Nothing Special   »   [go: up one dir, main page]

WO2018198261A1 - 基地局、無線端末、無線通信システム、及び通信制御方法 - Google Patents

基地局、無線端末、無線通信システム、及び通信制御方法 Download PDF

Info

Publication number
WO2018198261A1
WO2018198261A1 PCT/JP2017/016660 JP2017016660W WO2018198261A1 WO 2018198261 A1 WO2018198261 A1 WO 2018198261A1 JP 2017016660 W JP2017016660 W JP 2017016660W WO 2018198261 A1 WO2018198261 A1 WO 2018198261A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
base station
buffer
radio
control
Prior art date
Application number
PCT/JP2017/016660
Other languages
English (en)
French (fr)
Inventor
俊太朗 松原
大出 高義
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to PCT/JP2017/016660 priority Critical patent/WO2018198261A1/ja
Publication of WO2018198261A1 publication Critical patent/WO2018198261A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters
    • H04W28/20Negotiating bandwidth

Definitions

  • the present invention relates to a base station, a wireless terminal, a wireless communication system, and a communication control method.
  • radio resources used for uplink (UL) and downlink (DL) data transmission are allocated in units of subframes.
  • One subframe has two slots.
  • control information that defines communication conditions such as a modulation scheme is arranged in at least one slot included in one subframe.
  • a method for reporting the amount of DL data buffered in the transmission buffer of the base station to the wireless terminal has been proposed. Also, a method for reporting the amount of UL data buffered in the transmission buffer of the wireless terminal to the base station has been proposed.
  • the LTE standard defines BSR (Buffer Status Reports) in order for a wireless terminal to report the buffer status of a transmission buffer to a base station.
  • BSR Buffer Status Reports
  • CQI Channel Quality Indicator
  • a large size of data is transmitted in the data transmission section where many slots are aggregated.
  • a data transmission section capable of transmitting data having a size larger than the free capacity of the reception buffer is set, there is a risk that the reception buffer overflows due to data transmitted in the data transmission section. If the data transmission interval setting (aggregation setting) is maintained, the reception buffer may overflow again due to the retransmitted data, even if the reception buffer overflows and data retransmission control is performed. As a result, retransmission control is repeated, leading to an increase in transmission delay and deterioration in transmission efficiency.
  • the slot is an example of a transmission section (unit section) having a unit time width. Even when unit sections other than slots are aggregated, transmission delay and efficiency deterioration may occur for the same reason as described above.
  • the unit section is an example of a radio resource. In the above description, for convenience of explanation, the method of aggregating unit sections in the time direction has been described. However, when a plurality of radio resources are aggregated in the frequency direction, transmission delay and efficiency degradation may occur for the same reason as described above. .
  • an object of the present invention is to provide a base station, a wireless terminal, a wireless communication system, and a communication control method capable of suppressing the risk of transmission delay and efficiency deterioration.
  • a plurality of radio resources are transmitted from a base station that transmits buffer information related to a reception buffer and controls whether to aggregate a plurality of radio resources based on the buffer information.
  • a wireless terminal having a control unit that receives control information related to aggregation of data.
  • the first embodiment relates to control for aggregating a plurality of radio resources, and relates to a method for dynamically controlling the number of radio resources to be aggregated in consideration of the state of a reception buffer in the control.
  • FIG. 1 is a diagram illustrating an example of a wireless communication system according to the first embodiment.
  • the wireless communication system 5 illustrated in FIG. 1 is an example of a wireless communication system according to the first embodiment.
  • the wireless communication system 5 includes a base station 10 and a wireless terminal 20.
  • the base station 10 includes an antenna 11, a radio unit 12, and a control unit 13.
  • the wireless terminal 20 includes an antenna 21, a wireless unit 22, a control unit 23, and a reception buffer 24.
  • the number of antennas 11 and 21 may be two or more.
  • the wireless communication system 5 may have two or more wireless terminals.
  • the antennas 11 and 21 are antennas used for transmission / reception of a radio (RF: Radio Frequency) signal.
  • the radio units 12 and 22 are signal processing circuits that execute processing related to RF signals transmitted and received via the antennas 11 and 21, respectively. For example, the radio units 12 and 22 convert (frequency conversion) between an RF signal and a baseband (BB) signal (BB signal), and convert between an analog BB signal and a digital BB signal. (AD (Analog-to-Digital) / DA (Digital-to-Analog) conversion), modulation / demodulation, and the like are executed.
  • AD Analog-to-Digital
  • DA Digital-to-Analog
  • the control units 13 and 23 are processors such as a CPU (Central Processing Unit), a DSP (Digital Signal Processor), an ASIC (Application Specific Integrated Circuit), and an FPGA (Field Programmable Gate Array).
  • the control units 13 and 23 execute processing using a memory (not shown) such as a RAM (Random Access Memory) mounted in the base station 10 and the wireless terminal 20, respectively.
  • a memory not shown
  • RAM Random Access Memory
  • Control units 13 and 23 control transmission and reception by the radio units 12 and 22, respectively.
  • the control unit 23 controls the radio unit 22 so as to receive an RF signal under communication conditions (such as a modulation scheme) set by the base station 10.
  • Examples of the modulation method include QPSK (QuadratureQuPhase Keying), 16QAM (Quadrature Amplitude Modulation), and 64QAM.
  • the communication condition includes, for example, a coding rate in addition to the modulation method.
  • the setting of the coding rate can be applied to coding / decoding by the control units 13 and 23.
  • the reception buffer 24 is a buffer memory in which data received by the wireless unit 22 is stored.
  • a buffer memory for example, a volatile memory such as DRAM (Dynamic Random Access Memory) or SRAM (Static Random Access Memory) or a non-volatile memory such as a flash memory can be used.
  • the state of the reception buffer 24 (used amount, used rate, free capacity, unused rate, etc.) is monitored by the control unit 23.
  • a plurality of radio resources (unit resources) having a unit width are aggregated, and DL data is transmitted from the base station 10 to the radio terminal 20 using a set of unit resources (aggregation resources) obtained by aggregation. Sent.
  • a time interval (unit interval) having a unit time width is an example of a unit resource.
  • the unit time width is 0.5 ms
  • the slot corresponds to the unit section
  • the subframe corresponds to the unit section
  • 10 ms the frame corresponds to the unit section.
  • One symbol may be set as a unit section.
  • a frequency band (unit band) having a unit frequency width is an example of a unit resource.
  • a band corresponding to 1 RB corresponds to the unit band. If the unit width in the time direction is set to 0.5 ms and the unit width in the frequency direction is set to 180 kHz, 1 RB corresponds to a unit resource.
  • the technology according to the first embodiment can be applied to aggregation of radio resources in various forms.
  • the example of the radio resource described above is merely an example, and the unit time width, unit frequency width, resource block size, and the like can be modified.
  • a transmission of a control signal (Ctrl) including communication conditions such as a modulation scheme and a coding rate is assigned to a unit resource located at one end of the aggregate resource.
  • Control signal transmission is not allocated to the remaining unit resources.
  • communication conditions of control signals received by the unit resources located at one end of the aggregated resource are applied.
  • the control unit 13 can control the number of unit resources (aggregation number) included in the aggregation resource. For example, the control unit 13 controls the aggregation number based on the state of the reception buffer 24. In this case, the control unit 13 requests the wireless terminal 20 for buffer information 25 indicating the state of the reception buffer 24 (buffer information request 14). In the wireless terminal 20 that has received this request 14, the control unit 23 confirms the state of the reception buffer 24 and generates buffer information 25. Then, as a response to the request 14, the control unit 23 transmits buffer information 25 regarding the reception buffer 24 to the base station 10.
  • the control unit 13 controls whether or not the above-described unit resource aggregation is performed based on the buffer information 25. For example, as shown in FIG. 1A, when the free capacity 25a of the reception buffer 24 is twice or more the unit width, the control unit 13 controls the radio unit 12 so that unit resources are aggregated. In this example, since the free capacity 25a of the reception buffer 24 is larger than three times the unit width, the control unit 13 sets the aggregation number to 3, and performs DL data transmission with the aggregation resource 30 including the unit resources 31, 32, and 33. carry out.
  • the control unit 13 controls the radio unit 12 so that unit resources are not aggregated. In this case, the control unit 13 performs DL data transmission using the unit resources 34 and 35 each including a control signal (Ctrl).
  • the control unit 13 Before executing the DL data transmission, the control unit 13 transmits the control information 15 related to the aggregation to the wireless terminal 20.
  • the control information 15 includes information such as the presence / absence of aggregation and the number of aggregations, for example.
  • the control unit 23 controls reception by the wireless unit 22 based on the control information 15.
  • the control unit 23 sets the communication condition of the control signal (Ctrl) received by the unit resource 31 based on the aggregation number included in the control information 15 as the unit resource 32. , 33 is applied to reception. Further, when the DL data 16 is transmitted by the unit resources 34 and 35 without being aggregated, the control unit 23 sets the communication condition of the control signal (Ctrl) received by the unit resources 34 and 35 to the unit resources 34 and 35, respectively. Applies to reception at
  • the buffer information 25 is notified from the radio terminal 20 to the base station 10 via UL, and the reception buffer 24 overflows and is retransmitted by controlling the presence / absence of aggregation and the number of aggregations according to the state of the reception buffer 24. Risk of control being implemented can be suppressed. As a result, it is possible to suppress the risk of transmission delay and efficiency degradation due to repeated retransmission.
  • the first embodiment has been described above. ⁇ 2. Second Embodiment> Next, a second embodiment will be described.
  • the second embodiment relates to control for aggregating a plurality of radio resources, and relates to a method for dynamically controlling the number of radio resources to be aggregated in consideration of the state of a reception buffer in the control.
  • FIG. 2 is a diagram illustrating an example of a wireless communication system according to the second embodiment.
  • the wireless communication system 50 illustrated in FIG. 2 is an example of a wireless communication system according to the second embodiment.
  • the wireless communication system 50 includes a base station 100 and a wireless terminal 200.
  • the radio communication system 50 may have two or more base stations and radio terminals.
  • data transmission is performed using a unit section L0 having a unit time width.
  • the communication section L1 to which UL and DL transmission resources are allocated includes at least one unit section L0.
  • the subframe is an example of a communication section L1.
  • a slot and a symbol are examples of the unit interval L0.
  • two unit sections L0 are included in one communication section L1.
  • four unit sections L0 are included in one communication section L1.
  • the transmission of the control signal Ctrl used for data transmission in the communication section L1 is assigned to the unit section L0 located at the head of the communication section L1.
  • the control signal Ctrl includes information indicating communication conditions such as a modulation scheme (QPSK, 16QAM, 64QAM, etc.) and a coding rate. That is, in each unit section L0 included in the communication section L1, data transmission is performed under the same communication conditions.
  • the allocated resource of the control signal Ctrl in one communication section L1 decreases, so that more data can be transmitted.
  • more data can be transmitted in (B) in which one communication section L1 includes four unit sections L0. It is.
  • FIG. 3 shows a control (aggregation control) sequence that enables use of a communication section L1 in which a plurality of unit sections L0 are aggregated.
  • FIG. 3 is a sequence diagram for explaining an operation example of the wireless communication system (operation related to unit section aggregation).
  • Base station 100 transmits a known pilot signal to radio terminal 200 using communication section L1 including a predetermined number (two or more) of unit sections L0. Note that a modification may be made such that a reference signal for DL data demodulation is transmitted instead of a known pilot signal.
  • a reference signal for DL data demodulation for example, there is RS (Cell specific reference signal // UE specific reference signal). This RS is a reference signal used for channel estimation performed when demodulating DL data, and is an example of a known signal.
  • the radio terminal 200 measures a CQI (Channel Quality Indicator) using a pilot signal. Then, the radio terminal 200 transmits the measured CQI to the base station 100.
  • the CQI is transmitted from the base station 100 by a base station 100 as a transmission destination of DL data, a transmission method (such as whether or not MIMO (Multiple-Input-and Multiple-Output) is implemented), data amount, allocation resource, and MCS (Modulation and). Used for selecting Coding Scheme).
  • the base station 100 performs aggregation control based on the CQI received from the radio terminal 200. For example, the base station 100 specifies the number of unit sections L0 that can be aggregated (aggregation number) based on the CQI. In addition, the base station 100 determines whether or not aggregation is possible based on the identified aggregation number. For example, when the aggregation number is larger than a predetermined number (a number of 2 or more), the base station 100 determines that aggregation is possible. Note that the base station 100 may determine whether or not aggregation is possible in consideration of conditions other than the number of aggregations (cell congestion status, retransmission rate, and the like).
  • the base station 100 transmits control information including information such as the presence / absence of aggregation and the number of aggregations to the radio terminal 200.
  • the presence / absence of aggregation is information indicating whether or not aggregation is performed when DL data is transmitted.
  • the number of aggregations indicates the number of aggregations applied to DL data transmission, and is a number of 1 or more (1 when there is no aggregation, 2 or more when there is aggregation).
  • the control information is notified using, for example, at least one of a PHY (Physical) layer, a MAC (Medium Access Control) layer, and an RRC (Radio Resource Control) layer.
  • PHY Physical
  • MAC Medium Access Control
  • RRC Radio Resource Control
  • a dedicated bit is defined in DL control information such as DCI (Downlink Control Information), and the base station 100 uses the dedicated bit for transmission of control information.
  • DCI Downlink Control Information
  • the base station 100 transmits control information using a dedicated header (for example, MAC CE (Control Element)).
  • MAC CE Control Element
  • the base station 100 transmits control information using a dedicated message or a change notification message (for example, Measurement Report or UE Capability Information).
  • FIG. 4 is a diagram for explaining the structure and usage of a unit section. Symbols, slots, subframes, and frames are examples of the unit interval L0.
  • one frame (10 ms) is formed of 10 subframes (1 ms), and each subframe includes two slots (0.5 ms).
  • One slot includes, for example, seven symbols.
  • a control signal Ctrl that defines communication conditions such as a modulation scheme and a coding rate.
  • DL, UL, and S are assigned to each subframe.
  • S is arranged in a section where a transition is made from DL to UL.
  • expansion to a mechanism (Self-contained operation method) that flexibly operates a communication section is under consideration.
  • one or both of UL and DL can be assigned to each subframe.
  • a transmission section of DL control signal (DL Ctrl), DL data (DL Data), UL control signal (UL Ctrl), and UL data (UL Data) is arranged in one subframe. Further, a gap (Gap) section is arranged between the DL data transmission section and the UL control signal transmission section. Even when such a subframe is adopted, the above-described aggregation can be performed with the subframe as the unit interval L0.
  • n unit intervals L0 are aggregated, as compared with the case where one unit interval L0 is used as the communication interval L1, n times as much free space (buffer amount) is used in reception in simple calculation.
  • the buffer amount used at the time of reception is larger than n times.
  • 256QAM MIMO transmission with two streams, turbo code, HARQ, and 4-channel SAW are applied, 96 times the buffer amount is used.
  • the radio terminal 200 reports the state of a reception buffer (a buffer 200f described later) to the base station 100. In response to this report, the base station 100 performs aggregation control so that the reception buffer does not overflow.
  • FIG. 5 is a sequence diagram for explaining an operation example of the wireless communication system (operation related to aggregation control according to the reception buffer state).
  • the base station 100 transmits a known pilot signal to the radio terminal 200 using a communication section L1 including a predetermined number (two or more) of unit sections L0. Note that a modification may be made such that a reference signal for DL data demodulation is transmitted instead of a known pilot signal.
  • the radio terminal 200 measures the CQI using the pilot signal. Then, the radio terminal 200 transmits the measured CQI to the base station 100.
  • the CQI is used by the base station 100 to select a radio terminal that is a DL data transmission destination, a transmission method (such as whether or not MIMO is performed), a data amount, an allocation resource, and an MCS.
  • the radio terminal 200 may measure information related to radio quality other than CQI and transmit the information to the base station 100.
  • the radio terminal 200 may measure RI (Rank Indication) indicating the number of normally received symbols and transmit the RI together with the CQI to the base station 100.
  • RI Rank Indication
