WO2018196517A1 - 吸波材料及其制作方法 - Google Patents
吸波材料及其制作方法 Download PDFInfo
- Publication number
- WO2018196517A1 WO2018196517A1 PCT/CN2018/079813 CN2018079813W WO2018196517A1 WO 2018196517 A1 WO2018196517 A1 WO 2018196517A1 CN 2018079813 W CN2018079813 W CN 2018079813W WO 2018196517 A1 WO2018196517 A1 WO 2018196517A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- absorbing material
- material according
- filler
- parts
- raw rubber
- Prior art date
Links
- 239000011358 absorbing material Substances 0.000 title claims abstract description 86
- 238000002360 preparation method Methods 0.000 title abstract 3
- 239000000203 mixture Substances 0.000 claims abstract description 34
- 229920001971 elastomer Polymers 0.000 claims abstract description 33
- 239000000945 filler Substances 0.000 claims abstract description 33
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 24
- 239000012752 auxiliary agent Substances 0.000 claims abstract description 18
- -1 iron-aluminium-silicon Chemical compound 0.000 claims abstract description 14
- 238000007731 hot pressing Methods 0.000 claims abstract description 13
- 229910000859 α-Fe Inorganic materials 0.000 claims abstract description 8
- 229910000599 Cr alloy Inorganic materials 0.000 claims abstract description 6
- 229910001289 Manganese-zinc ferrite Inorganic materials 0.000 claims abstract description 6
- JIYIUPFAJUGHNL-UHFFFAOYSA-N [O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[Mn++].[Mn++].[Mn++].[Fe+3].[Fe+3].[Fe+3].[Fe+3].[Fe+3].[Fe+3].[Fe+3].[Fe+3].[Fe+3].[Fe+3].[Zn++].[Zn++] Chemical compound [O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[Mn++].[Mn++].[Mn++].[Fe+3].[Fe+3].[Fe+3].[Fe+3].[Fe+3].[Fe+3].[Fe+3].[Fe+3].[Fe+3].[Fe+3].[Zn++].[Zn++] JIYIUPFAJUGHNL-UHFFFAOYSA-N 0.000 claims abstract description 6
- 239000000788 chromium alloy Substances 0.000 claims abstract description 6
- 229920002943 EPDM rubber Polymers 0.000 claims abstract description 5
- 229920005549 butyl rubber Polymers 0.000 claims abstract description 5
- 239000003822 epoxy resin Substances 0.000 claims abstract description 5
- 229920000647 polyepoxide Polymers 0.000 claims abstract description 5
- 229920002379 silicone rubber Polymers 0.000 claims abstract description 5
- 239000004945 silicone rubber Substances 0.000 claims abstract description 5
- 229920002635 polyurethane Polymers 0.000 claims abstract description 4
- 239000004814 polyurethane Substances 0.000 claims abstract description 4
- 238000004519 manufacturing process Methods 0.000 claims description 22
- 238000000034 method Methods 0.000 claims description 19
- 239000006087 Silane Coupling Agent Substances 0.000 claims description 7
- 235000021355 Stearic acid Nutrition 0.000 claims description 7
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 claims description 7
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 claims description 7
- 239000008117 stearic acid Substances 0.000 claims description 7
- 229910000676 Si alloy Inorganic materials 0.000 claims description 6
- QXZUUHYBWMWJHK-UHFFFAOYSA-N [Co].[Ni] Chemical compound [Co].[Ni] QXZUUHYBWMWJHK-UHFFFAOYSA-N 0.000 claims description 6
- XMNIXWIUMCBBBL-UHFFFAOYSA-N 2-(2-phenylpropan-2-ylperoxy)propan-2-ylbenzene Chemical group C=1C=CC=CC=1C(C)(C)OOC(C)(C)C1=CC=CC=C1 XMNIXWIUMCBBBL-UHFFFAOYSA-N 0.000 claims description 4
- 239000000654 additive Substances 0.000 claims description 4
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 3
- 229910052717 sulfur Inorganic materials 0.000 claims description 3
- 239000011593 sulfur Substances 0.000 claims description 3
- 239000000463 material Substances 0.000 abstract description 17
- 238000000465 moulding Methods 0.000 abstract description 6
- 229910000789 Aluminium-silicon alloy Inorganic materials 0.000 abstract 1
- ZGDWHDKHJKZZIQ-UHFFFAOYSA-N cobalt nickel Chemical compound [Co].[Ni].[Ni].[Ni] ZGDWHDKHJKZZIQ-UHFFFAOYSA-N 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 8
- 238000009472 formulation Methods 0.000 description 8
- 230000007613 environmental effect Effects 0.000 description 7
- 239000000843 powder Substances 0.000 description 7
- 238000012360 testing method Methods 0.000 description 6
- 239000006185 dispersion Substances 0.000 description 5
- 230000005670 electromagnetic radiation Effects 0.000 description 4
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- OKIRBHVFJGXOIS-UHFFFAOYSA-N 1,2-di(propan-2-yl)benzene Chemical compound CC(C)C1=CC=CC=C1C(C)C OKIRBHVFJGXOIS-UHFFFAOYSA-N 0.000 description 1
- NFPBWZOKGZKYRE-UHFFFAOYSA-N 2-propan-2-ylperoxypropane Chemical compound CC(C)OOC(C)C NFPBWZOKGZKYRE-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- KCZFLPPCFOHPNI-UHFFFAOYSA-N alumane;iron Chemical compound [AlH3].[Fe] KCZFLPPCFOHPNI-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000010006 flight Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000005502 peroxidation Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000003856 thermoforming Methods 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K13/00—Use of mixtures of ingredients not covered by one single of the preceding main groups, each of these compounds being essential
- C08K13/02—Organic and inorganic ingredients
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/02—Elements
- C08K3/08—Metals
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L21/00—Compositions of unspecified rubbers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/16—Ethene-propene or ethene-propene-diene copolymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/18—Homopolymers or copolymers of hydrocarbons having four or more carbon atoms
- C08L23/20—Homopolymers or copolymers of hydrocarbons having four or more carbon atoms having four to nine carbon atoms
- C08L23/22—Copolymers of isobutene; Butyl rubber; Homopolymers or copolymers of other iso-olefins
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L63/00—Compositions of epoxy resins; Compositions of derivatives of epoxy resins
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L75/00—Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
- C08L75/04—Polyurethanes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L83/00—Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L83/00—Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
- C08L83/04—Polysiloxanes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L9/00—Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K3/00—Materials not provided for elsewhere
Definitions
- the present invention relates to the field of metamaterials, and more particularly to a method of making an absorbing material.
