Nothing Special   »   [go: up one dir, main page]

WO2018181966A1 - 光学シート、光制御部材、面光源装置、映像源ユニット、及び表示装置 - Google Patents

光学シート、光制御部材、面光源装置、映像源ユニット、及び表示装置 Download PDF

Info

Publication number
WO2018181966A1
WO2018181966A1 PCT/JP2018/013792 JP2018013792W WO2018181966A1 WO 2018181966 A1 WO2018181966 A1 WO 2018181966A1 JP 2018013792 W JP2018013792 W JP 2018013792W WO 2018181966 A1 WO2018181966 A1 WO 2018181966A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
optical
layer
unit
optical element
Prior art date
Application number
PCT/JP2018/013792
Other languages
English (en)
French (fr)
Inventor
柏木 剛
Original Assignee
大日本印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大日本印刷株式会社 filed Critical 大日本印刷株式会社
Priority to EP18777208.2A priority Critical patent/EP3605157A4/en
Priority to US16/498,786 priority patent/US11378837B2/en
Priority to JP2019509396A priority patent/JP7205463B2/ja
Publication of WO2018181966A1 publication Critical patent/WO2018181966A1/ja
Priority to US17/805,881 priority patent/US11747669B2/en
Priority to JP2022210570A priority patent/JP7428230B2/ja
Priority to US18/335,214 priority patent/US12066708B2/en
Priority to JP2024007794A priority patent/JP2024054147A/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133526Lenses, e.g. microlenses or Fresnel lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S2/00Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/021Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures
    • G02B5/0231Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures the surface having microprismatic or micropyramidal shape
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/04Prisms
    • G02B5/045Prism arrays
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133504Diffusing, scattering, diffracting elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13356Structural association of cells with optical devices, e.g. polarisers or reflectors characterised by the placement of the optical elements
    • G02F1/133562Structural association of cells with optical devices, e.g. polarisers or reflectors characterised by the placement of the optical elements on the viewer side
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • G02F1/133607Direct backlight including a specially adapted diffusing, scattering or light controlling members the light controlling member including light directing or refracting elements, e.g. prisms or lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/02Simple or compound lenses with non-spherical faces
    • G02B3/08Simple or compound lenses with non-spherical faces with discontinuous faces, e.g. Fresnel lens