  • the base station 100 transmits a reception buffer status report request for requesting a status report of the reception buffer to the radio terminal 200.
  • the reception buffer status report request is transmitted using PDCCH (Physical Downlink Control Channel), MAC CE, or the like.
  • PDCCH Physical Downlink Control Channel
  • MAC CE Physical Downlink Control Channel
  • the PDCCH is an example of a downlink control channel.
  • the radio terminal 200 In response to the reception buffer status report request received from the base station 100, the radio terminal 200 confirms the status of the reception buffer (buffer confirmation). For example, the radio terminal 200 confirms the reception buffer usage, usage rate, free capacity, and free rate (unused rate) as the receive buffer status. Then, the wireless terminal 200 generates reception buffer state information including information indicating the confirmed state of the reception buffer.
  • information regarding the amount of receivable data (amount of user data receivable by the wireless terminal 200) obtained in consideration of the situation regarding reception quality such as CQI and RI may be included in the reception buffer status information.
  • the radio terminal 200 transmits reception buffer status information to the base station 100 as a response to the reception buffer status report request.
  • the reception buffer status information is transmitted using, for example, PUCCH (Physical / Uplink / Control / Channel) or MAC CE.
  • PUCCH is an example of an uplink control channel.
  • the base station 100 performs aggregation control based on the CQI received from the radio terminal 200 and the reception buffer status information. For example, the base station 100 specifies the number of unit sections L0 that can be aggregated (aggregation number) based on the CQI. Further, the base station 100 sets the number of unit sections L0 that can transmit the amount of data that can be received in the current state as the aggregation number, according to the state of the reception buffer indicated by the reception buffer state information. For example, if the reception buffer has a free capacity of the same size as the amount of data that can be transmitted using m unit intervals L0, the base station 100 sets the aggregation number to m.
  • the base station 100 determines whether or not aggregation is possible based on the identified aggregation number. For example, when the aggregation number is larger than a predetermined number (a number of 2 or more), the base station 100 determines that aggregation is possible. Note that the base station 100 may determine whether or not aggregation is possible in consideration of conditions other than the number of aggregations (cell congestion status, retransmission rate, and the like).
  • the base station 100 transmits control information including information such as the presence / absence of aggregation and the number of aggregations to the wireless terminal 200.
  • the presence / absence of aggregation is information indicating whether or not aggregation is performed when DL data is transmitted.
  • the number of aggregations indicates the number of aggregations applied to DL data transmission, and is a number of 1 or more (1 when there is no aggregation, 2 or more when there is aggregation).
  • the control information is notified using at least one of a PHY layer, a MAC layer, and an RRC layer, for example.
  • a dedicated bit is defined in DL control information such as DCI, and the base station 100 uses the dedicated bit for transmission of control information.
  • the base station 100 transmits control information using a dedicated header (for example, MAC CE).
  • the base station 100 transmits control information using a dedicated message or a change notification message.
  • the reception buffer When aggregation is performed, there may be a difference between the amount of data that can be transmitted in the communication section L1 (transmittable data amount) and the amount of data that can be received by the reception buffer (receivable data amount). For example, if the reception buffer has a free space of the same size as the data amount that can be transmitted in 1.5 unit sections L0, and a communication section L1 in which two unit sections L0 are aggregated is set, the unit section L0 A radio resource equivalent to half is set in an extra state.
  • the radio resources that are set in this way may be referred to as surplus resources.
  • the base station 100 may allocate surplus resources for UL transmission of the radio terminal 200.
  • the base station 100 notifies the radio terminal 200 of allocation resources for UL transmission using control information.
  • the wireless terminal 200 uses, for example, the allocated resource for delivery confirmation and reception buffer status information update.
  • the base station 100 has hardware as shown in FIG. 6, for example.
  • FIG. 6 is a block diagram illustrating an example of hardware capable of realizing the functions of the base station according to the second embodiment.
  • the base station 100 includes an antenna 100a, an RF circuit 100b, a signal processing circuit 100c, a network interface (NIF) circuit 100d, a CPU 100e, and a memory 100f.
  • NIF network interface
  • the antenna 100a is an antenna used for transmission / reception of radio band signals (RF signals). Note that the number of antennas mounted on the base station 100 may be two or more.
  • the RF circuit 100b executes processing such as modulation / demodulation and frequency conversion on the RF signal.
  • the signal processing circuit 100c executes encoding / decoding processing, AD (Analog to Digital) / DA (Digital to Analog) conversion processing, and the like for a baseband signal (baseband signal).
  • the NIF circuit 100d is a communication circuit connected to the core network.
  • the CPU 100e controls the operation of the base station 100 using programs and data stored in the memory 100f. For example, the CPU 100e executes processing such as determination and control related to aggregation of unit sections. In addition, the CPU 100e performs control such as transmission mode switching and radio resource allocation.
  • processes related to aggregation control are mainly implemented using the CPU 100e.
  • processing related to transmission of pilot signals, transmission of reception buffer status report and control information, reception of CQI and reception buffer status information, and transmission of DL data is mainly performed by the signal processing circuit 100c, RF according to control by the CPU 100e.
  • the circuit 100b executes.
  • the CPU 100e can be replaced with a DSP, ASIC, FPGA, or the like.
  • the memory 100f is, for example, an HDD, an SSD (Solid State Drive), a RAM, a ROM (Read Only Memory), or the like.
  • the wireless terminal 200 has hardware as shown in FIG. 7, for example.
  • FIG. 7 is a block diagram illustrating an example of hardware capable of realizing the function of the wireless terminal according to the second embodiment.
  • the radio terminal 200 includes an antenna 200a, an RF circuit 200b, a signal processing circuit 200c, a CPU 200d, a memory 200e, and a buffer 200f.
  • the number of antennas included in the wireless terminal 200 may be two or more.
  • the memory 200e and the buffer 200f may be realized by the same storage device.
  • the antenna 200a is an antenna used for transmission / reception of RF signals.
  • the RF circuit 200b executes processing such as modulation / demodulation and frequency conversion on the RF signal.
  • the signal processing circuit 200c executes encoding / decoding processing, AD / DA conversion processing, and the like for the baseband signal.
  • the CPU 200d controls the operation of the wireless terminal 200 using programs and data stored in the memory 200e.
  • processes such as quality measurement such as CQI, buffer confirmation, reception buffer status information generation and transmission are mainly implemented using the CPU 200d.
  • processes related to reception of pilot signals, transmission of CQI and reception buffer status information, reception of reception buffer status report requests and control information, and reception of DL data are mainly performed in accordance with control by the CPU 200d.
  • the circuit 200b executes.
  • the CPU 200d can be replaced with a DSP, ASIC, FPGA, or the like.
  • the memory 200e is, for example, an HDD, SSD, RAM, ROM, or the like.
  • the buffer 200f is a memory such as a RAM or a ROM used as a reception buffer.
  • the function of the transmission buffer can be provided by, for example, the memory 200e or another buffer memory (not shown).
  • FIG. 8 is a block diagram illustrating an example of functions of the base station according to the second embodiment.
  • the base station 100 includes a transmission / reception unit 111, a modem unit 112, an encoding / decoding unit 113, a control unit 114, and a storage unit 115.
  • the functions of the transmission / reception unit 111 and the modulation / demodulation unit 112 can be realized mainly by the above-described RF circuit 100b, signal processing circuit 100c, and CPU 100e.
  • the functions of the encoding / decoding unit 113 and the control unit 114 can be realized mainly by the signal processing circuit 100c and the CPU 100e.
  • the function of the storage unit 115 can be realized mainly by the memory 100f.
  • the transmission / reception unit 111 transmits a pilot signal used for quality measurement by the radio terminal 200 and receives a quality measurement result (CQI or the like). In addition, the transmission / reception unit 111 transmits a reception buffer status report request to the radio terminal 200 and receives reception buffer status information from the radio terminal 200. In addition, the transmission / reception unit 111 transmits the control information including the result of aggregation control (existence of aggregation, the number of aggregations, and the like) and DL data to the radio terminal 200.
  • the modem unit 112 modulates a signal transmitted to the radio terminal 200 and demodulates a signal received from the radio terminal 200.
  • the encoding / decoding unit 113 performs encoding of a signal transmitted to the wireless terminal 200 and decoding of a signal received from the wireless terminal 200.
  • the control unit 114 controls the transmission / reception unit 111, the modulation / demodulation unit 112, the encoding / decoding unit 113, and manages radio resources.
  • the control unit 114 has functions such as terminal information reception 114a, terminal information request 114b, resource control 114c, scheduling 114d, and control information transmission 114e.
  • the terminal information reception 114a is a function of controlling the transmission / reception unit 111 and the like to receive quality measurement results, reception buffer status information, and the like from the wireless terminal 200.
  • the terminal information request 114b is a function for transmitting a reception buffer status report request received by controlling the transmission / reception unit 111 and the like.
  • the resource control 114c is a function that implements aggregation control of the unit section L0.
  • Scheduling 114d is a function that performs selection of wireless terminals, allocation of DL transmission and UL transmission to wireless resources, and the like.
  • the control information transmission 114e is a function of transmitting control information including the presence / absence of aggregation and the number of aggregations to the wireless terminal 200.
  • the function is classified with a name attached thereto, but the name and classification of the function are not limited to this.
  • the storage unit 115 stores reception buffer status information 115a.
  • the control unit 114 controls the transmission / reception unit 111 to transmit a reception buffer status report request, receives the reception buffer status information 115a transmitted from the wireless terminal 200 in response to the reception buffer status report request, and stores the reception buffer status report 115a.
  • the reception buffer status information 115a includes information indicating the status of the reception buffer, such as the reception buffer usage, usage rate, free capacity, and free rate (unused rate).
  • FIG. 9 is a block diagram illustrating an example of functions of the wireless terminal according to the second embodiment.
  • the wireless terminal 200 includes a transmission / reception unit 211, a modem unit 212, an encoding / decoding unit 213, a control unit 214, and a storage unit 215.
  • the functions of the transmission / reception unit 211 and the modulation / demodulation unit 212 can be realized mainly by the above-described RF circuit 200b, signal processing circuit 200c, and CPU 200d.
  • the functions of the encoding / decoding unit 213 and the control unit 214 can be realized mainly by the signal processing circuit 200c and the CPU 200d.
  • the function of the storage unit 215 can be realized mainly by the memory 200e.
  • the transmission / reception unit 211 receives a pilot signal used for quality measurement from the base station 100, and transmits a quality measurement result (CQI or the like). In addition, the transmission / reception unit 211 receives a reception buffer status report request from the base station 100 and transmits reception buffer status information to the base station 100. Further, the transmission / reception unit 211 receives control information including the result of aggregation control (such as aggregation presence / absence, the number of aggregations) and DL data from the base station 100.
  • CQI quality measurement result
  • control information including the result of aggregation control (such as aggregation presence / absence, the number of aggregations) and DL data from the base station 100.
  • the modem unit 212 modulates a signal transmitted to the base station 100 and demodulates a signal received from the base station 100.
  • the encoding / decoding unit 213 performs encoding of a signal transmitted to the base station 100 and decoding of a signal received from the base station 100.
  • the control unit 214 controls the transmission / reception unit 211, the modulation / demodulation unit 212, the encoding / decoding unit 213, and manages the state of the reception buffer (buffer 200f).
  • the control unit 214 has functions such as information request reception 214a, information notification 214b, and buffer status management 214c.
  • the information request reception 214a is a function of receiving a reception buffer status report request from the base station 100 by controlling the transmission / reception unit 211 and the like.
  • the information notification 214b is a function of transmitting the reception buffer status information to the base station 100 by controlling the transmission / reception unit 211 and the like.
  • the buffer status management 214c is a function for generating reception buffer status information by confirming the status of the reception buffer, such as the usage amount, usage rate, free capacity, and free rate (unused rate) of the buffer 200f.
  • the function is classified with a name attached thereto, but the name and classification of the function are not limited to this.
  • the control unit 214 updates the reception setting based on the control information received from the base station 100. For example, when the presence / absence of aggregation or the number of aggregations is changed, the control unit 214 updates the reception setting so that reception can be performed with the number of aggregations after the change. As an example, when the aggregation number is changed from 2 to 3, the control unit 214 receives the control signal Ctrl in the unit section L0 located at the head of the communication section L1, and has three communication conditions defined by the control signal Ctrl. The reception setting is updated so as to control reception in the unit section L0.
  • the storage unit 215 stores data used temporarily or continuously when the control unit 214 executes processing.
  • the storage unit 215 may store a program that defines the operation of the control unit 214, setting information that defines reception settings, and the like. Further, the storage unit 215 may store status information indicating the usage amount, usage rate, free capacity, free rate (unused rate), and the like of the reception buffer acquired by the buffer status management 214c.
  • FIG. 10 is a flowchart showing the flow of processing executed on the base station side in the processing related to the reception buffer status report according to the second embodiment. 10 is mainly executed by the base station 100.
  • the control unit 114 selects a wireless terminal (wireless terminal 200; selection terminal) to be subjected to DL data transmission.
  • the control unit 114 confirms the reception buffer status information (reception buffer status information 115a stored in the storage unit 115) of the selected terminal held in the base station 100. At this time, the control unit 114 confirms the presence / absence of the reception buffer status information 115a and whether the reception buffer status information 115a is the latest.
  • the reception buffer status information 115a can be managed by using, for example, time elapsed since the previous update, version information acquired from the wireless terminal 200, or the like.
  • the control unit 114 determines whether there is reception buffer status information 115a. In addition, when there is the reception buffer status information 115a, the control unit 114 determines whether or not the reception buffer status information 115a is the latest. If there is no reception buffer status information 115a, or if the reception buffer status information 115a is not the latest, the process proceeds to S134. On the other hand, when the reception buffer status information 115a is the latest, the series of processing illustrated in FIG.
  • the reception buffer status information is transmitted from the radio terminal 200 in response to the reception buffer status report request.
  • the radio terminal 200 notifies the base station 100 of reception buffer status information regardless of whether there is a reception buffer status report request.
  • the reception buffer status information 115a may be stored in the storage unit 115 before the reception buffer status report request is transmitted. The confirmation of the reception buffer status information 115a performed in S132 and S133 functions effectively when such a mechanism is adopted.
  • the control unit 114 controls the transmission / reception unit 111 and the like, and transmits a reception buffer status report request to the wireless terminal 200 which is the selected terminal. Then, the control unit 114 waits for reception of the reception buffer status information 115a transmitted from the wireless terminal 200. Note that the control unit 114 may execute another process in a standby state. When the reception buffer status information 115a is received, the process proceeds to S136.
  • the control unit 114 stores the reception buffer status information 115a received from the wireless terminal 200 in the storage unit 115, and sets it so that it can be used for resource control 114c and scheduling 114d.
  • FIG. 11 is a flowchart showing a flow of processing executed on the wireless terminal side in processing related to the reception buffer status report according to the second embodiment.
  • the process illustrated in FIG. 11 is mainly executed by the wireless terminal 200.
  • the control unit 214 receives a reception buffer status report request from the base station 100. In response to the reception buffer status report request, the control unit 214 detects the usage amount, usage rate, free capacity, free rate (unused rate), and the like of the buffer 200f as the reception buffer status.
