Nothing Special   »   [go: up one dir, main page]

WO2018180080A1 - Insulated electric cable - Google Patents

Insulated electric cable Download PDF

Info

Publication number
WO2018180080A1
WO2018180080A1 PCT/JP2018/006752 JP2018006752W WO2018180080A1 WO 2018180080 A1 WO2018180080 A1 WO 2018180080A1 JP 2018006752 W JP2018006752 W JP 2018006752W WO 2018180080 A1 WO2018180080 A1 WO 2018180080A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
pores
insulating layer
insulated wire
pore layer
Prior art date
Application number
PCT/JP2018/006752
Other languages
French (fr)
Japanese (ja)
Inventor
槙弥 太田
雅晃 山内
吉田 健吾
田村 康
Original Assignee
住友電気工業株式会社
住友電工ウインテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社, 住友電工ウインテック株式会社 filed Critical 住友電気工業株式会社
Priority to JP2019508796A priority Critical patent/JP7016860B2/en
Publication of WO2018180080A1 publication Critical patent/WO2018180080A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/02Disposition of insulation

Definitions

  • the present invention relates to an insulated wire.
  • This application claims priority based on Japanese Patent Application No. 2017-071395 filed on Mar. 31, 2017, and incorporates all the content described in the above Japanese application.
  • a high voltage is applied to an insulated wire constituting the electric device, and partial discharge (corona discharge) easily occurs on the surface of the insulating layer.
  • partial discharge corona discharge
  • a local temperature rise, ozone generation, ion generation, or the like is caused by the generation of corona discharge, dielectric breakdown occurs at an early stage, and the life of the insulated wire and thus the electrical equipment is shortened.
  • the insulated wire used for the electric equipment with a high applied voltage is also required to improve the corona discharge starting voltage in addition to excellent insulation and mechanical strength.
  • An effective way to increase the corona discharge starting voltage is to reduce the dielectric constant of the insulating layer.
  • a heat-cured film (insulating coating) with an insulating varnish containing a coating film constituent resin and a thermally decomposable resin that decomposes at a temperature lower than the baking temperature of the coating film constituent resin has been proposed an insulated wire that forms a wire (see JP 2012-224714 A).
  • pores are formed in the thermosetting film by utilizing the fact that the thermally decomposable resin is thermally decomposed during baking of the coating film constituting resin and the portions become pores. Low dielectric constant of the film is realized.
  • an insulated wire provided with such an insulating layer containing pores has a reduced mechanical strength in the thickness direction of the insulating layer. Therefore, in order to achieve both low dielectric constant and mechanical strength, the insulating layer has a thickness.
  • an insulated wire that is composed of three or more pore layers divided in the direction and in which the porosity of these three or more pore layers changes in a stepwise manner (see Japanese Patent Application Laid-Open No. 2016-91865).
  • An insulated wire according to an aspect of the present invention is an insulated wire including a linear conductor and an insulating layer coated on an outer peripheral surface of the conductor, and the insulating layer includes an inner pore layer having a plurality of pores. And an outer pore layer having a plurality of pores disposed on the outer side of the inner pore layer, and in the insulating layer, the independent porosity in the pores is 80% by volume or more, and the inner pore layer The porosity is 1% by volume or more and 10% by volume or less, and the porosity of the outer pore layer is 25% by volume or more and 50% by volume or less.
  • an object is to provide an insulated wire excellent in insulation and mechanical strength.
  • the insulated wire of the present disclosure is excellent in insulation and mechanical strength.
  • the insulated wire which concerns on 1 aspect of this invention is an insulated wire provided with a linear conductor and the insulating layer coat
  • the said insulating layer has several pores.
  • the porosity of the pore layer is 1% by volume or more and 10% by volume or less, and the porosity of the outer pore layer is 25% by volume or more and 50% by volume or less.
  • the insulated wire since the insulating layer includes pores, and the independent porosity in the pores in the insulating layer is equal to or higher than the above value, the dielectric breakdown voltage is maintained even after heating for a long time due to small variation in pore size. Can be increased, and the insulation is excellent.
  • the insulated wire includes an inner pore layer and an outer pore layer, and by making each porosity within the above range, the mechanical strength suppressing action can be reduced, and the mechanical strength of the entire insulating layer can be reduced. Excellent.
  • independent porosity refers to a value obtained by a measurement method described later.
  • the “porosity” means a percentage of the volume of the pores with respect to the volume including the pores of each layer constituting the insulating layer, and the density ⁇ 1 of the material of each layer is added to the apparent volume V1 calculated from the outer shape of each layer. This is a value obtained from the equation (W1 ⁇ W2) ⁇ 100 / W1 from the mass W1 when there is no pore obtained by multiplication and the actual mass W2 of each layer.
  • the average thickness of the inner pore layer is preferably 3 ⁇ m or more and 15 ⁇ m or less, and the average thickness of the outer pore layer is preferably 80 ⁇ m or more and 160 ⁇ m or less.
  • the insulating layer may be provided with another pore layer having a plurality of pores outside the outer pore layer, and the porosity of the other pore layer is 1% by volume or more and 10% by volume or less.
  • the average thickness of the other pore layer is preferably 3 ⁇ m or more and 10 ⁇ m or less.
  • an outer shell is provided at the periphery of the plurality of pores, and the outer shell is derived from a shell of hollow-forming particles having a core-shell structure.
  • the pores of the insulating layer are formed by the thermal decomposition of the core of the hollow-forming particles having a core-shell structure, and the shells are present as outer shells around the pores, so that the pores formed vary in size and shape. Since it becomes smaller and the independent porosity is improved, the insulation and mechanical strength are further improved.
  • the core-shell structure refers to a structure in which the material forming the core of the particle is different from the material of the shell surrounding the core.
  • the main component of the outer shell is preferably silicone. If the main component of the outer shell is silicone, it is easy to impart elasticity to the outer shell and improve insulation and heat resistance.
  • the “main component” is a component having the largest content, for example, a component contained in an amount of 50% by mass or more.
  • the plurality of pores are flat spheres, and in a cross section including a minor axis and a major axis of the plurality of pores, an average ratio of a minor axis length to a major axis is preferably 0.95 or less.
  • the pores are flat spheres, and the average ratio of the length of the minor axis to the major axis is 0.95 or less in the cross section including the minor axis and the major axis of the pores. It becomes difficult and the independent porosity in an insulating layer can be made high.
  • the “flat sphere” refers to a sphere having a minor axis smaller than the major axis when the maximum diagonal length passing through the center of gravity is the major axis and the minimum diagonal length passing through the center of gravity is the minor axis.
  • a primer layer may be provided between the conductor and the insulating layer.
  • An insulated wire 1 in FIG. 1 includes a linear conductor 2 and an insulating layer 3 that covers the outer peripheral surface of the conductor 2.
  • the insulating layer 3 includes an inner pore layer 3a and an outer pore layer 3b disposed outside the inner pore layer 3a.
  • the inner pore layer 3a and the outer pore layer 3b each have a plurality of pores 4, and the independent porosity in the pores 4 in the insulating layer 3 is 80% by volume or more.
  • the conductor 2 is, for example, a square wire having a square cross section, but may be a round wire having a circular cross section or a stranded wire obtained by twisting a plurality of strands.
  • the material of the conductor 2 is preferably a metal having high electrical conductivity and high mechanical strength.
  • a metal include copper, copper alloy, aluminum, aluminum alloy, nickel, silver, iron, steel, and stainless steel.
  • the conductor 2 is a material in which these metals are formed in a linear shape, or a multilayer structure in which such a linear material is coated with another metal, such as a nickel-coated copper wire, a silver-coated copper wire, or a copper-coated aluminum. Wire, copper-coated steel wire, etc. can be used.
  • the upper limit of the average cross-sectional area of the conductor 2 is preferably 20 mm 2, more preferably 5 mm 2 and more preferably 10 mm 2.
  • the average cross-sectional area of the conductor 2 is less than the lower limit, the volume of the insulating layer 3 with respect to the conductor 2 is increased, and the volume efficiency of a coil or the like formed using the insulated wire 1 may be reduced.
  • the insulating layer 3 must be formed thick in order to sufficiently reduce the dielectric constant, and the insulated wire 1 may be unnecessarily increased in diameter.
  • the insulating layer 3 includes an inner pore layer 3a and an outer pore layer 3b.
  • the inner pore layer 3a and the outer pore layer 3b each include a plurality of pores 4.
  • the plurality of pores 4 are distributed substantially uniformly.
  • the lower limit of the average thickness of the inner pore layer 3a is preferably 3 ⁇ m and more preferably 5 ⁇ m.
  • the upper limit of the average thickness of the inner pore layer 3a is preferably 15 ⁇ m, more preferably 10 ⁇ m, and even more preferably 8 ⁇ m.
  • the average thickness of the insulating layer 3 can be reduced.
  • the lower limit of the average thickness of the inner pore layer 3a is preferably 2 ⁇ m and more preferably 5 ⁇ m.
  • the upper limit of the average thickness of the inner pore layer 3a is preferably 15 ⁇ m, more preferably 10 ⁇ m, and even more preferably 8 ⁇ m.
  • the average thickness of the inner pore layer 3a is less than the lower limit, the inner pore layer 3a having a large effect of maintaining the mechanical strength becomes too thin, and the mechanical strength of the insulating layer 3 may not be maintained.
  • the average thickness of the inner pore layer 3a exceeds the above upper limit, the inner pore layer 3a having a small effect of lowering the dielectric constant becomes too thick, and the dielectric constant of the insulating layer 3 may not be sufficiently lowered.
  • the lower limit of the average thickness of the outer pore layer 3b is preferably 80 ⁇ m, and more preferably 100 ⁇ m.
  • the upper limit of the average thickness of the outer pore layer 3b is preferably 160 ⁇ m, and more preferably 130 ⁇ m.
  • the average thickness of the insulating layer 3 can be reduced.
  • the lower limit of the average thickness of the outer pore layer 3b is preferably 10 ⁇ m, and more preferably 20 ⁇ m.
  • the upper limit of the average thickness of the outer pore layer 3b is preferably 160 ⁇ m, and more preferably 130 ⁇ m.
  • the outer pore layer 3b having a large effect of contributing to the reduction of the dielectric constant becomes too thin, and the dielectric constant of the insulating layer 3 may not be sufficiently lowered.
  • the outer pore layer 3b having a small effect of maintaining the mechanical strength becomes too thick, and the mechanical strength of the insulating layer 3 may not be maintained.
  • the average thickness of the insulating layer 3 varies depending on the shape of the conductor. In the case of a round wire having a circular cross section of the conductor or a stranded wire obtained by twisting a plurality of strands, the average thickness of the insulating layer 3 can be reduced. In this case, the lower limit of the insulating layer 3 is preferably 15 ⁇ m, and more preferably 30 ⁇ m. As an upper limit of the average thickness of the insulating layer 3, 300 micrometers is preferable and 200 micrometers is more preferable. On the other hand, in the case of a so-called square line having a rectangular cross section of the conductor, it is necessary to increase the average thickness of the insulating layer 3.
  • the lower limit of the insulating layer 3 is preferably 83 ⁇ m, and more preferably 100 ⁇ m.
  • the insulating layer 3 may be broken and the conductor 2 may be insufficiently insulated.
  • the average thickness of the insulating layer 3 exceeds the upper limit, the volume efficiency of a coil or the like formed using the insulated wire 1 may be lowered.
  • the resin as the main component of the resin composition forming the insulating layer 3 is not particularly limited.
  • polyvinyl formal, thermosetting polyurethane, thermosetting acrylic, epoxy, thermosetting polyester , Thermosetting resins such as thermosetting polyester imide, thermosetting polyester amide imide, aromatic polyamide, thermosetting polyamide imide, thermosetting polyimide, etc. for example, polyether imide, polyether ether ketone, polyether sulfone, polyamide imide, A thermoplastic resin such as polyimide can be used.
  • the “main component” is a component having the largest content, for example, a component contained in an amount of 50% by mass or more.
  • the resin of the main component of the resin composition which forms the inner pore layer 3a and the outer pore layer 3b may be the same type or different types.
  • the lower limit of the porosity of the inner pore layer 3a is 1% by volume, and more preferably 2% by volume.
  • the upper limit of the porosity of the inner pore layer 3a is 10% by volume, and more preferably 8% by volume.
  • the porosity of the inner pore layer 3a is less than the lower limit, the dielectric constant of the insulating layer 3 is not sufficiently lowered, and the corona discharge starting voltage may not be sufficiently improved.
  • the porosity of the inner pore layer 3a exceeds the above upper limit, sufficient mechanical strength of the insulating layer 3 may not be ensured.
  • the lower limit of the porosity of the outer pore layer 3b is 25% by volume, preferably 30% by volume.
  • the upper limit of the porosity of the outer pore layer 3b is 50% by volume, preferably 40% by volume, and more preferably 38% by volume.
  • the porosity of the outer pore layer 3b is less than the lower limit, the dielectric constant of the insulating layer 3 is not sufficiently lowered, and the corona discharge starting voltage may not be sufficiently improved. If the porosity of the outer pore layer 3b exceeds the above upper limit, sufficient mechanical strength of the insulating layer 3 may not be ensured.
  • the lower limit of the independent porosity in the pores 4 in the insulating layer 3 is 80% by volume, more preferably 85% by volume, and still more preferably 90% by volume.
  • the upper limit of the independent porosity in the pores 4 is, for example, 100% by volume.
  • the independent porosity of the pores 4 included in the inner pore layer 3a and the independent porosity of the pores 4 included in the outer pore layer 3b may be different. In this case, in each of the inner pore layer 3a and the outer pore layer 3b, the independent porosity in the pores 4 is preferably within the above range.
  • the independent porosity in the pores 4 is determined by using a resin composition having insulating properties between adjacent pores when the cross section of the sample of each layer constituting the insulating layer 3 is observed with a scanning electron microscope (SEM). Therefore, it is the volume% with respect to the total pores of those not opening each other (independent pores).
  • the independent porosity (volume%) can be calculated by binarization so as to distinguish the independent pores from the pores other than the independent pores in the SEM photograph of the cross section of the insulating layer.
  • the lower limit of the average diameter of the pores 4 is preferably 0.1 ⁇ m and more preferably 1 ⁇ m.
  • the upper limit of the average diameter of the pores 4 is preferably 10 ⁇ m, and more preferably 8 ⁇ m.
  • the average diameter of the pores 4 is less than the above lower limit, the generation of corona discharge in the insulating layer 3 may not be sufficiently suppressed.
  • the average diameter of the pores 4 exceeds the upper limit, it is difficult to make the distribution of the pores 4 in each of the inner pore layer 3a and the outer pore layer 3b uniform, and the distribution of the dielectric constant may be easily biased.
  • the average diameter of the pores 4 included in each of the inner pore layer 3a and the outer pore layer 3b may be different.
  • the “average diameter of the pores” means a value obtained by calculating and averaging the diameters of true spheres corresponding to the volume of the pores of, for example, 30 pores 4 included in the insulating layer 3.
  • the volume of the pores 4 can be obtained by observing the cross section of the insulating layer 3 with a scanning electron microscope. Further, the average diameter of the pores 4 can be changed depending on the kind of the material as the main component of the resin composition, the thickness of the insulating layer 3, the material of the hollow forming particles 5, the baking conditions, and the like.
  • the plurality of pores 4 are covered with an outer shell.
  • the outer shell is constituted by a shell 7 which is hollowed by removing the core 6 of the hollow-forming particle 5 having the core-shell structure shown in FIG. That is, the outer shell is derived from the shell 7 of the hollow-forming particle 5 having a core-shell structure.
  • at least a part of the plurality of outer shells has a defect.
  • the plurality of pores 4 are flat spheres.
  • external force is likely to act in the direction perpendicular to the surface of the conductor 2, but if the minor axis of the pore 4 is oriented in the vertical direction, the pores are difficult to contact each other in the vertical direction.
  • the rate can be improved. Therefore, the larger the proportion of the pores 4 whose minor axis is oriented in the direction perpendicular to the conductor 2 surface, the better.
  • the lower limit of the ratio of the number of pores 4 whose minor axis is oriented in the direction perpendicular to the surface of the conductor 2 with respect to the total number of pores 4 is preferably 60%, more preferably 80%.
  • the ratio of the pores 4 whose minor axis is oriented in the direction perpendicular to the surface of the conductor 2 is less than the lower limit, the pores that contact each other between the pores may increase and the independent porosity may be lowered.
  • the short axis of the pores is oriented in the direction perpendicular to the conductor surface means that the angle difference between the short axis of the pores and the direction perpendicular to the conductor surface is 20 degrees or less.
  • the lower limit of the ratio of the length of the minor axis to the major axis in the cross section including the minor axis and the major axis of the pore 4 is preferably 0.2, and more preferably 0.3.
  • the upper limit of the average of the above ratio is preferably 0.95, and more preferably 0.9. If the average of the above ratios is less than the above lower limit, it is necessary to increase the amount of shrinkage in the thickness direction during baking of the varnish, which may reduce the flexibility of the insulated wire 1. When the average of the above ratios exceeds the upper limit, when the porosity is increased, the pores easily come into contact with each other in the thickness direction (perpendicular to the surface of the conductor 2) of the insulating layer 3 where external force is likely to act.
  • Independent porosity may be lowered.
  • the short diameter and long diameter of the pores 4 can be obtained by observing the cross section of the insulating layer 3 with a scanning electron microscope.
  • the said ratio can be adjusted by changing the pressure added to the hollow formation particle 5 by the shrinkage
  • the pressure applied to the hollow forming particles 5 can be changed depending on, for example, the type of the material that is the main component of the resin composition, the thickness of the insulating layer 3, the material of the hollow forming particles 5, the baking conditions, and the like.
  • the average of the ratio of the length of the minor axis to the major axis in the cross section including the minor axis and the major axis of the pores means, for example, a section including the minor axis and the major axis of 30 pores 4 included in the insulating layer 3. The ratio of the length of the minor axis to the major axis is calculated and averaged.
  • the lower limit of the average major axis of the pores 4 is not particularly limited, but is preferably 0.1 ⁇ m, for example, and more preferably 1 ⁇ m.
  • the upper limit of the average of the major axis is preferably 10 ⁇ m, and more preferably 8 ⁇ m. If the average of the major axis is less than the lower limit, the insulating layer 3 may not have a desired porosity. If the average of the major axis exceeds the upper limit, it is difficult to make the distribution of the pores 4 in the insulating layer 3 uniform, and there is a risk that the distribution of the dielectric constant tends to be biased.
  • the “average of the major diameters of the pores” means a value obtained by averaging the major diameters of, for example, 30 pores 4 included in the insulating layer 3.
  • the plurality of outer shells present at the peripheral edges of the plurality of pores 4 have at least some defects.
  • the pores 4 and the outer shell are derived from hollow forming particles 5 having a core 6 mainly composed of a thermally decomposable resin as shown in FIG. 3 and a shell 7 having a higher thermal decomposition temperature than that of the thermally decomposable resin. That is, when the varnish containing the hollow forming particles 5 is baked, the thermally decomposable resin that is the main component of the core 6 is gasified by thermal decomposition and scattered through the shell 7 to form the pores 4 and the outer shell. At this time, the passage of the thermally decomposable resin in the shell 7 exists in the outer shell as a defect.
  • the shape of the defect varies depending on the material and shape of the shell 7, but cracks, cracks and holes are preferred from the viewpoint of enhancing the communication preventing effect of the outer shell of the pores.
  • the insulating layer 3 may include an outer shell having no defect. Depending on the outflow conditions of the thermally decomposable resin of the core 6 to the outside of the shell 7, there is a case where no defect is formed in the shell 7 (outer shell).
