影領域ARに投影された。しかし、0次光LCR,LCG,LCBは合成光学系55で合成されず、自動車の運転者の死角となる範囲RNG内における別々の領域に投影されても良い。但し、上記のように、車外の歩行者等が投影領域ARを無用に意識してしまうことを低減する場合には、それぞれの回折格子54R,54G,54Bを直進して透過する0次光LCR,LCG,LCBは合成光学系55で合成され、投影領域ARに投影されることが好ましい。
また、上記第1、第2実施形態では、暗所照明用の配光パターンとしてロービームLの配光パターンが形成された。しかし、暗所照明用の配光パターンであれば、ロービームLの配光パターンだけに限定されない。なお、暗所照明用の配光パターンは、夜間や、トンネル等の暗所において用いられる。例えば、ロービームLの配光パターンと、その配光パターンの外側の例えば上方に位置する標識視認用の光の配光パターンとが暗所照明用の配光パターンとして形成される場合がある。この場合、それぞれの回折格子54R,54G,54Bにより回折される高次回折光に当該標識視認用の光が含まれていることが好ましい。また例えば、ハイビームの配光パターンが暗所照明用の配光パターンとして形成される場合がある。
また、上記第1、第2実施形態では、車両用前照灯1として自動車の前照灯が例示された。しかし、上記第1、第2実施形態は、自動車の前照灯に限らず他の車両の前照灯とされてもよい。また、上記第1、第2実施形態は、前照灯に限らず、後照灯、尾灯、制動灯、表示灯などの灯具であってもよい。
要するに、上記第1、第2実施形態に例示される本発明は次のような車両用照明灯具であればよい。すなわち、車両用照明灯具は、光源と、光源から入射する光を回折する回折格子とを備える。この回折格子により回折される光は所定の配光パターンで照射され、当該回折格子に入射する光のうち、回折格子を直進して透過する成分が投影される投影領域は、配光パターンよりも下側であり、車両の運転者の視界が、車両により妨げられる範囲内に位置する。このような車両用照明灯具であれば、運転し易くできる。
(第3実施形態)
次に、本発明の第3実施形態について説明する。なお、上記第1実施形態と同一又は同等の構成要素については、特に説明する場合を除き、同一の参照符号を付して重複する説明は省略する。図6は、本実施形態にかかる車両用前照灯を備える車両の概略を示す断面図である。図6に示すように、本実施形態における車両用前照灯1は、光学素子60を備える点において異なる。
次に、本発明の第3実施形態について説明する。なお、上記第1実施形態と同一又は同等の構成要素については、特に説明する場合を除き、同一の参照符号を付して重複する説明は省略する。図6は、本実施形態にかかる車両用前照灯を備える車両の概略を示す断面図である。図6に示すように、本実施形態における車両用前照灯1は、光学素子60を備える点において異なる。
本実施形態の光学系ユニット50は、第1発光光学系51Rと、第2発光光学系51Gと、第3発光光学系51Bと、合成光学系55と、カバー59と、光学素子60とを備える。
光学素子60は、光のエネルギー密度を下げる光学素子とされる。光学素子60として、例えば、遮光素子や、光拡散素子が挙げられる。遮光素子の具体例としては、アルミニウム等の金属板に黒アルマイト加工を施したものや、カーボンブラック等の遮光材料と基材とを成型したもの等が挙げられる。光拡散素子の具体例としては、光を拡散又は散乱させるレンズやシート等が挙げられる。
このような光学素子60は、0次光ビームLCの投影領域と回折格子54R,54G,54Bとの間における0次光ビームLCの光路上に配置される。本実施形態の光学素子60は、筐体10内に配置される。図6に示す例では、光学素子60は、フロントカバー12の灯室R側の面上に配置され、当該光学素子60と光学素子60に最も近い回折格子54Bとの間における光路の距離は、例えば100mmとされる。
次に本実施形態の車両用前照灯1による光の出射について説明する。
上記第1実施形態と同様に、まず不図示の電源から電力が供給されることで、それぞれの光源52R,52G,52Bからレーザ光が出射する。上記のように光源52Rからは赤色のレーザ光が出射し、光源52Gからは緑色のレーザ光が出射し、光源52Bからは青色のレーザ光が出射する。それぞれのレーザ光は、コリメートレンズ53R,53G,53Bでコリメートされた後、回折格子54R,54G,54Bに入射する。そして、上記のように回折格子54R,54G,54Bでそれぞれのレーザ光が回折されて、第1発光光学系51RからはロービームLの配光パターンの赤色成分の光である第1の光LRが出射し、第2発光光学系51GからはロービームLの配光パターンの緑色成分の光である第2の光LGが出射し、第3発光光学系51BからはロービームLの配光パターンの青色成分の光である第3の光LBが出射する。また、上記のように回折格子54R,54G,54Bをそれぞれ直進して透過する0次光として、赤色成分の0次光である第1の0次光LCRが第1発光光学系51Rから出射し、緑色成分の0次光である第2の0次光LCGが第2発光光学系51Gから出射し、青色成分の0次光である第3の0次光LCBが第3発光光学系51Bから出射する。
合成光学系55では、まず、第1の光LRと第2の光LGが第1光学素子55fで合成されて出射すると共に、第1の0次光LCRと第2の0次光LCGが第1光学素子55fで合成されて出射する。第1光学素子55fで合成された第1の光LR及び第2の光LGは第2光学素子55sで第3の光LBと合成され、第1光学素子55fで合成された第1の0次光LCRと第2の0次光LCGは第2光学素子55sで第3の0次光LCBと合成される。このとき、それぞれの光LR,LG,LBは外形がロービームLの外形と同様にされているため、それぞれの光LR,LG,LBの外形が互いに一致されて合成される。また、それぞれの0次光LCR,LCG,LCBの外形も同様にされているため、それぞれの0次光LCR,LCG,LCBの外形が互いに一致されて合成される。つまり、第1の光LRの外形と第2の光LGの外形と第3の光LBの外形、及び、第1の0次光LCRの外形と第2の0次光LCGの外形と第3の0次光LCBの外形が、上記のように合成光学系で合わさるように、各発光光学系や合成光学系の位置が微調整されている。
こうして、赤色の第1の光LRと緑色の第2の光LGと青色の第3の光LBとが合成された光は白色となり、当該白色の光が合成光学系55からロービームLとして出射する。また、赤色の第1の0次光LCRと緑色の第2の0次光LCGと青色の第3の0次光LCBとが合成された光は白色となり、当該白色の光が合成光学系55から0次光ビームLCとして出射する。
合成光学系55から出射する0次光ビームLCは、カバー59の開口59Hから出射し、フロントカバー12の灯室R側の面に取り付けられる光学素子60に照射され、当該光学素子60により0次光ビームLCのエネルギー密度が下げられる。
合成光学系55から出射するロービームLは、カバー59の開口59Hから出射し、フロントカバー12を介して車両用前照灯1から車両の前方に出射し、所定の配光パターンで照射される。本実施形態では、図3に示すロービームLの配光パターンPTNLで照射される。
以上説明したように、本実施形態の車両用前照灯1は、光源52R,52G,52Bと、光源52R,52G,52Bから入射する光を回折する回折格子54R,54G,54Bと、を備える。この回折格子54R,54G,54Bから出射される光のうち、回折格子54R,54G,54Bにより回折される高次回折光はロービームLの配光パターンPTNLで照射される。
これに加えて本実施形態の車両用前照灯1は、光学素子60を備えている。この光学素子60は、0次光ビームLCの投影領域と回折格子54R,54G,54Bとの間における0次光ビームLCの光路上に配置され、当該0次光ビームLCのエネルギー密度を下げる。
従って、本実施形態の車両用前照灯1では、回折格子54R,54G,54Bを出射する光のうち、高次回折光の光度よりも0次光の光度が高くても、その0次光のエネルギー密度は光学素子60により下げられる。このため、回折格子54R,54G,54Bから出射される光のうち高次回折光による配光パターンPTNLよりも0次光の投影領域が際立って明るくなることを抑制することができる。こうして、本実施形態の車両用前照灯1は、光学素子60を備えていない場合に比べて運転し易くできる。
本実施形態の場合、上記のように光学素子60が筐体10内に配置されている。このため、0次光が車外に出射することが低減される。従って、0次光ビームLCの投影領域が車外において際立って明るくなることを抑制することができ、この結果、運転者や歩行者等が投影領域を無用に意識してしまうことを抑制することができる。
また本実施形態の場合、上記のように光学素子60は遮光素子であっても光拡散素子であっても良い。このため本実施形態の車両用前照灯1では、当該車両用前照灯1を搭載する車種等に応じて、光学素子60として遮光素子又は光拡散素子を選択し得る。
また本実施形態の場合、投影領域は、ロービームLの配光パターンPTNLの外側に位置している。この場合、ロービームLの配光パターンPTNL内に投影領域が位置する場合に比べて、当該配光パターンPTNLの一部が際立って明るくなることを抑制することができ、この結果、より一段と運転し易くできる。
また、本実施形態の車両用前照灯1は、1つの光源と1つの回折格子とを含む発光光学系を複数有する。すなわち、車両用前照灯1は、1つの光源52Rと1つの回折格子54Rとを含む第1発光光学系51Rと、1つの光源52Gと1つの回折格子54Gとを含む第2発光光学系51Gと、1つの光源52Bと1つの回折格子54Bとを含む第3発光光学系51Bとを有する。これに加えて本実施形態の車両用前照灯1は、それぞれの発光光学系51R,51G,51Bから出射する光を合成する合成光学系55を更に備える。そして、それぞれの光源52R,52G,52Bは互いに異なる所定の波長の光を出射し、それぞれの回折格子54R,54G,54Bは合成光学系55で合成された光がロービームLの配光パターンPTNLとなるように光源52R,52G,52Bからの光を回折する。
この場合、それぞれの光源52R,52G,52Bから出射する所定の波長の光が回折格子54R,54G,54Bにより回折されて配光パターンPTNLが形成される。この際、それぞれの発光光学系51R,51G,51Bにおいて、回折格子54R,54G,54Bにより回折される光は所定の波長であるため、回折格子54R,54G,54Bが波長依存性を有しても、それぞれの回折格子54R,54G,54Bから出射する光における配光パターンPTNLの縁近傍で色のにじみが生じることを抑制することができる。この様に色のにじみが抑制された配光パターンPTNLを有する光が合成光学系55で合成されてロービームLの配光パターンPTNLが形成される。従って、本実施形態の車両用前照灯1により照射されるロービームLは、配光パターンPTNLの縁近傍で色のにじみが出ることを抑制することができる。
また、本実施形態の車両用前照灯1では、それぞれの回折格子54R,54G,54Bを直進して透過する0次光LCR,LCG,LCBは合成光学系55で合成され、光学素子60は、合成光学系55で合成された0次光ビームLCのエネルギー密度を下げている。
このため、それぞれの回折格子54R,54G,54Bを直進して透過する0次光が合成されない場合に比べると、光学素子60に照射される0次光の照射領域を小さくできる。従って、回折格子54R,54G,54Bから出射される光のうち高次回折光のエネルギー密度が光学素子60で下げられることを抑制することができる。
(第4実施形態)
次に、本発明の第4実施形態について図7を参照して詳細に説明する。なお、第3実施形態と同一又は同等の構成要素については、特に説明する場合を除き、同一の参照符号を付して重複する説明は省略する。
次に、本発明の第4実施形態について図7を参照して詳細に説明する。なお、第3実施形態と同一又は同等の構成要素については、特に説明する場合を除き、同一の参照符号を付して重複する説明は省略する。
図7は、本実施形態にかかる車両用前照灯の光学系ユニットを図2と同様に示す図である。図7に示すように本実施形態の車両用前照灯の光学系ユニット50は、合成光学系55を備えず、第1発光光学系51R、第2発光光学系51G、第3発光光学系51Bから出射するそれぞれの光が合成されない状態で、カバー59から出射する点において、第3実施形態の光学系ユニット50と異なる。本実施形態では、第1発光光学系51R、第2発光光学系51G、第3発光光学系51Bは、光の出射方向がカバー59の開口59H側とされている。
本実施形態においても、第3実施形態と同様にして、第1発光光学系51Rの回折格子54R、第2発光光学系51Gの回折格子54G、第3発光光学系51Bの回折格子54Bのそれぞれにおいて、合成された光がロービームLの配光パターンを形成するように光を出射する。
すなわち、回折格子54Rから出射する第1の光LR、回折格子54Gから出射する第2の光LG、及び、回折格子54Bから出射する第3の光LBは、それぞれカバー59の開口59Hから出射し、フロントカバー12を介して車両用前照灯の外部に照射される。このとき、第1の光LR、第2の光LG、及び、第3の光LBと、第1の0次光LCR、第2の0次光LCG、及び、第3の0次光LCBとは、車両から所定の距離離れた焦点位置においてそれぞれの配光パターンの外形が概ね一致するように照射される。この車両からの距離は、例えば25mとされる。つまり、本実施形態では、上記のように外形が一致するように、第1発光光学系51R、第2発光光学系51G、第3発光光学系51Bの光の出射方向が微調整されている。
また、車両用前照灯の光学系ユニット50は、光学素子60に代えて、第1発光光学系51R、第2発光光学系51G、第3発光光学系51Bから出射する0次光のエネルギー密度を下げる光学素子60A~60Cを備えている点において、第3実施形態の光学系ユニット50と異なる。光学素子60Aは、第1の0次光LCRの投影領域と回折格子54Rとの間における第1の0次光LCRの光路上に配置される。また、光学素子60Bは、第2の0次光LCGの投影領域と回折格子54Gとの間における第2の0次光LCGの光路上に配置され、光学素子60Cは、第3の0次光LCBの投影領域と回折格子54Bとの間における第3の0次光LCBの光路上に配置される。なお、光学素子60A~60Cの配置位置は、回折格子54Rから出射する第1の光LR、回折格子54Gから出射する第2の光LG、回折格子54Bから出射する第3の光LBと重なる位置とされているが、重ならない位置とされていても良い。本実施形態では、光学素子60A~60Cは、カバー59内に配置され、図示せぬ固定具を介してカバー59に固定される。それぞれの光学素子60A~60Cと回折格子54Rとの間における光路の距離は、例えば100mmとされる。従って、本実施形態の光学系ユニット50は、第3実施形態の光学系ユニット50よりも大きい構成であると理解できる。