- Harmful electromagnetic radiation can cause a certain degree of damage to the human body through thermal or non-thermal effects. Unnecessary electromagnetic radiation can also cause interference to airport flights and hospital medical equipment. Therefore, materials capable of withstanding or weakening electromagnetic radiation are urgently needed to be developed and expanded. Among them, absorbing materials and metamaterials made of absorbing materials are widely used in military and civilian applications.
- the requirements for absorbing materials are often not only the characteristics of absorbing waves, but also the introduction of other characteristics such as convenience, flexibility, etc. to meet their working environment.
- an object of the present invention is to provide an absorbing material and a manufacturing method thereof, and the absorbing material obtained by the method has the characteristics of good flexibility, environmental resistance and the like.
- a method for producing an absorbing material comprising: mixing a raw rubber, a filler, a vulcanizing agent, and an auxiliary agent into a mixture; and thermoforming the mixture to obtain the absorbing material
- the filler comprises at least one of manganese zinc ferrite, nickel cobalt ferrite, iron aluminum silicon alloy, and iron aluminum chromium alloy.
- the raw parts of the raw rubber, the filler, the vulcanizing agent and the auxiliary agent are:
- Filler 100 to 500 parts
- Vulcanizing agent 1 to 5 parts
- the filler is in the form of a powder.
- the raw rubber is any one of epoxy resin, polyurethane, ethylene propylene diene monomer, silicone rubber, and butyl rubber.
- the vulcanizing agent is dicumyl peroxide or sulfur.
- the auxiliary agent is at least one of stearic acid and a silane coupling agent.
- the mixing step has an operating temperature of 60 to 100 degrees Celsius.
- the step of hot press forming has an operating temperature of 150 to 180 degrees Celsius.
- the step of hot press forming has an operating pressure of 5 to 25 MPa.
- the step of hot press forming has an operation time of 10 to 60 minutes.
- an absorbing material which is produced according to the above-described method for producing a absorbing material.
- the filler comprises at least one of high electromagnetic loss materials such as manganese zinc ferrite, nickel cobalt ferrite, iron aluminum silicon alloy, iron aluminum chromium alloy, etc.
- the electromagnetic loss material can adjust the electromagnetic properties of the product to obtain the characteristics of absorbing.
- the raw materials of the absorbing material also include raw rubber, vulcanizing agent and auxiliary agent, wherein the raw rubber can provide the necessary flexibility, high impact modulus and environmental resistance for the product, and the addition of the auxiliary agent can improve the filler in the raw rubber matrix. Dispersion.
- the absorbing material obtained according to the present invention not only has a simple absorbing property, but also has better flexibility, higher impact strength and better environmental resistance due to the introduction of raw rubber.
- the introduction of the agent makes the performance of the dispersion uniform, and the step of hot pressing obtains a predetermined shape, for example, a sheet having good convenience and ease of use.
- the mass ratio of the raw rubber, the filler, the vulcanizing agent, and the auxiliary agent is from 100:100 to 500:1 to 5:0.5 to 3.
- the ratio of each component By controlling the ratio of each component, the most balanced performance can be obtained. Absorbing materials.
- the filler in the mixing step is in the form of a powder to facilitate more uniform dispersion in the green rubber.
- the absorbing member can be directly used, and since it has better flexibility and ease of use, it can also be used as a substrate to produce a super material having absorbing ability.
- Figure 1a is a block diagram showing a method of fabricating a wave absorbing material according to a first embodiment of the present invention
- Figure 1b is a schematic view showing a formulation of a wave absorbing material according to a first embodiment of the present invention
- Figure 2a is a block diagram showing a method of fabricating a wave absorbing material according to a second embodiment of the present invention
- Figure 2b is a schematic view showing the formulation of a wave absorbing material according to a second embodiment of the present invention.
- Figure 3a is a block diagram showing a method of fabricating a wave absorbing material according to a third embodiment of the present invention.
- Figure 3b is a schematic view showing the formulation of a wave absorbing material according to a third embodiment of the present invention.
- Figure 4a is a block diagram showing a method of fabricating a wave absorbing material according to a fourth embodiment of the present invention.
- Figure 4b is a schematic illustration of a formulation of a absorbing material according to a fourth embodiment of the present invention.
- the invention provides a method for preparing an absorbing material, which comprises the steps of mixing and hot pressing, wherein in the mixing step, the raw rubber, the filler, the vulcanizing agent and the auxiliary agent are mixed into a mixture, and in the hot pressing step, the above The mixture is hot pressed to obtain a absorbing material.