  • the insulating layer 3 may include pores 4 that are not covered by the outer shell.
  • the method of manufacturing the insulated wire 1 includes a hollow including a resin composition that forms the insulating layer 3, a core 6 mainly composed of a thermally decomposable resin, and a shell 7 having a thermal decomposition temperature higher than the thermal decomposition temperature of the pyrolytic resin.
  • a step of diluting the forming particles 5 to prepare varnishes having different contents of the hollow forming particles 5 (varnish preparation step) and an inner pore layer 3a including the pores 4 by applying and baking the varnish on the outer peripheral surface of the conductor 2 Step of forming (inner pore layer forming step), and coating and baking on the outer peripheral surface of the conductor 2 in which the inner pore layer 3a of the varnish having a larger content of the hollow forming particles 5 than the varnish in which the inner pore layer 3a is formed is formed
  • a step of forming the outer pore layer 3b including the pores 4 (outer pore layer forming step).
  • the resin composition forming the insulating layer 3 and the hollow forming particles 5 are diluted with a solvent to prepare a varnish.
  • a varnish As the varnishes for forming the inner pore layer 3a and the outer pore layer 3b, a plurality of types of varnishes having different contents of the hollow-forming particles 5 are prepared.
  • the inner and outer varnishes may be the same or different as the resin composition for forming the insulating layer 3 diluted with a solvent.
  • the resin composition is a composition containing a main polymer, a diluent solvent, a curing agent, and the like.
  • the main polymer is not particularly limited, but when a thermosetting resin is used, for example, a polyvinyl formal precursor, a thermosetting polyurethane precursor, a thermosetting acrylic resin precursor, an epoxy resin precursor, a phenoxy resin precursor, a thermosetting A polyester precursor, a thermosetting polyesterimide precursor, a thermosetting polyesteramideimide precursor, a thermosetting polyamideimide precursor, a polyimide precursor, or the like can be used.
  • thermoplastic resin for example, polyetherimide, polyetheretherketone, polyethersulfone, polyamideimide, polyimide and the like can be used.
  • a polyimide precursor and a polyimide are preferable in that the varnish can be easily applied and the strength and heat resistance of the insulating layer 3 can be easily improved.
  • the diluting solvent a known organic solvent conventionally used for insulating varnish can be used. Specifically, polar organic solvents such as N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide, dimethyl sulfoxide, tetramethylurea, hexaethylphosphoric triamide, ⁇ -butyrolactone and the like are used.
  • ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone; esters such as methyl acetate, ethyl acetate, butyl acetate, diethyl oxalate; diethyl ether, ethylene glycol dimethyl ether, diethylene glycol monomethyl ether, ethylene glycol monobutyl ether (butyl cellosolve) ), Ethers such as diethylene glycol dimethyl ether and tetrahydrofuran; hydrocarbons such as hexane, heptane, benzene, toluene and xylene Halogenated hydrocarbons such as dichloromethane and chlorobenzene; phenols such as cresol and chlorophenol; tertiary amines such as pyridine and the like. These organic solvents may be used alone or in combination of two or more. Used.
  • the resin composition may contain a curing agent.
  • Curing agents include titanium-based curing agents, isocyanate compounds, blocked isocyanates, urea and melamine compounds, amino resins, acetylene derivatives, alicyclic acid anhydrides such as methyltetrahydrophthalic anhydride, aliphatic acid anhydrides, and aromatics. An acid anhydride etc. are illustrated.
  • These curing agents are appropriately selected according to the type of main polymer contained in the resin composition to be used. For example, in the case of polyamideimide, imidazole, triethylamine and the like are preferably used as the curing agent.
  • examples of the titanium-based curing agent include tetrapropyl titanate, tetraisopropyl titanate, tetramethyl titanate, tetrabutyl titanate, and tetrahexyl titanate.
  • Isocyanate compounds include aromatic diisocyanates such as tolylene diisocyanate (TDI), diphenylmethane diisocyanate (MDI), p-phenylene diisocyanate, naphthalene diisocyanate; hexamethylene diisocyanate (HDI), 2,2,4-trimethylhexane diisocyanate, lysine C3-C12 aliphatic diisocyanates such as diisocyanates; 1,4-cyclohexane diisocyanate (CDI), isophorone diisocyanate (IPDI), 4,4′-dicyclohexylmethane diisocyanate (hydrogenated MDI), methylcyclohexane diisocyanate, isopropylidene dicyclohexyl -4,4'-diisocyanate, 1,3-diisocyanatomethylcyclohexane (hydrogenated XDI , Hydrogenated TD
  • Examples thereof include 5-18 alicyclic isocyanates; aliphatic diisocyanates having an aromatic ring such as xylylene diisocyanate (XDI) and tetramethylxylylene diisocyanate (TMXDI); modified products thereof.
  • Examples of the blocked isocyanate include diphenylmethane-4,4′-diisocyanate (MDI), diphenylmethane-3,3′-diisocyanate, diphenylmethane-3,4′-diisocyanate, diphenylether-4,4′-diisocyanate, and benzophenone-4,4 ′.
  • -Diisocyanate diphenylsulfone-4,4'-diisocyanate, tolylene-2,4-diisocyanate, tolylene-2,6-diisocyanate, naphthylene-1,5-diisocyanate, m-xylylene diisocyanate, p-xylylene diisocyanate, etc.
  • Examples thereof include compounds in which a blocking agent such as dimethylpyrazole is added to an isocyanate group.
  • the melamine compound include methylated melamine, butylated melamine, methylolated melamine, and butyrololized melamine.
  • acetylene derivatives include ethynylaniline, ethynylphthalic anhydride, and the like.
  • the hollow-forming particles 5 include a core 6 mainly composed of a thermally decomposable resin and a shell 7 having a higher thermal decomposition temperature than that of the thermally decomposable resin.
  • the thermally decomposable resin used as the main component of the core 6 for example, resin particles that thermally decompose at a temperature lower than the baking temperature of the main polymer are used.
  • the baking temperature of the main polymer is appropriately set according to the type of resin, but is usually about 200 ° C. or higher and 600 ° C. or lower.
  • the lower limit of the thermal decomposition temperature of the thermally decomposable resin used for the core 6 of the hollow forming particles 5 is preferably 200 ° C.
  • the upper limit is preferably 400 ° C.
  • the thermal decomposition temperature means a temperature at which the temperature is increased from room temperature to 10 ° C./min in an air atmosphere and the mass reduction rate becomes 50%.
  • the thermal decomposition temperature can be measured, for example, by measuring the thermogravimetry using a thermogravimetry-differential thermal analyzer (“TG / DTA” manufactured by SII Nanotechnology Inc.).
  • the heat-decomposable resin used for the core 6 of the hollow-forming particles 5 is not particularly limited.
  • one or both of polyethylene glycol and polypropylene glycol, or both ends or parts thereof are alkylated, (meth) acrylated or epoxidized.
  • Compound; (meth) acrylic having an alkyl group having 1 to 6 carbon atoms such as poly (meth) acrylate methyl, poly (meth) ethyl acrylate, poly (meth) acrylate propyl, poly (meth) acrylate butyl, etc.
  • a polymer of (meth) acrylic acid ester having an alkyl group having 1 to 6 carbon atoms is preferable in that it is easily thermally decomposed at the baking temperature of the main polymer and easily forms pores 4 in the insulating layer 3.
  • An example of such a polymer of (meth) acrylic acid ester is polymethyl methacrylate (PMMA).
  • the shape of the core 6 is preferably spherical.
  • spherical heat-decomposable resin particles may be used as the core 6.
  • the lower limit of the average particle diameter of the resin particles is not particularly limited, but is preferably 0.1 ⁇ m, more preferably 0.5 ⁇ m, and even more preferably 1 ⁇ m.
  • the upper limit of the average particle diameter of the resin particles is preferably 15 ⁇ m, and more preferably 10 ⁇ m. If the average particle diameter of the resin particles is less than the above lower limit, it may be difficult to produce the hollow forming particles 5 having the resin particles as the core 6.
  • the average particle diameter of the resin particles means a particle diameter showing the highest volume content in the particle size distribution measured with a laser diffraction particle size distribution measuring device.
  • a material having a higher thermal decomposition temperature than the thermally decomposable resin is used. Further, as the main component of the shell 7, one having a low dielectric constant and high heat resistance is preferable. Examples of such a material used as the main component of the shell 7 include resins such as polystyrene, silicone, fluororesin, and polyimide. Among these, silicone is preferable in that elasticity is imparted to the shell 7 and insulation and heat resistance are easily improved.
  • the “fluororesin” is a fluorine atom or an organic group in which at least one hydrogen atom bonded to a carbon atom constituting the repeating unit of the polymer chain has a fluorine atom (hereinafter also referred to as “fluorine atom-containing group”). ).
  • the fluorine atom-containing group is a group in which at least one hydrogen atom in a linear or branched organic group is substituted with a fluorine atom, and examples thereof include a fluoroalkyl group, a fluoroalkoxy group, and a fluoropolyether group. Can do.
  • the shell 7 may contain a metal as long as the insulating property is not impaired.
  • the main resin of the shell 7 may be the same as or different from the main polymer of the resin composition contained in the varnish.
  • the thermal decomposition temperature is higher than that of the thermally decomposable resin. Since the main component resin is difficult to thermally decompose, the independent porosity in the pores 4 can be increased.
  • the insulated wire formed of such a varnish may not be able to confirm the presence of the outer shell of the pores 4 even when observed with an electron microscope.
  • the shell 7 can be made difficult to be integrated with the resin composition, and therefore the same type of resin as the main polymer of the resin composition is used. In comparison with, the independent porosity in the pores 4 is increased.
  • the upper limit of the average thickness of the shell 7 is preferably 0.5 ⁇ m, and more preferably 0.4 ⁇ m. If the average thickness of the shell 7 is less than the above lower limit, the independent porosity in the pores 4 may be lowered. If the average thickness of the shell 7 exceeds the above upper limit, the volume of the pores 4 becomes too small, and the porosity of the insulating layer 3 may not be increased beyond a predetermined level.
  • the shell 7 may be formed of one layer or a plurality of layers.
  • the average of the total thickness of the plurality of layers may be within the range of the thickness.
  • the “average thickness of the shell” means, for example, a value obtained by averaging the thickness of the shell 7 for 30 hollow forming particles 5.
  • the upper limit of the CV value of the hollow forming particles 5 is preferably 30% and more preferably 20%. If the CV value of the hollow forming particles 5 exceeds the above upper limit, the insulating layer 3 includes a plurality of pores 4 having different sizes, so that the distribution of the dielectric constant is likely to be biased. In addition, although there is no restriction
  • the “CV value” means a variable defined in JIS-Z8825 (2013).
  • the hollow forming particles 5 may have a configuration in which the core 6 is formed by one thermally decomposable resin particle, or the core 6 is formed by a plurality of thermally decomposable resin particles, It is good also as a structure which 7 resin coat
  • the surface of the hollow forming particle 5 may be smooth without irregularities as shown in FIG. 3, or irregularities may be formed.
  • the lower limit of the resin solid content concentration of the varnish prepared by diluting with an organic solvent and dispersing the hollow-forming particles 5 is preferably 15% by mass, more preferably 20% by mass.
  • an upper limit of the resin solid content concentration of a varnish 50 mass% is preferable and 30 mass% is more preferable.
  • the resin solid content concentration of the varnish is less than the above lower limit, the thickness that can be formed by a single varnish application is reduced, and therefore the number of repetitions of the varnish application step for forming the insulating layer 3 having a desired thickness is reduced. There is a risk that the time for the varnish application process will be increased.
  • the resin solid content concentration of the varnish exceeds the upper limit, the storage stability of the varnish may be deteriorated due to thickening of the varnish.
  • a pore forming agent such as a thermally decomposable particle may be mixed with the varnish for forming pores.
  • varnish may be prepared by combining diluting solvents having different boiling points for pore formation. The pores formed by the pore-forming agent and the pores formed by the combination of diluting solvents having different boiling points are difficult to communicate with the pores derived from the hollow-forming particles 5. Therefore, even when pores that are not covered with the outer shell are included, the presence of the pores covered with the outer shell can increase the independent porosity in the pores 4.
  • the inner varnish prepared in the varnish preparation step is applied to the outer peripheral surface of the conductor 2 and then baked to form the inner pore layer 3a on the surface of the conductor 2. During baking, the thermally decomposable resin contained in the inner surface side varnish is thermally decomposed, and pores 4 are generated in the portion where the thermally decomposable resin exists in the inner pore layer 3a.
  • the inner varnish is applied and baked until the inner pore layer 3a formed on the surface of the conductor 2 has a predetermined thickness. Repeat.
  • Outside pore layer forming step In the outer pore layer forming step, after applying the outer varnish having a larger content of the thermally decomposable resin than the inner varnish prepared in the varnish preparation step to the outer peripheral surface of the conductor 2 in which the inner pore layer 3a is formed, By baking, the outer pore layer 3b is formed outside the inner pore layer 3a formed in the conductor 2. At the time of baking, the thermally decomposable resin contained in the outer varnish is thermally decomposed, and pores 4 are generated in portions where the thermally decomposable resin exists in the outer pore layer 3b.
  • the outer varnish is repeatedly applied and baked until the outer pore layer 3b has a predetermined thickness.
  • the insulating layer includes pores, and the independent porosity in the pores in the insulating layer 3 is equal to or higher than the above value. Therefore, the dielectric breakdown voltage may be increased due to small variation in pore size. And has excellent insulation. Moreover, the insulated wire 1 is provided with an inner pore layer and an outer pore layer, and by making each porosity within the above range, the mechanical strength suppressing action can be reduced, and the mechanical strength of the entire insulation layer can be reduced. Excellent.
  • An insulated wire 1 in FIG. 2 includes a linear conductor 2 and an insulating layer 3 that covers the outer peripheral surface of the conductor 2.
  • the insulating layer 3 includes an inner pore layer 3a, an outer pore layer 3b disposed outside the inner pore layer 3a, and another pore layer 3c disposed outside the outer pore layer 3b.
  • Each of the inner pore layer 3a, the outer pore layer 3b, and the other pore layer 3c has a plurality of pores 4.
  • the independent porosity in the pores 4 in the insulating layer 3 is 80% by volume or more, more preferably 85% by volume or more, and still more preferably 90% by volume or more.
  • the upper limit of the independent porosity in the pores 4 is, for example, 100% by volume.
  • the independent porosity in the pores 4 included in the other pore layer 3c may be different from the independent porosity of the pores 4 included in the inner pore layer 3a or the independent porosity of the pores 4 included in the outer pore layer 3b. . In this case, also in the other pore layers 3c, it is preferable that the independent porosity in the pores 4 is within the above range.
  • the conductor 2 is different from the insulated wire 1 in FIG. 1 in the configuration of the insulating layer 3. Since the conductor 2, the inner pore layer 3a, and the outer pore layer 3b of the insulated wire 1 of FIG. 2 can be the same as the conductor 2, the inner pore layer 3a, and the outer pore layer 3b of the insulated wire 1 of FIG. Description is omitted.
  • the lower limit of the porosity of the other pore layer 3c is preferably 1% by volume, and more preferably 3% by volume.
  • the upper limit of the porosity of the other pore layer 3c is preferably 10% by volume, more preferably 8% by volume.
  • the porosity of the other pore layer 3c is less than the lower limit, the dielectric constant of the insulating layer 3 is not sufficiently lowered, and the corona discharge starting voltage may not be sufficiently improved.
  • the porosity of the other pore layer 3c exceeds the above upper limit, there is a possibility that sufficient mechanical strength of the insulating layer 3 cannot be ensured.
  • the lower limit of the average thickness of the other pore layer 3c is preferably 3 ⁇ m, and more preferably 5 ⁇ m.
  • the upper limit of the average thickness of the other pore layer 3c is preferably 10 ⁇ m, and more preferably 8 ⁇ m.
  • the average thickness of the other pore layer 3c is less than the above lower limit, the other pore layer 3c having a large effect of maintaining the mechanical strength becomes too thin, and the mechanical strength of the insulating layer 3 may not be maintained.
  • the average thickness of the other pore layer 3c exceeds the upper limit, the other pore layer 3c having a small effect of reducing the dielectric constant becomes too thick, and the dielectric constant of the insulating layer 3 may not be sufficiently lowered.
  • the insulated wire 1 of FIG. 2 can be manufactured by the method similar to the manufacturing method of the insulated wire 1 of 1st embodiment of FIG. 1, for example.
  • it can be manufactured by performing the following other pore layer forming step after the outer pore layer forming step in the method of manufacturing the insulated wire 1 of the first embodiment.
  • ⁇ Other pore layer forming step> another pore layer varnish having a smaller content of the thermally decomposable resin than the outer varnish prepared in the varnish preparation step is further applied to the outer peripheral surface of the conductor 2 on which the outer pore layer 3b is formed.
  • the other pore layer 3c is formed outside the outer pore layer 3b formed in the conductor 2 by baking.
  • the thermally decomposable resin contained in the other varnish for the pore layer is thermally decomposed, and the pores 4 are generated in the portions where the thermally decomposable resin exists in the other pore layer 3c.
  • the other pore layer varnish is applied until the other pore layer 3c reaches a predetermined thickness. Repeat baking. By forming another pore layer 3c having a predetermined thickness, the insulated wire 1 can be obtained.
  • the insulating layer demonstrated the insulated wire comprised by the pore layer of 2 or 3
  • the insulating layer was comprised of 4 or more pore layers. Also good. By increasing the number of pore layers constituting the insulating layer, it becomes easier to finely adjust the dielectric constant and mechanical strength of the entire insulating layer. Moreover, it is good also as an insulated wire with which an insulating layer is comprised by the porous layer of one layer or two layers using the pore layer from which a porosity differs in thickness direction.
  • the production method for generating pores using a thermally decomposable resin has been described.
  • a foaming agent or a thermally expandable microcapsule is mixed with the varnish, and the foaming agent or heat It is good also as a manufacturing method which forms pores by an expandable microcapsule.
  • a resin for forming an insulating layer diluted with a solvent is mixed with a thermally expandable microcapsule to prepare varnishes for each pore layer, and these varnishes are applied to the outer peripheral surface of a conductor and An insulating layer may be formed by baking. During baking, the thermally expandable microcapsules contained in the varnish expand or foam, and pores are formed by the thermally expandable microcapsules.
  • the heat-expandable microcapsule has a core material (including inclusion) made of a thermal expansion agent and an outer shell that wraps the core material.
  • the thermal expansion agent of the heat-expandable microcapsules may be any one that expands or generates a gas by heating, and the principle thereof does not matter.
  • a thermal expansion agent of the thermally expandable microcapsule for example, a low boiling point liquid, a chemical foaming agent, or a mixture thereof can be used.
  • alkanes such as butane, i-butane, n-pentane, i-pentane and neopentane, and freons such as trichlorofluoromethane are preferably used.
  • a material having thermal decomposability such as azobisisobutyronitrile that generates N 2 gas by heating is preferably used.
  • the expansion start temperature of the thermal expansion agent of the thermally expandable microcapsule is equal to or higher than the softening temperature of the outer shell of the thermally expandable microcapsule described later. More specifically, the lower limit of the expansion start temperature of the thermal expansion agent of the thermally expandable microcapsule is preferably 60 ° C, more preferably 70 ° C. The upper limit of the expansion start temperature of the thermal expansion agent of the thermally expandable microcapsule is preferably 200 ° C., and more preferably 150 ° C.