本実施形態の車両用前照灯によれば、第3実施形態の合成光学系55を用いないため、簡易な構成とすることができる。また、回折格子54R,54G,54Bを出射する光のうち、高次回折光の光度よりも0次光の光度が高くても、その0次光のエネルギー密度は光学素子60A~60Cにより下げられる。このため、合成光学系55が用いられなくても、上記第3実施形態と同様に、高次回折光による配光パターンPTNLよりも0次光の投影領域が際立って明るくなることを抑制することができる。
なお、上記第3、第4実施形態では、赤色成分の第1の光LRを出射する第1発光光学系と、緑色成分の第2の光LGを出射する第2発光光学系と、青色成分の第3の光LBを出射する第3発光光学系とを備えた。しかし、上記第3、第4実施形態では、3つの発光光学系がそれぞれ有する光源から出射する光は、それぞれ互いに異なる所定の波長であれば、赤色、緑色、青色に限らない。
また、発光光学系は1つ又は2つであっても良い。さらに、発光光学系は3つ以上であっても良い。この場合、ロービームLの黄色成分の光を出射する第4発光光学系を備えても良い。例えば、上記の赤色、緑色、青色の発光光学系に加えて、第4発光光学系は、ロービームLの黄色成分の光を出射するものとしても良い。また、赤色、緑色、青色の一部の光度が低い場合、第4発光光学系が光度の低い色と同じ色成分の光を出射するものとしても良い。
また、上記第3、第4実施形態では、ホワイトバランス調整回路が更に設けられても良い。このホワイトバランス調整回路は、第1発光光学系51Rの光源52Rから出射する光の全光束量と、第2発光光学系51Gの光源52Gから出射する光の全光束量と、第3発光光学系51Bの光源52Bから出射する光の全光束量と、を制御することで、所望のホワイトバランスとすることができる。例えば、法規の範囲内で、暖色系の白色の光を出射したり、青色系の白色の光を出射するように、切り換えが可能にしたりしても良い。
また、上記第3実施形態では、第1光学素子55fは、第1の光を第1の光LRを透過すると共に第2の光LGを反射することで第1の光LRと第2の光LGとを合成し、第2光学素子55sは、第1光学素子55fで合成された第1の光LR及び第2の光LGを透過すると共に第3の光LBを反射することで第1の光LRと第2の光LGと第3の光LBとを合成した。しかし、例えば、第1光学素子55fにおいて第3の光LBと第2の光LGとが合成され、第2光学素子55sにおいて第1光学素子55fで合成された第3の光LB及び第2の光LGと第1の光LRとが合成される構成とされても良い。この場合、上記第3実施形態の第1発光光学系51Rと第3発光光学系51Bとの位置が入れ替わる。またこの場合、第1光学素子55fにおいて第3の0次光LCBと第2の0次光LCGとが合成され、第2光学素子55sにおいて第1光学素子55fで合成された第3の0次光LCB及び第2の0次光LCGと第1の0次光LCRとが合成される構成とされる。また、上記第3実施形態において、所定の波長帯域の光を透過し、他の波長帯域の光を反射するバンドパスフィルタが第1光学素子55fや第2光学素子55sに用いられても良い。また、合成光学系55は、それぞれの発光光学系から出射する光の外形を合わせて合成すれば良く、上記第3実施形態に限定されない。
また、上記第3実施形態では、それぞれの回折格子54R,54G,54Bを直進して透過する0次光LCR,LCG,LCBは合成光学系55で合成されず、光学素子60の別々の領域に照射されても良い。但し、上記のように、光学素子60に照射される0次光の照射領域を小さくし、高次回折光のエネルギー密度が光学素子60で下げられることを抑制する場合には、それぞれの回折格子54R,54G,54Bを直進して透過する0次光LCR,LCG,LCBは合成光学系55で合成されることが好ましい。
また、上記第3、第4実施形態では、ロービームLの配光パターンPTNLの外側に投影領域が位置していたが、当該配光パターンPTNL内に位置していても良い。この場合、ロービームLの配光パターンPTNLのうち、回折格子54R,54G,54Bにより回折される高次回折光の光度分布のなかで最も高い光度の半値以下の光度となる領域内に投影領域が含まれることが好ましい。このようにすれば、高次回折光の光度分布のなかで最も高い光度の半値よりも高い領域に投影領域が含まれる場合に比べて、当該光度分布のなかで最も高い光度となる位置を基準として、配光パターンの光度分布を滑らかに形成し易くなる。
また、上記第3、第4実施形態の光学素子60は、入射する0次光のエネルギー密度をゼロとするものであっても、入射する0次光のエネルギー密度よりも小さいエネルギー密度で0次光を出射するものであっても良い。但し、上記のように、ロービームLの配光パターンPTNL内に投影領域が位置する場合には、入射する0次光のエネルギー密度よりも小さいエネルギー密度で0次光を出射する光学素子60が採用されることが好ましい。このようにすれば、0次光をロービームLの配光パターンPTNLとして利用しつつも、当該配光パターンPTNLにおいて0次光の投影領域が際立って明るくなることを抑制し得る。
また、上記第3、第4実施形態では、暗所照明用の配光パターンとしてロービームLの配光パターンPTNLが形成された。しかし、暗所照明用の配光パターンであれば、ロービームLの配光パターンPTNLだけに限定されない。なお、暗所照明用の配光パターンは、夜間や、トンネル等の暗所において用いられる。例えば、図8に示すように、ロービームLの配光パターンPTNLと、その配光パターンPTNLの外側の例えば上方に位置する標識視認用の光の配光パターンPTNSとが暗所照明用の配光パターンとして形成される場合がある。この場合、それぞれの回折格子54R,54G,54Bにより回折される高次回折光に当該標識視認用の光が含まれていることが好ましい。また例えば、図9に示すように、ハイビームの配光パターンPTNHが暗所照明用の配光パターンとして形成される場合がある。このハイビームの配光パターンPTNHのうち、領域HA1は最も光度が高い領域であり、領域HA2は領域HA1よりも光度が低い領域である。つまり、それぞれの回折格子54R,54G,54Bは、合成された光がハイビームの光度分布を含む配光パターンPTNHを形成するように光を回折する。
また、上記第3、第4実施形態では、車両用前照灯1として自動車の前照灯が例示された。しかし、上記第3、第4実施形態は、自動車の前照灯に限らず他の車両の前照灯とされてもよい。また、上記第3、第4実施形態は、前照灯に限らず、後照灯、尾灯、制動灯、表示灯などの灯具であってもよい。
要するに、上記第3、第4実施形態に例示される本発明は次のような車両用照明灯具であればよい。すなわち、車両用照明灯具は、光源と、光源から入射する光を回折する回折格子と、回折格子を直進して透過する光成分の投影領域と回折格子との間における光成分の光路上に配置され、光のエネルギー密度を下げる光学素子とを備える。回折格子から出射される光のうち回折格子により回折される光は、所定の配光パターンで照射される。このような車両用照明灯具であれば、運転し易くできる。
(第5実施形態)
次に、本発明の第5実施形態について説明する。なお、上記第1実施形態と同一又は同等の構成要素については、特に説明する場合を除き、同一の参照符号を付して重複する説明は省略する。図10は、本実施形態にかかる車両用前照灯を備える車両の概略を示す断面図である。図11は、図10の車両用前照灯の光学系ユニットの拡大図である。図10、図11に示すように、本実施形態における車両用前照灯1の構成は、上記第1実施形態における車両用前照灯1の構成と同じであるものの、本実施形態の車両用前照灯1が出射する光の配光パターンは、上記第1実施形態の車両用前照灯1が出射する光の配光パターンと異なる。
次に、本発明の第5実施形態について説明する。なお、上記第1実施形態と同一又は同等の構成要素については、特に説明する場合を除き、同一の参照符号を付して重複する説明は省略する。図10は、本実施形態にかかる車両用前照灯を備える車両の概略を示す断面図である。図11は、図10の車両用前照灯の光学系ユニットの拡大図である。図10、図11に示すように、本実施形態における車両用前照灯1の構成は、上記第1実施形態における車両用前照灯1の構成と同じであるものの、本実施形態の車両用前照灯1が出射する光の配光パターンは、上記第1実施形態の車両用前照灯1が出射する光の配光パターンと異なる。
本実施形態の回折格子54Rは、コリメートレンズ53Rから入射するレーザ光を所定の配光パターンとなるように回折する。具体的には、回折格子54Rは、後述の合成光学系55において、第1発光光学系51Rと第2発光光学系51Gと第3発光光学系51Bとのそれぞれから出射する光が回折光ビームLDの配光パターンとなるようにコリメートレンズ53Rから入射するレーザ光を回折する。この配光パターンには光度分布も含まれる。このため、本実施形態の回折格子54Rは、回折格子54Rにより回折される光が回折光ビームLDの配光パターンの外形と同じ外形になると共に回折光ビームLDの配光パターンの光度分布に基づいた光度分布となるように、コリメートレンズ53Rから入射するレーザ光を回折する。
この回折格子54Rにより回折される光は1次以上の次数を有する高次回折光であり、当該高次回折光の他に、回折格子54Rを回折することなく直進して透過する0次光が回折格子54Rから出射する。本実施形態では、後述の合成光学系55から出射する0次光ビームLCの投影領域が、当該0次光ビームLCと回折光ビームLDとで形成されるロービームLの配光パターン内に位置するように、回折格子54Rから0次光が出射する。
こうして、第1発光光学系51Rからは、ロービームLのうちの赤色成分の高次回折光が出射すると共に、0次光ビームLCのうちの赤色成分の0次光が出射する。本実施形態では、第1発光光学系51Rから出射する赤色成分の高次回折光を第1の光LDRとし、当該赤色成分の0次光を第1の0次光LCRとする。
回折格子54Gは、コリメートレンズ53Gから入射するレーザ光を所定の配光パターンとなるように回折し、回折格子54Bは、コリメートレンズ53Bから入射するレーザ光を所定の配光パターンとなるように回折する。具体的には、回折格子54G,54Bは、合成光学系55において、第1発光光学系51Rと第2発光光学系51Gと第3発光光学系51Bとのそれぞれから出射する光が回折光ビームLDの配光パターンとなるようにコリメートレンズ53G,53Bから入射するレーザ光をそれぞれ回折する。上記のように配光パターンには光度分布も含まれる。このため、本実施形態の回折格子54G,54Bは、回折格子54G,54Bから出射するそれぞれのレーザ光が回折光ビームLDの配光パターンの外形と同じ外形になると共に回折光ビームLDの配光パターンの光度分布に基づいた光度分布となるように、コリメートレンズ53G,53Bから入射するレーザ光をそれぞれ回折する。
この回折格子54Gにより回折される光は1次以上の次数を有する高次回折光であり、当該高次回折光の他に、回折格子54Gを回折することなく直進して透過する0次光が回折格子54Gから出射する。本実施形態では、後述の合成光学系55から出射する0次光ビームLCの投影領域が、当該0次光ビームLCと回折光ビームLDとで形成されるロービームLの配光パターン内に位置するように、回折格子54Gから0次光が出射する。
同様に、この回折格子54Bにより回折される光は1次以上の次数を有する高次回折光であり、当該高次回折光の他に、回折格子54Bを回折することなく直進して透過する0次光が回折格子54Bから出射する。本実施形態では、後述の合成光学系55から出射する0次光ビームLCの投影領域が、当該0次光ビームLCと回折光ビームLDとで形成されるロービームLの配光パターン内に位置するように、回折格子54Bから0次光が出射する。
こうして、第2発光光学系51GからはロービームLのうちの緑色成分の高次回折光が出射すると共に、0次光ビームLCのうちの緑色成分の0次光が出射する。また、第3発光光学系51BからはロービームLのうちの青色成分の高次回折光が出射すると共に、0次光ビームLCのうちの青色成分の0次光が出射する。本実施形態では、第2発光光学系51Gから出射する緑色成分の高次回折光を第2の光LDGとし、当該緑色成分の0次光を第2の0次光LCGとし、第3発光光学系51Bから出射する青色成分の高次回折光を第3の光LDBとし、当該青色成分の0次光を第3の0次光LCBとする。従って、本実施形態では、第1の光LDRが最も波長が長く、第2の光LDG、第3の光LDBの順に波長が短くなる。同様に、第1の0次光LCRが最も波長が長く、第2の0次光LCG、第3の0次光LCBの順に波長が短くなる。
なお、上記の回折光ビームLDの配光パターンの光度分布に基づいた光度分布とは、回折光ビームLDの配光パターンにおける光度が高い部位では、回折格子54R,54G,54Bから出射するそれぞれの高次回折光の光度も高いという意味である。
合成光学系55は、第1光学素子55fと第2光学素子55sとを有する。第1光学素子55fは、第1発光光学系51Rから出射する第1の光LDRと、第2発光光学系51Gから出射する第2の光LDGとを合成する光学素子である。また第1光学素子55fは、第1発光光学系51Rから出射する第1の0次光LCRと、第2発光光学系51Gから出射する第2の0次光LCGとを合成する光学素子でもある。本実施形態では、第1光学素子55fは、第1の光LDRを透過すると共に第2の光LDGを反射することで第1の光LDRと第2の光LDGとを合成し、第1の0次光LCRを透過すると共に第2の0次光LCGを反射することで第1の0次光LCRと第2の0次光LCGとを合成する。
第2光学素子55sは、第1光学素子55fで合成された第1の光LDR及び第2の光LDGと、第3発光光学系51Bから出射する第3の光LDBとを合成する光学素子である。また第2光学素子55sは、第1光学素子55fで合成された第1の0次光LCR及び第2の0次光LCGと、第3発光光学系51Bから出射する第3の0次光LCBとを合成する光学素子でもある。本実施形態では、第2光学素子55sは、第1光学素子55fで合成された第1の光LDR及び第2の光LDGを透過すると共に第3の光LDBを反射することで第1の光LDRと第2の光LDGと第3の光LDBとを合成する。また、第2光学素子55sは、第1光学素子55fで合成された第1の0次光LCR及び第2の0次光LCGを透過すると共に第3の0次光LCBを反射することで第1の0次光LCRと第2の0次光LCGと第3の0次光LCBとを合成する。