- Raw rubber can provide the necessary flexibility, high impact modulus and environmental resistance for the product;
- the filler includes high electromagnetic loss materials such as manganese zinc ferrite, nickel cobalt ferrite, iron aluminum silicon alloy, iron aluminum chromium alloy, etc. At least one of these types of high electromagnetic loss materials can adjust the electromagnetic properties of the product to obtain absorbing properties; the addition of the auxiliaries can improve the dispersibility of the filler in the green matrix.
- the absorbing material obtained by using the absorbing material can be directly used as a absorbing member, or can be used as a substrate to produce a super material having a absorbing property.
- FIG. 1a is a block diagram showing a method of fabricating an absorbing material according to a first embodiment of the present invention.
- the method for fabricating the absorbing material of the present embodiment includes steps S101 and S102.
- step S101 mixing is carried out, that is, a raw rubber, a filler, a vulcanizing agent, and an auxiliary agent are mixed into a mixture.
- the filler may include a high electromagnetic loss material such as manganese zinc ferrite, nickel cobalt ferrite, iron aluminum silicon alloy, iron aluminum chromium alloy, etc., which may be one of the above materials, or may have the above materials. At least two of them are mixed.
- a high electromagnetic loss material such as manganese zinc ferrite, nickel cobalt ferrite, iron aluminum silicon alloy, iron aluminum chromium alloy, etc.
- the electromagnetic properties of the finally obtained absorbing material can be adjusted, and the absorbing frequency band and the absorbing intensity can be adjusted accordingly.
- the raw rubber may be any one of epoxy resin, polyurethane, ethylene propylene diene monomer, silicone rubber, butyl rubber, and the like.
- the filler is dispersed in the raw rubber, and the raw rubber can make the absorbing material obtain certain flexibility, impact resistance and environmental resistance.
- the vulcanizing agent may be inorganic, for example, sulfur, or may be organic, for example, dicumyl peroxide, and the heat resistance and aging resistance of the obtained absorbing material can be appropriately increased.
- the auxiliary agent may be at least one of stearic acid and a silane coupling agent for improving the dispersibility of the filler having high electromagnetic loss in the raw rubber matrix.
- the mass fraction of the raw rubber, the filler, the vulcanizing agent and the auxiliary agent is preferably:
- Filler 100 to 500 parts
- Vulcanizing agent 1 to 5 parts
- the absorbing material having the most balanced performance can be obtained.
- the filler is preferably in a powder form during mixing to facilitate more uniform dispersion in the raw rubber.
- Fig. 1b is a schematic view showing the formulation of the absorbing material of the present embodiment.
- 200 g of MnZn ferrite powder is added to 100 g of epoxy resin, and 2 g of dioxygen peroxide is added.
- Propylene, 0.5 g of stearic acid, and 0.5 g of a silane coupling agent were mixed, and each of the above materials was placed in an internal mixer and uniformly mixed at 70 ° C to obtain the mixture.
- the operating temperature is 70 degrees Celsius, and the actual temperature is not limited to the temperature, and the operating temperature of 60 to 100 degrees Celsius can realize the present invention.
- step S102 hot pressing is performed, and the mixture obtained in step S101 is hot-pressed to obtain the absorbing material of the present invention.
- the mixture may be press-formed in a hot press, and after molding, it may be dried.
- the operating temperature of the hot pressing step may be 150 to 180 degrees Celsius
- the operating pressure may be 5 to 25 MPa
- the operating time may be 10 to 60 minutes.
- the mixture obtained in the above step S101 is placed in a flat plate hot press, and the operating pressure is set to 25 MPa, and the temperature is pressed at 150 degrees Celsius for 30 minutes. After molding, it is dried to obtain a finished absorbing material. .
- the absorbing material prepared in the present example was tested, and the absorbing material was cut into a size of 300 mm ⁇ 300 mm, and the reflectance was tested in an anechoic chamber. After testing, the signal intensity at a frequency of 11 to 15 Ghz was -5 dB.
- Fig. 2a is a block diagram showing a method of fabricating a absorbing material according to a second embodiment of the present invention. The differences between the second embodiment and the first embodiment will be described below, and the same points will not be described in detail.
- the manufacturing method of the absorbing material of this embodiment includes step S201 and step S202.
- step S201 mixing is carried out, that is, a raw rubber, a filler, a vulcanizing agent, and an auxiliary agent are mixed into a mixture.
- Fig. 2b is a schematic view showing the formulation of the absorbing material of the present embodiment.
- 100 g of nickel-cobalt ferrite powder is added to 100 g of ethylene propylene diene rubber, and 3 g of peroxidation is added.
- Diisopropylbenzene, 1.5 g of stearic acid, and 1.5 g of a silane coupling agent were mixed, and each of the above materials may be placed in an internal mixer and uniformly mixed at 70 ° C to obtain the mixture.
- step S202 hot pressing is performed, and the mixture obtained in step S201 is hot-pressed to obtain the absorbing material of the present invention.
- the mixture obtained in the above step S201 is placed in a flat plate hot press, and the operating pressure is set to 25 MPa, and the temperature is pressed at 170 degrees Celsius for 10 minutes. After molding, it is dried to obtain a finished absorbing material. .
- the absorbing material prepared in the present example was tested, and the absorbing material was cut into a size of 300 mm ⁇ 300 mm, and the reflectance was tested in an anechoic chamber. After testing, the signal intensity at a frequency of 16 to 18 Ghz was -3 dB.
- Fig. 3a is a block diagram showing a method of fabricating a absorbing material according to a third embodiment of the present invention. The differences between the third embodiment and the foregoing embodiment will be described below, and the same points will not be described in detail.
- the manufacturing method of the absorbing material of this embodiment includes step S301 and step S302.
