Nothing Special   »   [go: up one dir, main page]

WO2018180357A1 - 液体取扱装置 - Google Patents

液体取扱装置 Download PDF

Info

Publication number
WO2018180357A1
WO2018180357A1 PCT/JP2018/009115 JP2018009115W WO2018180357A1 WO 2018180357 A1 WO2018180357 A1 WO 2018180357A1 JP 2018009115 W JP2018009115 W JP 2018009115W WO 2018180357 A1 WO2018180357 A1 WO 2018180357A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
discharge
opening
microchannel chip
outflow prevention
Prior art date
Application number
PCT/JP2018/009115
Other languages
English (en)
French (fr)
Inventor
健 北本
拓史 山内
Original Assignee
株式会社エンプラス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エンプラス filed Critical 株式会社エンプラス
Priority to JP2019509148A priority Critical patent/JPWO2018180357A1/ja
Priority to US16/499,335 priority patent/US20200024123A1/en
Publication of WO2018180357A1 publication Critical patent/WO2018180357A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B1/00Devices without movable or flexible elements, e.g. microcapillary devices
    • B81B1/006Microdevices formed as a single homogeneous piece, i.e. wherein the mechanical function is obtained by the use of the device, e.g. cutters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502715Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by interfacing components, e.g. fluidic, electrical, optical or mechanical interfaces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/08Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a stream of discrete samples flowing along a tube system, e.g. flow injection analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N37/00Details not covered by any other group of this subclass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/02Adapting objects or devices to another
    • B01L2200/026Fluid interfacing between devices or objects, e.g. connectors, inlet details
    • B01L2200/027Fluid interfacing between devices or objects, e.g. connectors, inlet details for microfluidic devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0816Cards, e.g. flat sample carriers usually with flow in two horizontal directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/0864Configuration of multiple channels and/or chambers in a single devices comprising only one inlet and multiple receiving wells, e.g. for separation, splitting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/16Surface properties and coatings
    • B01L2300/161Control and use of surface tension forces, e.g. hydrophobic, hydrophilic
    • B01L2300/165Specific details about hydrophobic, oleophobic surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0406Moving fluids with specific forces or mechanical means specific forces capillary forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/06Valves, specific forms thereof
    • B01L2400/0688Valves, specific forms thereof surface tension valves, capillary stop, capillary break