この様な第1光学素子55f、第2光学素子55sとしては、ガラス基板上に酸化膜が積層された波長選択フィルタを挙げることができる。この酸化膜の種類や厚みをコントロールすることで、所定の波長よりも長い波長の光を透過し、この波長よりも短い波長の光を反射する構成とすることができる。
こうして、合成光学系55からは、第1の光LDRと第2の光LDGと第3の光LDBとが合成されることで回折光ビームLDが出射し、第1の0次光LCRと第2の0次光LCGと第3の0次光LCBとが合成されることで0次光ビームLCが出射する。
次に本実施形態の車両用前照灯1による光の出射について説明する。
まず不図示の電源から電力が供給されることで、それぞれの光源52R,52G,52Bからレーザ光が出射する。上記のように光源52Rからは赤色のレーザ光が出射し、光源52Gからは緑色のレーザ光が出射し、光源52Bからは青色のレーザ光が出射する。それぞれのレーザ光は、コリメートレンズ53R,53G,53Bでコリメートされた後、回折格子54R,54G,54Bに入射する。そして、上記のように回折格子54R,54G,54Bでそれぞれのレーザ光が回折されて、第1発光光学系51Rからは回折光ビームLDの赤色成分である第1の光LDRが出射し、第2発光光学系51Gからは回折光ビームLDの緑色成分である第2の光LDGが出射し、第3発光光学系51Bからは回折光ビームLDの青色成分である第3の光LDBが出射する。また、上記のように回折格子54R,54G,54Bをそれぞれ直進して透過し、第1発光光学系51Rからは0次光ビームLCの赤色成分である第1の0次光LCRが出射し、第2発光光学系51Gからは0次光ビームLCの緑色成分である第2の0次光LCGが出射し、第3発光光学系51Bからは0次光ビームLCの青色成分である第3の0次光LCBが出射する。
合成光学系55では、まず、第1の光LDRと第2の光LDGが第1光学素子55fで合成されて出射すると共に、第1の0次光LCRと第2の0次光LCGが第1光学素子55fで合成されて出射する。第1光学素子55fで合成された第1の光LDR及び第2の光LDGは第2光学素子55sで第3の光LDBと合成され、第1光学素子55fで合成された第1の0次光LCRと第2の0次光LCGは第2光学素子55sで第3の0次光LCBと合成される。このとき、それぞれの光LDR,LDG,LDBは外形が回折光ビームLDの外形と同様にされているため、それぞれの光LDR,LDG,LDBの外形が互いに一致されて合成される。また、それぞれの0次光LCR,LCG,LCBの外形も同様にされているため、それぞれの0次光LCR,LCG,LCBの外形が互いに一致されて合成される。つまり、第1の光LDRの外形と第2の光LDGの外形と第3の光LDBの外形、及び、第1の0次光LCRの外形と第2の0次光LCGの外形と第3の0次光LCBの外形が、上記のように合成光学系で合わさるように、各発光光学系や合成光学系の位置が微調整されている。
こうして、赤色の第1の光LDRと緑色の第2の光LDGと青色の第3の光LDBとが合成された光は白色となり、当該白色の光が合成光学系55から回折光ビームLDとして出射する。また、赤色の第1の0次光LCRと緑色の第2の0次光LCGと青色の第3の0次光LCBとが合成された光は白色となり、当該白色の光が合成光学系55から0次光ビームLCとして出射する。
合成光学系55から出射する回折光ビームLDと0次光ビームLCは、カバー59の開口59Hから出射し、フロントカバー12を介して車両用前照灯1から車両の前方に出射する。車両の前方では回折光ビームLDと0次光ビームLCとでロービームLの配光パターンが形成される。
図12は、本実施形態におけるロービームの配光パターンと、その配光パターンの光度分布とを示す図である。図12に示すように、ロービームLの配光パターンPTNLは第1の領域LA1、第2の領域LA2、第3の領域LA3を有し、当該第1の領域LA1、第2の領域LA2、第3の領域LA3の順に光度が低くなる。
第1の領域LA1は、高次回折光である回折光ビームLDの光度分布のなかで第1光度閾値よりも高い光度となる領域であり、当該第1の領域LA1では、回折光ビームLDの光度分布のなかで最も高い光度LHとなる部位Pが含まれる。第2の領域LA2は、回折光ビームLDの光度分布のなかで第1光度閾値以下となり第1光度閾値よりも低く設定される第2光度閾値よりも高い光度となる領域であり、第3の領域LA3は、回折光ビームLDの光度分布のなかで第2光度閾値以下となる領域である。第1光度閾値は、例えば、回折光ビームLDの光度分布のなかで最も高い光度LHの半値とされる。
このようなロービームLの配光パターンPTNLのうち、0次光ビームLCが照射される0次光の投影領域PARは、第1の領域LA1内に位置し、更に、この第1の領域LA1よりも狭いホットゾーンHZ内に位置する。但し、0次光の投影領域PARは、回折光ビームLDの光度分布のなかで最も高い光度LHとなる部位Pを避けて位置する。なお、投影領域PARの光度は、回折光ビームLDの光度と0次光ビームLCの光度との合計値である。図12に示す例では、投影領域PARの光度は、回折光ビームLDの光度分布のなかで最も高い光度LHよりも高くなっているが、当該光度LHよりも低くされていても良い。例えば、投影領域PARには回折光ビームLDが非照射とされることで、当該光度LHよりも投影領域PARの光度を低くし得る。
以上説明したように、本実施形態の車両用前照灯1は、光源52R,52G,52Bと、光源52R,52G,52Bから入射する光を回折する回折格子54R,54G,54Bと、を備える。
この回折格子54R,54G,54Bにより回折される光は合成光学系55で合成され、当該合成光学系55から回折光ビームLDとして出射する。また、回折格子54R,54G,54Bを直進して透過する光は合成光学系55で合成され、当該合成光学系55から0次光ビームLCとして出射する。この回折光ビームLDと0次光ビームLCとでロービームLの配光パターンが形成される。図12に示すように、配光パターンのなかで0次光ビームLCの投影領域PARは、高次回折光である回折光ビームLDの光度分布のなかで最も高い光度LHの半値よりも高い光度となる領域内に位置する。
従って、高次回折光の光度に比べ高い光度を有する0次光が投影領域PARに照射されても、ロービームLの配光パターンPTNLのなかで投影領域PARが際立って明るくなることを抑制することができる。従って、本実施形態の車両用前照灯1は、回折光ビームLDの光度分布のなかで最も高い光度LHの半値よりも高い光度となる領域の外側に投影領域PARが配置される場合に比べて運転し易くできる。
なお、本実施形態の場合、投影領域PARは、回折光ビームLDの光度分布のなかで最も高い光度LHとなる部位Pを避けて位置している。従って、回折光ビームLDの配光パターンPTNLのなかで最も高い光度LHとなる部位Pが過度に明るくなることを抑制することができる。
また、投影領域PARがホットゾーンHZ内に配置されることで、0次光ビームLCをロービームLの配光パターンPTNLとして利用しつつも、当該配光パターンPTNLにおいて投影領域PARが際立って明るくなることを抑制し得る。
また、本実施形態の車両用前照灯1は、1つの光源と1つの回折格子とを含む発光光学系を複数有する。すなわち、車両用前照灯1は、1つの光源52Rと1つの回折格子54Rとを含む第1発光光学系51Rと、1つの光源52Gと1つの回折格子54Gとを含む第2発光光学系51Gと、1つの光源52Bと1つの回折格子54Bとを含む第3発光光学系51Bとを有する。これに加えて本実施形態の車両用前照灯1は、それぞれの発光光学系51R,51G,51Bから出射する光を合成する合成光学系55を更に備える。そして、それぞれの光源52R,52G,52Bは互いに異なる所定の波長の光を出射し、それぞれの回折格子54R,54G,54Bは合成光学系55で合成された光がロービームLの配光パターンPTNLとなるように光源52R,52G,52Bからの光を出射する。
この場合、それぞれの光源52R,52G,52Bから出射する所定の波長の光が回折格子54R,54G,54Bを通じて配光パターンPTNLが形成される。この際、それぞれの発光光学系51R,51G,51Bにおいて、回折格子54R,54G,54Bにより回折される光は所定の波長であるため、回折格子54R,54G,54Bが波長依存性を有しても、それぞれの回折格子54R,54G,54Bから出射する光における配光パターンPTNLの縁近傍で色のにじみが生じることを抑制することができる。この様に色のにじみが抑制された配光パターンPTNLを有する光が合成光学系55で合成されてロービームLの配光パターンPTNLが形成される。従って、本実施形態の車両用前照灯1により照射されるロービームLは、配光パターンPTNLの縁近傍で色のにじみが出ることを抑制することができる。
また、本実施形態の車両用前照灯1では、それぞれの回折格子54R,54G,54Bを直進して透過する0次光LCR,LCG,LCBは合成光学系55で合成され、投影領域PARに照射される。この場合、上記のように回折格子54R,54G,54Bが波長依存性を有しても、それぞれの回折格子54R,54G,54Bを透過する0次光LCR,LCG,LCBを白の同色にすることができる。従って、本実施形態の車両用前照灯1では、運転者が投影領域PARを無用に意識してしまうことを低減することができ、より一段と運転し易くできる。
(第6実施形態)
次に、本発明の第6実施形態について図13を参照して詳細に説明する。なお、第5実施形態と同一又は同等の構成要素については、特に説明する場合を除き、同一の参照符号を付して重複する説明は省略する。
次に、本発明の第6実施形態について図13を参照して詳細に説明する。なお、第5実施形態と同一又は同等の構成要素については、特に説明する場合を除き、同一の参照符号を付して重複する説明は省略する。
図13は、本実施形態にかかる車両用前照灯の光学系ユニットを図11と同様に示す図である。図13に示すように本実施形態の車両用前照灯の光学系ユニット50は、合成光学系55を備えず、第1発光光学系51R、第2発光光学系51G、第3発光光学系51Bから出射するそれぞれの光が合成されない状態で、カバー59から出射する点において、第5実施形態の光学系ユニット50と異なる。本実施形態では、第1発光光学系51R、第2発光光学系51G、第3発光光学系51Bは、光の出射方向がカバー59の開口59H側とされている。
本実施形態においても、第5実施形態と同様にして、第1発光光学系51Rの回折格子54R、第2発光光学系51Gの回折格子54G、第3発光光学系51Bの回折格子54Bのそれぞれにおいて、合成された光がロービームLの配光パターンを形成するように光を出射する。
すなわち、回折格子54Rから出射する第1の光LDR、回折格子54Gから出射する第2の光LDG、及び、回折格子54Bから出射する第3の光LDBは、それぞれカバー59の開口59Hから出射し、フロントカバー12を介して車両用前照灯の外部に照射される。また、回折格子54Rから出射する第1の0次光LCR、回折格子54Gから出射する第2の0次光LCG、及び、回折格子54Bから出射する第3の0次光LCBは、それぞれカバー59の開口59Hから出射し、フロントカバー12を介して車両用前照灯の外部に照射される。このとき、第1の光LDR、第2の光LDG、及び、第3の光LDBと、第1の0次光LCR、第2の0次光LCG、及び、第3の0次光LCBとは、車両から所定の距離離れた焦点位置においてそれぞれの配光パターンの外形が概ね一致するように照射される。この車両からの距離は、例えば25mとされる。従って、車両から所定の距離離れた位置においてロービームLの配光パターンが形成される。この配光パターンは、図12に示す配光パターンPTNLとされ、図12に示す光度分布と同じ光度分布を有する。このため、第5実施形態と同様に、配光パターンPTNLのなかで0次光の投影領域PARは、高次回折光である回折光ビームLDの光度分布のなかで最も高い光度LHの半値よりも高い光度となる領域内に位置する。
本実施形態の車両用前照灯によれば、第5実施形態の合成光学系55を用いないため、簡易な構成とすることができる。また、本実施形態の車両用前照灯によれば、0次光の投影領域PARが高次回折光の光度分布のなかで最も高い光度LHの半値よりも高い光度となる領域内に位置するため、第5実施形態と同様に、投影領域PARが際立って明るくなることを抑制し得る。なお、本実施形態の第1の光LDRの外形と第2の光LDGの外形と第3の光LDBの外形、及び、第1の0次光LCRの外形と第2の0次光LCGの外形と第3の0次光LCBの外形とは、上記の焦点位置以外では互いに僅かにずれる傾向にある。しかし、白色の光を1つの回折格子に入射して得られる光と比べると、この外形のずれを抑制することができる。従って、本実施形態によっても、小型化しつつ色のにじみを抑制し得る車両用前照灯が実現され得る。
なお、上記第5、第6実施形態では、赤色成分の第1の光LDRを出射する第1発光光学系と、緑色成分の第2の光LDGを出射する第2発光光学系と、青色成分の第3の光LDBを出射する第3発光光学系とを備えた。しかし、上記第5、第6実施形態の車両用前照灯では、3つの発光光学系がそれぞれ有する光源から出射する光は、それぞれ互いに異なる所定の波長であれば、赤色、緑色、青色に限らない。
また、発光光学系は1つ又は2つであっても良い。さらに、発光光学系は3つ以上であっても良い。この場合、例えば、ロービームLの黄色成分の光を出射する第4発光光学系を備えても良い。この場合、上記の赤色、緑色、青色の発光光学系に加えて、第4発光光学系は、ロービームLの黄色成分の光を出射するものとしても良い。また、赤色、緑色、青色の一部の光度が低い場合、第4発光光学系が光度の低い色と同じ色成分の光を出射するものとしても良い。
また、上記第5、第6実施形態では、ホワイトバランス調整回路が更に設けられても良い。このホワイトバランス調整回路は、第1発光光学系51Rの光源52Rから出射する光の全光束量と、第2発光光学系51Gの光源52Gから出射する光の全光束量と、第3発光光学系51Bの光源52Bから出射する光の全光束量と、を制御することで、所望のホワイトバランスとすることができる。例えば、法規の範囲内で、暖色系の白色の光を出射したり、青色系の白色の光を出射するように、切り換えが可能にしても良い。