Definitions

  • the present invention relates to an optical sheet that controls the emission direction of incident light, and a light control member, a surface light source device, an image source unit, and a display device including the same.
  • Display devices such as a car navigation system, a television monitor, and a personal computer monitor are provided with an image source for emitting an image to be displayed, and an optical sheet for improving the quality of the image light and providing it to the observer side. Yes.
  • the image light is emitted from the front or from the front, up, down, left, and right, so that the image projected on the screen can be viewed from a desired position.
  • the light emission direction is limited as necessary, such as for peeping prevention.
  • Patent Documents 1 to 3 are disclosed as optical sheets for controlling the light output angle in this way.
  • JP 2006-171701 A JP 2014-059565 A JP 2012-113054 A
  • an optical sheet as described in Patent Document 2 has high image light emission performance in a desired direction, but the emission of image light in other directions is limited.
  • the display device has a particularly large screen, the brightness at the outer peripheral portion of the screen is relatively dark compared to the center portion although the center of the screen is bright.
  • the tendency appears more remarkably.
  • an object of the present invention is to provide an optical sheet capable of efficiently performing desired light emission angle control.
  • a light control member, a surface light source device, an image source unit, and a display device including the optical sheet are provided.
  • One aspect of the present invention is an optical sheet formed by laminating a plurality of layers, an optical functional layer that is one of the plurality of layers, an optical element layer that is the other of the plurality of layers,
  • the optical functional layer extends in one direction, and a plurality of light transmission portions arranged with an interval in a direction different from the one direction, and a light absorption portion disposed between adjacent light transmission portions
  • the optical element layer is a protrusion that extends so as to have an angle of 0 ° to 45 ° in a front view of the optical sheet with respect to one direction, and is arranged in a plurality of directions different from the extending direction.
  • An optical sheet including a unit optical element.
  • the “front view of the optical sheet” means the viewpoint when the optical sheet is viewed from the light exit side.
  • “0 ° or more and 45 ° or less in the front view of the optical sheet” means that when the optical sheet is viewed in the front view of the optical sheet, the unit optical element is 0 ° with respect to the direction (one direction) in which the light transmission part extends. It means extending so as to have an angle of 45 ° or less.
  • the light transmissive portion may have a trapezoidal cross section, and the long bottom may face the unit optical element side.
  • the unit optical element may have a triangular cross section having a main refracting surface and a rise surface, and the main refracting surface may be a surface inclined at an angle greater than 45 ° and not more than 89 ° with respect to the normal direction of the light exit surface of the optical functional layer. .
  • the angle formed by the main refractive surface and the normal of the light exit surface of the optical functional layer may be different between the unit optical element on the sheet center side and the unit optical element on the sheet outer periphery side.
  • the unit optical element may have a triangular cross section having a main refracting surface and a rise surface, and the main refracting surface may be inclined at an angle greater than 0 ° and less than 17 ° with respect to the layer surface of the optical functional layer. Good.
  • the light transmission part may have a trapezoidal cross section, and the short upper base may face the unit optical element side.
  • a rough surface may be formed on the surface of the unit optical element.
  • the arrangement pitch of the light transmission parts is P a ( ⁇ m)
  • the arrangement pitch of the unit optical elements is P o ( ⁇ m)
  • P mx ( ⁇ m) is the largest among P m obtained from all combinations of a and b with respect to a certain P a and P o
  • the P mx is 10000 ( ⁇ m) or less. May be.
  • Two or more optical sheets are arranged, and the direction in which the light transmission part of one optical sheet extends and the direction in which the light transmission part of the other optical sheet extend intersect with each other in a front view of the optical sheet.
  • a light control member is arranged, and the direction in which the light transmission part of one optical sheet extends and the direction in which the light transmission part of the other optical sheet extend intersect with each other in a front view of the optical sheet.
  • a surface light source device including a light source and the light control member disposed closer to the observer than the light source.
  • an image source unit including the above surface light source device and a liquid crystal panel disposed on the light output side of the surface light source device.
  • the light transmission unit, the light absorption unit, and the unit optical element may be an image source unit in which the extending direction is the horizontal direction and the arrangement direction is the vertical direction.
  • the light emission angle control can be performed efficiently.
  • FIG. 3 is an exploded perspective view illustrating a video source unit 10.
  • 4 is an exploded view showing a cross section of the video source unit 10.
  • FIG. 4 is an exploded view showing another cross section of the video source unit 10.
  • FIG. 3 is an enlarged cross-sectional view focusing on the optical sheet 30.
  • FIG. It is sectional drawing which expanded the optical sheet 30 further. It is a figure explaining the modification of the optical sheet.
  • 4 is a diagram illustrating an example of an optical path of light that passes through an optical sheet 30.
  • FIG. It is a figure explaining control of the light emission angle in case the light emission side light control layer 35 is provided.
  • It is a figure explaining the form provided with the light emission side light control layer.
  • It is a figure explaining the example of the optical path by the light emission side light control layer.
  • FIG. 4 is an exploded perspective view illustrating a video source unit 210.
  • 4 is an exploded view showing a cross section of the video source unit 210.
  • FIG. 6 is an exploded view showing another cross section of the video source unit 210.
  • FIG. FIG. 6 is an enlarged cross-sectional view focusing on the second optical sheet 230. It is sectional drawing which expanded a part of 2nd optical sheet 230 further.
  • FIG. 4 is a diagram illustrating an example of an optical path in the first optical sheet 30. It is a figure explaining the light control in the 2nd optical sheet.
  • 3 is an exploded perspective view illustrating a video source unit 310.
  • FIG. 4 is an exploded view showing a cross section of the video source unit 310.
  • FIG. 5 is an exploded view showing another cross section of the video source unit 310.
  • FIG. It is the figure expanded paying attention to the optical sheet. It is the figure which expanded the optical sheet 330 further. It is a figure explaining the optical path which permeate
  • 6 is a diagram illustrating characteristics of a light source in Test Example A.
  • FIG. It is a diagram showing the results of Test Example A 1.
  • 6 is a diagram illustrating characteristics of a light source in Test Example B.
  • FIG. 31 (b) is a diagram showing the results of Test Example B 1.
  • FIG. 25 (a), the FIG. 25 (b) is a diagram showing the results of Test Example B 2. It is a figure showing the scene which forms a rough surface on the surface of a unit optical element. Is a diagram illustrating the configuration of an optical sheet in Test Example E 4.
  • FIGS. 35A, 35B, and 35C are graphs showing the results of Test Example E.
  • FIG. 1 is a diagram illustrating a first embodiment, and is an exploded perspective view of an image source unit 10 including an optical sheet 30.
  • 2 is a part of an exploded cross-sectional view of the video source unit 10 cut along the line II-II in FIG. 1 (a line along the vertical direction), and FIG. A part of the exploded sectional view of the image source unit 10 cut along the indicated line (line along the horizontal direction) is shown.
  • the vertical direction and the horizontal direction refer to directions in the posture in which the optical sheet 30 is disposed on the display device and the display device is used.
  • a video source unit 10 such as a power source that operates the video source unit 10 and an electronic circuit that controls the video source unit 10 are provided in a housing (not shown).
  • the display device is housed together with normal equipment required for operation.
  • a liquid crystal video source unit is described as one mode of the video source unit, and a liquid crystal display device is described as one mode of the display device.
  • the video source unit 10 will be described.
  • the video source unit 10 includes a liquid crystal panel 15, a surface light source device 20, and a functional film 40.
  • the optical sheet 30 is included in the surface light source device 20. 1 to 3 also show the orientation in the posture in which the display device is installed.
  • the liquid crystal panel 15 includes an upper polarizing plate 13 disposed on the viewer side, a lower polarizing plate 14 disposed on the surface light source device 20 side, and a liquid crystal disposed between the upper polarizing plate 13 and the lower polarizing plate 14.
  • Layer 12. The upper polarizing plate 13 and the lower polarizing plate 14 decompose the incident light into two orthogonal polarization components (P wave and S wave), and the polarization component in one direction (direction parallel to the transmission axis) (for example, P And has a function of absorbing a polarization component (for example, S wave) in the other direction (direction parallel to the absorption axis) orthogonal to the one direction.
  • a plurality of pixels are two-dimensionally arranged vertically and horizontally in a direction along the layer surface, and an electric field can be applied to each region where one pixel is formed. Then, the orientation of the pixel to which an electric field is applied changes.
  • the polarization component for example, P wave
  • the polarization direction is rotated by 90 °, while the polarization direction is maintained when passing through a pixel to which no electric field is applied.
  • the polarization component for example, P wave
  • the polarization component transmitted through the lower polarizing plate 14 further passes through the upper polarizing plate 13 disposed on the light output side, or the upper polarizing plate 13 It is possible to control whether or not it is absorbed and blocked.
  • the liquid crystal panel 15 has a structure for expressing an image by controlling transmission or blocking of light from the surface light source device 20 for each pixel.
  • liquid crystal panels There are several types of liquid crystal panels, but in this embodiment, the types are not particularly limited, and known types of liquid crystal panels can be used. Specific examples include TN, STN, VA, MVA, IPS, OCB, and the like.
  • the surface light source device 20 is an illuminating device that is disposed on the side opposite to the observer side with the liquid crystal panel 15 interposed therebetween and emits planar light to the liquid crystal panel 15.
  • the surface light source device 20 of this embodiment is configured as an edge light type surface light source device, and includes a light guide plate 21, a light source 25, a light diffusing plate 26, a prism layer 27, and a reflective polarizing plate. 28, an optical sheet 30 and a reflection sheet 39.
  • the light guide plate 21 has a base portion 22 and a back optical element 23 as can be seen from FIGS.
  • the light guide plate 21 is a plate-like member as a whole formed of a light-transmitting material.
  • one plate surface side that is an observer side of the light guide plate 21 is a smooth surface
  • the other plate surface side opposite to this is a back surface
  • a plurality of back surface optical elements 23 are provided on the back surface. It is arranged.
  • thermoplastic resins such as polymer resins having an alicyclic structure, methacrylic resins, polycarbonate resins, polystyrene resins, acrylonitrile-styrene copolymers, methyl methacrylate-styrene copolymers, ABS resins, and polyethersulfones.
  • epoxy acrylate and urethane acrylate-based reactive resins such as ionizing radiation curable resins).
  • the base portion 22 is a plate having an appropriate thickness at a portion that serves as a base of the back surface optical element 23 while light is guided therein.
  • the back surface optical element 23 is a protruding element formed on the back surface side of the base portion 22 and has a triangular prism shape in this embodiment.
  • the rear optical element 23 has a columnar shape in which the protruding ridge line extends in the horizontal direction, and the plurality of rear optical elements 23 are arranged in a direction (vertical direction) orthogonal to the extending direction.
  • the back optical element 23 of this embodiment has a triangular cross section, but is not limited to this, and may be a cross section of any shape such as a polygon, a hemisphere, a part of a sphere, or a lens shape.
  • the arrangement direction of the plurality of back surface optical elements 23 is preferably the light guide direction. That is, the ridge lines of the respective back surface optical elements 23 extend in parallel to the direction in which the light sources 25 are arranged, or in the direction in which the light sources 25 extend if they are one long light source.
  • the “triangular shape” in the present specification includes not only a triangular shape in a strict sense but also a substantially triangular shape including limitations in manufacturing technology, errors in molding, and the like.
  • terms used in the present specification to specify other shapes and geometric conditions for example, terms such as “parallel”, “orthogonal”, “ellipse”, “circle”, etc. are bound to the strict meaning. Therefore, it is interpreted including an error to the extent that a similar optical function can be expected.
  • the light guide plate 21 having such a configuration can be manufactured by extrusion molding or by molding the back surface optical element 23 on the base 22.
  • the base portion 22 and the back surface optical element 23 can be integrally formed.
  • the back surface optical element 23 may be the same resin material as the base 22, or a different material.
  • the light source 25 is arrange
  • the type of the light source is not particularly limited, but can be configured in various forms such as a fluorescent lamp such as a linear cold cathode tube, a point LED (light emitting diode), or an incandescent bulb.
  • the light source 25 is composed of a plurality of LEDs, and is configured to be able to individually and independently adjust the lighting and extinction of each LED and / or the lighting brightness of each LED by a control device (not shown). Yes.
  • the light source 25 is arranged on one side surface (end surface) as described above, but the light source is also arranged on the side surface (end surface) opposite to the side surface (end surface). It may be a form.
  • the shape of the back optical element is also formed in accordance with a known example so as to be suitable for the arrangement of the light source.
  • the light diffusion plate 26 is a layer that is disposed on the light output side of the light guide plate 21 and has a function of diffusing and emitting the light incident thereon. Thereby, the uniformity of the light radiate
  • a known light diffusing plate can be used. For example, a form in which a light diffusing agent is dispersed in a base material can be mentioned.
  • the light diffusion plate 26 can also be used as a support plate for the prism layer 27 as in this embodiment. When the light exit surface of the light guide plate 21 is smooth, the light diffusing plate 26 may be bonded to the light guide plate 21 to be integrated.
  • the prism layer 27 is a layer that is provided on the liquid crystal panel 15 side of the light diffusing plate 26 and includes a unit prism 27a that is convex toward the liquid crystal panel 15 side.
  • the unit prism 27a has a triangular cross section in this embodiment and extends in a direction orthogonal to the light guide direction of the light guide plate 21 (in this embodiment, the horizontal direction).
  • a plurality of unit prisms 27a are arranged in the light guide direction of the light guide plate 21 (the vertical direction in this embodiment). As a result, light can be collected in the direction in which the optical function layer 32 controls light (in this embodiment, the vertical direction), and light can be efficiently and totally reflected by the optical function layer 32.
  • the cross-sectional shape of the unit prism of such a prism layer a known shape (triangle, quadrangle, or other polygon) can be applied according to a required function.
  • the light can be condensed as described above, or the light can be further diffused.
  • the direction in which the unit prisms extend and the direction in which the unit prisms are arranged are not limited to the above form, but may take other forms.
  • the unit prism may extend in the light guide direction of the light guide plate, and the plurality of unit prisms may be arranged in a direction orthogonal to the light guide direction of the light guide plate.
  • the reflective polarizing plate 28 decomposes incident light into two orthogonal polarization components (P wave and S wave) and transmits a polarization component (for example, P wave) in one direction (direction parallel to the transmission axis). And has a function of reflecting a polarization component (for example, S wave) in the other direction (direction parallel to the reflection axis) orthogonal to the one direction.
  • a polarization component for example, S wave
  • the optical sheet 30 shows an enlarged part of the optical sheet 30 from the viewpoint of FIG.
  • the optical sheet 30 is provided on the base layer 31 formed in a sheet shape and on one surface of the base layer 31 (in this embodiment, the surface on the light guide plate 21 side).
  • An optical functional layer 32 and a light output side light control layer 35 as a light control layer disposed on the other surface of the base material layer 31 (the surface on the liquid crystal panel 15 side in this embodiment) are provided.
  • the base material layer 31 is a flat sheet-like member that supports the optical function layer 32 and the light output side light control layer 35.
  • Various materials can be used as the material forming the base material layer 31.
  • a material that is widely used as a material for an optical sheet incorporated in a display device and has excellent mechanical characteristics, optical characteristics, stability, workability, and the like, and can be obtained at low cost can be used. Examples thereof include polyethylene terephthalate resin (PET), triacetyl cellulose resin (TAC), methacrylic resin, and polycarbonate resin.
  • TAC tridecyl styrene
  • methacrylic resin methacrylic resin
  • polycarbonate resin with little birefringence (retardation).
  • a polycarbonate resin having a high glass transition point is desirable in applications that require high heat resistance such as in-vehicle applications.
  • the glass transition point of the polycarbonate resin is 143 ° C., which is generally suitable for in-vehicle applications that require durability at 105 ° C.
  • the optical function layer 32 is a layer laminated on one surface of the base material layer 31 (in this embodiment, the surface on the light guide plate 21 side), and includes a light transmission portion 33 and a light absorption portion 34.
  • the optical functional layer 32 has a cross section shown in FIG. 4 and has a shape extending in the back / near side of the paper (in this embodiment, the horizontal direction when the image source unit 10 is viewed from the front), and extends along the layer surface.
  • the light transmitting portions 33 and the light absorbing portions 34 are alternately arranged in a direction different from the direction (vertical direction in this embodiment).
  • the light transmission part 33 is a part whose main function is to transmit light.
  • the base layer 31 has a long lower bottom and the opposite side (light guide plate).
  • 21 is an element having a substantially trapezoidal cross-sectional shape having a short upper base on the side 21).
  • the light transmitting portion 33 maintains the cross section along the layer surface of the base material layer 31 and extends in one direction (horizontal direction in the present embodiment), and is spaced in a direction different from the extending direction (vertical direction in the present embodiment). Are arranged in a plurality.
  • An interval (groove) having a substantially trapezoidal cross section is formed between the adjacent light transmission portions 33.
  • the interval (groove) has a long lower bottom on the upper bottom side (light guide plate 21 side) of the light transmission portion 33 and a short upper bottom on the lower bottom side (base material layer 31 side) of the light transmission portion 33.
  • the light-absorbing portion 34 is formed by filling a necessary material to be described later.
  • a plurality of light transmission parts 33 are connected by a sheet-like base part 32a on the lower bottom side (base material layer side 31).
  • the light transmission portion 33 has a refractive index is a N t.
  • a light transmission part 33 can be formed by hardening a light transmission part structure composition. While not the value of the refractive index N t is particularly limited, the refractive index from the viewpoint of (. Including total reflection) appropriately reflect light at the interface between the light absorbing portion 34 in the slope of a trapezoidal cross-section, as described below Is preferably 1.47 or more. However, since a material with a refractive index that is too high is likely to break, the refractive index is preferably 1.61 or less. More preferably, it is 1.49 or more and 1.56 or less, More preferably, it is 1.56.
  • the light absorbing portion 34 functions as an intermediate portion formed in the interval (groove) formed between the adjacent light transmitting portions 33 and has a cross-sectional shape similar to the cross-sectional shape of the interval (groove). Therefore, the short upper base faces the liquid crystal panel 15 side (base material layer 31 side), and the long lower base is the opposite side (in this embodiment, the light guide plate 21 side). And the light absorption part 34 is comprised so that light can be absorbed while a refractive index is set to Nr . Specifically, light absorbing particles are dispersed in a transparent resin having a refractive index of Nr . Refractive index N r is a refractive index lower than the refractive index N t of the light transmitting portion 33.
  • the refractive index of the light absorbing portion 34 is smaller than the refractive index of the light transmitting portion 33, the light that satisfies the conditions and enters the light transmitting portion 33 is appropriately totally reflected at the interface with the light absorbing portion 34. Can be made. Even when the total reflection condition is not satisfied, some light is reflected at the interface.
  • the value of the refractive index Nr is not particularly limited, and is preferably 1.47 or more on the assumption that the total reflection can be appropriately performed. However, since a material with a refractive index that is too high is likely to break, the refractive index is preferably 1.61 or less. More preferably, it is 1.49 or more and 1.56 or less, More preferably, it is 1.49.
  • the difference in refractive index between the refractive index Nt of the light transmitting portion 33 and the refractive index Nr of the light absorbing portion 34 is not particularly limited, but is preferably greater than 0 and not greater than 0.14, preferably not less than 0.05 and not greater than 0. .14 or less is more preferable. By increasing the refractive index difference, more light can be totally reflected.
  • the optical functional layer 32 is not particularly limited, but can be formed in the following shape, for example.
  • FIG. 5 shows a further enlarged view of a part of FIG.
  • ⁇ 11 shown in FIG. 5 is an interface 34 a that is above the light absorbing portion 34 when the optical sheet 30 is in the posture as shown in FIG. 1 among the interfaces between the light transmitting portion 33 and the light absorbing portion 34.
  • ⁇ 12 is an angle formed by the interface 34 b below the light absorbing portion 34 among the interfaces of the light transmitting portion 33 and the light absorbing portion 34 in the same posture and the normal of the layer surface of the optical functional layer 32.
  • ⁇ 11 is preferably 0 ° or more and 10 ° or less.
  • ⁇ 11 When ⁇ 11 is larger than 0 °, it means that it is inclined so as to be lowered from the light guide plate 21 side (light incident side) toward the liquid crystal panel 15 side (light emission side, base material layer 31 side).
  • ⁇ 12 is preferably 0 ° or more and 10 ° or less. The theta 12 is greater than 0 ° means that the inclination from the light guide plate 21 side (light incident side) as raised toward the liquid crystal panel 15 side (light outgoing side, the base layer 31 side).
  • the relationship between the angles of ⁇ 11 and ⁇ 12 can be set as necessary.
  • the pitch between the light transmission part 33 and the light absorption part 34 represented by Pa in FIG. 4 is preferably 20 ⁇ m or more and 100 ⁇ m or less, and more preferably 30 ⁇ m or more and 100 ⁇ m or less.
  • the thickness of the light absorption part 34 shown by Da in FIG. 4 is preferably 50 ⁇ m or more and 150 ⁇ m or less, and more preferably 60 ⁇ m or more and 150 ⁇ m or less. By being within these ranges, the balance between light transmission and light absorption can be made more appropriate.
  • the interface between the light transmitting portion 33 and the light absorbing portion 34 is straight in the cross section.
  • the present invention is not limited thereto, and may be a polygonal line shape, a convex curve shape, a concave curve shape, Also good.
  • the cross-sectional shape may be the same in the some light transmission part 33 and the light absorption part 34, and a different cross-sectional shape may have regularity.
  • the direction in which the light transmission unit 33 and the light absorption unit 34 extend is horizontal is described.
  • the direction in which the light transmission unit 33 and the light absorption unit 34 extend is the liquid crystal layer 12. It is preferable to have an angle in the front view of the video source unit with respect to the pixel arrangement direction (bias angle ⁇ 1 ). This specific angle of the bias angle alpha 1 is not limited in particular as long prevent moire, it is preferably 1 ° to 10 °.
  • the light output side light control layer 35 functions as a light control layer, and is combined with the optical function layer 32 to control the direction of light when combined.
  • the light output side light control layer 35 controls the direction of the light emitted from the optical function layer 32 and emits the light. That is, in this embodiment, the light exit side light control layer 35 further controls the direction of the light controlled by the optical function layer 32 so that the emitted light has a desired light output angle.
  • the light output side light control layer 35 includes a support layer 35a and an optical element layer 35b.
  • the support layer 35a is a transparent sheet-like member that functions as a support for the optical element layer 35b.
  • the support layer 35a can be made of the same material as the base material layer 31 and the light transmission portion 33 described above.
  • the optical element layer 35b is a layer that changes the direction of light emitted from the optical functional layer 32, and a plurality of unit optical elements 35c are arranged on the surface of the support layer 35a opposite to the optical functional layer 32 side. Being done.
  • the unit optical element 35c further controls the direction of the light controlled by the optical function layer 32. In this embodiment, control is performed so that the viewing angle is efficiently shifted upward in the vertical direction in the postures shown in FIGS. 4 and 5 show the cross-sectional shape of the unit optical element 35c.
  • the unit optical element 35c specifically has the following structure.
  • the plurality of unit optical elements 35c are arranged in a direction different from the extending direction.
  • the ridgeline of the unit optical element 35c is configured to extend at an angle in the front view of the optical sheet with respect to the direction in which the light transmitting portion 33 and the light absorbing portion 34 extend (bias angle ⁇ 2 ⁇ 0 °).
  • the direction in which the light transmission part 33 of the optical functional layer 32 extends and the direction in which the ridge line of the unit optical element 35c extends are relative to each other at a bias angle ⁇ 2 that is greater than 0 ° and equal to or less than 45 °. It preferably extends so as to be inclined.
  • the angle alpha 2 greater than 45 ° the efficiency of the light direction control is degraded due to unit optical element 35c.
  • a more preferable angle ⁇ 2 is not less than 1 ° and not more than 10 °.
  • Each unit optical element 35c has a main refracting surface 35d and a rise surface 35e, as can be seen from FIG.
  • the main refracting surface 35d and the rise surface 35e form two triangular prisms, and the other surface overlaps the support layer 35a and is fixed to the support layer 35a.
  • the main refracting surface 35d is a refracting surface that changes the direction of light so that the light emitted from the optical functional layer 32 is directed further upward in the postures of FIGS. According to this, the range of light emission can be efficiently shifted upward in the vertical direction.
  • the main refracting surface 35d is inclined so as to approach the optical functional layer 32 as it goes downward (here, this direction is assumed to be a positive (+) direction inclination). Accordingly, in one unit optical element 35c, the main refracting surface 35d is on the lower side and the rise surface 35e is on the upper side.
  • the inclination of the main refracting surface 35 d has an angle of ⁇ 21 shown in FIG. 5 with respect to the normal direction of the optical function layer 32.
  • the specific angle of ⁇ 21 is preferably greater than 45 ° and less than 90 ° (the absolute value of the tilt angle of the main refractive surface is greater than 45 ° and less than 90 °). Thereby, it is possible to reliably perform light control for improving luminance (light emission angle control) in a desired direction. If ⁇ 21 is 45 ° or less, total reflection is likely to occur on the main refracting surface 35d, and there is a possibility that more light is not emitted. Further, when ⁇ 21 is 90 ° or more, the function as the main refracting surface can hardly be exhibited. More preferable ⁇ 21 is 80 ° or more and 89 ° or less. By setting ⁇ 21 within this range, the rise surface 35e can be kept small, and the generation of stray light by the rise surface 35e can be reduced.
  • the rise surface 35e is a surface required for forming the main refractive surface 35d.
  • the inclination angle of the rise surface 35e expressed in theta 22 in Figure 5, is preferably not more than 100 ° 80 ° or more with respect to the direction along the layer plane of the optically functional layer 32. From the viewpoint of production, 80 ° or more and 90 ° or less is more preferable. Further, if ⁇ 22 is less than 80 ° and greater than 100 °, stray light from the rise surface 35e may increase.
  • the vertex angle of the unit optical element 35c is naturally determined from the above ⁇ 21 and ⁇ 22, but is preferably 45 ° or more and less than 90 °.
  • Pitch of unit optical elements 35c shown in P o in FIG. 4 from the viewpoint of visually obscured even if moire occurs by reducing the moire pitch, smaller is preferable, in particular at a pitch P o is 50 ⁇ m or less Preferably there is. Further, since the optical functional layer 32 is more difficult to manufacture than the optical element layer 35b, the pitch P o of the unit optical element 35c is larger than the pitch P a (see FIG. 4) of the light transmitting portion 33 of the optical functional layer 32. The smaller one is desirable. More preferably, P o is 1/2 or less of P a.
  • P o such as P a / 2, P a / 3, P a / 4
  • the end portions of the unit optical elements 35c of the light transmitting portion 33 is not possible match That is.
  • the least common multiple of the P o and P a the larger is desirable.
  • the unit optical element 35c is small, the accuracy is lowered, so that Po is preferably 10 ⁇ m or more.
  • P mx ( ⁇ m) is 10,000 ( ⁇ m) or less, where P a ( ⁇ m) is the arrangement pitch of the light transmission parts 33 and P o ( ⁇ m) is the arrangement pitch of the unit optical elements 35c.
  • P mx can be obtained as follows.
  • P mx can be obtained based on P m , and P m is expressed by the following equation.
  • P m
  • P a ⁇ P o and a and b are integers of 1 or more and 10 or less. Then, for P a and P o , all combinations from the equal (1 ⁇ ) pitch to the 10 ⁇ pitch are considered. Thereby, it is possible to evaluate the occurrence of moire in a wide range in consideration of the integer multiple pitch. And there P a, maximum P m for a combination of P o a, in P m of all combinations changing the b is P mx.
  • the protruding height of the unit optical element 35c indicated by Do in FIG. 4 from the support layer 35a is preferably 1 ⁇ m or more and 10 ⁇ m or less. If it is smaller than this, the processing accuracy may be deteriorated so that a streak line may be visually recognized. If it is larger than this, moire tends to occur between the light absorbing portion 34 and the unit optical element 35c.
  • the plurality of unit optical elements 35c are continuously arranged without a gap.
  • the present invention is not limited to this, and a space is provided between adjacent unit optical elements 35c, and the surface of the support layer 35a is exposed in this portion. An aspect may be sufficient.
  • the main refracting surface 35d of the unit optical element 35c is linear in the cross section shown in FIGS. 4 and 5, but the present invention is not limited to this, and even if the cross section has a concave or convex curve or a polygonal line shape. Good. Further, the main refracting surface 35d and the rise surface 35e may be roughened. Thereby, it is possible to scatter light and suppress the generation of moire.
  • the method of making the main refracting surface 35d and the rise surface 35e rough is not particularly limited. However, the unit optical element may be directly blasted, or the mold for molding the unit optical element may be blasted. To do.
  • the plurality of unit optical elements 35c do not necessarily have the same shape, and may be changed as appropriate.
  • the support layer 35a is provided on the light emission side light control layer 35.
  • the support layer 35a is not necessarily provided.
  • the optical element layer 35 b may be directly formed on the base material layer 31 as shown in FIG.
  • the surface of the base material layer 31 that forms the interface with the optical element layer 35b is a rough surface, and the refractive index of the base material layer 31 is different from the refractive index of the optical element layer 35b. Can do. According to this, light is scattered by the rough surface, and the generation of moire can be suppressed.
  • the support layer 35a and the optical element layer 35b (unit optical element 35c) of the light output side light control layer 35 can be made of the same material as the base material layer 31 and the light transmission portion 33 described above.
  • the optical sheet 30 can be manufactured as follows, for example. First, the light transmission part 33 is formed on one surface of the base material layer 31. This inserts the base material sheet used as the base material layer 31 between the mold roll which has the shape which can transfer the shape of the light transmission part 33 on the surface, and the nip roll arrange
  • a groove corresponding to the light transmitting portion formed on the surface of the mold roll (a shape obtained by reversing the shape of the light transmitting portion) is filled with the composition that constitutes the light transmitting portion, and the composition becomes the surface of the mold roll. It will be along the shape.
  • examples of the composition constituting the light transmission part include ionizing radiation curable resins such as epoxy acrylate, urethane acrylate, polyether acrylate, polyester acrylate, and polythiol.
  • the composition which is sandwiched between the mold roll and the base sheet and constitutes the light transmitting portion filled therein is irradiated with light for curing with a light irradiation device from the base sheet side. Thereby, a composition can be hardened and the shape can be fixed. And the base material layer 31 and the shape
  • the light absorption part 34 is formed.
  • the composition constituting the light absorption part is filled in the interval (groove) between the light transmission parts 33 formed above. Thereafter, the surplus composition is scraped off with a doctor blade or the like. Then, the remaining composition can be cured by irradiating with ultraviolet rays from the light transmitting portion 33 side to form the light absorbing portion 34.
  • the material used as the light absorption part is not particularly limited, but for example, it is colored in a photocurable resin such as urethane (meth) acrylate, polyester (meth) acrylate, epoxy (meth) acrylate, and butadiene (meth) acrylate. And a composition in which the light absorbing particles are dispersed.
  • a photocurable resin such as urethane (meth) acrylate, polyester (meth) acrylate, epoxy (meth) acrylate, and butadiene (meth) acrylate.
  • a composition in which the light absorbing particles are dispersed.
  • the entire light absorbing portion can be colored with a pigment or a dye.
  • light-absorbing colored particles such as carbon black are preferably used.
  • the present invention is not limited to these, and selectively absorbs a specific wavelength according to the characteristics of image light.
  • Colored particles may be used. Specific examples include organic fine particles colored with metal salts such as carbon black, graphite, and black iron oxide, dyes, pigments, colored glass beads, and the like. In particular, colored organic fine particles are preferably used from the viewpoints of cost, quality, availability, and the like.
  • the average particle diameter of the colored particles is preferably 1.0 ⁇ m or more and 20 ⁇ m or less, more preferably 1.0 ⁇ m or more and 10 ⁇ m or less, and further preferably 1.0 ⁇ m or more and 4.0 ⁇ m or less.
  • the “average particle diameter” means an arithmetic average diameter obtained by observing 100 light absorbing particles with an electron microscope and measuring the diameter.
  • the light output side light control layer 35 in which the optical element layer 35b is laminated on one surface of the support layer 35a is prepared separately from the optical function layer 32.