Definitions

  • the present invention relates to a liquid handling apparatus.
  • micro-channel chip flow cell
  • the microchannel chip has an advantage that the amount of the reagent and the sample may be small, and is expected to be used in various applications such as clinical tests, food tests, and environmental tests (for example, Patent Document 1). reference).
  • the microchannel chip described in Patent Document 1 includes a supply unit for supplying a liquid, a plurality of discharge units for discharging the provided liquid, and a flow channel connecting the supply unit and the plurality of discharge units.
  • the microchannel chip is composed of an upper substrate and a lower substrate.
  • the upper substrate has a through hole serving as a supply unit and a plurality of through holes serving as a discharge unit.
  • a groove serving as a flow path is formed in the lower substrate.
  • the microchannel chip used for various inspections in order to reduce the size of the microchannel chip, it is possible to reduce the capacity of each of the plurality of discharge units and shorten the interval between the discharge units. is there.
  • the liquid after inspection overflows from the discharge part and mixes with the liquid overflowing from another discharge part.
  • an object of the present invention is to provide a liquid handling apparatus capable of preventing the liquid stored in each discharge portion from coming into contact between adjacent discharge portions.
  • the liquid handling apparatus of the present invention opens to the first surface side of the substrate, and introduces one introduction portion for introducing the liquid, and opens to the first surface side of the substrate and introduces from the one introduction portion.
  • a plurality of outflow prevention portions arranged to prevent the liquid from flowing out from the discharge portion using the surface tension of the liquid, and two or more of the openings per one opening
  • An outflow prevention part is arranged so as to surround the opening.
  • FIGS. 1A to 1C are diagrams showing a configuration of a microchannel chip according to Embodiment 1 of the present invention.
  • FIG. 2 is a partially enlarged cross-sectional view of a region surrounded by a dotted line in FIG. 1B.
  • 3A to 3D are schematic diagrams for explaining the operation of the microchannel chip according to the first embodiment.
  • 4A to 4C are diagrams showing the configuration of the microchannel chip according to Embodiment 2 of the present invention.
  • FIG. 5 is a partial enlarged cross-sectional view of a region surrounded by a dotted line in FIG. 4B.
  • 6A to 6E are schematic diagrams for explaining the operation of the microchannel chip according to the second embodiment.
  • FIG. 7A to 7C are diagrams showing the configuration of the microchannel chip according to Embodiment 3 of the present invention.
  • FIG. 8 is a partial enlarged cross-sectional view of a region surrounded by a dotted line in FIG. 7B.
  • 9A to 9C are schematic diagrams for explaining the operation of the microchannel chip according to Embodiment 3.
  • FIG. 10A to 10C are diagrams showing the configuration of the microchannel chip according to Embodiment 4 of the present invention.
  • FIG. 11 is a partially enlarged cross-sectional view of a region surrounded by a dotted line in FIG. 10B.
  • 12A to 12D are diagrams for explaining the operation of the microchannel chip according to the fourth embodiment.
  • FIG. 13 is a cross-sectional view of the microchannel chip according to the fifth embodiment.
  • FIG. 14A to 14C are views for explaining a method of manufacturing a microchannel chip according to the fifth embodiment.
  • FIG. 15 is a cross-sectional view of the microchannel chip according to the sixth embodiment.
  • 16A to 16C are diagrams for explaining a method of manufacturing a microchannel chip according to the sixth embodiment.
  • FIG. 17 is a cross-sectional view of the microchannel chip according to the seventh embodiment.
  • 18A to 18C are diagrams for explaining the method of manufacturing the microchannel chip according to the seventh embodiment.
  • FIG. 19 is a cross-sectional view of the microchannel chip according to the eighth embodiment.
  • 20A to 20C are diagrams for explaining the method of manufacturing the microchannel chip according to the eighth embodiment.
  • microchannel chip flow cell
  • FIG. 1A to 1C and FIG. 2 are diagrams showing the configuration of the microchannel chip 100 according to Embodiment 1 of the present invention.
  • 1A is a plan view of the microchannel chip 100
  • FIG. 1B is a cross-sectional view taken along line AA shown in FIG. 1A
  • FIG. 1C is a bottom view.
  • FIG. 2 is a partially enlarged cross-sectional view of a region surrounded by a dotted line in FIG. 1B.
  • the microchannel chip 100 has one introduction part 110, a plurality of discharge parts 120, a channel 130, and a plurality of outflow prevention parts 140.
  • the microchannel chip 100 is composed of a substrate 150 and a film 160.
  • the introduction part 110 is an introduction port for introducing liquid into the flow path 130 and the discharge part 120.
  • the introduction part 110 has a storage part 112 and an introduction port 114.
  • the type of liquid introduced into the flow path 130 can be selected as appropriate.
  • the liquid include a reagent and a liquid sample.
  • the viscosity of the liquid introduced into the flow path 130 can be selected as appropriate. In the present embodiment, the viscosity of the liquid is such that the inside of the flow channel 130 can proceed by capillary action.
  • the storage part 112 temporarily stores the liquid introduced into the flow path 130.
  • the storage part 112 is arranged on the same side as the upper surface 152 side of the substrate 150 on which the plurality of outflow prevention parts 140 are arranged.
  • the shape of the reservoir 112 can be set as appropriate as long as the liquid can be temporarily stored.
  • the reservoir 112 is a substantially cylindrical space disposed above the introduction port 114.
  • the storage part 112 is surrounded by a side wall. Since the liquid in the storage unit 112 is finally stored in the plurality of discharge units 120, the volume of the storage unit 112 is usually larger than the volume of each discharge unit 120. Therefore, it is preferable that the opening of the introduction part 110 is farther from the upper surface 152 (first surface) of the substrate 150 than the opening of the discharge part 120.
  • the introduction port 114 guides the liquid stored in the storage unit 112 to the flow path 130.
  • the opening on the upper side of the introduction port 114 communicates with the storage part 112, and the opening on the side of the introduction part 110 communicates with the flow path 130.
  • the shape of the introduction port 114 can be appropriately set as long as the liquid stored in the storage unit 112 can be guided to the flow path 130.
  • the shape of the inlet 114 is a bottomed recess formed such that its diameter gradually decreases from the reservoir 112 toward the flow path 130.
  • the flow path 130 is a flow path through which liquid can move by capillary action, and is branched in the middle.
  • An introduction part 110 (introduction port 114) is connected to the upstream end of the flow path 130, and a plurality of discharge parts 120 are connected to a plurality of downstream ends of the flow path 130, respectively.
  • the plurality of discharge units 120 are storage units that store the liquid flowing in from the flow path 130 and cause a desired reaction as necessary. Further, the liquid in the discharge unit 120 is taken out from the opening of the discharge unit 120.
  • the discharge unit 120 also functions as an air hole when the liquid is introduced into the flow path 130.
  • the plurality of discharge parts 120 communicate with the downstream end of the flow path 130, respectively.
  • the shape of the discharge part 120 can be appropriately set as long as the liquid from the flow path 130 can be stored.
  • the shape of the discharge part 120 may be formed such that the diameter gradually increases from the bottom toward the opening, or the diameter gradually decreases from the bottom toward the opening. The diameter may be the same from the bottom to the opening.
  • the shape of the discharge part 120 is a bottomed recessed part formed with the same diameter from the bottom part to the opening part.
  • the plurality of outflow prevention units 140 are respectively disposed so as to surround the openings of the plurality of discharge units 120 and prevent the liquid from flowing out from the openings of the discharge unit 120 using the surface tension of the liquid. To do.
  • two or more outflow prevention parts 140 are arranged so as to surround the opening part per opening part.
  • the configuration of the outflow prevention unit 140 can be set as appropriate as long as the liquid can be prevented from proceeding from the opening of the discharge unit 120 using the surface tension of the liquid.
  • the outflow prevention unit 140 is disposed so as to surround the opening on the opening edge of (A) the discharge unit 120 and (B) on the inner surface of the discharge unit 120, and is formed so as to go outward from the center side of the discharge unit 120.
  • the outflow prevention unit 140 is (D) a flange 142 extending from the inner surface of the discharge unit 120 toward the center of the opening, and (A) an opening edge of the discharge unit 120. More specifically, as shown in FIG. 2, the lower opening edge of the collar 142 is the outflow prevention section 140 of (D), and the upper opening edge of the collar 142 is the outflow of (A). This is a prevention unit 140.
  • the collar part 142 is an annular plate-like member disposed on the inner surface of the discharge part 120.
  • the inner diameter of the collar 142 when the collar 142 is viewed in plan can be appropriately set as long as it is smaller than the diameter of the opening of the discharge section 120.
  • the thickness of the collar part 142 can be set suitably.
  • the microchannel chip 100 is composed of the substrate 150 and the film 160.
  • the substrate 150 is a transparent substantially rectangular resin substrate.
  • the substrate 150 has a flow channel groove 155, a first through hole 156, and a plurality of second through holes 157.
  • the channel groove 155 is formed on the lower surface 154 (second surface) on the opposite side of the upper surface 152 (first surface) on which the storage portion 112 and the outflow prevention portion 140 are disposed, of the two surfaces of the substrate 150. .
  • One end of the channel groove 155 communicates with the first through hole 156.
  • the other end of the channel groove 155 is branched into a plurality, and each communicates with the second through hole 157.
  • the channel groove 155 becomes the channel 130 when the opening is covered with the film 160.
  • the first through hole 156 is a through hole opened in the upper surface 152 and the lower surface 154 of the substrate 150.
  • the first through hole 156 communicates with the upstream end of the flow channel groove 155.
  • the shape of the first through hole 156 can be set as appropriate. In the present embodiment, the shape of the first through hole 156 is formed such that the diameter gradually decreases from the upper surface 152 toward the lower surface 154.
  • the first through hole 156 becomes the introduction port 114 when the opening on the lower surface 154 side is covered with the film 160.
  • a side wall extending in the thickness direction of the substrate 150 is disposed so as to surround the upper opening of the first through hole 156.
  • the storage portion 112 is defined by the side wall.
  • the plurality of second through holes 157 are through holes opened in the upper surface 152 and the lower surface 154 of the substrate 150.
  • the plurality of second through holes 157 communicate with any one of the plurality of downstream end portions of the flow channel groove 155.
  • the shape of the second through hole 157 can be set as appropriate.
  • the second through hole 157 has the same diameter from the opening on the lower surface 154 side to the opening on the upper surface 152 side.
  • the plurality of second through holes 157 serve as the discharge portions 120 when the openings on the lower surface 154 side are covered with the film 160.
  • the collar part 142 is arrange
  • the lower opening edge and the upper opening edge (opening edge of the discharge part 120) of the opening part of the collar part 142 function as the outflow prevention part 140, respectively.
  • the type of resin that constitutes the substrate 150 is such that the surface of the flow channel 130 on which the liquid can proceed by capillary action (surface that becomes the inner wall of the flow channel), the adhesive strength to the film 160, and the thermal history imposed in various processes As long as resistance to a reagent can be secured, it can be appropriately selected from known resins.
  • the resin constituting the substrate 150 include polyethylene terephthalate, polycarbonate, polymethyl methacrylate, vinyl chloride, polypropylene, polyether, polyethylene, polystyrene, silicone resin, and the like.
  • the thickness of the substrate 150 is in the range of 1 to 10 mm, for example.
  • the film 160 is a transparent resin film bonded to the lower surface 154 of the substrate 150.
  • the film 160 and the substrate 150 are joined by thermocompression bonding.
  • the film 160 covers the opening on the lower surface 154 side of the first through hole 156, the opening on the flow channel 155, and the openings on the lower surface 154 side of the plurality of second through holes 157.