  • the control unit 214 generates reception buffer state information indicating the state of the reception buffer. Then, the control unit 214 transmits the generated reception buffer state information to the base station 100. When the process of S144 is completed, the series of processes illustrated in FIG. 11 ends.
  • control unit 214 may autonomously confirm the state of the buffer 200f and transmit the reception buffer state information to the base station 100 before receiving the reception buffer state report request from the base station 100.
  • the control unit 214 may confirm the state of the buffer 200f at a predetermined cycle, and may transmit the reception buffer state information to the base station 100 by multiplying the transmission timing of the UL control channel.
  • Such a modification also belongs to the technical scope of the second embodiment.
  • FIG. 12 is a flowchart showing a flow of processing executed on the base station side among the processing related to DL data transmission control according to the second embodiment.
  • the process shown in FIG. 12 is mainly executed by base station 100.
  • the control unit 114 refers to the reception buffer status information 115a of the selected terminal (wireless terminal 200). If the latest reception buffer status information 115a is stored in the storage unit 115, the reception buffer status information 115a is referred to. Further, when the reception buffer status information 115a is received from the wireless terminal 200 in response to the reception buffer status report request, the received reception buffer status information 115a is referred to.
  • the control unit 114 determines the aggregation number of the unit section L0 according to the state of the reception buffer (buffer 200f) indicated by the reception buffer state information 115a. In addition, the control unit 114 determines the allocated resource size of the selected terminal (wireless terminal 200).
  • the free capacity of the buffer 200f is expressed as RxBuff
  • the data size of the data waiting to be transmitted among the DL data transmitted from the base station 100 to the radio terminal 200 is expressed as TxData
  • the aggregation number of the unit section L0 is expressed as AggNum.
  • the resource size allocated to the radio terminal 200 is denoted as AggSize
  • the resource size that can be allocated to one unit section L0 is denoted as DurSize.
  • the aggregation number AggNum can be determined by the following equation (1), for example.
  • floor (•) is a function that rounds off the decimal part.
  • the allocation resource AggSize can be determined by the following equation (2), for example. In the following description, the above notation may be used again.
  • the control unit 114 determines whether or not aggregation is performed based on the aggregation number AggNum. For example, the control unit 114 determines that aggregation is present when the aggregation number AggNum is greater than or equal to a predetermined number (two or more). On the other hand, when the aggregation number AggNum is equal to or smaller than the predetermined number, the control unit 114 determines that there is no aggregation. In this case, the control unit 114 sets the aggregation number to 1, and arranges the control signal Ctrl in each unit section L0. In addition, the control unit 114 generates control information including the presence / absence of aggregation and the number of aggregations.
  • the control unit 114 controls the transmission / reception unit 111 and the like, and transmits the generated control information to the selection terminal (wireless terminal 200). And the control part 114 transmits DL data by the communication area L1 set based on the aggregation number of control information with respect to the selection terminal (radio
  • FIG. 13 is a flowchart showing a flow of processing executed on the wireless terminal side among the processing related to DL data transmission control according to the second embodiment.
  • the process illustrated in FIG. 13 is mainly executed by the wireless terminal 200.
  • the control unit 214 receives control information including information such as the presence / absence of aggregation and the number of aggregations from the base station 100. Then, the control unit 214 updates the reception setting based on the control information. For example, when aggregation is performed and the number of aggregations is 3, the control unit 214 receives the control signal Ctrl in the unit section L0 at the head of the communication section L1, and three unit sections with communication conditions defined by the control signal Ctrl The reception setting is updated so that reception at L0 can be controlled.
  • the control unit 214 receives DL data from the base station 100 based on the reception setting updated in S161. DL data received from the base station 100 is stored in the buffer 200f. After storing the DL data, the control unit 214 confirms the state of the buffer 200f and updates the reception buffer state information. Note that the reception buffer state information may be autonomously transmitted to the base station 100 at this time.
  • the control unit 214 transmits a DL data delivery confirmation (ACK (ACKnowledgement) / NACK (Negative ACKnowledgement)) using a known UL resource that can be used by the terminal (wireless terminal 200).
  • ACK acknowledgement
  • NACK Negative ACKnowledgement
  • a method for transmitting a delivery confirmation using surplus resources will be described later as a modification.
  • the radio terminal 200 notifies the base station 100 of the state of the reception buffer, and the base station 100 performs aggregation control in consideration of the state of the reception buffer, so that the risk of occurrence of retransmission due to overflow of the reception buffer In addition, transmission delay and efficiency degradation due to repeated retransmission can be suppressed.
  • FIG. 14 is a diagram for explaining effective use of surplus resources that may occur when unit sections are aggregated.
  • the reception buffer has a free space of the same size as the data amount that can be transmitted in 1.5 unit sections L0, and a communication section L1 in which two unit sections L0 are aggregated is set, the unit section L0 A radio resource corresponding to half becomes a surplus resource.
  • the control unit 114 notifies the wireless terminal 200 of the surplus resources allocated for UL transmission using the control information.
  • the control unit 214 of the wireless terminal 200 effectively uses the allocated surplus resource for confirmation of delivery, update of reception buffer status information, and the like.
  • FIG. 15 is a flowchart illustrating a flow of processing executed on the base station side in the processing related to DL data transmission control according to a modification of the second embodiment (effective use of surplus resources). Note that the flow of processing related to the reception buffer status report is the same as in FIGS.
  • the control unit 114 refers to the reception buffer status information 115a of the selected terminal (wireless terminal 200). If the latest reception buffer status information 115a is stored in the storage unit 115, the reception buffer status information 115a is referred to. Further, when the reception buffer status information 115a is received from the wireless terminal 200 in response to the reception buffer status report request, the received reception buffer status information 115a is referred to.
  • the control unit 114 determines the aggregation number of the unit section L0 according to the state of the reception buffer (buffer 200f) indicated by the reception buffer state information 115a. In addition, the control unit 114 determines the allocated resource size of the selected terminal (wireless terminal 200). For example, the aggregation number AggNum is determined by the above equation (1). The allocation resource AggSize is determined by, for example, the above equation (2).
  • the control unit 114 calculates the size of the surplus resource. For example, if the surplus resource size is expressed as FreeSize, the surplus resource size FreeSize can be determined by the following equation (3).
  • the control unit 114 determines the presence or absence of aggregation based on the aggregation number AggNum. For example, the control unit 114 determines that aggregation is present when the aggregation number AggNum is greater than or equal to a predetermined number (two or more). On the other hand, when the aggregation number AggNum is equal to or smaller than the predetermined number, the control unit 114 determines that there is no aggregation. In this case, the control unit 114 sets the aggregation number to 1, and arranges the control signal Ctrl in each unit section L0. In addition, the control unit 114 generates control information including the presence / absence of aggregation and the number of aggregations.
  • the control unit 114 adds information on surplus resources to the control information generated in S205.
  • the surplus resource information includes, for example, notification information indicating that the surplus resource can be used for UL transmission, and information indicating a range in which the surplus resource is allocated in the unit section L0 at the end of the communication section L1 (allocation range) For example).
  • the control unit 114 controls the transmission / reception unit 111 and the like, and transmits the generated control information to the selection terminal (wireless terminal 200). And the control part 114 transmits DL data by the communication area L1 set based on the aggregation number of control information with respect to the selection terminal (radio
  • FIG. 16 is a flowchart showing a flow of a process (pattern A) executed on the wireless terminal side among the processes related to DL data transmission control according to a modified example (effective use of surplus resources) of the second embodiment. is there.
  • the control unit 214 receives control information including information such as the presence / absence of aggregation and the number of aggregations from the base station 100. Then, the control unit 214 updates the reception setting based on the control information. For example, when aggregation is performed and the number of aggregations is 3, the control unit 214 receives the control signal Ctrl in the unit section L0 at the head of the communication section L1, and three unit sections with communication conditions defined by the control signal Ctrl The reception setting is updated so that reception at L0 can be controlled.
  • the control unit 214 determines whether there is information on surplus resources in the control information. If surplus resource information is added to the control information, the process proceeds to S216. On the other hand, when the surplus resource information is not added to the control information, the process proceeds to S213.
  • the control unit 214 receives DL data from the base station 100 based on the reception setting updated in S211. DL data received from the base station 100 is stored in the buffer 200f. After storing the DL data, the control unit 214 confirms the state of the buffer 200f and updates the reception buffer state information. Note that the reception buffer state information may be autonomously transmitted to the base station 100 at this time.
  • the control unit 214 transmits a DL data delivery confirmation (ACK / NACK) using a known UL resource that can be used by the terminal (wireless terminal 200).
  • ACK / NACK a DL data delivery confirmation
  • the control unit 214 receives DL data from the base station 100 based on the reception setting updated in S211. DL data received from the base station 100 is stored in the buffer 200f. After storing the DL data, the control unit 214 confirms the state of the buffer 200f and updates the reception buffer state information. Note that the reception buffer state information may be autonomously transmitted to the base station 100 at this time.
  • the control unit 214 refers to the information on the surplus resource assigned to the control information, and transmits a delivery confirmation (ACK / NACK) using the surplus resource allocated to the selected terminal (wireless terminal 200). .
  • ACK / NACK delivery confirmation
  • FIG. 17 is a flowchart showing the flow of processing (pattern B) executed on the wireless terminal side among the processing related to DL data transmission control according to a modification of the second embodiment (effective use of surplus resources). is there.
  • the control unit 214 receives control information including information such as the presence / absence of aggregation and the number of aggregations from the base station 100. Then, the control unit 214 updates the reception setting based on the control information. For example, when aggregation is performed and the number of aggregations is 3, the control unit 214 receives the control signal Ctrl in the unit section L0 at the head of the communication section L1, and three unit sections with communication conditions defined by the control signal Ctrl The reception setting is updated so that reception at L0 can be controlled.
  • the control unit 214 determines whether or not there is surplus resource information in the control information. If surplus resource information is added to the control information, the process proceeds to S223. On the other hand, when the surplus resource information is not added to the control information, the process proceeds to S226.
  • the control unit 214 receives DL data from the base station 100 based on the reception setting updated in S221. DL data received from the base station 100 is stored in the buffer 200f. After storing the DL data, the control unit 214 confirms the state of the buffer 200f and updates the reception buffer state information. Note that the reception buffer state information may be autonomously transmitted to the base station 100 at this time.
  • the control unit 214 refers to the information on the surplus resources assigned to the control information, and transmits the reception buffer status information using the surplus resources allocated to the selected terminal (wireless terminal 200). When the process of S225 is completed, the process proceeds to S228.
  • the control unit 214 receives DL data from the base station 100 based on the reception setting updated in S221. DL data received from the base station 100 is stored in the buffer 200f. After storing the DL data, the control unit 214 confirms the state of the buffer 200f and updates the reception buffer state information. Note that the reception buffer state information may be autonomously transmitted to the base station 100 at this time.
  • the control unit 214 transmits a DL data delivery confirmation (ACK / NACK) using a known UL resource that can be used by the terminal (wireless terminal 200).
  • ACK / NACK a DL data delivery confirmation
  • the utilization efficiency of radio resources can be increased by effectively using surplus resources.
  • the surplus resource is allocated to UL transmission when the surplus resource is not 0 has been shown.
  • the surplus resource size is smaller than a predetermined threshold, the use of the surplus resource is suppressed. It may be deformed.
  • the total data amount of the data amount of the UL control signal (UL Ctrl) and the reception buffer state information is set to a predetermined threshold value. That is, control may be performed so that surplus resources are allocated when there is a surplus resource of a size that allows UL transmission of desired information.
  • the technique of the second embodiment described above can also be applied to a method of consolidating radio resources in the frequency direction.
  • CA Carrier Aggregation
  • the present invention can also be applied to a method of aggregating radio resources such as RB and RE (Resource Element) having unit time width and unit bandwidth.
  • the radio terminal 200 notifies the base station 100 of reception buffer state information, and the base station 100 performs the same aggregation control based on the reception buffer state information.
  • the base station 100 determines the aggregation number.
  • the radio terminal 200 determines the aggregation number based on the measurement result of the radio quality, and notifies the base station 100 of the aggregation number. It is also possible to deform.
  • the base station 100 and the wireless terminal 200 may both determine the aggregation number candidates, and the base station 100 may select one of the candidates. Such a modification naturally belongs to the technical scope of the second embodiment.
  • the information that can be UL transmitted with the surplus resource is not limited to one of the delivery confirmation and the reception buffer status information, and information different from the delivery confirmation and the reception buffer status information may be UL transmitted with the surplus resource.
  • FIG. 18 is a sequence diagram for explaining an operation example (a combination of patterns A and B) of the wireless communication system related to DL data transmission control according to a modified example (effective use of surplus resources) of the second embodiment.
  • Base station 100 transmits a known pilot signal to base station 100 using communication section L1 including a predetermined number (two or more) of unit sections L0.
  • the radio terminal 200 measures CQI using a pilot signal. Then, the radio terminal 200 transmits the measured CQI to the base station 100.
  • the base station 100 transmits a reception buffer status report request for requesting a status report of the reception buffer to the radio terminal 200.
  • the reception buffer status report request is transmitted using PDCCH, MAC CE, or the like.
  • the radio terminal 200 In response to the reception buffer status report request received from the base station 100, the radio terminal 200 confirms the status of the reception buffer (buffer confirmation). For example, the radio terminal 200 confirms the reception buffer usage, usage rate, free capacity, and free rate (unused rate) as the receive buffer status. Then, the wireless terminal 200 generates reception buffer state information including information indicating the confirmed state of the reception buffer.
  • the radio terminal 200 transmits reception buffer status information to the base station 100 as a response to the reception buffer status report request.
  • the reception buffer status information is transmitted using, for example, PUCCH or MAC CE.
  • the base station 100 performs aggregation control (determination of aggregation presence / absence of aggregation, determination of the number of aggregations) based on the CQI and reception buffer status information received from the radio terminal 200.
  • aggregation control determination of aggregation presence / absence of aggregation, determination of the number of aggregations
  • the base station 100 identifies surplus resources based on the number of aggregations.
  • the base station 100 generates control information including information such as the presence / absence of aggregation and the number of aggregations. When there is a surplus resource, the base station 100 gives information on the surplus resource to the control information. Then, the base station 100 transmits control information to the wireless terminal 200.
  • the control information is notified using at least one of a PHY layer, a MAC layer, and an RRC layer, for example.
  • the base station 100 transmits DL data to the radio terminal 200. At this time, the base station 100 transmits DL data in the communication section L1 including the unit section L0 of the aggregation number set in S237. The DL data transmitted in the communication section L1 is stored in the reception buffer of the wireless terminal 200.