  • This can be manufactured in the same manner following the method of laminating the light transmitting portion 33 on the base material layer 31 in the optical functional layer 32.
  • the bias angle alpha 2 an angle not 0 °
  • the spiral shape along the outer circumferential surface grooves for molding a unit optical element 35c of the roll mold of the roll mold for forming an optical element layer 35b It is preferably formed in a thread groove shape. This imparts an appropriate bias angle alpha 2 in terms of the accuracy of the viewpoints and efficiency.
  • the optical element layer 35 b is disposed among the surface opposite to the surface on which the optical functional layer 32 is disposed and the surface of the support layer 35 a of the light output side light control layer 35.
  • the optical sheet 30 is obtained by pasting and integrating the surface opposite to the side with an adhesive.
  • the reflection sheet 39 is a member that reflects the light emitted from the back surface of the light guide plate 21 and makes the light enter the light guide plate 21 again.
  • the reflection sheet 39 is a sheet that is capable of so-called specular reflection, such as a sheet made of a material having a high reflectivity such as a metal, or a sheet including a thin film (for example, a metal thin film) made of a material having a high reflectivity as a surface layer. It can be preferably applied.
  • the functional film 40 is a layer that is disposed on the light output side of the liquid crystal panel 15 and has functions of improving the quality of video light and protecting the video source unit 10. Examples thereof include an antireflection film, an antiglare film, a hard coat film, a color tone correction film, a light diffusion film, and the like, and these are constituted by combining them alone or in combination.
  • optical path example is conceptual for explanation, and does not strictly represent the degree of reflection or refraction.
  • the light emitted from the light source 25 enters the light guide plate 21 from a light incident surface that is a side surface (end surface) of the light guide plate 21.
  • FIG. 2 shows an example of an optical path of light L 21 and L 22 incident on the light guide plate 21 from the light source 25 as an example.
  • the light L 21 and L 22 incident on the light guide plate 21 repeatedly undergoes total reflection due to a difference in refractive index with air on the light exit side surface of the light guide plate 21 and the back surface on the opposite side, and the light guide direction Proceed to (downward direction in FIG. 2).
  • the back optical element 23 is disposed on the back surface of the light guide plate 21.
  • the light L 21 and L 22 traveling in the light guide plate 21 has its traveling direction changed by the back optical element 23 and is incident on the light exit surface and the back surface at an incident angle less than the total reflection critical angle.
  • the light can be emitted from the light exit surface of the light guide plate 21 and the back surface on the opposite side.
  • Lights L 21 and L 22 emitted from the light exit surface travel toward the light diffusion plate 26 disposed on the light exit side of the light guide plate 21.
  • the light emitted from the back surface is reflected by the reflection sheet 39 disposed on the back surface of the light guide plate 21, enters the light guide plate 21 again, and travels through the light guide plate 21.
  • the light traveling in the light guide plate 21 and the light whose direction is changed by the back surface optical element 23 and reaching the light exit surface at an incident angle less than the total reflection critical angle are in each area along the light guide direction in the light guide plate 21. Arise. For this reason, the light traveling in the light guide plate 21 is gradually emitted from the light exit surface. Thereby, the light quantity distribution along the light guide direction of the light emitted from the light exit surface of the light guide plate 21 can be made uniform.
  • the light emitted from the light guide plate 21 then reaches the light diffusion plate 26 and the uniformity is improved.
  • the light diffused or condensed by the prism layer 27 as necessary and emitted from the prism layer 27 reaches the reflective polarizing plate 28.
  • the light in the polarization direction along the transmission axis of the reflective polarizing plate 28 passes through the reflective polarizing plate 28 and travels toward the optical sheet 30.
  • the light in the polarization direction along the reflection axis of the reflective polarizing plate 28 is reflected and returned to the light guide plate 21 side as indicated by the dotted arrow in FIG.
  • the returned light is reflected by the light guide plate 21, the back surface optical element 23, or the reflection sheet 39 and travels again toward the reflective polarizing plate 28.
  • the polarization direction of a part of the light is changed, and a part of the light is transmitted through the reflective polarizing plate 28.
  • Other light is returned to the light guide plate side again.
  • the light reflected by the reflective polarizing plate 28 can be transmitted through the reflective polarizing plate 28 by repeating the reflection.
  • the utilization factor of the light from the light source 25 is increased.
  • the light emitted from the reflective polarizing plate 28 has a polarization direction in a direction along the transmission axis of the lower polarizing plate 14, and is polarized light that is transmitted through the lower polarizing plate 14.
  • FIG. 7 shows an example of an optical path in the optical sheet 30.
  • the interface goes to the interface 34 a on the upper side of the light absorbing portion 34 among the interfaces between the light transmitting portion 33 and the light absorbing portion 34. Then, the light is totally reflected at the interface 34a to become light obliquely upward toward the observer side, and the light is controlled in a desired direction.
  • the interface 34b which is the lower side of the light absorbing portion 34 among the interfaces between the light transmitting portion 33 and the light absorbing portion 34, is inclined so as to become obliquely upward toward the observer side, the light L 21 , the light L 22 , the light L 71 , the light L 72 , and the light absorption unit 34 hardly obstructs the progress of light, and more light can be guided in a desired direction.
  • L 73 shown in FIG. 7 proceeds obliquely upward toward the observer side, and travels at an angle that transmits through the interface without being totally reflected by the interface 34b between the light transmitting portion 33 and the light absorbing portion 34. Therefore, the light is absorbed by the light absorbing portion 34 through the interface 34b. As a result, it is possible to efficiently absorb and block light emitted at a viewing angle that is greater than or equal to a desired angle, and it is possible to efficiently control the light traveling direction. Further, since such light is incident on the liquid crystal panel and there is a high possibility of causing problems such as a decrease in contrast and color reversal and a decrease in quality, such light can be absorbed.
  • the direction of the light transmitted through the optical functional layer 32 is further changed in the optical element layer 35b.
  • the light L 71 and L 72 are further refracted and emitted on the main refracting surface 35d. Thereby, the light emission range can be further shifted (shifted) upward.
  • the optical sheet 30 of the present embodiment is more in comparison with the case where the light output side light control layer 35 is not provided (A in FIG. 8).
  • the horizontal axis represents the light emission angle with respect to the normal to the sheet surface in the vertical direction, with positive being upward and negative being downward.
  • the vertical axis represents the relative luminance when a certain luminance is 100%.
  • the light output angle can be efficiently controlled by providing the optical element layer 35b like the optical sheet 30.
  • the optical element layer 35b for controlling light in this way has a simple configuration as described above, and has an effect with such a simple configuration. Note that by the theta 11 of the optical functional layer 32 in the present embodiment, and theta 12 a (see FIG. 5) and ⁇ 11 ⁇ 12, it is possible to control the viewing angle in a wider range.
  • the light emitted from the optical sheet 30 enters the lower polarizing plate 14 of the liquid crystal panel 15.
  • the lower polarizing plate 14 transmits one polarization component of incident light and absorbs the other polarization component.
  • the light transmitted through the lower polarizing plate 14 selectively passes through the upper polarizing plate 13 according to the state of electric field application to each pixel.
  • the liquid crystal panel 15 selectively transmits light from the surface light source device 20 for each pixel, so that an observer of the liquid crystal display device can observe an image. At that time, the image light is provided to the observer through the functional film 40, and the quality of the image is improved.
  • FIG. 9 is a diagram for explaining the second embodiment and corresponds to FIG.
  • a light output side light control layer 135 as a light control layer is applied instead of the light output side light control layer 35. Since the other parts are the same as those of the image source unit 10 described above, the configuration and operation of the light output side light control layer 135 will be described here.
  • the light exit side light control layer 135 emits light that has been emitted from the optical functional layer 32 while controlling the direction of the light. Therefore, the light output side light control layer 135 includes the support layer 35a and the optical element layer 135b.
  • the support layer 35a is the same as the support layer 35a of the light output side light control layer 35 described above.
  • the optical element layer 135b is a layer that changes the direction of light emitted from the optical function layer 32, and a plurality of unit optical elements 135c are arranged on the surface of the support layer 35a opposite to the optical function layer 32 side. Being done.
  • the unit optical element 135c specifically has the following structure.
  • the unit optical element 135c has a triangular prism shape having a triangular cross section protruding to the side opposite to the optical functional layer 32 side, and has a ridge line with respect to the direction in which the light transmitting portion 33 and the light absorbing portion 34 extend.
  • Bias angle ⁇ 2 0 °
  • bias angle ⁇ 2 ⁇ 0 ° The plurality of unit optical elements 135c are arranged in a direction different from the extending direction.
  • Bias angle alpha 2 of the idea of the unit optical element 135c and the light transmitting portion 33 is the same as the unit optical element 35c described above.
  • Each unit optical element 135c has a main refracting surface 135d and a rise surface 135e, as can be seen from FIG.
  • the main refracting surface 135d and the rising surface 135e form two triangular prism surfaces, and the other surface overlaps the support layer 35a and is fixed to the support layer 35a.
  • the main refracting surface 135d is a refracting surface that changes the angle of light emitted upward from the optical function layer 32 so as to approach the front direction in the same posture as in FIG. According to this, the light emission angle in the vertical direction can be adjusted to a desired direction.
  • the main refractive surface 135d is inclined in a direction away from the optical functional layer 32 as it goes downward (here, this direction is a negative ( ⁇ ) direction). Accordingly, in one unit optical element 135c, the main refracting surface 135d is up, and the rise surface 135e is down.
  • the inclination angle of the main refractive surface 135d has an angle of ⁇ 31 with respect to the normal direction of the light exit surface of the optical function layer 32 as shown in FIG.
  • the specific angle of ⁇ 31 is preferably ⁇ 89 ° or more and less than ⁇ 45 ° (the absolute value of the tilt angle is greater than 45 ° and 89 ° or less). Thereby, it is possible to reliably perform light control for improving luminance (light emission angle control) in a desired direction. If ⁇ 31 is ⁇ 45 ° or more, there is a possibility that the amount of light that is totally reflected by the main refractive surface 135d and not emitted is increased. Further, when ⁇ 31 is smaller than ⁇ 89 °, the function as a main refracting surface can hardly be exhibited.
  • ⁇ 31 is ⁇ 89 ° or more and ⁇ 80 ° or less (the absolute value of the tilt angle is 80 ° or more and 89 ° or less).
  • rise surface 135e is reduced by the theta 31 this range, it is possible to reduce stray light due to rise surface 135e.
  • a preferable embodiment in terms of other shapes of the unit optical element 135c can be considered in the same manner as the unit optical element 35c described above.
  • FIG. 10 shows an example of the optical path.
  • part is as the above-mentioned image source unit 10, description is abbreviate
  • the direction of the light transmitted through the optical functional layer 32 is further changed in the optical element layer 135b.
  • the light L 101 and L 102 are refracted and emitted so as to approach the front side on the main refracting surface 135d. Thereby, the light emission angle is controlled in a desired direction.
  • the viewing angle is shifted more efficiently than when the light emission side light control layer 135 is not provided (A in FIG. 11) ( (C in FIG. 11).
  • the horizontal axis represents the light emission angle with respect to the sheet surface normal in the vertical direction, with positive being upward and negative being downward.
  • the vertical axis represents the relative luminance when a certain luminance is 100%.
  • Such adjustment of the light exit angle is difficult to perform only with the optical function layer, or even if it is performed, there are many problems such as a decrease in luminance.
  • the optical element layer 135b for controlling light in this way has a simple configuration as described above, and the effect is obtained with such a simple configuration.
  • FIG. 12 is a diagram for explaining the third embodiment, and is an exploded perspective view of the image source unit 210 including the optical sheet 230.
  • the optical sheet 30 described above is disposed on the light incident side (light guide plate 21 side) from the optical sheet 230, and the optical sheet 30 and the optical sheet 230 form the light control member 229.
  • the optical sheet 30 may be referred to as the first optical sheet 30 and the optical sheet 230 may be referred to as the second optical sheet 230 for easy understanding.
  • FIG. 13 is a part of an exploded cross-sectional view of the video source unit 210 taken along the line indicated by XIII-XIII in FIG. 12 (a line along the vertical direction), and FIG. 14 shows a XIV-XIV in FIG.
  • disconnected along the line shown by (line along a horizontal direction) was represented.
  • the vertical direction and the horizontal direction mean directions in a posture in which the light control member 229 is disposed on the display device and the display device is used.
  • an image source unit 210 such as a power source that operates the image source unit 210 and an electronic circuit that controls the image source unit 210 is provided in a housing (not shown).
  • the display device is housed together with normal equipment required for operation.
  • a liquid crystal video source unit is described as one mode of the video source unit, and a liquid crystal display device is described as one mode of the display device.
  • the video source unit 210 will be described below.
  • the video source unit 210 includes a liquid crystal panel 15, a surface light source device 220, and a functional film 40.
  • the first optical sheet 230 and the light control member 229 including the first optical sheet 230 are provided in the surface light source device 20.
  • FIGS. 12 to 14 the orientation in the posture in which the display device is installed is also displayed.
  • the liquid crystal panel 15 and the functional film 40 can be considered in the same manner as the video source unit 10 of the first embodiment, the same reference numerals are given here and description thereof is omitted.
  • the surface light source device 220 is an illuminating device that is disposed on the side opposite to the observer side with the liquid crystal panel 15 interposed therebetween and emits planar light to the liquid crystal panel 15.
  • the surface light source device 220 of this embodiment is configured as an edge light type surface light source device, and includes a light guide plate 21, a light source 25, a light diffusing plate 26, a prism layer 27, and a reflective polarizing plate. 28, a light control member 229 and a reflection sheet 39.
  • the light control member 229 it can be considered in the same manner as the surface light source device 20 included in the video source unit 10 of the first embodiment.
  • the light control member 229 includes the first optical sheet 30 and the second optical sheet 230.
  • the first optical sheet 30 is disposed on the light guide plate 21 side
  • the second optical sheet 230 is disposed on the liquid crystal panel 15 side.
  • the first optical sheet 30 can be considered in the same manner as the optical sheet 30 included in the surface light source device 20, the same reference numerals are given here, and the description thereof is omitted.
  • FIG. 15 shows an enlarged part of the second optical sheet 230 from the viewpoint of FIG.
  • the second optical sheet 230 includes a base material layer 231 formed in a sheet shape, and one surface of the base material layer 231 (in this embodiment, the first optical sheet 30 side). And a light output side light control layer 235 as a light control layer disposed on the other surface of the base material layer 231 (the surface on the liquid crystal panel 15 side in this embodiment).
  • the base material layer 231 can be considered similarly to the base material layer 31 of the optical sheet 30.
  • the optical functional layer 232 is a layer laminated on one surface of the base material layer 231 (the surface on the first optical sheet 30 side in this embodiment), and is configured to include a light transmission portion 233 and a light absorption portion 234. ing.
  • the optical functional layer 232 has a cross section shown in FIGS. 14 and 15 and has a shape extending in the back / near side of the paper (in this embodiment, the vertical direction when the image source unit 210 is viewed from the front), and along the layer surface.
  • the light transmission portions 233 and the light absorption portions 234 are alternately arranged in a direction different from the extending direction (in this embodiment, the horizontal direction).
  • the light transmission part 233 is a part whose main function is to transmit light.
  • the base layer 231 side has a long lower bottom, the opposite side (first side This is an element having a substantially trapezoidal cross-sectional shape having a short upper base on the optical sheet 30 side.
  • the light transmitting portion 233 maintains the cross section along the layer surface of the base material layer 231 and extends in one direction (vertical direction in the present embodiment), and is spaced in a direction different from the extending direction (horizontal direction in the present embodiment). Are arranged in a plurality.
  • An interval (groove) having a substantially trapezoidal cross section is formed between adjacent light transmission portions 34.
  • the interval (groove) has a long lower bottom on the upper bottom side (first optical sheet 30 side) of the light transmission portion 233, and on the lower bottom side (base material layer 231 side) of the light transmission portion 233.
  • the light absorption part 234 is formed by having a trapezoidal cross section having a short upper base and filling a necessary material described later.
  • a plurality of light transmission parts 233 are connected by a sheet-like base part 232a on the lower bottom side (base material layer 231 side).
  • the refractive indexes of the light transmission part 233 and the light absorption part 234 can be considered in the same manner as the light transmission part 33 and the light absorption part 34 of the optical sheet 30.
  • the optical function layer 232 is not particularly limited, but can be formed in the following shape, for example.
  • FIG. 16 shows a further enlarged view of a part of FIG. 15 (upper part of FIG. 15).
  • ⁇ 41 shown in FIG. 16 is an interface on one side of the left and right sides in the horizontal direction when the second optical sheet 230 is in the posture as shown in FIG. 12 among the interfaces between the light transmitting part 233 and the light absorbing part 234. 234a and an angle formed by the normal of the layer surface of the optical function layer 232.
  • ⁇ 42 is the same as the interface 234b on the other side of the left and right sides in the horizontal direction when the second optical sheet 230 is in the posture as shown in FIG. 12 among the interfaces between the light transmitting portion 233 and the light absorbing portion 234.
  • ⁇ 41 and ⁇ 42 are preferably 0 ° or more and 10 ° or less. The relationship between the angles of ⁇ 41 and ⁇ 42 can be set as necessary.
  • the pitch between the light transmission part 233 and the light absorption part 235 represented by Pb in FIG. 15 is preferably 20 ⁇ m or more and 100 ⁇ m or less, and more preferably 30 ⁇ m or more and 100 ⁇ m or less.
  • the thickness of the light absorption part 234 shown by Db in FIG. 15 is preferably 50 ⁇ m or more and 150 ⁇ m or less, and more preferably 60 ⁇ m or more and 150 ⁇ m or less. By being within these ranges, the balance between light transmission and light absorption can be made more appropriate.
  • the interface between the light transmitting portion 233 and the light absorbing portion 234 is linear in the cross section, but not limited to this, it may be a polygonal line shape, a convex curve shape, a concave curve shape, or the like. Also good.
  • the cross-sectional shape may be the same in the some light transmission part 233 and the light absorption part 234, and a different cross-sectional shape may have regularity.
  • the direction in which the light transmission unit 233 and the light absorption unit 235 extend is vertical, but from the viewpoint of suppressing the occurrence of moire, the direction in which the light transmission unit 233 and the light absorption unit 234 extend is the liquid crystal layer 12. It is preferable to have an angle in the front view of the video source unit with respect to the pixel arrangement direction (bias angle ⁇ 3 ). This specific angle of the bias angle alpha 3 is not limited in particular as long prevent moire, it is preferably 1 ° to 10 °.
  • the light exit side light control layer 235 controls the direction of the light emitted from the optical function layer 232 and emits the light.
  • the light emission side light control layer 235 controls the direction of the light controlled by the optical function layer 232 so that the emitted light has a desired light emission angle. More specifically, the light is controlled so that the light emitted from the outer peripheral portion side of the sheet travels in a direction inclined toward the center side with respect to the sheet normal direction.
  • the light emission side light control layer 235 includes a support layer 235a and an optical element layer 235b.
  • the support layer 235a is a transparent sheet-like member that functions as a support for the optical element layer 235b, and can be considered similarly to the support layer 35a of the optical sheet 30.
  • the optical element layer 235b is a layer that changes the direction of light emitted from the optical function layer 232, and a plurality of unit optical elements 235c are arranged on the surface of the support layer 235a opposite to the optical function layer 232 side. Being done.
  • the optical element layer 235b is disposed on the support layer 235a.
  • the optical element layer 235b is not limited thereto, and the optical element layer 235b is on the opposite side of the surface of the base material layer 231 from the side on which the optical functional layer 232 is disposed. It may be placed directly on the surface.
  • the light output side light control layer is composed of only the optical element layer 235b without having a support layer.
  • the optical element layer 235b is configured such that the light emitted to the outer peripheral side of the sheet in the direction in which the plurality of unit optical elements 235c are arranged with respect to the light controlled by the optical function layer 232 (in this embodiment, the horizontal direction)
  • This is a layer that changes the direction of light so that light is emitted in a direction inclined toward the center side of the sheet normal direction.
  • the unit optical element 235c has a triangular prism shape having a triangular cross section protruding to the side opposite to the optical functional layer 232 side, and the ridge line of the unit optical element 235c has a light transmitting portion.
  • the plurality of unit optical elements 235c are arranged in a direction (horizontal direction in this embodiment) different from the extending direction. When the ridgeline of the unit optical element 235c is configured to extend at an angle in the front view of the optical sheet with respect to the direction in which the light transmitting portion 233 and the light absorbing portion 234 extend (bias angle ⁇ 4 ⁇ 0 °).
  • the direction in which the light transmitting portion 233 of the optical functional layer 232 extends and the direction in which the ridge line of the unit optical element 235c extends are relatively inclined at 0 ° ⁇ 4 ⁇ 45 °. It is preferable to extend so as to. Thereby, it is possible to prevent the occurrence of moire due to the arrangement structure of the light transmission part 233 and the light absorption part 234 and the arrangement structure of the unit optical elements 235c.
  • alpha 4 to be greater than 45 ° the efficiency of the directional control of the light is reduced by the unit optical element 235c.
  • a more preferable angle is 1 ° ⁇ ⁇ 4 ⁇ 10 °.
  • the cross-sectional shape of the unit optical element 235c in the direction in which the unit optical elements 235c are arranged is at one end side and the other end side of the optical element layer 235b. as well as a symmetrical with respect to the sheet center, between the one end and the other side portion in the sheet central portion without a unit optical element 235c is provided (the portion of the W 3 in FIG. 15). That is, this portion is flat, and it can be said that the angle ( ⁇ 51 in FIG. 16) of the main refractive surface of the unit optical element with respect to the sheet surface normal is 90 °.
  • the symmetrical unit optical elements 235c may be configured to be adjacent to each other with the sheet center interposed therebetween.
  • the unit optical elements adjacent to each other with the sheet center interposed therebetween are symmetrical, a line appears at the boundary portion, and this may be visually recognized. Accordingly, it is preferable that the unit optical element does not exist at least in the center of the sheet and is flat.
  • the mold surface of the portion that should be the center of the sheet is: What is necessary is just to pile up and process this part so that a cutting tool may straddle.
  • Such an arrangement of the plurality of unit optical elements 235c can be configured following a linear Fresnel lens, for example.
  • the unit optical element 235c has a main refracting surface 235d and a rise surface 235e, as can be seen from FIG.
  • the main refracting surface 235d and the rise surface 235e form two triangular prism surfaces, and the other surface overlaps the support layer 235a and is fixed to the support layer 235a.
  • the main refracting surface 235d has the posture shown in FIGS. 12 to 16 so that the light emitted from the optical functional layer 232 in the horizontal direction travels at an angle inclined toward the center with respect to the sheet normal.
  • the main refracting surface 235d when attention is paid to one main refracting surface 235d, it is inclined in a direction away from the optical function layer 232 (a more protruding direction) toward the sheet center side. Accordingly, when paying attention to one unit optical element 235c, the main refracting surface 235d is the sheet outer peripheral side, and the rise surface 235e is the sheet central side.
  • the inclination of the main refracting surface 235d has an angle of ⁇ 51 as shown in FIG. 16 with respect to the normal direction of the optical function layer 232.
  • the specific angle of ⁇ 51 is preferably greater than 45 ° and less than 90 ° (the absolute value of the inclination angle of the main refractive surface is greater than 45 ° and less than 90 °). As a result, it is possible to reliably perform light control for improving luminance (light emission angle control) in a desired direction. If ⁇ 51 is 45 ° or less, there is a possibility that the amount of light that is totally reflected by the main refractive surface 235d and not emitted is increased. Further, when ⁇ 51 is 90 ° or more, the function as the main refracting surface can hardly be exhibited. More preferable ⁇ 51 is 80 ° or more and 89 ° or less.
  • ⁇ 51 is preferably different between the central unit optical element 235c and the outer peripheral unit optical element 235c in the direction in which the unit optical elements 235c are arranged (horizontal direction in this embodiment). As a result, the light can be controlled with higher accuracy. More preferably, ⁇ 51 decreases from the unit optical element 235c on the central side to the unit optical element 235c on the outer peripheral side. Thereby, it is possible to efficiently control the traveling direction of light toward the center.
  • the rise surface 235e is a surface required for forming the main refractive surface 235d.
  • the inclination angle of the rise surface 235e represented by ⁇ 52 in FIG. 16 is preferably 80 ° or more and 100 ° or less with respect to the direction along the light exit surface of the optical function layer 232. From the viewpoint of production, 80 ° or more and 90 ° or less is more preferable. Further, if ⁇ 52 is less than 80 ° and greater than 100 °, stray light from the rise surface 235e may increase.
  • the vertex angle of the unit optical element 235c is naturally determined from the above ⁇ 51 and ⁇ 52, but is preferably 45 ° or more and less than 90 °.
  • the pitch of the unit optical elements 235c indicated by P p in FIG. 15 is preferably smaller from the viewpoint of making it difficult to see even if moire occurs by reducing the moire pitch.
  • the pitch P p is 50 ⁇ m or less.
  • the pitch P p of the unit optical elements 235c is larger than the pitch P b of the light transmitting portion 233 of the optical functional layer 232 (see FIG. 15). The smaller one is desirable. More preferably, P p is less than or equal to 1/2 of P b .
  • P p is set to an equal pitch such as P b / 2, P b / 3, P b / 4, the end of the light transmitting portion 233 and the end of the unit optical element 235c do not coincide as much as possible. That is. In other words, it is desirable that the least common multiple of P p and P b is larger. On the other hand, when the unit optical element 235c is small, the accuracy is lowered. Therefore, P p is preferably 10 ⁇ m or more.
  • P mx ( ⁇ m) is 10,000 ( ⁇ m) or less, where P b ( ⁇ m) is the arrangement pitch of the light transmission parts 233 and P p ( ⁇ m) is the arrangement pitch of the unit optical elements 235c. P mx can be considered in the same manner as described above.
  • Protruding height from the support layer 235a of the unit optical elements 235c shown in D p in FIG. 15 is preferably 1 ⁇ m or more 10 ⁇ m or less. If the thickness is smaller than this, the processing accuracy may be deteriorated and a problem that a streak line is visually recognized may occur. If the thickness is larger than this, moire is likely to occur between the light absorbing portion 234 and the unit optical element 235c.
  • the plurality of unit optical elements 235c are continuously arranged without gaps.
  • the present invention is not limited thereto, and a space is provided between adjacent unit optical elements 235c, and the surface of the support layer 235a is exposed in this portion. An aspect may be sufficient.
  • the main refracting surface 235d of the unit optical element 235c is linear in the cross section shown in FIGS. 14 to 16, but is not necessarily limited thereto, and may be concave, convex, or polygonal. Further, the main refractive surface 235d and the rise surface 235e may be roughened. Thereby, it is possible to scatter light and suppress the generation of moire.
  • the method of making the main refracting surface 235d and the rise surface 235e rough is not particularly limited. However, the unit optical element may be directly blasted, or the mold for molding the unit optical element may be blasted. To do.
  • the plurality of unit optical elements 235c do not necessarily have the same shape, and may be changed as appropriate.
  • the support layer 235a is provided on the light emission side light control layer 235.
  • the support layer 235a is not necessarily provided, and the optical element layer 235b may be directly formed on the base material layer 231.
  • the surface of the base material layer 231 that forms the interface with the optical element layer 235b is a rough surface, and the refractive index of the base material layer 231 is different from the refractive index of the optical element layer 235b. Can do. According to this, light is scattered by the rough surface, and the generation of moire can be suppressed.
  • the light emission side light control layer does not necessarily need to be integrated with the base material layer or the optical function layer, and may be provided separately. Therefore, an air layer may be formed between the light output side light control layer and the base material layer or the optical functional layer, or another functional layer may be disposed.
  • the support layer 235a and the optical element layer 235b (unit optical element 235c) of the light output side light control layer 235 can be configured by the same material as the support layer 35a and the optical element layer 35b of the optical sheet 30 described above. .
  • the second optical sheet 230 can also be manufactured as described above following the optical sheet 30.
  • the operation of the image source unit 210 having the above configuration will be described with an example of the optical path.
  • the optical path example is conceptual for explanation, and does not strictly represent the degree of reflection or refraction.
  • the process from the light source 25 to the light control member 229 is the same as the optical path example described in the video source unit 10, and the description thereof is omitted (see FIG. 2).
  • the light incident on the light control member 229 first enters the first optical sheet 30 and travels with the following optical path.
  • FIG. 17 shows an example of the optical path in the first optical sheet 30.
  • the light transmission portions 33 and the light absorption portions 34 are similar to the light L 171 and the light L 172 illustrated in FIG. Out of the interface with 34, it goes to the interface 34 a on the upper side of the light absorbing portion 34. Then, the light is totally reflected at the interface 34a to become light obliquely above the viewer side, and the light is controlled in a desired direction.
  • the interface 34b which is the lower side of the light absorption unit 34 among the interfaces between the light transmission unit 33 and the light absorption unit 34, is inclined obliquely upward toward the observer side, the light L 171 , It becomes difficult for the light absorption part 34 to inhibit the progress of light such as the light L 172 , and more light can be guided in a desired direction.
  • the light L 173 shown in FIG. 17 is obliquely upward on the viewer side, and travels at an angle that transmits through the interface without being totally reflected by the interface 34b between the light transmitting unit 33 and the light absorbing unit 34.
  • the light is absorbed by the light absorbing portion 34 through the interface 34b.
  • it is possible to efficiently absorb and block light emitted at a light emission angle equal to or greater than a desired angle, and it is possible to efficiently control the light traveling direction.
  • such light is incident on the liquid crystal panel and there is a high possibility of causing problems such as a decrease in contrast and color reversal and a decrease in image quality, such light can be absorbed.
  • the direction of the light transmitted through the optical functional layer 32 is further changed in the optical element layer 35b.
  • the light L 171 and L 172 shown in FIG. 17 are refracted and emitted further upward on the main refracting surface 35d. Thereby, the light emission angle can be further shifted (shifted) upward.
  • the first optical sheet 30 (FIG. 8) is compared with the case where the light output side light control layer 35 is not provided (A in FIG. 8).
  • the light emission to the light emission angle upward in the vertical direction can be increased efficiently.
  • Such adjustment of the light exit angle is difficult to perform only with the optical function layer 32, or even if it is performed, problems such as a decrease in luminance are often accompanied.
  • the light output angle can be efficiently controlled by further including the optical element layer 35b.
  • the optical element layer 35b for controlling light in this way has a simple configuration as described above, and has an effect with such a simple configuration.
  • FIG. 15 shows an example of an optical path in the second optical sheet 230.
  • the light L 151 to the light L 156 shown in FIG. The light is totally reflected at the interface and the direction of light is changed so as to approach the normal of the sheet surface. This facilitates control of desired light in the optical element layer 235b.
  • the light L 157 is light that originally travels in a direction close to the front direction in the horizontal direction, and passes through the light transmission unit 233 without reaching the light absorption unit 234.
  • the light L 158 shown in FIG. 15 is light that travels at a large angle with respect to the front surface in the horizontal direction. Since this light travels at an angle that transmits through the interface without being totally reflected at the interface between the light transmission part 233 and the light absorption part 234, the light passes through the interface and is absorbed by the light absorption part 234. As a result, it is possible to efficiently absorb and block the light emitted at a desired angle or more, and to control the traveling direction of the light efficiently. Further, since such light is incident on the liquid crystal panel and there is a high possibility of causing problems such as a decrease in contrast and color inversion, such light can be absorbed.
  • the direction of the light transmitted through the optical function layer 232 is further changed in the optical element layer 235b.
  • the light can be emitted so that the light travels while being inclined toward the center with respect to the normal to the sheet surface. Since the light L 155 , L 156 , and L 157 are transmitted through a portion that does not include the unit optical element 235 c, light close to the front is emitted in the horizontal direction, and the light is provided to the front observer as it is.
