WO2018196086A1 - 显示面板的驱动方法及驱动装置 - Google Patents
显示面板的驱动方法及驱动装置 Download PDFInfo
- Publication number
- WO2018196086A1 WO2018196086A1 PCT/CN2017/086229 CN2017086229W WO2018196086A1 WO 2018196086 A1 WO2018196086 A1 WO 2018196086A1 CN 2017086229 W CN2017086229 W CN 2017086229W WO 2018196086 A1 WO2018196086 A1 WO 2018196086A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pixel
- logical
- logical pixel
- sub
- color
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G5/00—Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
- G09G5/02—Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators characterised by the way in which colour is displayed
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
- G09G3/2007—Display of intermediate tones
- G09G3/2074—Display of intermediate tones using sub-pixels
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
- G09G3/2003—Display of colours
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G5/00—Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
- G09G5/36—Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators characterised by the display of a graphic pattern, e.g. using an all-points-addressable [APA] memory
- G09G5/39—Control of the bit-mapped memory
- G09G5/391—Resolution modifying circuits, e.g. variable screen formats
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2300/00—Aspects of the constitution of display devices
- G09G2300/04—Structural and physical details of display devices
- G09G2300/0439—Pixel structures
- G09G2300/0452—Details of colour pixel setup, e.g. pixel composed of a red, a blue and two green components
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2320/00—Control of display operating conditions
- G09G2320/02—Improving the quality of display appearance
- G09G2320/0233—Improving the luminance or brightness uniformity across the screen
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2320/00—Control of display operating conditions
- G09G2320/02—Improving the quality of display appearance
- G09G2320/0242—Compensation of deficiencies in the appearance of colours
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2320/00—Control of display operating conditions
- G09G2320/06—Adjustment of display parameters
- G09G2320/0626—Adjustment of display parameters for control of overall brightness
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2320/00—Control of display operating conditions
- G09G2320/06—Adjustment of display parameters
- G09G2320/0666—Adjustment of display parameters for control of colour parameters, e.g. colour temperature
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2340/00—Aspects of display data processing
- G09G2340/04—Changes in size, position or resolution of an image
- G09G2340/0407—Resolution change, inclusive of the use of different resolutions for different screen areas
- G09G2340/0421—Horizontal resolution change
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2340/00—Aspects of display data processing
- G09G2340/04—Changes in size, position or resolution of an image
- G09G2340/0457—Improvement of perceived resolution by subpixel rendering
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2360/00—Aspects of the architecture of display systems
- G09G2360/16—Calculation or use of calculated indices related to luminance levels in display data
Definitions
- the present invention relates to the field of display, and in particular to a driving method and a driving device for a display panel.
- the size of the sub-pixel is getting smaller and smaller, but subject to factors such as the pixel aperture ratio and the manufacturing process, the size of the sub-pixel cannot be reduced indefinitely. It also limits the further improvement of resolution.
- the industry can further improve the resolution of the display panel by Sub Pixel Rendering (SPR) technology, which realizes the sensory resolution by sharing sub-pixels by adjacent pixel units, thereby having the same
- SPR Sub Pixel Rendering
- the sensory resolution of the display panel is increased in the case of sub-pixel arrangement density, or the sub-pixel arrangement density is reduced while maintaining the sensory resolution.
- the sub-pixels shared by the existing sub-pixel rendering technology are fixed. When the color of the edge region of the image changes rapidly, for example, when displaying the edges of text and lines, the existing sub-pixel rendering technology cannot accurately display the edge regions of the image. Contrast, resulting in distortion in the edge of the image.
- the present invention provides a driving method and a driving device for a display panel, which can improve the contrast of an image edge region and reduce distortion of an image edge region.
- a driving method of a display panel includes a plurality of identical pixel units arranged in a matrix, each pixel unit having sub-pixels of three colors of red, green, and blue in a row direction
- the driving method includes:
- the luminous intensity of the sub-pixel of the predetermined color is determined according to the following relationship,
- L is the luminous intensity of the sub-pixel of the predetermined color
- N is a constant
- P 2C2 is a color component of a predetermined color in the second logical pixel
- P mC2 is the first logical pixel or the third logic The color component of the predetermined color in the pixel.