Landscapes

  • Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

伝送遅延及び効率劣化のリスクを抑制すること。 基地局(10)からの要求に応じて、受信バッファ(24)に関するバッファ情報(25)を送信し、複数の無線リソースを集約するか否かをバッファ情報(25)に基づいて制御する基地局(10)から、複数の無線リソースの集約に関する制御情報(15)を受信する制御部(23)とを有する、無線端末(20)が提供される。

Description

基地局、無線端末、無線通信システム、及び通信制御方法
 本発明は、基地局、無線端末、無線通信システム、及び通信制御方法に関する。
 3GPP(Third Generation Partnership Project)のLTE(Long Term Evolution)規格では、上りリンク(UL:Uplink)及び下りリンク(DL:Downlink)のデータ伝送に用いる無線リソースがサブフレーム単位で割り当てられる。1つのサブフレームは、2つのスロットを有する。LTE規格では、1つのサブフレームに含まれる少なくとも1つのスロットに、変調方式などの通信条件を規定する制御情報が配置される。
 制御情報の配置に関し、複数のスロットを集約(aggregate)し、1つの制御情報で規定される通信条件に基づくデータ伝送区間を拡張する方法(Slot Aggregation)が提案されている。多数のスロットを集約することで、伝送可能なデータ量を増やすことができる。
 なお、基地局の送信バッファにバッファリングされるDLデータの量を無線端末に報告する方法が提案されている。また、無線端末の送信バッファにバッファリングされるULデータの量を基地局に報告する方法が提案されている。LTE規格では、無線端末が送信バッファのバッファ状態を基地局に報告するためにBSR(Buffer Status Reports)が規定されている。また、無線端末が基地局にCQI(Channel Quality Indicator)を報告することが提案されている。
特表2015-503865号公報 特表2013-502850号公報
Qualcomm Incorporated, "Summary of 86-19 Discussion on Slot Structure Use Cases", 3GPP TSG-RAN WG1 #86bis, R1-1610129
 多数のスロットを集約したデータ伝送区間では大きなサイズのデータが伝送される。例えば、受信バッファの空き容量に比べて大きなサイズのデータを伝送可能なデータ伝送区間が設定されると、そのデータ伝送区間で送信されるデータにより受信バッファが溢れるリスクが生じる。データ伝送区間の設定(集約の設定)が維持される場合、受信バッファが溢れてデータの再送制御が実施されても、再送されたデータにより再び受信バッファが溢れうる。その結果、再送制御が繰り返され、伝送遅延の増加・伝送効率の劣化につながる。
 なお、スロットは、単位時間幅を有する伝送区間(単位区間)の一例である。スロット以外の単位区間を集約する場合も上記と同様の理由で伝送遅延や効率劣化が生じうる。また、単位区間は無線リソースの一例である。上記の説明では、説明の都合上、時間方向に単位区間を集約する方法について述べたが、周波数方向に複数の無線リソースを集約する場合も上記と同様の理由で伝送遅延や効率劣化が生じうる。
 1つの側面によれば、本発明の目的は、伝送遅延及び効率劣化のリスクを抑制できる基地局、無線端末、無線通信システム、及び通信制御方法を提供することにある。
 一態様によれば、基地局からの要求に応じて、受信バッファに関するバッファ情報を送信し、複数の無線リソースを集約するか否かをバッファ情報に基づいて制御する基地局から、複数の無線リソースの集約に関する制御情報を受信する制御部とを有する、無線端末が提供される。
 伝送遅延及び効率劣化のリスクを抑制できる。
 本発明の上記および他の目的、特徴および利点は本発明の例として好ましい実施の形態を表す添付の図面と関連した以下の説明により明らかになるであろう。
第1実施形態に係る無線通信システムの一例を示した図である。 第2実施形態に係る無線通信システムの一例を示した図である。 無線通信システムの動作例(単位区間の集約に関する動作)について説明するためのシーケンス図である。 単位区間の構造及び用途について説明するための図である。 無線通信システムの動作例(受信バッファ状態に応じた集約制御に関する動作)について説明するためのシーケンス図である。 第2実施形態に係る基地局の機能を実現可能なハードウェアの一例を示したブロック図である。 第2実施形態に係る無線端末の機能を実現可能なハードウェアの一例を示したブロック図である。 第2実施形態に係る基地局が有する機能の一例を示したブロック図である。 第2実施形態に係る無線端末が有する機能の一例を示したブロック図である。 第2実施形態に係る受信バッファ状態報告に関する処理のうち、基地局側で実行される処理の流れを示したフロー図である。 第2実施形態に係る受信バッファ状態報告に関する処理のうち、無線端末側で実行される処理の流れを示したフロー図である。 第2実施形態に係るDLデータ送信制御に関する処理のうち、基地局側で実行される処理の流れを示したフロー図である。 第2実施形態に係るDLデータ送信制御に関する処理のうち、無線端末側で実行される処理の流れを示したフロー図である。 単位区間の集約時に生じうる余剰リソースの有効利用について説明するための図である。 第2実施形態の一変形例(余剰リソースの有効利用)に係るDLデータ送信制御に関する処理のうち、基地局側で実行される処理の流れを示したフロー図である。 第2実施形態の一変形例(余剰リソースの有効利用)に係るDLデータ送信制御に関する処理のうち、無線端末側で実行される処理(パターンA)の流れを示したフロー図である。 第2実施形態の一変形例(余剰リソースの有効利用)に係るDLデータ送信制御に関する処理のうち、無線端末側で実行される処理(パターンB)の流れを示したフロー図である。 第2実施形態の一変形例(余剰リソースの有効利用)に係るDLデータ送信制御に関する無線通信システムの動作例(パターンA、Bの組み合わせ)について説明するためのシーケンス図である。
 以下に添付図面を参照しながら、本発明の実施形態について説明する。なお、本明細書及び図面において実質的に同一の機能を有する要素については、同一の符号を付することにより重複説明を省略する場合がある。
 <1.第1実施形態>
 図1を参照しながら、第1実施形態について説明する。第1実施形態は、複数の無線リソースを集約する制御に関し、その制御の中で受信バッファの状態を考慮して集約する無線リソースの数を動的に制御する方法に関する。
 図1は、第1実施形態に係る無線通信システムの一例を示した図である。なお、図1に示した無線通信システム5は、第1実施形態に係る無線通信システムの一例である。
 図1に示すように、無線通信システム5は、基地局10及び無線端末20を有する。基地局10は、アンテナ11、無線部12、及び制御部13を有する。無線端末20は、アンテナ21、無線部22、制御部23、及び受信バッファ24を有する。なお、アンテナ11、21の本数は2本以上でもよい。無線通信システム5が有する無線端末の数は2以上でもよい。
 アンテナ11、21は、無線(RF:Radio Frequency)信号の送受信に用いるアンテナである。無線部12、22は、それぞれアンテナ11、21を介して送受信されるRF信号に関する処理を実行する信号処理回路である。例えば、無線部12、22は、RF信号とベースバンド(BB:Baseband)領域の信号(BB信号)との間の変換(周波数変換)、アナログ領域のBB信号とデジタル領域のBB信号との変換(AD(Analog to Digital)/DA(Digital to Analog)変換)、変調・復調などの処理を実行する。
 制御部13、23は、CPU(Central Processing Unit)、DSP(Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、FPGA(Field Programmable Gate Array)などのプロセッサである。なお、制御部13、23は、それぞれ基地局10及び無線端末20に搭載されるRAM(Random Access Memory)などのメモリ(非図示)を利用して処理を実行する。
 制御部13、23は、それぞれ無線部12、22による送信及び受信を制御する。例えば、制御部23は、基地局10により設定された通信条件(変調方式(Modulation scheme)など)でRF信号を受信するように無線部22を制御する。変調方式としては、例えば、QPSK(Quadrature Phase Shift Keying)、16QAM(Quadrature Amplitude Modulation)、64QAMなどがある。なお、通信条件としては、例えば、変調方式の他に符号化率(Coding rate)などがある。符号化率の設定は、制御部13、23による符号化・復号に適用されうる。
 受信バッファ24は、無線部22により受信されるデータが格納されるバッファメモリである。バッファメモリとしては、例えば、DRAM(Dynamic Random Access Memory)やSRAM(Static Random Access Memory)などの揮発性メモリ、或いは、フラッシュメモリなどの不揮発性メモリが利用されうる。受信バッファ24の状態(使用量、使用率、空き容量、未使用率など)は、制御部23により監視される。
 無線通信システム5では、単位幅を有する複数の無線リソース(単位リソース)を集約し、集約により得られる単位リソースの集合(集約リソース)を利用して基地局10から無線端末20へとDLデータが送信される。
 例えば、単位時間幅を有する時間区間(単位区間)は、単位リソースの一例である。LTE規格の場合、単位時間幅が0.5msの場合にはスロットが単位区間に相当し、1msの場合にはサブフレームが単位区間に相当し、10msの場合にはフレームが単位区間に相当する。なお、1シンボルを単位区間に設定してもよい。
 単位周波数幅を有する周波数帯域(単位帯域)は、単位リソースの一例である。LTE規格の場合、単位周波数幅が180kHz(12サブキャリア)の場合には1RB(Resource Block)に対応する帯域が単位帯域に相当する。なお、時間方向の単位幅を0.5ms、周波数方向の単位幅を180kHzに設定すると1RBが単位リソースに相当する。
 上記のように、第1実施形態に係る技術は、様々な形態の無線リソースの集約に適用可能である。上述した無線リソースの例はあくまでも一例であり、単位時間幅、単位周波数幅、リソースブロックのサイズなどは変形可能である。
 集約リソースの一端に位置する単位リソースには、変調方式や符号化率などの通信条件を内容とする制御信号(Ctrl)の送信が割り当てられる。残りの単位リソースには制御信号の送信が割り当てられない。残りの単位リソースにおけるデータ伝送には、集約リソースの一端に位置する単位リソースで受信される制御信号の通信条件が適用される。
 制御部13は、集約リソースに含まれる単位リソースの数(集約数)を制御することができる。
 例えば、制御部13は、受信バッファ24の状態に基づいて集約数を制御する。この場合、制御部13は、受信バッファ24の状態を示すバッファ情報25を無線端末20に要求する(バッファ情報の要求14)。この要求14を受けた無線端末20では、制御部23が、受信バッファ24の状態を確認してバッファ情報25を生成する。そして、制御部23は、要求14に対する応答として、受信バッファ24に関するバッファ情報25を基地局10に送信する。
 バッファ情報25を受信した基地局10では、制御部13が、バッファ情報25に基づいて、上述した単位リソースの集約を実施するか否かを制御する。
 例えば、図1(A)に示すように、受信バッファ24の空き容量25aが単位幅の2倍以上の場合、制御部13は、単位リソースの集約を実施するように無線部12を制御する。この例では受信バッファ24の空き容量25aが単位幅の3倍より大きいため、制御部13は、集約数を3に設定し、単位リソース31、32、33を含む集約リソース30でDLデータ伝送を実施する。
 一方、図1(B)に示すように、受信バッファ24の空き容量25bが単位幅の2倍未満の場合、制御部13は、単位リソースの集約を実施しないように無線部12を制御する。この場合、制御部13は、それぞれが制御信号(Ctrl)を含む単位リソース34、35でDLデータ伝送を実施する。
 上記のDLデータ伝送を実施する前に、制御部13は、上記の集約に関する制御情報15を無線端末20に送信する。制御情報15には、例えば、集約の有無や集約数などの情報が含まれる。この制御情報15を受信した無線端末20では、制御部23が、制御情報15に基づいて無線部22による受信を制御する。
 例えば、集約リソース30でDLデータ16が送信される場合、制御部23は、制御情報15に含まれる集約数に基づき、単位リソース31で受信される制御信号(Ctrl)の通信条件を単位リソース32、33での受信に適用する。また、集約せずに単位リソース34、35でDLデータ16が送信される場合、制御部23は、単位リソース34、35でそれぞれ受信される制御信号(Ctrl)の通信条件を単位リソース34、35での受信に適用する。
 上記のように、ULで無線端末20から基地局10へとバッファ情報25を通知し、受信バッファ24の状態に応じて集約の有無や集約数を制御することにより、受信バッファ24が溢れて再送制御が実施されるリスクを抑制できる。その結果、再送の繰り返しによる伝送遅延や効率劣化のリスクを抑制することが可能になる。
 以上、第1実施形態について説明した。
 <2.第2実施形態>
 次に、第2実施形態について説明する。第2実施形態は、複数の無線リソースを集約する制御に関し、その制御の中で受信バッファの状態を考慮して集約する無線リソースの数を動的に制御する方法に関する。
 [2-1.システム]
 図2を参照しながら、無線通信システム50について説明する。図2は、第2実施形態に係る無線通信システムの一例を示した図である。図2に示した無線通信システム50は、第2実施形態に係る無線通信システムの一例である。
 図2に示すように、無線通信システム50は、基地局100及び無線端末200を有する。なお、無線通信システム50が有する基地局及び無線端末の数は2以上でもよい。
 無線通信システム50では、単位時間幅を有する単位区間L0を利用してデータ伝送が実施される。また、UL及びDLの伝送リソースが割り当てられる通信区間L1には、少なくとも1つの単位区間L0が含まれる。
 サブフレームは、通信区間L1の一例である。スロットやシンボルは、単位区間L0の一例である。(A)の例では、1つの通信区間L1に2つの単位区間L0が含まれている。(B)の例では、1つの通信区間L1に4つの単位区間L0が含まれている。
 通信区間L1の先頭に位置する単位区間L0には、その通信区間L1におけるデータ伝送に用いる制御信号Ctrlの送信が割り当てられる。制御信号Ctrlには、変調方式(QPSK、16QAM、64QAMなど)や符号化率などの通信条件を示す情報が含まれる。つまり、通信区間L1に含まれる各単位区間L0では、同じ通信条件でデータ伝送が実施される。
 通信区間L1に含まれる単位区間L0の数(集約数)が大きくなると、1つの通信区間L1に占める制御信号Ctrlの割り当てリソースが小さくなるため、より多くのデータを伝送することが可能になる。例えば、1つの通信区間L1が2つの単位区間L0を含む(A)の例に比べ、1つの通信区間L1が4つの単位区間L0を含む(B)の方が、より多くのデータを伝送可能である。