  • FIG. 18A and FIG. 18B are diagrams for explaining the characteristics of light emitted from the sheet in the horizontal direction.
  • the horizontal axis represents the light emission angle with respect to the normal direction of the sheet surface in the horizontal direction, with positive being on the right and negative on the left.
  • the vertical axis represents the relative luminance when a certain luminance is 100%.
  • FIG. 18A shows an example in which the light emission side light control layer 235 is not provided. In this case, since the light is emitted while the light emission angle is regulated by the optical function layer, it is only in a direction having a small inclination with respect to the normal to the sheet surface (in the example of FIG. 18A, approximately ⁇ 30 °).
  • FIG. 18B shows an example in which the light emission side light control layer 235 is provided as in this embodiment.
  • the unit optical element 235c (on the one side of the sheet outer peripheral end portion is provided by the unit optical element 235c disposed at the sheet outer peripheral end portion of the light emission side light control layer 235.
  • the peak in the emission direction of the light emitted from each of C 1 ) and the other unit optical element 235c (C 2 ) can be controlled to shift in the sheet surface normal direction (0 ° direction). Further, in the center portion of the sheet where the unit optical element 235c is not formed, which is formed between the unit optical elements 235c at both outer peripheral ends, as shown by D, the light is directly in the direction close to the normal direction of the sheet surface. Idemitsu. As a result, the light emitted from the edge of the screen is also inclined so as to be directed in the direction that the observer is viewing, so even when the screen is wide or the screen is viewed from a slight angle, the outer peripheral edge of the screen It can prevent that the site
  • the light output angle can be efficiently controlled by providing the optical element layer 235b as in the second optical sheet 230.
  • the optical element layer 235b for controlling light in this way is a simple structure as mentioned above, and there exists an effect by such a simple structure.
  • Such a light control member 229 By transmitting light through such a light control member 229, it is possible to control light emitted from the outer peripheral end in the horizontal direction while emitting light in a desired direction in the vertical direction. Such control can be efficiently performed with a simple configuration.
  • the light emitted from the light control member 229 enters the lower polarizing plate 14 of the liquid crystal panel 15.
  • the lower polarizing plate 14 transmits one polarization component of incident light and absorbs the other polarization component.
  • the light transmitted through the lower polarizing plate 14 selectively passes through the upper polarizing plate 13 according to the state of electric field application to each pixel.
  • the liquid crystal panel 15 selectively transmits light from the surface light source device 220 for each pixel, so that an observer of the liquid crystal display device can observe an image. At that time, the image light is provided to the observer through the functional film 40, and the quality of the image is improved.
  • first optical sheet 30 and the second optical sheet 230 are combined and applied as the light control member 229 .
  • the two are not necessarily combined, and the first optical sheet 30 is not necessarily combined.
  • the second optical sheet 230 may be applied alone.
  • each optical sheet may be properly used or combined.
  • FIG. 19 is a diagram illustrating the fourth embodiment, and is an exploded perspective view of the image source unit 30 including the optical sheet 330.
  • 20 is a part of an exploded cross-sectional view of the image source unit 310 cut along a line indicated by XX-XX in FIG. 19, and FIG. 21 shows an image cut along a line indicated by XXI-XXI.
  • a part of the exploded sectional view of the source unit 310 is shown.
  • the video source unit 310 includes a power source that operates the video source unit 310 and an electronic circuit that controls the video source unit 310 in a housing (not shown).
  • the display device is housed together with normal equipment required for operation.
  • a liquid crystal video source unit is described as one mode of the video source unit
  • a liquid crystal display device is described as one mode of the display device.
  • the video source unit 310 includes the liquid crystal panel 15, the surface light source device 320, and the functional film 40.
  • the optical sheet 330 is included in the surface light source device 320.
  • 19 to 21 also show the orientation in the posture in which the display device is installed.
  • the liquid crystal panel 15 and the functional film 40 are the same as the video source unit 10, the same reference numerals are given and description thereof is omitted.
  • the surface light source device 320 is an illuminating device that is disposed on the side opposite to the viewer side from the liquid crystal panel 15 and emits planar light to the liquid crystal panel 15. As can be seen from FIGS. 19 to 21, the surface light source device 320 of this embodiment is also configured as an edge light type surface light source device, and includes a light guide plate 21, a light source 25, a light diffusing plate 26, a prism layer 27, and a reflective polarizing plate. 28, an optical sheet 330 and a reflection sheet 39.
  • the components other than the optical sheet 330 are the same as the surface light source device 20 of the video source unit 10 described above, the components other than the optical sheet 330 are denoted by the same reference numerals as those of the surface light source device 30 and description thereof is omitted.
  • the unit prisms 27a of the prism layer 27 extend in the light guide direction of the light guide plate, and the plurality of unit prisms 27a are arranged in a direction orthogonal to the light guide direction of the light guide plate.
  • FIG. 22 shows an enlarged view of a part of the optical sheet 330 from the viewpoint of FIG.
  • the optical sheet 330 is provided on the base layer 31 formed in a sheet shape and on one surface of the base layer 31 (the surface on the light guide plate 21 side in this embodiment).
  • An optical function layer 332 and a light incident side light control layer 335 functioning as a light control layer are provided.
  • the base material layer 31 is the same as the base material layer 31 provided on the optical sheet 30 of the image source unit 10 described above, the same reference numerals are given and description thereof is omitted.
  • the optical function layer 332 is a layer laminated on one surface of the base material layer 31 (in this embodiment, the surface on the light guide plate 21 side), and the light transmission portions 333 and the light absorption portions 334 are alternately arranged along the layer surface. ing.
  • the optical functional layer 332 has a shape having the cross section shown in FIG. 22 and extending toward the back / near side of the paper (horizontal direction when the image source unit 310 is viewed from the front). That is, in the cross section shown in FIG. 22, the light transmitting portion 333 having a substantially trapezoidal shape and the light absorbing portion 334 having a substantially trapezoidal cross section formed between two adjacent light transmitting portions 333 are provided.
  • the light transmission part 333 is a part whose main function is to transmit light.
  • the base layer 31 has a long lower bottom, and the opposite side (light guide plate 21 Element having a substantially trapezoidal cross-sectional shape having a short upper base on the side, light incident side light control layer 335 side).
  • the light transmitting portion 333 maintains the cross section along the layer surface of the base material layer 31 and extends in the above-described direction (horizontal direction in the present embodiment), and in a direction different from the extending direction (vertical direction in the present embodiment). Arranged at intervals.
  • An interval (groove) having a substantially trapezoidal cross section is formed between adjacent light transmission portions 333.
  • the interval (groove) has a long lower base on the upper bottom side (light guide plate 21 side, light incident side light control layer 335 side) of the light transmission portion 333, and the lower bottom side (liquid crystal) of the light transmission portion 333.
  • the light absorption part 334 is formed by having a trapezoidal cross section having a short upper base on the panel 15 side and the base material layer 31 side and filling a necessary material described later.
  • adjacent light transmission parts 333 are connected by a sheet-like connection part 332a on the long bottom side.
  • the idea about the material and refractive index which comprise the light transmission part 333 and the light absorption part 334 is the same as the light transmission part 33 and the light absorption part 334 of the optical sheet 30 mentioned above.
  • FIG. 23 is a diagram for explaining angles ⁇ 61 and ⁇ 62 formed by the interface between the light transmitting portion 333 and the light absorbing portion 334 with respect to the normal of the layer surface of the optical function layer 332.
  • FIG. 23 is an enlarged view of a part of FIG. ⁇ 61 is an interface 334 a that is on the upper side of the light absorbing portion 334 when the optical sheet 330 is in the posture as shown in FIG. 19 among the interfaces between the light transmitting portion 333 and the light absorbing portion 334, and the optical functional layer 332.
  • ⁇ 62 is an angle formed by the interface 334 b below the light absorbing portion 334 among the interfaces of the light transmitting portion 333 and the light absorbing portion 334 in the same posture and the normal line of the layer surface of the optical function layer 332.
  • ⁇ 61 is preferably 0 ° or more and 10 ° or less.
  • ⁇ 61 is inclined so as to fall from the light guide plate 21 side (light incident side, light incident side light control layer 335) toward the liquid crystal panel 15 side (light output side, base material layer 31 side).
  • the angle is more preferably 4.0 ° or less, further preferably 1.0 ° or less, and particularly preferably 0 °. If ⁇ 61 is smaller than 0 °, manufacturing becomes difficult.
  • ⁇ 61 is larger than 10 °, the effect of controlling the direction of light by the optical function layer 332 is reduced in combination with the light incident side light control layer 335.
  • ⁇ 61 is larger than 10 °, the size of the light absorbing portions 334 in the arrangement direction (the width of the light absorbing portions, the vertical size in the drawing in FIG. 23) increases, and the light transmittance decreases. Tend to occur.
  • ⁇ 62 is preferably 0 ° or more and 10 ° or less. If ⁇ 62 is greater than 0 °, the angle is such that it rises from the light guide plate 21 side (light incident side, light incident side light control layer 335) toward the liquid crystal panel 15 side (light output side, substrate layer 31 side). Means. More preferably, it is 5.0 degrees or less, More preferably, it is 3.0 degrees or less. Thereby, it is possible to increase the amount of light traveling upward while preventing a decrease in light transmittance.
  • ⁇ 62 is larger than 10 °, the size of the light absorbing portion 334 in the arrangement direction (the width of the light absorbing portion, the vertical size in the drawing of FIG. 23) increases, and the light transmittance decreases. There is a tendency to reduce the upward light.
  • the relationship between the angles of ⁇ 61 and ⁇ 62 is preferably ⁇ 61 ⁇ 62 .
  • the upper viewing angle can be made wider than the lower viewing angle.
  • the optical function layer 332 is not particularly limited.
  • the light transmission part 333 and the light absorption part 334 are formed as follows. That is, the pitch between the light transmitting part 333 and the light absorbing part 334 represented by Pc in FIG. 22 is preferably 20 ⁇ m or more and 100 ⁇ m or less, and more preferably 30 ⁇ m or more and 100 ⁇ m or less. And the thickness of the light absorption part 334 shown by Dc in FIG. 22 is preferably 50 ⁇ m or more and 150 ⁇ m or less, and more preferably 60 ⁇ m or more and 150 ⁇ m or less. By being within these ranges, the balance between light transmission and light absorption can be made more appropriate.
  • the interface between the light transmitting portion 333 and the light absorbing portion 334 is linear in the cross section, but the present invention is not limited to this, and the interface is a polygonal line shape, a convex curved surface, a concave curved surface, It may be.
  • the cross-sectional shape may be the same in the some light transmissive part 333 and the light absorption part 334, and it may have a different cross-sectional shape with regularity.
  • the light incident side light control layer 335 functions as a light control layer, changes the direction of light incident on the optical function layer 332 in advance, and the light incident side light control layer 335 and the optical function layer 332 move in a desired direction. Controls light emission.
  • the light incident side light control layer 335 is configured to change the direction of light so that light traveling in the normal direction of the optical sheet 330 is directed in a desired direction. More specifically, in this embodiment, in the posture of FIGS. 19 to 22, the function of changing the direction of light so that the light traveling toward the viewer in the normal direction of the optical sheet 330 is directed obliquely downward on the viewer side. To do. As a result, as will be described later, the light can be reflected by the upper interface 334a between the light transmitting portion 333 and the light absorbing portion 334, and can be made to go obliquely upward.
  • the light incident side light control layer 335 includes a support layer 335a and an optical element layer 335b.
  • the support layer 335a is a transparent sheet-like member that functions as a support for the optical element layer 335b.
  • the support layer 335a can be made of the same material as that of the base material layer 31 and the light transmission portion 333.
  • the optical element layer 335b is a layer that changes the direction of light incident on the optical function layer 332, and a plurality of optical element layers 335b are provided on the surface of the support layer 335a opposite to the surface on which the optical function layer 332 is disposed.
  • the unit optical elements 335c are arranged in a layer.
  • the unit optical element 335c is configured to change the direction of light so that the light traveling in the normal direction of the optical sheet 330 is directed in one direction as described above, and in this embodiment, the posture of FIGS. Thus, the direction of the light is changed so as to go obliquely downward with respect to the light traveling in the normal direction of the optical sheet 330.
  • the unit optical element 335c specifically has the following structure.
  • the plurality of unit optical elements 335c are arranged in a direction different from the extending direction.
  • the unit optical elements 335c ridge extends direction relative bias angle alpha 5 for 0 ° greater than 45 ° or less of It preferably extends so as to be inclined.
  • the angle alpha 5 larger than 45 °, the efficiency of the light direction control is degraded due to unit optical elements 335c.
  • a more preferable angle ⁇ 5 is not less than 1 ° and not more than 10 °.
  • the unit optical element 335c has a main refracting surface 335d and a rise surface 335e, as can be seen from FIG.
  • the main refracting surface 335d and the rise surface 335e form two triangular prisms, and the other surface overlaps the support layer 335a and is fixed to the support layer 335a.
  • the main refracting surface 335d is a refracting surface that functions to change the direction of light obliquely downward with respect to the light traveling in the normal direction of the optical sheet 330 in the postures of FIGS. Therefore, the main refracting surface 335d is inclined so as to be close to the support layer 335a (optical function layer 332) on the upper side in the vertical direction and to be separated from the support layer 335a (optical function layer 332) on the lower side in the vertical direction.
  • the inclination represented by ⁇ 71 in FIG. 23 has an angle with respect to the direction along the light incident surface 332 b of the optical function layer 332.
  • the specific angle of ⁇ 71 is preferably larger than 0 ° and smaller than 17 °. Thereby, it is possible to control the light for improving the luminance in the desired direction more reliably.
  • the rise surface 335e is a surface required for forming the main refractive surface 335d. However, as will be described later, the light incident from the rise surface 335e is refracted here and travels through the optical function layer 332 at an angle that is easily absorbed by the light absorbing portion 334. It also has a function of blocking more reliably.
  • the inclination of the rise surface 335e represented by ⁇ 72 is preferably 90 ° or less with respect to the direction along the light incident surface 332b of the optical function layer 332. If this angle is 90 ° or more, manufacturing becomes difficult. On the other hand, ⁇ 72 is preferably 73 ° or more.
  • the angle formed by the main refracting surface 335d and the rise surface 335e can be 90 ° or an angle close thereto, and the light incident on the main refracting surface 335d from the normal direction of the main refracting surface 335d Since it can proceed in a direction nearly parallel to 335e, it is possible to suppress stray light from being reflected by the rise surface 335e.
  • Pitch of unit optical elements 335c shown in P q in FIG. 22, is preferably less than the pitch P c of the light absorbing portion 334, such as 2 / 3,2 / 5 with respect to P c, not be an integral multiple pitch More preferably. Thereby, it is possible to prevent the occurrence of moire due to the light absorbing portion 334 and the unit optical element 335c. More preferably, Pq is 3 ⁇ m or more while satisfying the above conditions. If Pq is smaller than this, there is a problem that the machining accuracy deteriorates. Further, the projecting height from the support layer 335a of the unit optical elements 335c shown in FIG. 22 D q is preferably 1 ⁇ m or more 15 ⁇ m or less. If it is smaller than this, there is a problem that the processing accuracy is deteriorated, and if it is larger than this, moire tends to occur between the light absorbing portion 334 and the unit optical element 335c.
  • the plurality of unit optical elements 335c are continuously arranged without gaps.
  • the present invention is not limited thereto, and a space is provided between adjacent unit optical elements 335c, and the surface of the support layer 335a is exposed in this portion. An aspect may be sufficient.
  • the plurality of unit optical elements 335c do not necessarily have the same shape, and may be changed as appropriate.
  • the support layer 335 a and the optical element layer 335 b (unit optical element 335 c) of the light incident side light control layer 335 can be made of the same material as the base layer 31 and the light transmission portion 33 described above.
  • optical path example is conceptual for explanation, and does not strictly represent the degree of reflection or refraction.
  • the light emitted from the light source 25 enters the light guide plate 21 from a light incident surface that is a side surface (end surface) of the light guide plate 21.
  • FIG. 20 shows an example of an optical path of light L 201 and L 202 incident on the light guide plate 21 from the light source 25 as an example.
  • the light L 201 and L 202 incident on the light guide plate 21 repeats total reflection due to a difference in refractive index with air on the light exit side surface of the light guide plate 21 and the back surface on the opposite side, thereby guiding the light in the light guide direction. Proceed to (downward direction in FIG. 20).
  • the back optical element 23 is disposed on the back surface of the light guide plate 21.
  • the light L 201 and L 202 traveling in the light guide plate 21 has their traveling direction changed by the back optical element 23 and incident on the light exit surface and the back surface at an incident angle less than the total reflection critical angle.
  • the light can be emitted from the light exit surface of the light guide plate 21 and the back surface on the opposite side.
  • Lights L 201 and L 202 emitted from the light exit surface travel toward the light diffusion plate 26 disposed on the light exit side of the light guide plate 21.
  • the light emitted from the back surface is reflected by the reflection sheet 39 disposed on the back surface of the light guide plate 21, enters the light guide plate 21 again, and travels through the light guide plate 21.
  • the light traveling in the light guide plate 21 and the light whose direction is changed by the back surface optical element 23 and reaching the light exit surface at an incident angle less than the total reflection critical angle are in each area along the light guide direction in the light guide plate 21. Arise. For this reason, the light traveling in the light guide plate 21 is gradually emitted from the light exit surface. Thereby, the light quantity distribution along the light guide direction of the light emitted from the light exit surface of the light guide plate 21 can be made uniform.
  • the light emitted from the light guide plate 21 then reaches the light diffusion plate 26 and the uniformity is improved.
  • the light diffused or condensed by the prism layer 27 as necessary and emitted from the prism layer 27 reaches the reflective polarizing plate 28.
  • the light in the polarization direction along the transmission axis of the reflective polarizing plate 28 passes through the reflective polarizing plate 28 and travels toward the optical sheet 330.
  • the light in the polarization direction along the reflection axis of the reflective polarizing plate 28 is reflected and returned to the light guide plate 21 side as indicated by the dotted arrow in FIG.
  • the returned light is reflected by the light guide plate 21, the back surface optical element 23, or the reflection sheet 39 and travels again toward the reflective polarizing plate 28.
  • the polarization direction of a part of the light is changed, and a part of the light is transmitted through the reflective polarizing plate 28.
  • Other light is returned to the light guide plate side again.
  • the light reflected by the reflective polarizing plate 28 can be transmitted through the reflective polarizing plate 28 by repeating the reflection.
  • the utilization factor of the light from the light source 25 is increased.
  • the light emitted from the reflective polarizing plate 28 has a polarization direction in a direction along the transmission axis of the lower polarizing plate 14, and is polarized light that is transmitted through the lower polarizing plate 14.
  • FIG. 24 shows an example of an optical path in the optical sheet 330.
  • the light L 201 and the light L 202 shown in FIG. 20 and the light L 241 and the light L 242 shown in FIG. 24 are incident on the main refractive surface 335d of the unit optical element 335c, and are incident on the main refractive surface 335d.
  • the light is transmitted through the main refracting surface 335d without being refracted or refracted (the light incident from the direction orthogonal to the inclined surface of the main refracting surface 335d is transmitted through the main refracting surface 335d without being refracted (light L 242 )). .)
  • a large amount of light becomes light directed obliquely downward on the viewer side, and this is directed toward the interface 334 a that is on the upper side of the light absorbing portion 334 among the interfaces between the light transmitting portion 333 and the light absorbing portion 334.
  • the light is totally reflected at the interface 334a to become light obliquely above the viewer side, and the light is controlled in a desired direction.
  • the light can be directed upward.
  • the inclination angle ⁇ 61 (see FIG. 23) of the interface 334a is 0 °
  • the light can be directed upward.
  • the interface 334b which is the lower side of the light absorption unit 334 among the interfaces between the light transmission unit 333 and the light absorption unit 334, is inclined so as to go obliquely upward on the viewer side, the light L 201 , the light It becomes difficult for the light absorption part 334 to inhibit the progress of light such as L 202 , light L 241 , and light L 242 , and more light can be guided in a desired direction.
  • the optical sheet 330 light is efficiently directed in a desired direction by combining the inclination angle of the main refractive surface 335c represented by ⁇ 71 in FIG. 23 and the inclination angle of the interface 334a represented by ⁇ 61 in FIG. It is easy to guide. In either case, there is a limit in the direction of light to be guided, and it becomes possible to control the traveling direction of light more easily by acting synergistically by the combination.
  • the light L 203 shown in FIG. 20 and the L 243 shown in FIG. 24 are incident on the rise surface 335e of the unit optical element 335c, and rise without being refracted or refracted according to the incident angle to the rise surface 335e.
  • the surface 335e is transmitted. In this way, most of the light transmitted through the rise surface 335e is obliquely above the observer side, and the angle at which the light is transmitted through the interface without being totally reflected by the interface 334b between the light transmitting part 333 and the light absorbing part 334. Therefore, the light passes through the interface 334b and is absorbed by the light absorbing portion 334.
  • the light emitted from the optical sheet 330 enters the lower polarizing plate 14 of the liquid crystal panel 15.
  • the lower polarizing plate 14 transmits one polarization component of incident light and absorbs the other polarization component.
  • the light transmitted through the lower polarizing plate 14 selectively passes through the upper polarizing plate 13 according to the state of electric field application to each pixel.
  • the liquid crystal panel 15 selectively transmits light from the surface light source device 320 for each pixel, so that an observer of the liquid crystal display device can observe an image. At that time, the image light is provided to the observer through the functional film 40, and the quality of the image is improved.
  • the light incident on the optical sheet 330 is directed upward due to refraction in the optical element layer 335b and total reflection at the interface 334a between the light transmitting portion 333 and the light absorbing portion 334.
  • Emission is easy and emission in the downward direction is limited. That is, for example, by using the optical sheet 330, it is possible to efficiently emit the incident light upward in the driver viewpoint, and to improve the luminance of the light emitted upward.
  • the light that is emitted upward is easily absorbed by the light absorbing portion, it is possible to prevent reflection on the windshield. Therefore, by using the optical sheet of this embodiment for a liquid crystal display device, it is possible to easily control light and improve visibility from the viewpoint of the driver as compared with the case where a conventional optical sheet is used.
  • FIG. 25 is a graph in which the horizontal axis represents the viewing angle in the vertical direction and the vertical axis represents the relative luminance.
  • positive (+) represents the upper direction in the vertical direction
  • negative ( ⁇ ) represents the lower direction in the vertical direction.
  • the peak of relative luminance is near + 20 ° (upper 20 ° in the vertical direction) as can be seen from the position indicated by D in FIG. That is, the light is controlled so that there is a luminance peak in a direction that is different from the front (0 °) from the viewpoint of the observer.
  • the relative luminance suddenly decreases in the vicinity of + 50 ° (upper 50 ° in the vertical direction). That is, it is possible to more reliably block light that travels greatly upward that causes reflection on the windshield of an automobile.
  • optical sheet and the image source unit were configured for each of the above forms, and the performance was tested.
  • Example A following the example of the image source unit 10, a test was performed from the viewpoint of controlling the light exit direction of the optical sheet.
  • Test Example A 1 to produce an optical sheet with changed theta 21 represented in FIG. 5
  • video source unit 10 comprises a light exit-side light control layer 35.
  • Specific shapes of the optical sheet other than ⁇ 21 are as follows.
  • (Optical function layer) -Pitch of light transmitting part and light absorbing part (P a in FIG. 4): 39 ⁇ m - light-absorbing portion upper base width (W a in FIG. 4): 4 [mu] m ⁇
  • Light absorber thickness D a in FIG.
  • the angle of the main refractive surface ( ⁇ 21 in FIG. 5): 85 ° (Test Example A 1 -1), 80 ° (Test Example A 1 -2), 70 ° (Test Example A 1 -3), 60 ° ( test example A 1 -4)
  • Test Example A 2 to produce an optical sheet with changed theta 31
  • the angle of the rise surface was also constant at 90 °.
  • the angles of the main refractive surfaces are 85 ° (Test Example A 2 -1), 80 ° (Test Example A 2 -2), 70 ° (Test Example A 2 -3), 60 ° (Test Example A 2-4 ).
  • Test Example A 3 In Test Example A 3, the optical sheet in Test Example A 2 -2, the angle of the rise surface (corresponding to theta 22 in FIG. 5) 80 ° (Test Example A 3 -1), and 100 ° (Test Example A 3 -2). Otherwise the same as in Test Example A 2 -2.
  • Test Example A 4 is an optical sheet excluding constituting the light exit-side light control layer from the optical sheet in Test Example A 1. Other sites were the same as the optical sheet in Test Example A 1.
  • FIG. 27 shows the results of Test Example A 1
  • FIG. 28 shows the results of Test Example A 2
  • FIG. 29 shows the results of Test Example A 3
  • test example A 1 -1 is A 1 -1
  • test example A 1 -2 is A 1 -2
  • test example A 1 -3 is A 1 -3
  • test example A 1 -4 is A 1- It was represented by 4.
  • test example A 2 -1 is A 2 -1
  • test example A 2 -2 is A 2 -2
  • test example A 2 -3 is A 2 -3
  • test example A 2 -4 is A 2 -4.
  • Test Example A 3 -1 to A 3 -1 Test Example A 3 -2 was expressed as A 3 -2.
  • a 2 -2 is also displayed.
  • the horizontal axis represents the viewing angle in the vertical direction, with positive being upward and negative being downward.
  • the vertical axis represents the relative luminance when the light source characteristic shown in FIG. 26 is 100%.
  • the optical sheet according to Test Examples A 1 , A 2 , and A 3 can efficiently control the light emission angle in a desired direction more finely than the optical sheet according to Test Example A 4. It was.
  • Test Example B Following the example of the video source unit 210, the test was performed from the viewpoint of light emission direction control of the optical sheet.
  • Test Example B 1 to prepare a light control member following the example of the light control member 229. Specific embodiments are as follows.
  • unit optical element UV curable urethane acrylate resin having a refractive index of 1.50-Bias angle ⁇ 4 in the direction in which the unit optical element extends with respect to the direction in which the light transmission part extends: 5 °
  • the above-described first optical sheet is disposed so that the direction in which the light transmission portion extends is the horizontal direction, and the second optical sheet is disposed so as to be on the light output side from the first optical sheet, thereby arranging the light control member. It was. At this time, the extending direction of the light transmission part of the second optical sheet was set to the vertical direction (see FIG. 12).
  • Test Example B 2 use a light control member excluding the light exit-side light control layer of light outgoing side light control layer and a second optical sheet of the first optical sheet with respect to the light control member according to the above Test Example B 1 It was.
  • Figure 31 is showing the evaluation results in the light control member of Test Example B 1.
  • the horizontal axis in FIG. 31A represents the light emission angle in the vertical direction, and the vertical axis represents the relative luminance with respect to 100% in FIG.
  • the horizontal axis in FIG. 31B represents the light emission angle in the horizontal direction, and the vertical axis represents the relative luminance with respect to 100% in FIG.
  • Figure 32 is showing the evaluation results in the light control member of Test Example B 2.
  • the horizontal axis in FIG. 32A represents the light emission angle in the vertical direction, and the vertical axis represents the relative luminance with respect to 100% in FIG.
  • the horizontal axis in FIG. 32B represents the light emission angle in the horizontal direction, and the vertical axis represents the relative luminance with respect to 100% in FIG.
  • Test Example C a test was performed from the viewpoint of preventing moire generation by a rough surface, in addition to the light output direction control, following the examples of the video source unit 10 and the video source unit 210.
  • Test Example C 1 to produce an optical sheet for changing the surface roughness of the theta 21, and the refractive surface and the rise surface shown in FIG. 5
  • video source unit 10 comprises a light exit-side light control layer 35.
  • Specific forms in other parts are as follows.
  • (Optical function layer) -Pitch of light transmitting part and light absorbing part (P a in FIG. 4): 39 ⁇ m - light-absorbing portion upper base width (W a in FIG. 4): 4 [mu] m ⁇
  • Light absorber thickness D a in FIG.
  • Test Example C 2 In Test Example C 2, instead of the optical sheet of Test Example C 1, to produce a video source unit comprising an optical sheet that follows the examples of the second optical sheet 230.
  • the specific form is as follows. (Base material layer) ⁇ Material: Polycarbonate resin ⁇ Thickness: 130 ⁇ m
  • unit optical element UV curable urethane acrylate resin having a refractive index of 1.50-Bias angle ⁇ 4 in the direction in which the unit optical element extends with respect to the direction in which the light transmission part extends: 4 ° -Formation of rough surfaces of refraction surface and rise surface (2 types): Molding with a molding die blasted with glass having an average particle size of 10 ⁇ m, molding with a molding die blasting with alumina having an average particle size of 2 ⁇ m (see FIG. 33)
  • Two types of rough unit optical elements were molded using the blasted mold, and an optical sheet was prepared for each.
  • Test Example C 3 In Test Example C 3, in form of the optical sheet of Test Example C 1, and an optical sheet that does not form a rough surface on the primary refracting surface and rise surface.
  • Test Example C 4 In Test Example C 4, with respect to the form of the optical sheet of Test Example C 2, and an optical sheet that does not form a rough surface on the primary refracting surface and rise surface.
  • Test Example D in accordance with the example of the image source unit 10, in addition to the light emission direction control, the relationship between the arrangement pitch of the light transmission parts (light absorption parts) and the arrangement pitch of the unit optical elements is changed to generate moiré. Tested in view.
  • P m
  • P a ⁇ P o and a and b are integers of 1 or more and 10 or less. Then, for P a and P o , a combination from a 1 ⁇ (1 ⁇ ) pitch to a 10 ⁇ pitch is considered. Thereby, it is possible to evaluate the occurrence of moire in a wide range in consideration of the integer multiple pitch. Then, the maximum P m among all the combinations P m in which a and b are changed with respect to a certain combination of P a and P o is defined as P mx . In this example, P a is set to 39 ⁇ m and P o is changed. For this P mx , the case where moire was observed as a result was expressed as “present”, and the case where moire was not observed was expressed as “none”.
  • the occurrence of moire can be prevented by adjusting the pitch (P a , P o ) so that P mx is 10000 ( ⁇ m) or less.
  • Test Example E an optical sheet following the optical sheet 330 shown in FIGS. 19 to 23 and an optical sheet corresponding to the optical sheet were produced and tested.
  • Optical function layer ⁇ Pitch (P c in FIG. 22): 39 ⁇ m - light-absorbing portion upper base width (W a in Figure 22): 4 [mu] m ⁇
  • UV curable urethane acrylate resin with a refractive index of 1.56-Light absorption material and refractive index UV curable urethane acrylate resin with a refractive index of 1.49 containing carbon black Disperse 20% by mass of acrylic beads with an average particle size of 4 ⁇ m
  • ⁇ Test Example E 4> As shown in FIG. 34, the main refractive surface of the unit optical element is inclined to the light source side from the bottom to the top, and the angle of the main refractive surface represented by ⁇ 81 in FIG. 34 is 5 °. . It is assumed that the inclination angle of the main refractive surface of the unit optical element is “ ⁇ 5 °”. Otherwise is the same as in Test Example E 1.
  • the luminance at the following three viewing angles was measured, and when the light source was turned on with the optical sheet removed from the surface light source device of the example shown in FIG. It was expressed as a luminance ratio relative to when (1) A luminance ratio based on luminance (front luminance) from the screen center to the normal direction of the screen. (2) A luminance ratio by luminance at a viewing angle (so-called driver viewpoint) of 40 ° in the horizontal direction and 20 ° in the vertical direction from the center of the screen.
  • the driver viewpoint means the position of the viewpoint when the display device is viewed from the driver's seat when the display device such as car navigation is arranged in the middle part between the driver's seat and the passenger seat of the automobile.
  • the luminance was measured by using an automatic variable angle luminance meter (GP-500 Murakami Color Research Laboratory) at the viewing angles (1) to (3) described above.
  • FIG. 35A shows the result of (1)
  • FIG. 35B shows the result of (2)
  • FIG. 35C shows the result of (3).
  • the brightness ratio level at which the main refractive surface tilt angle ( ⁇ 71 in FIG. 23) is 0 ° is represented by a dotted line.
  • the luminance ratio is higher than when the main refractive surface tilt angle is 0 °.
  • High means that the front brightness is high.
  • the luminance ratio is higher than when the main refractive surface tilt angle is 0 °. High means high brightness from the driver's point of view.
  • the luminance ratio is lower than when the main refracting surface inclination angle is 0 °.
  • the preferable results of (1) to (3) are all satisfied between two alternate long and short dash lines, and specifically, the main optical elements of the unit optical element provided in the light incident side light control layer
  • the inclination angle of the refracting surface ( ⁇ 71 in FIG. 23) is larger than 0 ° and smaller than 17 °. According to this, it becomes possible to easily control light so as to satisfy a plurality of optical characteristics in a balanced manner.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Planar Illumination Modules (AREA)
  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Laminated Bodies (AREA)