- step S301 mixing is carried out, that is, a raw rubber, a filler, a vulcanizing agent, and an auxiliary agent are mixed into a mixture.
- Fig. 3b is a schematic view showing the formulation of the absorbing material of the present embodiment.
- 300 g of the iron-aluminum chrome alloy powder is added to 100 g of the silicone rubber, and 4 g of dicumyl peroxide is added.
- 3 g of stearic acid and 3 g of a silane coupling agent were mixed, and each of the above materials was placed in an internal mixer and uniformly mixed at 70 ° C to obtain the mixture.
- step S302 hot pressing is performed, and the mixture obtained in step S301 is hot-pressed to obtain the absorbing material of the present invention.
- the mixture obtained in the above step S301 is placed in a flat plate hot press, and the operating pressure is set to 25 MPa, and the temperature is set to 175 ° C for 40 minutes. After molding, it is dried to obtain a finished absorbing material. .
- the absorbing material prepared in the present example was tested, and the absorbing material was cut into a size of 300 mm ⁇ 300 mm, and the reflectance was tested in an anechoic chamber. After testing, the signal intensity at a frequency of 5 to 8 Ghz was -8 dB.
- Fig. 4a is a block diagram showing a method of fabricating a absorbing material according to a fourth embodiment of the present invention. The differences between the fourth embodiment and the foregoing embodiment will be described below, and the same points will not be described in detail.
- the manufacturing method of the absorbing material of this embodiment includes step S401 and step S402.
- step S401 mixing is carried out, that is, raw rubber, a filler, a vulcanizing agent, and an auxiliary agent are mixed into a mixture.
- Fig. 4b is a schematic view showing the formulation of the absorbing material of the present embodiment.
- 500 g of iron-aluminum-silicon alloy powder is added to 100 g of butyl rubber, and 6 g of diisopropyl peroxide is added.
- Benzene, 4 g of stearic acid, and 4 g of a silane coupling agent were mixed, and each of the above materials may be placed in an internal mixer and uniformly mixed at 70 ° C to obtain the mixture.
- step S402 hot pressing is performed, and the mixture obtained in step S401 is hot-pressed to obtain the absorbing material of the present invention.
- the mixture obtained in the above step S401 is placed in a flat plate hot press, and the operating pressure is set to 25 MPa, and the temperature is heated at 180 degrees Celsius for 60 minutes. After molding, it is dried to obtain a finished absorbing material. .
- the absorbing material prepared in the present example was tested, and the absorbing material was cut into a size of 300 mm ⁇ 300 mm, and the reflectance was tested in an anechoic chamber. After testing, the signal intensity at a frequency of 2 to 4 Ghz was -10 dB.
- the absorbing material has a strong absorbing ability in a predetermined frequency band due to the presence of a high electromagnetic loss filler.