 (単位区間の集約)
 複数の単位区間L0を集約した通信区間L1を利用可能にする制御(集約制御)のシーケンスは、図3のようになる。図3は、無線通信システムの動作例(単位区間の集約に関する動作)について説明するためのシーケンス図である。
 (S101)基地局100は、所定数(2以上の数)の単位区間L0を含む通信区間L1を利用して既知のパイロット信号を無線端末200に送信する。なお、既知のパイロット信号に代えてDLデータ復調用の参照信号を送信するように変形してもよい。DLデータ復調用の参照信号としては、例えば、RS(Cell specific reference signal / UE specific reference signal)などがある。このRSは、DLデータの復調時に実施されるチャネル推定に利用される参照信号であり、既知信号の一例である。
 (S102、S103)無線端末200は、パイロット信号を利用してCQI(Channel Quality Indicator)を測定する。そして、無線端末200は、測定したCQIを基地局100に送信する。なお、CQIは、基地局100により、DLデータの伝送先となる無線端末、伝送方式(MIMO(Multiple-Input and Multiple-Output)実施の有無など)、データ量、割り当てリソース、及びMCS(Modulation and Coding Scheme)の選択などに利用される。
 (S104)基地局100は、無線端末200から受信したCQIに基づいて集約制御を実施する。例えば、基地局100は、CQIに基づいて集約可能な単位区間L0の数(集約数)を特定する。また、基地局100は、特定した集約数に基づいて集約の可否を判定する。例えば、集約数が所定数(2以上の数)より大きい場合、基地局100は、集約可と判定する。なお、基地局100は、集約数以外の条件(セルの混雑状況や再送率など)をさらに考慮して集約の可否を判定してもよい。
 (S105)基地局100は、集約の有無や集約数などの情報を含む制御情報を無線端末200に送信する。集約の有無は、DLデータの伝送時に集約を実施するか否かを示す情報である。集約数は、DLデータ伝送に適用される集約数を示し、1以上の数(集約無しの場合には1、集約有りの場合には2以上の数)になる。上記の制御情報は、例えば、PHY(Physical)レイヤ、MAC(Medium Access Control)レイヤ、RRC(Radio Resource Control)レイヤの少なくとも1つを利用して通知される。
 PHYレイヤで通知する場合、DCI(Downlink Control Information)などのDL制御情報に専用のビットを定義しておき、基地局100は、専用のビットを制御情報の送信に利用する。MACレイヤで通知する場合、基地局100は、専用のヘッダ(例えば、MAC CE(Control Element))を利用して制御情報を送信する。RRCレイヤで通知する場合、基地局100は、専用のメッセージ又は変更通知用のメッセージ(例えば、Measurement ReportやUE Capability Information)を利用して制御情報を送信する。
 (S106)無線端末200が制御情報に基づいて受信設定を完了すると、基地局100は、DLデータを無線端末200に送信する。このとき、基地局100は、S104で設定した集約数の単位区間L0を含む通信区間L1でDLデータを送信する。通信区間L1で送信されるDLデータは、無線端末200の受信バッファに格納される。S106の処理が完了すると、図3に示した一連の処理は終了する。
 (サブフレームの構造)
 ここで、図4を参照しながら、単位区間L0の構造及び用途について説明する。図4は、単位区間の構造及び用途について説明するための図である。なお、シンボル、スロット、サブフレーム、フレームは単位区間L0の一例である。
 LTE規格では、図4の(A)に示すように、1つのフレーム(10ms)が10個のサブフレーム(1ms)で形成され、各サブフレームに2つのスロット(0.5ms)が含まれる。また、1つのスロットは、例えば、7つのシンボルを含む。1つのサブフレームに含まれる2つのスロットのうち、少なくとも1つのスロットには、変調方式や符号化率などの通信条件を規定する制御信号Ctrlが配置される。
 LTE規格では、各サブフレームにDL、UL、S(Special Subframe)が割り当てられる。Sは、DLからULへ遷移する区間に配置される。他方、次世代の通信方式では、図4の(B)に示すように、通信区間を柔軟に運用する仕組み(Self-contained operation方式)への拡張が検討されている。この仕組みでは、各サブフレームにUL及びDLの一方又は両方を割り当てることができる。
 (B)の例では、1つのサブフレームにDL制御信号(DL Ctrl)、DLデータ(DL Data)、UL制御信号(UL Ctrl)、ULデータ(UL Data)の伝送区間が配置されている。また、DLデータの伝送区間と、UL制御信号の伝送区間との間にギャップ(Gap)区間が配置されている。このようなサブフレームを採用する場合でも、サブフレームを単位区間L0として上記の集約を実施することができる。
 (集約時のバッファ量)
 単位区間L0の集約を実施する場合、集約数が大きくなるほど伝送データ量が増える反面、通信区間L1のサイズが大きくなると、無線端末200の受信バッファ(後述するバッファ200f)が溢れて再送の発生リスクが大きくなる。受信バッファの空き容量が足りずに繰り返し再送が発生するリスクもある。結果として、伝送遅延や効率劣化が生じうる。
 例えば、n個の単位区間L0を集約した場合、1個の単位区間L0を通信区間L1として利用する場合に比べ、単純計算では、受信時にn倍の空き容量(バッファ量)が使用される。但し、MIMO伝送、多値変調、ターボ符号、HARQ(Hybrid ARQ)、複数チャネルのSAW(Stop and Wait)を適用する場合、受信時に使用されるバッファ量はn倍より大きくなる。一例として、256QAM、ストリーム数が2のMIMO伝送、ターボ符号、HARQ、4チャネルのSAWを適用すると96倍のバッファ量が使用される。
 (受信バッファ状態報告のシーケンス)
 上記のような伝送遅延や効率劣化のリスクを抑制するため、第2実施形態では、無線端末200が基地局100に対し、受信バッファ(後述するバッファ200f)の状態を報告する。この報告に応じて、受信バッファが溢れないように基地局100が集約制御を実施する。
 例えば、無線通信システム50では、基地局100及び無線端末200が図5に示すシーケンスのように動作する。図5は、無線通信システムの動作例(受信バッファ状態に応じた集約制御に関する動作)について説明するためのシーケンス図である。
 (S111)基地局100は、所定数(2以上の数)の単位区間L0を含む通信区間L1を利用して既知のパイロット信号を無線端末200に送信する。なお、既知のパイロット信号に代えてDLデータ復調用の参照信号を送信するように変形してもよい。
 (S112、S113)無線端末200は、パイロット信号を利用してCQIを測定する。そして、無線端末200は、測定したCQIを基地局100に送信する。なお、CQIは、基地局100により、DLデータの伝送先となる無線端末、伝送方式(MIMO実施の有無など)、データ量、割り当てリソース、及びMCSの選択などに利用される。
 なお、無線端末200は、CQI以外の無線品質に関する情報を測定して基地局100に送信してもよい。例えば、無線端末200は、正常に受信されたシンボル数を表すRI(Rank Indication)を測定し、CQIと共にRIを基地局100に送信してもよい。
 (S114)基地局100は、受信バッファの状態報告を要求する受信バッファ状態報告要求を無線端末200に送信する。例えば、受信バッファ状態報告要求は、PDCCH(Physical Downlink Control Channel)やMAC CEなどを利用して送信される。なお、PDCCHは、下り制御チャネルの一例である。
 (S115)無線端末200は、基地局100から受信した受信バッファ状態報告要求に応じて、受信バッファの状態を確認する(バッファ確認)。例えば、無線端末200は、受信バッファの状態として、受信バッファの使用量、使用率、空き容量、空き比率(未使用率)を確認する。そして、無線端末200は、確認した受信バッファの状態を示す情報を含む受信バッファ状態情報を生成する。
 なお、CQIやRIなどの受信品質に関する状況を考慮して得られる受信可能なデータ量(無線端末200で受信可能なユーザデータの量)に関する情報が受信バッファ状態情報に含まれてもよい。
 (S116)無線端末200は、受信バッファ状態報告要求に対する応答として、受信バッファ状態情報を基地局100に送信する。受信バッファ状態情報は、例えば、PUCCH(Physical Uplink Control Channel)やMAC CEなどを利用して送信される。なお、PUCCHは、上り制御チャネルの一例である。
 (S117)基地局100は、無線端末200から受信したCQI及び受信バッファ状態情報に基づいて集約制御を実施する。
 例えば、基地局100は、CQIに基づいて集約可能な単位区間L0の数(集約数)を特定する。また、基地局100は、受信バッファ状態情報が示す受信バッファの状態に応じて、現在の状態で受信可能なデータ量を送信可能な単位区間L0の数を集約数に設定する。例えば、m個の単位区間L0を利用して送信可能なデータ量と同じサイズの空き容量が受信バッファにある場合、基地局100は、集約数をmに設定する。
 基地局100は、特定した集約数に基づいて集約の可否を判定する。例えば、集約数が所定数(2以上の数)より大きい場合、基地局100は、集約可と判定する。なお、基地局100は、集約数以外の条件(セルの混雑状況や再送率など)をさらに考慮して集約の可否を判定してもよい。
 (S118)基地局100は、集約の有無や集約数などの情報を含む制御情報を無線端末200に送信する。集約の有無は、DLデータの伝送時に集約を実施するか否かを示す情報である。集約数は、DLデータ伝送に適用される集約数を示し、1以上の数(集約無しの場合には1、集約有りの場合には2以上の数)になる。上記の制御情報は、例えば、PHYレイヤ、MACレイヤ、RRCレイヤの少なくとも1つを利用して通知される。
 PHYレイヤで通知する場合、DCIなどのDL制御情報に専用のビットを定義しておき、基地局100は、専用のビットを制御情報の送信に利用する。MACレイヤで通知する場合、基地局100は、専用のヘッダ(例えば、MAC CE)を利用して制御情報を送信する。RRCレイヤで通知する場合、基地局100は、専用のメッセージ又は変更通知用のメッセージを利用して制御情報を送信する。
 (S119)無線端末200が制御情報に基づいて受信設定を完了すると、基地局100は、DLデータを無線端末200に送信する。このとき、基地局100は、S117で設定した集約数の単位区間L0を含む通信区間L1でDLデータを送信する。通信区間L1で送信されるDLデータは、無線端末200の受信バッファに格納される。S119の処理が完了すると、図5に示した一連の処理は終了する。
 なお、集約を実施する場合、通信区間L1で送信可能なデータ量(送信可能データ量)と、受信バッファで受信可能なデータ量(受信可能データ量)とに差が生じることがある。例えば、1.5個の単位区間L0で送信可能なデータ量と同じサイズの空き容量が受信バッファにあり、2個の単位区間L0を集約した通信区間L1が設定された場合、単位区間L0の半分に相当する無線リソースが余分に設定された状態になる。以下では、このように余分に設定される無線リソースを余剰リソースと呼ぶ場合がある。
 図4の(B)に示した割り当て方法を採用する場合、DL送信を割り当てた区間に余剰リソースが生じたとき、余剰リソースにUL送信を割り当てることができる。この場合、基地局100は、余剰リソースを無線端末200のUL送信に割り当ててもよい。余剰リソースをUL送信に割り当てる場合、基地局100は、制御情報でUL送信の割り当てリソースを無線端末200に通知する。無線端末200は、例えば、割り当てリソースを送達確認や受信バッファ状態情報の更新などに利用する。
 なお、上記のような余剰リソースの有効利用については変形例として後述する。
 [2-2.ハードウェア]
 ここで、上述した基地局100及び無線端末200それぞれの機能及び動作を実現可能なハードウェアについて説明する。
 (基地局)
 基地局100は、例えば、図6に示すようなハードウェアを有する。図6は、第2実施形態に係る基地局の機能を実現可能なハードウェアの一例を示したブロック図である。
 図6に示すように、基地局100は、アンテナ100a、RF回路100b、信号処理回路100c、NIF(Network Interface)回路100d、CPU100e、及びメモリ100fを有する。
 アンテナ100aは、無線帯域の信号(RF信号)の送受信に用いられるアンテナである。なお、基地局100に搭載されるアンテナの本数は2以上でもよい。RF回路100bは、RF信号に対する変復調や周波数変換などの処理を実行する。信号処理回路100cは、ベースバンド帯域の信号(ベースバンド信号)に対する符号化・復号処理やAD(Analog to Digital)・DA(Digital to Analog)変換処理などを実行する。NIF回路100dは、コアネットワークに接続される通信回路である。
 CPU100eは、メモリ100fに格納されるプログラムやデータを用いて基地局100の動作を制御する。例えば、CPU100eは、単位区間の集約に関する判定や制御などの処理を実行する。また、CPU100eは、送信モードの切り替えや、無線リソースの割り当てなどの制御を実施する。
 図5に示した処理のうち、集約制御に関する処理(集約数の決定や集約可否の判定など)は、主にCPU100eを用いて実現される。また、パイロット信号の送信、受信バッファ状態報告要求や制御情報の送信、CQIや受信バッファ状態情報の受信、DLデータの送信に関する処理は、主にCPU100eによる制御に応じて、信号処理回路100c、RF回路100bが実行する。
 なお、CPU100eは、DSP、ASIC、FPGAなどで代替可能である。メモリ100fは、例えば、HDD、SSD(Solid State Drive)、RAM、ROM(Read Only Memory)などである。
 (無線端末)
 無線端末200は、例えば、図7に示すようなハードウェアを有する。図7は、第2実施形態に係る無線端末の機能を実現可能なハードウェアの一例を示したブロック図である。
 図7に示すように、無線端末200は、アンテナ200a、RF回路200b、信号処理回路200c、CPU200d、メモリ200e、及びバッファ200fを有する。なお、無線端末200が有するアンテナの本数は2以上であってもよい。また、メモリ200eとバッファ200fとは同じ記憶装置により実現されてもよい。
 アンテナ200aは、RF信号の送受信に用いられるアンテナである。RF回路200bは、RF信号に対する変復調や周波数変換などの処理を実行する。信号処理回路200cは、ベースバンド信号に対する符号化・復号処理やAD・DA変換処理などを実行する。CPU200dは、メモリ200eに格納されるプログラムやデータを用いて無線端末200の動作を制御する。