  • the type of resin constituting the film 160 may be selected from the resins constituting the substrate 150.
  • the resin constituting the film 160 may be the same as or different from the substrate 150.
  • the thickness of the film 160 can be appropriately set according to the type (rigidity) of the resin as long as the above-described function can be exhibited. In the present embodiment, the thickness of the film 160 is about 20 ⁇ m.
  • FIG. 1 In order to explain the effect of the microchannel chip 100 according to the present embodiment, it is assumed that an amount of liquid exceeding the total volume of the plurality of discharge units 120 is introduced into the introduction unit 110. It is explained as a premise.
  • the introduction part 110 is filled with a liquid (see FIG. 3A).
  • the liquid filled in the introduction part 110 flows through the flow path 130 and reaches the discharge part 120 by capillary action (see FIG. 3B).
  • the liquid that has reached the discharge portion 120 gradually fills the discharge portion 120 and reaches the lower opening edge (first-stage outflow prevention portion 140) of the opening portion of the collar 142.
  • the movement of the liquid level is stopped by the surface tension (see FIG. 3C). Thereby, it can suppress that a liquid overflows from the discharge part 120.
  • FIG. when the discharge unit 120 is filled with liquid, the liquid level exceeds the opening edge on the lower side of the opening of the collar 142.
  • the liquid reaches the upper opening edge (second-stage outflow prevention part 140) of the opening part of the collar part 142.
  • the opening diameter changes abruptly, so that the movement of the liquid level is stopped again by the surface tension (see FIG. 3D).
  • the micro-channel chip 100 has the opening edge on the lower side of the opening part of the collar part 142 (first-stage outflow prevention part 140) and the upper part of the opening part of the collar part 142.
  • the liquid can be prevented from overflowing from the discharge part 120 by the opening edge (second-stage outflow prevention part 140). Therefore, even if an excessive amount of liquid is introduced into the introduction unit 110, the possibility that the liquid stored in each discharge unit 120 contacts between the adjacent discharge units 120 can be reduced.
  • Embodiment 2 (Configuration of microchannel chip)
  • the microchannel chip 200 according to the second embodiment is different from the microchannel chip 100 according to the first embodiment only in the structure of the outflow prevention unit 240. Therefore, in the present embodiment, the outflow prevention unit 240 will be mainly described.
  • symbol is attached
  • FIG. 4A to 4C and FIG. 5 are diagrams showing the configuration of the microchannel chip 200 according to the second embodiment.
  • 4A is a plan view of the microchannel chip 200
  • FIG. 4B is a cross-sectional view taken along line AA shown in FIG. 4A
  • FIG. 4C is a bottom view.
  • FIG. 5 is a partial enlarged cross-sectional view of a region surrounded by a dotted line in FIG. 4B.
  • the microchannel chip 200 includes an introduction unit 110, a channel 130, a plurality of discharge units 120, and a plurality of outflow prevention units 240.
  • the microchannel chip 200 is composed of a substrate 250 and a film 160.
  • the substrate 250 includes a flow channel groove 155, a first through hole 156, and a second through hole 357.
  • a flange 142 is disposed on the upper surface 152 of the substrate 250, and an annular groove 244 is opened.
  • the annular groove 244 is an annular groove disposed outside the opening of the discharge part 120 so as to surround the opening of the discharge part 120.
  • the annular groove 244 is disposed on the upper surface of the flange 142.
  • the width and depth of the annular groove 244 are not particularly limited as long as the liquid can be prevented from moving beyond the annular groove 244, and can be appropriately set according to the place where the annular groove 244 is disposed.
  • the micro-channel chip 200 having one annular groove 244 per one discharge portion 120 is shown, but a plurality of annular grooves 244 may be provided per one discharge portion 120. .
  • the plurality of annular grooves 244 may be arranged so as to be concentric with the center of the opening of the discharge unit 120 as the center.
  • FIG. 6A to 6E are schematic views for explaining the operation of the microchannel chip 200.
  • FIG. Also in the following description, in order to explain the effect of the microchannel chip 200 according to the present embodiment, it is assumed that an amount of liquid exceeding the total volume of the plurality of discharge units 120 is introduced into the introduction unit 110. Explains.
  • the introduction part 110 is filled with a liquid (see FIG. 6A).
  • the liquid filled in the introduction part 110 flows through the flow path 130 and reaches the discharge part 120 by capillary action (see FIG. 6B).
  • the liquid that has reached the discharge unit 120 gradually fills the discharge unit 120 and reaches the lower opening edge (first-stage outflow prevention unit 240) of the opening of the collar 142.
  • the movement of the liquid level is stopped by the surface tension (see FIG. 6C). Thereby, it can suppress that a liquid overflows from the discharge part 120.
  • FIG. Furthermore, when the discharge part 120 is filled with the liquid, the liquid exceeds the opening edge on the lower side of the opening part of the collar part 142.
  • the liquid reaches the upper opening edge (second-stage outflow prevention unit 240) of the opening of the collar 142.
  • the opening diameter changes rapidly, so that the movement of the liquid level is stopped again by the surface tension (see FIG. 6D).
  • the discharge part 120 is filled with the liquid, the liquid exceeds the opening edge on the upper side of the opening.
  • the liquid reaches the inner end portion (third-stage outflow prevention portion 240) of the annular groove 244. Again, the movement of the liquid level is stopped by surface tension (see FIG. 6E).
  • the outflow prevention unit 240 is provided in three stages, in the microchannel chip 200 according to the present embodiment, it is possible to more reliably prevent the liquid from overflowing from the discharge unit 120.
  • the microchannel chip 200 includes the collar 142 (first-stage outflow prevention unit 240) extending from the inner surface of the discharge unit 120 toward the center of the opening, By the opening edge of the discharge part 120 (second-stage outflow prevention part 240) and the annular groove 244 (third-stage outflow prevention part 240) arranged so as to surround the opening outside the opening part, the liquid can flow. While overflowing from the discharge part 120 can be suppressed, even if the liquid overflows from the discharge part 120, it can suppress that a liquid spreads. Therefore, even if an excessive amount of liquid is introduced into the introduction part 110, the possibility that the liquid stored in each discharge part 120 contacts between the adjacent discharge parts 120 can be further reduced.
  • Embodiment 3 (Configuration of microchannel chip)
  • the microchannel chip 300 according to the third embodiment is different from the microchannel chip 100 according to the first embodiment only in the structure of the outflow prevention unit 340. Therefore, in the present embodiment, the outflow prevention unit 340 will be mainly described.
  • symbol is attached
  • FIG. 7A to 7C and FIG. 8 are diagrams showing the configuration of the microchannel chip 300 according to the third embodiment.
  • 7A is a plan view of the microchannel chip 300
  • FIG. 7B is a cross-sectional view taken along the line AA shown in FIG. 7A
  • FIG. 7C is a bottom view.
  • FIG. 8 is a partial enlarged cross-sectional view of a region surrounded by a dotted line in FIG. 7B.
  • the microchannel chip 300 includes an introduction unit 110, a channel 130, a plurality of discharge units 320, and a plurality of outflow prevention units 340.
  • the microchannel chip 300 includes a substrate 350 and a film 160.
  • the plurality of discharge units 320 are storage units that store the liquid flowing in from the flow path 130 and cause a desired reaction as necessary. Further, the liquid in the discharge unit 320 is taken out from the opening of the discharge unit 320.
  • the discharge part 320 also functions as an air hole when the liquid is introduced into the flow path 130.
  • the plurality of discharge portions 320 communicate with the downstream end of the flow path 130, respectively.
  • the discharge part 320 is a bottomed concave part formed so that its diameter gradually increases from the bottom part toward the opening part.
  • (A) the opening edge of the discharge portion 320 and (C) the annular groove 244 arranged so as to surround the opening portion function as the outflow prevention portion 340.
  • the annular groove 244 is arranged on the upper surface 152 so as to surround the opening outside the opening of the discharge part 320.
  • the substrate 350 has a flow channel groove 155, a first through hole 156, and a second through hole 357.
  • An annular groove 244 is opened on the upper surface 152 of the substrate 350.
  • the second through-hole 357 is a through-hole that opens to the upper surface 152 and the lower surface 154, and is a bottomed recess formed such that its diameter gradually increases from the lower surface 154 toward the upper surface 152.
  • the plurality of second through-holes 357 become discharge portions 320 when the openings on the lower surface 154 side are covered with the film 160.
  • FIG. 9A to 9C are schematic diagrams for explaining the operation of the microchannel chip 300.
  • FIG. Also in the following description, in order to explain the effect of the microchannel chip 300 according to the present embodiment, it is assumed that an amount of liquid exceeding the total volume of the plurality of discharge units 120 is introduced into the introduction unit 110. Explains.
  • the introduction part 110 is filled with a liquid (see FIG. 9A).
  • the liquid filled in the introduction part 110 flows through the flow path 130 and reaches the discharge part 320 by capillary action.
  • the liquid that has reached the discharge section 320 gradually fills the discharge section 320 and reaches the opening edge of the discharge section 320 (first-stage outflow prevention section 340).
  • the opening diameter changes abruptly, so that the movement of the liquid level is stopped by the surface tension (see FIG. 9B). Thereby, the liquid can be prevented from overflowing from the discharge part 320.
  • the discharge unit 120 is filled with the liquid, the liquid exceeds the opening edge of the discharge unit 320.
  • the microchannel chip 300 can more reliably prevent the liquid from overflowing from the discharge unit 320.
  • the micro-channel chip 300 is disposed so as to surround the opening edge of the discharge portion 320 (first-stage outflow prevention portion 340) and the outside of the opening portion.
  • the annular groove 244 (second-stage outflow prevention unit 240) can suppress the overflow of the liquid from the discharge unit 320, and can suppress the liquid from spreading even if the liquid overflows from the discharge unit 320. Therefore, even if an excessive amount of liquid is introduced into the introduction unit 110, the possibility that the liquid stored in each discharge unit 320 contacts between the adjacent discharge units 320 can be reduced.
  • Embodiment 4 (Configuration of microchannel chip)
  • the microchannel chip 400 according to the fourth embodiment is different from the microchannel chip 100 according to the first embodiment only in the structure of the outflow prevention unit 440. Therefore, in this embodiment, the outflow prevention unit 440 will be mainly described.
  • symbol is attached
  • FIGS. 10A to 10C and FIG. 11 are diagrams showing the configuration of the microchannel chip 400 according to the fourth embodiment.
  • 10A is a plan view of the microchannel chip 400
  • FIG. 10B is a cross-sectional view taken along the line AA shown in FIG. 10A
  • FIG. 10C is a bottom view.
  • FIG. 11 is a partially enlarged cross-sectional view of a region surrounded by a dotted line in FIG. 10B.
  • the micro-channel chip 400 includes an introduction unit 110, a channel 130, a plurality of discharge units 420, and a plurality of outflow prevention units 440.
  • the microchannel chip 400 includes a substrate 450 and a film 160.
  • stepped portion 442 formed so as to go outward from the center side of discharge portion 120, (A) an opening edge of discharge portion 420, and (C) opening as outflow prevention portion 440.
  • An annular groove 244 arranged to surround the opening on the outside of the portion functions.
  • the step portion 424 is disposed on the inner side surface of the discharge portion 420 and is formed so as to be separated from the center side of the opening portion to the outside.
  • the stepped portion 424 is a stepped portion formed between the cylindrical portion having an opening area larger than the opening area of the discharging portion 420 and the inner side surface of the discharging portion 120.
  • the substrate 450 has a flow channel groove 155, a first through hole 156, and a second through hole 457.
  • a stepped portion 424 is formed on the upper surface 152 of the substrate 450, and an annular groove 244 is opened.
  • FIG. 12A to 12D are schematic diagrams for explaining the operation of the microchannel chip 400.