また、上記第5実施形態では、第1光学素子55fは、第1の光を第1の光LDRを透過すると共に第2の光LDGを反射することで第1の光LDRと第2の光LDGとを合成し、第2光学素子55sは、第1光学素子55fで合成された第1の光LDR及び第2の光LDGを透過すると共に第3の光LDBを反射することで第1の光LDRと第2の光LDGと第3の光LDBとを合成した。しかし、例えば、第1光学素子55fにおいて第3の光LDBと第2の光LDGとが合成され、第2光学素子55sにおいて第1光学素子55fで合成された第3の光LDB及び第2の光LDGと第1の光LDRとが合成される構成とされても良い。この場合、上記第5実施形態の第1発光光学系51Rと第3発光光学系51Bとの位置が入れ替わる。またこの場合、第1光学素子55fにおいて第3の0次光LCBと第2の0次光LCGとが合成され、第2光学素子55sにおいて第1光学素子55fで合成された第3の0次光LCB及び第2の0次光LCGと第1の0次光LCRとが合成される構成とされる。また、上記第5実施形態において、所定の波長帯域の光を透過し、他の波長帯域の光を反射するバンドパスフィルタが第1光学素子55fや第2光学素子55sに用いられても良い。また、合成光学系55は、それぞれの発光光学系から出射する光の外形を合わせて合成すれば良く、上記第5実施形態に限定されない。
また、上記第5実施形態では、それぞれの回折格子54R,54G,54Bを直進して透過する0次光LCR,LCG,LCBは合成光学系55で合成されず、投影領域PARの別々の領域に照射されても良い。但し、上記のように、運転者が投影領域PARを無用に意識してしまうことを低減するためには、それぞれの回折格子54R,54G,54Bを直進して透過する0次光LCR,LCG,LCBが合成されることが好ましい。
また、上記第5、第6実施形態では、投影領域PARは、高次回折光の光度分布のなかで最も高い光度LHとなる位置を避けて位置していたが、当該位置を含んでいても良い。この場合、0次光の光度が大きいか否かにかかわらず、ロービームLの配光パターンPTNLのなかで最も明るい領域は概ね変化しなくなる。このため、回折光ビームLDの光度分布のなかで最も高い光度となる位置を基準として、ロービームLの配光パターンPTNLの光度分布をより滑らかに形成し易くなる。但し、上記のように回折光ビームLDの配光パターンPTNLのなかで最も高い光度LHとなる部位Pが過度に明るくなることを抑制するためには、回折光ビームLDの光度分布のなかで最も高い光度LHとなる位置を避けて位置することが好ましい。
また、上記第5、第6実施形態では、暗所照明用の配光パターンとしてロービームLの配光パターンPTNLが形成された。しかし、暗所照明用の配光パターンであれば、ロービームLの配光パターンPTNLだけに限定されない。なお、暗所照明用の配光パターンは、夜間や、トンネル等の暗所において用いられる。例えば、図14に示すように、ロービームLの配光パターンPTNLと、その配光パターンPTNLの外側の例えば上方に位置する標識視認用の光の配光パターンPTNSとが暗所照明用の配光パターンとして形成される場合がある。この場合、それぞれの回折格子54R,54G,54Bにより回折される高次回折光に当該標識視認用の光が含まれていることが好ましい。また例えば、ハイビームの配光パターンが暗所照明用の配光パターンとして形成される場合がある。
また、上記第5、第6実施形態では、車両用前照灯1として自動車の前照灯が例示された。しかし、上記第5、第6実施形態は、自動車の前照灯に限らず他の車両の前照灯とされてもよい。また、上記第5、第6実施形態は、前照灯に限らず、後照灯、尾灯、制動灯、表示灯などの灯具であってもよい。
要するに、上記第5、第6実施形態に例示される本発明は次のような車両用照明灯具であればよい。すなわち、車両用照明灯具は、光源と、光源から入射する光を回折する回折格子とを備える。回折格子により回折される光と回折格子を直進して透過する光とで所定の光度分布を有する配光パターンが形成される。この配光パターンのなかで回折格子を直進して透過する光の投影領域は、回折格子により回折される光の光度分布のなかで最も高い光度の半値よりも高い光度となる領域内に位置する。このような車両用照明灯具であれば、運転し易くできる。
(第7実施形態)
次に、本発明の第7実施形態について説明する。なお、上記第5実施形態と同一又は同等の構成要素については、特に説明する場合を除き、同一の参照符号を付して重複する説明は省略する。本実施形態における車両用前照灯1の構成は、上記第5実施形態における車両用前照灯1の構成と同じであるものの、本実施形態の車両用前照灯1が出射する光の配光パターンは、上記第5実施形態の車両用前照灯1が出射する光の配光パターンと異なる。
次に、本発明の第7実施形態について説明する。なお、上記第5実施形態と同一又は同等の構成要素については、特に説明する場合を除き、同一の参照符号を付して重複する説明は省略する。本実施形態における車両用前照灯1の構成は、上記第5実施形態における車両用前照灯1の構成と同じであるものの、本実施形態の車両用前照灯1が出射する光の配光パターンは、上記第5実施形態の車両用前照灯1が出射する光の配光パターンと異なる。
本実施形態の回折格子54Rは、コリメートレンズ53Rから入射するレーザ光を所定の配光パターンとなるように出射する。具体的には、回折格子54Rは、合成光学系55において、第1発光光学系51Rと第2発光光学系51Gと第3発光光学系51Bとのそれぞれから出射する光が回折光ビームLDの配光パターンとなるようにコリメートレンズ53Rから入射するレーザ光を出射する。この配光パターンには光度分布も含まれる。このため、本実施形態の回折格子54Rは、回折格子54Rにより回折される光が回折光ビームLDの配光パターンの外形と同じ外形になると共に回折光ビームLDの配光パターンの光度分布に基づいた光度分布となるように、コリメートレンズ53Rから入射するレーザ光を出射する。
この回折格子54Rにより回折される光は1次以上の次数を有する高次回折光であり、当該高次回折光の他に、回折格子54Rを回折することなく直進して透過する0次光が回折格子54Rから出射する。本実施形態では、合成光学系55から出射する0次光ビームLCの投影領域が、当該0次光ビームLCと回折光ビームLDとで形成されるロービームLの配光パターン内に位置するように、回折格子54Rから0次光が出射する。本実施形態の回折格子54Rは、0次光ビームLCの投影領域では回折格子54Rにより回折される高次回折光が非照射となるように、コリメートレンズ53Rから入射するレーザ光を出射する。従って、ロービームLの配光パターンにおける0次光ビームLCの投影領域では、回折格子54Rにより回折される高次回折光の光度がゼロとされる。
こうして、第1発光光学系51Rからは、ロービームLのうちの赤色成分の高次回折光が出射すると共に、0次光ビームLCのうちの赤色成分の0次光が出射する。本実施形態では、第1発光光学系51Rから出射する赤色成分の高次回折光を第1の光LDRとし、当該赤色成分の0次光を第1の0次光LCRとする。
回折格子54Gは、コリメートレンズ53Gから入射するレーザ光を所定の配光パターンとなるように出射し、回折格子54Bは、コリメートレンズ53Bから入射するレーザ光を所定の配光パターンとなるように出射する。具体的には、回折格子54G,54Bは、合成光学系55において、第1発光光学系51Rと第2発光光学系51Gと第3発光光学系51Bとのそれぞれから出射する光が回折光ビームLDの配光パターンとなるようにコリメートレンズ53G,53Bから入射するレーザ光をそれぞれ回折する。上記のように配光パターンには光度分布も含まれる。このため、本実施形態の回折格子54G,54Bは、回折格子54G,54Bから出射するそれぞれのレーザ光が回折光ビームLDの配光パターンの外形と同じ外形になると共に回折光ビームLDの配光パターンの光度分布に基づいた光度分布となるように、コリメートレンズ53G,53Bから入射するレーザ光をそれぞれ回折する。
この回折格子54Gにより回折される光は1次以上の次数を有する高次回折光であり、当該高次回折光の他に、回折格子54Gを回折することなく直進して透過する0次光が回折格子54Gから出射する。本実施形態では、合成光学系55から出射する0次光ビームLCの投影領域が、当該0次光ビームLCと回折光ビームLDとで形成されるロービームLの配光パターン内に位置するように、回折格子54Gから0次光が出射する。本実施形態の回折格子54Gは、0次光ビームLCの投影領域では回折格子54Gにより回折される高次回折光が非照射となるように、コリメートレンズ53Gから入射するレーザ光を出射する。従って、ロービームLの配光パターンにおける0次光ビームLCの投影領域では、回折格子54Gにより回折される高次回折光の光度がゼロとされる。
同様に、この回折格子54Bにより回折される光は1次以上の次数を有する高次回折光であり、当該高次回折光の他に、回折格子54Bを回折することなく直進して透過する0次光が回折格子54Bから出射する。本実施形態では、合成光学系55から出射する0次光ビームLCの投影領域が、当該0次光ビームLCと回折光ビームLDとで形成されるロービームLの配光パターン内に位置するように、回折格子54Bから0次光が出射する。本実施形態の回折格子54Bは、0次光ビームLCの投影領域では回折格子54Bにより回折される高次回折光が非照射となるように、コリメートレンズ53Bから入射するレーザ光を出射する。従って、ロービームLの配光パターンにおける0次光ビームLCの投影領域では、回折格子54Bにより回折される高次回折光の光度がゼロとされる。
こうして、第2発光光学系51GからはロービームLのうちの緑色成分の高次回折光が出射すると共に、0次光ビームLCのうちの緑色成分の0次光が出射する。また、第3発光光学系51BからはロービームLのうちの青色成分の高次回折光が出射すると共に、0次光ビームLCのうちの青色成分の0次光が出射する。本実施形態では、第2発光光学系51Gから出射する緑色成分の高次回折光を第2の光LDGとし、当該緑色成分の0次光を第2の0次光LCGとし、第3発光光学系51Bから出射する青色成分の高次回折光を第3の光LDBとし、当該青色成分の0次光を第3の0次光LCBとする。従って、本実施形態では、第1の光LDRが最も波長が長く、第2の光LDG、第3の光LDBの順に波長が短くなる。同様に、第1の0次光LCRが最も波長が長く、第2の0次光LCG、第3の0次光LCBの順に波長が短くなる。
次に本実施形態の車両用前照灯1による光の出射について説明する。
まず不図示の電源から電力が供給されることで、それぞれの光源52R,52G,52Bからレーザ光が出射する。上記のように光源52Rからは赤色のレーザ光が出射し、光源52Gからは緑色のレーザ光が出射し、光源52Bからは青色のレーザ光が出射する。それぞれのレーザ光は、コリメートレンズ53R,53G,53Bでコリメートされた後、回折格子54R,54G,54Bに入射する。そして、上記のように回折格子54R,54G,54Bでそれぞれのレーザ光が回折されて、第1発光光学系51Rからは回折光ビームLDの赤色成分である第1の光LDRが出射し、第2発光光学系51Gからは回折光ビームLDの緑色成分である第2の光LDGが出射し、第3発光光学系51Bからは回折光ビームLDの青色成分である第3の光LDBが出射する。また、上記のように回折格子54R,54G,54Bをそれぞれ直進して透過し、第1発光光学系51Rからは0次光ビームLCの赤色成分である第1の0次光LCRが出射し、第2発光光学系51Gからは0次光ビームLCの緑色成分である第2の0次光LCGが出射し、第3発光光学系51Bからは0次光ビームLCの青色成分である第3の0次光LCBが出射する。
合成光学系55では、まず、第1の光LDRと第2の光LDGが第1光学素子55fで合成されて出射すると共に、第1の0次光LCRと第2の0次光LCGが第1光学素子55fで合成されて出射する。第1光学素子55fで合成された第1の光LDR及び第2の光LDGは第2光学素子55sで第3の光LDBと合成され、第1光学素子55fで合成された第1の0次光LCRと第2の0次光LCGは第2光学素子55sで第3の0次光LCBと合成される。このとき、それぞれの光LDR,LDG,LDBは外形が回折光ビームLDの外形と同様にされているため、それぞれの光LDR,LDG,LDBの外形が互いに一致されて合成される。また、それぞれの0次光LCR,LCG,LCBの外形も同様にされているため、それぞれの0次光LCR,LCG,LCBの外形が互いに一致されて合成される。つまり、第1の光LDRの外形と第2の光LDGの外形と第3の光LDBの外形、及び、第1の0次光LCRの外形と第2の0次光LCGの外形と第3の0次光LCBの外形が、上記のように合成光学系で合わさるように、各発光光学系や合成光学系の位置が微調整されている。
こうして、赤色の第1の光LDRと緑色の第2の光LDGと青色の第3の光LDBとが合成された光は白色となり、当該白色の光が合成光学系55から回折光ビームLDとして出射する。また、赤色の第1の0次光LCRと緑色の第2の0次光LCGと青色の第3の0次光LCBとが合成された光は白色となり、当該白色の光が合成光学系55から0次光ビームLCとして出射する。
合成光学系55から出射する回折光ビームLDと0次光ビームLCは、カバー59の開口59Hから出射し、フロントカバー12を介して車両用前照灯1から車両の前方に出射する。車両の前方では回折光ビームLDと0次光ビームLCとでロービームLの配光パターンが形成される。
図15は、本実施形態のロービームの配光パターンと、その配光パターンの光度分布とを示す図である。図15に示すように、ロービームLの配光パターンPTNLは第1の領域LA1、第2の領域LA2、第3の領域LA3を有し、当該第1の領域LA1、第2の領域LA2、第3の領域LA3の順に光度が低くなる。
第1の領域LA1は、高次回折光である回折光ビームLDの光度分布のなかで第1光度閾値よりも高い光度となる領域であり、当該第1の領域LA1では、回折光ビームLDの光度分布のなかで最も高い光度LHとなる部位Pが含まれる。第2の領域LA2は、回折光ビームLDの光度分布のなかで第1光度閾値以下となり第1光度閾値よりも低く設定される第2光度閾値よりも高い光度となる領域であり、第3の領域LA3は、回折光ビームLDの光度分布のなかで第2光度閾値以下となる領域である。第1光度閾値は、例えば、回折光ビームLDの光度分布のなかで最も高い光度LHの半値とされる。
このようなロービームLの配光パターンPTNLのうち、0次光ビームLCが照射される0次光の投影領域PARは、第2の領域LA2内に含まれ、第1の領域LA1の一部と重なっている。また、0次光の投影領域PARの光度は、回折光ビームLDの光度分布のなかで最も高い光度LHよりも低くされる。