Abstract

所望の出光角度制御を効率よく行うことができる光学シートを提供することを目的とし、光学機能層は、一方向に延び、当該一方向とは異なる方向に間隔を有して複数配列される光透過部と、隣り合う光透過部の間に配置される光吸収部と、を有し、光学要素層は、上記の一方向に対して光学シートの正面視で0°以上45°以下の角度を有するように延び、当該延びる方向とは異なる方向に複数配列される突条である単位光学要素を具備する。

Description

光学シート、光制御部材、面光源装置、映像源ユニット、及び表示装置
 本発明は、入射した光の出射方向を制御する光学シート、並びにこれを備える光制御部材、面光源装置、映像源ユニット、及び表示装置に関する。
 カーナビゲーション、テレビ、パソコンのモニタ等の表示装置には、表示すべき映像を出射する映像源が備えられるとともに、映像光の質を高めて観察者側に提供するための光学シートが具備されている。
 映像光の出射方向は正面、又は、正面から上下左右の角度方向とされることが多く、これにより所望の位置から画面に映し出された映像を視認することができる。また、覗き見防止等、必要に応じて出光方向を制限することも行われている。
  このように出光角度を制御する光学シートとして例えば特許文献1~特許文献3が開示されている。
特開2006-171701号公報 特開2014-059565号公報 特開2012-113054号公報
 近年における機器の多様化により、映像光の出射方向をこれまでとは異なるように、又は、より細かく制御することが必要となってきた。例えばカーナビゲーションについてみると、車内では人が座る位置が概ね決まっているため、必ずしも広い視野角を必要とせず、人が存在する位置、特に運転者に向けて映像を出射すればよい。従って、映像光は正面よりも斜め上方に出射されることで運転者が見やすくなる。しかし一方であまり上方に向けて映像を出光してしまうとフロントガラスへの映像の映りこみの問題が生じる。このような出光角度は車種等により異なるため細かい出光角度の制御が必要となる。例えば上記特許文献を例に挙げれば次のような問題点を含んでいる。
 例えば特許文献1に記載のような光学シートを用いて視野角を制御すると細かな視野角制御をすることが難しかった。または、制御したとしても映像光の利用効率が低下してしまう問題があった。
 例えば特許文献2に記載のような光学シートでは、所望する方向への映像光の出射性能は高いが、それ以外の方向への映像光の出射が制限されてしまう。これにより、特に大きな画面を有する表示装置にした場合に、画面の中央は明るいものの画面の外周部分における明るさが中央部に比べて相対的に暗くなることがあった。特に画面を正面に対して斜め方向から見たときにその傾向がさらに顕著に表れる。
 例えば特許文献3に記載のような技術では、光透過部と光吸収部の形状をシートの中央部と外周部とで大きく変える必要があり、必ずしも細かく光の制御をすることができるものではなかった。また、この場合、製造上の困難性が高まり、精度のよい形状を作製するのが難しい。
 そこで本発明は、所望の出光角度制御を効率よく行うことができる光学シートを提供することを課題とする。また、この光学シートを備える光制御部材、面光源装置、映像源ユニット、及び表示装置を提供する。
 以下、本発明について説明する。
 本発明の1つの態様は、複数の層が積層されてなる光学シートであって、複数の層の1つである光学機能層と、複数の層の他の1つである光学要素層と、を備え、光学機能層は、一方向に延び、当該一方向とは異なる方向に間隔を有して複数配列される光透過部と、隣り合う光透過部の間に配置される光吸収部と、を有し、光学要素層は、一方向に対して光学シートの正面視で0°以上45°以下の角度を有するように延び、当該延びる方向とは異なる方向に複数配列される突条である単位光学要素を具備する、光学シートである。
 ここで「光学シートの正面視」とは光学シートをその出光側となる面からみたときの視点を意味する。そして「光学シートの正面視で0°以上45°以下」とは光学シートの正面視で光学シートを見たときに、光透過部が延びる方向(一方向)に対して単位光学要素が0°以上45°以下の角度を有するように延びていることを意味する。
 光透過部は台形断面を有し、長い下底が単位光学要素側に向いているように構成してもよい。
 単位光学要素は、主屈折面及びライズ面を有する三角形断面を有し、主屈折面は光学機能層の出光面の法線方向に対して45°より大きく89°以下で傾斜する面としてもよい。
 主屈折面と光学機能層の出光面の法線との成す角が、シート中央側の単位光学要素とシート外周側の単位光学要素とで異なるように構成してもよく、このときには光学要素層がリニアフレネルレンズからなるようにすることもできる。
 単位光学要素は、主屈折面及びライズ面を有する三角形断面を有し、主屈折面は、光学機能層の層面に対して0°より大きく17°より小さい角度で傾斜するように構成してもよい。
 光透過部は台形断面を有し、短い上底が単位光学要素側に向いているように構成してもよい。
 単位光学要素の表面には粗面が形成されてもよい。
 光透過部の配列ピッチをP(μm)、単位光学要素の配列ピッチをP(μm)、a、bを1以上10以下の整数とし、
    P=|(a・P・b・P)/(a・P-b・P)|
として、あるP、Pに対する全てのa、bの組み合わせから得られるPのうち最も大きなものをPmx(μm)としたとき、前記Pmxが10000(μm)以下であるように構成してもよい。
 光源と、該光源よりも観察者側に配置される上記の光学シートと、を備える面光源装置を提供することができる。
 上記の光学シートが2枚以上配置され、一方の光学シートの光透過部が延びる方向と、他方の光学シートの光透過部が延びる方向と、が光学シートの正面視で交差するように配置される、光制御部材とすることができる。
 光源と、該光源よりも観察者側に配置される上記光制御部材と、を備える面光源装置を提供することができる。
 上記の面光源装置と、該面光源装置の出光側に配置された液晶パネルと、を備える映像源ユニットを提供することができる。
 光透過部、光吸収部、及び単位光学要素は、延びる方向が水平方向であり、配列される方向が鉛直方向である映像源ユニットとしてもよい。
 また、上記の映像源ユニットが筐体に収められた表示装置を提供することができる。
 本発明によれば、出光角度制御を効率よく行うことができる。
映像源ユニット10を説明する分解斜視図である。 映像源ユニット10の断面を示す分解図である。 映像源ユニット10の他の断面を示す分解図である。 光学シート30に注目して拡大した断面図である。 光学シート30をさらに拡大した断面図である。 光学シート30の変形例を説明する図である。 光学シート30を透過する光の光路例について説明する図である。 出光側光制御層35を備える場合の出光角度の制御について説明する図である。 出光側光制御層135を備える形態について説明する図である。 出光側光制御層135による光路例を説明する図である。 出光側光制御層135を備える場合の出光角度の変化について説明する図である。 映像源ユニット210を説明する分解斜視図である。 映像源ユニット210の断面を示す分解図である。 映像源ユニット210の他の断面を示す分解図である。 第二の光学シート230に注目して拡大した断面図である。 第二の光学シート230の一部をさらに拡大した断面図である。 第一の光学シート30における光路例を説明する図である。 第二の光学シート230における光制御を説明する図である。 映像源ユニット310を説明する分解斜視図である。 映像源ユニット310の断面を示す分解図である。 映像源ユニット310の他の断面を示す分解図である。 光学シート330に注目して拡大した図である。 光学シート330をさらに拡大した図である。 光学シート330を透過する光路について説明する図である。 光学シート330の出光特性について説明する図である。 試験例Aにおける光源の特性を表した図である。 試験例Aの結果を表した図である。 試験例Aの結果を表した図である。 試験例Aの結果を表した図である。 試験例Bにおける光源の特性を表した図である。 図31(a)、図31(b)は試験例Bの結果を表した図である。 図25(a)、図25(b)は試験例Bの結果を表した図である。 単位光学要素の表面に粗面を形成する場面を表した図である。 試験例Eの光学シートの構成について説明する図である。 図35(a)、図35(b)、図35(c)は、試験例Eの結果を表したグラフである。
 以下、本発明を図面に示す形態に基づき説明する。ただし、本発明はこれら形態に限定されるものではない。なお、各図面では分かりやすさのため、形状を拡大、変形、誇張して表すことがあり、繰り返しとなる符号は一部を省略することがある。
 図1は第1の形態を説明する図であり、光学シート30を含む映像源ユニット10の分解斜視図である。また、図2には、図1にII-IIで示した線(鉛直方向に沿った線)に沿って切断した映像源ユニット10の分解断面図の一部、図3にはIII-IIIで示した線(水平方向に沿った線)に沿って切断した映像源ユニット10の分解断面図の一部を表した。なお、ここでいう鉛直方向及び水平方向は、光学シート30が表示装置に配置され、この表示装置が使用される姿勢における向きを意味する。
  このような映像源ユニット10は、詳細な説明は省略するが、不図示の筐体に、該映像源ユニット10を作動させる電源、及び映像源ユニット10を制御する電子回路等、映像源ユニット10として動作するために必要とされる通常の機器とともに納められて表示装置とされている。本形態は映像源ユニットの一態様として液晶映像源ユニット、表示装置の一態様として液晶表示装置を説明する。以下映像源ユニット10について説明する。
 映像源ユニット10は、液晶パネル15、面光源装置20、及び機能フィルム40を備えている。本形態で光学シート30は、面光源装置20に含まれている。図1~図3には、表示装置が設置された姿勢における向きを併せて表示している。
 液晶パネル15は、観察者側に配置された上偏光板13と、面光源装置20側に配置された下偏光板14と、上偏光板13と下偏光板14との間に配置された液晶層12と、を有している。上偏光板13、下偏光板14は、入射した光を直交する二つの偏光成分(P波およびS波)に分解し、一方の方向(透過軸に平行な方向)の偏光成分(例えば、P波)を透過させ、当該一方の方向に直交する他方の方向(吸収軸に平行な方向)の偏光成分(例えば、S波)を吸収する機能を有している。
 液晶層12は、複数の画素が層面に沿った方向に2次元的に縦横に配列されており、一つの画素を形成する領域毎に電界印加できる。そして電界印加された画素の配向が変化する。これにより、面光源装置20側(すなわち入光側)に配置された下偏光板14を透過した透過軸に平行な偏光成分(例えばP波)は、電界印加された画素を通過する際にその偏光方向を90°回転させ、その一方で、電界印加されていない画素を通過する際にその偏光方向を維持する。このため、画素への電界印加の有無によって、下偏光板14を透過した偏光成分(例えばP波)が、出光側に配置された上偏光板13をさらに透過するか、あるいは、上偏光板13で吸収されて遮断されるか、を制御することができる。
 このようにして液晶パネル15は、面光源装置20からの光の透過または遮断を画素毎に制御して映像を表現する構造を有している。
 液晶パネルにはいくつかの種類があるが、本形態ではその種類は特に限定されることはなく、公知の型の液晶パネルを用いることができる。具体的には例えばTN、STN、VA、MVA、IPS、OCB等が挙げられる。
 次に面光源装置20について説明する。
  面光源装置20は、液晶パネル15を挟んで観察者側とは反対側に配置され、液晶パネル15に対して面状の光を出射する照明装置である。図1~図3よりわかるように、本形態の面光源装置20は、エッジライト型の面光源装置として構成され、導光板21、光源25、光拡散板26、プリズム層27、反射型偏光板28、光学シート30及び反射シート39を有している。
 導光板21は、図1~図3よりわかるように、基部22及び裏面光学要素23を有している。導光板21は透光性を有する材料により形成された全体として板状の部材である。本形態で導光板21の観察者側となる一方の板面側は平滑面とされ、これとは反対側である他方の板面側は裏面とされ、当該裏面に複数の裏面光学要素23が配列されている。
 基部22、裏面光学要素23をなす材料としては、種々の材料を使用することができる。ただし、表示装置に組み込まれる光学シート用の材料として広く使用され、優れた機械的特性、光学特性、安定性および加工性等を有するとともに安価に入手可能な材料を用いることができる。これには例えば脂環式構造を有する重合体樹脂、メタクリル樹脂、ポリカーボネート樹脂、ポリスチレン樹脂、アクリロニトリル-スチレン共重合体、メタクリル酸メチル-スチレン共重合体、ABS樹脂、ポリエーテルスルホン等の熱可塑性樹脂や、エポキシアクリレートやウレタンアクリレート系の反応性樹脂(電離放射線硬化型樹脂等)等を挙げることができる。
 基部22は、その内部を光が導光されるとともに、裏面光学要素23のベースとなる部位で、適切な厚さを有する板状である。
 裏面光学要素23は、基部22の裏面側に形成される突出した要素であり、本形態では三角柱状である。本形態で裏面光学要素23は、突出した頂部の稜線が水平方向に延びる柱状であり、複数の裏面光学要素23が当該延びる方向に直交する方向(鉛直方向)に配列されている。本形態の裏面光学要素23は断面が三角形であるがこれに限定されることはなく、多角形、半球状、球の一部、レンズ形状等いずれの形状の断面であってもよい。
  複数の裏面光学要素23の配列方向は導光方向であることが好ましい。すなわち、光源25から離隔する方向に配列され、光源25が配列される方向、又は1つの長い光源であれば該光源が延びる方向に平行に各裏面光学要素23の稜線が延びている。
 なお、本件明細書における「三角形形状」とは、厳密な意味での三角形形状のみでなく、製造技術における限界や成型時の誤差等を含む略三角形形状を含む。また同様に、本件明細書において用いる、その他の形状や幾何学的条件を特定する用語、例えば、「平行」、「直交」、「楕円」、「円」等の用語も、厳密な意味に縛られることなく、同様の光学的機能を期待し得る程度の誤差を含めて解釈する。
 このような構成を有する導光板21は、押し出し成型により、又は、基部22上に裏面光学要素23を賦型することにより製造することができる。なお、押し出し成型で製造された導光板21においては、基部22、及び裏面光学要素23が一体的に形成され得る。また、賦型によって導光板21を製造する場合、裏面光学要素23が、基部22と同一の樹脂材料であっても、異なる材料であってもよい。
 図1~図3に戻って、光源25について説明する。光源25は、導光板21の基部22が有する側面(端面)のうち、裏面光学要素23が配列される方向の一方側の側面(端面)に配置される。光源の種類は特に限定されるものではないが、線状の冷陰極管等の蛍光灯、点状のLED(発光ダイオード)、又は白熱電球等の種々の態様で構成できる。本形態で光源25は複数のLEDからなり、不図示の制御装置により各LEDの点灯および消灯、並びに/又は、各LEDの点灯時の明るさを個別に独立して調節できるように構成されている。
  なお、本形態では上記のように光源25は一方側の側面(端面)に配置される例を示したが、さらにこの側面(端面)とは反対側となる側面(端面)にも光源が配置される形態であってもよい。この場合には裏面光学要素の形状も当該光源の配置に適するように公知の例に倣って形成する。
 次に光拡散板26について説明する。光拡散板26は、導光板21の出光側に配置され、ここに入射した光を拡散させて出射する機能を有する層である。これにより、導光板21から出射した光の均一性をさらに高め、導光板21に存在する傷を目立たなくすることができる。
  光拡散板の具体的態様は、公知の光拡散板を用いることができ、例えば母材の中に光拡散剤を分散させた形態を挙げることができる。
  光拡散板26は、本形態のようにプリズム層27の支持板として用いることもできる。また、導光板21の出光面が平滑の場合には、光拡散板26を導光板21に貼り合わせて一体としてもよい。
 プリズム層27は、図1~図3よりわかるように、光拡散板26よりも液晶パネル15側に設けられ、該液晶パネル15側に向けて凸である単位プリズム27aを具備する層である。本形態で単位プリズム27aは、本形態では三角形断面を有して導光板21の導光方向に直交する方向(本形態では水平方向)に延びる形態を有している。そして、複数の単位プリズム27aが導光板21の導光方向(本形態では鉛直方向)に配列されている。これにより光学機能層32で光を制御する方向(本形態では鉛直方向)に光を集光することができ、光学機能層32で光を効率よく全反射させることが可能となるため、光の利用効率を高めることができる。
  ただし、このようなプリズム層の単位プリズムの断面形状は、必要とする機能に応じて公知の形状(三角形、四角形、その他の多角形)を適用することができる。当該形状により上記のように集光することもできるし、逆に光をさらに拡散させることもできる。
  また、単位プリズムが延びる方向及び配列される方向は上記形態に限定されることなく他の形態であってもよい。例えば単位プリズムが導光板の導光方向に延び、複数の単位プリズムが導光板の導光方向に対して直交する方向に配列される形態であってもよい。
 反射型偏光板28は、入射した光を直交する二つの偏光成分(P波およびS波)に分解し、一方の方向(透過軸に平行な方向)の偏光成分(例えば、P波)を透過させ、当該一方の方向に直交する他方の方向(反射軸に平行な方向)の偏光成分(例えば、S波)を反射する機能を有している。このような反射型偏光板の構造は公知のものを適用することができる。
 次に光学シート30について説明する。図4には図2の視点で光学シート30の一部を拡大して表した。図1~図4よりわかるように、光学シート30は、シート状に形成された基材層31と、基材層31の一方の面(本形態では導光板21側の面)に設けられた光学機能層32と、基材層31の他方の面(本形態では液晶パネル15側の面)に配置された光制御層としての出光側光制御層35と、を備えている。
 基材層31は光学機能層32、及び出光側光制御層35を支持する平板状のシート状部材である。
  基材層31をなす材料としては、種々の材料を使用することができる。ただし、表示装置に組み込まれる光学シート用の材料として広く使用され、優れた機械的特性、光学特性、安定性および加工性等を有するとともに安価に入手可能な材料を用いることができる。これには例えばポリエチレンテレフタレート樹脂(PET)、トリアセチルセルロース樹脂(TAC)、メタクリル樹脂、ポリカーボネート樹脂等を挙げることができる。この中でも面光源装置20と下偏光板14との組み合わせを考慮して複屈折(リタデーション)の少ないTAC、メタクリル樹脂、ポリカーボネート樹脂を用いることが好ましい。さらには、車載用途などのように高い耐熱性が求められる用途では、ガラス転移点が高いポリカーボネート樹脂が望ましい。具体的にはポリカーボネート樹脂のガラス転移点は143℃であり、一般に105℃での耐久性が求められる車載用途に適している。
 光学機能層32は基材層31の一方の面(本形態では導光板21側の面)に積層された層で、光透過部33、及び光吸収部34を有して構成されている。光学機能層32は、図4に示した断面を有して紙面奥/手前側(本形態では映像源ユニット10を正面視したときの水平方向)に延びる形状を備え、層面に沿って当該延びる方向とは異なる方向(本形態では鉛直方向)に光透過部33と光吸収部34とが交互に配列されている。
 光透過部33は、光を透過させることを主要の機能とする部位であり、本形態では図2、図4に表れる断面において、基材層31側に長い下底、その反対側(導光板21側)に短い上底を有する略台形の断面形状を有する要素である。
  光透過部33は、基材層31の層面に沿って当該断面を維持して一方向(本形態では水平方向)に延びるとともに、この延びる方向とは異なる方向(本形態では鉛直方向)に間隔を有して複数配列される。そして、隣り合う光透過部33の間には、略台形断面を有する間隔(溝)が形成されている。従って、当該間隔(溝)は、光透過部33の上底側(導光板21側)に長い下底を有し、光透過部33の下底側(基材層31側)に短い上底を有する台形断面を有し、ここに後述する必要な材料が充填されることにより光吸収部34が形成される。
  本形態では、複数の光透過部33がその下底側(基材層側31)でシート状の土台部32aにより連結されている。
 光透過部33は屈折率がNとされている。このような光透過部33は、光透過部構成組成物を硬化させることにより形成することができる。屈折率Nの値は特に限定されることはないが、後述するように台形断面の斜面における光吸収部34との界面で適切に光を反射(全反射を含む。)する観点から屈折率は1.47以上であることが好ましい。ただし、屈折率が高すぎる材料は割れやすい場合が多いので屈折率は1.61以下であることが好ましい。より好ましくは1.49以上1.56以下、さらに好ましくは1.56である。
 光吸収部34は隣り合う光透過部33の間に形成された上記の間隔(溝)に形成される間部として機能し、間隔(溝)の断面形状と同様の断面形状となる。従って短い上底が液晶パネル15側(基材層31側)を向き、長い下底がその反対側(本形態では導光板21側)となる。そして光吸収部34は、屈折率がNとされるとともに、光を吸収することができるように構成されている。具体的には屈折率がNである透明樹脂に光吸収粒子が分散される。屈折率Nは、光透過部33の屈折率Nよりも低い屈折率とされる。このように、光吸収部34の屈折率を光透過部33の屈折率より小さくすることにより、条件を満たして光透過部33に入射した光を光吸収部34との界面で適切に全反射させることができる。また、全反射条件を満たさない場合にも一部の光は当該界面で反射する。
  屈折率Nの値は特に限定されることはなく、当該全反射を適切に行えることを前提に1.47以上であることが好ましい。ただし、屈折率が高すぎる材料は割れやすい場合が多いので屈折率は1.61以下であることが好ましい。より好ましくは1.49以上1.56以下、さらに好ましくは1.49である。
 光透過部33の屈折率Nと光吸収部34の屈折率Nとの屈折率の差は特に限定されるものではないが、0より大きく0.14以下が好ましく、0.05以上0.14以下であることがより好ましい。屈折率差を大きくすることにより、より多くの光を全反射させることができる。
 光学機能層32は、特に限定されることはないが、例えば次のような形状とすることができる。図5には図4の一部をさらに拡大した図を表した。
 図5に示したθ11は、光透過部33と光吸収部34との界面のうち、光学シート30が図1のような姿勢とされた際に光吸収部34の上側となる界面34aと、光学機能層32の層面の法線と、のなす角である。θ12は、同姿勢で光透過部33及び光吸収部34の界面のうち光吸収部34の下側となる界面34bと、光学機能層32の層面の法線と、のなす角である。
  θ11は、0°以上10°以下であることが好ましい。θ11が0°より大きいとは導光板21側(入光側)から液晶パネル15側(出光側、基材層31側)に向けて下がるように傾斜することを意味する。
  θ12は、0°以上10°以下であることが好ましい。θ12が0°より大きいとは導光板21側(入光側)から液晶パネル15側(出光側、基材層31側)に向けて上がるように傾斜することを意味する。
 θ11、及びθ12の角度の大きさの関係は必要に応じて設定することができる。
 また、図4にPで表した光透過部33及び光吸収部34のピッチは20μm以上100μm以下であることが好ましく、30μm以上100μm以下であることがより好ましい。そして図4にDで示した光吸収部34の厚さは50μm以上150μm以下であることが好ましく、60μm以上150μm以下であることがより好ましい。これらの範囲内とすることにより、光の透過と光の吸収とのバランスをより適切にすることができる。
 本形態では光透過部33と光吸収部34との界面が断面において一直線状となる例を示したが、これに限らず折れ線状、凸である曲線状、凹である曲線状等であってもよい。また、複数の光透過部33及び光吸収部34で断面形状が同じであってもよいし、規則性を有して異なる断面形状であってもよい。
 上記では、光透過部33及び光吸収部34が延びる方向が水平である例を説明したが、モアレ発生を抑制する観点から、光透過部33及び光吸収部34が延びる方向は、液晶層12の画素の配列方向に対して、映像源ユニットの正面視で角度を有していることが好ましい(バイアス角α)。このバイアス角αの具体的な角度はモアレの発生を防止できれば特に限定されることはないが、1°以上10°以下であることが好ましい。
 次に出光側光制御層35について説明する。出光側光制御層35は光制御層として機能し、光学機能層32と組み合わされることで両者が相まって光の向きを制御する。
  本形態では出光側光制御層35は光学機能層32から出光した光に対して光の向きを制御して出射する。すなわち、本形態で出光側光制御層35は、光学機能層32で制御された光の向きをさらに制御して、出光される光が所望の出光角度となるようにする。
 そのため、出光側光制御層35は、支持層35a及び光学要素層35bを有して構成されている。
  支持層35aは光学要素層35bの支持体として機能する透明なシート状の部材である。支持層35aは上記した基材層31や光透過部33と同様の材料により構成することができる。
 光学要素層35bは、光学機能層32から出射した光の向きを変更する層であり、支持層35aの面のうち光学機能層32側とは反対側の面に複数の単位光学要素35cが配列されてなる。
  単位光学要素35cは、光学機能層32で制御した光に対してさらに方向制御を行う。本形態では図1~図3の姿勢で、視野角度を鉛直方向上方へ効率よくシフトさせるように制御する。図4、図5には単位光学要素35cの断面形状が表れている。
 本形態で単位光学要素35cは具体的に次のような構造を備えている。
  単位光学要素35cは、基材層31を挟んで光学機能層32側とは反対側に突出する三角形断面を有する三角柱状であり、当該断面を有してその稜線が光透過部33及び光吸収部34が延びる方向と同じ(バイアス角α=0°)又は光学シートの正面視で角度を有して(バイアス角α≠0°)延びる突条で構成されている。そして複数の単位光学要素35cが、当該延びる方向とは異なる方向に配列されている。
 単位光学要素35cの稜線が光透過部33及び光吸収部34が延びる方向に対して光学シートの正面視で角度を有して延びるように構成されている場合(バイアス角α≠0°)には、光学シート30の正面視で、光学機能層32の光透過部33が延びる方向と、単位光学要素35cの稜線が延びる方向とは0°より大きく45°以下のバイアス角αで相対的に傾斜するように延びていることが好ましい。これにより光透過部33及び光吸収部34による配列構造と、単位光学要素35cの配列構造と、によるモアレの発生を防止することができる。また、この角度αを45°より大きくすると、単位光学要素35cによる光方向制御の効率が低下してしまう。より好ましい角度αは1°以上10°以下である。
 そして各単位光学要素35cは図5からわかるように、主屈折面35dとライズ面35eとを有している。この主屈折面35d及びライズ面35eが三角柱の2つの面を形成し、他の1つの面が支持層35aに重なって該支持層35aに固定されている。
 本形態では、主屈折面35dは図1~図5の姿勢で、光学機能層32から出光した光をさらに上方に向けるように光の向きを変える屈折面である。これによれば出光の範囲を鉛直方向上方に効率よく移行させることができる。この場合、主屈折面35dは、下方に向かうにつれて光学機能層32に近づくように傾斜している(ここではこの方向を正(+)の方向の傾きとする。)。従って、1つの単位光学要素35cでは主屈折面35dが下、ライズ面35eが上となる。そして主屈折面35dの傾斜は、光学機能層32の法線方向に対して図5に示したθ21の角度を有する。
 θ21の具体的角度は45°より大きく90°未満(主屈折面の傾斜角度の絶対値が45°より大きく90°未満)であることが好ましい。これにより、確実に所望の方向における輝度向上(出光角制御)のための光の制御を行うことができる。θ21が45°以下であると主屈折面35dで全反射が起こりやすく、出光されない光が多くなる虞がある。また、θ21が90°以上であると主屈折面として機能をほとんど発揮できない。
  より好ましいθ21は80°以上89°以下である。θ21をこの範囲とすることにより、ライズ面35eを小さく抑えることができ、ライズ面35eによる迷光の発生を少なくすることが可能である。
 ライズ面35eは、主屈折面35dを形成するために必要とされる面である。
  図5にθ22で表したライズ面35eの傾斜角度は、光学機能層32の層面に沿った方向に対して80°以上100°以下であることが好ましい。製造上の観点から80°以上90°以下がより好ましい。また、θ22が80°未満、及び100°より大きくなるとライズ面35eによる迷光が多くなる虞がある。
 単位光学要素35cの頂角は上記θ21及びθ22からおのずと決まるものであるが、45°以上90°未満であることが好ましい。
 図4にPで示した単位光学要素35cのピッチは、モアレピッチを小さくすることで仮にモアレが発生しても見え難くする観点から、小さいほうが好ましく、具体的にはピッチPが50μm以下であることが好ましい。
  また光学機能層32の方が光学要素層35bより製造難易度が高いことから、光学機能層32の光透過部33のピッチP(図4参照)より、単位光学要素35cのピッチPの方が小さい方が望ましい。さらに望ましくは、PはPの1/2以下である。最も望ましくはPを、P/2、P/3、P/4など、等倍ピッチにしたときには、光透過部33の端部と単位光学要素35cの端部とができるだけ一致しないことである。言い換えると、PとPとの最小公倍数は大きい方が望ましい。
  一方、単位光学要素35cが小さくなると、精度が低下することからPは10μm以上であることが好ましい。
 より好ましくは光透過部33の配列ピッチをP(μm)、単位光学要素35cの配列ピッチをP(μm)としたとき、Pmx(μm)が10000(μm)以下である。これによりモアレの発生をより確実に防止することができる。ここで、Pmxは次のように得ることができる。
  PmxはPに基づいて得ることができ、Pは次式で表される。
    P=|(a・P・b・P)/(a・P-b・P)|
 ここで、P≧Pであり、a、bは1以上10以下の整数である。そしてP、Pについて等倍(1倍)ピッチから10倍ピッチまでの全ての組み合わせを考慮する。これにより整数倍ピッチを考慮した広い範囲でモアレ発生について評価することができる。
  そして、あるP、Pの組み合わせに対してa、bを変更した全ての組み合わせのP中で最大のPがPmxである。
 図4にDで示した単位光学要素35cの支持層35aからの突出高さは、1μm以上10μm以下であることが好ましい。これより小さくなると、加工精度が悪化して筋状の線が視認される不具合が起こることがあり、これより大きいと、光吸収部34と単位光学要素35cとでモアレが生じやすくなる。
 上記形態では、複数の単位光学要素35cが隙間なく連続して配置されているが、これに限らず隣り合う単位光学要素35cの間に間隔を設け、この部分は支持層35aの面が露出する態様であってもよい。
 また、本形態では単位光学要素35cの主屈折面35dが図4、図5に表れる断面において直線状であるが必ずしもこれに限らず、断面において凹状や凸状の曲線や折れ線状であってもよい。
  また、主屈折面35d及びライズ面35eを粗面としてもよい。これにより光を散乱してモアレの発生を抑制することができる。主屈折面35d及びライズ面35eを粗面とする方法は特に限定されることはないが、単位光学要素に対して直接ブラスト処理をしたり、単位光学要素を成形する型にブラスト処理をしたりすることが挙げられる。
  そして、複数の単位光学要素35cが必ずしも全て同じ形状である必要はなく、適宜変更してもよい。
 また、本形態では出光側光制御層35に支持層35aを設けたが、支持層35aは必ずしも設ける必要はない。例えば図6に変形例の出光側光制御層35’を表したように、光学要素層35bを基材層31に直接形成してもよい。
  このとき、基材層31の面のうち光学要素層35bとの界面を形成する面を粗面とするとともに、基材層31の屈折率と光学要素層35bの屈折率を異なるものとすることができる。これによれば、粗面により光が散乱し、モアレの発生を抑制することが可能である。
 このような出光側光制御層35の支持層35a及び光学要素層35b(単位光学要素35c)は、上記した基材層31や光透過部33と同様の材料により構成することができる。
 光学シート30は例えば次のように作製できる。
  はじめに基材層31の一方の面に光透過部33を形成する。これは、光透過部33の形状を転写できる形状を表面に有する金型ロールと、これに対向するように配置されたニップロールとの間に、基材層31となる基材シートを挿入する。このとき、金型ロールとニップロールとの間に間隔を設けることによりこれが土台部32aとなる。そして、基材シートと金型ロールとの間に光透過部を構成する組成物を供給しながら金型ロール及びニップロールを回転させる。これにより金型ロールの表面に形成された光透過部に対応する溝(光透過部形状を反転した形状)に光透過部を構成する組成物が充填され、該組成物が金型ロールの表面形状に沿ったものとなる。
 ここで、光透過部を構成する組成物としては、例えば、エポキシアクリレート系、ウレタンアクリレート系、ポリエーテルアクリレート系、ポリエステルアクリレート系、ポリチオール系等の電離放射線硬化型の樹脂を挙げることができる。
 金型ロールと基材シートとの間に挟まれ、ここに充填された光透過部を構成する組成物に対し、基材シート側から光照射装置により硬化させるための光を照射する。これにより、組成物を硬化させ、その形状を固定させることができる。そして、離型ロールにより金型ロールから基材層31および成形された光透過部33を離型する。
 次に光吸収部34を形成する。光吸収部34を形成するには、まず、上記形成した光透過部33間の間隔(溝)に光吸収部を構成する組成物を充填する。その後、余剰分の当該組成物をドクターブレード等で掻き落とす。そして、残った組成物に光透過部33側から紫外線を照射することによって硬化させ、光吸収部34を形成することができる。
 光吸収部として用いられる材料は特に限定されないが、例えば、ウレタン(メタ)アクリレート、ポリエステル(メタ)アクリレート、エポキシ(メタ)アクリレート、及びブタジエン(メタ)アクリレート等の光硬化型樹脂の中に着色された光吸収粒子が分散されている組成物を挙げることができる。
 また光吸収粒子を分散させる代わりに顔料や染料により光吸収部全体を着色することもできる。
  光吸収粒子を用いる場合には、カーボンブラック等の光吸収性の着色粒子が好ましく用いられるが、これらに限定されるものではなく、映像光の特性に合わせて特定の波長を選択的に吸収する着色粒子を使用してもよい。具体的には、カーボンブラック、グラファイト、黒色酸化鉄等の金属塩、染料、顔料等で着色した有機微粒子や着色したガラスビーズ等を挙げることができる。特に、着色した有機微粒子が、コスト面、品質面、入手の容易さ等の観点から好ましく用いられる。着色粒子の平均粒子径は1.0μm以上20μm以下であることが好ましく、1.0μm以上10μm以下であることがより好ましく、1.0μm以上4.0μm以下であることがさらに好ましい。
  ここで「平均粒子径」とは、光吸収粒子を100個電子顕微鏡で観察してその直径を計り、算術平均した直径を意味する。
 一方、光学機能層32とは別に支持層35aの一方の面に光学要素層35bを積層した出光側光制御層35を作製しておく。これは光学機能層32において基材層31に光透過部33を積層する方法に倣って、同じ要領で作製することが可能である。ただし、バイアス角αを0°でない角度とする場合には、光学要素層35bを形成するロール金型のうち単位光学要素35cを成形する溝がロール金型の外周面に沿って螺旋状(ネジ溝状)で形成されたものであることが好ましい。これにより精度の観点及び効率の観点から適切なバイアス角αを付与することができる。
 そして、基材層31の面のうち光学機能層32が配置された側とは反対側の面と、出光側光制御層35の支持層35aの面のうち、光学要素層35bが配置された側とは反対側の面とを粘着剤により貼り付けて一体化し、光学シート30を得る。
 図1~図3に戻って、面光源装置20の反射シート39について説明する。反射シート39は、導光板21の裏面から出射した光を反射して、再び導光板21内に光を入射させるための部材である。反射シート39は、金属等の高い反射率を有する材料からなるシート、高い反射率を有する材料からなる薄膜(例えば金属薄膜)を表面層として含んだシート等のいわゆる鏡面反射を可能とするものを好ましく適用することができる。
 機能フィルム40は、液晶パネル15の出光側に配置され、映像光の質を向上させたり、映像源ユニット10を保護したりする機能を有する層である。これには例えば反射防止フィルム、防眩フィルム、ハードコートフィルム、色調補正フィルム、光拡散フィルム等を挙げることができ、これらが単独又は複数組み合わされて構成されている。
 次に、以上のような構成を備える映像源ユニット10の作用について、光路例を示しつつ説明する。ただし当該光路例は説明のための概念的なものであり、反射や屈折の程度を厳密に表したものではない。
 まず、図2に示すように、光源25から出射した光は、導光板21の側面(端面)である入光面から導光板21内に入射する。図2には、一例として、光源25から導光板21に入射した光L21、L22の光路例が示されている。
 図2に示すように、導光板21に入射した光L21、L22は、導光板21の出光側面及びその反対側の裏面において、空気との屈折率差による全反射を繰り返し、導光方向(図2の紙面下方向)へ進んでいく。
 ただし、導光板21の裏面には裏面光学要素23が配置されている。このため、図2に示すように、導光板21内を進む光L21、L22は、裏面光学要素23によって進行方向が変わり、全反射臨界角未満の入射角度で出光面、及び裏面に入射することもある。この場合に当該光は、導光板21の出光面及びその反対側の裏面から出射し得る。
 出光面から出射した光L21、L22は、導光板21の出光側に配置された光拡散板26へと向かう。一方、裏面から出射した光は、導光板21の背面に配置された反射シート39で反射され、再び導光板21内に入射して導光板21内を進むことになる。