- a driving method of a display panel includes a plurality of identical pixel units arranged in a matrix, each pixel unit having a plurality of sub-pixels of different colors in a predetermined direction, and the driving method include:
- each logical pixel group including a first logical pixel and a second sequentially arranged in a predetermined direction a logical pixel and a third logical pixel, the second logical pixel lacking a predetermined color of its adjacent sub-pixel;
- the illumination intensity of the sub-pixel of the predetermined color is determined according to the color component of the predetermined color in the third logical pixel.
- a driving device for a display panel includes a plurality of identical pixel units arranged in a matrix, each pixel unit having a plurality of sub-pixels of different colors in a predetermined direction, the driving device include:
- a processor configured to form one logical pixel by two adjacent sub-pixels in a predetermined direction, thereby dividing the pixel unit in a predetermined direction into a plurality of logical pixel groups, each logical pixel group including a first one arranged in a predetermined direction a logical pixel, a second logical pixel, and a third logical pixel, the second logical pixel lacking a predetermined color of its neighboring sub-pixels;
- the processor is further configured to acquire a color component of a predetermined color in the first logical pixel, the second logical pixel, and the third logical pixel when the image is displayed;
- the processor is further configured to calculate a first color component difference value of a predetermined color in the second logic pixel and the first logic pixel, and a second color component difference value of the predetermined color in the second logic pixel and the third logic pixel, and Compare the absolute values of the two;
- the processor is configured to determine a light emission intensity of the sub-pixel of the predetermined color according to the color component of the predetermined color in the first logical pixel;
- the processor is configured to determine a light emission intensity of the sub-pixel of the predetermined color according to the color component of the predetermined color in the third logical pixel;
- the present invention determines sub-pixels shared by the sub-pixel rendering technology by comparing the difference values of the color components, and the sub-pixels shared by the display image are not fixed, and the sub-pixels with the smallest absolute value of the difference of the color components are selected. Sharing, so it can improve the contrast of the image edge area and reduce the distortion of the image edge area.
- FIG. 1 is a schematic diagram of a pixel structure of a display panel according to an embodiment of the invention.
- FIG. 2 is a schematic flow chart of a driving method of a display panel according to an embodiment of the present invention
- FIG. 3 is a schematic view showing the arrangement of sub-pixels of the display panel shown in FIG. 1;
- FIG. 4 is a schematic diagram showing color components of three adjacent logical pixels when the display panel of FIG. 1 displays an edge region of a first image
- FIG. 5 is a schematic diagram showing color components of three adjacent logical pixels when the display panel of FIG. 1 displays the edge region of the second image;
- FIG. 6 is a schematic diagram of color components of respective sub-pixels when the first image edge region is displayed based on the driving method of FIG. 2;
- FIG. 7 is a schematic diagram showing color components of respective sub-pixels when the edge region of the second image is displayed according to the present invention.
- FIG. 8 is a schematic diagram of color components of respective sub-pixels when an edge region of a second image is displayed using an existing sub-pixel rendering technique
- FIG. 9 is a schematic diagram of color components of respective sub-pixels when displaying an edge region of a first image by using an existing sub-pixel rendering technique
- FIG. 10 is a schematic diagram of a pixel structure of a display panel according to another embodiment of the present invention.
- Figure 11 is a block diagram showing the structure of a driving device for a display panel according to an embodiment of the present invention.
- FIG. 1 is a schematic diagram of a pixel structure of a display panel according to an embodiment of the invention.
- the display panel includes a plurality of data lines D x arranged in a column direction, a plurality of scanning lines G y arranged in a row direction, and a plurality of the plurality of scanning lines G y and the plurality of data lines D x defined Pixel unit P x .
- These pixel units P z may be arranged in a matrix and may be identical in structure and size.