図16は、0次光ビームLCが非照射である場合のロービームLの配光パターンと、その配光パターンの光度分布とを示す図である。上記のように本実施形態では、0次光の投影領域PARに照射される高次回折光の光度がゼロとされるため、図16に示すように、0次光ビームLCが非照射である場合にはロービームLの配光パターンPTNLにおける0次光の投影領域PARは暗い穴のようになる。この投影領域PARに0次光ビームLCが照射されることで、図15に示すロービームLの配光パターンPTNLが形成される。つまり、投影領域PARの光度は、回折光ビームLDの光度と0次光ビームLCの光度との合計値となるが、本実施形態では、上記のように投影領域PARに照射される高次回折光の光度がゼロとされるため、投影領域PARの光度は、0次光ビームLCの光度と一致する。
以上説明したように、本実施形態の車両用前照灯1は、光源52R,52G,52Bと、光源52R,52G,52Bから入射する光を回折する回折格子54R,54G,54Bと、を備える。
この回折格子54R,54G,54Bから出射する光は合成光学系55で合成され、当該合成光学系55から回折光ビームLD及び0次光ビームLCとして出射する。この回折光ビームLDと0次光ビームLCとでロービームLが得られ、当該ロービームLは所定の光度分布を有する配光パターンPTNLで照射される。この配光パターンPTNLにおける0次光の投影領域PARでは、回折光ビームLDが非照射とされる。上記のように回折光ビームLDは、回折格子54R,54G,54Bにより回折される高次回折光である。
従って、投影領域PARにおける高次回折光の光度は、その投影領域PARの外側周縁に照射される光の光度よりも小さい。このため、高次回折光の光度に比べ高い光度を有する0次光が投影領域PARに照射されても、ロービームLの配光パターンPTNLのなかで投影領域PARが際立って明るくなることを低減することができる。従って、本実施形態の車両用前照灯1は、投影領域PARでの高次回折光の光度がその投影領域PARの外側周縁に照射される光の光度以上である場合に比べて運転し易くできる。
なお、本実施形態の場合、上記のように投影領域PARには回折光ビームLDが非照射とされているため、当該投影領域PARに照射される高次回折光の光度はゼロである。従って、本実施形態では、0次光の光度と高次回折光の光度との差が大きい場合であっても、ロービームLの配光パターンPTNLのなかで投影領域PARが際立って明るくなることを低減し、当該配光パターンPTNL全体として滑らかな光度分布を形成し易くなる。
上記のように投影領域PARに照射される高次回折光の光度がゼロとされるため、投影領域PARの光度は0次光の光度となる。この0次光の光度は、図15に示すように、高次回折光である回折光ビームLDの光度分布のなかで最も高い光度LHよりも低くされている。従って、本実施形態では、高次回折光の光度分布のなかで最も高い光度LHとなる部位Pを基準として、配光パターンPTNLの光度分布を滑らかに形成し易くなる。
さらに、本実施形態の場合、ロービームLの配光パターンPTNLは、第1の領域LA1と、その第1の領域LA1の光度よりも低い光度の第2の領域LA2と、その第2の領域LA2の光度よりも低い光度の第3の領域LA3とを有する。そして、投影領域PARは第2の領域LA2内に含まれると共に、当該投影領域PARの一部は第1の領域LA1と重なっている。従って、ロービームLの配光パターンPTNLのなかで最も光度が低い領域である第3の領域LA3に投影領域PARが含まれている場合に比べると、ロービームLの配光パターンPTNLのなかで投影領域PARが際立って明るくなることを低減することができる。
また、本実施形態の車両用前照灯1は、1つの光源と1つの回折格子とを含む発光光学系を複数有する。すなわち、車両用前照灯1は、1つの光源52Rと1つの回折格子54Rとを含む第1発光光学系51Rと、1つの光源52Gと1つの回折格子54Gとを含む第2発光光学系51Gと、1つの光源52Bと1つの回折格子54Bとを含む第3発光光学系51Bとを有する。これに加えて本実施形態の車両用前照灯1は、それぞれの発光光学系51R,51G,51Bから出射する光を合成する合成光学系55を更に備える。そして、それぞれの光源52R,52G,52Bは互いに異なる所定の波長の光を出射し、それぞれの回折格子54R,54G,54Bは合成光学系55で合成された光がロービームLの配光パターンとなるように光源52R,52G,52Bからの光を出射する。
この場合、それぞれの光源52R,52G,52Bから出射する所定の波長の光が回折格子54R,54G,54Bにより回折されて配光パターンが形成される。この際、それぞれの発光光学系51R,51G,51Bにおいて、回折格子54R,54G,54Bにより回折される光は所定の波長であるため、回折格子54R,54G,54Bが波長依存性を有しても、それぞれの回折格子54R,54G,54Bから出射する光における配光パターンの縁近傍で色のにじみが生じることを抑制することができる。この様に色のにじみが抑制された配光パターンを有する光が合成光学系55で合成されてロービームLの配光パターンが形成される。従って、本実施形態の車両用前照灯1により照射されるロービームLは、配光パターンの縁近傍で色のにじみが出ることを抑制することができる。
また、本実施形態の車両用前照灯1では、それぞれの回折格子54R,54G,54Bを直進して透過する0次光LCR,LCG,LCBは合成光学系55で合成され、投影領域PARに照射される。この場合、上記のように回折格子54R,54G,54Bが波長依存性を有しても、それぞれの回折格子54R,54G,54Bを透過する0次光LCR,LCG,LCBを白の同色にすることができる。従って、本実施形態の車両用前照灯1では、運転者が投影領域PARを無用に意識してしまうことを低減することができ、より一段と運転し易くできる。
(第8実施形態)
次に、本発明の第8実施形態について説明する。なお、第7実施形態と同一又は同等の構成要素については、特に説明する場合を除き、同一の参照符号を付して重複する説明は省略する。
次に、本発明の第8実施形態について説明する。なお、第7実施形態と同一又は同等の構成要素については、特に説明する場合を除き、同一の参照符号を付して重複する説明は省略する。
本実施形態にかかる車両用前照灯の光学系ユニットを示す図は、図13と同様の記載となるため、図13を参照して本実施形態について説明する。図13に示すように本実施形態の車両用前照灯の光学系ユニット50は、合成光学系55を備えず、第1発光光学系51R、第2発光光学系51G、第3発光光学系51Bから出射するそれぞれの光が合成されない状態で、カバー59から出射する点において、第7実施形態の光学系ユニット50と異なる。本実施形態では、第1発光光学系51R、第2発光光学系51G、第3発光光学系51Bは、光の出射方向がカバー59の開口59H側とされている。
本実施形態においても、第7実施形態と同様にして、第1発光光学系51Rの回折格子54R、第2発光光学系51Gの回折格子54G、第3発光光学系51Bの回折格子54Bのそれぞれにおいて、合成された光がロービームLの配光パターンを形成するように光を出射する。
すなわち、回折格子54Rから出射する第1の光LDR、回折格子54Gから出射する第2の光LDG、及び、回折格子54Bから出射する第3の光LDBは、それぞれカバー59の開口59Hから出射し、フロントカバー12を介して車両用前照灯の外部に照射される。また、回折格子54Rから出射する第1の0次光LCR、回折格子54Gから出射する第2の0次光LCG、及び、回折格子54Bから出射する第3の0次光LCBは、それぞれカバー59の開口59Hから出射し、フロントカバー12を介して車両用前照灯の外部に照射される。このとき、第1の光LDR、第2の光LDG、及び、第3の光LDBと、第1の0次光LCR、第2の0次光LCG、及び、第3の0次光LCBとは、車両から所定の距離離れた焦点位置においてそれぞれの配光パターンの外形が概ね一致するように照射される。この車両からの距離は、例えば25mとされる。従って、車両から所定の距離離れた位置においてロービームLの配光パターンが形成される。この配光パターンは、図15に示す配光パターンPTNLとされ、図15に示す光度分布と同じ光度分布を有する。このため、第7実施形態と同様に、0次光の投影領域PARでは回折光ビームLDが非照射とされ、投影領域PARにおける高次回折光の光度はその投影領域PARの外側周縁に照射される光の光度よりも小さい。
本実施形態の車両用前照灯によれば、第7実施形態の合成光学系55を用いないため、簡易な構成とすることができる。また、本実施形態の車両用前照灯によれば、投影領域PARにおける高次回折光の光度がその投影領域PARの外側周縁に照射される光の光度よりも小さいため、第7実施形態と同様に、配光パターンPTNLのなかで投影領域PARが際立って明るくなることを低減し得る。なお、本実施形態の第1の光LDRの外形と第2の光LDGの外形と第3の光LDBの外形、及び、第1の0次光LCRの外形と第2の0次光LCGの外形と第3の0次光LCBの外形とは、上記の焦点位置以外では互いに僅かにずれる傾向にある。しかし、白色の光を1つの回折格子に入射して得られる光と比べると、この外形のずれを抑制することができる。従って、本実施形態によっても、小型化しつつ色のにじみを抑制し得る車両用前照灯が実現され得る。
なお、上記第7、第8実施形態では、赤色成分の第1の光LDRを出射する第1発光光学系と、緑色成分の第2の光LDGを出射する第2発光光学系と、青色成分の第3の光LDBを出射する第3発光光学系とを備えた。しかし、上記第7、第8実施形態の車両用前照灯では、3つの発光光学系がそれぞれ有する光源から出射する光は、それぞれ互いに異なる所定の波長であれば、赤色、緑色、青色に限らない。
また、発光光学系は1つ又は2つであっても良い。さらに、発光光学系は3つ以上であっても良い。この場合、例えば、ロービームLの黄色成分の光を出射する第4発光光学系を備えても良い。この場合、上記の赤色、緑色、青色の発光光学系に加えて、第4発光光学系は、ロービームLの黄色成分の光を出射するものとしても良い。また、赤色、緑色、青色の一部の光度が低い場合、第4発光光学系が光度の低い色と同じ色成分の光を出射するものとしても良い。
また、上記第7、第8実施形態では、ホワイトバランス調整回路が更に設けられても良い。このホワイトバランス調整回路は、第1発光光学系51Rの光源52Rから出射する光の全光束量と、第2発光光学系51Gの光源52Gから出射する光の全光束量と、第3発光光学系51Bの光源52Bから出射する光の全光束量と、を制御することで、所望のホワイトバランスとすることができる。例えば、法規の範囲内で、暖色系の白色の光を出射したり、青色系の白色の光を出射するように、切り換えが可能にしても良い。
また、上記第7実施形態では、第1光学素子55fは、第1の光を第1の光LDRを透過すると共に第2の光LDGを反射することで第1の光LDRと第2の光LDGとを合成し、第2光学素子55sは、第1光学素子55fで合成された第1の光LDR及び第2の光LDGを透過すると共に第3の光LDBを反射することで第1の光LDRと第2の光LDGと第3の光LDBとを合成した。しかし、例えば、第1光学素子55fにおいて第3の光LDBと第2の光LDGとが合成され、第2光学素子55sにおいて第1光学素子55fで合成された第3の光LDB及び第2の光LDGと第1の光LDRとが合成される構成とされても良い。この場合、上記第7実施形態の第1発光光学系51Rと第3発光光学系51Bとの位置が入れ替わる。またこの場合、第1光学素子55fにおいて第3の0次光LCBと第2の0次光LCGとが合成され、第2光学素子55sにおいて第1光学素子55fで合成された第3の0次光LCB及び第2の0次光LCGと第1の0次光LCRとが合成される構成とされる。また、上記第7実施形態において、所定の波長帯域の光を透過し、他の波長帯域の光を反射するバンドパスフィルタが第1光学素子55fや第2光学素子55sに用いられても良い。また、合成光学系55は、それぞれの発光光学系から出射する光の外形を合わせて合成すれば良く、上記実施形態に限定されない。
また、上記第7、第8実施形態では、回折格子54R,54G,54Bにより回折され回折格子54R,54G,54Bから出射する高次回折光が投影領域PARには非照射とされ、当該投影領域PARでは高次回折光の光度がゼロとされた。しかし、投影領域PARに照射される高次回折光の光度が投影領域PARの外側周縁に照射される光の光度よりも小さくされる限り、当該投影領域PARに照射される高次回折光の光度がゼロよりも大きくされても良い。
また、上記第7実施形態では、それぞれの回折格子54R,54G,54Bを直進して透過する0次光LCR,LCG,LCBは合成光学系55で合成されず、投影領域PARの別々の領域に照射されても良い。但し、上記のように、運転者が投影領域PARを無用に意識してしまうことを低減するためには、それぞれの回折格子54R,54G,54Bを直進して透過する0次光LCR,LCG,LCBが合成されることが好ましい。
また、上記第7、第8実施形態では、投影領域PARが第1の領域LA1の一部と重なっていたが、当該第1の領域LA1内に含まれていても良い。また、投影領域PARは、高次回折光の光度分布のなかで最も高い光度LHとなる位置を含んでいなかったが、当該位置を含んでいても良い。この場合、0次光の光度が大きいか否かにかかわらず、ロービームLの配光パターンPTNLのなかで最も明るい領域は概ね変化しなくなる。このため、高次回折光の光度分布のなかで最も高い光度となる位置を基準として、ロービームLの配光パターンPTNLの光度分布をより滑らかに形成し得る。
また、上記第7、第8実施形態では、投影領域PARの光度が高次回折光の光度分布のなかで最も高い光度LHよりも低くされた。しかし、投影領域PARの光度は高次回折光の光度分布のなかで最も高い光度LH以上とされても良い。この場合、第1の領域LA1内に投影領域PARが含まれていることが好ましく、高次回折光の光度分布のなかで最も高い光度LHとなる位置に投影領域PARが含まれていることがより好ましい。
また、上記第7、第8実施形態では、暗所照明用の配光パターンとしてロービームLの配光パターンPTNLが形成された。しかし、暗所照明用の配光パターンであれば、ロービームLの配光パターンPTNLだけに限定されない。なお、暗所照明用の配光パターンは、夜間や、トンネル等の暗所において用いられる。例えば、ロービームLの配光パターンと、その配光パターンの外側の例えば上方に位置する標識視認用の光の配光パターンとが暗所照明用の配光パターンとして形成される場合がある。この場合、それぞれの回折格子54R,54G,54Bにより回折される高次回折光に当該標識視認用の光が含まれていることが好ましい。また例えば、ハイビームの配光パターンが暗所照明用の配光パターンとして形成される場合がある。