  • the thermally expandable microcapsule When the expansion start temperature of the thermal expansion agent of the thermally expandable microcapsule is less than the lower limit, the thermally expandable microcapsule may expand unintentionally during manufacture, transportation or storage of the insulated wire. When the expansion start temperature of the thermal expansion agent of the thermally expandable microcapsule exceeds the above upper limit, the energy cost necessary for expanding the thermally expandable microcapsule may be excessive.
  • the outer shell of the thermally expandable microcapsule is formed of a stretchable material that can expand without breaking when the thermal expansion agent expands to form a microballoon containing the generated gas.
  • a resin composition mainly composed of a polymer such as a thermoplastic resin is usually used.
  • thermoplastic resin used as the main component of the outer shell of the thermally expandable microcapsule is formed from monomers such as vinyl chloride, vinylidene chloride, acrylonitrile, acrylic acid, methacrylic acid, acrylate, methacrylate, styrene, etc. Polymers formed from two or more types of monomers are preferably used.
  • An example of a preferred thermoplastic resin is a vinylidene chloride-acrylonitrile copolymer.
  • the expansion start temperature of the thermal expansion agent is 80 ° C. or higher and 150 ° C. or lower.
  • the pores included in the insulating layer are formed by the thermal decomposition of the thermally decomposable resin.
  • the pores may be formed by a hollow filler.
  • an insulated wire can be produced by, for example, kneading a resin composition that forms an insulating layer and a hollow filler, and covering the conductor with the kneaded product by extrusion molding.
  • the hollow portion inside the hollow filler becomes the pores included in the insulating layer.
  • the hollow filler include shirasu balloons, glass balloons, ceramic balloons, and organic resin balloons.
  • an organic resin balloon is preferable among them.
  • a glass balloon is preferable because it is easily available and is not easily damaged.
  • the structure in which the pores included in the insulating layer are formed by thermal decomposition of the thermally decomposable resin has been described.
  • a thermoplastic resin is used as the resin for forming the insulating layer, and it is homogeneously mixed with a solvent and applied to the outer peripheral surface of the conductor in a heated and melted state. Then, the resin and the solvent are phase-separated by immersion in an insoluble liquid such as water or cooling in air, and the pores are formed by extracting and removing the solvent with another volatile solvent.
  • a further layer such as an inner intervening layer may be provided between the conductor and the insulating layer.
  • the inner intervening layer is a layer provided for enhancing the adhesion between the layers or reinforcing the lower dielectric constant of the insulating layer, and can be formed of, for example, a known resin composition.
  • the resin composition forming the inner intervening layer includes, for example, one or plural kinds of resins among polyimide, polyamideimide, polyesterimide, polyester, and phenoxy resin. Good.
  • the resin composition forming the inner intervening layer may contain an additive such as an adhesion improver.
  • the resin composition forming the inner intervening layer may contain other resins such as epoxy resin, phenoxy resin, melamine resin and the like together with the above resin. Moreover, you may use a commercially available liquid composition (insulation varnish) as each resin contained in the resin composition which forms an inner intervening layer.
  • the same kind of resin as the main component of the resin composition of the insulating layer described above may be used as the main component.
  • the inner intervening layer may include a plurality of pores. When the inner intervening layer includes a plurality of pores, the inner intervening layer can also contribute to a decrease in the dielectric constant of the insulating layer. However, in this case, the porosity of the inner intervening layer is more preferably smaller than the porosity of the insulating layer.
  • the inner intervening layer may be formed of a plurality of layers, and the porosity of the plurality of layers may be different from each other.
  • a protective layer having an insulating property may be further laminated on the outer peripheral surface side of the insulating layer.
  • a resin composition which forms a protective layer what has as a main component the same kind as resin mentioned as a main component of the resin composition of the insulating layer mentioned above can be used.
  • the protective layer may contain pores or may not contain pores. When the protective layer includes pores, the protective layer can also contribute to a decrease in the dielectric constant of the insulating layer. In this case, however, the porosity of the protective layer is more preferably smaller than the porosity of the insulating layer. On the other hand, when the protective layer does not include pores, the insulation of the insulated wire is further improved since the insulation is excellent.
  • the protective layer may be formed of a plurality of layers including pores, and the porosity of the plurality of layers may be different from each other.
  • a further layer such as a primer layer may be provided between the conductor and the insulating layer.
  • a primer layer is a layer provided in order to improve the adhesiveness between layers, for example, can be formed with a well-known resin composition.
  • the resin composition forming the primer layer includes, for example, one or more kinds of resins selected from polyimide, polyamideimide, polyesterimide, polyester, and phenoxy resin. Good.
  • the resin composition forming the primer layer may contain an additive such as an adhesion improver.
  • the resin composition forming the primer layer may contain other resins, for example, an epoxy resin, a phenoxy resin, a melamine resin, etc. together with the above resin.
  • the lower limit of the average primer layer thickness is preferably 1 ⁇ m, more preferably 2 ⁇ m.
  • As an upper limit of the average thickness of a primer layer 30 micrometers is preferable and 20 micrometers is more preferable. There exists a possibility that sufficient adhesiveness with a conductor cannot be exhibited as the average thickness of a primer layer is less than the said minimum. If the average thickness of the primer layer exceeds the above upper limit, the insulated wire may unnecessarily increase in diameter.
  • Varnish (A) and varnish (B) were prepared as follows.
  • (Varnish (A)) Using polyimide as the main polymer and N-methyl-2-pyrrolidone as the solvent, a resin composition was prepared by diluting the main polymer with this solvent. Next, core-shell particles having a core of PMMA particles and a shell of silicone having an average particle diameter of 3 ⁇ m are used as hollow-forming particles, and the resin composition is dispersed in such an amount that the calculated porosity of the insulating layer is 10% by volume. Varnish (A) was prepared.
  • Varnish (B) Using polyimide as the main polymer and N-methyl-2-pyrrolidone as the solvent, a resin composition was prepared by diluting the main polymer with this solvent. Next, core-shell particles having a core of PMMA particles and a shell of silicone having an average particle diameter of 3 ⁇ m are used as hollow-forming particles, and the calculated amount of the insulating layer having a porosity of 30% by volume is dispersed in the resin composition. Varnish (B) was prepared.
  • the insulated wire shown in 2 was manufactured as follows. Using a vertical coating facility, apply varnish (A) as an inner varnish to the outer peripheral surface of a rectangular conductor with a cross section of 2 mm x 2 mm, and inside a die and a baking furnace having openings similar to the conductor The film was passed at a speed of 6 m / min and baked at 350 ° C. for 1 minute to form an inner pore layer. Next, varnish (B) is applied to the outer peripheral surface of the inner pore layer as an outer varnish, and is passed through a die having an opening portion similar to the conductor and a baking furnace at a speed of 6 m / min. Baking was performed for 1 minute to form an insulating film.
  • the outer pore layer was formed by repeating the application of the outer varnish, passing through a die, and baking 28 times. Furthermore, varnish (A) was applied to the outer peripheral surface of the outer pore layer as another pore layer varnish, and passed through a die having an opening portion similar to the conductor and a baking furnace at a speed of 6 m / min. Was baked for 1 minute to form another pore layer to produce an insulated wire (No. 2).
  • the insulated wire shown in 3 was manufactured as follows. Varnish (B) is applied to the outer peripheral surface of a rectangular conductor having a cross section of 2 mm ⁇ 2 mm using a vertical coating equipment, and a die having an opening similar to the conductor and a baking furnace at a speed of 6 m / min. It was passed through and baked at 350 ° C. for 1 minute to form an insulating film. Coating of varnish, passing through a die, and baking were repeated 34 times to form a pore layer, and an insulated wire (No. 3) was manufactured.
  • FIG. 4 is a schematic diagram for explaining a dielectric constant measurement method.
  • symbol as FIG. 1 is attached
  • a silver sample P was applied to three places on the surface of the insulated wire, and a measurement sample was prepared in which the conductor 2 was exposed by peeling off the insulating layer 3 on one end side of the insulated wire.
  • the coating length in the longitudinal direction of the insulated wire of the silver paste P applied to the three places on the surface of the insulated wire was 10 mm, 100 mm, and 10 mm in order along the longitudinal direction.
  • the two silver pastes P applied at a length of 10 mm are grounded, and the capacitance between the silver paste P applied at a length of 100 mm between these two silver pastes and the exposed conductor 2 is determined as LCR. Measured with meter M.
  • the insulated wire 3 was installed in a press machine so that a pressing pressure was applied to a part of the longitudinal direction.
  • a load (N) obtained by pressing pressure (MPa) ⁇ pressing area (mm 2 ) was applied so as to obtain a predetermined pressing pressure, and the pressing was performed for 10 seconds after the load was stabilized.
  • the average thickness T1 of the insulating layer at the pressed location and the average thickness T2 of the insulating layer at the non-pressed location are measured. From the measured values of T1 and T2, (T2-T1) ⁇ 100 / T2 (%)
  • the thickness reduction rate after pressing was calculated by the following formula.
  • the thickness reduction rate after pressing was measured with the pressing pressure set to 50 MPa, 100 MPa, and 200 MPa, respectively.
  • the average thicknesses T1 and T2 of the insulating layer were measured at three points in the cross-sectional direction of the insulated wire, and the average value was used.
  • the porosity of the inner pore layer is 1% by volume or more and 10% by volume or less, and the porosity of the outer pore layer is 25% by volume or more and 50% by volume or less, and the independent pores in the pores in the insulating layer The rate is 80% by volume or more.
  • No. 1 and no. It can be seen that the insulated wire No. 2 has a high dielectric breakdown voltage after heating for a long time, a low film thickness reduction rate after pressing, and is excellent in insulation and mechanical strength.
  • no. The insulated wire No. 3 did not have the above layer structure, and the dielectric breakdown voltage after heating for a long time and the film thickness reduction rate after pressing deteriorated.

Landscapes

  • Insulated Conductors (AREA)

Abstract

An insulated electric cable according to one embodiment of this invention is an electric cable comprising a linear conductor and an insulating layer which is coated on the outer peripheral surface of the conductor, wherein the insulating layer is equipped with an inner porous layer having a plurality of pores, and an outer porous layer which is positioned on the outside of the inner porous layer and which has a plurality of pores. In the insulating layer, the independent porosity of the pores is at least 80% by volume, the porosity of the inner porous layer does not exceed 10% by volume, and the porosity of the outer porous layer falls within the range of 25% by volume to 50% by volume (inclusive).

Description

絶縁電線Insulated wire
 本発明は、絶縁電線に関する。
 本出願は、2017年3月31日出願の日本出願第2017-071395号に基づく優先権を主張し、前記日本出願に記載された全ての記載内容を援用するものである。
The present invention relates to an insulated wire.
This application claims priority based on Japanese Patent Application No. 2017-071395 filed on Mar. 31, 2017, and incorporates all the content described in the above Japanese application.
 適用電圧が高い電気機器、例えば高電圧で使用されるモータ等では、電気機器を構成する絶縁電線に高電圧が印加され、その絶縁層表面で部分放電(コロナ放電)が発生し易くなる。コロナ放電の発生により、局部的な温度上昇、オゾンの発生、イオンの発生等が引き起こされると、早期に絶縁破壊を生じ、絶縁電線ひいては電気機器の寿命が短くなる。このため、適用電圧が高い電気機器に使用される絶縁電線には、優れた絶縁性、機械的強度等に加えてコロナ放電開始電圧の向上も求められる。 In an electric device having a high applied voltage, such as a motor used at a high voltage, a high voltage is applied to an insulated wire constituting the electric device, and partial discharge (corona discharge) easily occurs on the surface of the insulating layer. When a local temperature rise, ozone generation, ion generation, or the like is caused by the generation of corona discharge, dielectric breakdown occurs at an early stage, and the life of the insulated wire and thus the electrical equipment is shortened. For this reason, the insulated wire used for the electric equipment with a high applied voltage is also required to improve the corona discharge starting voltage in addition to excellent insulation and mechanical strength.
 コロナ放電開始電圧を上げる工夫としては、絶縁層の低誘電率化が有効である。絶縁被膜の低誘電率化を実現するために、塗膜構成樹脂と、塗膜構成樹脂の焼付け温度よりも低い温度で分解する熱分解性樹脂とを含む絶縁ワニスにより加熱硬化膜(絶縁被膜)を形成する絶縁電線が提案されている(特開2012-224714号公報参照)。この絶縁電線は、上記熱分解性樹脂が塗膜構成樹脂の焼付け時に熱分解してその部分が気孔となることを利用して加熱硬化膜内に気孔が形成されており、気孔の形成により絶縁被膜の低誘電率化を実現している。 An effective way to increase the corona discharge starting voltage is to reduce the dielectric constant of the insulating layer. In order to realize a low dielectric constant of the insulating coating, a heat-cured film (insulating coating) with an insulating varnish containing a coating film constituent resin and a thermally decomposable resin that decomposes at a temperature lower than the baking temperature of the coating film constituent resin. There has been proposed an insulated wire that forms a wire (see JP 2012-224714 A). In this insulated wire, pores are formed in the thermosetting film by utilizing the fact that the thermally decomposable resin is thermally decomposed during baking of the coating film constituting resin and the portions become pores. Low dielectric constant of the film is realized.
 また、このような気孔を含む絶縁層を備える絶縁電線は、絶縁層の厚さ方向の機械的強度が低下するので、低誘電率化と機械的強度とを両立するため、絶縁層が厚さ方向に区分される3以上の気孔層から構成され、これらの3以上の気孔層の気孔率が段階的に変化する絶縁電線が提案されている(特開2016-91865号公報参照)。 In addition, an insulated wire provided with such an insulating layer containing pores has a reduced mechanical strength in the thickness direction of the insulating layer. Therefore, in order to achieve both low dielectric constant and mechanical strength, the insulating layer has a thickness. There has been proposed an insulated wire that is composed of three or more pore layers divided in the direction and in which the porosity of these three or more pore layers changes in a stepwise manner (see Japanese Patent Application Laid-Open No. 2016-91865).
特開2012-224714号公報JP 2012-224714 A 特開2016-91865号公報JP 2016-91865 A
 本発明の一態様に係る絶縁電線は、線状の導体と、上記導体の外周面に被覆される絶縁層とを備える絶縁電線であって、上記絶縁層が、複数の気孔を有する内側気孔層と、上記内側気孔層の外側に配設され、複数の気孔を有する外側気孔層とを備え、上記絶縁層において、上記気孔中の独立気孔率が80体積%以上であり、上記内側気孔層の気孔率が1体積%以上10体積%以下であり、上記外側気孔層の気孔率が25体積%以上50体積%以下である。 An insulated wire according to an aspect of the present invention is an insulated wire including a linear conductor and an insulating layer coated on an outer peripheral surface of the conductor, and the insulating layer includes an inner pore layer having a plurality of pores. And an outer pore layer having a plurality of pores disposed on the outer side of the inner pore layer, and in the insulating layer, the independent porosity in the pores is 80% by volume or more, and the inner pore layer The porosity is 1% by volume or more and 10% by volume or less, and the porosity of the outer pore layer is 25% by volume or more and 50% by volume or less.
本発明の第一実施形態に係る絶縁電線の模式的断面図である。It is a typical sectional view of an insulated wire concerning a first embodiment of the present invention. 本発明の第二実施形態に係る絶縁電線の模式的断面図である。It is a typical sectional view of an insulated wire concerning a second embodiment of the present invention. 本発明の実施形態に係る絶縁電線の形成に用いるワニスに含まれる中空形成粒子の模式的断面図である。It is typical sectional drawing of the hollow formation particle contained in the varnish used for formation of the insulated wire which concerns on embodiment of this invention. 実施例における誘電率の測定方法を説明するための模式図である。It is a schematic diagram for demonstrating the measuring method of the dielectric constant in an Example.
[本開示が解決しようとする課題]
 特許文献1や特許文献2に記載の絶縁電線によれば、絶縁層の低誘電率化を促進するため、絶縁層の気孔率をさらに高めることは可能である。しかし、気孔率を高くすると、機械的強度が低下し、また、絶縁性、特に長時間加熱後の絶縁破壊強度が低下するという不都合がある。
[Problems to be solved by the present disclosure]
According to the insulated wires described in Patent Document 1 and Patent Document 2, it is possible to further increase the porosity of the insulating layer in order to promote the reduction of the dielectric constant of the insulating layer. However, when the porosity is increased, the mechanical strength is lowered, and there is a disadvantage that the insulation, particularly the dielectric breakdown strength after long-time heating is lowered.
 そこで、絶縁性及び機械的強度に優れる絶縁電線を提供することを目的とする。 Therefore, an object is to provide an insulated wire excellent in insulation and mechanical strength.
[本開示の効果]
 本開示の絶縁電線は、絶縁性及び機械的強度に優れる。
[Effects of the present disclosure]
The insulated wire of the present disclosure is excellent in insulation and mechanical strength.
 [本発明の実施形態の説明]
 (1)本発明の一態様に係る絶縁電線は、線状の導体と、上記導体の外周面に被覆される絶縁層とを備える絶縁電線であって、上記絶縁層が、複数の気孔を有する内側気孔層と、上記内側気孔層の外側に配設され、複数の気孔を有する外側気孔層とを備え、上記絶縁層において、上記気孔中の独立気孔率が80体積%以上であり、上記内側気孔層の気孔率が1体積%以上10体積%以下であり、上記外側気孔層の気孔率が25体積%以上50体積%以下である。
[Description of Embodiment of the Present Invention]
(1) The insulated wire which concerns on 1 aspect of this invention is an insulated wire provided with a linear conductor and the insulating layer coat | covered on the outer peripheral surface of the said conductor, Comprising: The said insulating layer has several pores. An inner pore layer and an outer pore layer disposed outside the inner pore layer and having a plurality of pores, wherein the insulating layer has an independent porosity of 80% by volume or more in the pores, The porosity of the pore layer is 1% by volume or more and 10% by volume or less, and the porosity of the outer pore layer is 25% by volume or more and 50% by volume or less.
 当該絶縁電線は、絶縁層が気孔を含み、絶縁層において、気孔中の独立気孔率が上記値以上であるため、気孔の大きさのばらつきが小さい等により、長時間加熱後においても絶縁破壊電圧を高くすることができ、絶縁性に優れる。また、当該絶縁電線は、内側気孔層と外側気孔層とを備え、それぞれの気孔率を上記範囲内とすることにより、機械的強度の抑制作用を低減でき、絶縁層全体としての機械的強度に優れる。ここで、「独立気孔率」とは、後述する測定方法により求められる値をいう。また、「気孔率」とは、絶縁層を構成する各層の気孔を含む体積に対する気孔の容積の百分率を意味し、各層についてその外形から算出される見かけの体積V1に各層の材質の密度ρ1を乗じて求められる気孔がない場合の質量W1と、各層の実際の質量W2とから、(W1-W2)×100/W1の式により求められる値である。 In the insulated wire, since the insulating layer includes pores, and the independent porosity in the pores in the insulating layer is equal to or higher than the above value, the dielectric breakdown voltage is maintained even after heating for a long time due to small variation in pore size. Can be increased, and the insulation is excellent. In addition, the insulated wire includes an inner pore layer and an outer pore layer, and by making each porosity within the above range, the mechanical strength suppressing action can be reduced, and the mechanical strength of the entire insulating layer can be reduced. Excellent. Here, “independent porosity” refers to a value obtained by a measurement method described later. The “porosity” means a percentage of the volume of the pores with respect to the volume including the pores of each layer constituting the insulating layer, and the density ρ1 of the material of each layer is added to the apparent volume V1 calculated from the outer shape of each layer. This is a value obtained from the equation (W1−W2) × 100 / W1 from the mass W1 when there is no pore obtained by multiplication and the actual mass W2 of each layer.