- each pixel unit Pz may include three sub-pixels, which are a blue sub-pixel B, a red sub-pixel R, and a green sub-pixel G, respectively. Based on this, the sub-pixels of the three colors are alternately arranged in the row direction, that is, the illuminating color of any sub-pixel is different from the illuminating color of the two sub-pixels adjacent in the row direction.
- the driving method shown in Fig. 2 can drive the display panel.
- a driving method according to an embodiment of the present invention may include steps S21 to S25.
- two sub-pixels adjacent in the row direction may be selected to form one logical pixel, and the adjacent two pixel units P z shown in FIG. 3 are taken as an example.
- the blue sub-pixel B and the red sub-pixel R constitute the first logical pixel.
- L 1 , the green sub-pixel G and the blue sub-pixel B constitute a second logical pixel L 2 , and the red sub-pixel R and the green sub-pixel G constitute a third logical pixel L 3 .
- each logical pixel includes only two color sub-pixels, and lacks sub-pixels whose adjacent logical pixels have a color, for example, the second logical pixel L 2 lacks the first logical pixel L 1 and the third logical pixel.
- L 3 has the red sub-pixel R.
- the color components of red, green, and blue in the first logical pixel L 1 are (225, 225, 225), and the red color in the second logical pixel L 2 is , green, and blue components of the color (225,225,225), L 3 third logical pixel in the red, green and blue color components (0,0,0).
- FIG. 5 Another example is shown in Figure 5, when the display panel displays the second image region of an edge, a first logic L 1 pixels of red, green, and blue color components (0,0,0), a second logical pixel in L 2
- the red, green, and blue color components are (225, 225, 225)
- the red, green, and blue color components of the third logical pixel L 3 are (225, 225, 225).
- the red color component P 2C2 in the second logical pixel L 2 is 225
- the red color component P 1C2 in the first logical pixel L 1 is 225
- the red color component P 3C2 of the three logical pixels L 3 is 0,
- the first color component difference P 2C2 - P 1C2 is 0,
- the second color component difference P 3C2 - P 2C2 is -225
- is 0, and the absolute value of the second color component difference
- the red color component P 2C2 in the second logical pixel L 2 is 225
- the red color component P 1C2 in the first logical pixel L 1 is 0,
- the red color component P 3C2 of the three logical pixels L 3 is 225
- the first color component difference P 2C2 -P 1C2 is 225
- the second color component difference P 3C2 -P 2C2 is 0, and the first color component difference is
- the light intensity of the red sub-pixel R when the second logical pixel L 2 displays the image is determined according to the color component of the red color in the first logical pixel L 1 , that is, the red sub-pixel R displays the first image edge at the second logical pixel L 2 .
- Luminous intensity at the time of the area is determined according to the color component of the red color in the first logical pixel L 1 , that is, the red sub-pixel R displays the first image edge at the second logical pixel L 2 .
- the luminous intensity of the red sub-pixel R can be determined by the following relationship:
- L is the luminous intensity of the red sub-pixel R
- N is a constant
- P 2C2 is the red color component of the second logical pixel L 2
- P mC2 is the red color component of the logical pixel having the smallest absolute value.
- P mC2 is a red color component in the first logical pixel L 1 .
- the luminous intensity L of the red sub-pixel R obtained in this embodiment is 225, as shown in FIG. 6, but the red sub-pixel R of the luminous intensity is located at the second logical pixel L 2 away from the third.
- the luminous intensity of the red sub-pixel R is still 0, so that the contrast of the edge region of the first image can be accurately displayed To avoid distortion in the edge area of the first image.
- the luminous intensity of the red sub-pixel R when the second logical pixel L 2 is displayed is determined according to the color component of red in the third logical pixel L 3 .
- the luminous intensity L of the red sub-pixel R is 225 according to the above relation (1), as shown in FIG. 7, but the red sub-pixel R of the luminous intensity is located at the second logical pixel L 2 away from the first logical pixel.
- the luminous intensity of the red sub-pixel R is still 0, so that the contrast of the edge region of the second image can be accurately displayed, avoiding Distortion occurs in the edge region of the second image.