また、上記第7、第8実施形態では、車両用前照灯1として自動車の前照灯が例示された。しかし、上記第7、第8実施形態は、自動車の前照灯に限らず他の車両の前照灯とされてもよい。また、上記第7、第8実施形態は、前照灯に限らず、後照灯、尾灯、制動灯、表示灯などの灯具であってもよい。
要するに、上記第7、第8実施形態に例示される本発明は次のような車両用照明灯具であればよい。すなわち、車両用照明灯具は、光源と、光源から入射する光を回折する回折格子とを備える。この回折格子から出射される光は、所定の光度分布を有する配光パターンで照射される。そして、配光パターンのうち回折格子を直進して透過する光の投影領域では、回折格子により回折され投影領域に照射される光の光度が投影領域の外側周縁に照射される光の光度よりも小さくされる。このような車両用照明灯具であれば、運転し易くできる。
(第9実施形態)
次に、本発明の第9実施形態について説明する。なお、上記第1実施形態と同一又は同等の構成要素については、特に説明する場合を除き、同一の参照符号を付して重複する説明は省略する。図17は、本実施形態における車両用前照灯を備える車両の概略を示す断面図である。図18は、図17に示す車両用前照灯1の光学系ユニット50の拡大図である。図17、図18に示すように、本実施形態における車両用前照灯1の構成は、上記第1実施形態における車両用前照灯1の構成と同じであるものの、本実施形態の車両用前照灯1が出射する光の配光パターンは、上記第1実施形態の車両用前照灯1が出射する光の配光パターンと異なる。
次に、本発明の第9実施形態について説明する。なお、上記第1実施形態と同一又は同等の構成要素については、特に説明する場合を除き、同一の参照符号を付して重複する説明は省略する。図17は、本実施形態における車両用前照灯を備える車両の概略を示す断面図である。図18は、図17に示す車両用前照灯1の光学系ユニット50の拡大図である。図17、図18に示すように、本実施形態における車両用前照灯1の構成は、上記第1実施形態における車両用前照灯1の構成と同じであるものの、本実施形態の車両用前照灯1が出射する光の配光パターンは、上記第1実施形態の車両用前照灯1が出射する光の配光パターンと異なる。
本実施形態の回折格子54Rは、コリメートレンズ53Rから出射するレーザ光を所定の配光パターンとなるように回折する。具体的には、回折格子54Rは、後述の合成光学系55において、第1発光光学系51Rと第2発光光学系51Gと第3発光光学系51Bとのそれぞれから出射する光がロービームの配光パターンとなるようにコリメートレンズ53Rから入射するレーザ光を回折する。この配光パターンには光度分布も含まれる。このため、本実施形態の回折格子54Rは、回折格子54Rから出射するレーザ光がロービームLの配光パターンの外形と同じ外形になると共にロービームLの配光パターンの光度分布に基づいた光度分布となるように、コリメートレンズ53Rから入射するレーザ光を回折する。こうして、第1発光光学系51Rからは、ロービームLの配光パターンの赤色成分の光が出射する。本実施形態では、この第1発光光学系51Rから出射する赤色成分の光を第1の光LRとする。
回折格子54Gは、コリメートレンズ53Gから出射するレーザ光を所定の配光パターンとなるように回折し、回折格子54Bは、コリメートレンズ53Bから出射するレーザ光を所定の配光パターンとなるように回折する。具体的には、回折格子54G,54Bは、合成光学系55において、第1発光光学系51Rと第2発光光学系51Gと第3発光光学系51Bとのそれぞれから出射する光がロービームLの配光パターンとなるようにコリメートレンズ53G,53Bから入射するレーザ光をそれぞれ回折する。上記のように配光パターンには光度分布も含まれる。このため、本実施形態の回折格子54G,54Bは、回折格子54G,54Bから出射するそれぞれのレーザ光がロービームLの配光パターンの外形と同じ外形になると共にロービームLの配光パターンの光度分布に基づいた光度分布となるように、コリメートレンズ53G,53Bから入射するレーザ光をそれぞれ回折する。こうして、第2発光光学系51GからはロービームLの配光パターンの緑色成分の光が出射し、第3発光光学系51BからはロービームLの配光パターンの青色成分の光が出射する。本実施形態では、第2発光光学系51Gから出射するこの緑色成分の光を第2の光LGとし、第3発光光学系51Bから出射する青色成分の光を第3の光LBとする。従って、本実施形態では、第1の光LRが最も波長が長く、第2の光LG、第3の光LBの順に波長が短くなる。
合成光学系55は、第1光学素子55fと第2光学素子55sとを有する。第1光学素子55fは、第1発光光学系51Rから出射する第1の光LRと、第2発光光学系51Gから出射する第2の光LGとを合成する光学素子である。本実施形態では、第1光学素子55fは、第1の光LRを透過すると共に第2の光LGを反射することで第1の光LRと第2の光LGとを合成する。また、第2光学素子55sは、第1光学素子55fで合成された第1の光LR及び第2の光LGと、第3発光光学系51Bから出射する第3の光LBとを合成する光学素子である。本実施形態では、第2光学素子55sは、第1光学素子55fで合成された第1の光LR及び第2の光LGを透過すると共に第3の光LBを反射することで第1の光LRと第2の光LGと第3の光LBとを合成する。この様な第1光学素子55f、第2光学素子55sとしては、ガラス基板上に酸化膜が積層された波長選択フィルタを挙げることができる。この酸化膜の種類や厚みをコントロールすることで、所定の波長よりも長い波長の光を透過し、この波長よりも短い波長の光を反射する構成とすることができる。
こうして、合成光学系55からは、第1の光LRと第2の光LGと第3の光LBとが合成された光が出射する。
次に本実施形態の車両用前照灯1による光の出射について説明する。
まず不図示の電源から電力が供給されることで、それぞれの光源52R,52G,52Bからレーザ光が出射する。上記のように光源52Rからは赤色のレーザ光が出射し、光源52Gからは緑色のレーザ光が出射し、光源52Bからは青色のレーザ光が出射する。それぞれのレーザ光は、コリメートレンズ53R,53G,53Bでコリメートされた後、回折格子54R,54G,54Bに入射する。そして、上記のように回折格子54R,54G,54Bでそれぞれのレーザ光が回折されて、第1発光光学系51RからはロービームLの配光パターンの赤色成分の光である第1の光LRが出射し、第2発光光学系51GからはロービームLの配光パターンの緑色成分の光である第2の光LGが出射し、第3発光光学系51BからはロービームLの配光パターンの青色成分の光である第3の光LBが出射する。
合成光学系55では、まず、第1の光LRと第2の光LGが第1光学素子55fで合成されて出射する。第1光学素子55fで合成された第1の光LR及び第2の光LGは、第2光学素子55sで第3の光LBと合成される。このとき、それぞれの光は外形がロービームLの外形と同様にされているため、それぞれの光の外形が互いに合わされて合成される。つまり、第1の光LRの外形と第2の光LGの外形と第3の光LBの外形とが、上記のように合成光学系で合わさるように、各発光光学系や合成光学系の位置が微調整されている。こうして、赤色の第1の光LRと緑色の第2の光LGと青色の第3の光LBとが合成された光は白色の光となる。また、第1の光LR、第2の光LG及び第3の光LBは、上記のようにそれぞれロービームLの配光パターンの光度分布に基づいた光度分布であるため、これらの光が合成された白色の光はロービームLの光度分布となる。
こうして、合成された白色の光は、カバー59の開口59Hから出射し、この光はフロントカバー12を介して車両用前照灯1から出射する。この光はロービームLの配光パターンを有しているため、照射される光はロービームLとなる。
図19は本実施形態における夜間照明用の配光パターンを示す図であり、具体的には、図19(A)はロービームの配光パターンを示す図であり、図19(B)はハイビームの配光パターンを示す図である。図19においてSは水平線を示し、配光パターンが太線で示される。図19(A)に示される夜間照明用の配光パターンであるロービームLの配光パターンのうち、領域LA1は最も光度が高い領域であり、領域LA2、領域LA3の順に光度が低くなる。つまり、それぞれの回折格子54R,54G,54Bは、合成された光がロービームLの光度分布を含む配光パターンを形成するように光を回折するのである。なお、図19において破線で示すように、ロービームLが照射される位置よりも上方にロービームLよりも光度の低い光が車両用前照灯1から照射されても良い。この光は、標識視認用の光OHSとされる。この場合、それぞれの回折格子54R,54G,54Bから出射される回折光に当該標識視認用の光OHSが含まれていることが好ましい。また、この場合、ロービームLと標識視認用の光OHSとで、夜間照明用の配光パターンが形成されると理解することができる。なお、夜間照明用の配光パターンは、夜間のみに用いられるものではなく、トンネル等の暗所においても使用される。
ところで、上記特許文献1の車両用前照灯のホログラム素子には、光源から白色の参照光が入射して、その回折光によりロービームの配光パターンが形成される。しかし、白色の光は複数の波長の光が合成されて成る光である。ところで、回折格子の一種であるホログラム素子は波長依存性を有している。従って、白色に含まれる互いに異なる波長の光は、ホログラム素子により互いに異なる配光パターンとなる傾向がある。このため、上記特許文献1に記載の車両用前照灯によりロービームが照射される場合、ロービームの配光パターンの縁近傍において、異なる色の光が浮き出る光のにじみが生じる。このため、小型化しつつ色のにじみを抑制したいとの要請がある。
そこで、本実施形態の車両用前照灯1は、光源52R,52G,52B及び回折格子54R,54G,54Bを有する3つの第1発光光学系51R、第2発光光学系51G、第3発光光学系51Bと、それぞれの発光光学系から出射する光を合成する合成光学系55と、を備える。そして、それぞれの発光光学系における光源52R,52G,52Bは互いに異なる所定の波長の光を出射し、それぞれの発光光学系における回折格子54R,54G,54Bは、合成光学系55で合成された光がロービームLの配光パターンとなるように各光源52R,52G,52Bからの光を回折する。
従って、本実施形態の車両用前照灯1はシェードを用いずともロービームLの配光パターンを形成することができるため、シェードを用いる車両用前照灯と比べて小型化することができる。また、それぞれの発光光学系において、光源52R,52G,52Bから出射する所定の波長の光が個別に回折格子54R,54G,54Bにより回折されて配光パターンが形成される。この際、それぞれの発光光学系において、回折格子54R,54G,54Bにより回折される光は上記のように所定の波長であるため、回折格子54R,54G,54Bが波長依存性を有しても、それぞれの回折格子54R,54G,54Bから出射する光における配光パターンの縁近傍で色のにじみが生じることを抑制することができる。この様に色のにじみが抑制された配光パターンを有する光が合成光学系55で合成されてロービームLの配光パターンが形成される。従って、本実施形態の車両用前照灯1により照射されるロービームLは、配光パターンの縁近傍で色のにじみが出ることを抑制することができる。また、本実施形態では、互いに異なる波長の光を出射する3つの発光光学系を有するため、それぞれの発光光学系から出射する光の光度を調整することにより、所望の色の光を出射することができる。
また、本実施形態の車両用前照灯1は、第1発光光学系51R、第2発光光学系51G、第3発光光学系51Bから出射するそれぞれの光が合成光学系55で合成され、合成された光が車両用前照灯1から出射する。このため、それぞれの第1発光光学系51R、第2発光光学系51G、第3発光光学系51Bから出射するそれぞれの光が、個別に車両用前照灯1から出射して車両用前照灯1の外で合成される場合よりも、車両からの距離によらず照射される配光パターンの縁近傍で色のにじみが出ること抑制することができる。また、それぞれの発光光学系から出射する光が合成光学系55で合成されてから、車両用前照灯から出射するため、車両用前照灯1の光の出射部位を小さくすることができ、デザインの自由度を向上させることができる。
(第10実施形態)
次に、本発明の第10実施形態について図20を参照して詳細に説明する。なお、第9実施形態と同一又は同等の構成要素については、特に説明する場合を除き、同一の参照符号を付して重複する説明は省略する。
次に、本発明の第10実施形態について図20を参照して詳細に説明する。なお、第9実施形態と同一又は同等の構成要素については、特に説明する場合を除き、同一の参照符号を付して重複する説明は省略する。
図20は、本実施形態にかかる車両用前照灯の光学系ユニットを図18と同様に示す図である。図20に示すように本実施形態の車両用前照灯の光学系ユニット50は、合成光学系55を備えず、第1発光光学系51R、第2発光光学系51G、第3発光光学系51Bから出射するそれぞれの光が合成されない状態で、カバー59から出射する点において、第9実施形態の光学系ユニット50と異なる。本実施形態では、第1発光光学系51R、第2発光光学系51G、第3発光光学系51Bは、光の出射方向がカバー59の開口59H側とされている。
本実施形態においても、第9実施形態と同様にして、第1発光光学系51Rの回折格子54R、第2発光光学系51Gの回折格子54G、第3発光光学系51Bの回折格子54Bのそれぞれにおいて、合成された光がロービームLの配光パターンを形成するように光を回折する。回折格子54Rから出射する第1の光LR、回折格子54Gから出射する第2の光LG、及び、回折格子54Bから出射する第3の光LBは、それぞれカバー59の開口59Hから出射し、フロントカバー12を介して車両用前照灯の外部に照射される。このとき、第1の光LR、第2の光LG、及び、第3の光LBは、車両から所定の距離離れた焦点位置においてそれぞれの配光パターンの外形が概ね一致するように照射される。この焦点位置は、例えば車両から25m離れた位置とされる。つまり、本実施形態では、上記のように外形が一致するように、第1発光光学系51R、第2発光光学系51G、第3発光光学系51Bの光の出射方向が微調整されている。なお、本実施形態においても、図19において破線で示すように、標識視認用の光OHSが出射されても良い。この場合、第9実施形態と同様に、それぞれの回折格子54R,54G,54Bから出射される回折光に当該標識視認用の光OHSが含まれていることが好ましい。