 図5に示した処理のうち、CQIなどの品質測定やバッファ確認、受信バッファ状態情報の生成及び送信などの処理は、主にCPU200dを用いて実現される。また、パイロット信号の受信、CQIや受信バッファ状態情報の送信、受信バッファ状態報告要求や制御情報の受信、DLデータの受信に関する処理は、主にCPU200dによる制御に応じて、信号処理回路200c、RF回路200bが実行する。
 なお、CPU200dは、DSP、ASIC、FPGAなどで代替可能である。メモリ200eは、例えば、HDD、SSD、RAM、ROMなどである。バッファ200fは、受信バッファとして利用されるRAMやROMなどのメモリである。なお、送信バッファの機能は、例えば、メモリ200e又は他のバッファメモリ(非図示)で提供されうる。バッファ200fを送信バッファと受信バッファとで共用する場合、送信バッファの領域と受信バッファの領域とは区別され、領域毎に状態(空き容量など)が管理される。
 [2-3.機能]
 以下、基地局100及び無線端末200の機能について、さらに説明する。
 (基地局)
 まず、図8を参照しながら、基地局100の機能について説明する。図8は、第2実施形態に係る基地局が有する機能の一例を示したブロック図である。
 図8に示すように、基地局100は、送受信部111、変復調部112、符号化・復号部113、制御部114、及び記憶部115を有する。
 なお、送受信部111、変復調部112の機能は、主に、上述したRF回路100b、信号処理回路100c、CPU100eにより実現されうる。符号化・復号部113、制御部114の機能は、主に、信号処理回路100c、CPU100eにより実現されうる。記憶部115の機能は、主に、メモリ100fにより実現されうる。
 送受信部111は、無線端末200による品質測定に用いるパイロット信号を送信し、品質測定の結果(CQIなど)を受信する。また、送受信部111は、受信バッファ状態報告要求を無線端末200に送信し、受信バッファ状態情報を無線端末200から受信する。また、送受信部111は、集約制御の結果(集約有無、集約数など)を含む制御情報、及びDLデータを無線端末200に送信する。
 変復調部112は、無線端末200に送信される信号の変調、及び無線端末200から受信される信号の復調を実施する。符号化・復号部113は、無線端末200に送信される信号の符号化、及び無線端末200から受信される信号の復号を実施する。
 制御部114は、送受信部111、変復調部112、符号化・復号部113の制御、及び、無線リソースの管理などを実施する。例えば、制御部114は、端末情報受信114a、端末情報要求114b、リソース制御114c、スケジューリング114d、制御情報送信114eなどの機能を有する。
 端末情報受信114aは、送受信部111などを制御して無線端末200から品質測定の結果や受信バッファ状態情報などを受信する機能である。端末情報要求114bは、送受信部111などを制御して受信した受信バッファ状態報告要求を送信する機能である。リソース制御114cは、単位区間L0の集約制御などを実施する機能である。
 スケジューリング114dは、無線端末の選択や、DL送信及びUL送信の無線リソースへの割り当てなどを実施する機能である。制御情報送信114eは、集約有無や集約数などを含む制御情報を無線端末200に送信する機能である。なお、ここでは、説明の都合上、機能に名称を付して分類したが、機能の名称や分類はこれに限定されない。
 記憶部115には、受信バッファ状態情報115aが格納される。例えば、制御部114は、送受信部111などを制御して受信バッファ状態報告要求を送信し、受信バッファ状態報告要求に応じて無線端末200から送信される受信バッファ状態情報115aを受信して記憶部115に格納する。受信バッファ状態情報115aには、例えば、受信バッファの使用量、使用率、空き容量、空き比率(未使用率)など、受信バッファの状態を示す情報が含まれる。
 (無線端末)
 次に、図9を参照しながら、無線端末200の機能について説明する。図9は、第2実施形態に係る無線端末が有する機能の一例を示したブロック図である。
 図9に示すように、無線端末200は、送受信部211、変復調部212、符号化・復号部213、制御部214、及び記憶部215を有する。
 なお、送受信部211、変復調部212の機能は、主に、上述したRF回路200b、信号処理回路200c、CPU200dにより実現されうる。符号化・復号部213、制御部214の機能は、主に、信号処理回路200c、CPU200dにより実現されうる。記憶部215の機能は、主に、メモリ200eにより実現されうる。
 送受信部211は、基地局100から品質測定に用いるパイロット信号を受信し、品質測定の結果(CQIなど)を送信する。また、送受信部211は、受信バッファ状態報告要求を基地局100から受信し、受信バッファ状態情報を基地局100に送信する。また、送受信部211は、集約制御の結果(集約有無、集約数など)を含む制御情報、及びDLデータを基地局100から受信する。
 変復調部212は、基地局100に送信される信号の変調、及び基地局100から受信される信号の復調を実施する。符号化・復号部213は、基地局100に送信される信号の符号化、及び基地局100から受信される信号の復号を実施する。
 制御部214は、送受信部211、変復調部212、符号化・復号部213の制御、及び、受信バッファ(バッファ200f)の状態管理などを実施する。例えば、制御部214は、情報要求受信214a、情報通知214b、バッファ状態管理214cなどの機能を有する。
 情報要求受信214aは、送受信部211などを制御して基地局100から受信バッファ状態報告要求を受信する機能である。情報通知214bは、送受信部211などを制御して基地局100に受信バッファ状態情報を送信する機能である。バッファ状態管理214cは、バッファ200fの使用量、使用率、空き容量、空き比率(未使用率)など、受信バッファの状態を確認し、受信バッファ状態情報を生成する機能である。なお、ここでは、説明の都合上、機能に名称を付して分類したが、機能の名称や分類はこれに限定されない。
 また、制御部214は、基地局100から受信される制御情報に基づいて受信設定を更新する。例えば、集約の有無や集約数が変更された場合、制御部214は、変更後の集約数で受信できるように受信設定を更新する。一例として、集約数が2から3に変更された場合、制御部214は、通信区間L1の先頭に位置する単位区間L0で制御信号Ctrlを受信し、制御信号Ctrlが規定する通信条件で3つの単位区間L0での受信を制御するように受信設定を更新する。
 記憶部215は、制御部214が処理を実行する際に一時的又は継続的に利用するデータなどが格納される。また、記憶部215には、制御部214の動作を規定するプログラムや、受信設定を規定する設定情報などが格納されてもよい。また、記憶部215には、バッファ状態管理214cにより取得される受信バッファの使用量、使用率、空き容量、空き比率(未使用率)などを示す状態情報が格納されてもよい。
 [2-4.処理の流れ]
 ここで、基地局100及び無線端末200が実行する処理の流れについて説明する。
 (受信バッファ状態報告)
 まず、図10を参照しながら、受信バッファ状態報告要求の送受信に関係する基地局側の処理の流れについて説明する。図10は、第2実施形態に係る受信バッファ状態報告に関する処理のうち、基地局側で実行される処理の流れを示したフロー図である。なお、図10に示した処理は、主に基地局100により実行される。
 (S131)制御部114は、DLデータ伝送の対象とする無線端末(無線端末200;選択端末)を選択する。
 (S132)制御部114は、基地局100で保持している選択端末の受信バッファ状態情報(記憶部115に格納されている受信バッファ状態情報115a)を確認する。このとき、制御部114は、受信バッファ状態情報115aの有無、及び受信バッファ状態情報115aが最新であるかを確認する。なお、受信バッファ状態情報115aの新旧は、例えば、前回更新されてから経過した時間や、無線端末200から取得されるバージョン情報などを利用することで管理できる。
 (S133)制御部114は、受信バッファ状態情報115aがあるか否かを判定する。また、制御部114は、受信バッファ状態情報115aがある場合、受信バッファ状態情報115aが最新であるか否かを判定する。受信バッファ状態情報115aがない場合、或いは、受信バッファ状態情報115aが最新ではない場合、処理はS134へと進む。一方、受信バッファ状態情報115aが最新の場合、図10に示した一連の処理は終了する。
 図5に例示したシーケンスによれば、受信バッファ状態報告要求に応じて受信バッファ状態情報が無線端末200から送信される。但し、受信バッファ状態報告要求の有無によらず無線端末200が受信バッファ状態情報を基地局100に通知する仕組みを採用することもできる。この仕組みを採用する場合、受信バッファ状態報告要求を送信する前に、受信バッファ状態情報115aが記憶部115に格納される場合がある。S132、S133で実施される受信バッファ状態情報115aの確認などは、このような仕組みを採用する場合に有効に機能する。
 (S134、S135)制御部114は、送受信部111などを制御し、選択端末である無線端末200に受信バッファ状態報告要求を送信する。そして、制御部114は、無線端末200から送信される受信バッファ状態情報115aの受信を待ち受ける。なお、制御部114は、待ち受け状態で他の処理を実行してもよい。受信バッファ状態情報115aが受信されると、処理はS136へと進む。
 (S136)制御部114は、無線端末200から受信された受信バッファ状態情報115aを記憶部115に格納し、リソース制御114c及びスケジューリング114dに利用できるように設定する。S136の処理が完了すると、図10に示した一連の処理は終了する。
 次に、図11を参照しながら、受信バッファ状態報告要求の送受信に関係する端末側の処理の流れについて説明する。図11は、第2実施形態に係る受信バッファ状態報告に関する処理のうち、無線端末側で実行される処理の流れを示したフロー図である。なお、図11に示した処理は、主に無線端末200により実行される。
 (S141、S142)制御部214は、基地局100から受信バッファ状態報告要求を受信する。この受信バッファ状態報告要求に応じて、制御部214は、バッファ200fの使用量、使用率、空き容量、空き比率(未使用率)などを受信バッファの状態として検出する。
 (S143、S144)制御部214は、受信バッファの状態を示す受信バッファ状態情報を生成する。そして、制御部214は、生成した受信バッファ状態情報を基地局100へ送信する。S144の処理が完了すると、図11に示した一連の処理は終了する。
 なお、制御部214は、基地局100から受信バッファ状態報告要求を受ける前に、自律的にバッファ200fの状態を確認し、受信バッファ状態情報を基地局100へ送信してもよい。例えば、制御部214は、所定の周期でバッファ200fの状態を確認し、UL制御チャネルの送信タイミングに乗じて受信バッファ状態情報を基地局100へ送信してもよい。このような変形も第2実施形態の技術的範囲に属する。
 (DLデータ送信制御)
 次に、図12を参照しながら、DLデータ送信制御に関係する基地局側の処理の流れについて説明する。図12は、第2実施形態に係るDLデータ送信制御に関する処理のうち、基地局側で実行される処理の流れを示したフロー図である。なお、図12に示した処理は、主に基地局100により実行される。
 (S151)制御部114は、選択端末(無線端末200)の受信バッファ状態情報115aを参照する。なお、最新の受信バッファ状態情報115aが記憶部115に格納されている場合には、その受信バッファ状態情報115aが参照される。また、受信バッファ状態報告要求に応じて受信バッファ状態情報115aが無線端末200から受信された場合には、受信された受信バッファ状態情報115aが参照される。
 (S152、S153)制御部114は、受信バッファ状態情報115aが示す受信バッファ(バッファ200f)の状態に応じて単位区間L0の集約数を決定する。また、制御部114は、選択端末(無線端末200)の割り当てリソースサイズを決定する。
 例えば、バッファ200fの空き容量をRxBuff、基地局100から無線端末200に送信されるDLデータのうち送信待ちデータのデータサイズをTxData、単位区間L0の集約数をAggNumと表記する。また、無線端末200に対する割り当てリソースサイズをAggSize、1つの単位区間L0に割り当て可能なリソースサイズをDurSizeと表記する。
 上記の表記を用いると、集約数AggNumは、例えば、下記の式(1)により決定されうる。但し、floor(・)は小数点以下を切り捨てる関数である。また、割り当てリソースAggSizeは、例えば、下記の式(2)により決定されうる。なお、以下の説明において再び上記の表記を用いる場合がある。
 AggNum=floor{RxBuff/DurSize}+1 …(1)
 AggSize=DurSize×AggNum …(2)
 (S154)制御部114は、集約数AggNumに基づいて集約の有無を判定する。例えば、制御部114は、集約数AggNumが所定数(2以上の数)以上の場合に集約有りと判定する。一方、集約数AggNumが所定数以下の場合、制御部114は、集約無しと判定する。この場合、制御部114は、集約数を1とし、各単位区間L0に制御信号Ctrlを配置する。また、制御部114は、集約の有無、及び集約数を含む制御情報を生成する。
 (S155、S156)制御部114は、送受信部111などを制御し、生成した制御情報を選択端末(無線端末200)へ送信する。そして、制御部114は、制御情報に応じて受信設定が更新された選択端末(無線端末200)に対し、制御情報の集約数に基づいて設定される通信区間L1でDLデータを送信する。S156の処理が完了すると、図12に示した一連の処理は終了する。
 次に、図13を参照しながら、DLデータ送信制御に関係する端末側の処理の流れについて説明する。図13は、第2実施形態に係るDLデータ送信制御に関する処理のうち、無線端末側で実行される処理の流れを示したフロー図である。なお、図13に示した処理は、主に無線端末200により実行される。
 (S161)制御部214は、集約の有無及び集約数などの情報を含む制御情報を基地局100から受信する。そして、制御部214は、制御情報に基づいて受信設定を更新する。例えば、集約有り、集約数が3の場合、制御部214は、通信区間L1の先頭にある単位区間L0で制御信号Ctrlを受信し、その制御信号Ctrlで規定される通信条件で3つの単位区間L0における受信を制御できるように受信設定を更新する。
 (S162、S163)制御部214は、S161で更新された受信設定に基づいて基地局100からDLデータを受信する。基地局100から受信されたDLデータは、バッファ200fに格納される。DLデータの格納後、制御部214は、バッファ200fの状態を確認して受信バッファ状態情報を更新する。なお、この時点で自律的に受信バッファ状態情報が基地局100へ送信されてもよい。
 (S164)制御部214は、自端末(無線端末200)が利用できる既知のULリソースを用いてDLデータの送達確認(ACK(ACKnowledgement)/NACK(Negative ACKnowledgement))を送信する。なお、余剰リソースを利用して送達確認を送信する方法については変形例として後述する。S164の処理が完了すると、図13に示した一連の処理は終了する。