 導光板21内を進行する光と、裏面光学要素23で向きを変えられて全反射臨界角未満の入射角度で出光面に達する光は、導光板21内の導光方向に沿った各区域において生じる。このため、導光板21内を進んでいる光は、少しずつ、出光面から出射するようになる。これにより、導光板21の出光面から出射する光の導光方向に沿った光量分布を均一化させることができる。
 導光板21から出射した光は、その後、光拡散板26に達し均一性が高められる。そしてプリズム層27により必要に応じて拡散又は集光されプリズム層27を出光した光は反射型偏光板28に達する。ここでは、反射型偏光板28の透過軸に沿った偏光方向の光は反射型偏光板28を透過し光学シート30に向かう。
  一方、反射型偏光板28の反射軸に沿った偏光方向の光は図2に点線矢印で示したように反射して導光板21側に戻される。戻された光は、導光板21、裏面光学要素23、又は反射シート39で反射して再び反射型偏光板28の側に進行する。この反射の際に一部の光の偏光方向が変化しており、その一部は反射型偏光板28を透過する。他の光は再び導光板側に戻される。このように反射型偏光板28で反射した光も反射を繰り返すことで反射型偏光板28を透過できるようになる。これにより光源25からの光の利用率が高められる。
  ここで、反射型偏光板28を出射した光は、その偏光方向が下偏光板14の透過軸に沿った方向になっており、下偏光板14を透過する偏光状態の光となっている。
 反射型偏光板28を出射した光は光学シート30に達する。光学シート30に入射した光は次のような光路を有して進行する。図7に光学シート30における光路例を表した。
 光透過部33と光吸収部34とが交互に配列される方向(本形態では鉛直方向)に関して、図2に示した光L21、光L22、及び図7に示した光L71、光L72のように、光透過部33と光吸収部34との界面のうち、光吸収部34の上側となる界面34aに向かう。そして当該界面34aで全反射して、観察者側に向かう斜め上方の光となり、所望の方向への光の制御がなされる。
  このとき、光透過部33と光吸収部34との界面のうち光吸収部34の下側である界面34bが、観察者側に向かうにつれて斜め上方となるように傾斜していれば、光L21、光L22、光L71、光L72のような光の進行を光吸収部34が阻害し難くなり、より多くの光を所望の方向に導くことができる。
 また、図7に示したL73は、観察者側に向けて斜め上方に進むとともに、光透過部33と光吸収部34との界面34bで全反射することなく該界面を透過する角度で進行するので、界面34bを透過して光吸収部34に吸収される。
  これにより、所望の角度以上の視野角で出射する光を効率よく吸収して遮断することができ、さらに光の進行方向制御を効率よく行うことができる。
  また、このような光は液晶パネルに入射して、コントラスト低下や色の反転のような不具合や質の低下を生じる可能性が高いのでこのような光を吸収することができる。
 光学機能層32を透過した光は、さらに光学要素層35bにて光の向きが変更される。具体的には、本形態では、図7に示した光L71、光L72のように、主屈折面35dで光L71、L72がさらに上方に向けて屈折して出射される。これによりさらに出光範囲を上方に移行(シフト)させることができる。
 従って、本形態の光学シート30によれば、図8に示したように、出光側光制御層35がない場合(図8のA)に比べて、光学シート30(図8のB)の方がより鉛直方向上方への角度への出光を効率よく高めることができる。図8は、横軸に鉛直方向におけるシート面法線に対する出光角度を表し、正が上方、負が下方である。また縦軸にはある輝度を100%としたときの相対輝度を表した。このような出光角度の調整は光学機能層のみで行うことは難しく、又は行ったとしても輝度の低下等の不具合が伴うことが多い。これに対して光学シート30のように、さらに光学要素層35bを備えることで効率よく出光角度の制御を行うことが可能となる。
  そしてこのように光を制御するための光学要素層35bは上記のように簡易な構成であり、このような簡易な構成で効果を有するものとなる。
  なお、本形態において光学機能層32の上記θ11、及びθ12(図5参照)をθ11<θ12とすることにより、より広い範囲で視野角の制御をすることができる。
 光学シート30を出射した光は、液晶パネル15の下偏光板14に入射する。下偏光板14は、入射光のうち、一方の偏光成分を透過させ、その他の偏光成分を吸収する。下偏光板14を透過した光は、画素毎への電界印加の状態に応じて、選択的に上偏光板13を透過するようになる。このようにして、液晶パネル15によって、面光源装置20からの光を画素毎に選択的に透過させることにより、液晶表示装置の観察者が、映像を観察することができるようになる。その際、映像光は機能性フィルム40を介して観察者に提供され、映像の質が高められている。
 図9は第2の形態を説明する図であり、図5に相当する。本形態では出光側光制御層35の代わりに光制御層としての出光側光制御層135が適用されている。他の部位は上記した映像源ユニット10と同じなので、ここでは出光側光制御層135の構成及びその作用について説明する。
 出光側光制御層135は光学機能層32から出光した光に対して光の向きを制御して出射する。そのため、出光側光制御層135は、支持層35a及び光学要素層135bを有して構成されている。支持層35aは、上記した出光側光制御層35の支持層35aと同様である。
 光学要素層135bは、光学機能層32から出射した光の向きを変更する層であり、支持層35aの面のうち光学機能層32側とは反対側の面に複数の単位光学要素135cが配列されてなる。
 本形態で単位光学要素135cは具体的に次のような構造を備えている。単位光学要素135cは、光学機能層32側とは反対側に突出する三角断面を有する三角柱状であり、当該断面を有してその稜線が光透過部33及び光吸収部34が延びる方向に対して平行(バイアス角α=0°)、又はバイアス角度(バイアス角α≠0°)を有して延びる突条で構成されている。そして複数の単位光学要素135cが、当該延びる方向とは異なる方向に配列されている。単位光学要素135cと光透過部33とのバイアス角αの考え方は上記した単位光学要素35cと同じである。
 そして各単位光学要素135cは図9からわかるように、主屈折面135dとライズ面135eとを有している。この主屈折面135dとライズ面135eが三角柱の2つの面を形成し、他の1つの面が支持層35aに重なって該支持層35aに固定されている。
 本形態では、主屈折面135dは図1と同様の姿勢で、光学機能層32から上方に向けて出光した光の角度を、正面方向に近づけるように変える屈折面である。これによれば鉛直方向の出光角度を所望の方向に調整できる。この場合、主屈折面135dは、下方に向かうにつれて光学機能層32から離隔する方向に傾斜している(ここではこの方向を負(-)の方向とする。)。従って1つの単位光学要素135cでは主屈折面135dが上、ライズ面135eが下となる。
  そして主屈折面135dの傾斜角は、図9に示したように光学機能層32の出光面の法線方向に対してθ31の角度を有している。
 θ31の具体的角度は-89°以上-45°より小さい(傾斜角度の絶対値としては45°より大きく89°以下)であることが好ましい。これにより、確実に所望の方向における輝度向上(出光角制御)のための光の制御を行うことができる。θ31が-45°以上であると主屈折面135dで全反射して出光されない光が多くなる虞がある。また、θ31が-89°より小さくなると主屈折面として機能をほとんど発揮できない。
  より好ましいθ31は-89°以上-80°以下(傾斜角度の絶対値としては80°以上89°以下)である。θ31をこの範囲とすることによりライズ面135eが小さくなり、ライズ面135eによる迷光を減らすことができる。
 単位光学要素135cのその他の形状的な観点における好ましい態様は上記した単位光学要素35cと同様に考えることができる。
 次に出光側光制御層135を備えた映像源ユニットの作用について説明する。図10に光路例を示した。なお、他の部位における光路は上記した映像源ユニット10の通りなのでここでは説明を省略する。
 光学機能層32を透過した光は、さらに光学要素層135bにて光の向きが変更される。具体的には、本形態では、図10に示した光L101、光L102のように、主屈折面135dで光L101、L102が正面側に近づくように屈折して出射される。これにより出光角度を所望の方向に制御する。
 従って、出光側光制御層135を備える光学シートによれば、図11に示したように、出光側光制御層135がない場合(図11のA)に比べて、視野角度を効率よく移行(シフト)させることができる(図11のC)。図11は、横軸に鉛直方向におけるシート面法線に対する出光角度を表し、正が上方、負が下方である。また縦軸にはある輝度を100%としたときの相対輝度を表した。このような出光角度の調整は光学機能層のみで行うことは難しく、又は行ったとしても輝度の低下等の不具合が伴うことが多い。これに対してさらに出光側光制御層135を備えることにより効率よく視野角度の制御を行うことが可能となる。
  そしてこのように光を制御するための光学要素層135bは上記のように簡易な構成であり、このような簡易な構成で効果を奏するものとなる。
 図12は第3の形態を説明する図であり、光学シート230を含む映像源ユニット210の分解斜視図である。また、本形態では、上記した光学シート30を光学シート230より入光側(導光板21側)に配置し、光学シート30及び光学シート230の2枚の光学シートで光制御部材229としている。本形態ではわかり易さのため、光学シート30を第一の光学シート30、光学シート230を第二の光学シート230と表記することがある。
 図13には、図12にXIII-XIIIで示した線(鉛直方向に沿った線)に沿って切断した映像源ユニット210の分解断面図の一部、図14には図12にXIV-XIVで示した線(水平方向に沿った線)に沿って切断した映像源ユニット210の分解断面図を表した。なお、ここでいう鉛直方向及び水平方向は、光制御部材229が表示装置に配置され、この表示装置が使用される姿勢における向きを意味する。
  このような映像源ユニット210も、詳細な説明は省略するが、不図示の筐体に、該映像源ユニット210を作動させる電源、及び映像源ユニット210を制御する電子回路等、映像源ユニット210として動作するために必要とされる通常の機器とともに納められて表示装置とされている。本形態は映像源ユニットの一態様として液晶映像源ユニット、表示装置の一態様として液晶表示装置を説明する。以下映像源ユニット210について説明する。
 映像源ユニット210は、液晶パネル15、面光源装置220、及び機能フィルム40を備えている。本形態で第一の光学シート230及びこれを含む光制御部材229は、面光源装置20に具備されている。図12~図14には、表示装置が設置された姿勢における向きを併せて表示している。
  ここで、液晶パネル15及び機能フィルム40は、上記第1の形態の映像源ユニット10と同様に考えることができるので、ここでは同じ符号を付して説明を省略する。
 面光源装置220は、液晶パネル15を挟んで観察者側とは反対側に配置され、液晶パネル15に対して面状の光を出射する照明装置である。図12~図14よりわかるように、本形態の面光源装置220は、エッジライト型の面光源装置として構成され、導光板21、光源25、光拡散板26、プリズム層27、反射型偏光板28、光制御部材229及び反射シート39を有している。
  ここで光制御部材229以外は、上記第1の形態の映像源ユニット10に含まれる面光源装置20と同様に考えることができるので、ここでは同じ符号を付して説明を省略する。
 本形態で光制御部材229は、第一の光学シート30及び第二の光学シート230を有して構成されている。これら2枚の光学シートは、第一の光学シート30は導光板21側、第二の光学シート230は液晶パネル15側に配置されている。
  ここで第一の光学シート30は、上記面光源装置20に含まれる光学シート30と同様に考えることができるのでここでは同じ符号を付して説明を省略する。
 図15には図14の視点で第二の光学シート230の一部を拡大して表した。図12~図15よりわかるように、第二の光学シート230は、シート状に形成された基材層231と、基材層231の一方の面(本形態では第一の光学シート30側の面)に設けられた光学機能層232と、基材層231の他方の面(本形態では液晶パネル15側の面)に配置された光制御層としての出光側光制御層235と、を備えている。
  ここで基材層231は光学シート30の基材層31と同様に考えることができる。
 光学機能層232は基材層231の一方の面(本形態では第一の光学シート30側の面)に積層された層で、光透過部233、及び光吸収部234を有して構成されている。光学機能層232は、図14、図15に示した断面を有して紙面奥/手前側(本形態では映像源ユニット210を正面視したときの鉛直方向)に延びる形状を備え、層面に沿って当該延びる方向とは異なる方向(本形態では水平方向)に光透過部233と光吸収部234とが交互に配列されている。
 光透過部233は、光を透過させることを主要の機能とする部位であり、本形態では図14、図15に表れる断面において、基材層231側に長い下底、その反対側(第一の光学シート30側)に短い上底を有する略台形の断面形状を備える要素である。
  光透過部233は、基材層231の層面に沿って当該断面を維持して一方向(本形態では鉛直方向)に延びるとともに、この延びる方向とは異なる方向(本形態では水平方向)に間隔を有して複数配列される。そして、隣り合う光透過部34の間には、略台形断面を有する間隔(溝)が形成されている。従って、当該間隔(溝)は、光透過部233の上底側(第一の光学シート30側)に長い下底を有し、光透過部233の下底側(基材層231側)に短い上底を有する台形断面を有し、ここに後述する必要な材料が充填されることにより光吸収部234が形成される。
  本形態では、複数の光透過部233がその下底側(基材層231側)でシート状の土台部232aにより連結されている。
  このような構成により第一の光学シート30の光透過部33が延びる方向と第二の光学シート230の光透過部233が延びる方向とは光学シートの正面視において交差するように配置されている。
 光透過部233及び光吸収部234の屈折率については、光学シート30の光透過部33及び光吸収部34と同様に考えることができる。
 光学機能層232は、特に限定されることはないが、例えば次のような形状とすることができる。図16には図15の一部(図15の上部)をさらに拡大した図を表した。
 図16に示したθ41は、光透過部233と光吸収部234との界面のうち、第二の光学シート230が図12のような姿勢とされた際に水平方向左右の一方側における界面234aと、光学機能層232の層面の法線と、のなす角である。θ42は、同姿勢で光透過部233と光吸収部234との界面のうち、第二の光学シート230が図12のような姿勢とされた際に水平方向左右の他方側における界面234bと、光学機能層232の層面の法線と、のなす角である。
  本形態でθ41、θ42は、0°以上10°以下であることが好ましい。θ41、及びθ42の角度の大きさの関係は必要に応じて設定することができる。
 また、図15にPで表した光透過部233及び光吸収部235のピッチは20μm以上100μm以下であることが好ましく、30μm以上100μm以下であることがより好ましい。そして図15にDで示した光吸収部234の厚さは50μm以上150μm以下であることが好ましく、60μm以上150μm以下であることがより好ましい。これらの範囲内とすることにより、光の透過と光の吸収とのバランスをより適切にすることができる。
 本形態では光透過部233と光吸収部234との界面が断面において一直線状となる例を示したが、これに限らず折れ線状、凸である曲線状、凹である曲線状等であってもよい。また、複数の光透過部233及び光吸収部234で断面形状が同じであってもよいし、規則性を有して異なる断面形状であってもよい。
 上記では、光透過部233及び光吸収部235が延びる方向が鉛直である例を説明したが、モアレ発生を抑制する観点から、光透過部233及び光吸収部234が延びる方向は、液晶層12の画素の配列方向に対して、映像源ユニットの正面視で角度を有していることが好ましい(バイアス角α)。このバイアス角αの具体的な角度はモアレの発生を防止できれば特に限定されることはないが、1°以上10°以下であることが好ましい。
 次に出光側光制御層235について説明する。出光側光制御層235は光学機能層232から出光した光に対して光の向きを制御して出射する。本形態で出光側光制御層235は、光学機能層232で制御された光の向きを制御して、出光される光が所望の出光角度となるようにする。より具体的には、シート外周部側から出射される光が、シート法線方向よりも中央側に傾く方向に進行するように光を制御する。
 そのため、出光側光制御層235は、支持層235a及び光学要素層235bを有して構成されている。
  支持層235aは光学要素層235bの支持体として機能する透明なシート状の部材であり、光学シート30の支持層35aと同様に考えることができる。
 光学要素層235bは、光学機能層232から出射した光の向きを変更する層であり、支持層235aの面のうち光学機能層232側とは反対側の面に複数の単位光学要素235cが配列されてなる。
  本形態では、光学要素層235bは支持層235aに配置されているが、これに限らず光学要素層235bが基材層231の面のうち光学機能層232が配置された側とは反対側の面に直接配置されてもよい。この場合には出光側光制御層は支持層を有することなく光学要素層235bのみから構成される。
 本形態で光学要素層235bは、光学機能層232で制御した光に対して複数の単位光学要素235cが配列された方向(本形態では水平方向)において、シート外周側に出射された光が、シート法線方向よりも中央側に傾く方向に出光されるように光の向きを変更する層である。
  単位光学要素235cは、図14~図16に表れているように光学機能層232側とは反対側に突出する三角断面を有する三角柱状であり、当該断面を有してその稜線が光透過部233及び光吸収部234が延びる方向と同じ(バイアス角α=0°)又は光学シートの正面視で角度(バイアス角α≠0°)を有して延びる(本形態では鉛直方向に延びる)突条で構成されている。そして複数の単位光学要素235cが、当該延びる方向とは異なる方向(本形態では水平方向)に配列されている。
  単位光学要素235cの稜線が光透過部233及び光吸収部234が延びる方向に対して光学シートの正面視で角度を有して延びるように構成されている場合(バイアス角α≠0°)には、光制御部材229の正面視で、光学機能層232の光透過部233が延びる方向と、単位光学要素235cの稜線が延びる方向とは0°<α≦45°で相対的に傾斜するように延びていることが好ましい。これにより光透過部233及び光吸収部234による配列構造と、単位光学要素235cの配列構造と、によりモアレが発生することを防止することができる。αを45°より大きくすると、単位光学要素235cによる光の方向制御の効率が低下してしまう。より好ましい角度は1°≦α≦10°である。
 図15からわかるように、本形態の光学要素層235bは、単位光学要素235cが配列された方向において、単位光学要素235cの断面形状が、光学要素層235bの一端側と他端側とで、シート中央を挟んで対称であるとともに、当該一端側と他端側との間はシート中央部分には単位光学要素235cを有さない部位が具備される(図15のWの部分)。すなわちこの部分は平坦であり、単位光学要素の主屈折面のシート面法線に対する角度(図16のθ51)が90°である部位であるともいえる。
  なお、このような単位光学要素を有しない部位は必ずしも設けられる必要はなく、対称となる単位光学要素235cがシート中央を挟んで隣り合うように構成されてもよい。ただし、このようにシート中央を挟んで隣り合う単位光学要素が対称に存在するとその境界部に線が現れ、これが視認されてしまう虞がある。従って、少なくともシート中央には単位光学要素が存在せず、平坦であることが好ましい。このようにシート中央において線が発生しないようにするために、例えば光学要素層235を形成するための金型を切削加工により作製する際に、このシート中央となるべき部分の金型表面は、この部分を切削工具が跨ぐように重ねて加工すればよい。
 このような複数の単位光学要素235cの配列は、例えばリニアフレネルレンズに倣って構成することもできる。
 単位光学要素235cは図16からわかるように、主屈折面235dとライズ面235eとを有している。この主屈折面235d及びライズ面235eが三角柱の2つの面を形成し、他の1つの面が支持層235aに重なって該支持層235aに固定されている。
 本形態では、主屈折面235dは、図12~図16の姿勢で、水平方向において、光学機能層232から出光した光を、シート法線に対して中央側に傾いた角度で進行するように向きを変える屈折面である。これによれば単位光学要素235cが配列される方向(本形態では水平方向)において、画面端部から出射された光が中央側に向くので画面中央を正面視する観察者に向けて画面端部の光が向かうことから、観察者が画面端部で出射した光も明るく観察することができる。この場合、1つの主屈折面235dに注目すると、シート中央側に向かうにつれて光学機能層232から遠ざかる方向(より突出する方向)に傾斜している。従って、1つの単位光学要素235cに注目すると主屈折面235dがシート外周側、ライズ面235eがシート中央側となる。そして主屈折面235dの傾斜は、光学機能層232の法線方向に対して図16に示したようにθ51の角度を有している。
 θ51の具体的角度は45°より大きく90°未満(主屈折面の傾斜角度の絶対値が45°より大きく90°未満)であることが好ましい。これにより、確実に所望の方向における輝度向上(出光角度制御)のための光の制御を行うことができる。θ51が45°以下であると主屈折面235dで全反射して出光されない光が多くなる虞がある。また、θ51が90°以上であると主屈折面として機能をほとんど発揮できない。より好ましいθ51は80°以上89°以下である。θ51をこの範囲とすることによりライズ面235eが小さくなり、ライズ面235eによる迷光の発生を少なくすることができる。
  そしてこのθ51は、単位光学要素235cが配列される方向(本形態では水平方向)において、中央側の単位光学要素235cと外周側の単位光学要素235cとで異なることが好ましい。これによりさらに精度よく光の制御を行うことができる。より好ましくは、中央側の単位光学要素235cから外周側の単位光学要素235cにかけてθ51が小さくなるように構成されている。これにより、中央側への光の進行方向の制御を効率的に行うことができる。
 ライズ面235eは、主屈折面235dを形成するために必要とされる面である。
  図16にθ52で表したライズ面235eの傾斜角度は、光学機能層232の出光面に沿った方向に対して80°以上100°以下であることが好ましい。製造上の観点から80°以上90°以下がより好ましい。また、θ52が80°未満、及び100°より大きくなるとライズ面235eによる迷光が多くなる虞がある。
 単位光学要素235cの頂角は上記θ51及びθ52からおのずと決まるものであるが、45°以上90°未満であることが好ましい。
 図15にPで示した単位光学要素235cのピッチは、モアレピッチを小さくすることで仮にモアレが発生しても見え難くする観点から、小さいほうが好ましく、具体的にはピッチPが50μm以下であることが好ましい。
  また光学機能層232の方が光学要素層235bより製造難易度が高いことから、光学機能層232の光透過部233のピッチP(図15参照)より、単位光学要素235cのピッチPの方が小さい方が望ましい。さらに望ましくは、PはPの1/2以下である。最も望ましくはPを、P/2、P/3、P/4など、等倍ピッチにしたときには、光透過部233の端部と単位光学要素235cの端部とができるだけ一致しないことである。言い換えると、PとPとの最小公倍数は大きい方が望ましい。
  一方、単位光学要素235cが小さくなると、精度が低下することからPは10μm以上であることが好ましい。
 より好ましくは光透過部233の配列ピッチをP(μm)、単位光学要素235cの配列ピッチをP(μm)としたとき、Pmx(μm)が10000(μm)以下である。Pmxは上記と同様に考えることができる。
 図15にDで示した単位光学要素235cの支持層235aからの突出高さは、1μm以上10μm以下であることが好ましい。これより小さくなると、加工精度が悪化して筋状の線が視認される不具合が起こることがあり、これより大きいと、光吸収部234と単位光学要素235cとでモアレが生じやすくなる。
 上記形態では、複数の単位光学要素235cが隙間なく連続して配置されているが、これに限らず隣り合う単位光学要素235cの間に間隔を設け、この部分は支持層235aの面が露出する態様であってもよい。
 また、本形態では単位光学要素235cの主屈折面235dが図14~図16に表れる断面において直線状であるが必ずしもこれに限らず、凹状や凸状の曲線や折れ線状であってもよい。
  また、主屈折面235d及びライズ面235eを粗面としてもよい。これにより光を散乱してモアレの発生を抑制することができる。主屈折面235d及びライズ面235eを粗面とする方法は特に限定されることはないが、単位光学要素に対して直接ブラスト処理をしたり、単位光学要素を成形する型にブラスト処理をしたりすることが挙げられる。
  そして、複数の単位光学要素235cが必ずしも全て同じ形状である必要はなく、適宜変更してもよい。
 また、本形態では出光側光制御層235に支持層235aを設けたが、上記したように支持層235aは必ずしも設ける必要はなく、光学要素層235bを基材層231に直接形成してもよい。このとき、基材層231の面のうち光学要素層235bとの界面を形成する面を粗面とするとともに、基材層231の屈折率と光学要素層235bの屈折率を異なるものとすることができる。これによれば、粗面により光が散乱し、モアレの発生を抑制することが可能である。
  また、出光側光制御層は、必ずしも基材層や光学機能層に一体である必要はなく、別体で設けられてもよい。従って出光側光制御層と、基材層又は光学機能層と、の間に空気層が形成されてもよいし、別の機能層が配置されてもよい。
 このような出光側光制御層235の支持層235a及び光学要素層235b(単位光学要素235c)は、上記した光学シート30の支持層35a及び光学要素層35bと同様の材料により構成することができる。
 また、第二の光学シート230も光学シート30に倣って上記したように製造することができる。
 次に、以上のような構成を備える映像源ユニット210の作用について、光路例を示しつつ説明する。ただし当該光路例は説明のための概念的なものであり、反射や屈折の程度を厳密に表したものではない。また、光源25から出射して光制御部材229に達するまでについては、上記映像源ユニット10で説明した光路例と同様なので説明を省略する(図2参照)。
 光制御部材229に入射した光は初めに第一の光学シート30に入射し、次のような光路を有して進行する。図17に第一の光学シート30における光路例を表した。
 光透過部33と光吸収部34とが交互に配列される方向(本形態では鉛直方向)に関して、図17に示した光L171、光L172のように、光透過部33と光吸収部34との界面のうち、光吸収部34の上側となる界面34aに向かう。そして当該界面34aで全反射して、観察者側斜め上方の光となり、所望の方向への光の制御がなされる。
  このとき、光透過部33と光吸収部34との界面のうち光吸収部34の下側である界面34bが、観察者側へ斜め上方に向かうように傾斜していれば、光L171、光L172のような光の進行を光吸収部34が阻害し難くなり、より多くの光を所望の方向に導くことができる。
 また、図17に示した光L173は、観察者側斜め上方であるとともに、光透過部33と光吸収部34との界面34bで全反射することなく該界面を透過する角度で進行するので、界面34bを透過して光吸収部34に吸収される。
  これにより、所望の角度以上の出光角で出射する光を効率よく吸収して遮断することができ、さらに光の進行方向制御を効率よく行うことができる。
  また、このような光は液晶パネルに入射して、コントラスト低下や色の反転のような不具合や映像の質の低下を生じる可能性が高いのでこのような光を吸収することができる。
 光学機能層32を透過した光は、さらに光学要素層35bにて光の向きが変更される。具体的には、本形態では、図17に示した光L171、光L172のように、主屈折面35dで光L171、L172がさらに上方に向けて屈折して出射される。これによりさらに出光角度を上方に移行(シフト)させることができる。
 従って、本形態の第一の光学シート30でも、図8に示したように、出光側光制御層35がない場合(図8のA)に比べて、第一の光学シート30(図8のB)の方がより鉛直方向上方への出光角度への出光を効率よく高めることができる。このような出光角度の調整は光学機能層32のみで行うことは難しく、又は行ったとしても輝度の低下等の不具合が伴うことが多い。これに対して第一の光学シート30のように、さらに光学要素層35bを備えることで効率よく出光角度の制御を行うことが可能となる。
  そしてこのように光を制御するための光学要素層35bは上記のように簡易な構成であり、このような簡易な構成で効果を奏するものとなる。
 第一の光学シート30を出射した光は第二の光学シート230に達する。第二の光学シート230に入射した光は次のような光路を有して進行する。図15に第二の光学シート230における光路例を表した。
 光透過部233と光吸収部234とが交互に配列される方向(本形態では水平方向)に関して、図15に示した光L151~光L156は光透過部233と光吸収部234との界面で全反射して光の向きがシート面法線に近づくように変えられる。これにより光学要素層235bでの所望した光の制御がしやすくなる。
 光L157は、もともと水平方向において正面方向に近い方向に進む光であり、光吸収部234に到達することなく光透過部233を透過する。
 また、図15に示した光L158は、水平方向において正面に対して大きな角度で進行する光である。この光は、光透過部233と光吸収部234との界面で全反射することなく該界面を透過する角度で進行するので、界面を透過して光吸収部234に吸収される。
  これにより、所望の角度以上で出射する光を効率よく吸収して遮断することができ、さらに光の進行方向制御を効率よく行うことができる。
  また、このような光は液晶パネルに入射して、コントラスト低下や色の反転のような不具合を生じる可能性が高いのでこのような光を吸収することができる。
 光学機能層232を透過した光は、さらに光学要素層235bにて光の向きが変更される。具体的には、本形態では、図15に示した光L151、光L152、光L153、光L154のように、主屈折面235dで単位光学要素235cが配列される方向(本形態では水平方向)において、シート面法線に対して中央側に傾斜して光が進行するように光を出射することができる。
  なお光L155、L156、L157は単位光学要素235cを備えていない部分を透過するので、水平方向において正面に近い光が出射されそのまま正面の観察者へと光が提供される。
 図18(a)、図18(b)は水平方向におけるシートからの出射光の特徴を説明する図である。図18(a)、図18(b)では、横軸に水平方向におけるシート面法線方向に対する光の出射角度を表し、正が正面に対して右方、負が左方である。縦軸はある輝度を100%としたときの相対輝度である。
  図18(a)は出光側光制御層235が設けられていない一つの例を表す。この場合には、光学機能層で出光角度が規制された状態のまま出光されるため、シート面法線に対して小さい傾斜を有する方向にしか(図18(a)の例では概ね-30°以上+30°以下の範囲の方向にしか)出光されない。従って、画面が広い場合や画面を少し斜めから見た場合に、特に画面の外周端部等に暗くなる部位が生じることがあった。
  これに対して図18(b)は本形態のように出光側光制御層235を具備した例である。出光側光制御層235のシート外周端部に配置された単位光学要素235cにより図18(b)にC、Cで示したように、シート外周端部の一方側の単位光学要素235c(C)及び他方側の単位光学要素235c(C)のそれぞれから出射された光の出射方向のピークをシート面法線方向(0°方向)にシフトするように制御することができる。また、両外周端部の単位光学要素235cの間に形成された、単位光学要素235cが配置されていないシート中央部分ではDで示したように、そのまま光がシート面法線方向に近い方向で出光される。これにより、画面端部から出射された光も、観察者が見ている方向に向かうように傾斜しているため、画面が広い場合や画面を少し斜めから見た場合にも、画面の外周端部等に暗くなる部位が生じることを防止できる。
  このような出光方向角度の調整は光学機能層232のみで行うことは難しく、又は行ったとしても輝度の低下や構造の複雑化を要する等の不具合が伴うことが多い。これに対して第二の光学シート230のように、光学要素層235bを備えることで効率よく出光角度の制御を行うことが可能となる。
  そしてこのように光を制御するための光学要素層235bは上記のように簡易な構成であり、このような簡易な構成で効果を奏するものとなる。
 このような光制御部材229を光が透過することにより、鉛直方向には所望の方向へ光を出射しつつ、水平方向には外周端部から出射された光を制御することが可能となる。そしてこのような制御を簡易な構成で効率よく行うことができる。
 光制御部材229を出射した光は、液晶パネル15の下偏光板14に入射する。下偏光板14は、入射光のうち、一方の偏光成分を透過させ、その他の偏光成分を吸収する。下偏光板14を透過した光は、画素毎への電界印加の状態に応じて、選択的に上偏光板13を透過するようになる。このようにして、液晶パネル15によって、面光源装置220からの光を画素毎に選択的に透過させることにより、液晶表示装置の観察者が、映像を観察することができるようになる。その際、映像光は機能性フィルム40を介して観察者に提供され、映像の質が高められている。
 本形態では、第一の光学シート30及び第二の光学シート230を組み合わせて光制御部材229として適用した例を説明したが、必ずしも両者は組み合わされている必要はなく、第一の光学シート30及び第二の光学シート230がそれぞれ単独で適用されてもよい。光制御の態様によってそれぞれの光学シートを使い分けても、組み合わせてもよい。
 図19は第4の形態を説明する図であり、光学シート330を含む映像源ユニット30の分解斜視図である。また、図20には図19にXX-XXで示した線に沿って切断した映像源ユニット310の分解断面図の一部、図21にはXXI-XXIで示した線に沿って切断した映像源ユニット310の分解断面図の一部を表した。
  このような映像源ユニット310も、詳細な説明は省略するが、不図示の筐体に、該映像源ユニット310を作動させる電源、及び映像源ユニット310を制御する電子回路等、映像源ユニット310として動作するために必要とされる通常の機器とともに納められて表示装置とされている。本形態は映像源ユニットの一態様として液晶映像源ユニット、表示装置の一態様として液晶表示装置を説明する。
 映像源ユニット310は、液晶パネル15、面光源装置320、及び機能フィルム40を備えている。本形態で光学シート330は、面光源装置320に含まれている。図19~図21には、表示装置が設置された姿勢における向きを併せて表示している。
  ここで液晶パネル15、及び機能フィルム40については映像源ユニット10と同じであるため同じ符号を付して説明を省略する。
 面光源装置320は、液晶パネル15より観察者側とは反対側に配置され、液晶パネル15に対して面状の光を出射する照明装置である。図19~図21よりわかるように、本形態の面光源装置320も、エッジライト型の面光源装置として構成され、導光板21、光源25、光拡散板26、プリズム層27、反射型偏光板28、光学シート330及び反射シート39を有している。
  ここで、光学シート330以外については、上記した映像源ユニット10の面光源装置20と同じであるため、光学シート330以外の構成については面光源装置30と同じ符号を付して説明を省略する。ただし、本形態ではプリズム層27の単位プリズム27aが導光板の導光方向に延び、複数の単位プリズム27aが導光板の導光方向に対して直交する方向に配列される形態である。
 図22には図20の視点で光学シート330の一部を拡大して表した図を表した。図19~図22よりわかるように、光学シート330は、シート状に形成された基材層31と、基材層31の一方の面(本形態では導光板21側の面)に設けられた光学機能層332と、光制御層として機能する入光側光制御層335と、を備えている。
  ここで基材層31は上記した映像源ユニット10の光学シート30に具備された基材層31と同じであるため同じ符号を付して説明を省略する。
 光学機能層332は基材層31の一方の面(本形態では導光板21側の面)に積層された層で、層面に沿って光透過部333と光吸収部334とが交互に配列されている。
 光学機能層332は、図22に示した断面を有して紙面奥/手前側(映像源ユニット310を正面視したときの水平方向)に延びる形状を備える。すなわち、図22に表れる断面において、略台形である光透過部333と、隣り合う2つの光透過部333の間に形成された断面が略台形の光吸収部334と、を具備している。
 光透過部333は光を透過させることを主要の機能とする部位であり、本形態では図20、図22に表れる断面において、基材層31側に長い下底、その反対側(導光板21側、入光側光制御層335側)に短い上底を有する略台形の断面形状を有する要素である。光透過部333は、基材層31の層面に沿って当該断面を維持して上記した方向(本形態では水平方向)に延びるとともに、この延びる方向とは異なる方向(本形態では鉛直方向)に間隔を有して配列される。そして、隣り合う光透過部333の間には、略台形断面を有する間隔(溝)が形成されている。従って、当該間隔(溝)は、光透過部333の上底側(導光板21側、入光側光制御層335側)に長い下底を有し、光透過部333の下底側(液晶パネル15側、基材層31側)に短い上底を有する台形断面を有し、ここに後述する必要な材料が充填されることにより光吸収部334が形成される。なお、本形態では隣り合う光透過部333は長い下底側でシート状の連結部332aで連結されている。
 光透過部333、光吸収部334を構成する材料や屈折率に関する考え方は上記した光学シート30の光透過部33及び光吸収部334と同じである。
 図23には、光透過部333と光吸収部334との界面が光学機能層332の層面の法線に対して成す角θ61、θ62を説明する図を示した。図23は図22の一部をさらに拡大したものである。