- the absorbing material obtained according to the present invention not only has a simple absorbing property, but also has better flexibility, higher impact strength and better environmental resistance due to the introduction of raw rubber.
- the introduction of the agent makes the performance of the dispersion uniform, and the step of hot pressing obtains a predetermined shape, for example, a sheet having good convenience and ease of use.
- the ratio of the green rubber, the filler, the vulcanizing agent, and the auxiliary agent in the mixing step By controlling the ratio of the green rubber, the filler, the vulcanizing agent, and the auxiliary agent in the mixing step, the absorbing material having the most uniform performance can be obtained.
- the thermocompression device selected in the hot pressing step operating temperature, pressure, and duration, a variety of different shapes or thicknesses and attachable absorbing materials can be obtained.
- the present invention also provides an absorbing material which can be produced according to the method for producing a absorbing material according to any of the above embodiments.
- the absorbing material of the present invention has strong absorbing ability in a predetermined frequency band, and has the characteristics of flexibility, attachability, impact resistance and environmental resistance.
- the absorbing material of the present invention can be directly used for the absorbing member, and because of its better flexibility and ease of use, it can also be used as a substrate for making a super material having absorbing ability.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
- Hard Magnetic Materials (AREA)
Abstract
一种吸波材料及其制作方法,该制作方法包括在混合步骤中,将生胶、填料、硫化剂以及助剂混合为混合物,然后在热压步骤中,将上述混合物热压成型,得到吸波材料。生胶为环氧树脂、聚氨酯、三元乙丙橡胶、硅橡胶、丁基橡胶中的任一种;填料包括锰锌铁氧体、镍钴铁氧体、铁铝硅合金、铁铝铬合金等高电磁损耗材料中的至少一种。
Description
本发明涉及超材料领域,更具体地涉及一种吸波材料的制作方法。
随着现代科学技术的发展,电磁波辐射对环境的影响日益增大。有害的电磁辐射可以通过热效应或非热效应对人体造成一定程度的伤害,不必要的电磁辐射还会给机场航班、医院医疗器械带来干扰。因此,能够抵挡或削弱电磁波辐射的材料急需得到开发和拓展。其中,吸波材料以及以吸波材料为基材制作的超材料被广泛应用于军事和民用领域。
在一些领域中,对吸波材料的要求往往不仅仅是具有吸波的特性,还需要引入例如便捷性、柔性等其它特性来满足其工作环境。
有鉴于此,本发明的目的在于提供一种吸波材料及其制作方法,该方法制得的吸波材料兼具较好的柔性、耐环境性等特性。
根据本发明的一方面,提供一种吸波材料的制作方法,包括:将生胶、填料、硫化剂以及助剂混合为混合物;以及将所述混合物热压成型,得到所述吸波材料,其中,所述填料包括锰锌铁氧体、镍钴铁氧体、铁铝硅合金、铁铝铬合金中的至少一种。
优选地,所述生胶、所述填料、所述硫化剂、所述助剂的质量份数为:
生胶:100份;
填料:100~500份;
硫化剂:1~5份;
助剂:0.5~3份。
优选地,在所述混合步骤中,所述填料呈粉末状。
优选地,所述生胶为环氧树脂、聚氨酯、三元乙丙橡胶、硅橡胶、丁基橡胶中的任一种。
优选地,所述硫化剂为过氧化二异丙苯或硫磺。
优选地,所述助剂为硬脂酸、硅烷偶联剂中的至少一种。
优选地,所述混合的步骤的操作温度为60至100摄氏度。
优选地,所述热压成型的步骤的操作温度为150至180摄氏度。
优选地,所述热压成型的步骤的操作压力为5至25兆帕。
优选地,所述热压成型的步骤的操作时长为10至60分钟。
根据本发明的另一方面,提供一种吸波材料,其根据上述的吸波材料的制作方法制得。
根据本发明的吸波材料及其制作方法,填料包括锰锌铁氧体、镍钴铁氧体、铁铝硅合金、铁铝铬合金等高电磁损耗材料中的至少一种,引入这类高电磁损耗材料可以调节产品的电磁性能,使其获得吸波的特性。吸波材料的原材料还包括生胶、硫化剂以及助剂等,其中生胶可以为产品提供必要的柔性、高冲击模量以及耐环境性等,助剂的加入可以提高填料在生胶基体中的分散性。因此,依据本发明得到的吸波材料,不仅仅是具有单纯的吸波特性,还由于生胶的引入具有更好的柔性、更高的抗冲击强度、更好的耐环境性,由于助剂的引入使其性能分散均匀,由于热压的步骤获得预定的形状,例如是便捷性好、易用性强的片状。
在优选的实施例中,生胶、填料、硫化剂、助剂的质量比为100∶100~500∶1~5∶0.5~3,通过控制各组分的比例,能够获得性能最均衡的所述吸波材料。
在优选的实施例中,混合步骤中的填料呈粉末状,以便于更均匀地分散于生胶中。
根据本发明提供的吸波材料,可以直接制作吸波件使用,由于其具有的更好的柔性和易用性,也可以是作为基材制作具有吸波能力的超材料使用。
通过以下参照附图对本发明实施例的描述,本发明的上述以及其它目的、特征和优点将更为清楚。
图1a根据示出本发明第一实施例的吸波材料的制作方法的框图;
图1b根据示出本发明第一实施例的吸波材料的配方的示意图;
图2a根据示出本发明第二实施例的吸波材料的制作方法的框图;