  • FIG. Also in the following description, in order to explain the effect of the microchannel chip 400 according to the present embodiment, it is assumed that an amount of liquid exceeding the total volume of the plurality of discharge units 120 is introduced into the introduction unit 110. Explains.
  • the introduction part 110 is filled with a liquid (see FIG. 12A).
  • the liquid filled in the introduction part 110 flows through the flow path 130 and reaches the discharge part 420 by capillary action.
  • the liquid that has reached the discharge section 420 gradually fills the discharge section 420 and reaches the step section 424 (first-stage outflow prevention section 440).
  • the opening diameter changes rapidly, so that the movement of the liquid level is stopped by the surface tension (see FIG. 12B).
  • the liquid can be prevented from overflowing from the discharge part 420.
  • the discharge part 420 is filled with liquid, the liquid level exceeds the step part 424.
  • the liquid reaches the opening edge of the discharge unit 420 (second-stage outflow prevention unit 440).
  • the opening diameter changes rapidly, so that the movement of the liquid level is stopped by the surface tension (see FIG. 12C).
  • the liquid can be prevented from overflowing from the discharge part 420.
  • the discharge part 420 is filled with the liquid, the liquid exceeds the opening edge of the discharge part 420.
  • the liquid reaches the inner end portion (third-stage outflow prevention portion 240) of the annular groove 244. Again, the movement of the liquid level is stopped by surface tension (FIG. 12D).
  • the outflow prevention part 440 is provided in three stages, in the microchannel chip 400 according to the present embodiment, the liquid can be more reliably prevented from overflowing from the discharge part 420.
  • the microchannel chip 400 is disposed so as to surround the opening on the inner side surface of the discharge unit 420 and is formed so as to extend outward from the center side of the discharge unit 420.
  • a portion 424 first-stage outflow prevention portion 440
  • an opening edge of the discharge portion 420 second-stage outflow prevention portion 440
  • an annular groove 244 arranged to surround the opening outside the opening.
  • outflow prevention units (A), (B), (C), and (D) may not be the combinations and numbers shown in the first to fourth embodiments.
  • the microchannel chip 500 according to the fifth embodiment is different from the microchannel chip 100 according to the first embodiment only in that at least a part of the region is hydrophilized.
  • symbol is attached
  • FIG. 13 is a cross-sectional view of the microchannel chip 500 according to the fifth embodiment.
  • the hatching of the substrate 150 is omitted in order to explain the hydrophilic region and the hydrophobic region.
  • a thick black line region in FIG. 13 indicates a hydrophilic region, and a hatched region and reference numeral 581 indicate a hydrophobic region.
  • the microchannel chip 500 includes one introduction unit 110, a plurality of discharge units 120, a channel 130, and a plurality of outflow prevention units 140.
  • the microchannel chip 500 includes a substrate 150 and a film 160. As shown in FIG. 13, on the surface of the microchannel chip 500 in the present embodiment, when the liquid continues to be introduced into the discharge unit 120 from the channel 130, the outflow prevention unit 140 that reaches first is , The lower opening edge of the collar 142. Moreover, the outflow prevention part 140 that reaches the end is an opening edge on the upper side of the collar part 142.
  • the region other than the region between the lower opening edge of the flange 142 and the upper opening edge of the flange 142 is subjected to a hydrophilic treatment.
  • all regions except the region between the lower opening edge of the collar 142 and the upper edge of the collar 142 and the region around the upper edge of the collar 142 are hydrophilic. Has been processed.
  • Such a microchannel chip 500 can be manufactured, for example, by the following method.
  • 14A to 14C are diagrams for explaining a method of manufacturing the microchannel chip 500.
  • FIG. 14A a substrate 150 similar to that of the first embodiment is manufactured by, for example, injection molding.
  • the mask member 570 is brought into close contact with a region other than the region to be hydrophilized of the substrate 150.
  • the material of the mask member 570 can be selected as appropriate as long as the material can be adhered to a region other than the region to be hydrophilized. Examples of the material of the mask member 570 include elastic materials such as silicone and rubber.
  • the mask member 570 includes a first mask portion 571 that is in close contact with the inner side surface of the flange portion 142, and a pedestal portion 572 that is in close contact with the upper opening edge of the flange portion 142.
  • the method for hydrophilization can be selected as appropriate.
  • the hydrophilization treatment include plasma treatment and atomic layer volume (ALD).
  • Examples of a thin film formed by an atomic layer volume (ALD) method include a layer containing silicon oxide, a layer containing aluminum oxide, and a layer containing titanium oxide.
  • ALD atomic layer volume
  • the region other than the region masked by the mask member 570 becomes hydrophilic.
  • the region masked with the mask member 570 is more hydrophobic than the region other than the region masked with the mask member 570.
  • an injection molded product using a general resin has a hydrophobic surface.
  • the microchannel chip 500 as shown in FIG. 14C can be manufactured by bonding the film 160 to the lower surface 154 of the substrate 150.
  • the microchannel chip 500 according to the present embodiment has a hydrophilic region and a hydrophobic region in addition to the effects of the first embodiment. Since the inside of the discharge part 120 becomes hydrophilic, it is easy for liquid to pass through.
  • the microchannel chip 600 according to the sixth embodiment is different from the microchannel chip 200 according to the second embodiment only in that at least a part of the region is hydrophilized.
  • symbol is attached
  • FIG. 15 is a cross-sectional view of the microchannel chip 600 according to the sixth embodiment.
  • the hatching of the substrate 250 is omitted in order to explain the hydrophilic region and the hydrophobic region.
  • a thick black line in FIG. 15 indicates a hydrophilic region, and hatched regions, regions 581 and 682 indicate hydrophobic regions.
  • the microchannel chip 600 includes an introduction unit 110, a channel 130, a plurality of discharge units 120, and a plurality of outflow prevention units 240.
  • the microchannel chip 600 includes a substrate 250 and a film 160.
  • the outflow prevention section 240 that reaches first is , The lower opening edge of the collar 142.
  • the outflow prevention part 240 that reaches the end is an annular groove 244.
  • at least a part of the region other than the region between the lower opening edge of the collar 142 and the annular groove 244 is subjected to a hydrophilic treatment. In the present embodiment, all regions except the region between the opening edge on the lower side of the collar 142 and the annular groove 244 are subjected to a hydrophilic treatment.
  • Such a microchannel chip 600 can be manufactured, for example, by the following method.
  • the microchannel chip 600 can be manufactured in the same manner as in the fifth embodiment by using the mask member 670.
  • the material of mask member 670 can be the same member as in the fifth embodiment.
  • the mask member 670 includes a first mask portion 571 that is in close contact with the inner surface of the collar portion 142, a second mask portion 573 that is in close contact with the annular groove 244, and the first mask portion 571 and the second mask portion. 573, and a base portion 672 that is in close contact with the region between the upper opening edge of the flange portion 142 and the annular groove 244.
  • the microchannel chip 600 according to the present embodiment has a hydrophilic region and a hydrophobic region in addition to the effects of the second embodiment, so Since the inside of the discharge part 120 becomes hydrophilic, it is easy for liquid to pass through.
  • the microchannel chip 700 according to the seventh embodiment is different from the microchannel chip 300 according to the third embodiment only in that at least a part of the region is hydrophilized.
  • symbol is attached
  • FIG. 17 is a cross-sectional view of the microchannel chip 700 according to the seventh embodiment.
  • the hatching of the substrate 350 is omitted in order to explain the hydrophilic region and the hydrophobic region.
  • a thick black line in FIG. 17 indicates a hydrophilic region, and a hatched region, reference numeral 682 indicates a hydrophobic region.
  • the microchannel chip 700 has one introduction unit 110, a plurality of discharge units 320, a channel 130, and a plurality of outflow prevention units 340.
  • the outflow prevention unit 340 that reaches first is the opening edge of the discharge unit 320. is there.
  • the outflow prevention part 340 that reaches the end is an annular groove 244.
  • at least a part of the region other than the region between the opening edge of the discharge unit 320 and the annular groove 244 is subjected to a hydrophilic treatment.
  • all regions except for the region between the opening edge of the discharge portion 320 and the annular groove 244 are subjected to a hydrophilic treatment.
  • a region between the opening edge of the discharge portion 320 and the annular groove 244 is a hydrophobic region.
  • Such a microchannel chip 700 can be manufactured, for example, by the following method.
  • 18A to 18C are views for explaining a manufacturing method of the microchannel chip 700.
  • FIG. As shown in FIGS. 18A to 18C, a mask member 770 can be used in the same manner as in the sixth embodiment.
  • the mask member 770 according to the present embodiment includes a second mask portion 573 that is in close contact with the annular groove 244 and a pedestal portion 772 that is in close contact with the region between the upper opening edge of the flange 142 and the annular groove 244.
  • the material for mask member 770 can be the same member as in the fifth embodiment.
  • the microchannel chip 700 according to the present embodiment has a hydrophilic region and a hydrophobic region in addition to the effects of the third embodiment. Since the inside of the discharge part 320 becomes hydrophilic, it is easy for liquid to pass through.
  • microchannel chip 800 according to the eighth embodiment is different from the microchannel chip 400 according to the fourth embodiment only in that at least a part of the region is hydrophilized.
  • symbol is attached
  • FIG. 19 is a cross-sectional view of the microchannel chip 800 according to the eighth embodiment.
  • the hatching of the substrate 450 is omitted in order to explain the hydrophilic region and the hydrophobic region.
  • a thick black line in FIG. 19 indicates a hydrophilic region, and hatched regions, reference numerals 882 and 682 indicate hydrophobic regions.
  • the microchannel chip 800 includes one introduction unit 110, a plurality of discharge units 420, a channel 130, and a plurality of outflow prevention units 440.
  • the microchannel chip 800 is composed of a substrate 450 and a film 160.
  • the outflow prevention unit 440 that reaches first is the opening edge of the discharge unit 420. is there.
  • the outflow prevention part 440 that reaches the end is an annular groove 244.
  • at least a part of the region other than the region between the opening edge of the discharge unit 420 and the annular groove 244 is subjected to a hydrophilic treatment.
  • all regions except the region between the opening edge of the discharge part 420 and the annular groove 244 are subjected to a hydrophilic treatment.
  • Such a microchannel chip 800 can be manufactured, for example, by the following method.
  • 20A to 20C are views for explaining a method of manufacturing the microchannel chip 800.
  • the microchannel chip 800 can be manufactured using the mask member 870 in the same manner as in the sixth embodiment.
  • the mask member 870 according to the present embodiment includes a second mask portion 573 that is in close contact with the annular groove, a third mask portion 874 that is in close contact with the step portion 424, and a space between the second mask portion 573 and the third mask portion 874. And a pedestal portion 872 closely contacting the region.
  • the same member as in the fifth embodiment can be used.
  • the microchannel chip 800 according to the present embodiment has a hydrophilic region and a hydrophobic region in addition to the effects of the fourth embodiment. Since the inside of the discharge part 420 becomes hydrophilic, it is easy for liquid to pass through.
  • microchannel chip of the present invention is useful as a microchannel chip used in, for example, the scientific field and the medical field.
  • Micro-channel chip 110 Introducing section 112 Reserving section 114 Inlet 120, 320, 420 Discharging section 130 Channel 140, 240, 340, 440 Outflow prevention section 142 ⁇ Part 150, 250, 350, 450 Substrate 152 Upper surface (first surface) 154 Lower surface (second surface) 155 Channel groove 156 First through hole 157, 357, 457 Second through hole 160 Film 244 Annular groove 424 Step part 570, 670, 770, 870 Mask member 571 First mask part 572, 672, 772, 872 Base part 573 Second mask member 581, 682, 882 Hydrophobic region 874 Third mask portion