 (2)上記内側気孔層の平均厚さとしては、3μm以上15μm以下が好ましく、上記外側気孔層の平均厚さとしては、80μm以上160μm以下が好ましい。各層の平均厚さを上記範囲内とすることで、導体を確実に絶縁すると共に、コイル等を形成する際のコイルの体積効率の低下を抑制できる。 (2) The average thickness of the inner pore layer is preferably 3 μm or more and 15 μm or less, and the average thickness of the outer pore layer is preferably 80 μm or more and 160 μm or less. By setting the average thickness of each layer within the above range, it is possible to reliably insulate the conductors and to suppress a decrease in volumetric efficiency of the coil when forming the coil or the like.
 (3)上記絶縁層が、上記外側気孔層の外側にさらに複数の気孔を有する他の気孔層を備えるとよく、上記他の気孔層の気孔率としては、1体積%以上10体積%以下が好ましく、上記他の気孔層の平均厚さとしては、3μm以上10μm以下が好ましい。外側気孔層の外側にさらに上記構成を有する他の気孔層を備えることにより、絶縁層全体としての機械的強度を維持しつつ、絶縁電線の耐久性を向上させることができる。 (3) The insulating layer may be provided with another pore layer having a plurality of pores outside the outer pore layer, and the porosity of the other pore layer is 1% by volume or more and 10% by volume or less. Preferably, the average thickness of the other pore layer is preferably 3 μm or more and 10 μm or less. By providing another pore layer having the above configuration outside the outer pore layer, the durability of the insulated wire can be improved while maintaining the mechanical strength of the entire insulation layer.
 (4)上記複数の気孔の周縁部に外殻を備え、上記外殻がコアシェル構造の中空形成粒子のシェルに由来するとよい。絶縁層の気孔が、コアシェル構造の中空形成粒子のコアの熱分解により形成され、かつ上記気孔の周辺部にシェルが外殻として存在することにより、形成される気孔は大きさ及び形状のばらつきがより小さくなり、また、独立気孔率が向上するため、絶縁性及び機械的強度がより向上する。なお、コアシェル構造とは、粒子のコアを形成する材料とコアの周囲を取り囲むシェルの材料が異なる構造をいう。 (4) It is preferable that an outer shell is provided at the periphery of the plurality of pores, and the outer shell is derived from a shell of hollow-forming particles having a core-shell structure. The pores of the insulating layer are formed by the thermal decomposition of the core of the hollow-forming particles having a core-shell structure, and the shells are present as outer shells around the pores, so that the pores formed vary in size and shape. Since it becomes smaller and the independent porosity is improved, the insulation and mechanical strength are further improved. The core-shell structure refers to a structure in which the material forming the core of the particle is different from the material of the shell surrounding the core.
 (5)上記外殻の主成分が、シリコーンであるとよい。外殻の主成分がシリコーンであれば、外殻に弾性を付与すると共に絶縁性及び耐熱性を向上させ易い。なお、「主成分」とは、最も含有量の多い成分であり、例えば50質量%以上含有される成分である。 (5) The main component of the outer shell is preferably silicone. If the main component of the outer shell is silicone, it is easy to impart elasticity to the outer shell and improve insulation and heat resistance. The “main component” is a component having the largest content, for example, a component contained in an amount of 50% by mass or more.
 (6)上記複数の気孔が、扁平球体であって、上記複数の気孔の短径及び長径を含む断面において、長径に対する短径の長さの比の平均が0.95以下であるとよい。気孔が扁平球体で、気孔の短径及び長径を含む断面において長径に対する短径の長さの比の平均が0.95以下であることによって、導体表面に対して垂直方向に気孔同士が当接し難くなり、絶縁層における独立気孔率を高くすることができる。なお、「扁平球体」とは、重心を通る最大対角線長さを長径、重心を通る最小対角線長さを短径としたとき、短径が長径よりも小さい球体をいう。 (6) The plurality of pores are flat spheres, and in a cross section including a minor axis and a major axis of the plurality of pores, an average ratio of a minor axis length to a major axis is preferably 0.95 or less. The pores are flat spheres, and the average ratio of the length of the minor axis to the major axis is 0.95 or less in the cross section including the minor axis and the major axis of the pores. It becomes difficult and the independent porosity in an insulating layer can be made high. The “flat sphere” refers to a sphere having a minor axis smaller than the major axis when the maximum diagonal length passing through the center of gravity is the major axis and the minimum diagonal length passing through the center of gravity is the minor axis.
 (7)上記導体と上記絶縁層の間にプライマー層を備えるとよい。導体と絶縁層との間にプライマー層を形成することで、導体と絶縁層との間の密着性が向上し、その結果、絶縁電線の可撓性や耐摩耗性、耐傷性、耐加工性などの特性を効果的に高めることができる。 (7) A primer layer may be provided between the conductor and the insulating layer. By forming a primer layer between the conductor and the insulating layer, the adhesion between the conductor and the insulating layer is improved. As a result, the flexibility, wear resistance, scratch resistance and workability of the insulated wire are improved. The characteristics such as can be effectively improved.
 [本発明の実施形態の詳細]
 以下、図面を参照しつつ、本発明の実施形態に係る絶縁電線及び絶縁電線の製造方法を説明する。
[Details of the embodiment of the present invention]
Hereinafter, an insulated wire and a method for manufacturing an insulated wire according to an embodiment of the present invention will be described with reference to the drawings.
[絶縁電線]
[第一実施形態]
 図1の絶縁電線1は、線状の導体2と、導体2の外周面に被覆される絶縁層3とを備える。絶縁層3は、内側気孔層3a、内側気孔層3aの外側に配設される外側気孔層3bとから構成される。内側気孔層3a及び外側気孔層3bは、それぞれ複数の気孔4を有し、絶縁層3における気孔4中の独立気孔率は80体積%以上である。
[Insulated wire]
[First embodiment]
An insulated wire 1 in FIG. 1 includes a linear conductor 2 and an insulating layer 3 that covers the outer peripheral surface of the conductor 2. The insulating layer 3 includes an inner pore layer 3a and an outer pore layer 3b disposed outside the inner pore layer 3a. The inner pore layer 3a and the outer pore layer 3b each have a plurality of pores 4, and the independent porosity in the pores 4 in the insulating layer 3 is 80% by volume or more.
<導体>
 導体2は、例えば断面が方形状の角線であるが、断面が円形状の丸線や、複数の素線を撚り合わせた撚り線であってもよい。
<Conductor>
The conductor 2 is, for example, a square wire having a square cross section, but may be a round wire having a circular cross section or a stranded wire obtained by twisting a plurality of strands.
 導体2の材質としては、導電率が高くかつ機械的強度が大きい金属が好ましい。このような金属としては、例えば銅、銅合金、アルミニウム、アルミニウム合金、ニッケル、銀、鉄、鋼、ステンレス鋼等が挙げられる。導体2は、これらの金属を線状に形成した材料や、このような線状の材料にさらに別の金属を被覆した多層構造のもの、例えばニッケル被覆銅線、銀被覆銅線、銅被覆アルミ線、銅被覆鋼線等を用いることができる。 The material of the conductor 2 is preferably a metal having high electrical conductivity and high mechanical strength. Examples of such a metal include copper, copper alloy, aluminum, aluminum alloy, nickel, silver, iron, steel, and stainless steel. The conductor 2 is a material in which these metals are formed in a linear shape, or a multilayer structure in which such a linear material is coated with another metal, such as a nickel-coated copper wire, a silver-coated copper wire, or a copper-coated aluminum. Wire, copper-coated steel wire, etc. can be used.
 導体2の平均断面積の下限としては、0.01mmが好ましく、0.1mmがより好ましい。導体2の平均断面積の上限としては、20mmが好ましく、10mmがより好ましく5mmがさらに好ましい。導体2の平均断面積が上記下限に満たない場合、導体2に対する絶縁層3の体積が大きくなり、絶縁電線1を用いて形成されるコイル等の体積効率が低くなるおそれがある。導体2の平均断面積が上記上限を超える場合、誘電率を十分に低下させるために絶縁層3を厚く形成しなければならず、絶縁電線1が不必要に大径化するおそれがある。 The lower limit of the average cross-sectional area of the conductor 2, preferably 0.01 mm 2, 0.1 mm 2 is more preferable. The upper limit of the average cross-sectional area of the conductor 2 is preferably 20 mm 2, more preferably 5 mm 2 and more preferably 10 mm 2. When the average cross-sectional area of the conductor 2 is less than the lower limit, the volume of the insulating layer 3 with respect to the conductor 2 is increased, and the volume efficiency of a coil or the like formed using the insulated wire 1 may be reduced. When the average cross-sectional area of the conductor 2 exceeds the above upper limit, the insulating layer 3 must be formed thick in order to sufficiently reduce the dielectric constant, and the insulated wire 1 may be unnecessarily increased in diameter.
<絶縁層>
 絶縁層3は、図1に示すように内側気孔層3a及び外側気孔層3bで構成される。
<Insulating layer>
As shown in FIG. 1, the insulating layer 3 includes an inner pore layer 3a and an outer pore layer 3b.
 内側気孔層3a及び外側気孔層3bは、それぞれ複数の気孔4を含んでいる。内側気孔層3a及び外側気孔層3bのそれぞれにおいて、複数の気孔4は略均一に分布している。 The inner pore layer 3a and the outer pore layer 3b each include a plurality of pores 4. In each of the inner pore layer 3a and the outer pore layer 3b, the plurality of pores 4 are distributed substantially uniformly.
 導体の断面が方形状であるいわゆる角線の場合は、絶縁層3の平均厚さを厚くすることが必要となる。内側気孔層3aの平均厚さの下限としては、3μmが好ましく、5μmがより好ましい。内側気孔層3aの平均厚さの上限としては、15μmが好ましく、10μmがより好ましく、8μmがさらに好ましい。導体の断面が円形状の丸線や、複数の素線を撚り合わせた撚り線の場合は、絶縁層3の平均厚さを薄くすることができる。この場合、内側気孔層3aの平均厚さの下限としては、2μmが好ましく、5μmがより好ましい。内側気孔層3aの平均厚さの上限としては、15μmが好ましく、10μmがより好ましく、8μmがさらに好ましい。内側気孔層3aの平均厚さが上記下限未満の場合、機械的強度の維持効果が大きい内側気孔層3aが薄くなり過ぎ、絶縁層3の機械的強度を維持できないおそれがある。内側気孔層3aの平均厚さが上記上限を超える場合、低誘電率化の効果が小さい内側気孔層3aが厚くなり過ぎ、絶縁層3の誘電率が十分に低下しないおそれがある。 In the case of a so-called square line having a rectangular cross section of the conductor, it is necessary to increase the average thickness of the insulating layer 3. The lower limit of the average thickness of the inner pore layer 3a is preferably 3 μm and more preferably 5 μm. The upper limit of the average thickness of the inner pore layer 3a is preferably 15 μm, more preferably 10 μm, and even more preferably 8 μm. In the case of a round wire having a circular cross section of the conductor or a stranded wire obtained by twisting a plurality of strands, the average thickness of the insulating layer 3 can be reduced. In this case, the lower limit of the average thickness of the inner pore layer 3a is preferably 2 μm and more preferably 5 μm. The upper limit of the average thickness of the inner pore layer 3a is preferably 15 μm, more preferably 10 μm, and even more preferably 8 μm. When the average thickness of the inner pore layer 3a is less than the lower limit, the inner pore layer 3a having a large effect of maintaining the mechanical strength becomes too thin, and the mechanical strength of the insulating layer 3 may not be maintained. When the average thickness of the inner pore layer 3a exceeds the above upper limit, the inner pore layer 3a having a small effect of lowering the dielectric constant becomes too thick, and the dielectric constant of the insulating layer 3 may not be sufficiently lowered.
 導体の断面が方形状であるいわゆる角線の場合は、絶縁層3の平均厚さを厚くすることが必要となる。外側気孔層3bの平均厚さの下限としては、80μmが好ましく、100μmがより好ましい。外側気孔層3bの平均厚さの上限としては、160μmが好ましく、130μmがより好ましい。導体の断面が円形状の丸線や、複数の素線を撚り合わせた撚り線の場合は、絶縁層3の平均厚さを薄くすることができる。この場合、外側気孔層3bの平均厚さの下限としては、10μmが好ましく、20μmがより好ましい。外側気孔層3bの平均厚さの上限としては、160μmが好ましく、130μmがより好ましい。外側気孔層3bの平均厚さが上記下限未満の場合、低誘電率化に寄与する効果が大きい外側気孔層3bが薄くなり過ぎ、絶縁層3の誘電率が十分に低下しないおそれがある。外側気孔層3bの平均厚さが上記上限を超える場合、機械的強度の維持効果が小さい外側気孔層3bが厚くなり過ぎ、絶縁層3の機械的強度を維持できないおそれがある。 In the case of a so-called square line having a rectangular cross section of the conductor, it is necessary to increase the average thickness of the insulating layer 3. The lower limit of the average thickness of the outer pore layer 3b is preferably 80 μm, and more preferably 100 μm. The upper limit of the average thickness of the outer pore layer 3b is preferably 160 μm, and more preferably 130 μm. In the case of a round wire having a circular cross section of the conductor or a stranded wire obtained by twisting a plurality of strands, the average thickness of the insulating layer 3 can be reduced. In this case, the lower limit of the average thickness of the outer pore layer 3b is preferably 10 μm, and more preferably 20 μm. The upper limit of the average thickness of the outer pore layer 3b is preferably 160 μm, and more preferably 130 μm. When the average thickness of the outer pore layer 3b is less than the above lower limit, the outer pore layer 3b having a large effect of contributing to the reduction of the dielectric constant becomes too thin, and the dielectric constant of the insulating layer 3 may not be sufficiently lowered. When the average thickness of the outer pore layer 3b exceeds the above upper limit, the outer pore layer 3b having a small effect of maintaining the mechanical strength becomes too thick, and the mechanical strength of the insulating layer 3 may not be maintained.
 絶縁層3の平均厚さは、導体の形状により異なる。導体の断面が円形状の丸線や、複数の素線を撚り合わせた撚り線の場合は、絶縁層3の平均厚さを薄くすることができる。この場合の絶縁層3の下限としては、15μmが好ましく、30μmがより好ましい。絶縁層3の平均厚さの上限としては、300μmが好ましく、200μmがより好ましい。一方、導体の断面が方形状であるいわゆる角線の場合は、絶縁層3の平均厚さを厚くすることが必要となる。この場合の絶縁層3の下限としては、83μmが好ましく、100μmがより好ましい。絶縁層3の平均厚さの上限としては、400μmが好ましく、300μmがより好ましい。絶縁層3の平均厚さが上記下限未満である場合、絶縁層3に破れが生じ、導体2の絶縁が不十分となるおそれがある。絶縁層3の平均厚さが上記上限を超える場合、絶縁電線1を用いて形成されるコイル等の体積効率が低くなるおそれがある。 The average thickness of the insulating layer 3 varies depending on the shape of the conductor. In the case of a round wire having a circular cross section of the conductor or a stranded wire obtained by twisting a plurality of strands, the average thickness of the insulating layer 3 can be reduced. In this case, the lower limit of the insulating layer 3 is preferably 15 μm, and more preferably 30 μm. As an upper limit of the average thickness of the insulating layer 3, 300 micrometers is preferable and 200 micrometers is more preferable. On the other hand, in the case of a so-called square line having a rectangular cross section of the conductor, it is necessary to increase the average thickness of the insulating layer 3. In this case, the lower limit of the insulating layer 3 is preferably 83 μm, and more preferably 100 μm. As an upper limit of the average thickness of the insulating layer 3, 400 micrometers is preferable and 300 micrometers is more preferable. When the average thickness of the insulating layer 3 is less than the above lower limit, the insulating layer 3 may be broken and the conductor 2 may be insufficiently insulated. When the average thickness of the insulating layer 3 exceeds the upper limit, the volume efficiency of a coil or the like formed using the insulated wire 1 may be lowered.
 絶縁層3(内側気孔層3a及び外側気孔層3b)を形成する樹脂組成物の主成分の樹脂としては、特に限定されないが、例えばポリビニルホルマール、熱硬化ポリウレタン、熱硬化アクリル、エポキシ、熱硬化ポリエステル、熱硬化ポリエステルイミド、熱硬化ポリエステルアミドイミド、芳香族ポリアミド、熱硬化ポリアミドイミド、熱硬化ポリイミド等の熱硬化性樹脂や、例えばポリエーテルイミド、ポリエーテルエーテルケトン、ポリエーテルサルフォン、ポリアミドイミド、ポリイミド等の熱可塑性樹脂が使用できる。ここで「主成分」とは、最も含有量の多い成分であり、例えば50質量%以上含有される成分である。なお、内側気孔層3a及び外側気孔層3bを形成する樹脂組成物の主成分の樹脂を同種のものとしてもよいし、異なる種類のものとしてもよい。 The resin as the main component of the resin composition forming the insulating layer 3 (the inner pore layer 3a and the outer pore layer 3b) is not particularly limited. For example, polyvinyl formal, thermosetting polyurethane, thermosetting acrylic, epoxy, thermosetting polyester , Thermosetting resins such as thermosetting polyester imide, thermosetting polyester amide imide, aromatic polyamide, thermosetting polyamide imide, thermosetting polyimide, etc., for example, polyether imide, polyether ether ketone, polyether sulfone, polyamide imide, A thermoplastic resin such as polyimide can be used. Here, the “main component” is a component having the largest content, for example, a component contained in an amount of 50% by mass or more. In addition, the resin of the main component of the resin composition which forms the inner pore layer 3a and the outer pore layer 3b may be the same type or different types.
 内側気孔層3aの気孔率の下限としては、1体積%であり、2体積%がより好ましい。内側気孔層3aの気孔率の上限としては、10体積%であり、8体積%がより好ましい。内側気孔層3aの気孔率が上記下限未満の場合、絶縁層3の誘電率が十分に低下せず、コロナ放電開始電圧を十分に向上できないおそれがある。内側気孔層3aの気孔率が上記上限を超える場合、絶縁層3の十分な機械的強度を確保できないおそれがある。 The lower limit of the porosity of the inner pore layer 3a is 1% by volume, and more preferably 2% by volume. The upper limit of the porosity of the inner pore layer 3a is 10% by volume, and more preferably 8% by volume. When the porosity of the inner pore layer 3a is less than the lower limit, the dielectric constant of the insulating layer 3 is not sufficiently lowered, and the corona discharge starting voltage may not be sufficiently improved. When the porosity of the inner pore layer 3a exceeds the above upper limit, sufficient mechanical strength of the insulating layer 3 may not be ensured.
 外側気孔層3bの気孔率の下限としては、25体積%であり、30体積%が好ましい。外側気孔層3bの気孔率の上限としては、50体積%であり、40体積%が好ましく、38体積%がより好ましい。外側気孔層3bの気孔率が上記下限未満の場合、絶縁層3の誘電率が十分に低下せず、コロナ放電開始電圧を十分に向上できないおそれがある。外側気孔層3bの気孔率が上記上限を超える場合、絶縁層3の十分な機械的強度を確保できないおそれがある。 The lower limit of the porosity of the outer pore layer 3b is 25% by volume, preferably 30% by volume. The upper limit of the porosity of the outer pore layer 3b is 50% by volume, preferably 40% by volume, and more preferably 38% by volume. When the porosity of the outer pore layer 3b is less than the lower limit, the dielectric constant of the insulating layer 3 is not sufficiently lowered, and the corona discharge starting voltage may not be sufficiently improved. If the porosity of the outer pore layer 3b exceeds the above upper limit, sufficient mechanical strength of the insulating layer 3 may not be ensured.