 上記のように、受信バッファの状態を無線端末200が基地局100に通知し、基地局100が受信バッファの状態を考慮して集約制御を実施することで、受信バッファの溢れによる再送の発生リスク及び再送の繰り返しによる伝送遅延や効率劣化を抑制できる。
 [2-5.変形例]
 以下、第2実施形態の変形例について説明する。
 (余剰リソースの有効利用)
 一変形例として、余剰リソースを有効利用する仕組みについて説明する。
 上記の式(1)によれば、図14に示すように、通信区間L1で送信可能なデータ量(送信可能データ量)と、受信バッファで受信可能なデータ量(受信可能データ量)とに差が生じうる。図14は、単位区間の集約時に生じうる余剰リソースの有効利用について説明するための図である。
 例えば、1.5個の単位区間L0で送信可能なデータ量と同じサイズの空き容量が受信バッファにあり、2個の単位区間L0を集約した通信区間L1が設定された場合、単位区間L0の半分に相当する無線リソースが余剰リソースとなる。
 図4の(B)を参照しながら既に紹介した割り当て方法を採用する場合、DL送信を割り当てた区間に余剰リソースが生じたとき、余剰リソースにUL送信を割り当てることができる。この場合、基地局100の制御部114は、余剰リソースを無線端末200のUL送信に割り当てることができる。
 本変形例では、制御部114が、制御情報でUL送信の割り当てた余剰リソースを無線端末200に通知する。他方、無線端末200の制御部214は、割り当てられた余剰リソースを送達確認や受信バッファ状態情報の更新などに有効利用する。以下では、このような余剰リソースの有効利用を実施する場合に基地局100及び無線端末200が実行する処理の流れについて説明する。
 まず、図15を参照しながら、DLデータ送信制御に関係する基地局側の処理の流れについて説明する。図15は、第2実施形態の一変形例(余剰リソースの有効利用)に係るDLデータ送信制御に関する処理のうち、基地局側で実行される処理の流れを示したフロー図である。なお、受信バッファ状態報告に関係する処理の流れは、本変形例においても図10及び図11と同じである。
 (S201)制御部114は、選択端末(無線端末200)の受信バッファ状態情報115aを参照する。なお、最新の受信バッファ状態情報115aが記憶部115に格納されている場合には、その受信バッファ状態情報115aが参照される。また、受信バッファ状態報告要求に応じて受信バッファ状態情報115aが無線端末200から受信された場合には、受信された受信バッファ状態情報115aが参照される。
 (S202、S203)制御部114は、受信バッファ状態情報115aが示す受信バッファ(バッファ200f)の状態に応じて単位区間L0の集約数を決定する。また、制御部114は、選択端末(無線端末200)の割り当てリソースサイズを決定する。例えば、集約数AggNumは、上記の式(1)により決定される。割り当てリソースAggSizeは、例えば、上記の式(2)により決定される。
 (S204)制御部114は、余剰リソースのサイズを計算する。例えば、余剰リソースサイズをFreeSizeと表記すると、余剰リソースサイズFreeSizeは、下記の式(3)により決定されうる。
 FreeSize=AggSize-RxBuff …(3)
 (S205)制御部114は、集約数AggNumに基づいて集約の有無を判定する。例えば、制御部114は、集約数AggNumが所定数(2以上の数)以上の場合に集約有りと判定する。一方、集約数AggNumが所定数以下の場合、制御部114は、集約無しと判定する。この場合、制御部114は、集約数を1とし、各単位区間L0に制御信号Ctrlを配置する。また、制御部114は、集約の有無、及び集約数を含む制御情報を生成する。
 (S206)制御部114は、余剰リソースのサイズ(FreeSize)が0より大きいか否かを判定する。FreeSize>0の場合、処理はS207へと進む。一方、FreeSize>0でない場合(FreeSize=0の場合)、処理はS208へと進む。
 (S207)制御部114は、S205で生成した制御情報に余剰リソースの情報を付与する。余剰リソースの情報には、例えば、余剰リソースをUL送信に利用可能である旨の通知情報や、通信区間L1の末尾にある単位区間L0の中で余剰リソースが割り当てられる範囲を示す情報(割り当て範囲の先頭位置など)が含まれる。
 (S208、S209)制御部114は、送受信部111などを制御し、生成した制御情報を選択端末(無線端末200)へ送信する。そして、制御部114は、制御情報に応じて受信設定が更新された選択端末(無線端末200)に対し、制御情報の集約数に基づいて設定される通信区間L1でDLデータを送信する。S209の処理が完了すると、図15に示した一連の処理は終了する。
 次に、図16を参照しながら、DLデータ送信制御に関係する端末側の処理の流れ(送達確認の送信に利用する場合:パターンA)について説明する。図16は、第2実施形態の一変形例(余剰リソースの有効利用)に係るDLデータ送信制御に関する処理のうち、無線端末側で実行される処理(パターンA)の流れを示したフロー図である。
 (S211)制御部214は、集約の有無及び集約数などの情報を含む制御情報を基地局100から受信する。そして、制御部214は、制御情報に基づいて受信設定を更新する。例えば、集約有り、集約数が3の場合、制御部214は、通信区間L1の先頭にある単位区間L0で制御信号Ctrlを受信し、その制御信号Ctrlで規定される通信条件で3つの単位区間L0における受信を制御できるように受信設定を更新する。
 (S212)制御部214は、制御情報に余剰リソースの情報があるか否かを判定する。制御情報に余剰リソースの情報が付与されている場合、処理はS216へと進む。一方、制御情報に余剰リソースの情報が付与されていない場合、処理はS213へと進む。
 (S213、S214)制御部214は、S211で更新された受信設定に基づいて基地局100からDLデータを受信する。基地局100から受信されたDLデータは、バッファ200fに格納される。DLデータの格納後、制御部214は、バッファ200fの状態を確認して受信バッファ状態情報を更新する。なお、この時点で自律的に受信バッファ状態情報が基地局100へ送信されてもよい。
 (S215)制御部214は、自端末(無線端末200)が利用できる既知のULリソースを用いてDLデータの送達確認(ACK/NACK)を送信する。S215の処理が完了すると、図16に示した一連の処理は終了する。
 (S216、S217)制御部214は、S211で更新された受信設定に基づいて基地局100からDLデータを受信する。基地局100から受信されたDLデータは、バッファ200fに格納される。DLデータの格納後、制御部214は、バッファ200fの状態を確認して受信バッファ状態情報を更新する。なお、この時点で自律的に受信バッファ状態情報が基地局100へ送信されてもよい。
 (S218)制御部214は、制御情報に付与されている余剰リソースの情報を参照し、選択端末(無線端末200)に割り当てられている余剰リソースを用いて送達確認(ACK/NACK)を送信する。S218の処理が完了すると、図16に示した一連の処理は終了する。
 次に、図17を参照しながら、DLデータ送信制御に関係する端末側の処理の流れ(受信バッファ状態情報の送信に利用する場合:パターンB)について説明する。図17は、第2実施形態の一変形例(余剰リソースの有効利用)に係るDLデータ送信制御に関する処理のうち、無線端末側で実行される処理(パターンB)の流れを示したフロー図である。
 (S221)制御部214は、集約の有無及び集約数などの情報を含む制御情報を基地局100から受信する。そして、制御部214は、制御情報に基づいて受信設定を更新する。例えば、集約有り、集約数が3の場合、制御部214は、通信区間L1の先頭にある単位区間L0で制御信号Ctrlを受信し、その制御信号Ctrlで規定される通信条件で3つの単位区間L0における受信を制御できるように受信設定を更新する。
 (S222)制御部214は、制御情報に余剰リソースの情報があるか否かを判定する。制御情報に余剰リソースの情報が付与されている場合、処理はS223へと進む。一方、制御情報に余剰リソースの情報が付与されていない場合、処理はS226へと進む。
 (S223、S224)制御部214は、S221で更新された受信設定に基づいて基地局100からDLデータを受信する。基地局100から受信されたDLデータは、バッファ200fに格納される。DLデータの格納後、制御部214は、バッファ200fの状態を確認して受信バッファ状態情報を更新する。なお、この時点で自律的に受信バッファ状態情報が基地局100へ送信されてもよい。
 (S225)制御部214は、制御情報に付与されている余剰リソースの情報を参照し、選択端末(無線端末200)に割り当てられている余剰リソースを用いて受信バッファ状態情報を送信する。S225の処理が完了すると、処理はS228へと進む。
 (S226、S227)制御部214は、S221で更新された受信設定に基づいて基地局100からDLデータを受信する。基地局100から受信されたDLデータは、バッファ200fに格納される。DLデータの格納後、制御部214は、バッファ200fの状態を確認して受信バッファ状態情報を更新する。なお、この時点で自律的に受信バッファ状態情報が基地局100へ送信されてもよい。
 (S228)制御部214は、自端末(無線端末200)が利用できる既知のULリソースを用いてDLデータの送達確認(ACK/NACK)を送信する。S228の処理が完了すると、図17に示した一連の処理は終了する。
 上記のように、余剰リソースを有効利用することで、無線リソースの使用効率を高めることができる。
 なお、上記の説明においては、余剰リソースが0でない場合に、余剰リソースをUL送信に割り当てる例を示したが、余剰リソースのサイズが所定の閾値より小さい場合に余剰リソースの利用を抑制する仕組みに変形してもよい。例えば、上述したパターンBの例において、UL制御信号(UL Ctrl)及び受信バッファ状態情報のデータ量の総データ量などが所定の閾値に設定される。つまり、所望の情報をUL送信できるサイズの余剰リソースがある場合に余剰リソースを割り当てるように制御してもよい。
 (その他の変形例)
 これまでは時間方向に無線リソースを集約する方法について説明してきた。しかし、上述した第2実施形態の技術は周波数方向に無線リソースを集約する方法にも適用可能である。例えば、CA(Carrier Aggregation)などに適用することができる。また、単位時間幅及び単位帯域幅を有するRBやRE(Resource Element)などの無線リソースを集約する方法にも適用可能である。いずれの方法に適用する場合でも無線端末200が受信バッファ状態情報を基地局100に通知し、基地局100が受信バッファ状態情報に基づいて集約制御を実施する仕組みは同じである。
 また、上記の説明では、集約数を基地局100が決定していたが、無線品質の測定結果に基づいて無線端末200が集約数を決定し、その集約数を基地局100に通知する仕組みに変形することも可能である。また、基地局100及び無線端末200が双方で集約数の候補を決定し、基地局100がいずれかの候補を選択する仕組みに変形することも可能である。このような変形も当然に第2実施形態の技術的範囲に属する。
 また、上記の説明の中で、図16及び図17を参照しながら、余剰リソースを送達確認の送信(パターンA)及び受信バッファ状態情報の送信(パターンB)に利用する方法について説明した。余剰リソースでUL送信可能な情報は、送達確認及び受信バッファ状態情報の一方に限定されず、送達確認及び受信バッファ状態情報とは異なる情報が余剰リソースでUL送信されてもよい。
 そこで、一変形例として、図18を参照しながら、送達確認及び受信バッファ状態情報の両方を余剰リソースでUL送信する場合のシーケンスについて説明する。図18は、第2実施形態の一変形例(余剰リソースの有効利用)に係るDLデータ送信制御に関する無線通信システムの動作例(パターンA、Bの組み合わせ)について説明するためのシーケンス図である。
 (S231)基地局100は、所定数(2以上の数)の単位区間L0を含む通信区間L1を利用して既知のパイロット信号を基地局100に送信する。
 (S232、S233)無線端末200は、パイロット信号を利用してCQIを測定する。そして、無線端末200は、測定したCQIを基地局100に送信する。
 (S234)基地局100は、受信バッファの状態報告を要求する受信バッファ状態報告要求を無線端末200に送信する。例えば、受信バッファ状態報告要求は、PDCCHやMAC CEなどを利用して送信される。
 (S235)無線端末200は、基地局100から受信した受信バッファ状態報告要求に応じて、受信バッファの状態を確認する(バッファ確認)。例えば、無線端末200は、受信バッファの状態として、受信バッファの使用量、使用率、空き容量、空き比率(未使用率)を確認する。そして、無線端末200は、確認した受信バッファの状態を示す情報を含む受信バッファ状態情報を生成する。
 (S236)無線端末200は、受信バッファ状態報告要求に対する応答として、受信バッファ状態情報を基地局100に送信する。受信バッファ状態情報は、例えば、PUCCHやMAC CEなどを利用して送信される。
 (S237)基地局100は、無線端末200から受信したCQI及び受信バッファ状態情報に基づいて集約制御(集約有無の判定、集約数の決定)を実施する。集約を実施する場合、基地局100は、集約数に基づいて余剰リソースを特定する。
 (S238)基地局100は、集約の有無や集約数などの情報を含む制御情報を生成する。余剰リソースがある場合、基地局100は、余剰リソースの情報を制御情報に付与する。そして、基地局100は、制御情報を無線端末200に送信する。上記の制御情報は、例えば、PHYレイヤ、MACレイヤ、RRCレイヤの少なくとも1つを利用して通知される。
 (S239)無線端末200が制御情報に基づいて受信設定を完了すると、基地局100は、DLデータを無線端末200に送信する。このとき、基地局100は、S237で設定した集約数の単位区間L0を含む通信区間L1でDLデータを送信する。通信区間L1で送信されるDLデータは、無線端末200の受信バッファに格納される。
 (S240)無線端末200は、制御情報に余剰リソースの情報が付与されている場合、余剰リソースを利用してULデータの送達確認、及び、ULデータ受信後に更新された受信バッファ状態情報を送信する。なお、余剰リソースのうち、送達確認及び受信バッファ状態情報の割り当てリソースの残りを利用して他の情報がUL送信されてもよい。S240の処理が完了すると、図18に示した一連の処理は終了する。
 上記のように第2実施形態に係る技術に対して様々な変形が可能である。このような変形についても当然に第2実施形態の技術的範囲に属する。
 以上、第2実施形態について説明した。
 上記については単に本発明の原理を示すものである。さらに、多数の変形、変更が当業者にとって可能であり、本発明は上記に示し、説明した正確な構成および応用例に限定されるものではなく、対応するすべての変形例および均等物は、添付の請求項およびその均等物による本発明の範囲とみなされる。
 5 無線通信システム
 10 基地局
 11、21 アンテナ
 12、22 無線部
 13、23 制御部
 14 要求
 15 制御情報
 16 DLデータ
 24 受信バッファ
 25 バッファ情報
 25a、25b 空き容量
 30 集約リソース
 31、32、33、34、35 単位リソース
 Ctrl 制御信号