本実施形態の車両用前照灯によれば、第9実施形態の合成光学系55を用いないため、簡易な構成とすることができる。なお、本実施形態の第1の光LRの外形と第2の光LGの外形と第3の光LBの外形とは、上記の焦点位置以外では互いに僅かにずれる傾向にある。しかし、白色の光を1つに回折格子に入射してえられる回折光と比べると、この外形のずれを抑制することができる。従って、本実施形態によっても、小型化しつつ色のにじみを抑制し得る車両用前照灯が実現され得る。
なお、上記第9、第10実施形態では、車両用前照灯1からロービームLが出射するものとされたが、第9、第10実施形態は夜間照明用の光を出射するのであればこれに限らない。例えば、車両用前照灯1からは、ハイビームHが出射するものとされても良い。その場合、図19(B)に示される夜間照明用の配光パターンであるハイビームHの配光パターンの光が照射される。なお、図19(B)のハイビームHの配光パターンのうち、領域HA1は最も光度が高い領域であり、領域HA2は領域HA1よりも光度が低い領域である。つまり、それぞれの回折格子は、合成された光がハイビームHの光度分布を含む配光パターンを形成するように光を回折するのである。
また、上記第9、第10実施形態では、赤色成分の第1の光LRを出射する第1発光光学系と、緑色成分の第2の光LGを出射する第2発光光学系と、青色成分の第3の光LBを出射する第3発光光学系とを備えた。しかし、上記第9、第10実施形態の車両用前照灯は、少なくとも2つの発光光学系が、それぞれ互いに異なる所定の波長の光を出射する光源を有し、合成された光が夜間照明用の配光パターンとなる限りにおいて、発光光学系の数や、光源から出射する光は、限定されない。例えば、発光光学系が2つの場合、一方の発光光学系が緑色の光を出射し、他方の発光光学系が赤色の光を出射して、黄色の夜間照明の光とされても良く、或いは、一方の発光光学系が青色の光を出射し、他方の発光光学系が黄色の光を出射して、白色の夜間照明の光とされても良い。
また、発光光学系は3つ以上であっても良い。この場合、例えば、ロービームLの黄色成分の光を出射する第4発光光学系を備えても良い。例えば、上記の赤色、緑色、青色の発光光学系に加えて、第4発光光学系は、ロービームLの黄色成分の光を出射するものとしても良い。また、赤色、緑色、青色の一部の光度が低い場合、第4発光光学系が光度の低い色と同じ色成分の光を出射するものとしても良い。
また、上記第9、第10実施形態では、ホワイトバランス調整回路が更に設けられても良い。このホワイトバランス調整回路は、第1発光光学系51Rの光源52Rから出射する光の全光束量と、第2発光光学系51Gの光源52Gから出射する光の全光束量と、第3発光光学系51Bの光源52Bから出射する光の全光束量と、を制御することで、所望のホワイトバランスとすることができる。例えば、法規の範囲内で、暖色系の白色の光を出射したり、青色系の白色の光を出射するように、切り換えが可能にしたりしても良い。
また、第9実施形態では、第1光学素子55fは、第1の光を第1の光LRを透過すると共に第2の光LGを反射することで第1の光LRと第2の光LGとを合成し、第2光学素子55sは、第1光学素子55fで合成された第1の光LR及び第2の光LGを透過すると共に第3の光LBを反射することで第1の光LRと第2の光LGと第3の光LBとを合成した。しかし、例えば、第1光学素子55fにおいて第3の光LBと第2の光LGとが合成され、第2光学素子55sにおいて第1光学素子55fで合成された第3の光LB及び第2の光LGと第1の光LRとが合成される構成とされても良い。この場合、第9実施形態の第1発光光学系51Rと第3発光光学系51Bとの位置が入れ替わる。また、第9実施形態において、所定の波長帯域の光を透過し、他の波長帯域の光を反射するバンドパスフィルタが第1光学素子55fや第2光学素子55sに用いられても良い。また、合成光学系55は、それぞれの発光光学系から出射する光の外形を合わせて合成すれば良く、第9実施形態の構成や上記構成に限定されない。
以上のように、本発明によれば、運転し易い車両用照明灯具、小型化しつつ色のにじみを抑制し得る車両用前照灯が提供され、自動車等の車両用照明灯具などの分野において利用可能である。
1・・・車両用前照灯
10・・・筐体
20・・・灯具ユニット
30・・・ヒートシンク
40・・・冷却ファン
51R・・・第1発光光学系
51G・・・第2発光光学系
51B・・・第3発光光学系
52R,52G,52B・・・光源
54R,54G,54B・・・回折格子
55・・・合成光学系
55f・・・第1光学素子
55s・・・第2光学素子
10・・・筐体
20・・・灯具ユニット
30・・・ヒートシンク
40・・・冷却ファン
51R・・・第1発光光学系
51G・・・第2発光光学系
51B・・・第3発光光学系
52R,52G,52B・・・光源
54R,54G,54B・・・回折格子
55・・・合成光学系
55f・・・第1光学素子
55s・・・第2光学素子
Claims (31)
- 光源と、
前記光源から入射する光を回折する回折格子と、
を備え、
前記回折格子により回折される光は、所定の配光パターンで照射され、
前記回折格子に入射する光のうち前記回折格子を直進して透過する成分が投影される投影領域は、前記配光パターンよりも下側であり、車両の運転者の視界が前記車両により妨げられる範囲内に位置する
ことを特徴とする車両用照明灯具。 - 前記配光パターンは、ロービームの配光パターンである
ことを特徴とする請求項1に記載の車両用照明灯具。 - 前記配光パターンは、光度分布を有する
ことを特徴とする請求項1又は2に記載の車両用照明灯具。 - 1つの前記光源と1つの前記回折格子とを含む発光光学系を複数有し、
それぞれの前記発光光学系から出射する光を合成する合成光学系を更に備え、
それぞれの前記発光光学系における前記光源は互いに異なる所定の波長の光を出射し、それぞれの前記発光光学系における前記回折格子は、前記合成光学系で合成された光がロービームの配光パターンとなるように前記光源からの光を回折する
ことを特徴とする請求項3に記載の車両用照明灯具。 - それぞれの前記発光光学系における前記回折格子を直進して透過する成分は前記合成光学系で合成され、前記投影領域に投影される
ことを特徴とする請求項4に記載の車両用照明灯具。 - 光源と、
前記光源から入射する光を回折する回折格子と、
前記回折格子を直進して透過する光成分の投影領域と前記回折格子との間における前記光成分の光路上に配置され、光のエネルギー密度を下げる光学素子と、
を備え、
前記回折格子から出射される光のうち前記回折格子により回折される光は、所定の配光パターンで照射される
ことを特徴とする車両用照明灯具。 - 前記光源及び前記回折格子を収容する筐体を備え、前記光学素子は、前記筐体内に配置される
ことを特徴とする請求項6に記載の車両用照明灯具。 - 前記光学素子は、遮光素子である
ことを特徴とする請求項6に記載の車両用照明灯具。 - 前記光学素子は、光拡散素子である
ことを特徴とする請求項6に記載の車両用照明灯具。 - 前記投影領域は、前記配光パターンの外側に位置する
ことを特徴とする請求項6から9のいずれか1項に記載の車両用照明灯具。 - 前記配光パターンは、所定の光度分布を有し、
前記投影領域は、前記配光パターンのうち、前記回折格子により回折される光の光度分布のなかで最も高い光度の半値よりも低い光度となる領域内に含まれる
ことを特徴とする請求項6から9のいずれか1項に記載の車両用照明灯具。 - 1つの前記光源と1つの前記回折格子とを含む発光光学系を複数有し、
それぞれの前記発光光学系から出射する光を合成する合成光学系を更に備え、
それぞれの前記発光光学系における前記光源は互いに異なる所定の波長の光を出射し、それぞれの前記発光光学系における前記回折格子は、前記合成光学系で合成された光が前記配光パターンとなるように前記光源からの光を回折する
ことを特徴とする請求項10又は11に記載の車両用照明灯具。 - それぞれの前記発光光学系における前記回折格子を直進して透過する光成分は前記合成光学系で合成され、
前記光学素子は、前記合成光学系で合成された光成分のエネルギー密度を下げる
ことを特徴とする請求項12に記載の車両用照明灯具。 - 光源と、
前記光源から入射する光を回折する回折格子と、
を備え、
前記回折格子により回折される光と前記回折格子を直進して透過する光とで所定の光度分布を有する配光パターンが形成され、
前記配光パターンのなかで前記回折格子を直進して透過する光の投影領域は、前記回折格子により回折される光の光度分布のなかで最も高い光度の半値よりも高い光度となる領域内に位置する
ことを特徴とする車両用照明灯具。 - 前記投影領域は、前記光度分布のなかで最も高い光度となる部位を避けて位置する
ことを特徴とする請求項14に記載の車両用照明灯具。 - 前記領域は、ホットゾーンである
ことを特徴とする請求項15に記載の車両用照明灯具。 - 前記配光パターンは、ロービームの配光パターンである
ことを特徴とする請求項16に記載の車両用照明灯具。 - 1つの前記光源と1つの前記回折格子とを含む発光光学系を複数有し、
それぞれの前記発光光学系から出射する光を合成する合成光学系を更に備え、
それぞれの前記発光光学系における前記光源は互いに異なる所定の波長の光を出射し、それぞれの前記発光光学系における前記回折格子は、前記合成光学系で合成された光が前記配光パターンとなるように前記光源からの光を出射する
ことを特徴とする請求項17に記載の車両用照明灯具。 - それぞれの前記発光光学系における前記回折格子を直進して透過する光は前記合成光学系で合成され、前記投影領域に照射される
ことを特徴とする請求項18に記載の車両用照明灯具。 - 光源と、
前記光源から入射する光を回折する回折格子と、
を備え、
前記回折格子から出射される光は、所定の光度分布を有する配光パターンで照射され、
前記配光パターンのうち前記回折格子を直進して透過する光の投影領域では、前記回折格子により回折され前記投影領域に照射される光の光度が前記投影領域の外側周縁に照射される光の光度よりも小さくされる
ことを特徴とする車両用照明灯具。 - 前記回折格子により回折され前記投影領域に照射される光の光度と、前記回折格子を直進して透過し前記投影領域に照射される光の光度との合計値は、前記回折格子により回折される光の光度分布のなかで最も高い光度よりも低くされる
ことを特徴とする請求項20に記載の車両用照明灯具。 - 前記回折格子により回折され前記投影領域に照射される光の光度は、ゼロである
ことを特徴とする請求項21に記載の車両用照明灯具。 - 前記投影領域は、前記回折格子により回折される光の光度分布のなかで最も高い光度の半値よりも高い光度となる領域内に含まれる
ことを特徴とする請求項20から22のいずれか1項に記載の車両用照明灯具。 - 前記投影領域は、前記回折格子により回折される光の光度分布のなかで最も高い光度となる位置を含んでいる
ことを特徴とする請求項23項に記載の車両用照明灯具。 - 1つの前記光源と1つの前記回折格子とを含む発光光学系を複数有し、
それぞれの前記発光光学系から出射する光を合成する合成光学系を更に備え、
それぞれの前記発光光学系における前記光源は互いに異なる所定の波長の光を出射し、それぞれの前記発光光学系における前記回折格子は、前記合成光学系で合成された光が前記配光パターンとなるように前記光源からの光を出射する
ことを特徴とする請求項20から22のいずれか1項に記載の車両用照明灯具。 - それぞれの前記発光光学系における前記回折格子を直進して透過する光は前記合成光学系で合成され、前記投影領域に照射される
ことを特徴とする請求項25に記載の車両用照明灯具。 - 1つの前記光源と1つの前記回折格子とを含む発光光学系を複数有し、
それぞれの前記発光光学系における前記光源は互いに異なる所定の波長の光を出射し、それぞれの前記発光光学系における前記回折格子は、車両から所定の距離離れた位置において前記配光パターンとなるように前記光源からの光を出射する
ことを特徴とする請求項20から22のいずれか1項に記載の車両用照明灯具。 - 光源及び回折格子を有する少なくとも2つの発光光学系を備え、
それぞれの前記発光光学系における前記光源は互いに異なる所定の波長の光を出射し、
それぞれの前記発光光学系における前記回折格子は、それぞれの前記発光光学系から出射する光が合成された光が夜間照明用の配光パターンとなるように前記光源からの光を回折する
ことを特徴とする車両用前照灯。 - 前記発光光学系を少なくとも3つ備える
ことを特徴とする請求項28に記載の車両用前照灯。 - それぞれの前記発光光学系から出射する光の外形を合わせて合成する合成光学系を更に備える
ことを特徴とする請求項28または29に記載の車両用前照灯。 - 前記合成光学系は、少なくとも1つの波長選択フィルタを有し、
前記波長選択フィルタは、当該波長選択フィルタを透過する光と、当該波長選択フィルタを反射する光とを合成する
ことを特徴とする請求項30に記載の車両用前照灯。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019514360A JP7240312B2 (ja) | 2017-04-28 | 2018-04-10 | 車両用照明灯具、及び車両用前照灯 |
EP18790592.2A EP3617585A4 (en) | 2017-04-28 | 2018-04-10 | VEHICLE LIGHTS AND VEHICLE HEADLIGHTS |
US16/608,357 US11156335B2 (en) | 2017-04-28 | 2018-04-10 | Vehicle illumination lamp and vehicle headlight |
CN201880027235.6A CN110573795B (zh) | 2017-04-28 | 2018-04-10 | 车辆用照明灯具以及车辆用前照灯 |
US17/478,035 US11614212B2 (en) | 2017-04-28 | 2021-09-17 | Vehicle illumination lamp |
JP2023031321A JP2023071849A (ja) | 2017-04-28 | 2023-03-01 | 車両用前照灯 |
Applications Claiming Priority (10)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-090706 | 2017-04-28 | ||
JP2017090708 | 2017-04-28 | ||
JP2017-090710 | 2017-04-28 | ||
JP2017-090709 | 2017-04-28 | ||
JP2017090709 | 2017-04-28 | ||
JP2017090710 | 2017-04-28 | ||