 絶縁層3における気孔4中の独立気孔率の下限としては、80体積%であり、85体積%がより好ましく、90体積%がさらに好ましい。気孔4中の独立気孔率の上限としては、例えば100体積%である。気孔4中の独立気孔率が上記下限未満の場合、絶縁電線の絶縁性及び機械的強度が低下する傾向にある。なお、内側気孔層3aに含まれる気孔4の独立気孔率と外側気孔層3bに含まれる気孔4の独立気孔率は異なっていてもよい。この場合、内側気孔層3a及び外側気孔層3bのそれぞれにおいて、気孔4中の独立気孔率は上記範囲内であることが好ましい。 The lower limit of the independent porosity in the pores 4 in the insulating layer 3 is 80% by volume, more preferably 85% by volume, and still more preferably 90% by volume. The upper limit of the independent porosity in the pores 4 is, for example, 100% by volume. When the independent porosity in the pores 4 is less than the above lower limit, the insulating properties and mechanical strength of the insulated wires tend to decrease. The independent porosity of the pores 4 included in the inner pore layer 3a and the independent porosity of the pores 4 included in the outer pore layer 3b may be different. In this case, in each of the inner pore layer 3a and the outer pore layer 3b, the independent porosity in the pores 4 is preferably within the above range.
 気孔4中の独立気孔率は、絶縁層3を構成する各層の試料の断面を、走査型電子顕微鏡(SEM)で観察した際、隣接する気孔との間に絶縁性を有する樹脂組成物を介することにより互いに開口していないもの(独立気孔)の全気孔に対する体積%である。独立気孔率(体積%)は、絶縁層の断面のSEM写真において、独立気孔と独立気孔以外の気孔とを区別するように二値化して算出することができる。 The independent porosity in the pores 4 is determined by using a resin composition having insulating properties between adjacent pores when the cross section of the sample of each layer constituting the insulating layer 3 is observed with a scanning electron microscope (SEM). Therefore, it is the volume% with respect to the total pores of those not opening each other (independent pores). The independent porosity (volume%) can be calculated by binarization so as to distinguish the independent pores from the pores other than the independent pores in the SEM photograph of the cross section of the insulating layer.
 気孔4の平均径の下限としては、0.1μmが好ましく、1μmがより好ましい。気孔4の平均径の上限としては、10μmが好ましく、8μmがより好ましい。気孔4の平均径が上記下限未満の場合、絶縁層3中でのコロナ放電の発生を十分に抑制できないおそれがある。気孔4の平均径が上記上限を超える場合、内側気孔層3a及び外側気孔層3bの各層内における気孔4の分布を均一にし難くなり、誘電率の分布に偏りが生じ易くなるおそれがある。なお、内側気孔層3a及び外側気孔層3bごとに含まれる気孔4の平均径が異なっていてもよい。
 ここで、「気孔の平均径」とは、絶縁層3に含まれる例えば30個の気孔4について、気孔の容積に相当する真球の直径を算出し、平均した値を意味する。気孔4の容積は、絶縁層3の断面を走査型電子顕微鏡で観察することにより求めることができる。また、気孔4の平均径は、上記樹脂組成物の主成分となる材料の種類、絶縁層3の厚さ、中空形成粒子5の材料、焼付条件等により変化させることができる。
The lower limit of the average diameter of the pores 4 is preferably 0.1 μm and more preferably 1 μm. The upper limit of the average diameter of the pores 4 is preferably 10 μm, and more preferably 8 μm. When the average diameter of the pores 4 is less than the above lower limit, the generation of corona discharge in the insulating layer 3 may not be sufficiently suppressed. When the average diameter of the pores 4 exceeds the upper limit, it is difficult to make the distribution of the pores 4 in each of the inner pore layer 3a and the outer pore layer 3b uniform, and the distribution of the dielectric constant may be easily biased. The average diameter of the pores 4 included in each of the inner pore layer 3a and the outer pore layer 3b may be different.
Here, the “average diameter of the pores” means a value obtained by calculating and averaging the diameters of true spheres corresponding to the volume of the pores of, for example, 30 pores 4 included in the insulating layer 3. The volume of the pores 4 can be obtained by observing the cross section of the insulating layer 3 with a scanning electron microscope. Further, the average diameter of the pores 4 can be changed depending on the kind of the material as the main component of the resin composition, the thickness of the insulating layer 3, the material of the hollow forming particles 5, the baking conditions, and the like.
 複数の気孔4は、外殻で被覆されている。外殻は図3に示すコアシェル構造の中空形成粒子5のコア6が除去されて中空となったシェル7で構成される。つまり、外殻はコアシェル構造の中空形成粒子5のシェル7に由来する。また、複数の外殻のうち少なくとも一部は、欠損を有している。 The plurality of pores 4 are covered with an outer shell. The outer shell is constituted by a shell 7 which is hollowed by removing the core 6 of the hollow-forming particle 5 having the core-shell structure shown in FIG. That is, the outer shell is derived from the shell 7 of the hollow-forming particle 5 having a core-shell structure. In addition, at least a part of the plurality of outer shells has a defect.
 複数の気孔4は、扁平球体である。また、導体2表面に対して垂直方向には外力が作用し易いが、気孔4の短軸が上記垂直方向に配向していると、上記垂直方向に気孔同士が当接し難くなるため、独立気孔率を向上させることができる。そのため、短軸が導体2表面と垂直方向に配向している気孔4の割合が大きいほど好ましい。全気孔4の数に対する短軸が導体2表面と垂直方向に配向している気孔4の数の割合の下限としては、60%が好ましく、80%がより好ましい。短軸が導体2表面と垂直方向に配向している気孔4の割合が上記下限未満であると、気孔同士で当接する気孔が増加し、独立気孔率が低くなるおそれがある。
 ここで、「気孔の短軸が導体表面に対して垂直方向に配向する」とは、気孔の短軸と導体表面に垂直な方向との角度差が20度以下であることをいう。
The plurality of pores 4 are flat spheres. In addition, external force is likely to act in the direction perpendicular to the surface of the conductor 2, but if the minor axis of the pore 4 is oriented in the vertical direction, the pores are difficult to contact each other in the vertical direction. The rate can be improved. Therefore, the larger the proportion of the pores 4 whose minor axis is oriented in the direction perpendicular to the conductor 2 surface, the better. The lower limit of the ratio of the number of pores 4 whose minor axis is oriented in the direction perpendicular to the surface of the conductor 2 with respect to the total number of pores 4 is preferably 60%, more preferably 80%. If the ratio of the pores 4 whose minor axis is oriented in the direction perpendicular to the surface of the conductor 2 is less than the lower limit, the pores that contact each other between the pores may increase and the independent porosity may be lowered.
Here, “the short axis of the pores is oriented in the direction perpendicular to the conductor surface” means that the angle difference between the short axis of the pores and the direction perpendicular to the conductor surface is 20 degrees or less.
 気孔4の短径及び長径を含む断面における長径に対する短径の長さの比の平均の下限としては、0.2が好ましく、0.3がより好ましい。上記比の平均の上限としては、0.95が好ましく、0.9がより好ましい。上記比の平均が上記下限未満であると、ワニス焼付時の厚さ方向の収縮量を大きくする必要があるため、絶縁電線1の可撓性が低下するおそれがある。上記比の平均が上記上限を超えると、気孔率を高くする場合に、外力が作用し易い絶縁層3の厚さ方向(導体2表面に対して垂直方向)に気孔同士が当接し易くなり、独立気孔率が低くなるおそれがある。気孔4の短径及び長径は、絶縁層3の断面を走査型電子顕微鏡で観察することにより求めることができる。なお、上記比は、ワニスに含まれる樹脂組成物の焼付時の収縮により中空形成粒子5に加わる圧力を変化させることで調節できる。中空形成粒子5に加わる圧力は、例えば上記樹脂組成物の主成分となる材料の種類、絶縁層3の厚さ、中空形成粒子5の材料、焼付条件等により変化させることができる。
 ここで、「気孔の短径及び長径を含む断面における長径に対する短径の長さの比の平均」とは、絶縁層3に含まれる例えば30個の気孔4について、短径及び長径を含む断面における長径に対する短径の長さの比を算出し、平均した値を意味する。
The lower limit of the ratio of the length of the minor axis to the major axis in the cross section including the minor axis and the major axis of the pore 4 is preferably 0.2, and more preferably 0.3. The upper limit of the average of the above ratio is preferably 0.95, and more preferably 0.9. If the average of the above ratios is less than the above lower limit, it is necessary to increase the amount of shrinkage in the thickness direction during baking of the varnish, which may reduce the flexibility of the insulated wire 1. When the average of the above ratios exceeds the upper limit, when the porosity is increased, the pores easily come into contact with each other in the thickness direction (perpendicular to the surface of the conductor 2) of the insulating layer 3 where external force is likely to act. Independent porosity may be lowered. The short diameter and long diameter of the pores 4 can be obtained by observing the cross section of the insulating layer 3 with a scanning electron microscope. In addition, the said ratio can be adjusted by changing the pressure added to the hollow formation particle 5 by the shrinkage | contraction at the time of baking of the resin composition contained in a varnish. The pressure applied to the hollow forming particles 5 can be changed depending on, for example, the type of the material that is the main component of the resin composition, the thickness of the insulating layer 3, the material of the hollow forming particles 5, the baking conditions, and the like.
Here, “the average of the ratio of the length of the minor axis to the major axis in the cross section including the minor axis and the major axis of the pores” means, for example, a section including the minor axis and the major axis of 30 pores 4 included in the insulating layer 3. The ratio of the length of the minor axis to the major axis is calculated and averaged.
 気孔4の長径の平均の下限としては、特に限定されないが、例えば0.1μmが好ましく、1μmがより好ましい。上記長径の平均の上限としては、10μmが好ましく、8μmがより好ましい。上記長径の平均が上記下限未満であると、絶縁層3に所望の気孔率が得られないおそれがある。上記長径の平均が上記上限を超えると、絶縁層3内における気孔4の分布を均一にし難くなり、誘電率の分布に偏りが生じ易くなるおそれがある。
 ここで、「気孔の長径の平均」とは、絶縁層3に含まれる例えば30個の気孔4について、その長径を平均した値を意味する。
The lower limit of the average major axis of the pores 4 is not particularly limited, but is preferably 0.1 μm, for example, and more preferably 1 μm. The upper limit of the average of the major axis is preferably 10 μm, and more preferably 8 μm. If the average of the major axis is less than the lower limit, the insulating layer 3 may not have a desired porosity. If the average of the major axis exceeds the upper limit, it is difficult to make the distribution of the pores 4 in the insulating layer 3 uniform, and there is a risk that the distribution of the dielectric constant tends to be biased.
Here, the “average of the major diameters of the pores” means a value obtained by averaging the major diameters of, for example, 30 pores 4 included in the insulating layer 3.
 複数の気孔4の周縁部に存在する複数の外殻は、少なくとも一部が欠損を有する。気孔4及び外殻は、図3に示すような熱分解性樹脂を主成分とするコア6と、熱分解性樹脂より熱分解温度が高いシェル7とを有する中空形成粒子5に由来する。つまり、中空形成粒子5を含むワニスの焼付時にコア6の主成分である熱分解性樹脂が熱分解によりガス化し、シェル7を通過して飛散することにより気孔4及び外殻が形成される。このとき、シェル7における熱分解性樹脂の通過路が欠損として外殻に存在する。この欠損の形状は、シェル7の材質や形状によって変化するが、気孔の外殻による連通防止効果を高める観点から、亀裂、割れ目及び孔が好ましい。 The plurality of outer shells present at the peripheral edges of the plurality of pores 4 have at least some defects. The pores 4 and the outer shell are derived from hollow forming particles 5 having a core 6 mainly composed of a thermally decomposable resin as shown in FIG. 3 and a shell 7 having a higher thermal decomposition temperature than that of the thermally decomposable resin. That is, when the varnish containing the hollow forming particles 5 is baked, the thermally decomposable resin that is the main component of the core 6 is gasified by thermal decomposition and scattered through the shell 7 to form the pores 4 and the outer shell. At this time, the passage of the thermally decomposable resin in the shell 7 exists in the outer shell as a defect. The shape of the defect varies depending on the material and shape of the shell 7, but cracks, cracks and holes are preferred from the viewpoint of enhancing the communication preventing effect of the outer shell of the pores.
 なお、絶縁層3は、欠損のない外殻を含んでいてもよい。コア6の熱分解性樹脂のシェル7外部への流出条件によってはシェル7(外殻)に欠損が形成されない場合もある。また、絶縁層3は、外殻に被覆されない気孔4を含んでいてもよい。 Note that the insulating layer 3 may include an outer shell having no defect. Depending on the outflow conditions of the thermally decomposable resin of the core 6 to the outside of the shell 7, there is a case where no defect is formed in the shell 7 (outer shell). The insulating layer 3 may include pores 4 that are not covered by the outer shell.
[絶縁電線の製造方法]
 次に、絶縁電線1の製造方法について説明する。絶縁電線1の製造方法は、絶縁層3を形成する樹脂組成物、及び熱分解性樹脂を主成分とするコア6と、熱分解温度が熱分解樹脂の熱分解温度より高いシェル7と含む中空形成粒子5を希釈し、中空形成粒子5の含有量の異なるワニスを調製する工程(ワニス調製工程)と、導体2の外周面へのワニスの塗布及び焼付けにより気孔4を含む内側気孔層3aを形成する工程(内側気孔層形成工程)と、内側気孔層3aを形成したワニスよりも中空形成粒子5の含有量の大きいワニスの内側気孔層3aを形成した導体2の外周面への塗布及び焼付けにより気孔4を含む外側気孔層3bを形成する工程(外側気孔層形成工程)とを備える。
[Insulated wire manufacturing method]
Next, the manufacturing method of the insulated wire 1 is demonstrated. The method of manufacturing the insulated wire 1 includes a hollow including a resin composition that forms the insulating layer 3, a core 6 mainly composed of a thermally decomposable resin, and a shell 7 having a thermal decomposition temperature higher than the thermal decomposition temperature of the pyrolytic resin. A step of diluting the forming particles 5 to prepare varnishes having different contents of the hollow forming particles 5 (varnish preparation step) and an inner pore layer 3a including the pores 4 by applying and baking the varnish on the outer peripheral surface of the conductor 2 Step of forming (inner pore layer forming step), and coating and baking on the outer peripheral surface of the conductor 2 in which the inner pore layer 3a of the varnish having a larger content of the hollow forming particles 5 than the varnish in which the inner pore layer 3a is formed is formed And a step of forming the outer pore layer 3b including the pores 4 (outer pore layer forming step).
<ワニス調製工程>
 ワニス調製工程において、絶縁層3を形成する樹脂組成物及び中空形成粒子5を溶剤で希釈してワニスを調製する。内側気孔層3a及び外側気孔層3bをそれぞれ形成するワニスとして、中空形成粒子5の含有量が異なる複数種類のワニスを調製する。図1に示すように、内側気孔層3a及び外側気孔層3bの気孔率は互いに異なるので、ここでは中空形成粒子5の含有量が異なる内側用及び外側用の2種類のワニスを調製する。なお、内側用及び外側用のワニスは、溶剤で希釈する絶縁層3を形成する樹脂組成物として同種のものを用いてもよいし、異なるものを用いてもよい。
<Varnish preparation process>
In the varnish preparation step, the resin composition forming the insulating layer 3 and the hollow forming particles 5 are diluted with a solvent to prepare a varnish. As the varnishes for forming the inner pore layer 3a and the outer pore layer 3b, a plurality of types of varnishes having different contents of the hollow-forming particles 5 are prepared. As shown in FIG. 1, since the porosity of the inner pore layer 3a and the outer pore layer 3b is different from each other, two kinds of varnishes for the inner side and the outer side having different contents of the hollow forming particles 5 are prepared here. The inner and outer varnishes may be the same or different as the resin composition for forming the insulating layer 3 diluted with a solvent.
(樹脂組成物)
 樹脂組成物は、主ポリマーと、希釈用溶剤、硬化剤等とを含む組成物である。主ポリマーとしては、特に限定されないが、熱硬化性樹脂を使用する場合、例えばポリビニルホルマール前駆体、熱硬化ポリウレタン前駆体、熱硬化アクリル樹脂前駆体、エポキシ樹脂前駆体、フェノキシ樹脂前駆体、熱硬化ポリエステル前駆体、熱硬化ポリエステルイミド前駆体、熱硬化ポリエステルアミドイミド前駆体、熱硬化ポリアミドイミド前駆体、ポリイミド前駆体等が使用できる。また、主ポリマーとして熱可塑性樹脂を使用する場合、例えばポリエーテルイミド、ポリエーテルエーテルケトン、ポリエーテルサルフォン、ポリアミドイミド、ポリイミド等が使用できる。これらの中でも、ワニスを塗布し易くできると共に絶縁層3の強度及び耐熱性を向上させ易い点において、ポリイミド前駆体及びポリイミドが好ましい。
(Resin composition)
The resin composition is a composition containing a main polymer, a diluent solvent, a curing agent, and the like. The main polymer is not particularly limited, but when a thermosetting resin is used, for example, a polyvinyl formal precursor, a thermosetting polyurethane precursor, a thermosetting acrylic resin precursor, an epoxy resin precursor, a phenoxy resin precursor, a thermosetting A polyester precursor, a thermosetting polyesterimide precursor, a thermosetting polyesteramideimide precursor, a thermosetting polyamideimide precursor, a polyimide precursor, or the like can be used. Further, when a thermoplastic resin is used as the main polymer, for example, polyetherimide, polyetheretherketone, polyethersulfone, polyamideimide, polyimide and the like can be used. Among these, a polyimide precursor and a polyimide are preferable in that the varnish can be easily applied and the strength and heat resistance of the insulating layer 3 can be easily improved.
 希釈用溶剤としては、絶縁ワニスに従来より用いられている公知の有機溶剤を用いることができる。具体的には、例えばN-メチル-2-ピロリドン、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド、ジメチルスルホキシド、テトラメチル尿素、ヘキサエチルリン酸トリアミド、γ-ブチロラクトンなどの極性有機溶媒をはじめ、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノンなどのケトン類;酢酸メチル、酢酸エチル、酢酸ブチル、シュウ酸ジエチルなどのエステル類;ジエチルエーテル、エチレングリコールジメチルエーテル、ジエチレングリコールモノメチルエーテル、エチレングリコールモノブチルエーテル(ブチルセロソルブ)、ジエチレングリコールジメチルエーテル、テトラヒドロフランなどのエーテル類;ヘキサン、ヘプタン、ベンゼン、トルエン、キシレンなどの炭化水素類;ジクロロメタン、クロロベンゼンなどのハロゲン化炭化水素類;クレゾール、クロルフェノールなどのフェノール類;ピリジンなどの第三級アミン類等が挙げられ、これらの有機溶媒はそれぞれ単独であるいは2種以上を混合して用いられる。 As the diluting solvent, a known organic solvent conventionally used for insulating varnish can be used. Specifically, polar organic solvents such as N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide, dimethyl sulfoxide, tetramethylurea, hexaethylphosphoric triamide, γ-butyrolactone and the like are used. First, ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone; esters such as methyl acetate, ethyl acetate, butyl acetate, diethyl oxalate; diethyl ether, ethylene glycol dimethyl ether, diethylene glycol monomethyl ether, ethylene glycol monobutyl ether (butyl cellosolve) ), Ethers such as diethylene glycol dimethyl ether and tetrahydrofuran; hydrocarbons such as hexane, heptane, benzene, toluene and xylene Halogenated hydrocarbons such as dichloromethane and chlorobenzene; phenols such as cresol and chlorophenol; tertiary amines such as pyridine and the like. These organic solvents may be used alone or in combination of two or more. Used.