图2b根据示出本发明第二实施例的吸波材料的配方的示意图;
图3a根据示出本发明第三实施例的吸波材料的制作方法的框图;
图3b根据示出本发明第三实施例的吸波材料的配方的示意图;
图4a根据示出本发明第四实施例的吸波材料的制作方法的框图;
图4b根据示出本发明第四实施例的吸波材料的配方的示意图。
以下将参照附图更详细地描述本发明。在各个附图中,相同的元件采用类似的附图标记来表示。为了清楚起见,附图中的各个部分没有按比例绘制。此外,在图中可能未示出某些公知的部分。
在下文中描述了本发明的许多特定的细节,例如部件的结构、材料、尺寸、处理工艺和技术,以便更清楚地理解本发明。但正如本领域的技术人员能够理解的那样,可以不按照这些特定的细节来实现本发明。
本发明提供一种吸波材料的制作方法,大致包括混合以及热压等步骤,其中在混合步骤中,将生胶、填料、硫化剂以及助剂混合为混合物,在热压步骤中,将上述混合物热压成型,得到吸波材料。生胶可以为产品提供必要的柔性、高冲击模量以及耐环境性等;填料包括锰锌铁氧体、镍钴铁氧体、铁铝硅合金、铁铝铬合金等高电磁损耗材料中的至少一种,引入这类高电磁损耗材料可以调节产品的电磁性能,使其获得吸波的特性;助剂的加入可以提高填料在生胶基体中的分散性。依据本发明的吸波材料的制作方法,其制得的吸波材料可以直接制作吸波件使用,也可以是作为基材制作具有吸波能力的超材料使用。
图1a根据示出本发明第一实施例的吸波材料的制作方法的框图,本实施例的吸波材料的制作方法包括步骤S101和步骤S102。
在步骤S101中,进行混合,即将生胶、填料、硫化剂以及助剂混合为混合物。
在本步骤中,填料可以包括锰锌铁氧体、镍钴铁氧体、铁铝硅合金、铁铝铬合金等高电磁损耗材料,其可以是上述材料中的一种,也可以有上述材料中的至少两种混合而成。通过调节填料的组成,可以调节最终得到的吸波材料的电磁性能,使其吸波频段以及吸波强度相应得到调节。
生胶可以是环氧树脂、聚氨酯、三元乙丙橡胶、硅橡胶、丁基橡胶等中的任一种。在本发明的方法制得的吸波材料中,填料分散于生胶中,生胶能够使得吸波材料获得一定的柔性、抗冲击能力以及耐环境性。
硫化剂可以是无机的,例如是硫磺,也可以是有机的,例如是过氧化二异丙苯,能够适当提高所得到的的吸波材料的耐热性和耐老化性。
助剂可以是硬脂酸、硅烷偶联剂中的至少一种,用于提高高电磁损耗的填料在生胶基体中的分散性。
在本步骤中,生胶、填料、硫化剂、助剂的质量份数优选为:
生胶:100份;
填料:100~500份;
硫化剂:1~5份;
助剂:0.5~3份。
通过控制各组分的比例,能够获得性能最均衡的所述吸波材料。
此外,在本步骤中,混合时所述填料优选呈粉末状,以便于更均匀地分散于生胶中。
图1b示出本实施例的吸波材料的配方的示意图,在本实施例中,将200克的锰锌铁氧体粉末加入到100克的环氧树脂中,并加入2克过氧化二异丙苯、0.5克硬脂酸以及0.5克硅烷偶联剂进行混合,其中可以将上述各材料置于密炼机中,在70摄氏度环境下混合均匀,得到所述混合物。
需要说明的是,上述混合步骤中,其操作温度为70摄氏度,实际中可不限于该温度,60至100摄氏度的操作温度均可以实现本发明。
在步骤S102中,进行热压,将步骤S101得到的混合物热压成型,得到本发明的吸波材料。
本步骤中,可以将所述混合物置于热压机中压制成型,成型后,还可以进行进行晾干。其中,热压步骤的操作温度可以是150至180摄氏度,操作压力可以是5至25兆帕,而操作时长可以是10至60分钟。
本实施例中,将上述步骤S101得到的混合物置于平板热压机中,设置操作压力为25兆帕,在150摄氏度温度下热压30分钟,成型后进行晾干,得到成品的吸波材料。
对本实施例制得的吸波材料进行测试,将吸波材料切割为300mm×300mm的规格,在电波暗室中测试反射率,经测试,其在11至15Ghz频率的信号强度为-5dB。
图2a根据示出本发明第二实施例的吸波材料的制作方法的框图,以下将对第二实施例与第一实施例的不同之处说明,相同之处不再详述。
本实施例的吸波材料的制作方法包括步骤S201和步骤S202。
在步骤S201中,进行混合,即将生胶、填料、硫化剂以及助剂混合为混合物。
图2b示出本实施例的吸波材料的配方的示意图,在本实施例中,将100克的镍钴铁氧体粉末加入到100克的三元乙丙橡胶中,并加入3克过氧化二异丙苯、1.5克硬脂酸以及1.5克硅烷偶联剂进行混合,其中可以将上述各材料置于密炼机中,在70摄氏度环境下混合均匀,得到所述混合物。
在步骤S202中,进行热压,将步骤S201得到的混合物热压成型,得到本发明的吸波材料。
本实施例中,将上述步骤S201得到的混合物置于平板热压机中,设置操作压力为25兆帕,在170摄氏度温度下热压10分钟,成型后进行晾干,得到成品的吸波材料。
对本实施例制得的吸波材料进行测试,将吸波材料切割为300mm×300mm的规格,在电波暗室中测试反射率,经测试,其在16至18Ghz频率的信号强度为-3dB。
图3a根据示出本发明第三实施例的吸波材料的制作方法的框图,以下将对第三实施例与前述实施例的不同之处说明,相同之处不再详述。
本实施例的吸波材料的制作方法包括步骤S301和步骤S302。
在步骤S301中,进行混合,即将生胶、填料、硫化剂以及助剂混合为混合物。
图3b示出本实施例的吸波材料的配方的示意图,在本实施例中,将300克的铁铝铬合金粉末加入到100克的硅橡胶中,并加入4克过氧化二异丙苯、3克硬脂酸以及3克硅烷偶联剂进行混合,其中可以将上述各材料置于密炼机中,在70摄氏度环境下混合均匀,得到所述混合物。
在步骤S302中,进行热压,将步骤S301得到的混合物热压成型,得到本发明的吸波材料。
本实施例中,将上述步骤S301得到的混合物置于平板热压机中,设置操作压力为25兆帕,在175摄氏度温度下热压40分钟,成型后进行晾干,得到成品的吸波材料。
对本实施例制得的吸波材料进行测试,将吸波材料切割为300mm×300mm的规格,在电波暗室中测试反射率,经测试,其在5至8Ghz频率的信号强度为-8dB。
图4a根据示出本发明第四实施例的吸波材料的制作方法的框图,以下将对第四实施例与前述实施例的不同之处说明,相同之处不再详述。
本实施例的吸波材料的制作方法包括步骤S401和步骤S402。
在步骤S401中,进行混合,即将生胶、填料、硫化剂以及助剂混合为混合物。
图4b示出本实施例的吸波材料的配方的示意图,在本实施例中,将500克的铁铝硅合金粉末加入到100克的丁基橡胶中,并加入6克过氧化二异丙苯、4克硬脂酸以及4克硅烷偶联剂进行混合,其中可以将上述各材料置于密炼机中,在70摄氏度环境下混合均匀,得到所述混合物。
在步骤S402中,进行热压,将步骤S401得到的混合物热压成型,得到本发明的吸波材料。
本实施例中,将上述步骤S401得到的混合物置于平板热压机中,设置操作压力为25兆帕,在180摄氏度温度下热压60分钟,成型后进行晾干,得到成品的吸波材料。
对本实施例制得的吸波材料进行测试,将吸波材料切割为300mm×300mm的规格,在电波暗室中测试反射率,经测试,其在2至4Ghz频率的信号强度为-10dB。
根据以上对第一至第四实施例所得的吸波材料的测试,由于高电磁损耗填料的存在,吸波材料在预定频段具有较强的吸波能力。