- the existing sub-pixel rendering technology is used to drive the display panel.
- the red sub-pixel R of the first logical pixel L 1 is fixedly selected as the shared sub-pixel of the second logical pixel L 2
- the second logical pixel L 2 is adjacent to the third logical pixel L 3
- the red sub-pixel R has an emission intensity of 0.
- the contrast of the edge region of the first image can be accurately displayed to avoid distortion.
- the red sub-pixel R has an illumination intensity of 127, as shown in FIG. 8 , resulting in the second image edge. Color aliasing occurs in the area, and contrast distortion occurs.
- the red sub-pixel R of the third logical pixel L 3 is fixedly selected as the shared sub-pixel of the second logical pixel L 2
- the second logical pixel L 2 is adjacent to the third logical pixel L 3
- the red sub-pixel R has an illumination intensity of 127, as shown in FIG. 9, resulting in color aliasing in the edge region of the second image, and contrast distortion occurs.
- the light emission intensity of the red sub-pixel R 0 is shown in Figure 7, the first image can be displayed accurately Contrast in the edge area to avoid distortion.
- the present invention determines the sub-pixels shared by the sub-pixel rendering technology by comparing the difference values of the color components, and the sub-pixels shared by the display image are not fixed, and the sub-pixels with the smallest absolute value of the color component difference are selected. Sharing, so it can improve the contrast of the image edge area and reduce the distortion of the image edge area.
- the present invention is applicable not only to the display panel of the RGB Stripe type pixel structure shown in FIG. 1, but also to the display panel having the RGB Delta type pixel structure shown in FIG. Referring to FIG. 10, the blue sub-pixel B, the red sub-pixel R, and the green sub-pixel G, the sub-pixels of the three colors are also alternately arranged in the row direction.
- the present invention can still select two sub-pixels adjacent in the row direction to constitute the first logic pixel L 1 , the second logic pixel L 2 and the third logic pixel L 3 , respectively .
- the invention also provides a driving device for a display panel.
- the drive device 110 includes a processor 111 and a drive 112 coupled to the processor 111.
- the processor 111 is configured to form one logical pixel by two adjacent sub-pixels in a predetermined direction, thereby dividing the pixel unit in a predetermined direction into a plurality of logical pixel groups, each logical pixel group including a first one arranged in a predetermined direction.
- the processor 111 is further configured to acquire a color component of a predetermined color in the first logical pixel, the second logical pixel, and the third logical pixel when the image is displayed.
- the processor 111 is further configured to calculate a first color component difference value of a predetermined color in the second logic pixel and the first logic pixel, and a second color component difference value of the predetermined color in the second logic pixel and the third logic pixel, and compare The absolute value of both.
- the processor 111 is configured to determine the illumination intensity of the sub-pixel of the predetermined color according to the color component of the predetermined color in the first logical pixel.
- the processor 111 is configured to determine the illumination intensity of the sub-pixel of the predetermined color according to the color component of the predetermined color in the third logical pixel.
- the driver 112 is configured to drive the sub-pixels of the predetermined color to emit light of the luminous intensity determined by the processor 111 when the second logical pixel is displayed.