  θ61は、光透過部333と光吸収部334との界面のうち、光学シート330が図19のような姿勢とされた際に光吸収部334の上側となる界面334aと、光学機能層332の層面の法線と、のなす角である。θ62は、同姿勢で光透過部333及び光吸収部334の界面のうち光吸収部334の下側となる界面334bと、光学機能層332の層面の法線と、のなす角である。
 本形態でθ61は、0°以上10°以下であることが好ましい。θ61が0°より大きいとは導光板21側(入光側、入光側光制御層335)から液晶パネル15側(出光側、基材層31側)に向けて下がるように傾斜することを意味する。より好ましくは4.0°以下であり、さらに好ましくは1.0°以下、特に好ましいのは0°である。
  θ61を0°より小さくすると製造が困難となる。θ61を10°より大きくすると入光側光制御層335との組み合わせで、光学機能層332による光の向きの制御の効果が小さくなる。また、θ61を10°よりも大きくすると、光吸収部334の配列方向の大きさ(光吸収部の幅、図23の紙面上下方向大きさ)が大きくなり、光の透過率が低下する不具合が生じる傾向にある。
 θ62は、0°以上10°以下であることが好ましい。θ62が0°より大きいとは導光板21側(入光側、入光側光制御層335)から液晶パネル15側(出光側、基材層31側)に向けて上がるように傾斜することを意味する。より好ましくは5.0°以下であり、さらに好ましくは3.0°以下である。これにより、光の透過率低下を防止しつつも、上方に向かう光を多くすることができる。θ62を10°よりも大きくすると、光吸収部334の配列方向における大きさ(光吸収部の幅、図23の紙面上下方向大きさ)が大きくなり、光の透過率が低下する不具合が生じる傾向にあり、上方へ向かう光の低減を招くことがある。
 θ61、及びθ62の角度の大きさの関係は、θ61<θ62であることが好ましい。これにより、映像源ユニット310から提供される映像光の視野角に関し、上側の視野角を下側の視野角よりも広くすることができる。
 また、光学機能層332では、特に限定されることはないが、例えば次のように光透過部333及び光吸収部334が形成される。すなわち、図22にPで表した光透過部333及び光吸収部334のピッチは20μm以上100μm以下であることが好ましく、30μm以上100μm以下であることがよりに好ましい。そして図22にDで示した光吸収部334の厚さは50μm以上150μm以下であることが好ましく、60μm以上150μm以下であることがより好ましい。これらの範囲内とすることにより、光の透過と光の吸収とのバランスをより適切にすることができる。
 本形態では光透過部333と光吸収部334との界面が断面において一直線状となる例を示したが、これに限らず当該界面が折れ線状、凸である曲面状、凹である曲面状等であってもよい。また、複数の光透過部333及び光吸収部334で断面形状が同じであってもよいし、規則性を有して異なる断面形状であってもよい。
 次に入光側光制御層335について説明する。入光側光制御層35は光制御層として機能し、光学機能層332に入光する光の向きを予め変更し、入光側光制御層335と光学機能層332とで所望の方向への光の出射を制御する。
  本形態で入光側光制御層335は、光学シート330の法線方向に進行する光を所望の方向に向かうように光の向きを変えるように構成されている。より具体的に本形態では図19~図22の姿勢で、光学シート330の法線方向観察者側に進行する光に対して観察者側斜め下方に向かうように光の向きを変えるように機能する。これにより後述するように光透過部333と光吸収部334との上側界面334aで反射させ、斜め上方に向かう光にすることができる。
 そのため、入光側光制御層335は、支持層335a及び光学要素層335bを有して構成されている。
  支持層335aは光学要素層335bの支持体として機能する透明なシート状の部材である。支持層335aは基材層31や光透過部333と同様の材料により構成することができる。
 光学要素層335bは、光学機能層332に入光する光の向きを変更する層であり、支持層335aの面のうち光学機能層332が配置される側の面とは反対側の面に複数の単位光学要素335cが配列されてなる層である。単位光学要素335cは、上記のように光学シート330の法線方向に進行する光を一方向に向かうように光の向きを変えるように構成されており、本形態では図19~図22の姿勢で、光学シート330の法線方向に進行する光に対して斜め下方に向かうように光の向きを変えるように構成されている。
 本形態で単位光学要素335cは具体的に次のような構造を備えている。
  単位光学要素335cは、光学機能層332を挟んで基材層31側とは反対側に突出する三角形断面を有する三角柱状であり、当該断面を有してその稜線が光透過部333及び光吸収部334が延びる方向と同じ(バイアス角α=0°)又は光学シートの正面視で角度を有して(バイアス角α≠0°)延びる突条で構成されている。そして複数の単位光学要素335cが、当該延びる方向とは異なる方向に配列されている。
 単位光学要素335cの稜線が光透過部333及び光吸収部334が延びる方向に対して光学シートの正面視で角度を有して延びるように構成されている場合(バイアス角α≠0°)には、光学シート330の正面視で、光学機能層332の光透過部333が延びる方向と、単位光学要素335cの稜線が延びる方向とは0°より大きく45°以下のバイアス角αで相対的に傾斜するように延びていることが好ましい。これにより光透過部333及び光吸収部334による配列構造と、単位光学要素335cの配列構造と、によるモアレの発生を防止することができる。また、この角度αを45°より大きくすると、単位光学要素335cによる光方向制御の効率が低下してしまう。より好ましい角度αは1°以上10°以下である。
 そして、単位光学要素335cは図23からわかるように、主屈折面335dとライズ面335eとを有して構成されている。この主屈折面335d及びライズ面335eが三角柱の2つの面を形成し、他の1つの面が支持層335aに重なって該支持層335aに固定されている。
 主屈折面335dは図19~図23の姿勢で、光学シート330の法線方向に進行する光に対して斜め下方に向かうように光の向きを変えるように機能する屈折面である。従って、主屈折面335dは鉛直方向上側において支持層335a(光学機能層332)に近く、鉛直方向下側において支持層335a(光学機能層332)から離隔するように傾斜している。そして図23にθ71で表した傾斜は、光学機能層332の入光面332bに沿った方向に対して角度を有している。θ71の具体的角度は0°より大きく17°より小さいことが好ましい。これにより、より確実に所望の方向における輝度向上のための光の制御を行うことができる。
 ライズ面335eは、主屈折面335dを形成するために必要とされる面である。ただし、後で説明するように、当該ライズ面335eから入射する光はここで屈折され、光吸収部334に吸収され易い角度で光学機能層332を進行するので、出射させたくない方向の光をより確実に遮断する機能も有する。
  θ72で表したライズ面335eの傾斜は、光学機能層332の入光面332bに沿った方向に対して90°以下であることが好ましい。この角度が90°以上となると製造が難しくなる。一方、θ72は73°以上であることが好ましい。これにより、主屈折面335dとライズ面335eとの成す角を90°又はこれに近い角度とすることができ、主屈折面335dの法線方向から主屈折面335dに入射した光が、ライズ面335eに対して平行に近い方向で進むことができるため、ライズ面335eで反射して迷光となることを抑制することができる。
 図22にPで示した単位光学要素335cのピッチは、光吸収部334のピッチPよりも小さいことが好ましく、Pに対して2/3、2/5など、整数倍ピッチにならないことがさらに好ましい。これにより、光吸収部334と単位光学要素335cとによるモアレの発生を防止することができる。また、より好ましくは、上記の条件を満たしつつPが3μm以上である。Pがこれより小さくなると加工精度が悪化する不具合がある。
  また、図22にDで示した単位光学要素335cの支持層335aからの突出高さは、1μm以上15μm以下であることが好ましい。これより小さくなると、加工精度が悪化する不具合があり、これより大きいと、光吸収部334と単位光学要素335cとでモアレが生じやすくなる。
 上記形態では、複数の単位光学要素335cが隙間なく連続して配置されているが、これに限らず隣り合う単位光学要素335cの間に間隔を設け、この部分は支持層335aの面が露出する態様であってもよい。
  また、複数の単位光学要素335cが必ずしも同じ形状である必要はなく、適宜変更してもよい。
 このような入光側光制御層335の支持層335a及び光学要素層335b(単位光学要素335c)は、上記した基材層31や光透過部33と同様の材料により構成することができる。
 次に、以上のような構成を備える映像源ユニット310の作用について、光路例を示しつつ説明する。ただし当該光路例は説明のための概念的なものであり、反射や屈折の程度を厳密に表したものではない。
 まず、図20に示すように、光源25から出射した光は、導光板21の側面(端面)である入光面から導光板21内に入射する。図20には、一例として、光源25から導光板21に入射した光L201、L202の光路例が示されている。
 図20に示すように、導光板21に入射した光L201、L202は、導光板21の出光側面及びその反対側の裏面において、空気との屈折率差による全反射を繰り返し、導光方向(図20の紙面下方向)へ進んでいく。
 ただし、導光板21の裏面には裏面光学要素23が配置されている。このため、図20に示すように、導光板21内を進む光L201、L202は、裏面光学要素23によって進行方向が変わり、全反射臨界角未満の入射角度で出光面、及び裏面に入射することもある。この場合に当該光は、導光板21の出光面及びその反対側の裏面から出射し得る。
 出光面から出射した光L201、L202は、導光板21の出光側に配置された光拡散板26へと向かう。一方、裏面から出射した光は、導光板21の背面に配置された反射シート39で反射され、再び導光板21内に入射して導光板21内を進むことになる。
 導光板21内を進行する光と、裏面光学要素23で向きを変えられて全反射臨界角未満の入射角度で出光面に達する光は、導光板21内の導光方向に沿った各区域において生じる。このため、導光板21内を進んでいる光は、少しずつ、出光面から出射するようになる。これにより、導光板21の出光面から出射する光の導光方向に沿った光量分布を均一化させることができる。
 導光板21から出射した光は、その後、光拡散板26に達し均一性が高められる。そしてプリズム層27により必要に応じて拡散又は集光されプリズム層27を出光した光は反射型偏光板28に達する。ここでは、反射型偏光板28の透過軸に沿った偏光方向の光は反射型偏光板28を透過し光学シート330に向かう。
  一方、反射型偏光板28の反射軸に沿った偏光方向の光は図20に点線矢印で示したように反射して導光板21側に戻される。戻された光は、導光板21、裏面光学要素23、又は反射シート39で反射して再び反射型偏光板28の側に進行する。この反射の際に一部の光の偏光方向が変化しており、その一部は反射型偏光板28を透過する。他の光は再び導光板側に戻される。このように反射型偏光板28で反射した光も反射を繰り返すことで反射型偏光板28を透過できるようになる。これにより光源25からの光の利用率が高められる。
  ここで、反射型偏光板28を出射した光は、その偏光方向が下偏光板14の透過軸に沿った方向になっており、下偏光板14を透過する偏光状態の光となっている。
 反射型偏光板28を出射した光は光学シート330に達する。光学シート330に入射した光は次のような光路を有して進行する。図24には光学シート330における光路例を表した。
  図20に示した光L201、光L202、及び図24に示した光L241、光L242は、単位光学要素335cの主屈折面335dに入射し、当該主屈折面335dへの入射角度に応じて屈折、又は屈折することなく主屈折面335dを透過する(主屈折面335dの傾斜面に直交する方向から入射した光は屈折することなく主屈折面335dを透過する(光L242)。)。これにより多くの光が観察者側斜め下方に向いた光となり、これが光透過部333と光吸収部334との界面のうち、光吸収部334の上側となる界面334aに向かう。そして当該界面334aで全反射して、観察者側斜め上方の光となり、所望の方向への光の制御がなされる。特に界面334aの傾斜角θ61(図23参照)が0°であればより上方へ光を向かわせることができる。一方、θ61を調整することにより上方でありつつも所望の範囲に光を向かわせることも可能である。
  このとき、光透過部333と光吸収部334との界面のうち光吸収部334の下側である界面334bが、観察者側斜め上方に向かうように傾斜していれば、光L201、光L202、光L241、光L242のような光の進行を光吸収部334が阻害し難くなり、より多くの光を所望の方向に導くことができる。
 従って、光学シート330では、図23にθ71で表した主屈折面335cの傾斜角と、図23にθ61で表した界面334aの傾斜角との組み合わせにより、光を効率よく所望の方向に導くことを容易に行うことができる。いずれか一方では、導く光の方向に限界があり、組み合わせにより相乗的に作用してより容易に光の進行方向を制御することが可能となる。
 また、図20に示した光L203、図24に示したL243は、単位光学要素335cのライズ面335eに入射し、当該ライズ面335eへの入射角度に応じて屈折又は屈折することなくライズ面335eを透過する。このようにしてライズ面335eを透過した光は、その多くが観察者側斜め上方であるとともに、光透過部333と光吸収部334との界面334bで全反射することなく該界面を透過する角度で進行するので、界面334bを透過して光吸収部334に吸収される。
  これにより、所望の角度以上の視野角で出射する光を効率よく吸収して遮断することができ、さらに光の進行方向制御を効率よく行うことができる。
  また、このような光は液晶パネルに入射して、コントラスト低下や色の反転のような不具合を生じる可能性が高いのでこのような光を吸収することができる。
 光学シート330を出射した光は、液晶パネル15の下偏光板14に入射する。下偏光板14は、入射光のうち、一方の偏光成分を透過させ、その他の偏光成分を吸収する。下偏光板14を透過した光は、画素毎への電界印加の状態に応じて、選択的に上偏光板13を透過するようになる。このようにして、液晶パネル15によって、面光源装置320からの光を画素毎に選択的に透過させることにより、液晶表示装置の観察者が、映像を観察することができるようになる。その際、映像光は機能性フィルム40を介して観察者に提供され、映像の質が高められている。
 以上のように、光学シート330によれば、光学要素層335bにおける屈折、及び光透過部333と光吸収部334との界面334aでの全反射により、光学シート330に入射した光を上方向へ出射しやすくなっており、下方向への出射は制限されている。すなわち、例えば光学シート330を用いることにより、入射した光をドライバー視点となる上方向に効率よく出射し、上方向に出射する光の輝度を向上させることができる。一方で、大きく上方に出射する光を光吸収部で吸収し易くしているので、フロントガラスへの写り込みを防止することが可能となる。
  従って、本形態の光学シートを液晶表示装置に用いることにより、従来の光学シートを使用した場合に比べ、容易に光を制御して、ドライバー視点での視認性を向上させることができる。
 これによれば例えば図25に示したような出光特性を容易に実現できる。図25は横軸に鉛直方向の視野角、縦軸に相対輝度を表したグラフである。横軸は正(+)が鉛直方向上方、負(-)が鉛直方向下方を表している。
  図25からわかるように、鉛直方向の視野角を見た場合に、図25にDで示した位置からわかるように相対輝度のピークが+20°(鉛直方向上方20°)近傍となっている。すなわち、正面(0°)とは異なる観察者の視点となる方向に輝度ピークがあるように光が制御されている。さらに図25にEで示した位置からわかるように、+50°(鉛直方向上方50°)近傍にて急激に相対輝度が低下している。すなわち、自動車におけるフロントガラスへの映り込みの原因となるような大きく上方に進行する光をより確実に遮断することができる。
 以下には、上記した各形態について光学シート、及び映像源ユニットを構成してその性能を試験した。
 {試験例A}
  実施例Aでは、映像源ユニット10の例に倣って、光学シートの出光方向制御の観点で試験を行った。
 [試験例Aの光学シートの構成]
  <試験例A
 試験例Aでは、出光側光制御層35を備える映像源ユニット10の例に倣って図5に表したθ21を変更した光学シートを作製した。θ21以外の光学シートの具体的な形状は次のとおりである。
 (基材層)
    ・材料:ポリカーボネート樹脂
    ・厚さ:130μm
 (光学機能層)
    ・光透過部、及び光吸収部のピッチ(図4のP):39μm
    ・光吸収部上底幅(図4のW):4μm
    ・光吸収部下底幅(図4のW):10μm
    ・光吸収部上側傾斜角(図5のθ11):3°
    ・光吸収部下側傾斜角(図5のθ12):0°
    ・光吸収部の厚さ(図4のD):102μm
    ・光学機能層の厚さ:127μm
    ・土台部の厚さ:25μm
    ・光透過部の材料及び屈折率:屈折率1.56の紫外線硬化型ウレタンアクリレート樹脂
    ・光吸収部の材料及び屈折率:屈折率1.49の紫外線硬化型ウレタンアクリレート樹脂にカーボンブラックを含有した平均粒子径4μmのアクリルビーズを20質量%分散
    ・光透過部及び光吸収部が液晶層の画素配列方向に対する傾斜角(バイアス角α):5°
 (出光側光制御層)
    ・ライズ面の角度(図5のθ22):90°
    ・単位光学要素のピッチ(図4のP):18μm
    ・単位光学要素の材料:屈折率1.50の紫外線硬化型ウレタンアクリレート樹脂
    ・上記バイアス角αに対する傾斜角(バイアス角α):3°
      ここで、バイアス角αは、光学シートの正面視でバイアス角αと同じ方向に回転するような角度である(以下の例も同様である。)。従って本例では単位光学要素が延びる方向が液晶層の画素配列方向に対する傾斜角はα+α=8°となる。
    ・主屈折面の角度(図5のθ21):85°(試験例A-1)、80°(試験例A-2)、70°(試験例A-3)、60°(試験例A-4)
 <試験例A
  試験例Aでは、図9に示した出光側光制御層135を備える映像源ユニットの例に倣ってθ31を変更した光学シートを作製した。出光側光制御層135以外の構成は試験例Aと同じである。またライズ面の角度も90°で一定とした。そして、主屈折面の角度(図9のθ31)は、85°(試験例A-1)、80°(試験例A-2)、70°(試験例A-3)、60°(試験例A-4)である。
 <試験例A
  試験例Aでは、試験例A-2の光学シートに対して、ライズ面の角度(図5のθ22に相当)を80°(試験例A-1)、及び100°(試験例A-2)とした。それ以外は試験例A-2と同じである。
 <試験例A
  試験例Aは、試験例Aの光学シートから出光側光制御層を除外した構成の光学シートである。他の部位は試験例Aの光学シートと同じとした。
 [試験例Aの評価方法]
  上記各光学シートをモデル化し、シミュレーションで出光角度と各出光角度における輝度の関係を得た。シミュレーションソフトとして、Light Tools(Synopsys社)を用いた。光源の特性を図26に示した。図26の横軸は鉛直方向における視野角度(正が上方、負が下方)、縦軸には視野角度が0°のときの輝度を100%として相対輝度を表した。
 [試験例Aの結果]
 図27には試験例A、図28に試験例A、図29に試験例Aの結果を示した。図27~図29では試験例AのグラフをAで表した。
  そして図27では試験例A-1をA-1、試験例A-2をA-2、試験例A-3をA-3、試験例A-4をA-4で表した。
  同様に図28では試験例A-1をA-1、試験例A-2をA-2、試験例A-3をA-3、試験例A-4をA-4で表した。
  そして図29では試験例A-1をA-1、試験例A-2をA-2と表記した。また図29には合わせてA-2も表示してある。
  各グラフは、横軸に鉛直方向における視野角度を表し、正が上方、負が下方である。また縦軸には図26に示した光源特性を100%としたときの相対輝度を表した。
 これら図からわかるように、試験例A、A、Aにかかる光学シートにより、試験例Aにかかる光学シートに比べて出光角度を所望の方向に細かく、効率よく制御することができた。
 試験例A-3、試験例A-4、試験例A-3、試験例A-4のように出光角を大きく移行(シフト)するように変更した場合、及び、試験例A-1、試験例A-2のようにライズ面の角度を90°より大きく、又は小さくした場合には出光角度が+又は-側の60°~90°の範囲で相対輝度が増えることがある。これらはライズ面における迷光であると考えられる。ただし、このような迷光は偏光板で多くを吸収することができるため、不具合とは成り難い。
 {試験例B}
  試験例Bでは、映像源ユニット210の例に倣って、光学シートの出光方向制御の観点で試験した。
 [試験例Bの光制御部材の構成]
 試験例Bでは、光制御部材229の例に倣って光制御部材を作製した。具体的な態様は次の通りである。
 <第一の光学シート>
(基材層)
    ・材料:ポリカーボネート樹脂
    ・厚さ:130μm
 (光学機能層)
    ・光透過部、及び光吸収部のピッチ(図4のP):47μm
    ・光吸収部上底幅(図4のW):3μm
    ・光吸収部下底幅(図4のW):22μm
    ・光吸収部上側傾斜角(図5のθ11):4.5°
    ・光吸収部下側傾斜角(図5のθ12):4.5°
    ・光吸収部の厚さ(図4のD):120μm
    ・光学機能層の厚さ:145μm
    ・土台部の厚さ:25μm
    ・光透過部の材料及び屈折率:屈折率1.56の紫外線硬化型ウレタンアクリレート樹脂
    ・光吸収部の材料及び屈折率:屈折率1.49の紫外線硬化型ウレタンアクリレート樹脂にカーボンブラックを含有した平均粒子径4μmのアクリルビーズを20質量%分散
 (出光側光制御層)
    ・主屈折面の傾斜角度(図5のθ21):70°
    ・ライズ面の傾斜角度(図5のθ22):90°
    ・支持層の厚さ:25μm
    ・単位光学要素のピッチ(図4のP):26μm
    ・単位光学要素の材料:屈折率1.50の紫外線硬化型ウレタンアクリレート樹脂
    ・光透過部が延びる方向に対する単位光学要素が延びる方向のバイアス角α:5°
 <第二の光学シート>
  (基材層)
    ・材料:ポリカーボネート樹脂
    ・厚さ:130μm
 (光学機能層)
    ・光透過部、及び光吸収部のピッチ(図15のP):47μm
    ・光吸収部上底幅(図15のW):3μm
    ・光吸収部下底幅(図15のW):22μm
    ・光吸収部一方側傾斜角(図16のθ41):4.5°
    ・光吸収部他方側傾斜角(図16のθ42):4.5°
    ・光吸収部の厚さ(図15のD):120μm
    ・光学機能層の厚さ:145μm
    ・土台部の厚さ:25μm
    ・光透過部の材料及び屈折率:屈折率1.56の紫外線硬化型ウレタンアクリレート樹脂
    ・光吸収部の材料及び屈折率:屈折率1.49の紫外線硬化型ウレタンアクリレート樹脂にカーボンブラックを含有した平均粒子径4μmのアクリルビーズを20質量%分散
 (出光側光制御層)
    ・単位光学要素が配置されない部位:単位光学要素の配列方向において中央を挟んで対称に5.0mm(図14、図15のW、左右に2.5mmずつ。)
    ・主屈折面の傾斜角度(図16のθ51):シート中央側において90°(実質上単位光学要素がない部位)からシート最端部において68°となるように、連続的に変化(第二の光学シートのうち単位光学要素が配列される方向の大きさ(図15のW)は300mm)
    ・ライズ面の傾斜角度(図16のθ52):90°
    ・支持層の厚さ:25μm
    ・単位光学要素のピッチ(図15のP):26μm
    ・単位光学要素の材料:屈折率1.50の紫外線硬化型ウレタンアクリレート樹脂
    ・光透過部が延びる方向に対する単位光学要素が延びる方向のバイアス角α:5°
 <光制御部材>
  以上の第一の光学シートを光透過部が延びる方向を水平方向となるように配置し、第一の光学シートより出光側となるように重ねて第二の光学シートを配置して光制御部材とした。このとき、第二の光学シートの光透過部の延びる方向が鉛直方向となるようにした(図12参照)。
 [試験例Bの光制御部材の構成]
  試験例Bでは、上記試験例Bにかかる光制御部材に対して第一の光学シートの出光側光制御層及び第二の光学シートの出光側光制御層を除外した光制御部材を用いた。
 [試験例Bの評価方法]
  試験例Bの光制御部材をモデル化し、シミュレーションで鉛直方向及び水平方向における各出光角度と輝度との関係を得た。
  シミュレーションソフトとして、Light Tools(Synopsys社)を用いた。光源の特性を図30に示した。図30の横軸は鉛直方向及び水平方向における出光角度、縦軸には出光角度が0°のときの輝度を100%とした相対輝度を表した。
 [試験例Bの結果]
  図31は試験例Bの光制御部材における評価結果を表した。図31(a)の横軸は鉛直方向における出光角度、縦軸には図30の100%に対する相対輝度を表している。図31(b)の横軸は水平方向における出光角度、縦軸には図30の100%に対する相対輝度を表している。
  図32は試験例Bの光制御部材における評価結果を表した。図32(a)の横軸は鉛直方向における出光角度、縦軸には図30の100%に対する相対輝度を表している。図32(b)の横軸は水平方向における出光角度、縦軸には図30の100%に対する相対輝度を表している。
 図31(a)と図32(a)との対比からわかるように、第一の光学シートのような光学要素層を設けることにより光の出光角度をシフトさせるように制御することができた。
  また、図31(b)と図32(b)との対比からわかるように、第二の光学シートのような光学要素層を設けることで、図18(b)により説明した通りに水平方向において光の出光角を制御することができた。
 {試験例C}
  試験例Cでは、映像源ユニット10、映像源ユニット210の例に倣って、出光方向制御に加えて、粗面によってモアレ発生を防止する観点で試験した。
 [試験例Cの光学シートの構成]
  <試験例C
  試験例Cでは、出光側光制御層35を備える映像源ユニット10の例に倣って図5に表したθ21、及び屈折面及びライズ面の面粗度を変更した光学シートを作製した。他の部位における具体的な形態は次のとおりである。
 (基材層)
    ・材料:ポリカーボネート樹脂
    ・厚さ:130μm
 (光学機能層)
    ・光透過部、及び光吸収部のピッチ(図4のP):39μm
    ・光吸収部上底幅(図4のW):4μm
    ・光吸収部下底幅(図4のW):10μm
    ・光吸収部上側傾斜角(図5のθ11):3°
    ・光吸収部下側傾斜角(図5のθ12):0°
    ・光吸収部の厚さ(図4のD):102μm
    ・光学機能層の厚さ:127μm
    ・土台部の厚さ:25μm
    ・光透過部の材料及び屈折率:屈折率1.56の紫外線硬化型ウレタンアクリレート樹脂
    ・光吸収部の材料及び屈折率:屈折率1.49の紫外線硬化型ウレタンアクリレート樹脂にカーボンブラックを含有した平均粒子径4μmのアクリルビーズを20質量%分散
    ・光透過部及び光吸収部が液晶層の画素配列方向に対する傾斜角(バイアス角α):0°
 (出光側光制御層)
    ・ライズ面の角度(図5のθ22):90°
    ・単位光学要素のピッチ(図4のP):18μm
    ・単位光学要素の材料:屈折率1.50の紫外線硬化型ウレタンアクリレート樹脂
    ・上記バイアス角αに対する傾斜角(バイアス角α):4°
    ・主屈折面の角度(図5のθ21、4種類):85°、80°、70°、60°
    ・主屈折面及びライズ面の粗面の形成(2種類):平均粒子径10μmのガラスによりブラストした成形金型で成形、平均粒子径2μmのアルミナによりブラストした成形金型で成形(図33参照)
 上記ブラスト処理をした金型(図33参照)を用いて「4種類のθ21×2種類の粗面=合計8種類」の単位光学要素を成形し、それぞれについて光学シートを作製した。
 <試験例C
  試験例Cでは、試験例Cの光学シートに代えて、上記第二の光学シート230の例に倣った光学シートを備える映像源ユニットを作製した。具体的な形態は次の通りである。
  (基材層)
    ・材料:ポリカーボネート樹脂
    ・厚さ:130μm
 (光学機能層)
    ・光透過部、及び光吸収部のピッチ(図15のP):47μm
    ・光吸収部上底幅(図15のW):3μm
    ・光吸収部下底幅(図15のW):22μm
    ・光吸収部一方側傾斜角(図16のθ41):4.5°
    ・光吸収部他方側傾斜角(図16のθ42):4.5°
    ・光吸収部の厚さ(図15のD):120μm
    ・光学機能層の厚さ:145μm
    ・土台部の厚さ:25μm
    ・光透過部の材料及び屈折率:屈折率1.56の紫外線硬化型ウレタンアクリレート樹脂
    ・光吸収部の材料及び屈折率:屈折率1.49の紫外線硬化型ウレタンアクリレート樹脂にカーボンブラックを含有した平均粒子径4μmのアクリルビーズを20質量%分散
    ・光透過部及び光吸収部が液晶層の画素配列方向に対する傾斜角(バイアス角α):0°
 (出光側光制御層)
    ・単位光学要素が配置されない部位:単位光学要素の配列方向において中央を挟んで対称に5.0mm(図14、図15のW、左右に2.5mmずつ。)
    ・主屈折面の傾斜角度(図16のθ51):シート中央側において90°(実質上単位光学要素がない部位)からシート最端部において68°となるように、連続的に変化(第二の光学シートのうち単位光学要素が配列される方向の大きさ(図15のW)は300mm)
    ・ライズ面の傾斜角度(図16のθ52):90°
    ・支持層の厚さ:25μm
    ・単位光学要素のピッチ(図15のP):18μm
    ・単位光学要素の材料:屈折率1.50の紫外線硬化型ウレタンアクリレート樹脂
    ・光透過部が延びる方向に対する単位光学要素が延びる方向のバイアス角α:4°
    ・屈折面及びライズ面の粗面の形成(2種類):平均粒子径10μmのガラスによりブラストした成形金型で成形、平均粒子径2μmのアルミナによりブラストした成形金型で成形(図33参照)
 上記ブラスト処理をした金型を用いて2種類の粗面の単位光学要素を成形し、それぞれについて光学シートを作製した。
 <試験例C
 試験例Cでは、試験例Cの光学シートの形態に対して、主屈折面及びライズ面に粗面を形成しない光学シートとした。
 <試験例C
  試験例Cでは、試験例Cの光学シートの形態に対して、主屈折面及びライズ面に粗面を形成しない光学シートとした。
 [試験例Cの評価・結果]
  試験例Cにかかる映像源ユニットに対して目視によりモアレ観察を行った。その結果、粗面を形成しなかった試験例C、及び試験例Cで軽微なモアレが観察された。一方、粗面を形成した試験例C及び試験例Cにはモアレは観察されなかった。
  なお、出光方向の制御についてはいずれについても適切におこなうことができた。
 {試験例D}
  試験例Dでは、映像源ユニット10の例に倣って、出光方向制御に加えて、光透過部(光吸収部)の配列ピッチと、単位光学要素の配列ピッチとの関係を変えてモアレ発生の観点で試験した。
 上記試験例Cの形態に対して、単位光学要素のピッチ(図4のP)を変更してモアレの発生を目視で観察した。表1に条件及び結果を示す。表1においてPは光透過部(光吸収部)のピッチ(μm)、Pが単位光学要素のピッチ(μm)である。
 発明者はPに基づいて次のように得られるPmxに注目した。
  Pは次のように求められる。
    P=|(a・P・b・P)/(a・P-b・P)|
 ここで、P≧Pであり、a、bは1以上10以下の整数である。そして、P、Pについて等倍(1倍)ピッチから10倍ピッチまでの組み合わせを考慮する。これにより整数倍ピッチを考慮した広い範囲でモアレ発生について評価することができる。
  そして、あるP、Pの組み合わせに対してa、bを変更した全ての組み合わせのPの中で最大のPをPmxとした。本例ではPを39μmとし、Pを変更した例を表す。
  このPmxに対して、結果としてモアレが観察された場合を「有り」、モアレが観察されなかった場合を「なし」と表記した。
Figure JPOXMLDOC01-appb-T000001
 表1からわかるように、Pmxが10000(μm)以下であるようにピッチ(P、P)を調整することでモアレの発生を防止することができる。
 {試験例E}
  試験例Eでは、図19~図23に示した光学シート330に倣った光学シート及びこれに対比する光学シートを作製して試験を行った。
 [試験例Eの光学シートの構成]
  <試験例E
  (基材層)
    ・材料:ポリカーボネート樹脂
    ・厚さ:130μm
 (光学機能層)
    ・ピッチ(図22のP):39μm
    ・光吸収部上底幅(図22のW):4μm
    ・光吸収部下底幅(図22のW):10μm
    ・光吸収部上側傾斜角(図23のθ61):0°
    ・光吸収部下側傾斜角(図23のθ62):3°
    ・光吸収部の厚さ(図22のD):102μm
    ・光学機能層の厚さ:127μm
    ・光透過部の材料及び屈折率:屈折率1.56の紫外線硬化型ウレタンアクリレート樹脂
    ・光吸収部の材料及び屈折率:屈折率1.49の紫外線硬化型ウレタンアクリレート樹脂にカーボンブラックを含有した平均粒子径4μmのアクリルビーズを20質量%分散
 (入光側光制御層)
    ・支持層の厚さ(図23の支持層335aの厚さ):130μm
    ・単位光学要素のピッチ(図22のP):30μm
    ・単位光学要素の主屈折面の傾斜角(図23のθ71):5°
    ・ライズ面の傾斜角(図23のθ72):90°
    ・材料:屈折率1.50の紫外線硬化型ウレタンアクリレート樹脂
 <試験例E
  単位光学要素の主屈折面の傾斜角(図23のθ71)を10°として他の構成は試験例Eに同じとした。
 <試験例E
  単位光学要素の主屈折面の傾斜角(図23のθ71)を20°として他の構成は試験例Eに同じとした。
 <試験例E
  図34に表したように単位光学要素の主屈折面の傾斜が、下から上に向けて光源側に傾くように構成し、図34にθ81に表す主屈折面の角度を5°とした。これを単位光学要素の主屈折面の傾斜角が「-5°」であるとする。これ以外は試験例Eと同じである。
 <試験例E
  単位光学要素の主屈折面の傾斜角(図23のθ71)を0°、すなわち光学要素層を形成しない構成として、他は試験例Eと同じとした。
 [表示装置の構成]
  上記試験例Eにかかる光学シートを用い、図19に示した例に倣って他の構成部材を配置して面光源装置とした。
 [評価方法]
  <測定位置>
  各試験例に対して次の3種類の視野角における輝度を測定し、図19に示した例の面光源装置から光学シートを除外して光源を点灯した場合における各種類の輝度を100%としたときに対する輝度比で表した。
  (1)画面中央から画面法線方向における輝度(正面輝度)による輝度比。
  (2)画面中央から水平方向40°、及び鉛直方向上20°の視野角(いわゆるドライバー視点)における輝度による輝度比。ドライバー視点は、カーナビゲーション等の表示装置が自動車の運転席と助手席との中間部に配置された場合において、運転席から表示装置を見た場合における視点の位置を意味する。
  (3)画面中央から水平方向に0°、及び鉛直方向上に40°~80°(5°刻み)の視野角における合計輝度による輝度比(映り込みの原因となる光)。
  <輝度の測定方法>
  輝度は自動変角輝度計(GP-500 村上色彩研究所)を用いて上記(1)~(3)の各視野角における透過光の輝度を測定した。
 [結果]
  上記各視野角における輝度比を表2に表した。また、この結果に基づいて図35にグラフを表した。図35(a)が(1)の結果、図35(b)が(2)の結果、図35(c)が(3)の結果である。各図には主屈折面傾斜角(図23のθ71)が0°の輝度比の水準を点線で表した。
Figure JPOXMLDOC01-appb-T000002
 (1)の視野角では、図35(a)に直線矢印で示したように、主屈折面傾斜角が0°のときよりも高い輝度比であることが好ましい。高いことにより正面輝度が高いことを意味する。
  (2)の視野角では、図35(b)に直線矢印で示したように、主屈折面傾斜角が0°のときよりも高い輝度比であることが好ましい。高いことによりドライバー視点による輝度が高いことを意味する。
  (3)の視野角では、図35(c)に直線矢印で示したように、主屈折面傾斜角が0°のときよりも低い輝度比であることが好ましい。低いことによりカーナビゲーション等の表示装置が自動車の運転席と助手席との中間部に配置された場合において、フロントガラスへの映り込みを抑制することができることを意味する。
 以上の観点から、(1)~(3)の好ましい結果をいずれも満たすのは、2つの一点鎖線の間であり、具体的には、入光側光制御層に備えられる単位光学要素の主屈折面の傾斜角(図23のθ71)が0°より大きく17°より小さい形態である。これによれば複数の光学的特性をバランスよく満たすように光を制御することを容易に行うことができるようになる。
  10、210、310 映像源ユニット
  15 液晶パネル
  20、220、320 面光源装置
  21 導光板
  25 光源
  26 光拡散板
  27 プリズム層
  28 反射型偏光板
  30、230、330 光学シート
  31、231 基材層
  32、232、332 光学機能層
  33、233、333 光透過部
  34、234、334 光吸収部
  35、135、235 出光側光制御層(光制御層)
  35b、135b、235b、335b 光学要素層
  35c、135c、235c、335c 単位光学要素
  35d、135d、235d、335d 主屈折面
  35e、135e、235e、335e ライズ面
  335 入光側光制御層(光制御層)