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Clinical Laboratory Science (AREA)
  • Dispersion Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Hematology (AREA)
  • Biochemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Engineering & Computer Science (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Micromachines (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)

Abstract

液体取扱装置は、基板の第1面側に開口し、液体を導入するための1つの導入部と、基板の第1面側に開口し、1つの導入部から導入した液体が排出されるための複数の排出部と、基板内において、1つの導入部および複数の排出部を接続する流路と、複数の排出部の開口部を取り囲むようにそれぞれ配置され、液体の表面張力を利用して、排出部からの液体の流出の進行を防止するための複数の流出防止部とを有する。1つの開口部につき、2以上の流出防止部が当該開口部を取り囲むように配置されている。

Description

液体取扱装置
 本発明は、液体取扱装置に関する。
 近年、タンパク質や核酸などの微量な物質の分析を高精度かつ高速に行うために、マイクロ流路チップ(フローセル)が使用されている。マイクロ流路チップは、試薬および試料の量が少なくてよいという利点を有しており、臨床検査や食物検査、環境検査などの様々な用途での使用が期待されている(例えば、特許文献1参照)。
 特許文献1に記載のマイクロ流路チップは、液体を供給するための供給部と、提供された液体を排出するための複数の排出部と、供給部および複数の排出部を接続した流路と、を有する。また、マイクロ流路チップは、上部基板と、下部基板とから構成されている。上部基板には、供給部となる貫通孔と、排出部となる複数の貫通孔とが形成されている。下部基板には、流路となる溝が形成されている。
 特許文献1に記載のマイクロ流路チップでは、供給部に液体を提供すると、毛細管現象により流路が液体で満たされる。次いで、流路を満たした液体は、排出部に流れ込む。
国際公開第2009/145172号
 このように、各種検査に使用されるマイクロ流路チップでは、マイクロ流路チップの大きさを小さくするため、複数の排出部の容量をそれぞれ小さくし、かつ排出部同士の間隔を短くすることがある。しかしながら、このようなマイクロ流路チップでは、検査後の液体が排出部から溢れ出してしまい、他の排出部から溢れ出した液体と混ざり合ってしまうおそれがある。
 そこで、本発明の目的は、隣接する排出部間で、各排出部に貯留した液体が接触することを防止できる液体取扱装置を提供することである。
 本発明の液体取扱装置は、基板の第1面側に開口し、液体を導入するための1つの導入部と、前記基板の前記第1面側に開口し、前記1つの導入部から導入した前記液体が排出されるための複数の排出部と、前記基板内において、前記1つの導入部および前記複数の排出部を接続する流路と、前記複数の排出部の開口部を取り囲むようにそれぞれ配置され、液体の表面張力を利用して、前記排出部からの前記液体の流出の進行を防止するための複数の流出防止部と、を有し、1つの前記開口部につき、2以上の前記流出防止部が当該開口部を取り囲むように配置されている。
 本発明によれば、隣接する排出部間で、各排出部に貯留した液体が接触することを防止できる液体取扱装置を提供できる。
図1A~Cは、本発明の実施の形態1に係るマイクロ流路チップの構成を示す図である。 図2は、図1Bの点線で囲まれた領域の部分拡大断面図である。 図3A~Dは、実施の形態1に係るマイクロ流路チップの動作を説明するための模式図である。 図4A~Cは、本発明の実施の形態2に係るマイクロ流路チップの構成を示す図である。 図5は、図4Bの点線で囲まれた領域の部分拡大断面図である。 図6A~Eは、実施の形態2に係るマイクロ流路チップの動作を説明するための模式図である。 図7A~Cは、本発明の実施の形態3に係るマイクロ流路チップの構成を示す図である。 図8は、図7Bの点線で囲まれた領域の部分拡大断面図である。 図9A~Cは、実施の形態3に係るマイクロ流路チップの動作を説明するための模式図である。 図10A~Cは、本発明の実施の形態4に係るマイクロ流路チップの構成を示す図である。 図11は、図10Bの点線で囲まれた領域の部分拡大断面図である。 図12A~Dは、実施の形態4に係るマイクロ流路チップの動作を説明するための図である。 図13は、実施の形態5に係るマイクロ流路チップの断面図である。 図14A~Cは、実施の形態5に係るマイクロ流路チップの製造方法を説明するための図である。 図15は、実施の形態6に係るマイクロ流路チップの断面図である。 図16A~Cは、実施の形態6に係るマイクロ流路チップの製造方法を説明するための図である。 図17は、実施の形態7に係るマイクロ流路チップの断面図である。 図18A~Cは、実施の形態7に係るマイクロ流路チップの製造方法を説明するための図である。 図19は、実施の形態8に係るマイクロ流路チップの断面図である。 図20A~Cは、実施の形態8に係るマイクロ流路チップの製造方法を説明するための図である。
 以下、本発明の実施の形態について、図面を参照して詳細に説明する。以下の説明では、本発明の液体取扱装置の代表例として、マイクロ流路チップ(フローセル)について説明する。
 [実施の形態1]
 (マイクロ流路チップの構成)
 図1A~Cおよび図2は、本発明の実施の形態1に係るマイクロ流路チップ100の構成を示す図である。図1Aは、マイクロ流路チップ100の平面図であり、図1Bは、図1Aに示されるA-A線の断面図であり、図1Cは、底面図である。図2は、図1Bの点線で囲まれた領域の部分拡大断面図である。
 図1A~Cおよび図2に示されるように、マイクロ流路チップ100は、1つの導入部110と、複数の排出部120と、流路130と、複数の流出防止部140と有する。また、マイクロ流路チップ100は、基板150およびフィルム160から構成されている。
 導入部110は、流路130および排出部120に液体を導入するための導入口である。導入部110は、貯留部112と、導入口114とを有する。
 流路130に導入される液体の種類は、適宜選択できる。液体の例には、試薬や液体試料などが含まれる。また、流路130に導入される液体の粘度は、適宜選択できる。本実施の形態では、液体の粘度は、流路130内を毛細管現象で進行できる程度の粘度である。
 貯留部112は、流路130に導入される液体を一時的に貯留する。貯留部112は、複数の流出防止部140が配置された基板150の上面152側と同じ側に配置されている。貯留部112の形状は、一時的に液体を貯留できれば、適宜設定できる。本実施の形態では、貯留部112は、導入口114の上方に配置された略円筒状の空間である。貯留部112は、側壁により周囲を取り囲まれている。貯留部112内の液体が最終的には複数の排出部120に収容されることから、通常は、貯留部112の容積は各排出部120の容積よりも大きい。したがって、導入部110の開口部は、排出部120の開口部よりも、基板150の上面152(第1面)から離れていることが好ましい。
 導入口114は、貯留部112に貯留された液体を流路130に導く。導入口114の上側の開口部は貯留部112に連通しており、導入部110の側方の開口部は流路130に連通している。導入口114の形状は、貯留部112に貯留された液体を流路130に導くことができれば、適宜設定できる。本実施の形態では、導入口114の形状は、貯留部112から流路130に向かうにつれて、その径が徐々に小さくなるように形成された有底の凹部である。
 流路130は、毛細管現象により液体が移動可能な流路であり、途中で分岐している。流路130の上流側端部には導入部110(導入口114)が接続されており、流路130の複数の下流側端部には複数の排出部120がそれぞれ接続されている。
 複数の排出部120は、流路130から流れ込んできた液体を貯留し、必要に応じて所期の反応を生じさせる収容部である。また、排出部120の開口部からは、排出部120内の液体が外部に取り出される。排出部120は、流路130に液体を導入する時の空気穴としても機能する。複数の排出部120は、流路130の下流端にそれぞれ連通している。排出部120の形状は、流路130からの液体を貯留できれば、適宜設定できる。排出部120の形状は、底部から開口部に向かうにつれて、その径が徐々に大きくなるように形成されていてもよいし、底部から開口部に向かうにつれて、その径が徐々に小さくなるように形成されていてもよいし、底部から開口部まで、その径が同じであってもよい。本実施の形態では、排出部120の形状は、底部から開口部まで、その径が同じに形成された有底の凹部である。
 複数の流出防止部140は、複数の排出部120の開口部を取り囲むようにそれぞれ配置されており、液体の表面張力を利用して、排出部120の開口部からの液体の流出の進行を防止する。本実施の形態に係るマイクロ流路チップ100では、1つの開口部につき、2以上の流出防止部140が当該開口部を取り囲むように配置されている。流出防止部140の構成は、液体の表面張力を利用して排出部120の開口部からの液体の進行を防止することができれば適宜設定できる。たとえば、流出防止部140は、(A)排出部120の開口縁、(B)排出部120の内側面に開口部を取り囲むように配置され、排出部120の中心側から外側に向かうように形成された段部、(C)開口部の外側に開口部を取り囲むように配置された環状溝、または(D)排出部の内側面から開口部に向けて延在した庇部142である。本実施の形態では、流出防止部140は、(D)排出部120の内側面から開口部の中心に向けて延在した庇部142と、(A)排出部120の開口縁である。より詳細には、図2に示されるように、庇部142の下側の開口縁が上記(D)の流出防止部140であり、庇部142の上側の開口縁が上記(A)の流出防止部140である。
 庇部142は、排出部120の内側面に配置された円環状の板状部材である。庇部142を平面視したときの庇部142の内径は、排出部120の開口部の径より小さければ適宜設定できる。また、庇部142の厚みは、適宜設定できる。
 前述のとおり、マイクロ流路チップ100は、基板150およびフィルム160から構成されている。基板150は、透明な略矩形の樹脂基板である。基板150は、流路溝155と、第1貫通孔156と、複数の第2貫通孔157とを有する。
 流路溝155は、基板150の2つの面のうち、貯留部112および流出防止部140が配置された上面152(第1面)の反対側の下面154(第2面)に形成されている。流路溝155の一端は、第1貫通孔156に連通している。流路溝155の他端は、複数に分岐しており、それぞれ第2貫通孔157に連通している。流路溝155は、その開口部がフィルム160で覆われることにより流路130となる。
 第1貫通孔156は、基板150の上面152および下面154に開口した貫通孔である。第1貫通孔156は、流路溝155の上流側端部に連通している。第1貫通孔156の形状は、適宜設定できる。本実施の形態では、第1貫通孔156の形状は、上面152から下面154に向かうにつれて、その径が徐々に小さくなるように形成されている。第1貫通孔156は、下面154側の開口部がフィルム160で覆われることにより、導入口114となる。
 また、第1貫通孔156の上側の開口部を取り囲むように、基板150の厚み方向に延在する側壁が配置されている。この側壁により、貯留部112が規定されている。
 複数の第2貫通孔157は、基板150の上面152および下面154に開口した貫通孔である。複数の第2貫通孔157は、流路溝155の複数の下流側端部のいずれか1つにそれぞれ連通している。第2貫通孔157の形状は、適宜設定できる。本実施の形態では、第2貫通孔157の形状は、下面154側の開口部から上面152側の開口部まで、その径が同じに形成されている。複数の第2貫通孔157は、下面154側の開口部がフィルム160で覆われることにより、それぞれ排出部120となる。
 また、第2貫通孔157の上面152側の開口部の一部を塞ぐように、庇部142が配置されている。前述のとおり、庇部142の開口部の下側の開口縁および上側の開口縁(排出部120の開口縁)は、それぞれ流出防止部140として機能する。
 基板150を構成する樹脂の種類は、流路130が毛細管現象で液体を進行させることができる表面(流路内壁となる面)、フィルム160への接着強度、様々な工程で課される熱履歴や試薬への耐性を確保できれば、公知の樹脂から適宜選択されうる。基板150を構成する樹脂の例は、ポリエチレンテレフタレート、ポリカーボネート、ポリメタクリル酸メチル、塩化ビニール、ポリプロピレン、ポリエーテル、ポリエチレン、ポリスチレン、シリコーン樹脂などが含まれる。また、基板150の厚さは、例えば1~10mmの範囲内である。