- the structural elements of the driving device 110 of the present embodiment correspond to the driving method of the above embodiment, and have the same technical effects.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Control Of Indicators Other Than Cathode Ray Tubes (AREA)
Abstract
Description
Claims (12)
- 一种显示面板的驱动方法,其中,所述显示面板包括呈矩阵排布的多个相同的像素单元,每一所述像素单元在行方向上具有红色、绿色和蓝色这三种颜色的子像素,所述驱动方法包括:以所述行方向上相邻两个子像素组成一个逻辑像素,从而将所述行方向上的像素单元划分为多个逻辑像素组,每一逻辑像素组包括沿行方向依次排布的第一逻辑像素、第二逻辑像素和第三逻辑像素,所述第二逻辑像素缺少其相邻子像素所具有的预定颜色;获取用于显示图像时所述第一逻辑像素、第二逻辑像素和第三逻辑像素中预定颜色的颜色分量;计算所述第二逻辑像素和第一逻辑像素中所述预定颜色的第一颜色分量差值,以及所述第二逻辑像素和第三逻辑像素中所述预定颜色的第二颜色分量差值,并比较两者的绝对值;当第一颜色分量差值的绝对值小于或等于第二颜色分量差值的绝对值时,根据第一逻辑像素中预定颜色的颜色分量确定第二逻辑像素显示图像时所述预定颜色的子像素的发光强度;当第一颜色分量差值的绝对值大于第二颜色分量差值的绝对值时,根据第三逻辑像素中预定颜色的颜色分量确定第二逻辑像素显示图像时所述预定颜色的子像素的发光强度;其中,根据以下关系式确定所述预定颜色的子像素的发光强度,L=N*(P2C2+PmC2)其中,L为所述预定颜色的子像素的发光强度,N为常量,P2C2为所述第二逻辑像素中预定颜色的颜色分量,PmC2为所述第一逻辑像素或所述第三逻辑像素中预定颜色的颜色分量。
- 根据权利要求1所述的驱动方法,其中,N=1/2。
- 一种显示面板的驱动方法,其中,所述显示面板包括呈矩阵排布的多个相同的像素单元,每一所述像素单元在预定方向上具有多个不同颜色的子像素,所述驱动方法包括:以所述预定方向上相邻两个子像素组成一个逻辑像素,从而将所述预 定方向上的像素单元划分为多个逻辑像素组,每一逻辑像素组包括沿预定方向依次排布的第一逻辑像素、第二逻辑像素和第三逻辑像素,所述第二逻辑像素缺少其相邻子像素所具有的预定颜色;获取用于显示图像时所述第一逻辑像素、第二逻辑像素和第三逻辑像素中预定颜色的颜色分量;计算所述第二逻辑像素和第一逻辑像素中所述预定颜色的第一颜色分量差值,以及所述第二逻辑像素和第三逻辑像素中所述预定颜色的第二颜色分量差值,并比较两者的绝对值;当第一颜色分量差值的绝对值小于或等于第二颜色分量差值的绝对值时,根据第一逻辑像素中预定颜色的颜色分量确定第二逻辑像素显示图像时所述预定颜色的子像素的发光强度;当第一颜色分量差值的绝对值大于第二颜色分量差值的绝对值时,根据第三逻辑像素中预定颜色的颜色分量确定第二逻辑像素显示图像时所述预定颜色的子像素的发光强度。
- 根据权利要求3所述的驱动方法,其中,所述预定方向包括行方向。
- 根据权利要求3所述的驱动方法,其中,每一所述像素单元包括三种不同颜色的子像素,分别为红色、绿色和蓝色。
- 根据权利要求3所述的驱动方法,其中,根据以下关系式确定所述预定颜色的子像素的发光强度,L=N*(P2C2+PmC2)其中,L为所述预定颜色的子像素的发光强度,N为常量,P2C2为所述第二逻辑像素中预定颜色的颜色分量,PmC2为所述第一逻辑像素或所述第三逻辑像素中预定颜色的颜色分量。
- 根据权利要求6所述的驱动方法,其中,N=1/2。
- 一种显示面板的驱动装置,其中,所述显示面板包括呈矩阵排布的多个相同的像素单元,每一所述像素单元在预定方向上具有多个不同颜色的子像素,所述驱动装置包括:处理器,用于以所述预定方向上相邻两个子像素组成一个逻辑像素,从而将所述预定方向上的像素单元划分为多个逻辑像素组,每一逻辑像素组包括沿预定方向依次排布的第一逻辑像素、第二逻辑像素和第三逻辑像 素,所述第二逻辑像素缺少其相邻子像素所具有的预定颜色;所述处理器,还用于获取用于显示图像时所述第一逻辑像素、第二逻辑像素和第三逻辑像素中预定颜色的颜色分量;所述处理器,进一步用于计算所述第二逻辑像素和第一逻辑像素中所述预定颜色的第一颜色分量差值,以及所述第二逻辑像素和第三逻辑像素中所述预定颜色的第二颜色分量差值,并比较两者的绝对值;当第一颜色分量差值的绝对值小于或等于第二颜色分量差值的绝对值时,所述处理器用于根据第一逻辑像素中预定颜色的颜色分量确定第二逻辑像素显示图像时所述预定颜色的子像素的发光强度;当第一颜色分量差值的绝对值大于第二颜色分量差值的绝对值时,所述处理器用于根据第三逻辑像素中预定颜色的颜色分量确定第二逻辑像素显示图像时所述预定颜色的子像素的发光强度;驱动器,用于驱动所述预定颜色的子像素在所述第二逻辑像素显示时发出所述处理器确定的发光强度的光。
- 根据权利要求8所述的驱动装置,其中,所述预定方向包括行方向。
- 根据权利要求8所述的驱动装置,其中,每一所述像素单元包括三种不同颜色的子像素,分别为红色、绿色和蓝色。
- 根据权利要求8所述的驱动装置,其中,所述处理器根据以下关系式确定所述预定颜色的子像素的发光强度,L=N*(P2C2+PmC2)其中,L为所述预定颜色的子像素的发光强度,N为常量,P2C2为所述第二逻辑像素中预定颜色的颜色分量,PmC2为所述第一逻辑像素或所述第三逻辑像素中预定颜色的颜色分量。