此外,依据本发明得到的吸波材料,不仅仅是具有单纯的吸波特性,还由于生胶的引入具有更好的柔性、更高的抗冲击强度、更好的耐环境性,由于助剂的引入使其性能分散均匀,由于热压的步骤获得预定的形状,例如是便捷性好、易用性强的片状。通过控制混合步骤中生胶、填料、硫化剂、助剂的比例,能够获得性能最均衡的所述吸波材料。通过控制热压步骤中所选热压器械、操作温度、压力以及时长,能够获得多种不同形状或厚度以及可贴附的吸波材料。
本发明还提供一种吸波材料,其可以根据上述任一实施例的吸波材料的制作方法制得。根据上述测试结果,本发明的吸波材料在预定频段具有较强的吸波能力,并且兼具了柔性、可贴附性、抗冲击性以及耐环境性等特性。本发明的吸波材料可以直接制作吸波件使用,由于其具有的更好的柔性和易用性,也可以是作为基材制作具有吸波能力的超材料使用。
应当说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其它变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其它要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
依照本发明的实施例如上文所述,这些实施例并没有详尽叙述所有的细节,也不限制该发明仅为所述的具体实施例。显然,根据以上描述,可作很多的修改和变化。本说明书选取并具体描述这些实施例,是为了更好地解释本发明的原理和实际应用,从而使所属技术领域技术人员能很好地利用本发明以及在本发明基础上的修改使用。本发明仅受权利要求书及其全部范围和等效物的限制。
Claims (11)
- 一种吸波材料的制作方法,其特征在于,包括:将生胶、填料、硫化剂以及助剂混合为混合物;以及将所述混合物热压成型,得到所述吸波材料,其中,所述填料包括锰锌铁氧体、镍钴铁氧体、铁铝硅合金、铁铝铬合金中的至少一种。
- 根据权利要求1所述的吸波材料的制作方法,其特征在于,所述生胶、所述填料、所述硫化剂、所述助剂的质量份数为:生胶:100份;填料:100~500份;硫化剂:1~5份;助剂:0.5~3份。
- 根据权利要求1所述的吸波材料的制作方法,其特征在于,所述生胶、所述填料、所述硫化剂、所述助剂的质量份数为:生胶:100份;填料:100~500份;硫化剂:1~5份;助剂:0.5~3份。
- 根据权利要求1所述的吸波材料的制作方法,其特征在于,所述生胶为环氧树脂、聚氨酯、三元乙丙橡胶、硅橡胶、丁基橡胶中的任一种。
- 根据权利要求1所述的吸波材料的制作方法,其特征在于,所述硫化剂为过氧化二异丙苯或硫磺。
- 根据权利要求1所述的吸波材料的制作方法,其特征在于,所述助剂为硬脂酸、硅烷偶联剂中的至少一种。
- 根据权利要求1所述的吸波材料的制作方法,其特征在于,所述混合的步骤的操作温度为60至100摄氏度。
- 根据权利要求1所述的吸波材料的制作方法,其特征在于,所述热压成型的步骤的操作温度为150至180摄氏度。
- 根据权利要求1所述的吸波材料的制作方法,其特征在于,所述热压成型的步骤的操作压力为5至25兆帕。
- 根据权利要求1所述的吸波材料的制作方法,其特征在于,所述热压成型的步骤的操作时长为10至60分钟。
- 一种吸波材料,其特征在于,根据权利要求1至10任一项所述的吸波材料的制作方法制得。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710278754.7 | 2017-04-25 | ||
CN201710278754.7A CN108727778A (zh) | 2017-04-25 | 2017-04-25 | 吸波材料及其制作方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018196517A1 true WO2018196517A1 (zh) | 2018-11-01 |
Family
ID=63918004
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2018/079813 WO2018196517A1 (zh) | 2017-04-25 | 2018-03-21 | 吸波材料及其制作方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN108727778A (zh) |
WO (1) | WO2018196517A1 (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110836904A (zh) * | 2019-10-14 | 2020-02-25 | 江苏宝纳电磁新材料有限公司 | 一种提高片状吸波粉末分散润湿性的筛选方法 |
CN111251671A (zh) * | 2020-02-25 | 2020-06-09 | 南京航天波平电子科技有限公司 | 一种高性能复合电磁兼容吸波材料及加工方法 |
CN113214638A (zh) * | 2021-05-27 | 2021-08-06 | 湖南飞鸿达新材料有限公司 | 一种吸波导热柔性复合材料及制备方法 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111909524A (zh) * | 2020-04-16 | 2020-11-10 | 深圳和畅电磁材料有限公司 | 一种用于高频焊接的硅胶吸波材料及其制备方法 |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101157779A (zh) * | 2007-09-27 | 2008-04-09 | 广州金南磁塑有限公司 | 一种新型橡胶磁体及其制备方法 |
CN102504495A (zh) * | 2011-11-04 | 2012-06-20 | 北京理工大学 | 一种环氧树脂复合吸波材料及其制备方法 |
CN102585507A (zh) * | 2012-02-20 | 2012-07-18 | 深圳德邦界面材料有限公司 | 一种高性能硅基吸波材料及其制备方法 |
CN103959929A (zh) * | 2011-12-05 | 2014-07-30 | 迪睿合电子材料有限公司 | 电磁波吸收性导热片材和电磁波吸收性导热片材的制备方法 |
CN104194070A (zh) * | 2014-08-19 | 2014-12-10 | 无锡斯贝尔磁性材料有限公司 | 一种柔性软磁铁氧体复合材料 |
CN104371271A (zh) * | 2013-08-15 | 2015-02-25 | 北京国浩传感器技术研究院(普通合伙) | 一种新型耐腐蚀复合吸波材料 |
CN104559131A (zh) * | 2014-12-16 | 2015-04-29 | 惠州力王佐信科技有限公司 | 一种高导热吸波散热复合材料 |
CN105006274A (zh) * | 2015-07-28 | 2015-10-28 | 苏州驭奇材料科技有限公司 | 具有电磁屏蔽保护结构的复合带材及其制作方法 |
CN105451584A (zh) * | 2013-06-14 | 2016-03-30 | 绿安全株式会社 | 手套及其生产方法 |