 フィルム160は、基板150の下面154に接合された、透明な樹脂フィルムである。例えば、フィルム160および基板150は、熱圧着により接合されている。フィルム160は、第1貫通孔156の下面154側の開口部と、流路溝155の開口部と、複数の第2貫通孔157の下面154側の開口部とを覆う。フィルム160を構成する樹脂の種類は、基板150を構成する樹脂から選択してもよい。フィルム160を構成する樹脂は、基板150と同じであってもよいし、異なっていてもよい。フィルム160の厚さは、前述の機能を発揮できれば、樹脂の種類(剛性)に応じて適宜設定されうる。本実施の形態では、フィルム160の厚さは、20μm程度である。
 (マイクロ流路チップの動作)
 次に、マイクロ流路チップ100の動作について説明する。図3A~Dは、マイクロ流路チップ100の動作を説明するための模式図である。なお、以下の説明では、本実施の形態に係るマイクロ流路チップ100の効果を説明するために、導入部110内に複数の排出部120の合計容積を超える量の液体が導入されることを前提として説明している。
 図3に示されるように、まず、導入部110を液体で満たす(図3A参照)。導入部110に満たされた液体は、毛細管現象により流路130を流れ排出部120に到達する(図3B参照)。排出部120に到達した液体は、排出部120を徐々に満たし、庇部142の開口部の下側の開口縁(1段階目の流出防止部140)に到達する。ここで、液面の移動は、表面張力により止められる(図3C参照)。これにより、液体が排出部120から溢れ出すことを抑制できる。さらに、排出部120に液体が満たされると、液面は庇部142の開口部の下側の開口縁を超える。そして、液体は、庇部142の開口部の上側の開口縁(2段階目の流出防止部140)に到達する。庇部142の開口部の上側の開口縁では、開口径が急激に変化するため、液面の移動は、再度表面張力により止められる(図3D参照)。このように流出防止部140が2段階で設けられているため、本実施の形態に係るマイクロ流路チップ100では、液体が排出部120から溢れ出すことをより確実に防止できる。
 (効果)
 以上のように、本実施の形態に係るマイクロ流路チップ100は、庇部142の開口部の下側の開口縁(1段階目の流出防止部140)および庇部142の開口部の上側の開口縁(2段階目の流出防止部140)により液体が排出部120から溢れ出すことを抑制できる。よって、仮に過剰量の液体が導入部110内に導入されたとしても、隣接する排出部120間で各排出部120に貯留した液体が接触する可能性を低減できる。
 [実施の形態2]
 (マイクロ流路チップの構成)
 実施の形態2に係るマイクロ流路チップ200は、流出防止部240の構造のみが実施の形態1に係るマイクロ流路チップ100と異なる。そこで、本実施の形態では、流出防止部240を主として説明する。なお、実施の形態1に係るマイクロ流路チップ100と同様の構成については、同様の符号を付してその説明を省略する。
 図4A~Cおよび図5は、実施の形態2に係るマイクロ流路チップ200の構成を示す図である。図4Aは、マイクロ流路チップ200の平面図であり、図4Bは、図4Aに示されるA-A線の断面図であり、図4Cは、底面図である。図5は、図4Bの点線で囲まれた領域の部分拡大断面図である。
 図4A~Cおよび図5に示されるように、マイクロ流路チップ200は、導入部110と、流路130と、複数の排出部120と、複数の流出防止部240とを有する。また、マイクロ流路チップ200は、基板250と、フィルム160とから構成されている。
 基板250は、流路溝155と、第1貫通孔156と、第2貫通孔357と、を有する。また、基板250の上面152には、庇部142が配置されており、かつ環状溝244が開口している。
 本実施の形態では、流出防止部240として、(D)排出部120の内側面から開口部の中心に向けて延在した庇部142と、(A)排出部120の開口縁とに加え、さらに(C)開口部の外側に開口部を取り囲むように配置された環状溝244も機能する。
 環状溝244は、排出部120の開口部の外側に、排出部120の開口部を取り囲むように配置された円環状の溝である。本実施の形態では、環状溝244は、庇部142の上面に配置されている。環状溝244の幅および深さは、環状溝244を超えて液体が移動することを抑制することができれば特に限定されず、環状溝244を配置する場所に応じて適宜設定できる。なお、本実施の形態では、1つの排出部120につき1つの環状溝244を有するマイクロ流路チップ200を示しているが、環状溝244は、1つの排出部120につき複数設けられていてもよい。この場合、複数の環状溝244は、排出部120の開口部の中心を中心として、同心となるように配置されてもよい。
 (マイクロ流路チップの動作)
 次に、マイクロ流路チップ200の動作について説明する。図6A~Eは、マイクロ流路チップ200の動作を説明するための模式図である。以下の説明でも、本実施の形態に係るマイクロ流路チップ200の効果を説明するために、導入部110内に複数の排出部120の合計容積を超える量の液体が導入されることを前提として説明している。
 図6に示されるように、まず、導入部110を液体で満たす(図6A参照)。導入部110に満たされた液体は、毛細管現象により流路130を流れ排出部120に到達する(図6B参照)。排出部120に到達した液体は、排出部120を徐々に満たし、庇部142の開口部の下側の開口縁(1段階目の流出防止部240)に到達する。ここで、液面の移動は、表面張力により止められる(図6C参照)。これにより、液体が排出部120から溢れ出すことを抑制できる。さらに、排出部120が液体で満たされると、液体は、庇部142の開口部の下側の開口縁を超える。そして、液体は、庇部142の開口部の上側の開口縁(2段階目の流出防止部240)に到達する。庇部142の開口部の上側の開口縁(排出部120の開口縁)では、開口径が急激に変化するため、液面の移動は、再度表面張力により止められる(図6D参照)。これにより、液体が排出部120から溢れ出すことを防止できる。さらに、排出部120が液体で満たされると、液体は、開口部の上側の開口縁を超える。そして、液体は、環状溝244の内側端部(3段階目の流出防止部240)に到達する。ここでも、液面の移動が表面張力により止められる(図6E参照)。このように流出防止部240が3段階で設けられているため、本実施の形態に係るマイクロ流路チップ200では、液体が排出部120から溢れ出すことをより確実に防止できる。
 (効果)
 以上のように、本実施の形態に係るマイクロ流路チップ200は、排出部120の内側面から開口部の中心に向けて延在した庇部142(1段階目の流出防止部240)と、排出部120の開口縁(2段階目の流出防止部240)と、開口部の外側に開口部を取り囲むように配置された環状溝244(3段階目の流出防止部240)とにより、液体が排出部120から溢れ出すことを抑制できるとともに、液体が排出部120から溢れ出したとしても、液体が拡がることを抑制できる。よって、仮に過剰量の液体が導入部110内に導入されたとしても、隣接する排出部120間で各排出部120に貯留した液体が接触する可能性をさらに低減できる。
 [実施の形態3]
 (マイクロ流路チップの構成)
 実施の形態3に係るマイクロ流路チップ300は、流出防止部340の構造のみが実施の形態1に係るマイクロ流路チップ100と異なる。そこで、本実施の形態では、流出防止部340を主として説明する。なお、実施の形態1に係るマイクロ流路チップ100と同様の構成については、同様の符号を付してその説明を省略する。
 図7A~Cおよび図8は、実施の形態3に係るマイクロ流路チップ300の構成を示す図である。図7Aは、マイクロ流路チップ300の平面図であり、図7Bは、図7Aに示されるA-A線の断面図であり、図7Cは、底面図である。図8は、図7Bの点線で囲まれた領域の部分拡大断面図である。
 図7A~Cおよび図8に示されるように、マイクロ流路チップ300は、導入部110と、流路130と、複数の排出部320と、複数の流出防止部340とを有する。また、マイクロ流路チップ300は、基板350と、フィルム160とから構成されている。
 複数の排出部320は、流路130から流れ込んできた液体を貯留し、必要に応じて所期の反応を生じさせる収容部である。また、排出部320の開口部からは、排出部320内の液体が外部に取り出される。排出部320は、流路130に液体を導入する時の空気穴としても機能する。複数の排出部320は、流路130の下流端にそれぞれ連通している。本実施の形態では、排出部320は、底部から開口部に向かうにつれて、その径が徐々に大きくなるように形成された有底の凹部である。
 本実施の形態では、流出防止部340として、(A)排出部320の開口縁と、(C)開口部の外側に開口部を取り囲むように配置された環状溝244とが機能する。環状溝244は、排出部320の開口部の外側に開口部を取り囲むように、上面152に配置されている。
 基板350は、流路溝155と、第1貫通孔156と、第2貫通孔357と、を有する。また、基板350の上面152には、環状溝244は開口している。第2貫通孔357は、上面152および下面154に開口した貫通孔であり、下面154から上面152に向かうにつれて、その径が徐々に大きくなるように形成された有底の凹部である。複数の第2貫通孔357は、下面154側の開口部がフィルム160で覆われることにより、それぞれ排出部320となる。
 (マイクロ流路チップの動作)
 次に、マイクロ流路チップ300の動作について説明する。図9A~Cは、マイクロ流路チップ300の動作を説明するための模式図である。以下の説明でも、本実施の形態に係るマイクロ流路チップ300の効果を説明するために、導入部110内に複数の排出部120の合計容積を超える量の液体が導入されることを前提として説明している。
 図9に示されるように、まず、導入部110を液体で満たす(図9A参照)。導入部110に満たされた液体は、毛細管現象により流路130を流れ排出部320に到達する。排出部320に到達した液体は、排出部320を徐々に満たし、排出部320の開口縁(1段階目の流出防止部340)に到達する。排出部320の開口縁では、開口径が急激に変化するため、液面の移動は、表面張力により止められる(図9B参照)。これにより、液体が排出部320から溢れ出すことを防止できる。さらに、排出部120が液体で満たされると、液体は、排出部320の開口縁を超える。そして、液体は、環状溝244の内側端部(2段階目の流出防止部240)に到達する。ここでも、液面の移動が表面張力により止められる(図9C参照)。このように流出防止部340が2段階で設けられているため、本実施の形態に係るマイクロ流路チップ300では、液体が排出部320から溢れ出すことをより確実に防止できる。
 (効果)
 以上のように、本実施の形態に係るマイクロ流路チップ300は、排出部320の開口縁(1段階目の流出防止部340)と、開口部の外側に開口部を取り囲むように配置された環状溝244(2段階目の流出防止部240)とにより、液体が排出部320から溢れ出すことを抑制できるとともに、液体が排出部320から溢れ出したとしても、液体が拡がることを抑制できる。よって、仮に過剰量の液体が導入部110内に導入されたとしても、隣接する排出部320間で各排出部320に貯留した液体が接触する可能性を低減できる。
 [実施の形態4]
 (マイクロ流路チップの構成)
 実施の形態4に係るマイクロ流路チップ400は、流出防止部440の構造のみが実施の形態1に係るマイクロ流路チップ100と異なる。そこで、本実施の形態では、流出防止部440を主として説明する。なお、実施の形態1に係るマイクロ流路チップ100と同様の構成については、同様の符号を付してその説明を省略する。
 図10A~Cおよび図11は、実施の形態4に係るマイクロ流路チップ400の構成を示す図である。図10Aは、マイクロ流路チップ400の平面図であり、図10Bは、図10Aに示されるA-A線の断面図であり、図10Cは、底面図である。図11は、図10Bの点線で囲まれた領域の部分拡大断面図である。
 図10A~Cおよび図11に示されるように、マイクロ流路チップ400は、導入部110と、流路130と、複数の排出部420と、複数の流出防止部440とを有する。また、マイクロ流路チップ400は、基板450と、フィルム160とから構成されている。
 本実施の形態では、流出防止部440として、(B)排出部120の中心側から外側に向かうように形成された段部442と、(A)排出部420の開口縁と、(C)開口部の外側に開口部を取り囲むように配置された環状溝244とが機能する。
 段部424は、排出部420の内側面に配置され、開口部の中心側から外側に離れるように形成されている。本実施の形態では、段部424は、排出部420の開口面積より大きい開口面積を有する円筒部と排出部120の内側面との間に形成された段差部である。
 基板450は、流路溝155と、第1貫通孔156と、第2貫通孔457と、を有する。また、基板450の上面152には、段部424が形成され、かつ環状溝244が開口している。
 (マイクロ流路チップ400の動作)
 次に、マイクロ流路チップ400の動作について説明する。図12A~Dは、マイクロ流路チップ400の動作を説明するための模式図である。以下の説明でも、本実施の形態に係るマイクロ流路チップ400の効果を説明するために、導入部110内に複数の排出部120の合計容積を超える量の液体が導入されることを前提として説明している。