Claims (21)

  1.  基地局からの要求に応じて、受信バッファに関するバッファ情報を送信し、複数の無線リソースを集約するか否かを前記バッファ情報に基づいて制御する前記基地局から、前記複数の無線リソースの集約に関する制御情報を受信する制御部と
     を有する、無線端末。
  2.  前記複数の無線リソースのそれぞれは、単位時間幅を有する通信区間である
     請求項1に記載の無線端末。
  3.  前記通信区間は、シンボル、スロット、サブフレームのいずれかである
     請求項2に記載の無線端末。
  4.  前記バッファ情報は、前記受信バッファの使用量、使用率、空き容量、及び未使用率の少なくとも1つを含む、
     請求項1に記載の無線端末。
  5.  前記制御部は、前記通信区間の設定に関する情報を含む前記制御情報を受信し、前記制御情報の受信に応じて、上りリンクデータ、下りリンク受信結果の応答、前記バッファ情報の少なくとも1つを前記基地局に送信する
     請求項2に記載の無線端末。
  6.  前記通信区間は、前記無線端末に関する情報に基づいて、前記基地局により上りリンク送信用リソースと下りリンク送信用リソースとに分割される
     請求項2に記載の無線端末。
  7.  前記制御部は、前記上りリンク送信用リソースに関する情報を受信し、該上りリンク送信用リソースを用いて、下りリンク受信の結果に関する情報、該下りリンク受信後の前記受信バッファに関する情報、該下りリンク受信の品質に関する情報のうち少なくとも1つを前記基地局に送信する
     請求項6に記載の無線端末。
  8.  前記複数の無線リソースの集約は、制御情報を送受信する区間を含む第1の通信区間と、前記制御情報を用いてデータを送受信する区間である複数の第2の通信区間との集約である
     請求項2に記載の無線端末。
  9.  無線端末の受信バッファに関するバッファ情報を該無線端末に要求し、前記無線端末から前記バッファ情報を受信する送受信部と、
     前記無線端末から受信された前記無線端末に関する情報を用いて複数の無線リソースを集約するか否かを制御し、前記複数の無線リソースの集約に関する制御情報を前記無線端末に送信する制御部と
     を有する、基地局。
  10.  前記制御部は、前記バッファ情報を参照し、前記複数の無線リソースを集約した集約リソースのサイズが、前記受信バッファの空きサイズより大きい場合、前記集約リソースのサイズと前記空きサイズとの差である余剰リソースを上りリンク送信に割り当て、該上りリンク送信の割り当てを前記無線端末に通知する
     請求項9に記載の基地局。
  11.  前記制御部は、前記無線端末に関する情報に基づいて、前記無線端末に割り当てられる前記複数の無線リソースのうち少なくとも1つの無線リソースを上りリンク送信用リソースと下りリンク送信用リソースとに分割する
     請求項10に記載の基地局。
  12.  無線端末の受信バッファに関するバッファ情報を該無線端末に要求し、前記無線端末から受信された前記バッファ情報に基づいて複数の無線リソースを集約するか否かを制御し、前記複数の無線リソースの集約に関する制御情報を前記無線端末に送信する第1の制御部を有する、基地局と;
     前記バッファ情報の要求を前記基地局から受信し、該要求に応じて前記バッファ情報を前記基地局に送信し、前記基地局から前記制御情報を受信する第2の制御部を有する、前記無線端末と;
     を備える、無線通信システム。
  13.  基地局が、無線端末の受信バッファに関するバッファ情報を該無線端末に要求し、
     前記無線端末が、前記バッファ情報の要求を前記基地局から受信し、前記バッファ情報を前記基地局に送信し、
     前記基地局が、前記無線端末から受信された前記バッファ情報に基づいて複数の無線リソースを集約するか否かを制御し、前記複数の無線リソースの集約に関する制御情報を前記無線端末に送信する
     通信制御方法。
  14.  無線端末と基地局との間でデータを伝送する無線通信システムにおいて、
     前記基地局は、
     前記無線端末に対し、受信バッファに関するバッファ情報を通知するように要求するバッファ通知要求を送信する第1の通知部と、
     前記無線端末から通知される前記バッファ情報を受信する第1の受信部と、
     前記バッファ情報に基づいて、複数の無線リソースを集約するか否かを制御する第1の制御部と、
     前記複数の無線リソースの集約に関する制御情報を前記無線端末に送信する第1の送信部と、
     を有し、
     前記無線端末は、
     前記受信バッファと、
     前記基地局から前記バッファ通知要求及び前記制御情報を受信する第2の受信部と、
     前記バッファ情報を前記基地局に通知する第2の通知部と、
     を有する、無線通信システム。
  15.  前記第1の制御部は、シンボル、スロット、サブフレームのいずれか1つの粒度で前記複数の無線リソースを集約するか否かを制御する
     請求項14に記載の無線通信システム。
  16.  前記第1の制御部は、前記複数の無線リソースを集約するとき、該複数の無線リソースを集約した第1のリソースと、前記受信バッファで受信可能なデータ量に対応する第2のリソースとの差分である余剰リソースを計算し、
     前記第1の送信部は、前記余剰リソースに関する余剰リソース情報を前記無線端末に送信し、
     前記第2の受信部は、前記基地局から前記余剰リソース情報を受信し、
     前記無線端末は、前記制御情報及び前記余剰リソース情報に基づいて前記余剰リソースを利用する上りリンク送信を制御する第2の制御部をさらに有する
     請求項15に記載の無線通信システム。
  17.  前記バッファ情報は、前記受信バッファのバッファ使用量、バッファ使用率、バッファ空き容量、バッファ未使用率の少なくとも1つを含む
     請求項16に記載の無線通信システム。
  18.  前記第1の制御部は、上りリンクの制御情報が送信される区間と前記上りリンクのデータが送信される区間とを含む第1の区間、下りリンクの制御情報が送信される区間と前記下りリンクのデータが送信される区間とを含む第2の区間の少なくとも一方をサブフレームに割り当てる割り当て制御を実施し、
     前記第1の送信部は、前記制御情報に前記割り当て制御の結果を付与し、
     前記第2の通知部は、前記制御情報に付与される前記割り当て制御の結果に基づいて、前記上りリンクのデータ、前記下りリンクの受信結果に対する応答、前記バッファ情報の少なくとも1つを前記基地局に通知する
     請求項14に記載の無線通信システム。
  19.  前記第1の制御部は、前記無線端末に割り当てられる下りリンクの無線リソースについて、前記バッファ情報に基づいて前記下りリンクの無線リソース内の領域を下りリンク伝送用の領域と上りリンク伝送用の領域とに分割する
     請求項14に記載の無線通信システム。
  20.  前記第1の受信部は、前記無線端末から上りリンク伝送に用いる上りリンク制御情報を受信し、
     前記第1の制御部は、前記上りリンク制御情報により指定される無線リソースを前記無線端末に割り当て、下りリンク伝送の受信結果に関する情報、前記下りリンク伝送後の前記受信バッファに関する前記バッファ情報、前記下りリンク伝送の通信品質に関する品質情報の少なくとも1つを伝送する上りリンク伝送を前記無線端末に実施させる
     請求項14に記載の無線通信システム。
  21.  前記第1の制御部は、前記余剰リソースを他の無線端末に割り当てるか、前記他の無線端末に対する前記バッファ通知要求の送信に利用するか、前記他の無線端末との間で実施されるシグナリングに利用する
     請求項16に記載の無線通信システム。
PCT/JP2017/016660 2017-04-27 2017-04-27 基地局、無線端末、無線通信システム、及び通信制御方法 WO2018198261A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/016660 WO2018198261A1 (ja) 2017-04-27 2017-04-27 基地局、無線端末、無線通信システム、及び通信制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/016660 WO2018198261A1 (ja) 2017-04-27 2017-04-27 基地局、無線端末、無線通信システム、及び通信制御方法

Publications (1)

Publication Number Publication Date
WO2018198261A1 true WO2018198261A1 (ja) 2018-11-01

Family

ID=63918177

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/016660 WO2018198261A1 (ja) 2017-04-27 2017-04-27 基地局、無線端末、無線通信システム、及び通信制御方法

Country Status (1)

Country Link
WO (1) WO2018198261A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005142808A (ja) * 2003-11-06 2005-06-02 Kddi Corp 無線通信システム、基地局および無線通信端末
WO2013114484A1 (ja) * 2012-01-31 2013-08-08 パナソニック株式会社 無線通信装置、無線通信方法、および無線通信制御プログラム
JP2014165542A (ja) * 2013-02-21 2014-09-08 Mitsubishi Electric Corp 無線通信装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005142808A (ja) * 2003-11-06 2005-06-02 Kddi Corp 無線通信システム、基地局および無線通信端末
WO2013114484A1 (ja) * 2012-01-31 2013-08-08 パナソニック株式会社 無線通信装置、無線通信方法、および無線通信制御プログラム
JP2014165542A (ja) * 2013-02-21 2014-09-08 Mitsubishi Electric Corp 無線通信装置

Similar Documents

Publication Publication Date Title
EP3833098B1 (en) Fast carrier allocation in multi-carrier systems
JP5763651B2 (ja) Lteアドバンストにおけるキャリアアグリゲーションのためのpucchリソース割り当て
CN113796038A (zh) 无线通信系统中发送/接收信道状态信息的方法和装置
US20080026744A1 (en) Providing dynamically controlled CQI technique adapted for available signaling capacity
US8644207B1 (en) Mixed carrier communication channel management
WO2012094821A1 (zh) 信道状态信息的传输方法、基站和用户设备
WO2019154051A1 (zh) 上行控制信息的发送方法及装置、存储介质、用户设备
CN110035507B (zh) 一种移动通讯上行信息传输方法和系统
US10251181B2 (en) Methods and apparatuses for buffer status reporting for device-to-device communications
US10411865B2 (en) Method for transmitting uplink control information and apparatus
JP2018529264A5 (ja)
US10652868B2 (en) Terminal apparatus, base station apparatus, and wireless communication method
KR20210010267A (ko) 사이드링크 통신에서 채널 상태 측정 및 보고 방법 및 장치
WO2018198261A1 (ja) 基地局、無線端末、無線通信システム、及び通信制御方法
CN111294144B (zh) 直接链路的信道质量上报方法及装置、存储介质、用户设备
CN116830503A (zh) 用于有效率地使用下行链路传输资源的方法、无线设备和网络节点
CN116250255A (zh) 组播和广播服务状态上报
WO2024171552A1 (ja) 上りリンク制御情報の効率的な送信のための端末装置、基地局装置、制御方法、及びプログラム
WO2018198306A1 (ja) 無線端末、基地局、無線通信システム、及び通信制御方法
JP2024116780A (ja) 上りリンク制御情報の効率的な送信のための端末装置、制御方法、及びプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17907292

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17907292

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP