WO2018192551A1 - 一种设备到设备d2d通信方法及相关设备 - Google Patents
一种设备到设备d2d通信方法及相关设备 Download PDFInfo
- Publication number
- WO2018192551A1 WO2018192551A1 PCT/CN2018/083752 CN2018083752W WO2018192551A1 WO 2018192551 A1 WO2018192551 A1 WO 2018192551A1 CN 2018083752 W CN2018083752 W CN 2018083752W WO 2018192551 A1 WO2018192551 A1 WO 2018192551A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- user equipment
- channel quality
- control signaling
- base station
- communication
- Prior art date
Links
- 230000006854 communication Effects 0.000 title claims abstract description 180
- 238000004891 communication Methods 0.000 title claims abstract description 178
- 238000000034 method Methods 0.000 title claims abstract description 92
- 230000011664 signaling Effects 0.000 claims abstract description 271
- 238000001514 detection method Methods 0.000 claims description 48
- 230000015654 memory Effects 0.000 claims description 23
- 230000005540 biological transmission Effects 0.000 claims description 19
- 230000008878 coupling Effects 0.000 claims description 7
- 238000010168 coupling process Methods 0.000 claims description 7
- 238000005859 coupling reaction Methods 0.000 claims description 7
- 239000000523 sample Substances 0.000 claims description 7
- 238000004590 computer program Methods 0.000 claims 4
- 238000010586 diagram Methods 0.000 description 24
- 230000006870 function Effects 0.000 description 22
- 230000008569 process Effects 0.000 description 19
- 210000004027 cell Anatomy 0.000 description 14
- 238000005516 engineering process Methods 0.000 description 10
- 238000013461 design Methods 0.000 description 8
- 230000009471 action Effects 0.000 description 6
- 239000002131 composite material Substances 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 238000001228 spectrum Methods 0.000 description 3
- 238000010295 mobile communication Methods 0.000 description 2
- 210000004460 N cell Anatomy 0.000 description 1
- 230000010267 cellular communication Effects 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000013468 resource allocation Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0053—Allocation of signaling, i.e. of overhead other than pilot signals
- H04L5/0057—Physical resource allocation for CQI
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0048—Allocation of pilot signals, i.e. of signals known to the receiver
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0053—Allocation of signaling, i.e. of overhead other than pilot signals
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
- H04W72/044—Wireless resource allocation based on the type of the allocated resource
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
- H04W72/044—Wireless resource allocation based on the type of the allocated resource
- H04W72/0446—Resources in time domain, e.g. slots or frames
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
- H04W72/044—Wireless resource allocation based on the type of the allocated resource
- H04W72/0453—Resources in frequency domain, e.g. a carrier in FDMA
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/50—Allocation or scheduling criteria for wireless resources
- H04W72/54—Allocation or scheduling criteria for wireless resources based on quality criteria
- H04W72/542—Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W76/00—Connection management
- H04W76/10—Connection setup
- H04W76/14—Direct-mode setup
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W24/00—Supervisory, monitoring or testing arrangements
- H04W24/02—Arrangements for optimising operational condition
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W24/00—Supervisory, monitoring or testing arrangements
- H04W24/10—Scheduling measurement reports ; Arrangements for measurement reports
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/20—Control channels or signalling for resource management
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W92/00—Interfaces specially adapted for wireless communication networks
- H04W92/16—Interfaces between hierarchically similar devices
- H04W92/18—Interfaces between hierarchically similar devices between terminal devices
Definitions
- the present invention relates to the field of communications, and in particular, to a device-to-device D2D communication method and related devices.
- D2D communication is a new technology that allows terminals to communicate directly by multiplexing cell resources under the control of the system. It can increase the spectrum efficiency of the cellular communication system and reduce the terminal transmission. Power, to a certain extent, solves the problem of lack of spectrum resources in wireless communication systems.
- Existing D2D communication modes include a dedicated mode and a multiplexing mode.
- the multiplexing mode means that when the uplink user of the D2D user equipment is far away from the uplink cell user, when the uplink user of the cell generates little or no interference to the communication of the D2D user equipment, the uplink user communication of the cell communicates with the D2D user equipment.
- the same time-frequency resource is multiplexed to fully multiplex the spectrum resources;
- the exclusive mode means that when the D2D user equipment communication link is close to the cell uplink user, the cell user will have strong interference to the D2D communication link, so
- the D2D communication and the cell uplink user communicate using orthogonal time-frequency resources. As a result, in the exclusive mode, the utilization of frequency resources will be low.
- Embodiments of the present invention provide a device-to-device D2D communication method and related devices to improve time-frequency resource utilization during D2D communication.
- the embodiment of the present invention provides a device-to-device D2D communication method.
- the method includes:
- the base station sends the first control signaling to the first user equipment, the second control signaling to the second user equipment, and the N third control signaling to the N third user equipments, the first
- the user equipment and the second user equipment are D2D user equipment
- the third user equipment is a cell user equipment
- the first control signaling is used to indicate that the first user equipment detects the second user equipment and a channel quality between the first user equipment
- the second control signaling is used to indicate that the second user equipment detects channel quality between the first user equipment and the second user equipment
- the third control signaling is used to indicate that the third user equipment detects channel quality between the D2D user equipment and the third user equipment, where N is a positive integer;
- the base station Receiving, by the base station, the first channel quality feedback signaling that is fed back by the first user equipment, receiving the second channel quality feedback signaling that is fed back by the second user equipment, and receiving the N feedbacks from the N third user equipments a third channel quality feedback signaling, where the first channel quality feedback signaling is used to indicate channel quality between the second user equipment and the first user equipment, and the second channel quality feedback signaling is used for And indicating a channel quality between the first user equipment and the second user equipment, where the third channel quality feedback signaling is used to indicate channel quality between the D2D user equipment and the third user equipment;
- the base station detects a channel quality between the D2D user equipment and the base station;
- the D2D communication mode includes a dedicated mode, a normal multiplexing mode, and a cooperative multiplexing mode
- the base station is based on the first channel quality feedback signaling, the second channel quality feedback signaling, and the third channel quality feedback signaling And determining, by the channel quality between the D2D user equipment and the base station, a target third user equipment that is paired with the D2D user equipment.
- the first control signaling includes a first sounding signal sending command, and the time-frequency resource allocated by the base station to the first user equipment to send the first sounding signal, and the first sounding signal receiving command And the time-frequency resource that the base station allocates to the second user equipment to send the second sounding signal, where the first sounding signal sending command is used to indicate that the first user equipment is allocated to the first Transmitting, by the user equipment, the time-frequency resource of the first sounding signal, the first detecting signal, where the first detecting signal receiving command is used to indicate that the first user equipment sends the time-frequency resource of the second detecting signal in the second user equipment
- the signal quality of the second sounding signal sent by the second user equipment is detected. Therefore, the first user equipment can detect the signal quality of the second detection signal sent by the second user equipment based on the first control signaling.
- the second control signaling includes a second sounding signal sending command, and the time-frequency resource allocated by the base station to the second user equipment to send the second sounding signal, and the second sounding signal receiving command And the time-frequency resource that the base station allocates to the first user equipment to send the first sounding signal, where the second sounding signal sending command is used to indicate that the second user equipment is allocated to the second Transmitting, by the user equipment, the second sounding resource of the second sounding signal, the second detecting signal is used to indicate that the second user equipment sends the time-frequency resource of the first detecting signal to the first user equipment. Detecting a signal quality of the first detection signal sent by the first user equipment. Therefore, the second user equipment can detect the signal quality of the first detection signal sent by the first user equipment based on the second control signaling.
- the third control signaling includes a third sounding signal receiving command, and a time-frequency resource allocated by the base station to the first user equipment and the second user equipment, the third The detecting signal receiving command is used to indicate that the target third user equipment detects the signal quality of the first detecting signal sent by the first user equipment on the time-frequency resource of the first user equipment, and in the second user The signal quality of the second detection signal sent by the second user equipment is detected on the time-frequency resource of the device. Therefore, the third user equipment can detect the signal quality of the first user equipment and the second user equipment to send the sounding signal based on the third control signaling.
- the method further includes: the base station sending fourth control signaling to the first user equipment to enable the Transmitting, by the user equipment, the fifth control signaling to the second user equipment, to enable the second user equipment to communicate based on the fifth control signaling, and to the The target third user equipment sends sixth control signaling to enable the target third user equipment to communicate based on the sixth control signaling, where the fourth control signaling includes a D2D communication mode determined by the base station, The base station allocates to the first user equipment, the time-frequency resource for receiving and forwarding data, and the transmission power and the modulation and coding mode when the first user equipment forwards the data, where the fifth control signaling includes the base station determining a D2D communication mode, the time-frequency resource allocated by the base station to the second user equipment for transmitting data, and the transmission power and modulation and coding mode of the second user equipment, Said sixth control signaling includes the base station allocates frequency resources to
- the embodiment of the present invention provides a device-to-device D2D communication method.
- the method includes: the first user equipment receives the first control signaling sent by the base station.
- the first control signaling is used to indicate that the first user equipment detects channel quality between the second user equipment and the first user equipment, and the first user equipment and the second user equipment a D2D user equipment;
- the first user equipment receives a second detection signal sent by the second user equipment, based on the first control signaling, to enable the first user equipment to detect based on the second detection signal
- the method further includes: the first user equipment receiving the fourth control signaling sent by the base station,
- the fourth control signaling includes a D2D communication mode determined by the base station, and the base station allocates to the first user equipment, the time-frequency resource for receiving and forwarding data, and the sending when the first user equipment forwards data.
- Power and modulation coding mode the first user equipment communicates based on the fourth control signaling. Thereby the first user equipment can communicate based on the fourth control signaling.
- the embodiment of the present invention provides a device-to-device D2D communication method.
- the method includes: receiving, by the second user equipment, the second control sent by the base station Signaling, the second control signaling is used to indicate that the second user equipment detects channel quality between the first user equipment and the second user equipment, the first user equipment and the second
- the user equipment is a D2D user equipment; the second user equipment receives the first user equipment to send a first detection signal based on the second control signaling, so that the second user equipment detects based on the first detection signal.
- the method further includes: the second user equipment receiving the fifth control signaling sent by the base station,
- the fifth control signaling includes a D2D communication mode determined by the base station, the time-frequency resource allocated by the base station to the second user equipment for transmitting data, and the transmission power and modulation coding of the second user equipment.
- the second user equipment communicates based on the fifth control signaling. Thereby the second user equipment can communicate based on the fifth control signaling.
- the embodiment of the present invention provides a device-to-device D2D communication method, where the method includes: a third user equipment receives a third control signaling sent by a base station, where the third user equipment is a cell user equipment, The third control signaling is used to instruct the third user equipment to detect channel quality between the D2D user equipment and the third user equipment; the third user equipment receives the a first detection signal sent by the first user equipment and a second detection signal sent by the second user equipment, so that the third user equipment detects and acquires the first detection signal and the second detection signal. a channel quality between the D2D user equipment and the third user equipment; sending, by the base station, third channel quality feedback signaling, where the third channel quality feedback signaling is used to indicate the D2D device and the Channel quality between three user equipments.
- the method further includes: receiving, by the third user equipment, sixth control signaling sent by the base station, where The sixth control signaling includes a time-frequency resource allocated by the base station to the third user equipment for transmitting data, and a transmission power and a modulation and coding mode of the third user equipment, where the third user equipment is based on the Six control signaling for communication. Thereby the third user equipment can communicate based on the sixth control signaling.
- an embodiment of the present invention provides a base station, where the base station has the function of implementing the foregoing first aspect.
- the functions may be implemented by hardware or by corresponding software implemented by hardware.
- the hardware or software includes one or more modules corresponding to the functions described above.
- an embodiment of the present invention provides a first user equipment, where the first user equipment has the function of implementing the foregoing first aspect.
- the functions may be implemented by hardware or by corresponding software implemented by hardware.
- the hardware or software includes one or more modules corresponding to the functions described above.
- the embodiment of the present invention provides a second user equipment, where the second user equipment has the function of implementing the foregoing first aspect.
- the functions may be implemented by hardware or by corresponding software implemented by hardware.
- the hardware or software includes one or more modules corresponding to the functions described above.
- an embodiment of the present invention provides a third user equipment, where the third user equipment has the function of implementing the foregoing first aspect.
- the functions may be implemented by hardware or by corresponding software implemented by hardware.
- the hardware or software includes one or more modules corresponding to the functions described above.
- the embodiment of the present invention provides a computer storage medium for storing the computer software instructions used in the foregoing base station for the fifth aspect, which includes a program designed to execute the above aspects.
- an embodiment of the present invention provides a computer storage medium for storing the computer software instructions used in the foregoing first user equipment for the sixth aspect, which includes a program designed to perform the above aspects.
- an embodiment of the present invention provides a computer storage medium for storing the computer software instructions used in the foregoing second user equipment for the seventh aspect, which includes a program designed to perform the foregoing aspects. .
- the embodiment of the present invention provides a computer storage medium for storing the computer software instructions used in the foregoing third user equipment for the eighth aspect, which includes a program designed to execute the foregoing aspect .
- the base station sends control signaling to the D2D user equipment and the third user equipment, and then the first user equipment feeds back the first user equipment and the second user equipment to the base station.
- the channel quality between the third user equipment and the first user equipment is fed back to the base station by the second user equipment, and the third user equipment feeds back the channel between the third user equipment and the base station and the D2D user equipment to the base station.
- Quality, and then the base station determines a D2D communication mode based on the channel quality fed back by each user equipment, the D2D communication mode including a dedicated mode, a normal multiplexing mode, and a cooperative multiplexing mode. Therefore, when the D2D communication link and the third user equipment are close to each other, the cooperative multiplexing mode can be selected for D2D communication, and the time-frequency resource utilization is improved.
- FIG. 1 is a schematic structural diagram of a device-to-device D2D communication system 100 according to an embodiment of the present invention
- FIG. 1 is a schematic diagram of a device-to-device D2D communication model according to an embodiment of the present invention
- FIG. 2 is a schematic flowchart of a device-to-device D2D communication method according to an embodiment of the present invention
- FIG. 3 is a schematic diagram of a D2D cooperative communication mode operation according to an embodiment of the present invention.
- FIG. 4 is a schematic diagram of another D2D cooperative communication mode operation according to an embodiment of the present invention.
- FIG. 5 is a schematic structural diagram of a base station according to an embodiment of the present disclosure.
- FIG. 6 is a schematic structural diagram of another base station according to an embodiment of the present invention.
- FIG. 7 is a schematic structural diagram of a first user equipment according to an embodiment of the present disclosure.
- FIG. 8 is a schematic structural diagram of another first user equipment according to an embodiment of the present disclosure.
- FIG. 9 is a schematic structural diagram of a second user equipment according to an embodiment of the present invention.
- FIG. 10 is a schematic structural diagram of another second user equipment according to an embodiment of the present disclosure.
- FIG. 11 is a schematic structural diagram of a third user equipment according to an embodiment of the present disclosure.
- FIG. 12 is a schematic structural diagram of another third user equipment according to an embodiment of the present invention.
- FIG. 1-a is a schematic structural diagram of a device-to-device D2D communication system 100 according to an embodiment of the present invention.
- the D2D communication system 100 is used in the 4th Generation mobile communication technology (4G) or the 5th Generation mobile communication technology (5G) cellular network.
- the D2D communication system 100 includes a base station 110, a first user equipment 120 and a second user equipment 130 for performing device-to-device D2D communication, and N cell uplink user equipments, that is, a third user equipment 140.
- the first user equipment may be a device that can perform wireless communication, such as a mobile phone, a wearable device, or a tablet computer
- the second user device may also be a device that can perform wireless communication, such as a mobile phone, a wearable device, and a tablet computer
- the third user equipment may also be a device that can perform wireless communication, such as a mobile phone, a wearable device, or a tablet computer.
- the base station can select a different communication mode according to the distance between the D2D user equipment and the third user equipment, and implement an optimal D2D communication mode.
- FIG. 1-b is the present invention.
- a device to device D2D communication model diagram provided by an embodiment.
- the data when the D2D communication system is in operation, the data may be sent by the second user equipment to the first user equipment, or may be sent by the second user equipment to the first user equipment.
- the user equipment sends data to the second user equipment.
- FIG. 2 is a schematic flowchart of a device-to-device D2D communication method according to an embodiment of the present invention. As shown in FIG. 2, the method may include the following steps:
- the base station sends the first control signaling to the first user equipment, and sends the second control signaling to the second user equipment and sends the data to the N third user equipments. N third control signaling. Therefore, the first user equipment receives the first control signaling sent by the base station, the second user equipment receives the second control signaling sent by the base station, and the third user equipment receives the third control signaling sent by the base station.
- N is a positive integer.
- the first user equipment and the second user equipment are D2D user equipments
- the third user equipment is a cell user equipment
- the first control signaling is used to indicate that the first user equipment detects the a channel quality between the second user equipment and the first user equipment
- the second control signaling is used to indicate that the second user equipment detects between the first user equipment and the second user equipment Channel quality
- the third control signaling is used to indicate that the third user equipment detects channel quality between the D2D user equipment and the third user equipment.
- the base station when the base station detects that there is a D2D communication requirement that the second user equipment sends data to the first user equipment between the first user equipment and the second user equipment, the base station Sending first control signaling to the first user equipment, transmitting second control signaling to the second user equipment, and separately transmitting third control signaling to the N third user equipments existing in the cell.
- the first control signaling includes a first sounding signal sending command, and a time-frequency resource allocated by the base station to the first user equipment to send the first sounding signal, a first sounding signal receiving command, and a time-frequency resource allocated by the base station to the second user equipment to send a second sounding signal
- the first sounding signal sending command is used to indicate that the first user equipment is at the base station
- a signal quality of the second detection signal sent by the second user equipment is detected on a time-frequency resource of the sounding signal. Therefore, the first user equipment can detect the signal quality of the second detection signal sent by the second user equipment based on the first control signaling.
- the second control signaling includes a second sounding signal sending command, and the time-frequency resource allocated by the base station to the second user equipment to send the second sounding signal, a second sounding signal receiving command, and a time-frequency resource allocated by the base station to the first user equipment to send a first sounding signal, where the second sounding signal sending command is used to indicate that the second user equipment is allocated at the base station And transmitting, by the second user equipment, the second sounding resource, where the second user equipment sends the second sounding signal, where the second detecting signal is used to send the first user equipment to send the first detecting signal at the first user equipment.
- the signal quality of the first detection signal sent by the first user equipment is detected on the time-frequency resource. Therefore, the second user equipment can detect the signal quality of the first detection signal sent by the first user equipment based on the second control signaling.
- the third control signaling includes a third sounding signal receiving command, and a time frequency allocated by the base station to the first user equipment and the second user equipment.
- the third probe signal receiving command is used to indicate that the third user equipment detects the signal quality of the first sounding signal sent by the first user equipment on the time-frequency resource of the first user equipment, and Detecting, on the time-frequency resource of the second user equipment, a signal quality of the second user equipment that sends the second detection signal. Therefore, the third user equipment can detect the signal quality of the first user equipment and the second user equipment to send the sounding signal based on the third control signaling.
- the first user equipment receives the first detection signal sent by the second user equipment according to the first control signaling, and the second user equipment receives the second detection sent by the first user equipment based on the second control signaling. And the third user equipment receives the first detection signal sent by the first user equipment and the second detection signal sent by the second user equipment, according to the third control signaling.
- the first user equipment after the first user equipment receives the second detection signal, the first user equipment acquires the channel quality between the second user equipment and the first user equipment, and then passes the channel quality through the first channel.
- the quality feedback signaling is sent to the base station.
- the second user equipment after the second user equipment receives the first detection signal, the second user equipment acquires the channel quality between the first user equipment and the second user equipment, and then passes the channel quality through the second channel.
- the quality feedback signaling is sent to the base station.
- the third user equipment after the third user equipment receives the first detection signal and the second detection signal, the third user equipment acquires the channel quality between the D2D user equipment and the third user equipment, and then the channel is obtained. The quality is sent to the base station through the third channel quality feedback signaling.
- the first user equipment sends the first channel quality feedback signaling to the base station; the second user equipment sends the second channel quality feedback signaling to the base station; and the third user equipment sends the third channel quality feedback signaling to the base station. Therefore, the base station receives the first channel quality feedback signaling fed back by the first user equipment; the base station receives the second channel quality feedback signaling fed back by the second user equipment; and the base station receives the third channel quality feedback signal fed back by the third user equipment. make.
- the first channel quality feedback signaling is used to indicate channel quality between the second user equipment and the first user equipment
- the second channel quality feedback signaling is used to indicate the first user.
- Channel quality between the device and the second user equipment is used to indicate channel quality between the D2D user equipment and the third user equipment.
- the base station detects channel quality between the D2D user equipment and the base station.
- the base station may detect the channel quality between the D2D user equipment and the base station by using the sounding signal sent by the D2D user equipment.
- the base station determines a D2D communication mode based on the first channel quality feedback signaling, the second channel quality feedback signaling, the third channel quality feedback signaling, and a channel quality between the D2D user equipment and the base station.
- the D2D communication mode includes a dedicated mode, a normal multiplexing mode, and a cooperative multiplexing mode.
- the exclusive mode refers to when the distance between the D2D user equipment and the third user equipment is relatively close, but the signal between the D2D user equipment is not very good, or when the D2D user is far away from the base station, in order to avoid D2D
- the interference between the communication link and the third user equipment causes the communication link of the D2D communication link and the third user equipment to adopt orthogonal time-frequency resource allocation to avoid interference, but at this time, the time-frequency resource is also reduced.
- the normal multiplexing mode means that when the D2D communication link and the third user equipment are far apart, there is no communication interference between each other, so the same time-frequency resource can be multiplexed for communication, that is, corresponding to the prior art.
- the cooperative multiplexing mode refers to when the D2D communication link is relatively close to the third user equipment, and the D2D user equipments are close to each other, and the D2D users are closer to the base station, so that the signal quality between the D2D user equipments is better.
- the first time slot in order to improve the efficiency of time-frequency resource usage, in the first time slot, when the second user equipment sends data to the first user equipment, the third user equipment sends data to the first user, and the second user is controlled at this time.
- the sending power of the device is greater than the sending power of the third user equipment.
- the first user forwards the data of the third user to the base station, if the first user also has data.
- the first user transmits the data sent to the base station and the data of the second user by superposition, and controls the power so that the data power transmitted to the base station when superimposing is greater than the power sent to the second user data.
- the first time slot when the first user decodes, the data sent by the third user equipment to the first user is used as noise, the data sent by the second user equipment to the first user equipment is decoded, and then the second user is sent by the SIC. The data is unlocked by the third user.
- the base station In the second time slot, if the first user has no data to send to the second user, the base station directly decodes the data of the third user forwarded by the first user, and if the first user has data to send to the second user, the base station will decode when decoding The data sent to the second user is decoded as noise, and the second user first unpacks the data sent to itself as noise to unlock the data of the third user forwarded by the first user, and then cancels the data and then unpacks the first user and sends the data to the first user. Two user data. Through the above scheme, multiple data can be simultaneously transmitted, thereby improving resource utilization.
- the fourth control signaling may be directly sent to the first user equipment, and the fifth control is sent to the second user equipment. Signaling and causing the first user equipment to perform D2D communication with the second user equipment.
- the D2D user equipment when the communication mode determined by the base station is a normal multiplexing mode or a cooperative communication mode, in the two modes, the D2D user equipment needs to be shared with other uplink user equipments. Time-frequency resources, so the target third user equipment paired with the D2D user equipment needs to be determined among the N third user equipments in the cell, and the base station needs to further determine the target third user that is paired with the D2D user equipment. device.
- the base station may be based on the first channel quality feedback signaling, the first The two channel quality feedback signaling and the third channel quality feedback signaling and the channel quality between the D2D user and the base station determine a D2D communication mode selected by the base station.
- the base station is based on the first channel quality feedback signaling, the second channel quality feedback signaling, the third channel quality feedback signaling, and the The channel quality between the D2D user equipment and the base station determines a target third user equipment that is paired with the D2D user equipment.
- the base station is based on the first channel quality feedback signaling, the second channel quality feedback signaling, and the third channel quality.
- Feedback signaling, and a channel quality between the D2D user equipment and the base station determines a target third user equipment that is paired with the D2D user equipment.
- the base station is based on the first channel quality feedback signaling, the second channel quality feedback signaling, and the third channel.
- Quality feedback signaling, and channel quality between the D2D user equipment and the base station determine two target third user equipments paired with the D2D user equipment.
- the channel quality between the target third user equipment and the D2D user equipment needs to be good, so based on the third channel.
- Quality feedback signaling determining a target third user equipment paired with the D2D user equipment by using a channel quality between the D2D user equipment and the base station.
- the base station when the D2D communication mode is the cooperative multiplexing mode, the base station sends a fourth control signaling to the first user equipment; the base station sends a fifth control signaling to the second user equipment; The third user equipment sends the sixth control signaling.
- the first user equipment receives the fourth control signaling sent by the base station; the second user equipment receives the fifth control signaling sent by the base station; and the third user equipment receives the sixth control signaling sent by the base station.
- the base station if the D2D communication mode determined by the base station is a dedicated mode, since the time-frequency resources between the D2D user equipment and the uplink user equipment do not interfere with each other in the exclusive mode, The base station only needs to send the fourth control signaling to the third user equipment, and send the fifth control signaling to the fourth user equipment, and then the third user equipment and the fourth user equipment may be based on the fourth control signaling and the third Five control signaling for D2D communication.
- the D2D communication mode determined by the base station is a normal multiplexing mode or a cooperative multiplexing mode
- the D2D user equipment and the uplink are in the normal multiplexing mode or the cooperative multiplexing mode.
- the user equipments share the same time-frequency resource, so the base station needs to send the fourth control signaling to the first user equipment, the fifth control signaling to the second user equipment, and the sixth control signaling to the third user equipment. .
- the fourth control signaling And including a selected D2D communication mode, and a time-frequency resource allocated by the base station to the first user equipment to receive data.
- the fourth control signaling includes, in addition to the selected D2D communication mode, the time-frequency resource allocated by the base station to the first user equipment to receive data, and the first user.
- the fourth control signaling includes the selected one.
- the base station allocates a time-frequency resource for receiving and forwarding data by the first user equipment, and a transmission power and a modulation and coding mode when the first user equipment forwards data. Therefore, after receiving the fourth control signaling, the first user equipment can perform communication based on the fourth control signaling.
- the fourth control signaling includes, in addition to the selected D2D communication mode, the base station allocates time-frequency resources for receiving and forwarding data by the first user equipment, and forwarding data by the first user equipment.
- the transmission power and the modulation and coding mode of the time, the transmission power and the modulation and coding mode sent by the first user equipment to the second user equipment, and the data of the first user equipment forwarding the third user equipment The data overlay method used by the data sent to the second user device.
- the first control device may include the data superimposing manner used by the first user equipment to forward the data of the third user equipment and the data sent to the second user equipment, so that the first user equipment may receive the data.
- the cooperative multiplexing communication mode is used for communication.
- the fifth control signaling includes the D2D determined by the base station regardless of the D2D communication mode. a communication mode, the time-frequency resource allocated by the base station to the second user equipment for transmitting data, and the transmission power of the second user equipment and a modulation and coding manner.
- the base station allocates to the time-frequency resource used by the second user equipment for transmitting data, and the transmission power of the second user equipment and the modulation and coding mode, and A time-frequency resource allocated by the base station to the second user for receiving the data is included.
- the sixth control signaling includes a time-frequency resource allocated by the base station to the third user equipment for transmitting data, and a transmit power of the third user equipment. And modulation coding.
- the first user equipment performs communication according to the fourth control signaling; the second user equipment performs communication based on the fifth control signaling; and the third user equipment performs communication based on the sixth control signaling.
- the base station allocates the communication mode, the transmission power, the time-frequency resource, and the modulation and coding mode by using the fourth control signaling, the fifth control signaling, and the sixth control signaling, the first user equipment
- the two user devices and the third user device can communicate based on the above information.
- FIG. 3 is a schematic diagram of a D2D cooperative communication mode operation according to an embodiment of the present invention.
- Da and Db respectively represent a first user equipment and a second user equipment for performing D2D communication, U1.
- U1 Represents a third user equipment paired with a D2D user equipment, and the BS represents a base station.
- the third user equipment U1 sends data to the neighboring first user equipment Da, while the second user equipment Db also sends data to the first user equipment Da; the base station controls the second user equipment Db and the third user.
- the power of the data transmitted by the device U1 is such that the signal power of the second user equipment Db is greater than the signal power of the third user equipment U1.
- the first user equipment Da receives the data sent by the second user equipment Db and the third user equipment U1
- the first user equipment Da first considers the data of the third user equipment U1 as the data of the noise decoding third user equipment Db.
- the serial Interference Cancellation (SIC) technology the data of the third user equipment U1 is decoded; in the second time slot 2: the first user equipment Da uses different powers to simultaneously transmit the data of the third user equipment U1 to the base station.
- SIC Serial Interference Cancellation
- the BS and its own data are given to the second user equipment Db, wherein the data of the third user equipment U1 is assigned a higher power and the data transmitted to the second user equipment Db uses a lower power. Then, after receiving the data, the base station BS directly decodes the data sent to the second user equipment Db as noise to directly decode the data of the third user equipment U1, and the second user equipment Db first decodes the data of the third user equipment U1, and then The data transmitted by the third user equipment Da to the second user equipment Db itself is decoded using the SIC technique. Optionally, if the second user equipment Db does not send data to the first user equipment Da, the first user equipment Da directly forwards the data of the third user equipment U1 to the base station BS. Thereby, cooperative communication using the same time-frequency resource between the D2D user equipment and the uplink user equipment under half duplex is realized.
- FIG. 4 is a schematic diagram of another D2D cooperative communication mode operation according to an embodiment of the present invention.
- Da and Db respectively represent a first user equipment and a second user equipment for performing D2D communication
- U1 and U2 represents two third user equipments paired with the D2D user equipment
- the BS represents the base station.
- the third user equipment U1 sends data to the neighboring second user equipment Da, while the first user equipment Da and the second user equipment Db transmit data to each other; then the second user equipment Db puts the third The data of the user equipment U1 is regarded as data of the noise decoding first user equipment Da.
- the first user equipment Da first decodes the data of the second user equipment Db with strong signal, and then decodes the data of the third user equipment U1 using the SIC.
- the third user equipment U2 sends data to the neighboring second user equipment Db, while the first user equipment Da and the second user equipment Db send data to each other; the first user equipment Da takes the third user equipment U2
- the data is regarded as noise decoding data of the second user equipment Db, and the second user equipment Db first decodes the data of the first user equipment Da with strong signal, and then decodes the data of the third user equipment U2 using the SIC.
- the first user equipment Da transmits the data of the third user equipment U1 with a larger power, and the power is smaller.
- the base station BS regards the data of the D2D user equipment as data for decoding the third user equipment U1 and the third user equipment U2, and the first user equipment Da first decodes the data of the third user equipment U2, and then decodes using the SIC.
- Data of the second user equipment Db when the data is sent by the first user equipment Da to the second user equipment Db, the second user equipment Db transmits the data of the third user equipment U2 with a larger power, which is smaller.
- the power transmits its own data;
- the base station BS regards the data of the D2D user equipment as data for decoding the third user equipment U1 and the third user equipment U2, and the second user equipment Db first decodes the data of the third user equipment U1, and then uses the SIC.
- the data of the first user equipment Da is decoded. Thereby, cooperative communication using the same time-frequency resource between the D2D user equipment and the uplink user equipment under full duplex is realized.
- the base station sends control signaling to the D2D user equipment and the third user equipment, and then the first user equipment feeds back the channel quality between the first user equipment and the second user equipment to the base station.
- the second user equipment feeds back the channel quality between the third user equipment and the first user equipment to the base station
- the third user equipment feeds back the channel quality between the third user equipment and the base station and the D2D user equipment to the base station, and then the base station
- the D2D communication mode is further determined based on the channel quality fed back by each user equipment, and the D2D communication mode includes a dedicated mode, a normal multiplexing mode, and a cooperative multiplexing mode. Therefore, when the D2D communication link and the third user equipment are close to each other, the cooperative multiplexing mode can be selected for D2D communication, and the time-frequency resource utilization is improved.
- FIG. 5 is a schematic structural diagram of a base station according to an embodiment of the present invention.
- the base station 500 includes:
- the sending module 510 is configured to send first control signaling to the first user equipment, send second control signaling to the second user equipment, and send N third control signaling to the N third user equipments.
- the first user equipment and the second user equipment are D2D user equipments
- the third user equipment is a cell user equipment
- the first control signaling is used to indicate that the first user equipment detects the Channel quality between the second user equipment and the first user equipment
- the second control signaling is used to indicate that the second user equipment detects a channel between the first user equipment and the second user equipment Quality
- the third control signaling is used to indicate that the third user equipment detects channel quality between the D2D user equipment and the third user equipment, where N is a positive integer;
- the receiving module 520 is configured to receive the first channel quality feedback signaling that is fed back by the first user equipment, receive the second channel quality feedback signaling that is fed back by the second user equipment, and receive the feedback of the N third user equipments.
- Nth third channel quality feedback signaling the first channel quality feedback signaling is used to indicate channel quality between the second user equipment and the first user equipment, and the second channel quality feedback signal
- the third channel quality feedback signaling is used to indicate the channel quality between the first user equipment and the second user equipment, and the third channel quality feedback signaling is used to indicate between the D2D user equipment and the third user equipment.
- Channel quality ;
- the detecting module 530 is configured to detect channel quality between the D2D user equipment and the base station;
- a determining module 540 configured to perform, according to the first channel quality feedback signaling, the second channel quality feedback signaling, the third channel quality feedback signaling, and a channel between the D2D user equipment and the base station Quality determining a D2D communication mode, the D2D communication mode including a dedicated mode, a normal multiplexing mode, and a cooperative multiplexing mode;
- the determining module 540 is further configured to: if the D2D communication mode includes a normal multiplexing mode and a cooperative multiplexing mode, based on the first channel quality feedback signaling, the second channel quality feedback signaling, the third Channel quality feedback signaling, and a channel quality between the D2D user equipment and the base station determines a target third user equipment that is paired with the D2D user equipment.
- the first control signaling includes a first sounding signal sending command, and a time-frequency resource allocated by the base station to the first user equipment to send the first sounding signal, a first sounding signal receiving command, and a time-frequency resource allocated by the base station to the second user equipment to send a second sounding signal
- the first sounding signal sending command is used to indicate that the first user equipment is at the base station
- a signal quality of the second detection signal sent by the second user equipment is detected on a time-frequency resource of the sounding signal.
- the second control signaling includes a second sounding signal sending command, and a time-frequency resource allocated by the base station to the second user equipment to send the second sounding signal, a second sounding signal receiving command, and a time-frequency resource allocated by the base station to the first user equipment to send a first sounding signal
- the second sounding signal sending command is used to indicate that the second user equipment is in the base station
- the second detection signal is sent to the second user equipment, where the second detection signal is used to send the first user equipment to send the first detection
- a signal quality of the first detection signal sent by the first user equipment is detected on a time-frequency resource of the signal.
- the third control signaling includes a third sounding signal receiving command, and a time frequency allocated by the base station to the first user equipment and the second user equipment
- the third probe signal receiving command is used to indicate that the target third user equipment detects the signal quality of the first sounding signal sent by the first user equipment on the time-frequency resource of the first user equipment, and And detecting a signal quality of the second detection signal sent by the second user equipment on the time-frequency resource of the second user equipment.
- the sending module 510 is further configured to send the fourth control signaling to the first user equipment. And causing the first user equipment to perform communication according to the fourth control signaling, and send, to the second user equipment, fifth control signaling, to enable the second user equipment to communicate based on the fifth control signaling.
- sixth control signaling to enable the target third user equipment to communicate based on the sixth control signaling
- the fourth control signaling includes the D2D determined by the base station a communication mode
- the base station allocates a time-frequency resource for receiving and forwarding data, and a transmission power and a modulation and coding mode when the first user equipment forwards data
- the fifth control signaling includes a D2D communication mode determined by the base station, the time-frequency resource allocated by the base station to the second user equipment for transmitting data, and the transmission power and modulation of the second user equipment Mode
- the sixth control signaling includes the base station allocates frequency resources to the third target user equipment for transmitting data, transmit power and modulation and coding scheme of the third target user equipment.
- the base station 500 sends control signaling to the D2D user equipment and the third user equipment, and then the first user equipment feeds back to the base station 500 between the first user equipment and the second user equipment.
- Channel quality the second user equipment feeds back the channel quality between the third user equipment and the first user equipment to the base station 500
- the third user equipment feeds back to the base station 500 the third user equipment and the base station 500 and the D2D user equipment.
- Channel quality and then the base station 500 determines a D2D communication mode based on the channel quality fed back by each user equipment, the D2D communication mode including a dedicated mode, a normal multiplexing mode, and a cooperative multiplexing mode. Therefore, when the D2D communication link and the third user equipment are close to each other, the cooperative multiplexing mode can be selected for D2D communication, and the time-frequency resource utilization is improved.
- the base station 500 is presented in the form of a unit.
- a "unit” herein may refer to an application-specific integrated circuit (ASIC), a processor and memory that executes one or more software or firmware programs, integrated logic circuits, and/or other devices that provide the functionality described above. .
- ASIC application-specific integrated circuit
- FIG. 6 is a schematic structural diagram of another base station according to an embodiment of the present invention. As shown in FIG. 6, the base station 600 includes:
- the processor 602 can also be a controller, which is represented as "controller/processor 602" in FIG.
- the transmitter/receiver 601 is configured to support sending and receiving information between the base station and the first user equipment, the second user equipment, and the third user equipment in the foregoing embodiment, and supporting the base station and other base stations. Radio communication.
- the processor 602 performs various functions for association with a base station.
- uplink signals from each user equipment are received via an antenna, demodulated by receiver 601 (eg, demodulated high frequency signals into baseband signals), and further processed by processor 602 to restore user settings. Transmitted to service data and signaling information.
- traffic data and signaling messages are processed by processor 602 and modulated by transmitter 601 (e.g., modulating a baseband signal into a high frequency signal) to produce a downlink signal that is transmitted to the user via the antenna. device.
- transmitter 601 e.g., modulating a baseband signal into a high frequency signal
- processor 602 is further configured to perform the corresponding steps in the foregoing method embodiments, and/or other processes of the technical solutions described in the embodiments of the present invention.
- the base station 600 may further include a memory 603 for storing program codes and data of the base station 600.
- the base station 600 can also include a communication unit 604.
- the communication unit 604 is configured to support the base station to communicate with other network entities (eg, user equipments, etc.).
- the communication unit 604 can be an S1-U interface for supporting the base station to communicate with a Serving Gateway (SGW); or the communication unit 604 can also be an S1-MME interface, for The base station is supported to communicate with a Mobility Management Entity (MME).
- SGW Serving Gateway
- MME Mobility Management Entity
- Figure 6 only shows a simplified design of base station 600.
- the base station 600 can include any number of transmitters, receivers, processors, controllers, memories, communication units, etc., and all base stations that can implement the embodiments of the present invention are in the protection scope of the embodiments of the present invention. Inside.
- FIG. 7 is a schematic structural diagram of a first user equipment according to an embodiment of the present invention. As shown in FIG. 7, the first user equipment 700 includes:
- the receiving module 710 is configured to receive the first control signaling sent by the base station, where the first control signaling is used to indicate that the first user equipment detects a channel between the second user equipment and the first user equipment. Quality, the first user equipment and the second user equipment are D2D user equipments;
- the receiving module 710 is further configured to receive, according to the first control signaling, a second detection signal sent by the second user equipment, to enable the first user equipment to detect and acquire the Channel quality between the second user equipment and the first user equipment;
- the sending module 720 is configured to send the first channel quality feedback signaling to the base station, where the first channel quality feedback signaling is used to indicate a channel quality between the second user equipment and the first user equipment.
- the receiving module is further configured to receive the fourth control signaling sent by the base station.
- the fourth control signaling includes a D2D communication mode determined by the base station, where the base station allocates time-frequency resources for receiving and forwarding data to the first user equipment, and when the first user equipment forwards data. Transmit power and modulation and coding mode;
- the first user equipment further includes a communication module, configured to perform communication based on the fourth control signaling.
- the base station sends control signaling to the D2D user equipment and the third user equipment, and then the first user equipment 700 feeds back to the base station between the first user equipment 700 and the second user equipment.
- Channel quality the second user equipment feeds back the channel quality between the third user equipment and the first user equipment 700
- the third user equipment feeds back the channel quality between the third user equipment and the base station and the D2D user equipment to the base station.
- the base station determines a D2D communication mode based on the channel quality fed back by each user equipment, where the D2D communication mode includes a dedicated mode, a normal multiplexing mode, and a cooperative multiplexing mode. Therefore, when the D2D communication link and the third user equipment are close to each other, the cooperative multiplexing mode can be selected for D2D communication, and the time-frequency resource utilization is improved.
- the first user device 700 is presented in the form of a unit.
- a "unit” herein may refer to an application-specific integrated circuit (ASIC), a processor and memory that executes one or more software or firmware programs, integrated logic circuits, and/or other devices that provide the functionality described above. .
- ASIC application-specific integrated circuit
- FIG. 8 is a schematic structural diagram of another first user equipment according to an embodiment of the present invention.
- the first user equipment 800 includes:
- the processor 803 may also be a controller, and is represented as "controller/processor 803" in FIG.
- the first user equipment 800 may further include a modem processor 805, where the modem processor 805 may include an encoder 806, a modulator 807, a decoder 808, and a demodulator 805.
- the transmitter 801 conditions (eg, analog transforms, filters, amplifies, upconverts, etc.) the output samples and generates an uplink signal that is transmitted via an antenna to the base station described in the above embodiments. .
- the antenna receives the downlink signal transmitted by the base station in the above embodiment.
- Receiver 802 conditions (eg, filters, amplifies, downconverts, digitizes, etc.) the signals received from the antenna and provides input samples.
- encoder 806 receives the traffic data and signaling messages to be transmitted on the uplink and processes (e.g., formats, codes, and interleaves) the traffic data and signaling messages.
- Modulator 807 further processes (e.g., symbol maps and modulates) the encoded traffic data and signaling messages and provides output samples.
- Demodulator 809 processes (e.g., demodulates) the input samples and provides symbol estimates.
- the decoder 808 processes (e.g., deinterleaves and decodes) the symbol estimate and provides decoded data and signaling messages that are sent to the first user equipment 800.
- Encoder 806, modulator 807, demodulator 809, and decoder 808 may be implemented by a composite modem processor 805. These units are processed according to the radio access technology employed by the radio access network (e.g., access technologies of LTE and other evolved systems). It should be noted that when the first user equipment 800 does not include the modem processor 805, the foregoing functions of the modem processor 805 may also be completed by the processor 803.
- the processor 803 controls and manages the actions of the first user equipment 800 for performing the processing performed by the first user equipment 800 in the foregoing embodiment of the present invention.
- the processor 803 is further configured to perform the corresponding steps in the foregoing method embodiments, and/or other processes of the technical solutions described in the present application.
- the first user equipment 800 may further include a memory 804 for storing program codes and data for the first user equipment 800.
- FIG. 9 is a schematic structural diagram of a second user equipment according to an embodiment of the present invention.
- the second user equipment 900 includes:
- the receiving module 910 is configured to receive the second control signaling sent by the base station, where the second control signaling is used to indicate that the second user equipment detects the first user equipment and the second user equipment Channel quality, the first user equipment and the second user equipment are D2D user equipment;
- the receiving module 910 is further configured to receive, by using the second control signaling, the first user equipment to send a first detection signal, so that the second user equipment detects and acquires the first detection signal based on the first detection signal.
- the sending module 920 is configured to send a second channel quality feedback signaling to the base station, where the second channel quality feedback signaling is used to indicate a channel quality between the first user equipment and the second user equipment.
- the receiving module 910 is further configured to receive the fifth control message sent by the base station.
- the fifth control signaling includes a D2D communication mode determined by the base station, where the base station allocates time-frequency resources for transmitting data by the second user equipment, and a transmission power of the second user equipment, and Modulation coding method;
- the second user equipment further includes a communication module 930, configured to perform communication based on the fifth control signaling.
- the base station sends control signaling to the D2D user equipment and the third user equipment, and then the first user equipment feeds back the channel between the first user equipment and the second user equipment 900 to the base station.
- the second user equipment 900 feeds back the channel quality between the third user equipment and the first user equipment to the base station
- the third user equipment feeds back the channel quality between the third user equipment and the base station and the D2D user equipment to the base station.
- the base station determines a D2D communication mode based on the channel quality fed back by each user equipment, the D2D communication mode including a dedicated mode, a normal multiplexing mode, and a cooperative multiplexing mode. Therefore, when the D2D communication link and the third user equipment are close to each other, the cooperative multiplexing mode can be selected for D2D communication, and the time-frequency resource utilization is improved.
- the second user device 900 is presented in the form of a unit.
- a "unit” herein may refer to an application-specific integrated circuit (ASIC), a processor and memory that executes one or more software or firmware programs, integrated logic circuits, and/or other devices that provide the functionality described above. .
- ASIC application-specific integrated circuit
- FIG. 10 is a schematic structural diagram of another second user equipment according to an embodiment of the present invention.
- the second user equipment 1000 includes:
- the processor 1003 may also be a controller, and is represented as "controller/processor 1003" in FIG.
- the second user equipment 1000 may further include a modem processor 1005.
- the modem processor 1005 may include an encoder 1006, a modulator 1007, a decoder 1008, and a demodulator 1005.
- the transmitter 1001 conditions (eg, analog transforms, filters, amplifies, and upconverts, etc.) the output samples and generates an uplink signal that is transmitted via an antenna to the base station described in the above embodiments. .
- the antenna receives the downlink signal transmitted by the base station in the above embodiment.
- Receiver 1002 conditions (eg, filters, amplifies, downconverts, digitizes, etc.) the signals received from the antenna and provides input samples.
- encoder 1006 receives traffic data and signaling messages to be transmitted on the uplink and processes (e.g., formats, codes, and interleaves) the traffic data and signaling messages.
- Modulator 1007 further processes (e.g., symbol maps and modulates) the encoded traffic data and signaling messages and provides output samples.
- Demodulator 1009 processes (e.g., demodulates) the input samples and provides symbol estimates.
- the decoder 1008 processes (e.g., deinterleaves and decodes) the symbol estimate and provides decoded data and signaling messages that are sent to the second user equipment 1000.
- Encoder 1006, modulator 1007, demodulator 1009, and decoder 1008 may be implemented by a composite modem processor 1005. These units are processed according to the radio access technology employed by the radio access network (e.g., access technologies of LTE and other evolved systems). It should be noted that when the second user equipment 1000 does not include the modem processor 1005, the foregoing functions of the modem processor 1005 may also be completed by the processor 1003.
- the processor 1003 controls and manages the action of the second user equipment 1000 for performing the processing performed by the second user equipment 1000 in the foregoing embodiment of the present invention.
- the processor 1003 is further configured to perform the corresponding steps in the foregoing method embodiments, and/or other processes of the technical solutions described in the present application.
- the second user equipment 1000 may further include a memory 1004 for storing program codes and data for the second user equipment 1000.
- FIG. 11 is a schematic structural diagram of a third user equipment according to an embodiment of the present invention. As shown in FIG. 11, the third user equipment 1100 includes:
- the receiving module 1110 is configured to receive the third control signaling sent by the base station, where the third user equipment is a cell user equipment, and the third control signaling is used to indicate that the third user equipment detects the D2D user equipment and Channel quality between the third user equipments;
- the receiving module 1110 is further configured to receive, according to the third control signaling, a first detection signal sent by the first user equipment and a second detection signal sent by the second user equipment, to enable the third user
- the device detects and acquires channel quality between the D2D user equipment and the third user equipment based on the first detection signal and the second detection signal;
- the sending module 1120 is configured to send third channel quality feedback signaling to the base station, where the third channel quality feedback signaling is used to indicate channel quality between the D2D device and the third user equipment.
- the receiving module 1110 is further configured to receive a sixth control signaling sent by the base station, where The sixth control signaling includes a time-frequency resource allocated by the base station to the third user equipment for transmitting data, and a transmission power and a modulation and coding mode of the third user equipment;
- the third user equipment further includes a communication module 1130, configured to perform communication based on the sixth control signaling.
- the base station sends control signaling to the D2D user equipment and the third user equipment 1100, and then the first user equipment feeds back the channel between the first user equipment and the second user equipment to the base station.
- the second user equipment feeds back the channel quality between the third user equipment 1100 and the first user equipment to the base station
- the third user equipment 1100 feeds back the channel between the third user equipment 1100 and the base station and the D2D user equipment to the base station.
- the base station determines a D2D communication mode based on the channel quality fed back by each user equipment, the D2D communication mode including a dedicated mode, a normal multiplexing mode, and a cooperative multiplexing mode. Therefore, when the D2D communication link and the third user equipment 1100 are close to each other, the cooperative multiplexing mode can be selected for D2D communication, and the time-frequency resource utilization is improved.
- the third user equipment 1100 is presented in the form of a unit.
- a "unit” herein may refer to an application-specific integrated circuit (ASIC), a processor and memory that executes one or more software or firmware programs, integrated logic circuits, and/or other devices that provide the functionality described above. .
- ASIC application-specific integrated circuit
- FIG. 12 is a schematic structural diagram of another third user equipment according to an embodiment of the present invention.
- the third user equipment 1200 includes:
- the processor 1203 may also be a controller, and is represented as "controller/processor 1203" in FIG.
- the third user equipment 1200 may further include a modem processor 1205.
- the modem processor 1205 may include an encoder 1206, a modulator 1207, a decoder 1208, and a demodulator 1205.
- transmitter 1201 conditions (eg, analog transforms, filters, amplifies, and upconverts, etc.) the output samples and generates an uplink signal that is transmitted via an antenna to the base station described in the above embodiments. .
- the antenna receives the downlink signal transmitted by the base station in the above embodiment.
- Receiver 1202 conditions (eg, filters, amplifies, downconverts, digitizes, etc.) the signals received from the antenna and provides input samples.
- encoder 1206 receives the traffic data and signaling messages to be transmitted on the uplink and processes (e.g., formats, codes, and interleaves) the traffic data and signaling messages.
- Modulator 1207 further processes (e.g., symbol maps and modulates) the encoded traffic data and signaling messages and provides output samples.
- Demodulator 1209 processes (e.g., demodulates) the input samples and provides symbol estimates.
- the decoder 1208 processes (e.g., deinterleaves and decodes) the symbol estimate and provides decoded data and signaling messages that are sent to the third user equipment 1200.
- Encoder 1206, modulator 1207, demodulator 1209, and decoder 1208 may be implemented by a composite modem processor 1205. These units are processed according to the radio access technology employed by the radio access network (e.g., access technologies of LTE and other evolved systems). It should be noted that when the third user equipment 1200 does not include the modem processor 1205, the foregoing functions of the modem processor 1205 may also be completed by the processor 1203.
- the processor 1203 controls and manages the actions of the third user equipment 1200 for performing the processing performed by the third user equipment 1200 in the foregoing embodiment of the present invention.
- the processor 1203 is further configured to perform the corresponding steps in the foregoing method embodiments, and/or other processes of the technical solutions described in the present application.
- the third user equipment 1200 may further include a memory 1204 for storing program codes and data for the third user equipment 1200.
- the embodiment of the present invention further provides a computer storage medium, wherein the computer storage medium can store a program, and the program can implement some or all of the steps including any of the D2D communication methods described in the foregoing method embodiments.
- the foregoing storage medium includes: a U disk, a read-only memory (English: read-only memory), a random access memory (RAM), a mobile hard disk, a magnetic disk, or an optical disk, and the like, which can store program codes. medium.
- the disclosed apparatus may be implemented in other ways.
- the device embodiments described above are merely illustrative.
- the division of the unit is only a logical function division.
- there may be another division manner for example, multiple units or components may be combined or may be Integrate into another system, or some features can be ignored or not executed.
- the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be electrical or otherwise.
- the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Quality & Reliability (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本发明实施例公开了一种设备到设备D2D通信方法及相关设备,所述方法包括:基站向第一用户设备发送第一控制信令,向第二用户设备发送第二控制信令以及向N个第三用户设备分别发送N个第三控制信令;接收所述第一用户设备反馈的第一信道质量反馈信令,第二用户设备反馈的第二信道质量反馈信令以及N个第三用户设备反馈的N个第三信道质量反馈信令;检测所述D2D用户设备与基站之间的信道质量;并基于各反馈信令以及D2D用户设备与基站之间的信道质量确定D2D通信模式;以及在通复用模式以及协作复用模式下确定与所述D2D用户设备进行配对的目标第三用户设备。从而可以提高D2D通信时的时频资源利用率。
Description
本发明涉及通信领域,具体涉及一种设备到设备D2D通信方法及相关设备。
设备到设备(Device-to-Device,D2D)通信是一种在系统的控制下,允许终端之间通过复用小区资源直接进行通信的新型技术,它能够增加蜂窝通信系统频谱效率,降低终端发射功率,在一定程度上解决无线通信系统频谱资源匮乏的问题。
现有的D2D通信模式包括专属模式和复用模式。复用模式是指当D2D用户设备通信链路与上行小区用户之间相距较远时,小区上行用户对D2D用户设备通信产生较小的干扰或者不干扰时,小区上行用户通信与D2D用户设备通信复用相同的时频资源以充分复用频谱资源;专属模式是指当D2D用户设备通信链路与小区上行用户相距较近时,由于小区用户会对D2D通信链路产生较强的干扰,因此D2D通信和小区上行用户采用正交的时频资源进行通信。从而导致在专属模式下,将导致对频率资源的利用率低。
发明内容
本发明实施例提供了一种设备到设备D2D通信方法及相关设备,以提高D2D通信时的时频资源利用率。
第一方面,本发明实施例提供了一种设备到设备D2D通信方法,在第二用户设备向第一用户设备发送数据时,该方法包括:
基站向所述第一用户设备发送第一控制信令,向所述第二用户设备发送第二控制信令以及向N个第三用户设备分别发送N个第三控制信令,所述第一用户设备与所述第二用户设备为D2D用户设备,所述第三用户设备为小区用户设备,所述第一控制信令用于指示所述第一用户设备探测所述第二用户设备与所述第一用户设备之间的信道质量,所述第二控制信令用于指示所述第二用户设备探测所述第一用户设备与所述第二用户设备之间的信道质量,所述第三控制信令用于指示所述第三用户设备探测所述D2D用户设备与所述第三用户设备之间的信道质量,所述N为正整数;
所述基站接收所述第一用户设备反馈的第一信道质量反馈信令,接收所述第二用户设备反馈的第二信道质量反馈信令以及接收所述N个第三用户设备反馈的N个第三信道质量反馈信令,所述第一信道质量反馈信令用于指示所述第二用户设备与所述第一用户设备之间的信道质量,所述第二信道质量反馈信令用于指示所述第一用户设备与所述第二用户设备之间的信道质量,所述第三信道质量反馈信令用于指示所述D2D用户设备与所述第三用户设备之间的信道质量;
所述基站检测所述D2D用户设备与所述基站之间的信道质量;
所述基站基于所述第一信道质量反馈信令、所述第二信道质量反馈信令、所述第三信道质量反馈信令以及所述D2D用户设备与所述基站之间的信道质量确定D2D通信模式,所述D2D通信模式包括专属模式、普通复用模式以及协作复用模式;
若所述D2D通信模式包括普通复用模式以及协作复用模式,所述基站基于所述第一信道质量反馈信令,所述第二信道质量反馈信令,所述第三信道质量反馈信令,以及所述D2D用户设备与所述基站之间的信道质量确定与所述D2D用户设备进行配对的目标第三用户设备。
在一个可能的设计中,所述第一控制信令包括第一探测信号发送命令,以及所述基站分配给所述第一用户设备发送第一探测信号的时频资源,第一探测信号接收命令,以及所述基站分配给所述第二用户设备发送第二探测信号的时频资源,所述第一探测信号发送命令用于指示所述第一用户设备在所述基站分配给所述第一用户设备发送第一探测信号的时频资源发送第一探测信号,所述第一探测信号接收命令用于指示所述第一用户设备在所述第二用户设备发送第二探测信号的时频资源上检测所述第二用户设备发送的第二探测信号的信号质量。从而第一用户设备基于该第一控制信令可以探测第二用户设备发送的第二探测信号的信号质量。
在一个可能的设计中,所述第二控制信令包括第二探测信号发送命令,以及所述基站分配给所述第二用户设备发送第二探测信号的时频资源,第二探测信号接收命令,以及所述基站分配给所述第一用户设备发送第一探测信号的时频资源,所述第二探测信号发送命令用于指示所述第二用户设备在所述基站分配给所述第二用户设备发送第二探测信号的时频资源上发送第二探测信号,所述第二探测信号接收命令用于指示所述第二用户设备在第一用户设备发送第一探测信号的时频资源上检测所述第一用户设备发送的第一探测信号的信号质量。从而第二用户设备基于该第二控制信令可以探测第一用户设备发送的第一探测信号的信号质量。
在一个可能的设计中,所述第三控制信令包括第三探测信号接收命令,以及所述基站分配给所述第一用户设备以及所述第二用户设备的时频资源,所述第三探测信号接收命令用于指示所述目标第三用户设备在所述第一用户设备的时频资源上检测所述第一用户设备发送的第一探测信号的信号质量,以及在所述第二用户设备的时频资源上检测所述第二用户设备发送的第二探测信号的信号质量。从而第三用户设备基于该第三控制信令可以探测第一用户设备与所述第二用户设备发送探测信号的信号质量。
在一个可能的设计中,若所述通信模式包括普通复用模式以及协作复用模式,所述方法还包括:所述基站向所述第一用户设备发送第四控制信令以使所述第一用户设备基于所述第四控制信令进行通信,向所述第二用户设备发送第五控制信令以使所述第二用户设备基于所述第五控制信令进行通信,以及向所述目标第三用户设备发送第六控制信令以使所述目标第三用户设备基于所述第六控制信令进行通信,所述第四控制信令包括所述基站确定的D2D通信模式,所述基站分配给所述第一用户设备用于接收与转发数据的时频资源以及所述第一用户设备转发数据时的发送功率以及调制编码方式,所述第五控制信令包括所述基站确定的D2D通信模式,所述基站分配给所述第二用户设备用于发送数据时的时频资源以及所述第二用户设备的发送功率以及调制编码方式,所述第六控制信令包括所述基站分配给所述目标第三用户设备用于发送数据的时频资源,以及所述目标第三用户设备的发送功率和调制编码方式。从而使得各用户设备可以基于基站所发送的控制信令进行通信。
第二方面,本发明实施例提供了一种设备到设备D2D通信方法,在第二用户设备向第 一用户设备发送数据时,该方法包括:第一用户设备接收基站发送的第一控制信令,所述第一控制信令用于指示所述第一用户设备探测所述第二用户设备与所述第一用户设备之间的信道质量,所述第一用户设备与所述第二用户设备为D2D用户设备;所述第一用户设备基于所述第一控制信令接收所述第二用户设备发送的第二探测信号,以使所述第一用户设备基于所述第二探测信号探测并获取所述第二用户设备与所述第一用户设备之间的信道质量;向所述基站发送第一信道质量反馈信令,所述第一信道质量反馈信令用于指示所述第二用户设备与所述第一用户设备之间的信道质量。
在一个可能的设计中,若所述通信模式包括专属模式,普通复用模式和协作复用模式,所述方法还包括:所述第一用户设备接收所述基站发送的第四控制信令,所述第四控制信令包括所述基站确定的D2D通信模式,所述基站分配给所述第一用户设备用于接收与转发数据的时频资源以及所述第一用户设备转发数据时的发送功率以及调制编码方式;所述第一用户设备基于所述第四控制信令进行通信。从而使得第一用户设备可以基于第四控制信令进行通信。
第三方面,本发明实施例提供了一种设备到设备D2D通信方法,在第二用户设备向第一用户设备发送数据时,该方法包括:第二用户设备接收所述基站发送的第二控制信令,所述第二控制信令用于指示所述第二用户设备探测所述第一用户设备与所述第二用户设备之间的信道质量,所述第一用户设备与所述第二用户设备为D2D用户设备;所述第二用户设备基于所述第二控制信令接收所述第一用户设备发送第一探测信号,以使所述第二用户设备基于所述第一探测信号探测并获取所述第一用户设备与所述第二用户设备之间的信道质量;向所述基站发送第二信道质量反馈信令,所述第二信道质量反馈信令用于指示所述第一用户设备与所述第二用户设备之间的信道质量。
在一个可能的设计中,若所述通信模式包括专属模式、普通复用模式以及协作复用模式,所述方法还包括:所述第二用户设备接收所述基站发送的第五控制信令,所述第五控制信令包括所述基站确定的D2D通信模式,所述基站分配给所述第二用户设备用于发送数据时的时频资源以及所述第二用户设备的发送功率以及调制编码方式;所述第二用户设备基于所述第五控制信令进行通信。从而使得第二用户设备可以基于第五控制信令进行通信。
第四方面,本发明实施例提供了一种设备到设备D2D通信方法,该方法包括:第三用户设备接收基站发送的第三控制信令,所述第三用户设备为小区用户设备,所述第三控制信令用于指示所述第三用户设备探测所述D2D用户设备与所述第三用户设备之间的信道质量;所述第三用户设备基于所述第三控制信令接收所述第一用户设备发送的第一探测信号以及所述第二用户设备发送的第二探测信号,以使所述第三用户设备基于所述第一探测信号与所述第二探测信号探测并获取所述D2D用户设备与所述第三用户设备之间的信道质量;向所述基站发送第三信道质量反馈信令,所述第三信道质量反馈信令用于指示所述D2D设备与所述第三用户设备之间的信道质量。
在一个可能的设计中,若所述通信模式包括普通复用模式和协作复用模式,所述方法还包括:所述第三用户设备接收所述基站发送的第六控制信令,所述第六控制信令包括所述基站分配给所述第三用户设备用于发送数据的时频资源,以及所述第三用户设备的发送功率和调制编码方式;所述第三用户设备基于所述第六控制信令进行通信。从而使得第三 用户设备可以基于第六控制信令进行通信。
第五方面,本发明实施例提供一种基站,该基站具有实现上述第一方面的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
第六方面,本发明实施例提供一种第一用户设备,该第一用户设备具有实现上述第一方面的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
第七方面,本发明实施例提供一种第二用户设备,该第二用户设备具有实现上述第一方面的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
第八方面,本发明实施例提供一种第三用户设备,该第三用户设备具有实现上述第一方面的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
第九方面,本发明实施例提供一种计算机存储介质,用于储存为上述用于第五方面所述的基站所用的计算机软件指令,其包含用于执行上述方面所设计的程序。
第十方面,本发明实施例提供一种计算机存储介质,用于储存为上述用于第六方面所述的第一用户设备所用的计算机软件指令,其包含用于执行上述方面所设计的程序。
第十一方面,本发明实施例提供一种计算机存储介质,用于储存为上述用于第七方面所述的第二用户设备所用的计算机软件指令,其包含用于执行上述方面所设计的程序。
第十二方面,本发明实施例提供一种计算机存储介质,用于储存为上述用于第八方面所述的第三用户设备所用的计算机软件指令,其包含用于执行上述方面所设计的程序。
相较于现有技术,本发明实施例提供的方案中,基站向D2D用户设备以及第三用户设备发送控制信令,然后第一用户设备向基站反馈该第一用户设备与第二用户设备之间的信道质量,第二用户设备向基站反馈该第三用户设备与第一用户设备之间的信道质量,第三用户设备向基站反馈该第三用户设备与基站以及D2D用户设备之间的信道质量,然后基站再基于各用户设备反馈的信道质量确定D2D通信模式,该D2D通信模式包括专属模式、普通复用模式以及协作复用模式。从而可以使得当D2D通信链路与第三用户设备之间相距较近时,可以选择使用协作复用模式进行D2D通信,提高时频资源利用率。
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍。
图1-a是本发明实施例提供的一种设备到设备D2D通信系统100的架构示意图;
图1-b是本发明实施例提供的一种设备到设备D2D通信模型示意图;
图2是本发明实施例提供的一种设备到设备D2D通信方法的流程示意图;
图3是本发明实施例提供的一种D2D协作通信模式工作示意图;
图4是本发明实施例提供的另一种D2D协作通信模式工作示意图;
图5是本发明实施例提供的一种基站的结构示意图;
图6是发明实施例提供的另一种基站的结构示意图;
图7是本发明实施例提供的一种第一用户设备的结构示意图;
图8是本发明实施例提供的另一种第一用户设备的结构示意图;
图9是本发明实施例提供的一种第二用户设备的结构示意图;
图10是本发明实施例提供的另一种第二用户设备的结构示意图;
图11是本发明实施例提供的一种第三用户设备的结构示意图;
图12是本发明实施例提供的另一种第三用户设备的结构示意图。
为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。
参见图1-a,图1-a是本发明实施例提供的一种设备到设备D2D通信系统100的架构示意图。如图1-a所示,该D2D通信系统100用于第四代移动通信技术(the 4th Generation mobile communication technology,4G)或第五代移动通信技术(the 5th Generation mobile communication technology,5G)蜂窝网络系统中,该D2D通信系统100包括基站110、用于进行设备到设备间D2D通信的第一用户设备120和第二用户设备130,以及N个小区上行用户设备,也即第三用户设备140。其中,该第一用户设备可以为手机、可穿戴设备、平板电脑等可以进行无线通信的设备,该第二用户设备也可以为手机、可穿戴设备、平板电脑等可以进行无线通信的设备,该第三用户设备也可以为手机、可穿戴设备、平板电脑等可以进行无线通信的设备。在该D2D通信系统100中,基站可以根据该D2D用户设备与第三用户设备的距离选择不同的通信模式,实现最佳D2D通信模式,具体可参见图1-b,图1-b是本发明实施例提供的一种设备到设备D2D通信模型示意图。
在本发明实施例中,上述D2D通信系统在工作时,可以仅由第二用户设备向第一用户设备发送数据,也可以在第二用户设备向第一用户设备发送数据的同时,由第一用户设备向第二用户设备发送数据。
下面对本发明实施例进行详细说明。首先参见图2,图2是本发明实施例提供的一种设备到设备D2D通信方法的流程示意图,如图2所示,该方法可以包括以下步骤:
S201、在第二用户设备向第一用户设备发送数据时,基站向第一用户设备发送第一控制信令,向第二用户设备发送第二控制信令以及向N个第三用户设备分别发送N个第三控制信令。从而此时第一用户设备接收到基站发送的第一控制信令,第二用户设备接收到基站发送的第二控制信令,第三用户设备接收到基站发送的第三控制信令。
其中,N为正整数。
其中,所述第一用户设备与所述第二用户设备为D2D用户设备,所述第三用户设备为小区用户设备,所述第一控制信令用于指示所述第一用户设备探测所述第二用户设备与所述第一用户设备之间的信道质量,所述第二控制信令用于指示所述第二用户设备探测所述第一用户设备与所述第二用户设备之间的信道质量,所述第三控制信令用于指示所述第三用户设备探测所述D2D用户设备与所述第三用户设备之间的信道质量。
可选地,在本发明的一个实施例中,当基站检测到小区中存在第一用户设备与第二用户设备之间存在第二用户设备发送数据给第一用户设备的D2D通信需求时,基站向第一用户设备发送第一控制信令,向第二用户设备发送第二控制信令以及向小区中存在的N个第三用户设备分别发送第三控制信令。
可选地,在本发明的一个实施例中,所述第一控制信令包括第一探测信号发送命令,以及所述基站分配给所述第一用户设备发送第一探测信号的时频资源,第一探测信号接收命令,以及所述基站分配给所述第二用户设备发送第二探测信号的时频资源,所述第一探测信号发送命令用于指示所述第一用户设备在所述基站分配给所述第一用户设备发送第一探测信号的时频资源发送第一探测信号,所述第一探测信号接收命令用于指示所述第一用户设备在所述第二用户设备发送第二探测信号的时频资源上检测所述第二用户设备发送的第二探测信号的信号质量。从而第一用户设备基于该第一控制信令可以探测第二用户设备发送的第二探测信号的信号质量。
可选地,在本发明的一个实施例中,所述第二控制信令包括第二探测信号发送命令,以及所述基站分配给所述第二用户设备发送第二探测信号的时频资源,第二探测信号接收命令以及所述基站分配给所述第一用户设备发送第一探测信号的时频资源,所述第二探测信号发送命令用于指示所述第二用户设备在所述基站分配给所述第二用户设备发送第二探测信号的时频资源上发送第二探测信号,所述第二探测信号接收命令用于指示所述第二用户设备在第一用户设备发送第一探测信号的时频资源上检测所述第一用户设备发送的第一探测信号的信号质量。从而第二用户设备基于该第二控制信令可以探测第一用户设备发送的第一探测信号的信号质量。
可选地,在本发明的一个实施例中,所述第三控制信令包括第三探测信号接收命令,以及所述基站分配给所述第一用户设备以及所述第二用户设备的时频资源,所述第三探测信号接收命令用于指示所述第三用户设备在所述第一用户设备的时频资源上检测所述第一用户设备发送的第一探测信号的信号质量,以及在所述第二用户设备的时频资源上检测所述第二用户设备发送第二探测信号的信号质量。从而第三用户设备基于该第三控制信令可以探测第一用户设备与所述第二用户设备发送探测信号的信号质量。
S202、第一用户设备基于所述第一控制信令接收所述第二用户设备发送的第一探测信号;第二用户设备基于所述第二控制信令接收第一用户设备发送的第二探测信号,第三用户设备基于所述第三控制信令接收所述第一用户设备发送的第一探测信号以及所述第二用户设备发送的第二探测信号。
在本发明实施例中,当第一用户设备接收第二探测信号后,第一用户设备将获取到第二用户设备与第一用户设备之间的信道质量,然后将该信道质量通过第一信道质量反馈信令发送给基站。
在本发明实施例中,当第二用户设备接收第一探测信号后,第二用户设备将获取到第一用户设备与第二用户设备之间的信道质量,然后将该信道质量通过第二信道质量反馈信令发送给基站。
在本发明实施例中,当第三用户设备接收到第一探测信号以及第二探测信号后,第三用户设备将获取到D2D用户设备与第三用户设备之间的信道质量,然后将该信道质量通过 第三信道质量反馈信令发送给基站。
S203、第一用户设备向基站发送第一信道质量反馈信令;第二用户设备向基站发送第二信道质量反馈信令;第三用户设备向基站发送第三信道质量反馈信令。从而此时基站接收第一用户设备反馈的第一信道质量反馈信令;基站接收第二用户设备反馈的第二信道质量反馈信令;以及基站接收第三用户设备反馈的第三信道质量反馈信令。
其中,所述第一信道质量反馈信令用于指示所述第二用户设备与所述第一用户设备之间的信道质量,所述第二信道质量反馈信令用于指示所述第一用户设备与所述第二用户设备之间的信道质量,所述第三信道质量反馈信令用于指示所述D2D用户设备与所述第三用户设备之间的信道质量。
S204、基站检测D2D用户设备与基站之间的信道质量。
具体地,在本发明的一个实施例中,基站可通过接收D2D用户设备发送的探测信号,以利用该探测信号检测D2D用户设备与基站之间的信道质量。
S205、基站基于所述第一信道质量反馈信令、所述第二信道质量反馈信令、所述第三信道质量反馈信令以及D2D用户设备与基站之间的信道质量确定D2D通信模式。
其中,该D2D通信模式包括专属模式、普通复用模式以及协作复用模式。
其中,专属模式是指当D2D用户设备与第三用户设备之间的距离相隔较近时,但D2D用户设备之间的信号并不是很好时、或者D2D用户离基站较远时,为了避免D2D通信链路与第三用户设备之间的干扰而使得D2D通信链路与第三用户设备的通信链路采用正交时频资源分配的方式,以避免干扰,但此时也降低了时频资源使用效率;
普通复用模式是指当D2D通信链路与第三用户设备之间相隔较远时,彼此之间无通信干扰,所以可以复用相同的时频资源进行通信,也即对应于现有技术中两种D2D通信模式中的复用模式;
协作复用模式是指当D2D通信链路与第三用户设备之间相隔较近,并且D2D用户设备之间相距较近,以及D2D用户离基站较近,从而D2D用户设备之间的信号质量较好时,为了提高时频资源使用效率,在第一个时隙,当第二用户设备向第一用户设备发送数据的同时,第三用户设备向第一用户发送数据,此时控制第二用户设备的发送功率大于第三用户设备的发送功率,在第二个时隙,如果第一用户无数据发送给第二用户,第一用户转发第三用户的数据给基站,如果第一用户也有数据发送给第二用户,则第一用户将发送给基站的数据和第二用户的数据通过叠加后发送,控制功率使得叠加时发送给基站的数据功率比发送给第二用户数据的功率大。在第一时隙,第一用户解码时,先将第三用户设备向第一用户发送的数据作为噪声,解码第二用户设备向第一用户设备发送的数据,然后通过SIC消除第二用户发送的数据,解开第三用户发送的数据。在第二时隙,如果第一用户无数据发送给第二用户,则基站直接解码第一用户转发的第三用户的数据,如果第一用户有数据发送给第二用户,基站在解码时将发送给第二用户的数据作为噪声解码,第二用户先将发送给自己的数据作为噪声解开第一用户转发的第三用户的数据,然后将该数据消除后解开第一用户发送给第二用户的数据。通过上述方案,可以使得多个数据同时发送,从而提高了资源的利用率。
可选地,在本发明的一个实施例中,当基站确定的通信模式为专属通信模式时,此时 可直接向第一用户设备发送第四控制信令,向第二用户设备发送第五控制信令并使第一用户设备与第二用户设备进行D2D通信。
可选地,在本发明的另一个实施例中,当基站确定的通信模式为普通复用模式或协作通信模式时,由于在这两种模式下,需要使D2D用户设备与其它上行用户设备共用时频资源,所以需要在小区内的N个第三用户设备中确定出来与D2D用户设备配对的目标第三用户设备,此时基站需要进一步确定与所述D2D用户设备进行配对的目标第三用户设备。
在本发明实施例中,由于不用的D2D通信模式是基于D2D通信链路与第三用户设备之间的信号干扰强弱进行确定的,所以基站可基于第一信道质量反馈信令、所述第二信道质量反馈信令以及所述第三信道质量反馈信令以及D2D用户与基站之间的信道质量确定基站所选择的D2D通信模式。
S206、若所述D2D通信模式包括复用模式或协作复用模式,所述基站基于第一信道质量反馈信令,第二信道质量反馈信令,所述第三信道质量反馈信令,以及所述D2D用户设备与所述基站之间的信道质量确定与所述D2D用户设备进行配对的目标第三用户设备。
可选地,在本发明的一个实施例中,若该D2D通信模式在半双工下工作,则基站基于第一信道质量反馈信令,第二信道质量反馈信令,所述第三信道质量反馈信令,以及所述D2D用户设备与所述基站之间的信道质量确定与所述D2D用户设备进行配对的一个目标第三用户设备。
可选地,在本发明的另一个实施例中,若该D2D通信模式在全双工下工作,则基站基于第一信道质量反馈信令,第二信道质量反馈信令,所述第三信道质量反馈信令,以及所述D2D用户设备与所述基站之间的信道质量确定与所述D2D用户设备进行配对的两个目标第三用户设备。
可以理解,由于需要选择出来的目标第三用户设备与D2D用户设备使用共同的时频资源,所以需要使该目标第三用户设备与该D2D用户设备之间的信道质量好,故基于第三信道质量反馈信令,以所述D2D用户设备与所述基站之间的信道质量确定与所述D2D用户设备进行配对的目标第三用户设备。
S207、当所述D2D通信模式为协作复用模式时,基站向所述第一用户设备发送第四控制信令;基站向所述第二用户设备发送第五控制信令;基站向所述目标第三用户设备发送第六控制信令。从而第一用户设备接收到基站发送的第四控制信令;第二用户设备接收到基站发送的第五控制信令;第三用户设备接收到基站发送的第六控制信令。
可选地,在本发明的另一个实施例中,若基站确定的D2D通信模式为专属模式,由于在专属模式下,D2D用户设备与上行用户设备之间的时频资源互不干扰,所以此时基站仅需要向第三用户设备发送第四控制信令,以及向第四用户设备发送第五控制信令,然后第三用户设备与第四用户设备则可以基于该第四控制信令与第五控制信令进行D2D通信。
可选地,在本发明的另一个实施例中,若基站确定的D2D通信模式为普通复用模式或协作复用模式,由于在普通复用模式或协作复用模式下,D2D用户设备与上行用户设备之间共用相同的时频资源,所以基站需要同时向第一用户设备发送第四控制信令,向第二用户设备发送第五控制信令以及向第三用户设备发送第六控制信令。
具体地,在本发明的一个实施例中,在仅由第二用户设备向第一用户设备发送数据的 情况下,当D2D通信模式为专属模式或普通复用模式时,该第四控制信令包括所选的D2D通信模式、基站分配给所述第一用户设备接收数据的时频资源。
可选地,在本发明的另一个实施例中,在第二用户设备向第一用户设备发送数据的同时,第一用户设备也向第二用户设备发送数据的情况下,当D2D通信模式为专属模式或普通复用模式时,该第四控制信令除了包括还包括所选的D2D通信模式、基站分配给所述第一用户设备接收数据的时频资源以外,还包括分配给第一用户设备用于发送数据的时频资源,以及第一用户设备的发送功率和调制编码方式。
具体地,在本发明的一个实施例中,在仅由第二用户设备向第一用户设备发送数据的情况下,当D2D通信模式为协作通信模式时,该第四控制信令包括所选的D2D通信模式,所述基站分配给所述第一用户设备用于接收与转发数据的时频资源以及所述第一用户设备转发数据时的发送功率以及调制编码方式。从而使得第一用户设备在接收到该第四控制信令后,可以基于该第四控制信令进行通信。
可选地,在本发明的另一个实施例中,在第二用户设备向第一用户设备发送数据的同时,第一用户设备也向第二用户设备发送数据的情况下,当D2D通信模式为协作通信模式时,该第四控制信令除了包括所选的D2D通信模式,所述基站分配给所述第一用户设备用于接收与转发数据的时频资源以及所述第一用户设备转发数据时的发送功率以及调制编码方式,还包括所述第一用户设备发送给所述第二用户设备的发送功率和调制编码方式,以及所述第一用户设备转发所述第三用户设备的数据与发送给第二用户设备的数据所使用的数据叠加方式。由于第四控制信令中包括所述第一用户设备转发所述第三用户设备的数据与发送给第二用户设备的数据所使用的数据叠加方式,从而使得第一用户设备可以在接收到该第四控制信令后,使用协作复用通信模式进行通信。
具体地,在本发明的一个实施例中,在第二用户设备向第一用户设备发送数据的情况下,不管在哪个D2D通信模式下,所述第五控制信令包括所述基站确定的D2D通信模式,所述基站分配给所述第二用户设备用于发送数据时的时频资源以及所述第二用户设备的发送功率以及调制编码方式。
可选地,在本发明的另一个实施例中,在第二用户设备向第一用户设备发送数据的同时,第一用户设备也向第二用户设备发送数据的情况下,该第五控制信令除了包括所述基站确定的D2D通信模式,所述基站分配给所述第二用户设备用于发送数据时的时频资源以及所述第二用户设备的发送功率以及调制编码方式之外,还包括基站分配给所述第二用户用于接收所述数据的时频资源。
具体地,在本发明的一个实施例中,所述第六控制信令包括所述基站分配给所述第三用户设备用于发送数据的时频资源,以及所述第三用户设备的发送功率和调制编码方式。
S208、第一用户设备基于该第四控制信令进行通信;第二用户设备基于该第五控制信令进行通信;第三用户设备基于该第六控制信令进行通信。
在本发明实施例中,在基站通过第四控制信令、第五控制信令以及第六控制信令分配下来通信模式、发送功率、时频资源以及调制编码方式后,第一用户设备、第二用户设备以及第三用户设备即可基于上述信息进行通信。
具体地,在本发明的一个实施例中,当在半双工下,该协作复用通信模式的通信过程 将分为两个时隙完成。可参见图3,图3是本发明实施例提供的一种D2D协作通信模式工作示意图,其中,在图3中,Da和Db分别表示进行D2D通信的第一用户设备与第二用户设备,U1表示和D2D用户设备配对的第三用户设备,BS表示基站。在第一时隙时,第三用户设备U1发送数据给邻近的第一用户设备Da,同时第二用户设备Db也发送数据给第一用户设备Da;基站控制第二用户设备Db与第三用户设备U1发送数据的功率使得第二用户设备Db的信号功率大于第三用户设备U1的信号功率。然后第一用户设备Da接收到第二用户设备Db与第三用户设备U1发送的数据后,第一用户设备Da先把第三用户设备U1的数据看作噪声解码第三用户设备Db的数据,然后使用串行干扰消除(Successive Interference Cancellation,SIC)技术解码第三用户设备U1的数据;在第时隙2:第一用户设备Da使用不同的功率分别同时发送第三用户设备U1的数据给基站BS和自己的数据给第二用户设备Db,其中第三用户设备U1的数据分配较高的功率,发送给第二用户设备Db的数据使用较低的功率。然后基站BS在接收到数据后,基站BS将发送给第二用户设备Db的信号当作噪声直接解码第三用户设备U1的数据,第二用户设备Db先解码第三用户设备U1的数据,然后使用SIC技术解码第三用户设备Da发送给第二用户设备Db自己的数据。可选地,如果第二用户设备Db没有数据发送给第一用户设备Da,此时第一用户设备Da直接转发第三用户设备U1的数据给基站BS。从而实现了在半双工下,D2D用户设备与上行用户设备之间使用同一时频资源的协作通信。
具体地,在本发明的另一个实施例中,在全双工下,该协作复用通信模式的通信过程将分为三个时隙完成。可参见图4,图4是本发明实施例提供的另一种D2D协作通信模式工作示意图,在图3中,Da和Db分别表示进行D2D通信的第一用户设备与第二用户设备,U1和U2表示和D2D用户设备配对的两个第三用户设备,BS表示基站。在第一时隙时,第三用户设备U1发送数据给邻近的第二用户设备Da,同时第一用户设备Da和第二用户设备Db之间相互发送数据;然后第二用户设备Db把第三用户设备U1的数据看作噪声解码第一用户设备Da的数据,第一用户设备Da先解码信号较强的第二用户设备Db的数据,然后使用SIC解码第三用户设备U1的数据。在第二时隙时,第三用户设备U2发送数据给邻近的第二用户设备Db,同时第一用户设备Da和第二用户设备Db相互发送数据;第一用户设备Da把第三用户设备U2的数据看作噪声解码第二用户设备Db的数据,第二用户设备Db先解码信号较强的第一用户设备Da的数据,然后使用SIC解码第三用户设备U2的数据。在第三时隙时,当是由第二用户设备Db发数据给第一用户设备Da时,此时第一用户设备Da使用较大的功率发送第三用户设备U1的数据,较小的功率发送自己的数据;基站BS把D2D用户设备的数据看作噪声解码第三用户设备U1和第三用户设备U2的数据,第一用户设备Da先解码第三用户设备U2的数据,然后使用SIC解码第二用户设备Db的数据;当是由第一用户设备Da发数据给第二用户设备Db时,此时第二用户设备Db使用较大的功率发送第三用户设备U2的数据,较小的功率发送自己的数据;基站BS把D2D用户设备的数据看作噪声解码第三用户设备U1和第三用户设备U2的数据,第二用户设备Db先解码第三用户设备U1的数据,然后使用SIC解码第一用户设备Da的数据。从而实现了在全双工下,D2D用户设备与上行用户设备之间使用同一时频资源的协作通信。
可以看出,本发明实施例的方案中,基站向D2D用户设备以及第三用户设备发送控制 信令,然后第一用户设备向基站反馈该第一用户设备与第二用户设备之间的信道质量,第二用户设备向基站反馈该第三用户设备与第一用户设备之间的信道质量,第三用户设备向基站反馈该第三用户设备与基站以及D2D用户设备之间的信道质量,然后基站再基于各用户设备反馈的信道质量确定D2D通信模式,该D2D通信模式包括专属模式、普通复用模式以及协作复用模式。从而可以使得当D2D通信链路与第三用户设备之间相距较近时,可以选择使用协作复用模式进行D2D通信,提高时频资源利用率。
参见图5,图5为本发明实施例提供的一种基站的结构示意图,如图5所示,该基站500包括:
发送模块510,用于向所述第一用户设备发送第一控制信令,向所述第二用户设备发送第二控制信令以及向N个第三用户设备分别发送N个第三控制信令,所述第一用户设备与所述第二用户设备为D2D用户设备,所述第三用户设备为小区用户设备,所述第一控制信令用于指示所述第一用户设备探测所述第二用户设备与所述第一用户设备之间的信道质量,所述第二控制信令用于指示所述第二用户设备探测所述第一用户设备与所述第二用户设备之间的信道质量,所述第三控制信令用于指示所述第三用户设备探测所述D2D用户设备与所述第三用户设备之间的信道质量,所述N为正整数;
接收模块520,用于接收所述第一用户设备反馈的第一信道质量反馈信令,接收所述第二用户设备反馈的第二信道质量反馈信令以及接收所述N个第三用户设备反馈的N个第三信道质量反馈信令,所述第一信道质量反馈信令用于指示所述第二用户设备与所述第一用户设备之间的信道质量,所述第二信道质量反馈信令用于指示所述第一用户设备与所述第二用户设备之间的信道质量,所述第三信道质量反馈信令用于指示所述D2D用户设备与所述第三用户设备之间的信道质量;
检测模块530,用于检测所述D2D用户设备与所述基站之间的信道质量;
确定模块540,用于基于所述第一信道质量反馈信令、所述第二信道质量反馈信令、所述第三信道质量反馈信令以及所述D2D用户设备与所述基站之间的信道质量确定D2D通信模式,所述D2D通信模式包括专属模式、普通复用模式以及协作复用模式;
所述确定模块540还用于若所述D2D通信模式包括普通复用模式以及协作复用模式,基于所述第一信道质量反馈信令,所述第二信道质量反馈信令,所述第三信道质量反馈信令,以及所述D2D用户设备与所述基站之间的信道质量确定与所述D2D用户设备进行配对的目标第三用户设备。
可选地,在本发明的一些实施例中,所述第一控制信令包括第一探测信号发送命令,以及所述基站分配给所述第一用户设备发送第一探测信号的时频资源,第一探测信号接收命令,以及所述基站分配给所述第二用户设备发送第二探测信号的时频资源,所述第一探测信号发送命令用于指示所述第一用户设备在所述基站分配给所述第一用户设备发送第一探测信号的时频资源发送第一探测信号,所述第一探测信号接收命令用于指示所述第一用户设备在所述第二用户设备发送第二探测信号的时频资源上检测所述第二用户设备发送的第二探测信号的信号质量。
可选地,在本发明的一些实施例中,所述第二控制信令包括第二探测信号发送命令, 以及所述基站分配给所述第二用户设备发送第二探测信号的时频资源,第二探测信号接收命令,以及所述基站分配给所述第一用户设备发送第一探测信号的时频资源,所述第二探测信号发送命令用于指示所述第二用户设备在所述基站分配给所述第二用户设备发送第二探测信号的时频资源上发送第二探测信号,所述第二探测信号接收命令用于指示所述第二用户设备在第一用户设备发送第一探测信号的时频资源上检测所述第一用户设备发送的第一探测信号的信号质量。
可选地,在本发明的一些实施例中,所述第三控制信令包括第三探测信号接收命令,以及所述基站分配给所述第一用户设备以及所述第二用户设备的时频资源,所述第三探测信号接收命令用于指示所述目标第三用户设备在所述第一用户设备的时频资源上检测所述第一用户设备发送的第一探测信号的信号质量,以及在所述第二用户设备的时频资源上检测所述第二用户设备发送的第二探测信号的信号质量。
可选地,在本发明的一些实施例中,若所述通信模式包括普通复用模式以及协作复用模式,所述发送模块510还用于向所述第一用户设备发送第四控制信令以使所述第一用户设备基于所述第四控制信令进行通信,向所述第二用户设备发送第五控制信令以使所述第二用户设备基于所述第五控制信令进行通信,以及向所述目标第三用户设备发送第六控制信令以使所述目标第三用户设备基于所述第六控制信令进行通信,所述第四控制信令包括所述基站确定的D2D通信模式,所述基站分配给所述第一用户设备用于接收与转发数据的时频资源以及所述第一用户设备转发数据时的发送功率以及调制编码方式,所述第五控制信令包括所述基站确定的D2D通信模式,所述基站分配给所述第二用户设备用于发送数据时的时频资源以及所述第二用户设备的发送功率以及调制编码方式,所述第六控制信令包括所述基站分配给所述目标第三用户设备用于发送数据的时频资源,以及所述目标第三用户设备的发送功率和调制编码方式。
可以看出,本发明实施例的方案中,基站500向D2D用户设备以及第三用户设备发送控制信令,然后第一用户设备向基站500反馈该第一用户设备与第二用户设备之间的信道质量,第二用户设备向基站500反馈该第三用户设备与第一用户设备之间的信道质量,第三用户设备向基站500反馈该第三用户设备与基站500以及D2D用户设备之间的信道质量,然后基站500再基于各用户设备反馈的信道质量确定D2D通信模式,该D2D通信模式包括专属模式、普通复用模式以及协作复用模式。从而可以使得当D2D通信链路与第三用户设备之间相距较近时,可以选择使用协作复用模式进行D2D通信,提高时频资源利用率。
在本实施例中,基站500是以单元的形式来呈现。这里的“单元”可以指特定应用集成电路(application-specific integrated circuit,ASIC),执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。
可以理解的是,本实施例的基站500的各功能单元的功能可根据上述方法实施例中的方法具体实现,其具体实现过程可以参照上述方法实施例的相关描述,此处不再赘述。
参见图6,图6为本发明实施例提供的另一种基站的结构示意图,如图6所示,该基站600包括:
发射器/接收器601和处理器602。其中,处理器602也可以为控制器,图6中表示为 “控制器/处理器602”。所述发射器/接收器601用于支持基站与上述实施例中的所述第一用户设备、第二用户设备以及第三用户设备之间收发信息,以及支持所述基站与其他基站之间进行无线电通信。所述处理器602执行各种用于与基站相关的功能。在上行链路,来自各用户设备的上行链路信号经由天线接收,由接收器601进行解调(例如将高频信号解调为基带信号),并进一步由处理器602进行处理来恢复用户设置所发送到业务数据和信令信息。在下行链路上,业务数据和信令消息由处理器602进行处理,并由发射器601进行调制(例如将基带信号调制为高频信号)来产生下行链路信号,并经由天线发射给用户设备。需要说明的是,上述解调或调制的功能也可以由处理器602完成。例如,处理器602还用于执行上述方法实施例中的相应步骤,和/或本发明实施例所描述的技术方案的其他过程。
进一步的,基站600还可以包括存储器603,存储器603用于存储基站600的程序代码和数据。此外,基站600还可以包括通信单元604。通信单元604用于支持基站与其他网络实体(例如各用户设备等)进行通信。例如,在LTE系统中,该通信单元604可以是S1-U接口,用于支持基站与服务网关(Serving Gateway,SGW)进行通信;或者,该通信单元604也可以是S1-MME接口,用于支持基站与移动性管理实体(Mobility Management Entity,MME)进行通信。
可以理解的是,图6仅仅示出了基站600的简化设计。在实际应用中,基站600可以包含任意数量的发射器,接收器,处理器,控制器,存储器,通信单元等,而所有可以实现本发明实施例的基站都在本发明实施例的保护范围之内。
参见图7,图7为本发明实施例提供的一种第一用户设备的结构示意图,如图7所示,该第一用户设备700包括:
接收模块710,用于接收基站发送的第一控制信令,所述第一控制信令用于指示所述第一用户设备探测所述第二用户设备与所述第一用户设备之间的信道质量,所述第一用户设备与所述第二用户设备为D2D用户设备;
所述接收模块710还用于基于所述第一控制信令接收所述第二用户设备发送的第二探测信号,以使所述第一用户设备基于所述第二探测信号探测并获取所述第二用户设备与所述第一用户设备之间的信道质量;
发送模块720,用于向所述基站发送第一信道质量反馈信令,所述第一信道质量反馈信令用于指示所述第二用户设备与所述第一用户设备之间的信道质量。
可选地,在本发明的一些实施例中,若所述通信模式包括专属模式,普通复用模式和协作复用模式,所述接收模块还用于接收所述基站发送的第四控制信令,所述第四控制信令包括所述基站确定的D2D通信模式,所述基站分配给所述第一用户设备用于接收与转发数据的时频资源以及所述第一用户设备转发数据时的发送功率以及调制编码方式;
所述第一用户设备还包括通信模块,用于基于所述第四控制信令进行通信。
可以看出,本发明实施例的方案中,基站向D2D用户设备以及第三用户设备发送控制信令,然后第一用户设备700向基站反馈该第一用户设备700与第二用户设备之间的信道质量,第二用户设备向基站反馈该第三用户设备与第一用户设备700之间的信道质量,第 三用户设备向基站反馈该第三用户设备与基站以及D2D用户设备之间的信道质量,然后基站再基于各用户设备反馈的信道质量确定D2D通信模式,该D2D通信模式包括专属模式、普通复用模式以及协作复用模式。从而可以使得当D2D通信链路与第三用户设备之间相距较近时,可以选择使用协作复用模式进行D2D通信,提高时频资源利用率。
在本实施例中,第一用户设备700是以单元的形式来呈现。这里的“单元”可以指特定应用集成电路(application-specific integrated circuit,ASIC),执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。
可以理解的是,本实施例的第一用户设备700的各功能单元的功能可根据上述方法实施例中的方法具体实现,其具体实现过程可以参照上述方法实施例的相关描述,此处不再赘述。
参见图8,图8为本发明实施例提供的另一种第一用户设备的结构示意图,如图8所示,该第一用户设备800包括:
发射器801,接收器802和处理器803。其中,处理器803也可以为控制器,图8中表示为“控制器/处理器803”。可选的,所述第一用户设备800还可以包括调制解调处理器805,其中,调制解调处理器805可以包括编码器806、调制器807、解码器808和解调器805。
在一个示例中,发射器801调节(例如,模拟转换、滤波、放大和上变频等)该输出采样并生成上行链路信号,该上行链路信号经由天线发射给上述实施例中所述的基站。在下行链路上,天线接收上述实施例中基站发射的下行链路信号。接收器802调节(例如,滤波、放大、下变频以及数字化等)从天线接收的信号并提供输入采样。在调制解调处理器805中,编码器806接收要在上行链路上发送的业务数据和信令消息,并对业务数据和信令消息进行处理(例如,格式化、编码和交织)。调制器807进一步处理(例如,符号映射和调制)编码后的业务数据和信令消息并提供输出采样。解调器809处理(例如,解调)该输入采样并提供符号估计。解码器808处理(例如,解交织和解码)该符号估计并提供发送给第一用户设备800的已解码的数据和信令消息。编码器806、调制器807、解调器809和解码器808可以由合成的调制解调处理器805来实现。这些单元根据无线接入网采用的无线接入技术(例如,LTE及其他演进系统的接入技术)来进行处理。需要说明的是,当第一用户设备800不包括调制解调处理器805时,调制解调处理器805的上述功能也可以由处理器803完成。
处理器803对第一用户设备800的动作进行控制管理,用于执行上述本发明实施例中由第一用户设备800进行的处理过程。例如,处理器803还用于执行上述方法实施例中相应的步骤,和/或本申请所描述的技术方案的其他过程。
进一步的,第一用户设备800还可以包括存储器804,存储器804用于存储用于第一用户设备800的程序代码和数据。
参见图9,图9为本发明实施例提供的一种第二用户设备的结构示意图,如图9所示,该第二用户设备900包括:
接收模块910,用于接收所述基站发送的第二控制信令,所述第二控制信令用于指示 所述第二用户设备探测所述第一用户设备与所述第二用户设备之间的信道质量,所述第一用户设备与所述第二用户设备为D2D用户设备;
所述接收模块910还用于基于所述第二控制信令接收所述第一用户设备发送第一探测信号,以使所述第二用户设备基于所述第一探测信号探测并获取所述第一用户设备与所述第二用户设备之间的信道质量;
发送模块920,用于向所述基站发送第二信道质量反馈信令,所述第二信道质量反馈信令用于指示所述第一用户设备与所述第二用户设备之间的信道质量。
可选地,在本发明的一个实施例中,若所述通信模式包括专属模式、普通复用模式以及协作复用模式,所述接收模块910还用于接收所述基站发送的第五控制信令,所述第五控制信令包括所述基站确定的D2D通信模式,所述基站分配给所述第二用户设备用于发送数据时的时频资源以及所述第二用户设备的发送功率以及调制编码方式;
所述第二用户设备还包括通信模块930,用于基于所述第五控制信令进行通信。
可以看出,本发明实施例的方案中,基站向D2D用户设备以及第三用户设备发送控制信令,然后第一用户设备向基站反馈该第一用户设备与第二用户设备900之间的信道质量,第二用户设备900向基站反馈该第三用户设备与第一用户设备之间的信道质量,第三用户设备向基站反馈该第三用户设备与基站以及D2D用户设备之间的信道质量,然后基站再基于各用户设备反馈的信道质量确定D2D通信模式,该D2D通信模式包括专属模式、普通复用模式以及协作复用模式。从而可以使得当D2D通信链路与第三用户设备之间相距较近时,可以选择使用协作复用模式进行D2D通信,提高时频资源利用率。
在本实施例中,第二用户设备900是以单元的形式来呈现。这里的“单元”可以指特定应用集成电路(application-specific integrated circuit,ASIC),执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。
可以理解的是,本实施例的第二用户设备900的各功能单元的功能可根据上述方法实施例中的方法具体实现,其具体实现过程可以参照上述方法实施例的相关描述,此处不再赘述。
参见图10,图10为本发明实施例提供的另一种第二用户设备的结构示意图,如图10所示,该第二用户设备1000包括:
发射器1001,接收器1002和处理器1003。其中,处理器1003也可以为控制器,图10中表示为“控制器/处理器1003”。可选的,所述第二用户设备1000还可以包括调制解调处理器1005,其中,调制解调处理器1005可以包括编码器1006、调制器1007、解码器1008和解调器1005。
在一个示例中,发射器1001调节(例如,模拟转换、滤波、放大和上变频等)该输出采样并生成上行链路信号,该上行链路信号经由天线发射给上述实施例中所述的基站。在下行链路上,天线接收上述实施例中基站发射的下行链路信号。接收器1002调节(例如,滤波、放大、下变频以及数字化等)从天线接收的信号并提供输入采样。在调制解调处理器1005中,编码器1006接收要在上行链路上发送的业务数据和信令消息,并对业务数据和信令消息进行处理(例如,格式化、编码和交织)。调制器1007进一步处理(例如,符号映射和调制) 编码后的业务数据和信令消息并提供输出采样。解调器1009处理(例如,解调)该输入采样并提供符号估计。解码器1008处理(例如,解交织和解码)该符号估计并提供发送给第二用户设备1000的已解码的数据和信令消息。编码器1006、调制器1007、解调器1009和解码器1008可以由合成的调制解调处理器1005来实现。这些单元根据无线接入网采用的无线接入技术(例如,LTE及其他演进系统的接入技术)来进行处理。需要说明的是,当第二用户设备1000不包括调制解调处理器1005时,调制解调处理器1005的上述功能也可以由处理器1003完成。
处理器1003对第二用户设备1000的动作进行控制管理,用于执行上述本发明实施例中由第二用户设备1000进行的处理过程。例如,处理器1003还用于执行上述方法实施例中相应的步骤,和/或本申请所描述的技术方案的其他过程。
进一步的,第二用户设备1000还可以包括存储器1004,存储器1004用于存储用于第二用户设备1000的程序代码和数据。
参见图11,图11为本发明实施例提供的一种第三用户设备的结构示意图,如图11所示,该第三用户设备1100包括:
接收模块1110,用于接收基站发送的第三控制信令,所述第三用户设备为小区用户设备,所述第三控制信令用于指示所述第三用户设备探测所述D2D用户设备与所述第三用户设备之间的信道质量;
所述接收模块1110还用于基于所述第三控制信令接收所述第一用户设备发送的第一探测信号以及所述第二用户设备发送的第二探测信号,以使所述第三用户设备基于所述第一探测信号与所述第二探测信号探测并获取所述D2D用户设备与所述第三用户设备之间的信道质量;
发送模块1120,用于向所述基站发送第三信道质量反馈信令,所述第三信道质量反馈信令用于指示所述D2D设备与所述第三用户设备之间的信道质量。
可选地,在本发明的一些实施例中,若所述通信模式包括普通复用模式和协作复用模式,所述接收模块1110还用于接收所述基站发送的第六控制信令,所述第六控制信令包括所述基站分配给所述第三用户设备用于发送数据的时频资源,以及所述第三用户设备的发送功率和调制编码方式;
所述第三用户设备还包括通信模块1130,用于基于所述第六控制信令进行通信。
可以看出,本发明实施例的方案中,基站向D2D用户设备以及第三用户设备1100发送控制信令,然后第一用户设备向基站反馈该第一用户设备与第二用户设备之间的信道质量,第二用户设备向基站反馈该第三用户设备1100与第一用户设备之间的信道质量,第三用户设备1100向基站反馈该第三用户设备1100与基站以及D2D用户设备之间的信道质量,然后基站再基于各用户设备反馈的信道质量确定D2D通信模式,该D2D通信模式包括专属模式、普通复用模式以及协作复用模式。从而可以使得当D2D通信链路与第三用户设备1100之间相距较近时,可以选择使用协作复用模式进行D2D通信,提高时频资源利用率。
在本实施例中,第三用户设备1100是以单元的形式来呈现。这里的“单元”可以指特定应用集成电路(application-specific integrated circuit,ASIC),执行一个或多个软件或固件 程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。
可以理解的是,本实施例的第三用户设备1100的各功能单元的功能可根据上述方法实施例中的方法具体实现,其具体实现过程可以参照上述方法实施例的相关描述,此处不再赘述。
参见图12,图12为本发明实施例提供的另一种第三用户设备的结构示意图,如图12所示,该第三用户设备1200包括:
发射器1201,接收器1202和处理器1203。其中,处理器1203也可以为控制器,图12中表示为“控制器/处理器1203”。可选的,所述第三用户设备1200还可以包括调制解调处理器1205,其中,调制解调处理器1205可以包括编码器1206、调制器1207、解码器1208和解调器1205。
在一个示例中,发射器1201调节(例如,模拟转换、滤波、放大和上变频等)该输出采样并生成上行链路信号,该上行链路信号经由天线发射给上述实施例中所述的基站。在下行链路上,天线接收上述实施例中基站发射的下行链路信号。接收器1202调节(例如,滤波、放大、下变频以及数字化等)从天线接收的信号并提供输入采样。在调制解调处理器1205中,编码器1206接收要在上行链路上发送的业务数据和信令消息,并对业务数据和信令消息进行处理(例如,格式化、编码和交织)。调制器1207进一步处理(例如,符号映射和调制)编码后的业务数据和信令消息并提供输出采样。解调器1209处理(例如,解调)该输入采样并提供符号估计。解码器1208处理(例如,解交织和解码)该符号估计并提供发送给第三用户设备1200的已解码的数据和信令消息。编码器1206、调制器1207、解调器1209和解码器1208可以由合成的调制解调处理器1205来实现。这些单元根据无线接入网采用的无线接入技术(例如,LTE及其他演进系统的接入技术)来进行处理。需要说明的是,当第三用户设备1200不包括调制解调处理器1205时,调制解调处理器1205的上述功能也可以由处理器1203完成。
处理器1203对第三用户设备1200的动作进行控制管理,用于执行上述本发明实施例中由第三用户设备1200进行的处理过程。例如,处理器1203还用于执行上述方法实施例中相应的步骤,和/或本申请所描述的技术方案的其他过程。
进一步的,第三用户设备1200还可以包括存储器1204,存储器1204用于存储用于第三用户设备1200的程序代码和数据。
本发明实施例还提供一种计算机存储介质,其中,该计算机存储介质可存储有程序,该程序执行时可以实现包括上述方法实施例中记载的任何D2D通信方法的部分或全部步骤。前述的存储介质包括:U盘、只读存储器(英文:read-only memory)、随机存取存储器(英文:random access memory,RAM)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
需要说明的是,对于前述的各方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本发明并不受所描述的动作顺序的限制,因为依据本发明,某些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知 悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作和模块并不一定是本发明所必须的。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置,可通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
以上所述,以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。
Claims (27)
- 一种设备到设备D2D通信方法,其特征在于,所述方法包括:向第一用户设备发送第一控制信令,向第二用户设备发送第二控制信令以及向N个第三用户设备分别发送N个第三控制信令,所述第一用户设备与所述第二用户设备为D2D用户设备,所述第三用户设备为小区用户设备,所述第一控制信令用于指示所述第一用户设备探测所述第二用户设备与所述第一用户设备之间的信道质量,所述第二控制信令用于指示所述第二用户设备探测所述第一用户设备与所述第二用户设备之间的信道质量,所述第三控制信令用于指示所述第三用户设备探测所述D2D用户设备与所述第三用户设备之间的信道质量,所述N为正整数;接收所述第一用户设备反馈的第一信道质量反馈信令,接收所述第二用户设备反馈的第二信道质量反馈信令以及接收所述N个第三用户设备反馈的N个第三信道质量反馈信令,所述第一信道质量反馈信令用于指示所述第二用户设备与所述第一用户设备之间的信道质量,所述第二信道质量反馈信令用于指示所述第一用户设备与所述第二用户设备之间的信道质量,所述第三信道质量反馈信令用于指示所述D2D用户设备与所述第三用户设备之间的信道质量;检测所述D2D用户设备与基站之间的信道质量;基于所述第一信道质量反馈信令、所述第二信道质量反馈信令、所述第三信道质量反馈信令以及所述D2D用户设备与所述基站之间的信道质量确定D2D通信模式,所述D2D通信模式包括专属模式、普通复用模式以及协作复用模式;若所述D2D通信模式包括普通复用模式以及协作复用模式,基于所述第一信道质量反馈信令,所述第二信道质量反馈信令,所述第三信道质量反馈信令,以及所述D2D用户设备与所述基站之间的信道质量确定与所述D2D用户设备进行配对的目标第三用户设备。
- 根据权利要求1所述的方法,其特征在于,所述第一控制信令包括第一探测信号发送命令,以及分配给所述第一用户设备发送第一探测信号的时频资源,第一探测信号接收命令,以及分配给所述第二用户设备发送第二探测信号的时频资源,所述第一探测信号发送命令用于指示所述第一用户设备在所述分配给所述第一用户设备发送第一探测信号的时频资源发送第一探测信号,所述第一探测信号接收命令用于指示所述第一用户设备在所述第二用户设备发送第二探测信号的时频资源上检测所述第二用户设备发送的第二探测信号的信号质量。