 図12に示されるように、まず、導入部110を液体で満たす(図12A参照)。導入部110に満たされた液体は、毛細管現象により流路130を流れ排出部420に到達する。排出部420に到達した液体は、排出部420を徐々に満たし、段部424(1段階目の流出防止部440)に到達する。段部424では、開口径が急激に変化するため液面の移動は、表面張力により止められる(図12B参照)。これにより、液体が排出部420から溢れ出すことを抑制できる。さらに、排出部420に液体が満たされると、液面は段部424を超える。そして、液体は、排出部420の開口縁(2段階目の流出防止部440)に到達する。排出部420の開口縁では、開口径が急激に変化するため液面の移動は、表面張力により止められる(図12C参照)。これにより、液体が排出部420から溢れ出すことを抑制できる。さらに、排出部420が液体で満たされると、液体は、排出部420の開口縁を超える。そして、液体は、環状溝244の内側端部(3段階目の流出防止部240)に到達する。ここでも、液面の移動が表面張力により止められる(図12D)。このように流出防止部440が3段階で設けられているため、本実施の形態に係るマイクロ流路チップ400では、液体が排出部420から溢れ出すことをより確実に防止できる。
 (効果)
 以上のように、本実施の形態に係るマイクロ流路チップ400は、排出部420の内側面に開口部を取り囲むように配置され、排出部420の中心側から外側に向かうように形成された段部424(1段階目の流出防止部440)と、排出部420の開口縁(2段階目の流出防止部440)と、開口部の外側に開口部を取り囲むように配置された環状溝244とより、液体が排出部420から溢れ出すことを抑制できるとともに、液体が排出部420から溢れ出したとしても、液体が拡がることを抑制できる。よって、仮に過剰量の液体が導入部110内に導入されたとしても、隣接する排出部420間で各排出部420に貯留した液体が接触する可能性を低減できる。
 なお、流出防止部の(A)、(B)、(C)、(D)の組み合わせおよび数は、前述した実施の形態1~4に示した組み合わせおよび数でなくてもよい。
 [実施の形態5]
 実施の形態5に係るマイクロ流路チップ500は、少なくとも一部の領域が親水化処理されている点のみが実施の形態1に係るマイクロ流路チップ100と異なる。なお、実施の形態1に係るマイクロ流路チップ100と同様の構成については、同様の符号を付してその説明を省略する。
 図13は、実施の形態5に係るマイクロ流路チップ500の断面図である。なお、図13では、親水性の領域と疎水性の領域とを説明するために基板150のハッチングを省略している。図13における太い黒線の領域は、親水性の領域を示しており、ハッチングの領域および符号581は、疎水性の領域を示している。
 マイクロ流路チップ500は、1つの導入部110と、複数の排出部120と、流路130と、複数の流出防止部140と有する。また、マイクロ流路チップ500は、基板150およびフィルム160から構成されている。図13に示されるように、本実施の形態でのマイクロ流路チップ500の表面において、流路130から排出部120内に液体が導入され続けたときに、最初に到達する流出防止部140は、庇部142の下側の開口縁である。また、最後に到達する流出防止部140は、庇部142の上側の開口縁である。そして、庇部142の下側の開口縁と、庇部142の上側の開口縁の間の領域以外の領域のうち、少なくとも一部の領域は、親水化処理されている。本実施の形態では、庇部142の下側の開口縁と庇部142の上側の開口縁の間の領域と、庇部142の上面の開口縁の周りの領域とを除くすべての領域が親水化処理されている。
 このようなマイクロ流路チップ500は、例えば以下の方法で製造できる。図14A~Cは、マイクロ流路チップ500の製造方法を説明するための図である。図14Aに示されるように、たとえば、射出成形などにより実施の形態1と同様の基板150を製造する。
 次いで、図14Bに示されるように、マスク部材570を基板150の親水化処理する領域以外の領域に密着させる。マスク部材570の材料は、親水化処理する領域以外の領域に密着させることができれば適宜に選択できる。マスク部材570の材料の例には、シリコーンやゴムなどの弾性材料が含まれる。マスク部材570は、庇部142の内側面に密着する第1マスク部571と、庇部142の上側の開口縁の周りに密着する台座部572とを有する。
 親水化処理する方法は、適宜に選択できる。親水化処理する方法の例には、プラズマ処理、原子層体積(ALD)法が含まれる。原子層体積(ALD)法により形成される薄膜の例には、酸化ケイ素を含む層、酸化アルミニウムを含む層、酸化チタンを含む層が含まれる。これにより、マスク部材570でマスクされた領域以外の領域は、親水性となる。また、マスク部材570でマスクされた領域は、マスク部材570でマスクされた領域以外の領域と比較して疎水性となる。なお、通常、一般の樹脂を用いた射出成形品は、表面が疎水性になる。
 次いで、マスク部材570を取り外した後に、フィルム160を基板150の下面154に接合することにより、図14Cに示されるようなマイクロ流路チップ500を製造できる。
 (効果)
 以上のように、本実施の形態に係るマイクロ流路チップ500は、実施の形態1の効果に加え、親水性の領域と疎水性の領域とを有するため、実施の形態1より流路130および排出部120の内部が親水性となるため、液体が通りやすい。
 [実施の形態6]
 実施の形態6に係るマイクロ流路チップ600は、少なくとも一部の領域が親水化処理されている点のみが実施の形態2に係るマイクロ流路チップ200と異なる。なお、実施の形態2に係るマイクロ流路チップ200と同様の構成については、同様の符号を付してその説明を省略する。
 図15は、実施の形態6に係るマイクロ流路チップ600の断面図である。なお、図15では、親水性の領域と疎水性の領域とを説明するために基板250のハッチングを省略している。図15における太い黒線は、親水性の領域を示しており、ハッチングの領域、符号581、682の領域は、疎水性の領域を示している。
 マイクロ流路チップ600は、導入部110と、流路130と、複数の排出部120と、複数の流出防止部240とを有する。また、マイクロ流路チップ600は、基板250と、フィルム160とから構成されている。図15に示されるように、本実施の形態でのマイクロ流路チップ600の表面において、流路130から排出部120内に液体が導入され続けたときに、最初に到達する流出防止部240は、庇部142の下側の開口縁である。また、最後に到達する流出防止部240は、環状溝244である。そして、庇部142の下側の開口縁と、環状溝244との間の領域以外の領域のうち、少なくとも一部の領域は、親水化処理されている。本実施の形態では、庇部142の下側の開口縁と、環状溝244との間の領域を除くすべての領域が親水化処理されている。
 このようなマイクロ流路チップ600は、例えば以下の方法で製造できる。図16A~Cは、マイクロ流路チップ600は、マスク部材670を用いて、実施の形態5と同様に製造できる。マスク部材670の材料は、実施の形態5と同様の部材を使用できる。本実施の形態では、マスク部材670は、庇部142の内側面に密着する第1マスク部571と、環状溝244に密着する第2マスク部573と、第1マスク部571および第2マスク部573を接続し、庇部142の上側の開口縁および環状溝244の間の領域に密着する台座部672とを有する。
 (効果)
 以上のように、本実施の形態に係るマイクロ流路チップ600は、実施の形態2の効果に加え、親水性の領域と疎水性の領域とを有するため、実施の形態2より流路130および排出部120の内部が親水性となるため、液体が通りやすい。
 [実施の形態7]
 実施の形態7に係るマイクロ流路チップ700は、少なくとも一部の領域が親水化処理されている点のみが実施の形態3に係るマイクロ流路チップ300と異なる。なお、実施の形態3に係るマイクロ流路チップ300と同様の構成については、同様の符号を付してその説明を省略する。
 図17は、実施の形態7に係るマイクロ流路チップ700の断面図である。なお、図17では、親水性の領域と疎水性の領域とを説明するために基板350のハッチングを省略している。図17における太い黒線は親水性の領域を示しており、ハッチングの領域、符号682は疎水性の領域を示している。
 マイクロ流路チップ700は、1つの導入部110と、複数の排出部320と、流路130と、複数の流出防止部340と有する。本実施の形態において、マイクロ流路チップ700の表面において、流路130から排出部320内に液体が導入され続けたときに、最初に到達する流出防止部340は、排出部320の開口縁である。また、最後に到達する流出防止部340は、環状溝244である。そして、排出部320の開口縁と、環状溝244との間の領域以外の領域のうち、少なくとも一部の領域は、親水化処理されている。本実施の形態では、排出部320の開口縁と、環状溝244の間の領域を除くすべての領域が親水化処理されている。排出部320の開口縁と、環状溝244の間の領域は疎水性の領域である。
 このようなマイクロ流路チップ700は、例えば以下の方法で製造できる。図18A~Cは、マイクロ流路チップ700の製造方法を説明するための図である。図18A~Cに示されるように、マスク部材770を用いて、実施の形態6と同様に製造できる。本実施の形態に係るマスク部材770は、環状溝244に密着する第2マスク部573と、庇部142の上側の開口縁および環状溝244の間の領域に密着する台座部772とを有する。マスク部材770の材料は、実施の形態5と同様の部材を使用できる。
 (効果)
 以上のように、本実施の形態に係るマイクロ流路チップ700は、実施の形態3の効果に加え、親水性の領域と疎水性の領域とを有するため、実施の形態1より流路130および排出部320の内部が親水性となるため、液体が通りやすい。
 [実施の形態8]
 実施の形態8に係るマイクロ流路チップ800は、少なくとも一部の領域が親水化処理されている点のみが実施の形態4に係るマイクロ流路チップ400と異なる。なお、実施の形態4に係るマイクロ流路チップ400と同様の構成については、同様の符号を付してその説明を省略する。
 図19は、実施の形態8に係るマイクロ流路チップ800の断面図である。なお、図19では、親水性の領域と疎水性の領域とを説明するために基板450のハッチングを省略している。図19における太い黒線は親水性の領域を示しており、ハッチングの領域、符号882、682は疎水性の領域を示している。
 マイクロ流路チップ800は、1つの導入部110と、複数の排出部420と、流路130と、複数の流出防止部440と有する。また、マイクロ流路チップ800は、基板450およびフィルム160から構成されている。本実施の形態において、マイクロ流路チップ800の表面において、流路130から排出部420内に液体が導入され続けたときに、最初に到達する流出防止部440は、排出部420の開口縁である。また、最後に到達する流出防止部440は、環状溝244である。そして、排出部420の開口縁と、環状溝244との間の領域以外の領域のうち、少なくとも一部の領域は、親水化処理されている。本実施の形態では、排出部420の開口縁と、環状溝244との間の領域を除くすべての領域が親水化処理されている。
 このようなマイクロ流路チップ800は、例えば以下の方法で製造できる。図20A~Cは、マイクロ流路チップ800の製造方法を説明するための図である。図20A~Cに示されるように、マイクロ流路チップ800は、マスク部材870を用いて、実施の形態6と同様に製造できる。本実施の形態に係るマスク部材870は、環状溝に密着する第2マスク部573と、段部424に密着する第3マスク部874と、第2マスク部573および第3マスク部874の間の領域に密着する台座部872とを有する。マスク部材870の材料は、実施の形態5と同様の部材を使用できる。
 (効果)
 以上のように、本実施の形態に係るマイクロ流路チップ800は、実施の形態4の効果に加え、親水性の領域と疎水性の領域とを有するため、実施の形態4より流路130および排出部420の内部が親水性となるため、液体が通りやすい。
 本出願は、2017年3月31日出願の特願2017-071235および2017年8月31日出願の特願2017-167630に基づく優先権を主張する。当該出願明細書および図面に記載された内容は、すべて本願明細書に援用される。
 本発明のマイクロ流路チップは、例えば、科学分野や医学分野などにおいて使用されるマイクロ流路チップとして有用である。
 100、200、300、400、500、600、700、800 マイクロ流路チップ
 110 導入部
 112 貯留部
 114 導入口
 120、320、420 排出部
 130 流路
 140、240、340、440 流出防止部
 142 庇部
 150、250、350、450 基板
 152 上面(第1面)
 154 下面(第2面)
 155 流路溝
 156 第1貫通孔
 157、357、457 第2貫通孔
 160 フィルム
 244 環状溝
 424 段部
 570、670、770、870 マスク部材
 571 第1マスク部
 572、672、772、872 台座部
 573 第2マスク部材
 581、682、882 疎水性の領域
 874 第3マスク部