- 根据权利要求11所述的驱动装置,其中,N=1/2。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020197035229A KR102265774B1 (ko) | 2017-04-28 | 2017-05-27 | 디스플레이 패널의 구동 방법 및 구동 장치 |
JP2019558449A JP2020518022A (ja) | 2017-04-28 | 2017-05-27 | 表示パネルの駆動方法及び駆動装置 |
US16/607,108 US10847079B2 (en) | 2017-04-28 | 2017-05-27 | Method of driving display panel and driving device |
EP17907405.9A EP3618043A4 (en) | 2017-04-28 | 2017-05-27 | CONTROL METHOD AND CONTROL DEVICE FOR DISPLAY BOARD |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710295392.2A CN106898291B (zh) | 2017-04-28 | 2017-04-28 | 显示面板的驱动方法及驱动装置 |
CN201710295392.2 | 2017-04-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018196086A1 true WO2018196086A1 (zh) | 2018-11-01 |
Family
ID=59196704
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/086229 WO2018196086A1 (zh) | 2017-04-28 | 2017-05-27 | 显示面板的驱动方法及驱动装置 |
Country Status (6)
Country | Link |
---|---|
US (1) | US10847079B2 (zh) |
EP (1) | EP3618043A4 (zh) |
JP (1) | JP2020518022A (zh) |
KR (1) | KR102265774B1 (zh) |
CN (1) | CN106898291B (zh) |
WO (1) | WO2018196086A1 (zh) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108428435B (zh) * | 2018-03-29 | 2019-11-29 | 合肥工业大学 | 一种子像素渲染的验证显示方法 |
KR20210019568A (ko) | 2018-07-03 | 2021-02-22 | 콩코드 (에이치케이) 인터내셔널 에듀케이션 리미티드 | Tir-기반 이미지 디스플레이용 컬러 필터 어레이 |
WO2021018303A2 (zh) | 2019-07-31 | 2021-02-04 | 京东方科技集团股份有限公司 | 显示基板以及显示装置 |
JP7560247B2 (ja) * | 2019-07-31 | 2024-10-02 | 京東方科技集團股▲ふん▼有限公司 | エレクトロルミネセント表示パネル、及び表示装置 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103700329A (zh) * | 2013-12-13 | 2014-04-02 | 北京京东方光电科技有限公司 | 显示面板的显示方法 |
US9336702B2 (en) * | 2011-08-01 | 2016-05-10 | Samsung Display Co., Ltd. | Display apparatus and method of driving the same using photonic and electrophoresis principle |
CN105609033A (zh) * | 2015-12-18 | 2016-05-25 | 武汉华星光电技术有限公司 | 像素渲染方法、像素渲染装置及显示装置 |
CN106409266A (zh) * | 2016-12-14 | 2017-02-15 | Tcl集团股份有限公司 | 一种子像素渲染方法及渲染装置 |
Family Cites Families (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0603833B1 (en) * | 1992-12-22 | 1999-06-30 | Konica Corporation | Color image processing apparatus for smoothing compensation of an image |
KR100493165B1 (ko) * | 2002-12-17 | 2005-06-02 | 삼성전자주식회사 | 영상신호 표현 방법 및 장치 |
US7609882B2 (en) * | 2005-05-25 | 2009-10-27 | Himax Technologies Limited | Image compression and decompression method capable of encoding and decoding pixel data based on a color conversion method |
KR101212158B1 (ko) * | 2006-02-27 | 2012-12-13 | 엘지디스플레이 주식회사 | 액정 표시장치와 그 구동방법 |