 また、樹脂組成物に、硬化剤を含有させてもよい。硬化剤としては、チタン系硬化剤、イソシアネート系化合物、ブロックイソシアネート、尿素やメラミン化合物、アミノ樹脂、アセチレン誘導体、メチルテトラヒドロ無水フタル酸などの脂環式酸無水物、脂肪族酸無水物、芳香族酸無水物等が例示される。これらの硬化剤は、使用する樹脂組成物が含有する主ポリマーの種類に応じて、適宜選択される。例えば、ポリアミドイミド系の場合、硬化剤として、イミダゾール、トリエチルアミン等が好ましく用いられる。 Further, the resin composition may contain a curing agent. Curing agents include titanium-based curing agents, isocyanate compounds, blocked isocyanates, urea and melamine compounds, amino resins, acetylene derivatives, alicyclic acid anhydrides such as methyltetrahydrophthalic anhydride, aliphatic acid anhydrides, and aromatics. An acid anhydride etc. are illustrated. These curing agents are appropriately selected according to the type of main polymer contained in the resin composition to be used. For example, in the case of polyamideimide, imidazole, triethylamine and the like are preferably used as the curing agent.
 なお、チタン系硬化剤としては、テトラプロピルチタネート、テトライソプロピルチタネート、テトラメチルチタネート、テトラブチルチタネート、テトラヘキシルチタネート等が例示される。イソシアネート系化合物としては、トリレンジイソシアネート(TDI)、ジフェニルメタンジイソシアネート(MDI)、p-フェニレンジイソシアネート、ナフタレンジイソシアネートなどの芳香族ジイソシアネート;ヘキサメチレンジイソシアネート(HDI)、2,2,4-トリメチルヘキサンジイソシアネート、リジンジイソシアネートなどの炭素数3~12の脂肪族ジイソシアネート;1,4-シクロヘキサンジイソシアネート(CDI)、イソホロンジイソシアネート(IPDI)、4,4’-ジシクロヘキシルメタンジイソシアネート(水添MDI)、メチルシクロヘキサンジイソシアネート、イソプロピリデンジシクロヘキシル-4,4’-ジイソシアネート、1,3-ジイソシアナトメチルシクロヘキサン(水添XDI)、水添TDI、2,5-ビス(イソシアナトメチル)-ビシクロ[2.2.1]ヘプタン、2,6-ビス(イソシアナトメチル)-ビシクロ[2.2.1]ヘプタンなどの炭素数5~18の脂環式イソシアネート;キシリレンジイソシアネート(XDI)、テトラメチルキシリレンジイソシアネート(TMXDI)などの芳香環を有する脂肪族ジイソシアネート;これらの変性物等が例示される。ブロックイソシアネートとしては、ジフェニルメタン-4,4’-ジイソシアネート(MDI)、ジフェニルメタン-3,3’-ジイソシアネート、ジフェニルメタン-3,4’-ジイソシアネート、ジフェニルエーテル-4,4’-ジイソシアネート、ベンゾフェノン-4,4’-ジイソシアネート、ジフェニルスルホン-4,4’-ジイソシアネート、トリレン-2,4-ジイソシアネート、トリレン-2,6-ジイソシアネート、ナフチレン-1,5-ジイソシアネート、m-キシリレンジイソシアネート、p-キシリレンジイソシアネート等のイソシアネート基に、ジメチルピラゾール等のブロック剤が付加した化合物などが例示される。メラミン化合物としては、メチル化メラミン、ブチル化メラミン、メチロール化メラミン、ブチロール化メラミン等が例示される。アセチレン誘導体としては、エチニルアニリン、エチニルフタル酸無水物等が例示される。 In addition, examples of the titanium-based curing agent include tetrapropyl titanate, tetraisopropyl titanate, tetramethyl titanate, tetrabutyl titanate, and tetrahexyl titanate. Isocyanate compounds include aromatic diisocyanates such as tolylene diisocyanate (TDI), diphenylmethane diisocyanate (MDI), p-phenylene diisocyanate, naphthalene diisocyanate; hexamethylene diisocyanate (HDI), 2,2,4-trimethylhexane diisocyanate, lysine C3-C12 aliphatic diisocyanates such as diisocyanates; 1,4-cyclohexane diisocyanate (CDI), isophorone diisocyanate (IPDI), 4,4′-dicyclohexylmethane diisocyanate (hydrogenated MDI), methylcyclohexane diisocyanate, isopropylidene dicyclohexyl -4,4'-diisocyanate, 1,3-diisocyanatomethylcyclohexane (hydrogenated XDI , Hydrogenated TDI, 2,5-bis (isocyanatomethyl) -bicyclo [2.2.1] heptane, 2,6-bis (isocyanatomethyl) -bicyclo [2.2.1] heptane, etc. Examples thereof include 5-18 alicyclic isocyanates; aliphatic diisocyanates having an aromatic ring such as xylylene diisocyanate (XDI) and tetramethylxylylene diisocyanate (TMXDI); modified products thereof. Examples of the blocked isocyanate include diphenylmethane-4,4′-diisocyanate (MDI), diphenylmethane-3,3′-diisocyanate, diphenylmethane-3,4′-diisocyanate, diphenylether-4,4′-diisocyanate, and benzophenone-4,4 ′. -Diisocyanate, diphenylsulfone-4,4'-diisocyanate, tolylene-2,4-diisocyanate, tolylene-2,6-diisocyanate, naphthylene-1,5-diisocyanate, m-xylylene diisocyanate, p-xylylene diisocyanate, etc. Examples thereof include compounds in which a blocking agent such as dimethylpyrazole is added to an isocyanate group. Examples of the melamine compound include methylated melamine, butylated melamine, methylolated melamine, and butyrololized melamine. Examples of acetylene derivatives include ethynylaniline, ethynylphthalic anhydride, and the like.
(中空形成粒子)
 中空形成粒子5は、図3に示すように、熱分解性樹脂を主成分とするコア6と、熱分解性樹脂より熱分解温度が高いシェル7とを有する。
(Hollow-forming particles)
As shown in FIG. 3, the hollow-forming particles 5 include a core 6 mainly composed of a thermally decomposable resin and a shell 7 having a higher thermal decomposition temperature than that of the thermally decomposable resin.
(コア)
 コア6の主成分に用いる熱分解性樹脂としては、例えば主ポリマーの焼付温度よりも低い温度で熱分解する樹脂粒子が用いられる。主ポリマーの焼付温度は、樹脂の種類に応じて適宜設定されるが、通常200℃以上600℃以下程度である。従って、中空形成粒子5のコア6に用いる熱分解性樹脂の熱分解温度の下限としては200℃が好ましく、上限としては400℃が好ましい。ここで、熱分解温度とは、空気雰囲気下で室温から10℃/分で昇温し、質量減少率が50%となるときの温度を意味する。熱分解温度は、例えば熱重量測定-示差熱分析装置(エスアイアイ・ナノテクノロジー株式会社の「TG/DTA」)を用いて熱重量を測定することにより測定できる。
(core)
As the thermally decomposable resin used as the main component of the core 6, for example, resin particles that thermally decompose at a temperature lower than the baking temperature of the main polymer are used. The baking temperature of the main polymer is appropriately set according to the type of resin, but is usually about 200 ° C. or higher and 600 ° C. or lower. Accordingly, the lower limit of the thermal decomposition temperature of the thermally decomposable resin used for the core 6 of the hollow forming particles 5 is preferably 200 ° C., and the upper limit is preferably 400 ° C. Here, the thermal decomposition temperature means a temperature at which the temperature is increased from room temperature to 10 ° C./min in an air atmosphere and the mass reduction rate becomes 50%. The thermal decomposition temperature can be measured, for example, by measuring the thermogravimetry using a thermogravimetry-differential thermal analyzer (“TG / DTA” manufactured by SII Nanotechnology Inc.).
 中空形成粒子5のコア6に用いる熱分解性樹脂としては、特に限定されないが、例えばポリエチレングリコール、ポリプロピレングリコールなどの片方、両方の末端又は一部をアルキル化、(メタ)アクリレート化又はエポキシ化した化合物;ポリ(メタ)アクリル酸メチル、ポリ(メタ)アクリル酸エチル、ポリ(メタ)アクリル酸プロピル、ポリ(メタ)アクリル酸ブチルなどの炭素数1以上6以下のアルキル基を有する(メタ)アクリル酸エステルの重合体;ウレタンオリゴマー、ウレタンポリマー、ウレタン(メタ)アクリレート、エポキシ(メタ)アクリレート、ε-カプロラクトン(メタ)アクリレートなどの変性(メタ)アクリレートの重合物;ポリ(メタ)アクリル酸;これらの架橋物;ポリスチレン、架橋ポリスチレン等が挙げられる。これらの中でも、主ポリマーの焼付温度で熱分解し易く絶縁層3に気孔4を形成させ易い点において、炭素数1以上6以下のアルキル基を有する(メタ)アクリル酸エステルの重合体が好ましい。このような(メタ)アクリル酸エステルの重合体として、例えばポリメチルメタクリレート(PMMA)が挙げられる。 The heat-decomposable resin used for the core 6 of the hollow-forming particles 5 is not particularly limited. For example, one or both of polyethylene glycol and polypropylene glycol, or both ends or parts thereof are alkylated, (meth) acrylated or epoxidized. Compound; (meth) acrylic having an alkyl group having 1 to 6 carbon atoms such as poly (meth) acrylate methyl, poly (meth) ethyl acrylate, poly (meth) acrylate propyl, poly (meth) acrylate butyl, etc. Polymers of acid esters; urethane oligomers, urethane polymers, urethane (meth) acrylates, epoxy (meth) acrylates, polymers of modified (meth) acrylates such as ε-caprolactone (meth) acrylate; poly (meth) acrylic acid; these Cross-linked product: polystyrene, cross-linked polystyrene And the like. Among these, a polymer of (meth) acrylic acid ester having an alkyl group having 1 to 6 carbon atoms is preferable in that it is easily thermally decomposed at the baking temperature of the main polymer and easily forms pores 4 in the insulating layer 3. An example of such a polymer of (meth) acrylic acid ester is polymethyl methacrylate (PMMA).
 コア6の形状は、球状が好ましい。コア6の形状を球状とするために、例えば球状の熱分解性樹脂粒子をコア6として用いるとよい。球状の熱分解性樹脂粒子を用いる場合、樹脂粒子の平均粒子径の下限としては、特に制限はないが、例えば0.1μmが好ましく、0.5μmがより好ましく、1μmがさらに好ましい。樹脂粒子の平均粒子径の上限としては、15μmが好ましく、10μmがより好ましい。樹脂粒子の平均粒子径が上記下限未満であると、樹脂粒子をコア6とする中空形成粒子5が作製し難くなるおそれがある。樹脂粒子の平均粒子径が上記上限を超えると、樹脂粒子をコア6とする中空形成粒子5が大きくなり過ぎるため、絶縁層3内における気孔4の分布が均一になり難くなり、誘電率の分布に偏りが生じ易くなるおそれがある。ここで、樹脂粒子の平均粒子径とは、レーザー回折式粒度分布測定装置で測定した粒度分布において、最も高い体積の含有割合を示す粒径を意味する。 The shape of the core 6 is preferably spherical. In order to make the shape of the core 6 spherical, for example, spherical heat-decomposable resin particles may be used as the core 6. When spherical heat-decomposable resin particles are used, the lower limit of the average particle diameter of the resin particles is not particularly limited, but is preferably 0.1 μm, more preferably 0.5 μm, and even more preferably 1 μm. The upper limit of the average particle diameter of the resin particles is preferably 15 μm, and more preferably 10 μm. If the average particle diameter of the resin particles is less than the above lower limit, it may be difficult to produce the hollow forming particles 5 having the resin particles as the core 6. When the average particle diameter of the resin particles exceeds the above upper limit, the hollow-forming particles 5 having the resin particles as the core 6 become too large, so that the distribution of the pores 4 in the insulating layer 3 is difficult to be uniform, and the dielectric constant distribution. There is a risk that bias is likely to occur. Here, the average particle diameter of the resin particles means a particle diameter showing the highest volume content in the particle size distribution measured with a laser diffraction particle size distribution measuring device.
 シェル7の主成分として、熱分解性樹脂より熱分解温度が高い材料が用いられる。また、シェル7の主成分として、誘電率が低く、耐熱性が高いものが好ましい。シェル7の主成分として用いられるこのような材料としては、例えばポリスチレン、シリコーン、フッ素樹脂、ポリイミド等の樹脂が挙げられる。これらの中でも、シェル7に弾性を付与すると共に絶縁性及び耐熱性を向上させ易い点において、シリコーンが好ましい。ここで、「フッ素樹脂」とは、高分子鎖の繰り返し単位を構成する炭素原子に結合する水素原子の少なくとも1つが、フッ素原子又はフッ素原子を有する有機基(以下「フッ素原子含有基」ともいう)で置換されたものをいう。フッ素原子含有基は、直鎖状又は分岐状の有機基中の水素原子の少なくとも1つがフッ素原子で置換されたものであり、例えばフルオロアルキル基、フルオロアルコキシ基、フルオロポリエーテル基等を挙げることができる。なお、絶縁性を損なわない範囲でシェル7に金属が含まれてもよい。 As the main component of the shell 7, a material having a higher thermal decomposition temperature than the thermally decomposable resin is used. Further, as the main component of the shell 7, one having a low dielectric constant and high heat resistance is preferable. Examples of such a material used as the main component of the shell 7 include resins such as polystyrene, silicone, fluororesin, and polyimide. Among these, silicone is preferable in that elasticity is imparted to the shell 7 and insulation and heat resistance are easily improved. Here, the “fluororesin” is a fluorine atom or an organic group in which at least one hydrogen atom bonded to a carbon atom constituting the repeating unit of the polymer chain has a fluorine atom (hereinafter also referred to as “fluorine atom-containing group”). ). The fluorine atom-containing group is a group in which at least one hydrogen atom in a linear or branched organic group is substituted with a fluorine atom, and examples thereof include a fluoroalkyl group, a fluoroalkoxy group, and a fluoropolyether group. Can do. Note that the shell 7 may contain a metal as long as the insulating property is not impaired.
 なお、シェル7の主成分の樹脂は、ワニスに含有させる樹脂組成物の主ポリマーと同種のものを用いてもよく、異なるものを用いてもよい。例えばシェル7の主成分の樹脂として、樹脂組成物の主ポリマーと同種のものを用いた場合でも、熱分解性樹脂より熱分解温度が高いので、熱分解性樹脂がガス化してもシェル7の主成分の樹脂は熱分解し難いため、気孔4中の独立気孔率を高くすることができる。このようなワニスで形成された絶縁電線は、電子顕微鏡で観察しても気孔4の外殻の存在を確認できない場合がある。シェル7の主成分の樹脂として樹脂組成物の主ポリマーと異なるものを用いることにより、シェル7を上記樹脂組成物と一体化され難くできるので、樹脂組成物の主ポリマーと同種の樹脂を用いる場合に比べて、気孔4中の独立気孔率は高くなる。 The main resin of the shell 7 may be the same as or different from the main polymer of the resin composition contained in the varnish. For example, even when the same resin as the main polymer of the resin composition is used as the main resin of the shell 7, the thermal decomposition temperature is higher than that of the thermally decomposable resin. Since the main component resin is difficult to thermally decompose, the independent porosity in the pores 4 can be increased. The insulated wire formed of such a varnish may not be able to confirm the presence of the outer shell of the pores 4 even when observed with an electron microscope. By using a resin different from the main polymer of the resin composition as the main component resin of the shell 7, the shell 7 can be made difficult to be integrated with the resin composition, and therefore the same type of resin as the main polymer of the resin composition is used. In comparison with, the independent porosity in the pores 4 is increased.
 シェル7の平均厚さの下限としては、特に制限はないが、例えば0.01μmが好ましく、0.02μmがより好ましい。シェル7の平均厚さの上限としては、0.5μmが好ましく、0.4μmがより好ましい。シェル7の平均厚さが上記下限未満であると、気孔4中の独立気孔率が低くなるおそれがある。シェル7の平均厚さが上記上限を超えると、気孔4の体積が小さくなり過ぎるため、絶縁層3の気孔率を所定以上に高められないおそれがある。なお、シェル7は、1層で形成されてもよいし、複数の層で形成されてもよい。シェル7が複数の層で形成される場合、複数の層の合計厚さの平均が、上記厚さの範囲内であればよい。
 ここで、「シェルの平均厚さ」とは、例えば30個の中空形成粒子5について、シェル7の厚さを平均した値を意味する。
Although there is no restriction | limiting in particular as a minimum of the average thickness of the shell 7, For example, 0.01 micrometer is preferable and 0.02 micrometer is more preferable. The upper limit of the average thickness of the shell 7 is preferably 0.5 μm, and more preferably 0.4 μm. If the average thickness of the shell 7 is less than the above lower limit, the independent porosity in the pores 4 may be lowered. If the average thickness of the shell 7 exceeds the above upper limit, the volume of the pores 4 becomes too small, and the porosity of the insulating layer 3 may not be increased beyond a predetermined level. The shell 7 may be formed of one layer or a plurality of layers. When the shell 7 is formed of a plurality of layers, the average of the total thickness of the plurality of layers may be within the range of the thickness.
Here, the “average thickness of the shell” means, for example, a value obtained by averaging the thickness of the shell 7 for 30 hollow forming particles 5.
 中空形成粒子5のCV値の上限としては、30%が好ましく、20%がより好ましい。中空形成粒子5のCV値が上記上限を超えると、絶縁層3にサイズが異なる複数の気孔4が含まれるようになるため、誘電率の分布に偏りが生じ易くなるおそれがある。なお、中空形成粒子5のCV値の下限としては、特に制限はないが、例えば1%が好ましい。中空形成粒子5のCV値が上記下限未満であると、中空形成粒子5のコストが高くなり過ぎるおそれがある。ここで、「CV値」とは、JIS-Z8825(2013)に規定される変動変数を意味する。 The upper limit of the CV value of the hollow forming particles 5 is preferably 30% and more preferably 20%. If the CV value of the hollow forming particles 5 exceeds the above upper limit, the insulating layer 3 includes a plurality of pores 4 having different sizes, so that the distribution of the dielectric constant is likely to be biased. In addition, although there is no restriction | limiting in particular as a minimum of the CV value of the hollow formation particle 5, For example, 1% is preferable. If the CV value of the hollow forming particles 5 is less than the lower limit, the cost of the hollow forming particles 5 may be too high. Here, the “CV value” means a variable defined in JIS-Z8825 (2013).
 なお、中空形成粒子5は、図3に示すように、コア6を1個の熱分解性樹脂粒子で形成する構成としてもよいし、コア6を複数の熱分解性樹脂粒子で形成し、シェル7の樹脂がこれらの複数の熱分解性樹脂粒子を被覆する構成としてもよい。 In addition, as shown in FIG. 3, the hollow forming particles 5 may have a configuration in which the core 6 is formed by one thermally decomposable resin particle, or the core 6 is formed by a plurality of thermally decomposable resin particles, It is good also as a structure which 7 resin coat | covers these some thermally decomposable resin particles.
 また、中空形成粒子5の表面は、図3に示すように凹凸がなく滑らかであってもよいし、凹凸が形成されてもよい。 Further, the surface of the hollow forming particle 5 may be smooth without irregularities as shown in FIG. 3, or irregularities may be formed.