Claims (15)

  1.  複数の層が積層されてなる光学シートであって、
     前記複数の層の1つである光学機能層と、前記複数の層の他の1つである光学要素層と、を備え、
     前記光学機能層は、
    一方向に延び、当該一方向とは異なる方向に間隔を有して複数配列される光透過部と、隣り合う前記光透過部の間に配置される光吸収部と、を有し、
     前記光学要素層は、
    前記一方向に対して前記光学シートの正面視で0°以上45°以下の角度を有するように延び、当該延びる方向とは異なる方向に複数配列される突条である単位光学要素を具備する、光学シート。
  2.  前記光透過部は台形断面を有し、長い下底が前記単位光学要素側に向いている請求項1に記載の光学シート。
  3.  前記単位光学要素は、主屈折面及びライズ面を有する三角形断面を有し、
     前記主屈折面は前記光学機能層の出光面の法線方向に対して45°より大きく89°以下で傾斜する面である、請求項1又は2に記載の光学シート。
  4.  前記主屈折面と前記光学機能層の出光面の法線との成す角が、シート中央側の前記単位光学要素とシート外周側の前記単位光学要素とで異なる、請求項3に記載の光学シート。
  5.  前記光学要素層がリニアフレネルレンズからなる請求項4に記載の光学シート。
  6.  前記単位光学要素は、主屈折面及びライズ面を有する三角形断面を有し、
     前記主屈折面は、前記光学機能層の層面に対して0°より大きく17°より小さい角度で傾斜する、請求項1に記載の光学シート。
  7.  前記光透過部は台形断面を有し、短い上底が前記単位光学要素側に向いている請求項6に記載の光学シート。
  8.  前記単位光学要素の表面には粗面が形成されている請求項1乃至7のいずれかに記載の光学シート。
  9.  前記光透過部の配列ピッチをP(μm)、前記単位光学要素の配列ピッチをP(μm)、a、bを1以上10以下の整数とし、
        P=|(a・P・b・P)/(a・P-b・P)|
    として、ある前記P、前記Pに対する全てのa、bの組み合わせから得られる前記Pのうち最も大きなものをPmx(μm)としたとき、前記Pmxが10000(μm)以下である、請求項1乃至8のいずれかに記載の光学シート。
  10.  請求項1乃至9のいずれかに記載の光学シートが2枚以上配置され、
    一方の前記光学シートの前記光透過部が延びる方向と、他方の前記光学シートの前記光透過部が延びる方向と、が前記光学シートの正面視で交差するように配置される、光制御部材。
  11.  光源と、該光源よりも観察者側に配置される請求項1乃至9のいずれかに記載の光学シートと、を備える面光源装置。
  12.  光源と、該光源よりも観察者側に配置される請求項10に記載の光制御部材と、を備える面光源装置。
  13.  請求項11又は12に記載の面光源装置と、該面光源装置の出光側に配置された液晶パネルと、を備える映像源ユニット。
  14.  前記光透過部、前記光吸収部、及び前記単位光学要素は、延びる方向が水平方向であり、配列される方向が鉛直方向である、請求項13に記載の映像源ユニット。
  15.  請求項13又は14に記載の映像源ユニットが筐体に収められた表示装置。
PCT/JP2018/013792 2017-03-31 2018-03-30 光学シート、光制御部材、面光源装置、映像源ユニット、及び表示装置 WO2018181966A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP18777208.2A EP3605157A4 (en) 2017-03-31 2018-03-30 OPTICAL SHEET, LIGHT CONTROL ELEMENT, FLAT LIGHT SOURCE DEVICE, IMAGE SOURCE UNIT AND DISPLAY DEVICE
US16/498,786 US11378837B2 (en) 2017-03-31 2018-03-30 Optical sheet, light controlling member, surface light source device, image source unit, and display
JP2019509396A JP7205463B2 (ja) 2017-03-31 2018-03-30 光学シート、光制御部材、面光源装置、映像源ユニット、及び表示装置
US17/805,881 US11747669B2 (en) 2017-03-31 2022-06-08 Optical sheet, light controlling member, surface light source device, image source unit, and display
JP2022210570A JP7428230B2 (ja) 2017-03-31 2022-12-27 光学シート、光制御部材、面光源装置、映像源ユニット、及び表示装置
US18/335,214 US12066708B2 (en) 2017-03-31 2023-06-15 Optical sheet, light controlling member, surface light source device, image source unit, and display
JP2024007794A JP2024054147A (ja) 2017-03-31 2024-01-23 光学シート、光制御部材、面光源装置、映像源ユニット、及び表示装置

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2017073064 2017-03-31
JP2017-073064 2017-03-31
JP2017096078 2017-05-12
JP2017-096078 2017-05-12
JP2017-166515 2017-08-31
JP2017166515 2017-08-31

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/498,786 A-371-Of-International US11378837B2 (en) 2017-03-31 2018-03-30 Optical sheet, light controlling member, surface light source device, image source unit, and display
US17/805,881 Continuation US11747669B2 (en) 2017-03-31 2022-06-08 Optical sheet, light controlling member, surface light source device, image source unit, and display

Publications (1)

Publication Number Publication Date
WO2018181966A1 true WO2018181966A1 (ja) 2018-10-04

Family

ID=63676252

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/013792 WO2018181966A1 (ja) 2017-03-31 2018-03-30 光学シート、光制御部材、面光源装置、映像源ユニット、及び表示装置

Country Status (4)

Country Link
US (3) US11378837B2 (ja)
EP (1) EP3605157A4 (ja)
JP (3) JP7205463B2 (ja)
WO (1) WO2018181966A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115144938A (zh) * 2021-03-29 2022-10-04 上海近观科技有限责任公司 一种集成光学芯片的信号光收集结构
JP7418640B1 (ja) 2023-05-19 2024-01-19 大日本印刷株式会社 光学シート、面光源装置および表示装置
US11966071B2 (en) 2022-02-28 2024-04-23 Sharp Display Technology Corporation Illumination device including first to third sheets and display device including the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018181966A1 (ja) * 2017-03-31 2018-10-04 大日本印刷株式会社 光学シート、光制御部材、面光源装置、映像源ユニット、及び表示装置

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1152377A (ja) * 1997-07-31 1999-02-26 Nitto Denko Corp 光路制御板、面光源装置、偏光光源装置及び液晶表示装置
JP2006171701A (ja) 2004-11-18 2006-06-29 Dainippon Printing Co Ltd 視野角制御シート及びこれを用いた液晶表示装置
JP2006308700A (ja) * 2005-04-26 2006-11-09 Nec Corp 表示装置、端末装置、光源装置及び光学部材
JP2007164193A (ja) * 2005-12-13 2007-06-28 Sharp Corp 光学フィルム、照明装置、および表示装置
JP2009058660A (ja) * 2007-08-30 2009-03-19 Kuraray Co Ltd 光学シート
JP2009080153A (ja) * 2007-09-25 2009-04-16 Dainippon Printing Co Ltd 光学シート、表示装置及び光学シートの製造方法
JP2009294468A (ja) * 2008-06-05 2009-12-17 Dainippon Printing Co Ltd 映像表示装置、及び光学シート
JP2010160360A (ja) * 2009-01-08 2010-07-22 Sumitomo Electric Fine Polymer Inc 配光制御シート及びそれを利用した配光制御パネル並びに表示装置
JP2012113054A (ja) 2010-11-22 2012-06-14 Dainippon Printing Co Ltd 光学シートとその作製方法、映像表示装置、及び金型ロールとその作製方法
JP2014059565A (ja) 2007-12-21 2014-04-03 3M Innovative Properties Co 光制御フィルム
JP2015075535A (ja) * 2013-10-07 2015-04-20 大日本印刷株式会社 透過型スクリーンおよび表示装置
JP2015075635A (ja) * 2013-10-09 2015-04-20 大日本印刷株式会社 透過型スクリーンおよび背面投射型表示装置
JP2016151711A (ja) * 2015-02-18 2016-08-22 大日本印刷株式会社 光学シート、面光源装置、映像源ユニット、及び表示装置
JP2017138357A (ja) * 2016-02-01 2017-08-10 大日本印刷株式会社 空間浮遊映像表示光学シート、空間浮遊映像表示装置
JP2017138411A (ja) * 2016-02-02 2017-08-10 大日本印刷株式会社 空間浮遊映像表示光学シート、空間浮遊映像表示装置
JP2017219619A (ja) * 2016-06-06 2017-12-14 大日本印刷株式会社 映像源ユニット

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8077395B2 (en) 2007-09-25 2011-12-13 Dai Nippon Printing Co., Ltd. Optical sheet, image source unit, display device, process for producing optical sheet, and method for manufacturing display device
CN101861543B (zh) * 2007-11-22 2012-04-25 夏普株式会社 液晶显示装置
US20110128470A1 (en) 2008-04-17 2011-06-02 Jun Yorita Light distribution control panel, display device for mounting on mobile unit, light distribution control sheet, optical component, lighting device, and display device
US9563004B2 (en) * 2009-10-27 2017-02-07 Dai Nippon Printing Co., Ltd. Image source unit and image display unit
KR102038951B1 (ko) 2010-07-12 2019-10-31 다이니폰 인사츠 가부시키가이샤 표시 장치
JP6171456B2 (ja) * 2013-03-25 2017-08-02 大日本印刷株式会社 光制御フィルタ、液晶ユニット、映像源ユニット、液晶表示装置
CN107076883B (zh) * 2014-10-23 2019-07-19 株式会社大赛璐 菲涅尔透镜、以及具备其的光学装置
JP2017058471A (ja) * 2015-09-15 2017-03-23 大日本印刷株式会社 透過型スクリーン及び表示装置
WO2018181966A1 (ja) * 2017-03-31 2018-10-04 大日本印刷株式会社 光学シート、光制御部材、面光源装置、映像源ユニット、及び表示装置

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1152377A (ja) * 1997-07-31 1999-02-26 Nitto Denko Corp 光路制御板、面光源装置、偏光光源装置及び液晶表示装置
JP2006171701A (ja) 2004-11-18 2006-06-29 Dainippon Printing Co Ltd 視野角制御シート及びこれを用いた液晶表示装置
JP2006308700A (ja) * 2005-04-26 2006-11-09 Nec Corp 表示装置、端末装置、光源装置及び光学部材
JP2007164193A (ja) * 2005-12-13 2007-06-28 Sharp Corp 光学フィルム、照明装置、および表示装置
JP2009058660A (ja) * 2007-08-30 2009-03-19 Kuraray Co Ltd 光学シート
JP2009080153A (ja) * 2007-09-25 2009-04-16 Dainippon Printing Co Ltd 光学シート、表示装置及び光学シートの製造方法
JP2014059565A (ja) 2007-12-21 2014-04-03 3M Innovative Properties Co 光制御フィルム
JP2009294468A (ja) * 2008-06-05 2009-12-17 Dainippon Printing Co Ltd 映像表示装置、及び光学シート
JP2010160360A (ja) * 2009-01-08 2010-07-22 Sumitomo Electric Fine Polymer Inc 配光制御シート及びそれを利用した配光制御パネル並びに表示装置
JP2012113054A (ja) 2010-11-22 2012-06-14 Dainippon Printing Co Ltd 光学シートとその作製方法、映像表示装置、及び金型ロールとその作製方法
JP2015075535A (ja) * 2013-10-07 2015-04-20 大日本印刷株式会社 透過型スクリーンおよび表示装置
JP2015075635A (ja) * 2013-10-09 2015-04-20 大日本印刷株式会社 透過型スクリーンおよび背面投射型表示装置
JP2016151711A (ja) * 2015-02-18 2016-08-22 大日本印刷株式会社 光学シート、面光源装置、映像源ユニット、及び表示装置
JP2017138357A (ja) * 2016-02-01 2017-08-10 大日本印刷株式会社 空間浮遊映像表示光学シート、空間浮遊映像表示装置
JP2017138411A (ja) * 2016-02-02 2017-08-10 大日本印刷株式会社 空間浮遊映像表示光学シート、空間浮遊映像表示装置
JP2017219619A (ja) * 2016-06-06 2017-12-14 大日本印刷株式会社 映像源ユニット

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115144938A (zh) * 2021-03-29 2022-10-04 上海近观科技有限责任公司 一种集成光学芯片的信号光收集结构
US11966071B2 (en) 2022-02-28 2024-04-23 Sharp Display Technology Corporation Illumination device including first to third sheets and display device including the same
JP7504141B2 (ja) 2022-02-28 2024-06-21 シャープディスプレイテクノロジー株式会社 照明装置及び表示装置
JP7418640B1 (ja) 2023-05-19 2024-01-19 大日本印刷株式会社 光学シート、面光源装置および表示装置

Also Published As

Publication number Publication date
US11747669B2 (en) 2023-09-05
EP3605157A4 (en) 2020-12-23
JPWO2018181966A1 (ja) 2020-02-06
JP7205463B2 (ja) 2023-01-17
US20230324735A1 (en) 2023-10-12
JP2023040121A (ja) 2023-03-22
US12066708B2 (en) 2024-08-20
US20210397041A1 (en) 2021-12-23
JP2024054147A (ja) 2024-04-16
US20220299820A1 (en) 2022-09-22
US11378837B2 (en) 2022-07-05
EP3605157A1 (en) 2020-02-05
JP7428230B2 (ja) 2024-02-06

Similar Documents

Publication Publication Date Title
JP7428230B2 (ja) 光学シート、光制御部材、面光源装置、映像源ユニット、及び表示装置
JP2016033663A (ja) 光学シート、面光源装置、映像源ユニット、及び表示装置
JP6834153B2 (ja) 空間浮遊映像表示装置
US20180128959A1 (en) Optical sheet, image source unit and image display device
US10228588B2 (en) Image source unit and display device
JP6930075B2 (ja) 光学シート、面光源装置、映像源ユニット、表示装置、及び光学シートの製造方法。
JP6880612B2 (ja) 映像源ユニット、及び表示装置
JP6922220B2 (ja) 光学シート、映像源ユニット、及び液晶表示装置
JP6932977B2 (ja) 映像源ユニット、及び液晶表示装置
JP2015180952A (ja) プリズムシート、面光源装置、映像源ユニット、及び液晶表示装置
JP7441397B2 (ja) 光学シート及び液晶表示装置
US11635562B2 (en) Image source unit, and liquid crystal display device
JP6710957B2 (ja) 映像源ユニット、及び表示装置
JP6915296B2 (ja) 光学ユニット、面光源装置、映像源ユニット、及び液晶表示装置
JP2018136423A (ja) 光学シート、面光源装置、映像源ユニット、及び表示装置
JP2017120714A (ja) 面光源装置、映像源ユニット、及び表示装置
JP7244204B2 (ja) 光学シート、面光源装置、映像源ユニット、及び表示装置
JP7135294B2 (ja) 光学シート、面光源装置、映像源ユニット、及び表示装置
JP2016151710A (ja) 光学シート、映像源ユニット及び映像表示装置
JP7418640B1 (ja) 光学シート、面光源装置および表示装置
JP2019066622A (ja) 光学シート、面光源装置、映像源ユニット、及び表示装置
JP2017198735A (ja) 光学シート、映像源ユニット及び液晶表示装置
JP2018045115A (ja) 光学シート、面光源装置、映像源ユニット、液晶表示装置、及び、光学シートの製造方法
JP2015087766A (ja) プリズムシート、面光源装置、映像源ユニット、及び液晶表示装置
JP2015068857A (ja) プリズムシート、面光源装置、映像源ユニット、及び液晶表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18777208

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019509396

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2018777208

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018777208

Country of ref document: EP

Effective date: 20191031