Claims (5)

  1.  基板の第1面側に開口し、液体を導入するための1つの導入部と、
     前記基板の前記第1面側に開口し、前記1つの導入部から導入した前記液体が排出されるための複数の排出部と、
     前記基板内において、前記1つの導入部および前記複数の排出部を接続する流路と、
     前記複数の排出部の開口部を取り囲むようにそれぞれ配置され、液体の表面張力を利用して、前記排出部からの前記液体の流出の進行を防止するための複数の流出防止部と、を有し、
     1つの前記開口部につき、2以上の前記流出防止部が当該開口部を取り囲むように配置されている、
     液体取扱装置。
  2.  前記流出防止部は、(A)前記排出部の開口縁、(B)前記排出部の内側面に前記開口部を取り囲むように配置され、前記排出部の中心側から外側に向かうように形成された段部、(C)前記開口部の外側に前記開口部を取り囲むように配置された環状溝、または(D)前記排出部の内側面から前記開口部に向けて延在した庇部である、請求項1に記載の液体取扱装置。
  3.  前記導入部の開口部は、前記排出部の開口部より、前記基板の前記第1面から離れて配置されている、請求項1または請求項2に記載の液体取扱装置。
  4.  前記複数の排出部の開口部は、それぞれ同一平面上に配置されている、請求項1~3のいずれか一項に記載の液体取扱装置。
  5.  前記液体取扱装置の表面において、前記流路から前記排出部内に液体が導入され続けたときに、前記液体が最初に到達する前記流出防止部と、前記液体が最後に到達する前記流出防止部との間の領域以外の領域のうち、少なくとも一部の領域は、親水化処理されている、請求項1~4のいずれか一項に記載の液体取扱装置。
PCT/JP2018/009115 2017-03-31 2018-03-09 液体取扱装置 WO2018180357A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019509148A JPWO2018180357A1 (ja) 2017-03-31 2018-03-09 液体取扱装置
US16/499,335 US20200024123A1 (en) 2017-03-31 2018-03-09 Liquid handling apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017071235 2017-03-31
JP2017-071235 2017-03-31
JP2017-167630 2017-08-31
JP2017167630 2017-08-31

Publications (1)

Publication Number Publication Date
WO2018180357A1 true WO2018180357A1 (ja) 2018-10-04

Family

ID=63677163

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/009115 WO2018180357A1 (ja) 2017-03-31 2018-03-09 液体取扱装置

Country Status (3)

Country Link
US (1) US20200024123A1 (ja)
JP (1) JPWO2018180357A1 (ja)
WO (1) WO2018180357A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007225438A (ja) * 2006-02-23 2007-09-06 Konica Minolta Medical & Graphic Inc マイクロ流体チップ
JP2007322284A (ja) * 2006-06-01 2007-12-13 Konica Minolta Medical & Graphic Inc マイクロチップおよびマイクロチップへの試薬の充填方法
JP2008122234A (ja) * 2006-11-13 2008-05-29 Konica Minolta Medical & Graphic Inc マイクロ総合分析チップおよびマイクロ総合分析システム
JP2009085818A (ja) * 2007-10-01 2009-04-23 Rohm Co Ltd 液体試薬内蔵型マイクロチップ
WO2009145172A1 (ja) * 2008-05-29 2009-12-03 日本電信電話株式会社 フローセル及び送液方法
JP2011252768A (ja) * 2010-06-01 2011-12-15 Sharp Corp マイクロ分析チップ、該マイクロ分析チップを用いた分析装置、及び送液方法
JP2012251927A (ja) * 2011-06-06 2012-12-20 National Institute Of Advanced Industrial & Technology 標的物質検出用マイクロチップ
US20150093306A1 (en) * 2012-03-29 2015-04-02 Mitegen, Llc Microplates and methods for protein crystallization and biotechnology

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007225438A (ja) * 2006-02-23 2007-09-06 Konica Minolta Medical & Graphic Inc マイクロ流体チップ
JP2007322284A (ja) * 2006-06-01 2007-12-13 Konica Minolta Medical & Graphic Inc マイクロチップおよびマイクロチップへの試薬の充填方法
JP2008122234A (ja) * 2006-11-13 2008-05-29 Konica Minolta Medical & Graphic Inc マイクロ総合分析チップおよびマイクロ総合分析システム
JP2009085818A (ja) * 2007-10-01 2009-04-23 Rohm Co Ltd 液体試薬内蔵型マイクロチップ
WO2009145172A1 (ja) * 2008-05-29 2009-12-03 日本電信電話株式会社 フローセル及び送液方法
JP2011252768A (ja) * 2010-06-01 2011-12-15 Sharp Corp マイクロ分析チップ、該マイクロ分析チップを用いた分析装置、及び送液方法
JP2012251927A (ja) * 2011-06-06 2012-12-20 National Institute Of Advanced Industrial & Technology 標的物質検出用マイクロチップ
US20150093306A1 (en) * 2012-03-29 2015-04-02 Mitegen, Llc Microplates and methods for protein crystallization and biotechnology

Also Published As

Publication number Publication date
US20200024123A1 (en) 2020-01-23
JPWO2018180357A1 (ja) 2020-02-06

Similar Documents

Publication Publication Date Title
US8377393B2 (en) Microchip
US9463459B2 (en) Fluid handling device and method of handling fluid
US9101934B2 (en) Liquid handling apparatus
US9987630B2 (en) Fluid handling device and method of using the same
WO2015119290A1 (ja) 液体取扱装置
EP3231507A1 (en) Fluid handling device and method for manufacturing fluid handling device
WO2018180357A1 (ja) 液体取扱装置
US20120258529A1 (en) Apparatus for separating target molecules and method of separating target molecules by using the same
JP6357217B2 (ja) 流体取扱装置および流体取扱方法
JP7246041B2 (ja) 細胞培養チップ及びその製造方法
US20210299652A1 (en) Liquid handling device and liquid handling method
CN107076773B (zh) 液体处理装置
JP2022045741A (ja) 液体取扱装置
JP2019032233A (ja) マイクロ流路チップ
CN110732355A (zh) 一种微混合微流控芯片
JP2019093377A (ja) 流体チップ、流体デバイスおよびそれらの製造方法
US11235328B2 (en) Coplanar microfluidic manipulation
WO2020178951A1 (en) Fluid handling device
JP2024021757A (ja) 積層体の製造方法
JP2021156605A (ja) 液体取扱装置および液体取扱方法
JP2022049409A (ja) 液体取扱装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18775433

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019509148

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18775433

Country of ref document: EP

Kind code of ref document: A1