US8018476B2 (en) * | 2006-08-28 | 2011-09-13 | Samsung Electronics Co., Ltd. | Subpixel layouts for high brightness displays and systems |
JP5256283B2 (ja) * | 2007-05-18 | 2013-08-07 | 三星ディスプレイ株式會社 | 2次元サブピクセルレイアウトを有するディスプレイパネルのための画像色バランス調整 |
JP5293923B2 (ja) * | 2008-01-09 | 2013-09-18 | 株式会社リコー | 画像処理方法及び装置、画像表示装置並びにプログラム |
US8335385B2 (en) * | 2008-01-21 | 2012-12-18 | Telefonaktiebolaget Lm Ericsson (Publ) | Pixel block processing |
WO2009092455A2 (en) * | 2008-01-21 | 2009-07-30 | Telefonaktiebolaget Lm Ericsson (Publ) | Prediction-based image processing |
JP2011118000A (ja) * | 2009-11-30 | 2011-06-16 | Fujitsu Ten Ltd | 画像処理装置および画像処理方法 |
KR101332495B1 (ko) * | 2010-05-20 | 2013-11-26 | 엘지디스플레이 주식회사 | 영상처리방법 및 이를 이용한 표시장치 |
US20110285713A1 (en) * | 2010-05-21 | 2011-11-24 | Jerzy Wieslaw Swic | Processing Color Sub-Pixels |
KR101901358B1 (ko) * | 2011-12-23 | 2018-11-06 | 엘지디스플레이 주식회사 | 액정표시장치와 그를 이용한 입체영상 표시장치 |
KR102025876B1 (ko) * | 2012-03-16 | 2019-09-27 | 삼성디스플레이 주식회사 | 데이터 렌더링 방법, 데이터 렌더링 장치, 및 이를 포함하는 표시 장치 |
KR102016424B1 (ko) * | 2013-04-12 | 2019-09-02 | 삼성디스플레이 주식회사 | 데이터 처리 장치 및 이를 갖는 디스플레이 시스템 |
KR102231279B1 (ko) * | 2013-10-30 | 2021-03-25 | 삼성디스플레이 주식회사 | 영상 데이터 인코딩 장치 및 방법 |
JP2015118113A (ja) * | 2013-12-16 | 2015-06-25 | 株式会社ジャパンディスプレイ | 表示装置 |
CN103886808B (zh) * | 2014-02-21 | 2016-02-24 | 北京京东方光电科技有限公司 | 显示方法和显示装置 |
CN106033657B (zh) * | 2015-03-13 | 2019-09-24 | 联咏科技股份有限公司 | 显示装置及显示驱动方法 |
CN106157876B (zh) * | 2015-03-27 | 2019-04-23 | 上海和辉光电有限公司 | 显示器图像的显示方法及显示器 |
CN104821147B (zh) * | 2015-05-27 | 2017-06-27 | 京东方科技集团股份有限公司 | 一种子像素渲染方法 |
CN105931605B (zh) * | 2016-05-12 | 2018-09-18 | 深圳市华星光电技术有限公司 | 一种图像显示方法及显示装置 |
-
2017
- 2017-04-28 CN CN201710295392.2A patent/CN106898291B/zh active Active
- 2017-05-27 KR KR1020197035229A patent/KR102265774B1/ko active IP Right Grant
- 2017-05-27 JP JP2019558449A patent/JP2020518022A/ja active Pending
- 2017-05-27 US US16/607,108 patent/US10847079B2/en active Active
- 2017-05-27 EP EP17907405.9A patent/EP3618043A4/en not_active Withdrawn
- 2017-05-27 WO PCT/CN2017/086229 patent/WO2018196086A1/zh active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9336702B2 (en) * | 2011-08-01 | 2016-05-10 | Samsung Display Co., Ltd. | Display apparatus and method of driving the same using photonic and electrophoresis principle |
CN103700329A (zh) * | 2013-12-13 | 2014-04-02 | 北京京东方光电科技有限公司 | 显示面板的显示方法 |
CN105609033A (zh) * | 2015-12-18 | 2016-05-25 | 武汉华星光电技术有限公司 | 像素渲染方法、像素渲染装置及显示装置 |