JP2017-090707 | 2017-04-28 | ||
JP2017090706 | 2017-04-28 | ||
JP2017-090708 | 2017-04-28 | ||
JP2017090707 | 2017-04-28 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/608,357 A-371-Of-International US11156335B2 (en) | 2017-04-28 | 2018-04-10 | Vehicle illumination lamp and vehicle headlight |
US17/478,035 Division US11614212B2 (en) | 2017-04-28 | 2021-09-17 | Vehicle illumination lamp |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018198760A1 true WO2018198760A1 (ja) | 2018-11-01 |
Family
ID=63919698
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/015112 WO2018198760A1 (ja) | 2017-04-28 | 2018-04-10 | 車両用照明灯具、及び車両用前照灯 |
Country Status (5)
Country | Link |
---|---|
US (2) | US11156335B2 (ja) |
EP (1) | EP3617585A4 (ja) |
JP (2) | JP7240312B2 (ja) |
CN (1) | CN110573795B (ja) |
WO (1) | WO2018198760A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020166650A1 (ja) * | 2019-02-15 | 2020-08-20 | 株式会社小糸製作所 | 車両用前照灯、及び車両用灯具 |
KR20210125584A (ko) * | 2019-04-24 | 2021-10-18 | 제트카베 그룹 게엠베하 | 자동차용 지면 투영 장치 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023191345A1 (ko) * | 2022-03-29 | 2023-10-05 | 에스엘 주식회사 | 조명 장치 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004252253A (ja) * | 2003-02-21 | 2004-09-09 | Seiko Epson Corp | 照明装置およびそれを備えた表示装置 |
JP2006147377A (ja) * | 2004-11-22 | 2006-06-08 | Stanley Electric Co Ltd | 車両用灯具 |
JP2010135069A (ja) * | 2008-10-29 | 2010-06-17 | Stanley Electric Co Ltd | プロジェクター型ヘッドランプ |
JP2012146621A (ja) | 2010-12-20 | 2012-08-02 | Stanley Electric Co Ltd | 車両用灯具 |
JP2013171645A (ja) * | 2012-02-20 | 2013-09-02 | Stanley Electric Co Ltd | 照明用光学系 |
JP2013196957A (ja) * | 2012-03-21 | 2013-09-30 | Stanley Electric Co Ltd | 照明用光学系 |
JP2017068948A (ja) * | 2015-09-29 | 2017-04-06 | 株式会社小糸製作所 | 車両用灯具 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03120513A (ja) | 1989-10-04 | 1991-05-22 | Canon Inc | 表示装置 |
US5488493A (en) | 1993-11-01 | 1996-01-30 | Hughes Aircraft Company | Holographic CHMSL including a hologram assembly and a refractive element laminarly attached thereto for diverging zero order beam |
IT1261132B (it) * | 1993-12-23 | 1996-05-09 | Carello Spa | Reticolo di diffrazione atto a generare un flusso di radiazione luminosa con distribuzione di intensita' prefissata in un'area sottendente il flusso stesso. |
JP4399678B1 (ja) * | 2009-02-12 | 2010-01-20 | 鈴木 優一 | 照明装置および表示装置 |
JP5380498B2 (ja) * | 2011-07-25 | 2014-01-08 | シャープ株式会社 | 光源装置、照明装置、車両用前照灯および車両 |
GB2499579B (en) * | 2012-02-07 | 2014-11-26 | Two Trees Photonics Ltd | Lighting device |
WO2015040993A1 (ja) | 2013-09-20 | 2015-03-26 | 本田技研工業株式会社 | 車両灯体制御装置 |
CN106574759B (zh) * | 2014-09-30 | 2019-05-28 | 麦克赛尔株式会社 | 车辆用灯具 |
BR112017009500A8 (pt) | 2014-11-07 | 2022-09-20 | Dainippon Printing Co Ltd | Dispositivo de iluminação |
WO2016072484A1 (ja) | 2014-11-07 | 2016-05-12 | 大日本印刷株式会社 | 光学装置及び光学装置が搭載された車両、照明装置 |
JP2017009782A (ja) | 2015-06-22 | 2017-01-12 | セイコーエプソン株式会社 | 照明装置およびプロジェクター |
CN109964075B (zh) | 2016-11-17 | 2022-02-11 | 大日本印刷株式会社 | 照明装置及其制造方法 |
-
2018
- 2018-04-10 CN CN201880027235.6A patent/CN110573795B/zh active Active
- 2018-04-10 JP JP2019514360A patent/JP7240312B2/ja active Active
- 2018-04-10 WO PCT/JP2018/015112 patent/WO2018198760A1/ja unknown
- 2018-04-10 EP EP18790592.2A patent/EP3617585A4/en not_active Withdrawn
- 2018-04-10 US US16/608,357 patent/US11156335B2/en active Active
-
2021
- 2021-09-17 US US17/478,035 patent/US11614212B2/en active Active
-
2023
- 2023-03-01 JP JP2023031321A patent/JP2023071849A/ja active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004252253A (ja) * | 2003-02-21 | 2004-09-09 | Seiko Epson Corp | 照明装置およびそれを備えた表示装置 |
JP2006147377A (ja) * | 2004-11-22 | 2006-06-08 | Stanley Electric Co Ltd | 車両用灯具 |
JP2010135069A (ja) * | 2008-10-29 | 2010-06-17 | Stanley Electric Co Ltd | プロジェクター型ヘッドランプ |
JP2012146621A (ja) | 2010-12-20 | 2012-08-02 | Stanley Electric Co Ltd | 車両用灯具 |
JP2013171645A (ja) * | 2012-02-20 | 2013-09-02 | Stanley Electric Co Ltd | 照明用光学系 |
JP2013196957A (ja) * | 2012-03-21 | 2013-09-30 | Stanley Electric Co Ltd | 照明用光学系 |
JP2017068948A (ja) * | 2015-09-29 | 2017-04-06 | 株式会社小糸製作所 | 車両用灯具 |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020166650A1 (ja) * | 2019-02-15 | 2020-08-20 | 株式会社小糸製作所 | 車両用前照灯、及び車両用灯具 |
JPWO2020166650A1 (ja) * | 2019-02-15 | 2021-12-09 | 株式会社小糸製作所 | 車両用前照灯、及び車両用灯具 |
JP7403482B2 (ja) | 2019-02-15 | 2023-12-22 | 株式会社小糸製作所 | 車両用前照灯、及び車両用灯具 |
KR20210125584A (ko) * | 2019-04-24 | 2021-10-18 | 제트카베 그룹 게엠베하 | 자동차용 지면 투영 장치 |
JP2022529494A (ja) * | 2019-04-24 | 2022-06-22 | ツェットカーヴェー グループ ゲーエムベーハー | 自動車用の地面投影装置 |
KR102593820B1 (ko) * | 2019-04-24 | 2023-10-25 | 제트카베 그룹 게엠베하 | 자동차용 지면 투영 장치 |
JP7416825B2 (ja) | 2019-04-24 | 2024-01-17 | ツェットカーヴェー グループ ゲーエムベーハー | 自動車用の地面投影装置 |
Also Published As
Publication number | Publication date |
---|---|
EP3617585A1 (en) | 2020-03-04 |
CN110573795A (zh) | 2019-12-13 |
CN110573795B (zh) | 2022-06-21 |
US20220003377A1 (en) | 2022-01-06 |
US11614212B2 (en) | 2023-03-28 |
US20210116092A1 (en) | 2021-04-22 |
JP2023071849A (ja) | 2023-05-23 |
US11156335B2 (en) | 2021-10-26 |
EP3617585A4 (en) | 2021-02-24 |
JP7240312B2 (ja) | 2023-03-15 |
JPWO2018198760A1 (ja) | 2020-02-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6174337B2 (ja) | 車両用灯具 | |
US7699514B2 (en) | LED vehicular lamp with flat reflector | |
US8517581B2 (en) | Vehicle light with LED light source | |
JP4878539B2 (ja) | 自動二輪車用前照灯 | |
JP4587048B2 (ja) | 車両用灯具 | |
US9243768B2 (en) | Light source for headlight and headlight | |
US20140029281A1 (en) | Light source for an automotive headlight with adaptive function | |
JP2023071849A (ja) | 車両用前照灯 | |
US8523413B2 (en) | LED collimator element for a vehicle headlight with a low-beam function | |
US20120206931A1 (en) | Vehicle lighting device | |
KR101410878B1 (ko) | 자동차용 전조등 | |
JP6659456B2 (ja) | 車両用灯具 | |
JP7182375B2 (ja) | 自動車両用の灯火モジュール | |
JP2013137961A (ja) | 車両用前照灯、車両用前照灯装置 | |
JP2019212528A (ja) | 車両用灯具 | |
JP7164594B2 (ja) | 車両用灯具 | |
JPWO2019082697A1 (ja) | 車両用灯具 | |
JP6733715B2 (ja) | 車両用灯具 | |
JP2548029Y2 (ja) | プロジエクタ型の多灯式前照灯 | |
WO2019159801A1 (ja) | 車両用灯具 | |
CN113531476A (zh) | 远光照明装置、车灯及车辆 | |
TW201815600A (zh) | 用以迎賓燈之燈具 | |
JPH04102107U (ja) | 多灯式前照灯 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18790592 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019514360 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2018790592 Country of ref document: EP Effective date: 20191128 |