 また、有機溶剤により希釈し、中空形成粒子5を分散させることにより調製したワニスの樹脂固形分濃度の下限としては、15質量%が好ましく、20質量%がより好ましい。ワニスの樹脂固形分濃度の上限としては、50質量%が好ましく、30質量%がより好ましい。ワニスの樹脂固形分濃度が上記下限未満であると、1回のワニスの塗布で形成できる厚さが小さくなるため、所望の厚さの絶縁層3を形成するためのワニス塗布工程の繰り返し回数が多くなり、ワニス塗布工程の時間が長くなるおそれがある。ワニスの樹脂固形分濃度が上記上限を超えると、ワニスが増粘することにより、ワニスの保存安定性が悪化するおそれがある。 Further, the lower limit of the resin solid content concentration of the varnish prepared by diluting with an organic solvent and dispersing the hollow-forming particles 5 is preferably 15% by mass, more preferably 20% by mass. As an upper limit of the resin solid content concentration of a varnish, 50 mass% is preferable and 30 mass% is more preferable. When the resin solid content concentration of the varnish is less than the above lower limit, the thickness that can be formed by a single varnish application is reduced, and therefore the number of repetitions of the varnish application step for forming the insulating layer 3 having a desired thickness is reduced. There is a risk that the time for the varnish application process will be increased. When the resin solid content concentration of the varnish exceeds the upper limit, the storage stability of the varnish may be deteriorated due to thickening of the varnish.
 また、ワニスに、中空形成粒子5に加えて、気孔形成のために熱分解性粒子等の気孔形成剤を混合してもよい。また、気孔形成のために、沸点の異なる希釈溶剤を組合せてワニスを調製してもよい。気孔形成剤により形成された気孔や沸点の異なる希釈溶剤の組合せにより形成された気孔は、中空形成粒子5に由来する気孔とは連通し難い。従って、このように外殻に被覆されない気孔を含む場合でも、外殻に被覆される気孔の存在により、気孔4中の独立気孔率を高めることができる。 In addition to the hollow forming particles 5, a pore forming agent such as a thermally decomposable particle may be mixed with the varnish for forming pores. In addition, varnish may be prepared by combining diluting solvents having different boiling points for pore formation. The pores formed by the pore-forming agent and the pores formed by the combination of diluting solvents having different boiling points are difficult to communicate with the pores derived from the hollow-forming particles 5. Therefore, even when pores that are not covered with the outer shell are included, the presence of the pores covered with the outer shell can increase the independent porosity in the pores 4.
<内側気孔層形成工程>
 内側気孔層形成工程において、ワニス調製工程で調製した内側用ワニスを導体2の外周面に塗布した後、焼付けることで導体2表面に内側気孔層3aを形成する。焼付けの際、内面側用ワニスに含まれる熱分解性樹脂が熱分解し、内側気孔層3a内の熱分解性樹脂が存在していた部分に気孔4が生成される。
<Inner pore layer forming step>
In the inner pore layer forming step, the inner varnish prepared in the varnish preparation step is applied to the outer peripheral surface of the conductor 2 and then baked to form the inner pore layer 3a on the surface of the conductor 2. During baking, the thermally decomposable resin contained in the inner surface side varnish is thermally decomposed, and pores 4 are generated in the portion where the thermally decomposable resin exists in the inner pore layer 3a.
 内側用ワニスの一度の塗布及び焼付けにより所望の厚さの内側気孔層3aが形成できない場合、導体2表面に形成される内側気孔層3aが所定の厚さとなるまで、内側用ワニスの塗布及び焼付けを繰り返し行う。 When the inner pore layer 3a having a desired thickness cannot be formed by a single application and baking of the inner varnish, the inner varnish is applied and baked until the inner pore layer 3a formed on the surface of the conductor 2 has a predetermined thickness. Repeat.
<外側気孔層形成工程>
 外側気孔層形成工程において、内側気孔層3aを形成した導体2のさらに外周面へ、ワニス調製工程で調製した内側用ワニスよりも熱分解性樹脂の含有量の大きい外側用ワニスを塗布した後、焼付けることで、導体2に形成された内側気孔層3aの外側に外側気孔層3bを形成する。焼付けの際、外側用ワニスに含まれる熱分解性樹脂が熱分解し、外側気孔層3b内の熱分解性樹脂が存在していた部分に気孔4が生成される。
<Outside pore layer forming step>
In the outer pore layer forming step, after applying the outer varnish having a larger content of the thermally decomposable resin than the inner varnish prepared in the varnish preparation step to the outer peripheral surface of the conductor 2 in which the inner pore layer 3a is formed, By baking, the outer pore layer 3b is formed outside the inner pore layer 3a formed in the conductor 2. At the time of baking, the thermally decomposable resin contained in the outer varnish is thermally decomposed, and pores 4 are generated in portions where the thermally decomposable resin exists in the outer pore layer 3b.
 外側用ワニスの一度の塗布及び焼付けにより所望の厚さの外側気孔層3bが形成できない場合、外側気孔層3bが所定の厚さとなるまで、外側用ワニスの塗布及び焼付けを繰り返し行う。 When the outer pore layer 3b having a desired thickness cannot be formed by one application and baking of the outer varnish, the outer varnish is repeatedly applied and baked until the outer pore layer 3b has a predetermined thickness.
[利点]
 絶縁電線1は、絶縁層が気孔を含み、絶縁層3において、気孔中の独立気孔率が上記値以上であるため、気孔の大きさのばらつきが小さい等により、絶縁破壊電圧を高くすることができ、絶縁性に優れる。また、絶縁電線1は、内側気孔層と外側気孔層とを備え、それぞれの気孔率を上記範囲内とすることにより、機械的強度の抑制作用を低減でき、絶縁層全体としての機械的強度に優れる。
[advantage]
In the insulated wire 1, the insulating layer includes pores, and the independent porosity in the pores in the insulating layer 3 is equal to or higher than the above value. Therefore, the dielectric breakdown voltage may be increased due to small variation in pore size. And has excellent insulation. Moreover, the insulated wire 1 is provided with an inner pore layer and an outer pore layer, and by making each porosity within the above range, the mechanical strength suppressing action can be reduced, and the mechanical strength of the entire insulation layer can be reduced. Excellent.
[第二実施形態]
 図2の絶縁電線1は、線状の導体2と、導体2の外周面に被覆される絶縁層3とを備える。絶縁層3は、内側気孔層3aと、内側気孔層3aの外側に配設される外側気孔層3bと、外側気孔層3bの外側に配設される他の気孔層3cから構成される。内側気孔層3a、外側気孔層3b及び他の気孔層3cは、それぞれ複数の気孔4を有している。絶縁層3における気孔4中の独立気孔率は80体積%以上であり、85体積%以上がより好ましく、90体積%以上がさらに好ましい。気孔4中の独立気孔率の上限としては、例えば100体積%である。
 他の気孔層3cに含まれる気孔4中の独立気孔率は、内側気孔層3aに含まれる気孔4の独立気孔率又は外側気孔層3bに含まれる気孔4の独立気孔率と異なっていてもよい。この場合、他の気孔層3cにおいても、気孔4中の独立気孔率が上記範囲内であることが好ましい。
[Second Embodiment]
An insulated wire 1 in FIG. 2 includes a linear conductor 2 and an insulating layer 3 that covers the outer peripheral surface of the conductor 2. The insulating layer 3 includes an inner pore layer 3a, an outer pore layer 3b disposed outside the inner pore layer 3a, and another pore layer 3c disposed outside the outer pore layer 3b. Each of the inner pore layer 3a, the outer pore layer 3b, and the other pore layer 3c has a plurality of pores 4. The independent porosity in the pores 4 in the insulating layer 3 is 80% by volume or more, more preferably 85% by volume or more, and still more preferably 90% by volume or more. The upper limit of the independent porosity in the pores 4 is, for example, 100% by volume.
The independent porosity in the pores 4 included in the other pore layer 3c may be different from the independent porosity of the pores 4 included in the inner pore layer 3a or the independent porosity of the pores 4 included in the outer pore layer 3b. . In this case, also in the other pore layers 3c, it is preferable that the independent porosity in the pores 4 is within the above range.
 図2の絶縁電線1は、図1の絶縁電線1とは絶縁層3の構成が異なる。図2の絶縁電線1の導体2、内側気孔層3a及び外側気孔層3bは、図1の絶縁電線1の導体2、内側気孔層3a及び外側気孔層3bと同様のものを用いることができるので説明を省略する。 2 is different from the insulated wire 1 in FIG. 1 in the configuration of the insulating layer 3. Since the conductor 2, the inner pore layer 3a, and the outer pore layer 3b of the insulated wire 1 of FIG. 2 can be the same as the conductor 2, the inner pore layer 3a, and the outer pore layer 3b of the insulated wire 1 of FIG. Description is omitted.
 他の気孔層3cの気孔率の下限としては、1体積%が好ましく、3体積%がより好ましい。他の気孔層3cの気孔率の上限としては、10体積%が好ましく、8体積%がより好ましい。他の気孔層3cの気孔率が上記下限未満の場合、絶縁層3の誘電率が十分に低下せず、コロナ放電開始電圧を十分に向上できないおそれがある。他の気孔層3cの気孔率が上記上限を超える場合、絶縁層3の十分な機械的強度を確保できないおそれがある。 The lower limit of the porosity of the other pore layer 3c is preferably 1% by volume, and more preferably 3% by volume. The upper limit of the porosity of the other pore layer 3c is preferably 10% by volume, more preferably 8% by volume. When the porosity of the other pore layer 3c is less than the lower limit, the dielectric constant of the insulating layer 3 is not sufficiently lowered, and the corona discharge starting voltage may not be sufficiently improved. When the porosity of the other pore layer 3c exceeds the above upper limit, there is a possibility that sufficient mechanical strength of the insulating layer 3 cannot be ensured.
 他の気孔層3cの平均厚さの下限としては、3μmが好ましく、5μmがより好ましい。他の気孔層3cの平均厚さの上限としては、10μmが好ましく、8μmがより好ましい。他の気孔層3cの平均厚さが上記下限未満の場合、機械的強度の維持効果が大きい他の気孔層3cが薄くなり過ぎ、絶縁層3の機械的強度を維持できないおそれがある。他の気孔層3cの平均厚さが上記上限を超える場合、低誘電率化の効果が小さい他の気孔層3cが厚くなり過ぎ、絶縁層3の誘電率が十分に低下しないおそれがある。 The lower limit of the average thickness of the other pore layer 3c is preferably 3 μm, and more preferably 5 μm. The upper limit of the average thickness of the other pore layer 3c is preferably 10 μm, and more preferably 8 μm. When the average thickness of the other pore layer 3c is less than the above lower limit, the other pore layer 3c having a large effect of maintaining the mechanical strength becomes too thin, and the mechanical strength of the insulating layer 3 may not be maintained. When the average thickness of the other pore layer 3c exceeds the upper limit, the other pore layer 3c having a small effect of reducing the dielectric constant becomes too thick, and the dielectric constant of the insulating layer 3 may not be sufficiently lowered.
[絶縁電線の製造方法]
 次に、図2の絶縁電線1の製造方法について説明する。図2の絶縁電線1は、例えば図1の第一実施形態の絶縁電線1の製造方法と同様の方法で製造することができる。
[Insulated wire manufacturing method]
Next, the manufacturing method of the insulated wire 1 of FIG. 2 is demonstrated. The insulated wire 1 of FIG. 2 can be manufactured by the method similar to the manufacturing method of the insulated wire 1 of 1st embodiment of FIG. 1, for example.
 具体的には、第一実施形態の絶縁電線1の製造方法における外側気孔層形成工程の後に、以下の他の気孔層形成工程を行うことにより、製造することができる。 Specifically, it can be manufactured by performing the following other pore layer forming step after the outer pore layer forming step in the method of manufacturing the insulated wire 1 of the first embodiment.
<他の気孔層形成工程>
 他の気孔層形成工程において、外側気孔層3bを形成した導体2のさらに外周面へ、ワニス調製工程で調製した外側用ワニスよりも熱分解性樹脂の含有量の小さい他の気孔層用ワニスを塗布した後、焼付けることで、導体2に形成された外側気孔層3bの外側に他の気孔層3cを形成する。焼付けの際、他の気孔層用ワニスに含まれる熱分解性樹脂が熱分解し、他の気孔層3c内の熱分解性樹脂が存在していた部分に気孔4が生成される。
<Other pore layer forming step>
In another pore layer forming step, another pore layer varnish having a smaller content of the thermally decomposable resin than the outer varnish prepared in the varnish preparation step is further applied to the outer peripheral surface of the conductor 2 on which the outer pore layer 3b is formed. After the application, the other pore layer 3c is formed outside the outer pore layer 3b formed in the conductor 2 by baking. At the time of baking, the thermally decomposable resin contained in the other varnish for the pore layer is thermally decomposed, and the pores 4 are generated in the portions where the thermally decomposable resin exists in the other pore layer 3c.
 他の気孔層用ワニスの一度の塗布及び焼付けにより所望の厚さの他の気孔層3cが形成できない場合、他の気孔層3cが所定の厚さとなるまで、他の気孔層用ワニスの塗布及び焼付けを繰り返し行う。所定の厚さの他の気孔層3cを形成することにより、絶縁電線1が得られる。 When another pore layer 3c having a desired thickness cannot be formed by one application and baking of another pore layer varnish, the other pore layer varnish is applied until the other pore layer 3c reaches a predetermined thickness. Repeat baking. By forming another pore layer 3c having a predetermined thickness, the insulated wire 1 can be obtained.
[その他の実施形態]
 今回開示された実施の形態は全ての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記実施形態の構成に限定されるものではなく、請求の範囲によって示され、請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。
[Other Embodiments]
The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is not limited to the configuration of the embodiment described above, but is defined by the scope of the claims, and is intended to include all modifications within the meaning and scope equivalent to the scope of the claims.
 つまり、第一及び第二実施形態においては、絶縁層が2又は3の気孔層で構成される絶縁電線について説明したが、さらに、絶縁層が4層以上の気孔層で構成される絶縁電線としてもよい。絶縁層を構成する気孔層の数をより多くすることで、絶縁層全体の誘電率及び機械的強度をより細かく調整し易くなる。また、厚さ方向で気孔率の異なる気孔層を用いて、絶縁層が1層又は2層の気孔層で構成される絶縁電線としてもよい。 That is, in 1st and 2nd embodiment, although the insulating layer demonstrated the insulated wire comprised by the pore layer of 2 or 3, As an insulated wire comprised further, the insulating layer was comprised of 4 or more pore layers. Also good. By increasing the number of pore layers constituting the insulating layer, it becomes easier to finely adjust the dielectric constant and mechanical strength of the entire insulating layer. Moreover, it is good also as an insulated wire with which an insulating layer is comprised by the porous layer of one layer or two layers using the pore layer from which a porosity differs in thickness direction.
 また、上記実施形態では、熱分解性樹脂を用いて気孔を生成させる製造方法について説明したが、熱分解性樹脂の代わりに発泡剤や熱膨張性マイクロカプセルをワニスに混合し、発泡剤や熱膨張性マイクロカプセルにより気孔を形成させる製造方法としてもよい。例えば上記製造方法において、絶縁層を形成する樹脂を溶剤で希釈したものを熱膨張性マイクロカプセルと混合して各気孔層用のワニスを調製し、これらのワニスの導体の外周面への塗布及び焼付けにより絶縁層を形成してもよい。焼付けの際、ワニスに含まれる熱膨張性マイクロカプセルが膨張又は発泡し、熱膨張性マイクロカプセルによって気孔が形成される。 In the above embodiment, the production method for generating pores using a thermally decomposable resin has been described. However, instead of the thermally decomposable resin, a foaming agent or a thermally expandable microcapsule is mixed with the varnish, and the foaming agent or heat It is good also as a manufacturing method which forms pores by an expandable microcapsule. For example, in the above manufacturing method, a resin for forming an insulating layer diluted with a solvent is mixed with a thermally expandable microcapsule to prepare varnishes for each pore layer, and these varnishes are applied to the outer peripheral surface of a conductor and An insulating layer may be formed by baking. During baking, the thermally expandable microcapsules contained in the varnish expand or foam, and pores are formed by the thermally expandable microcapsules.
 熱膨張性マイクロカプセルは、熱膨張剤からなる芯材(内包物)と、芯材を包む外殻とを有する。熱膨張性マイクロカプセルの熱膨張剤は、加熱により膨張又は気体を発生するものであればよく、その原理は問わない。熱膨張性マイクロカプセルの熱膨張剤としては、例えば低沸点液体、化学発泡剤又はこれらの混合物を使用することができる。 The heat-expandable microcapsule has a core material (including inclusion) made of a thermal expansion agent and an outer shell that wraps the core material. The thermal expansion agent of the heat-expandable microcapsules may be any one that expands or generates a gas by heating, and the principle thereof does not matter. As the thermal expansion agent of the thermally expandable microcapsule, for example, a low boiling point liquid, a chemical foaming agent, or a mixture thereof can be used.
 低沸点液体としては、例えばブタン、i-ブタン、n-ペンタン、i-ペンタン、ネオペンタン等のアルカンや、トリクロロフルオロメタン等のフレオン類などが好適に用いられる。また、化学発泡剤としては、加熱によりNガスを発生するアゾビスイソブチロニトリル等の熱分解性を有する物質が好適に用いられる。 As the low boiling point liquid, for example, alkanes such as butane, i-butane, n-pentane, i-pentane and neopentane, and freons such as trichlorofluoromethane are preferably used. As the chemical foaming agent, a material having thermal decomposability such as azobisisobutyronitrile that generates N 2 gas by heating is preferably used.
 熱膨張性マイクロカプセルの熱膨張剤の膨張開始温度、つまり低沸点液体の沸点又は化学発泡剤の熱分解温度としては、後述する熱膨張性マイクロカプセルの外殻の軟化温度以上とされる。より詳しくは、熱膨張性マイクロカプセルの熱膨張剤の膨張開始温度の下限としては、60℃が好ましく、70℃がより好ましい。熱膨張性マイクロカプセルの熱膨張剤の膨張開始温度の上限としては、200℃が好ましく、150℃がより好ましい。熱膨張性マイクロカプセルの熱膨張剤の膨張開始温度が上記下限に満たない場合、絶縁電線の製造時、輸送時又は保管時に熱膨張性マイクロカプセルが意図せず膨張してしまうおそれがある。熱膨張性マイクロカプセルの熱膨張剤の膨張開始温度が上記上限を超える場合、熱膨張性マイクロカプセルを膨張させるために必要なエネルギーコストが過大となるおそれがある。 The expansion start temperature of the thermal expansion agent of the thermally expandable microcapsule, that is, the boiling point of the low-boiling liquid or the thermal decomposition temperature of the chemical foaming agent is equal to or higher than the softening temperature of the outer shell of the thermally expandable microcapsule described later. More specifically, the lower limit of the expansion start temperature of the thermal expansion agent of the thermally expandable microcapsule is preferably 60 ° C, more preferably 70 ° C. The upper limit of the expansion start temperature of the thermal expansion agent of the thermally expandable microcapsule is preferably 200 ° C., and more preferably 150 ° C. When the expansion start temperature of the thermal expansion agent of the thermally expandable microcapsule is less than the lower limit, the thermally expandable microcapsule may expand unintentionally during manufacture, transportation or storage of the insulated wire. When the expansion start temperature of the thermal expansion agent of the thermally expandable microcapsule exceeds the above upper limit, the energy cost necessary for expanding the thermally expandable microcapsule may be excessive.