- 根据权利要求1所述的方法,其特征在于,所述第二控制信令包括第二探测信号发送命令,以及分配给所述第二用户设备发送第二探测信号的时频资源,第二探测信号接收命令,以及分配给所述第一用户设备发送第一探测信号的时频资源,所述第二探测信号发送命令用于指示所述第二用户设备在所述分配给所述第二用户设备发送第二探测信号的时频资源上发送第二探测信号,所述第二探测信号接收命令用于指示所述第二用户设备在第一用户设备发送第一探测信号的时频资源上检测所述第一用户设备发送的第一探测信号的 信号质量。
- 根据权利要求1所述的方法,其特征在于,所述第三控制信令包括第三探测信号接收命令,以及分配给所述第一用户设备以及所述第二用户设备的时频资源,所述第三探测信号接收命令用于指示所述目标第三用户设备在所述第一用户设备的时频资源上检测所述第一用户设备发送的第一探测信号的信号质量,以及在所述第二用户设备的时频资源上检测所述第二用户设备发送的第二探测信号的信号质量。
- 根据权利要求1至4任一项所述的方法,其特征在于,若所述通信模式包括普通复用模式以及协作复用模式,所述方法还包括:向所述第一用户设备发送第四控制信令以使所述第一用户设备基于所述第四控制信令进行通信,向所述第二用户设备发送第五控制信令以使所述第二用户设备基于所述第五控制信令进行通信,以及向所述目标第三用户设备发送第六控制信令以使所述目标第三用户设备基于所述第六控制信令进行通信,所述第四控制信令包括确定的D2D通信模式,分配给所述第一用户设备用于接收与转发数据的时频资源以及所述第一用户设备转发数据时的发送功率以及调制编码方式,所述第五控制信令包括所述确定的D2D通信模式,分配给所述第二用户设备用于发送数据时的时频资源以及所述第二用户设备的发送功率以及调制编码方式,所述第六控制信令包括分配给所述目标第三用户设备用于发送数据的时频资源,以及所述目标第三用户设备的发送功率和调制编码方式。
- 一种设备到设备D2D通信方法,其特征在于,所述方法包括:接收基站的第一控制信令,所述第一控制信令用于指示第二用户设备与第一用户设备之间的信道质量,所述第一用户设备与所述第二用户设备为D2D用户设备;基于所述第一控制信令接收所述第二用户设备的第二探测信号,以基于所述第二探测信号探测并获取所述第二用户设备与所述第一用户设备之间的信道质量;向所述基站发送第一信道质量反馈信令,所述第一信道质量反馈信令用于指示所述第二用户设备与所述第一用户设备之间的信道质量。
- 根据权利要求6所述的方法,其特征在于,若所述通信模式包括专属模式,普通复用模式和协作复用模式,所述方法还包括:接收所述基站的第四控制信令,所述第四控制信令包括确定的D2D通信模式,分配给所述第一用户设备用于接收与转发数据的时频资源以及所述第一用户设备转发数据时的发送功率以及调制编码方式;基于所述第四控制信令进行通信。
- 一种设备到设备D2D通信方法,其特征在于,所述方法包括:接收基站的第二控制信令,所述第二控制信令用于指示探测第一用户设备与第二用户设备之间的信道质量,所述第一用户设备与所述第二用户设备为D2D用户设备;基于所述第二控制信令接收所述第一用户设备的第一探测信号,以便基于所述第一探测信号探测并获取所述第一用户设备与所述第二用户设备之间的信道质量;向所述基站发送第二信道质量反馈信令,所述第二信道质量反馈信令用于指示所述第一用户设备与所述第二用户设备之间的信道质量。
- 根据权利要求8所述的方法,其特征在于,若所述通信模式包括专属模式、普通复用模式以及协作复用模式,所述方法还包括:接收所述基站的第五控制信令,所述第五控制信令包括确定的D2D通信模式,分配给所述第二用户设备用于发送数据时的时频资源以及所述第二用户设备的发送功率以及调制编码方式;基于所述第五控制信令进行通信。
- 一种设备到设备D2D通信方法,其特征在于,所述方法包括:接收基站的第三控制信令,所述第三控制信令用于指示探测D2D用户设备与第三用户设备之间的信道质量;基于所述第三控制信令接收所述第一用户设备的第一探测信号以及第二用户设备的第二探测信号,以便基于所述第一探测信号与所述第二探测信号探测并获取所述D2D用户设备与所述第三用户设备之间的信道质量;向所述基站发送第三信道质量反馈信令,所述第三信道质量反馈信令用于指示所述D2D设备与所述第三用户设备之间的信道质量。
- 根据权利要求10所述的方法,其特征在于,若所述通信模式包括普通复用模式和协作复用模式,所述方法还包括:接收所述基站的第六控制信令,所述第六控制信令包括分配给所述第三用户设备用于发送数据的时频资源,以及所述第三用户设备的发送功率和调制编码方式;基于所述第六控制信令进行通信。
- 一种通信装置,其特征在于,包括处理器,所述处理器用于与存储器耦合,读取并执行所述存储器中的指令,以实现如权1-5任一所述的方法。
- 根据权利要求12所述的装置,其特征在于,还包括:所述存储器。
- 一种通信装置,其特征在于,包括处理器,所述处理器用于与存储器耦合,读取并执行所述存储器中的指令,以实现如权6或7所述的方法。
- 根据权利要求14所述的装置,其特征在于,还包括:所述存储器。
- 一种通信装置,其特征在于,包括处理器,所述处理器用于与存储器耦合,读取并执行所述存储器中的指令,以实现如权8或9所述的方法。
- 根据权利要求16所述的装置,其特征在于,还包括:所述存储器。
- 一种通信装置,其特征在于,包括处理器,所述处理器用于与存储器耦合,读取并执行所述存储器中的指令,以实现如权10或11所述的方法。
- 根据权利要求18所述的装置,其特征在于,还包括:所述存储器。
- 一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行如权1-5任一所述的方法。
- 一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行如权6或7所述的方法。
- 一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行如权8或9所述的方法。
- 一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行如权10或11所述的方法。
- 一种计算机程序产品,包括指令,当其在计算机上运行时,使得计算机执行如权1-5任一所述的方法。
- 一种计算机程序产品,包括指令,当其在计算机上运行时,使得计算机执行如权6或7所述的方法。
- 一种计算机程序产品,包括指令,当其在计算机上运行时,使得计算机执行如权8或9所述的方法。
- 一种计算机程序产品,包括指令,当其在计算机上运行时,使得计算机执行如权10或11所述的方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP18787487.0A EP3606111B1 (en) | 2017-04-22 | 2018-04-19 | Device-to-device (d2d) communication method and relevant device |
US16/658,498 US11044733B2 (en) | 2017-04-22 | 2019-10-21 | Device-to-device D2D communication method and related device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710268113.3 | 2017-04-22 | ||
CN201710268113.3A CN108737993B (zh) | 2017-04-22 | 2017-04-22 | 一种设备到设备d2d通信方法及相关设备 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/658,498 Continuation US11044733B2 (en) | 2017-04-22 | 2019-10-21 | Device-to-device D2D communication method and related device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018192551A1 true WO2018192551A1 (zh) | 2018-10-25 |
Family
ID=63855574
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2018/083752 WO2018192551A1 (zh) | 2017-04-22 | 2018-04-19 | 一种设备到设备d2d通信方法及相关设备 |
Country Status (4)
Country | Link |
---|---|
US (1) | US11044733B2 (zh) |
EP (1) | EP3606111B1 (zh) |
CN (1) | CN108737993B (zh) |
WO (1) | WO2018192551A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111132082B (zh) * | 2018-11-01 | 2020-12-08 | 电信科学技术研究院有限公司 | 一种资源选择方法、数据发送方法及装置 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012049351A1 (en) * | 2010-10-13 | 2012-04-19 | Nokia Corporation | Selection of communication mode |
CN103702346A (zh) * | 2012-09-27 | 2014-04-02 | 中兴通讯股份有限公司 | 一种设备到设备用户设备间信道状态测量的方法及设备 |
CN103974288A (zh) * | 2014-05-23 | 2014-08-06 | 电子科技大学 | 蜂窝网中d2d资源分配方法 |
CN104144507A (zh) * | 2013-05-10 | 2014-11-12 | 上海贝尔股份有限公司 | 一种确定d2d对的通信资源的方法、装置和系统 |
CN104303585A (zh) * | 2012-03-21 | 2015-01-21 | 瑞典爱立信有限公司 | 减少直接设备至设备通信导致的干扰的动态资源选择 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9351340B2 (en) * | 2009-04-08 | 2016-05-24 | Nokia Technologies Oy | Apparatus and method for mode selection for device-to-device communications |
CN102118868B (zh) * | 2009-12-31 | 2015-10-21 | 中兴通讯股份有限公司 | 多点协作传输中协作测量集合内小区资源映射方法及系统 |
US9888458B2 (en) * | 2011-02-11 | 2018-02-06 | Lg Electronics Inc. | Method and apparatus for performing device-to-device cooperative communication in wireless access system |
WO2014022769A1 (en) | 2012-08-03 | 2014-02-06 | Intel Corporation | Signaling and channel designs for d2d communications |
CN102858012A (zh) * | 2012-09-17 | 2013-01-02 | 西安电子科技大学 | 基于imt-a标准的后续演进嵌入式d2d实现方法 |
US9838181B2 (en) * | 2013-06-26 | 2017-12-05 | Lg Electronics Inc. | Method and apparatus for acquiring control information in wireless communication system |
WO2015137685A1 (ko) * | 2014-03-11 | 2015-09-17 | 엘지전자(주) | 단말간 직접 통신을 지원하는 무선 통신 시스템에서 자원을 할당하기 위한 방법 및 이를 위한 장치 |
CN107534828B (zh) * | 2015-04-08 | 2023-10-10 | 苹果公司 | 用于增强的设备到设备(d2d)的控制信令的装置和方法 |
CN105554808B (zh) * | 2016-02-22 | 2019-03-22 | 北京邮电大学 | 一种蜂窝网中的d2d对资源分配方法及装置 |
-
2017
- 2017-04-22 CN CN201710268113.3A patent/CN108737993B/zh active Active
-
2018
- 2018-04-19 EP EP18787487.0A patent/EP3606111B1/en active Active
- 2018-04-19 WO PCT/CN2018/083752 patent/WO2018192551A1/zh unknown
-
2019
- 2019-10-21 US US16/658,498 patent/US11044733B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012049351A1 (en) * | 2010-10-13 | 2012-04-19 | Nokia Corporation | Selection of communication mode |
CN104303585A (zh) * | 2012-03-21 | 2015-01-21 | 瑞典爱立信有限公司 | 减少直接设备至设备通信导致的干扰的动态资源选择 |
CN103702346A (zh) * | 2012-09-27 | 2014-04-02 | 中兴通讯股份有限公司 | 一种设备到设备用户设备间信道状态测量的方法及设备 |
CN104144507A (zh) * | 2013-05-10 | 2014-11-12 | 上海贝尔股份有限公司 | 一种确定d2d对的通信资源的方法、装置和系统 |
CN103974288A (zh) * | 2014-05-23 | 2014-08-06 | 电子科技大学 | 蜂窝网中d2d资源分配方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3606111A4 * |
Also Published As
Publication number | Publication date |
---|---|
EP3606111B1 (en) | 2023-11-22 |
US11044733B2 (en) | 2021-06-22 |
EP3606111A1 (en) | 2020-02-05 |
US20200053741A1 (en) | 2020-02-13 |
EP3606111A4 (en) | 2020-02-05 |
CN108737993B (zh) | 2021-03-30 |
CN108737993A (zh) | 2018-11-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113170348B (zh) | 在支持非连续接收(drx)操作的无线通信系统中的终端和基站的方法和装置 | |
US20210105739A1 (en) | Method and apparatus for ue power saving in rrc_idle/inactive state | |
CN103828454B (zh) | 配置参考信号的方法、基站和用户设备 | |
CN107466483B (zh) | 发送和接收设备到设备发现消息的装置和方法 | |
WO2019154378A1 (zh) | 准共址信息的确定方法、装置及设备 | |
JP2020511056A (ja) | マルチコードワード伝送方法及び装置 | |
CN103828396A (zh) | 基于dm rs的下行链路lte物理层 | |
JP2011071705A (ja) | 通信システム、中継装置、通信端末および基地局 | |
JP2019004325A (ja) | 通信装置、通信方法及びコンピュータプログラム | |
JP2018504051A (ja) | 特定のユーザ装置を適応させるためのシステム及び方法 | |
WO2021106837A1 (ja) | 端末装置、基地局装置および通信方法 | |
US10560834B2 (en) | System and method for differential peak signaling | |
WO2020065615A2 (en) | Methods to support configured grant transmission and retransmission | |
JP7140129B2 (ja) | 無線通信装置、無線通信方法およびコンピュータプログラム | |
US10693696B2 (en) | Apparatus and method for transmitting and receiving signals in wireless communication system | |
WO2018192551A1 (zh) | 一种设备到设备d2d通信方法及相关设备 | |
EP2596591B1 (en) | Energy saving in a mobile communications network | |
US11554318B2 (en) | Methods of transmitting and receiving additional SIB1-NB subframes in a NB-IoT network | |
WO2024093394A1 (en) | Retrieval of system information | |
CN117014115A (zh) | 接收和发送信息的方法和设备 | |
JP5249999B2 (ja) | リレー伝送方法、リレー局及び無線基地局 | |
JP5272961B2 (ja) | 通信方式、親局、および子局 | |
CN116095839A (zh) | 一种信号组的发送/接收方法及其装置 | |
CN117014112A (zh) | 接收和发送信息的方法和设备 | |
CN114342534A (zh) | 侧链路控制信息的资源配置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18787487 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2018787487 Country of ref document: EP Effective date: 20191028 |