CN106409266A (zh) * | 2016-12-14 | 2017-02-15 | Tcl集团股份有限公司 | 一种子像素渲染方法及渲染装置 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3618043A4 * |
Also Published As
Publication number | Publication date |
---|---|
US20200135085A1 (en) | 2020-04-30 |
KR20190141756A (ko) | 2019-12-24 |
US10847079B2 (en) | 2020-11-24 |
CN106898291A (zh) | 2017-06-27 |
JP2020518022A (ja) | 2020-06-18 |
EP3618043A4 (en) | 2020-12-30 |
KR102265774B1 (ko) | 2021-06-15 |
EP3618043A1 (en) | 2020-03-04 |
CN106898291B (zh) | 2019-08-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9456485B2 (en) | Pixel arrangement of color display panel | |
KR101635079B1 (ko) | 화소 어레이, 디스플레이 및 화상을 디스플레이에 표시하는 방법 | |
CN104050889B (zh) | 显示装置及其驱动方法 | |
US10665640B2 (en) | Pixel array structure and display device | |
WO2020119132A1 (en) | Method of driving pixel arrangement structure having plurality of subpixels, driving chip for driving pixel arrangement structure having plurality of subpixels, display apparatus, and computer-program product | |
CN104900205B (zh) | 液晶面板及其驱动方法 | |
US20160027359A1 (en) | Display method and display device | |
US9483971B2 (en) | Display method of display panel | |
WO2011102343A1 (ja) | 表示装置 | |
CN107492359B (zh) | 一种显示装置的驱动方法及显示装置 | |
CN103680398A (zh) | 有机发光显示装置及其驱动方法 | |
CN105489177B (zh) | 子像素渲染方法及渲染装置 | |
WO2018196086A1 (zh) | 显示面板的驱动方法及驱动装置 | |
US10297182B2 (en) | Pixel array having sub-pixel groups and driving method thereof and display panel | |
CN106782263B (zh) | 一种子像素的渲染方法 | |
US9613564B2 (en) | Image displaying method and image display apparatus | |
US9916817B2 (en) | Display method of display panel, display panel and display device | |
CN202363037U (zh) | 一种彩色显示屏 | |
CN110599962B (zh) | 不同颜色序列Delta型子像素显示面板的渲染方法 | |
US9922587B2 (en) | Pixel structure and driving method thereof, display panel and display device | |
CN105096806A (zh) | 显示器的子像素排列及其着色方法 | |
KR20170042550A (ko) | 픽셀 어레이, 디스플레이 구동 디바이스 및 그 구동 방법, 및 디스플레이 디바이스 | |
CN102243827A (zh) | 一种彩色显示屏 | |
CN105185240A (zh) | 一种显示器及其着色方法 | |
WO2022001539A1 (zh) | 显示面板的驱动方法、驱动装置、显示装置和存储介质 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17907405 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019558449 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20197035229 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2017907405 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2017907405 Country of ref document: EP Effective date: 20191128 |