CN106147129A (zh) * | 2015-03-31 | 2016-11-23 | 深圳光启尖端技术有限责任公司 | 一种吸波预浸料及其制备方法 |
CN106280247A (zh) * | 2015-05-25 | 2017-01-04 | 深圳光启尖端技术有限责任公司 | 电磁波吸波材料用树脂组合物 |
-
2017
- 2017-04-25 CN CN201710278754.7A patent/CN108727778A/zh active Pending
-
2018
- 2018-03-21 WO PCT/CN2018/079813 patent/WO2018196517A1/zh active Application Filing
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101157779A (zh) * | 2007-09-27 | 2008-04-09 | 广州金南磁塑有限公司 | 一种新型橡胶磁体及其制备方法 |
CN102504495A (zh) * | 2011-11-04 | 2012-06-20 | 北京理工大学 | 一种环氧树脂复合吸波材料及其制备方法 |
CN103959929A (zh) * | 2011-12-05 | 2014-07-30 | 迪睿合电子材料有限公司 | 电磁波吸收性导热片材和电磁波吸收性导热片材的制备方法 |
CN102585507A (zh) * | 2012-02-20 | 2012-07-18 | 深圳德邦界面材料有限公司 | 一种高性能硅基吸波材料及其制备方法 |
CN105451584A (zh) * | 2013-06-14 | 2016-03-30 | 绿安全株式会社 | 手套及其生产方法 |
CN104371271A (zh) * | 2013-08-15 | 2015-02-25 | 北京国浩传感器技术研究院(普通合伙) | 一种新型耐腐蚀复合吸波材料 |
CN104194070A (zh) * | 2014-08-19 | 2014-12-10 | 无锡斯贝尔磁性材料有限公司 | 一种柔性软磁铁氧体复合材料 |
CN104559131A (zh) * | 2014-12-16 | 2015-04-29 | 惠州力王佐信科技有限公司 | 一种高导热吸波散热复合材料 |
CN106147129A (zh) * | 2015-03-31 | 2016-11-23 | 深圳光启尖端技术有限责任公司 | 一种吸波预浸料及其制备方法 |
CN106280247A (zh) * | 2015-05-25 | 2017-01-04 | 深圳光启尖端技术有限责任公司 | 电磁波吸波材料用树脂组合物 |
CN105006274A (zh) * | 2015-07-28 | 2015-10-28 | 苏州驭奇材料科技有限公司 | 具有电磁屏蔽保护结构的复合带材及其制作方法 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110836904A (zh) * | 2019-10-14 | 2020-02-25 | 江苏宝纳电磁新材料有限公司 | 一种提高片状吸波粉末分散润湿性的筛选方法 |
CN110836904B (zh) * | 2019-10-14 | 2022-07-26 | 江苏宝纳电磁新材料有限公司 | 一种提高片状吸波粉末分散润湿性的筛选方法 |
CN111251671A (zh) * | 2020-02-25 | 2020-06-09 | 南京航天波平电子科技有限公司 | 一种高性能复合电磁兼容吸波材料及加工方法 |
CN113214638A (zh) * | 2021-05-27 | 2021-08-06 | 湖南飞鸿达新材料有限公司 | 一种吸波导热柔性复合材料及制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN108727778A (zh) | 2018-11-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018196517A1 (zh) | 吸波材料及其制作方法 | |
US11279822B2 (en) | Epoxy resin wave-absorbing composite material and preparation method thereof | |
CN109845428B (zh) | 电磁波吸收片 | |
CN106751910A (zh) | 一种导热吸波橡胶材料及其制备方法 | |
US20050030218A1 (en) | Radio wave absorber and production method thereof | |
CN109651799A (zh) | 吸波贴片、其制备方法及其应用 | |
CN109957247A (zh) | 一种吸波贴片及其制备方法和应用 | |
CN115195230B (zh) | 一种宽频吸波、高导热的柔性电磁损耗材料及制备方法 | |
CN114644795A (zh) | 吸波材料及其制备方法和应用 | |
WO2020114092A1 (zh) | 环氧橡胶吸波涂料及其制备方法 | |
CN110256848A (zh) | 一种电磁复合材料及其制备方法 | |
CN112409653A (zh) | 一种吸波剂、其制备方法及应用 | |
CN112358711A (zh) | 一种磁-热耦合可调谐吸波材料及其制备方法 | |
KR101124544B1 (ko) | 비할로겐계 전자파 흡수-수평 열전도 복합 시트 및 이의 제조방법 | |
CN109940953B (zh) | 双层复合吸波材料及其制备方法 | |
CN106626629B (zh) | 一种用于抑制电磁噪声的橡胶基材料及其制备方法 | |
KR101004026B1 (ko) | 광대역 2층형 전자파 흡수체 시트 및 이를 제조하는 방법 | |
CN107841123B (zh) | 一种三维石墨烯基吸波超材料基材及其制备方法 | |
CN104558973B (zh) | 一种高性能吸波散热复合材料 | |
KR101413210B1 (ko) | 전자파 억제용 금속복합 수지조성물, 이를 포함하는 시트 및 이의 제조방법 | |
CN113856577A (zh) | 一种磁控吸波胶囊及其制备方法 | |
JP4462750B2 (ja) | 電波吸収体 | |
RU2681330C1 (ru) | Радиопоглощающий конструкционный материал | |
CN113380484A (zh) | 一种橡胶软磁及其制备方法 | |
CN116728816A (zh) | 一种方形图案磁控可调谐电磁吸波体的制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18791892 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18791892 Country of ref document: EP Kind code of ref document: A1 |