 熱膨張性マイクロカプセルの外殻は、熱膨張剤の膨張時に破断することなく膨張し、発生したガスを包含するマイクロバルーンを形成できる延伸性を有する材質から形成される。熱膨張性マイクロカプセルの外殻を形成する材質としては、通常は、熱可塑性樹脂等の高分子を主成分とする樹脂組成物が用いられる。 The outer shell of the thermally expandable microcapsule is formed of a stretchable material that can expand without breaking when the thermal expansion agent expands to form a microballoon containing the generated gas. As a material for forming the outer shell of the thermally expandable microcapsule, a resin composition mainly composed of a polymer such as a thermoplastic resin is usually used.
 熱膨張性マイクロカプセルの外殻の主成分とされる熱可塑性樹脂としては、例えば塩化ビニル、塩化ビニリデン、アクリロニトリル、アクリル酸、メタアクリル酸、アクリレート、メタアクリレート、スチレン等の単量体から形成された重合体、あるいは2種以上の単量体から形成された共重合体が好適に用いられる。好ましい熱可塑性樹脂の一例としては、塩化ビニリデン-アクリロニトリル共重合体が挙げられ、この場合の熱膨張剤の膨張開始温度は、80℃以上150℃以下とされる。 The thermoplastic resin used as the main component of the outer shell of the thermally expandable microcapsule is formed from monomers such as vinyl chloride, vinylidene chloride, acrylonitrile, acrylic acid, methacrylic acid, acrylate, methacrylate, styrene, etc. Polymers formed from two or more types of monomers are preferably used. An example of a preferred thermoplastic resin is a vinylidene chloride-acrylonitrile copolymer. In this case, the expansion start temperature of the thermal expansion agent is 80 ° C. or higher and 150 ° C. or lower.
 また、上記実施形態では、絶縁層に含まれる気孔が熱分解性樹脂の熱分解によって形成される構成について説明したが、例えば気孔を中空フィラーで形成させた構成としてもよい。気孔を中空フィラーで形成させる場合、例えば絶縁層を形成する樹脂組成物と中空フィラーとを混練し、押出し成形により混練物を導体に被覆することで絶縁電線を製造できる。 In the above embodiment, the structure in which the pores included in the insulating layer are formed by the thermal decomposition of the thermally decomposable resin has been described. However, for example, the pores may be formed by a hollow filler. When the pores are formed with a hollow filler, an insulated wire can be produced by, for example, kneading a resin composition that forms an insulating layer and a hollow filler, and covering the conductor with the kneaded product by extrusion molding.
 中空フィラーにより気孔を形成する場合、中空フィラーの内部の空洞部分が絶縁層に含まれる気孔となる。中空フィラーとしては、例えばシラスバルーン、ガラスバルーン、セラミックバルーン、有機樹脂バルーン等が挙げられる。絶縁電線に可撓性が要求される場合、これらの中で有機樹脂バルーンが好ましい。また、機械的強度が重視される絶縁電線の場合、入手が容易で破損し難いという点からガラスバルーンが好ましい。 When the pores are formed with the hollow filler, the hollow portion inside the hollow filler becomes the pores included in the insulating layer. Examples of the hollow filler include shirasu balloons, glass balloons, ceramic balloons, and organic resin balloons. When flexibility is required for the insulated wire, an organic resin balloon is preferable among them. In the case of an insulated wire in which mechanical strength is important, a glass balloon is preferable because it is easily available and is not easily damaged.
 また、上記実施形態では、絶縁層に含まれる気孔が熱分解性樹脂の熱分解によって形成される構成について説明したが、例えば相分離法を用いて気孔を形成させた構成としてもよい。相分離法を用いる一例として、絶縁層を形成する樹脂として熱可塑性樹脂を用い、溶剤と均質混合して加熱溶融状態で導体の外周面へ塗布する。そして、水等の非溶解性液体への浸漬又は空気中での冷却により樹脂と溶媒とを相分離させ、溶媒を別の揮発性溶剤で抽出除去することにより気孔が形成される。 In the above-described embodiment, the structure in which the pores included in the insulating layer are formed by thermal decomposition of the thermally decomposable resin has been described. As an example of using the phase separation method, a thermoplastic resin is used as the resin for forming the insulating layer, and it is homogeneously mixed with a solvent and applied to the outer peripheral surface of the conductor in a heated and melted state. Then, the resin and the solvent are phase-separated by immersion in an insoluble liquid such as water or cooling in air, and the pores are formed by extracting and removing the solvent with another volatile solvent.
 また、例えば絶縁電線において、導体と絶縁層との間に内側介在層等のさらなる層が設けられてもよい。内側介在層は、層間の密着性を高めたり絶縁層の低誘電率化を補強するために設けられる層であり、例えば公知の樹脂組成物により形成することができる。 Further, for example, in an insulated wire, a further layer such as an inner intervening layer may be provided between the conductor and the insulating layer. The inner intervening layer is a layer provided for enhancing the adhesion between the layers or reinforcing the lower dielectric constant of the insulating layer, and can be formed of, for example, a known resin composition.
 導体と絶縁層との間に内側介在層を設ける場合、内側介在層を形成する樹脂組成物は、例えばポリイミド、ポリアミドイミド、ポリエステルイミド、ポリエステル及びフェノキシ樹脂の中の一種又は複数種の樹脂を含むとよい。また、内側介在層を形成する樹脂組成物は、密着向上剤等の添加剤を含んでもよい。このような樹脂組成物によって導体と絶縁層との間に内側介在層を形成することで、導体と絶縁層との間の密着性を向上することが可能であり、その結果、絶縁電線の可撓性や耐摩耗性、耐傷性、耐加工性などの特性を効果的に高めることができる。 When providing the inner intervening layer between the conductor and the insulating layer, the resin composition forming the inner intervening layer includes, for example, one or plural kinds of resins among polyimide, polyamideimide, polyesterimide, polyester, and phenoxy resin. Good. In addition, the resin composition forming the inner intervening layer may contain an additive such as an adhesion improver. By forming an inner intervening layer between the conductor and the insulating layer with such a resin composition, it is possible to improve the adhesion between the conductor and the insulating layer. Properties such as flexibility, wear resistance, scratch resistance, and workability can be effectively enhanced.
 また、内側介在層を形成する樹脂組成物は、上記樹脂と共に他の樹脂、例えばエポキシ樹脂、フェノキシ樹脂、メラミン樹脂等を含んでもよい。また、内側介在層を形成する樹脂組成物に含まれる各樹脂として、市販の液状組成物(絶縁ワニス)を使用してもよい。 Further, the resin composition forming the inner intervening layer may contain other resins such as epoxy resin, phenoxy resin, melamine resin and the like together with the above resin. Moreover, you may use a commercially available liquid composition (insulation varnish) as each resin contained in the resin composition which forms an inner intervening layer.
 また、内側介在層を形成する樹脂組成物として、上述した絶縁層の樹脂組成物の主成分として挙げた樹脂と同種のものを主成分として用いてもよい。さらに、内側介在層は、複数の気孔を含んでいてもよい。内側介在層が複数の気孔を含むことにより、内側介在層も絶縁層の誘電率の低下に寄与できる。ただし、この場合、内側介在層の気孔率は絶縁層の気孔率よりも小さい方がより好ましい。また、内側介在層は、複数の層で形成されていてもよく、それらの複数の層の気孔率が互いに異なるものとしてもよい。 Further, as the resin composition forming the inner intervening layer, the same kind of resin as the main component of the resin composition of the insulating layer described above may be used as the main component. Furthermore, the inner intervening layer may include a plurality of pores. When the inner intervening layer includes a plurality of pores, the inner intervening layer can also contribute to a decrease in the dielectric constant of the insulating layer. However, in this case, the porosity of the inner intervening layer is more preferably smaller than the porosity of the insulating layer. The inner intervening layer may be formed of a plurality of layers, and the porosity of the plurality of layers may be different from each other.
 また、絶縁電線において、絶縁層の外周面側にさらに絶縁性を有する保護層を積層してもよい。保護層を形成する樹脂組成物としては、上述した絶縁層の樹脂組成物の主成分として挙げた樹脂と同種のものを主成分とするものを用いることができる。保護層は、気孔を含んでいてもよいし、気孔を含んでいなくてもよい。保護層が気孔を含む場合、保護層も絶縁層の誘電率の低下に寄与できる。ただし、この場合、保護層の気孔率は絶縁層の気孔率よりも小さい方がより好ましい。一方、保護層が気孔を含まない場合、絶縁性に優れるので絶縁電線の絶縁性がさらに向上する。また、保護層は、気孔を含む複数の層で形成されていてもよく、それらの複数の層の気孔率が互いに異なるものとしてもよい。 In the insulated wire, a protective layer having an insulating property may be further laminated on the outer peripheral surface side of the insulating layer. As a resin composition which forms a protective layer, what has as a main component the same kind as resin mentioned as a main component of the resin composition of the insulating layer mentioned above can be used. The protective layer may contain pores or may not contain pores. When the protective layer includes pores, the protective layer can also contribute to a decrease in the dielectric constant of the insulating layer. In this case, however, the porosity of the protective layer is more preferably smaller than the porosity of the insulating layer. On the other hand, when the protective layer does not include pores, the insulation of the insulated wire is further improved since the insulation is excellent. Further, the protective layer may be formed of a plurality of layers including pores, and the porosity of the plurality of layers may be different from each other.
 また、絶縁電線において、導体と絶縁層との間にプライマー層等のさらなる層が設けられてもよい。プライマー層は、層間の密着性を高めるために設けられる層であり、例えば公知の樹脂組成物により形成することができる。 In the insulated wire, a further layer such as a primer layer may be provided between the conductor and the insulating layer. A primer layer is a layer provided in order to improve the adhesiveness between layers, for example, can be formed with a well-known resin composition.
 導体と絶縁層との間にプライマー層を設ける場合、このプライマー層を形成する樹脂組成物は、例えばポリイミド、ポリアミドイミド、ポリエステルイミド、ポリエステル及びフェノキシ樹脂の中の一種又は複数種の樹脂を含むとよい。また、プライマー層を形成する樹脂組成物は、密着向上剤等の添加剤を含んでもよい。このような樹脂組成物によって導体と絶縁層との間にプライマー層を形成することで、導体と絶縁層との間の密着性が向上し、その結果、絶縁電線の可撓性や耐摩耗性、耐傷性、耐加工性などの特性を効果的に高めることができる。 When a primer layer is provided between the conductor and the insulating layer, the resin composition forming the primer layer includes, for example, one or more kinds of resins selected from polyimide, polyamideimide, polyesterimide, polyester, and phenoxy resin. Good. Moreover, the resin composition forming the primer layer may contain an additive such as an adhesion improver. By forming a primer layer between the conductor and the insulating layer with such a resin composition, the adhesion between the conductor and the insulating layer is improved, and as a result, the flexibility and wear resistance of the insulated wire are increased. It is possible to effectively enhance the characteristics such as scratch resistance and process resistance.
 また、プライマー層を形成する樹脂組成物は、上記樹脂と共に他の樹脂、例えばエポキシ樹脂、フェノキシ樹脂、メラミン樹脂等を含んでもよい。また、プライマー層を形成する樹脂組成物に含まれる各樹脂として、市販の液状組成物(絶縁ワニス)を使用してもよい。 Further, the resin composition forming the primer layer may contain other resins, for example, an epoxy resin, a phenoxy resin, a melamine resin, etc. together with the above resin. Moreover, you may use a commercially available liquid composition (insulation varnish) as each resin contained in the resin composition which forms a primer layer.
 プライマー層の平均厚さの下限としては、1μmが好ましく、2μmがより好ましい。プライマー層の平均厚さの上限としては、30μmが好ましく、20μmがより好ましい。プライマー層の平均厚さが上記下限未満であると、導体との十分な密着性を発揮できないおそれがある。プライマー層の平均厚さが上記上限を超えると、絶縁電線が不必要に大径化するおそれがある。 The lower limit of the average primer layer thickness is preferably 1 μm, more preferably 2 μm. As an upper limit of the average thickness of a primer layer, 30 micrometers is preferable and 20 micrometers is more preferable. There exists a possibility that sufficient adhesiveness with a conductor cannot be exhibited as the average thickness of a primer layer is less than the said minimum. If the average thickness of the primer layer exceeds the above upper limit, the insulated wire may unnecessarily increase in diameter.
 以下、実施例によって本発明をさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
[ワニスの調製]
 ワニス(A)及びワニス(B)を以下のようにして調製した。
(ワニス(A))
 主ポリマーとしてポリイミドを用い、溶剤としてN-メチル-2-ピロリドンを用いて、主ポリマーをこの溶剤で希釈した樹脂組成物を調製した。次に、中空形成粒子としてコアがPMMA粒子でシェルがシリコーンの平均粒子径3μmのコアシェル粒子を用い、樹脂組成物に、計算値で絶縁層の気孔率が10体積%となる量を分散させてワニス(A)を調製した。
[Preparation of varnish]
Varnish (A) and varnish (B) were prepared as follows.
(Varnish (A))
Using polyimide as the main polymer and N-methyl-2-pyrrolidone as the solvent, a resin composition was prepared by diluting the main polymer with this solvent. Next, core-shell particles having a core of PMMA particles and a shell of silicone having an average particle diameter of 3 μm are used as hollow-forming particles, and the resin composition is dispersed in such an amount that the calculated porosity of the insulating layer is 10% by volume. Varnish (A) was prepared.
(ワニス(B))
 主ポリマーとしてポリイミドを用い、溶剤としてN-メチル-2-ピロリドンを用いて、主ポリマーをこの溶剤で希釈した樹脂組成物を調製した。次に、中空形成粒子としてコアがPMMA粒子でシェルがシリコーンの平均粒子径3μmのコアシェル粒子を用い、樹脂組成物に、計算値で絶縁層の気孔率が30体積%となる量を分散させてワニス(B)を調製した。
(Varnish (B))
Using polyimide as the main polymer and N-methyl-2-pyrrolidone as the solvent, a resin composition was prepared by diluting the main polymer with this solvent. Next, core-shell particles having a core of PMMA particles and a shell of silicone having an average particle diameter of 3 μm are used as hollow-forming particles, and the calculated amount of the insulating layer having a porosity of 30% by volume is dispersed in the resin composition. Varnish (B) was prepared.
[絶縁電線の製造]
 表1のNo.1に示す絶縁電線を以下のようにして製造した。竪型塗装設備を用いて、断面2mm×2mmの角形状の導体の外周面に、内側用ワニスとして、ワニス(A)を塗布し、導体と相似形状の開口部を有するダイスと焼付炉中を速度6m/分で通過させ、350℃で1分間焼付を行い、内側気孔層を形成した。次に、内側気孔層の外周面に、外側用ワニスとして、ワニス(B)を塗布し、導体と相似形状の開口部を有するダイスと焼付炉中を速度6m/分で通過させ、350℃で1分間焼付を行い、絶縁被膜を形成した。外側用ワニスの塗布、ダイス通過、焼付を30回繰り返して、外側気孔層を形成し、絶縁電線(No.1)を製造した。
[Manufacture of insulated wires]
No. in Table 1 The insulated wire shown in 1 was manufactured as follows. Using a vertical coating facility, apply varnish (A) as an inner varnish to the outer peripheral surface of a rectangular conductor with a cross section of 2 mm x 2 mm, and inside a die and a baking furnace having openings similar to the conductor The film was passed at a speed of 6 m / min and baked at 350 ° C. for 1 minute to form an inner pore layer. Next, varnish (B) is applied to the outer peripheral surface of the inner pore layer as an outer varnish, and is passed through a die having an opening portion similar to the conductor and a baking furnace at a speed of 6 m / min. Baking was performed for 1 minute to form an insulating film. Application of the outer varnish, passing through the die, and baking were repeated 30 times to form an outer pore layer, and an insulated wire (No. 1) was produced.
 表1のNo.2に示す絶縁電線を以下のようにして製造した。竪型塗装設備を用いて、断面2mm×2mmの角形状の導体の外周面に、内側用ワニスとして、ワニス(A)を塗布し、導体と相似形状の開口部を有するダイスと焼付炉中を速度6m/分で通過させ、350℃で1分間焼付を行い、内側気孔層を形成した。次に、内側気孔層の外周面に、外側用ワニスとして、ワニス(B)を塗布し、導体と相似形状の開口部を有するダイスと焼付炉中を速度6m/分で通過させ、350℃で1分間焼付を行い、絶縁被膜を形成した。外側用ワニスの塗布、ダイス通過、焼付を28回繰り返して、外側気孔層を形成した。さらに、外側気孔層の外周面に他の気孔層用ワニスとして、ワニス(A)を塗布し、導体と相似形状の開口部を有するダイスと焼付炉中を速度6m/分で通過させ、350℃で1分間焼付を行い、他の気孔層を形成し、絶縁電線(No.2)を製造した。 No. in Table 1. The insulated wire shown in 2 was manufactured as follows. Using a vertical coating facility, apply varnish (A) as an inner varnish to the outer peripheral surface of a rectangular conductor with a cross section of 2 mm x 2 mm, and inside a die and a baking furnace having openings similar to the conductor The film was passed at a speed of 6 m / min and baked at 350 ° C. for 1 minute to form an inner pore layer. Next, varnish (B) is applied to the outer peripheral surface of the inner pore layer as an outer varnish, and is passed through a die having an opening portion similar to the conductor and a baking furnace at a speed of 6 m / min. Baking was performed for 1 minute to form an insulating film. The outer pore layer was formed by repeating the application of the outer varnish, passing through a die, and baking 28 times. Furthermore, varnish (A) was applied to the outer peripheral surface of the outer pore layer as another pore layer varnish, and passed through a die having an opening portion similar to the conductor and a baking furnace at a speed of 6 m / min. Was baked for 1 minute to form another pore layer to produce an insulated wire (No. 2).
 表1のNo.3に示す絶縁電線を以下のようにして製造した。竪型塗装設備を用いて、断面2mm×2mmの角形状の導体の外周面に、ワニス(B)を塗布し、導体と相似形状の開口部を有するダイスと焼付炉中を速度6m/分で通過させ、350℃で1分間焼付を行い、絶縁被膜を形成した。ワニスの塗布、ダイス通過、焼付を34回繰り返して、気孔層を形成し、絶縁電線(No.3)を製造した。 No. in Table 1. The insulated wire shown in 3 was manufactured as follows. Varnish (B) is applied to the outer peripheral surface of a rectangular conductor having a cross section of 2 mm × 2 mm using a vertical coating equipment, and a die having an opening similar to the conductor and a baking furnace at a speed of 6 m / min. It was passed through and baked at 350 ° C. for 1 minute to form an insulating film. Coating of varnish, passing through a die, and baking were repeated 34 times to form a pore layer, and an insulated wire (No. 3) was manufactured.
[評価]
 得られたNo.1~No.3の絶縁電線について、各層の気孔率、気孔中の独立気孔率、絶縁層の誘電率、コロナ放電開始電圧、絶縁破壊電圧、長時間加熱後の絶縁破壊電圧及びプレス後皮膜厚減少率を、下記方法に従い評価した。評価結果を表1に合わせて示す。
[Evaluation]
No. obtained 1-No. For the insulated wires of 3, the porosity of each layer, the independent porosity in the pores, the dielectric constant of the insulating layer, the corona discharge starting voltage, the dielectric breakdown voltage, the dielectric breakdown voltage after long-time heating, and the thickness reduction rate after pressing, Evaluation was performed according to the following method. The evaluation results are shown in Table 1.
(各層の気孔率)
 形成した各層(内側気孔層、外側気孔層、他の気孔層及び気孔層)を導体から筒状に剥離し、筒状の各層の質量W2を測定した。また、筒状の各層の外形から見かけの体積V1を求め、V1に各層の材質の密度ρ1を乗じて気孔がない場合の質量W1を算出した。これらW1及びW2の値から、下記式により気孔率を算出した。
 気孔率=(W1-W2)×100/W1 (体積%)
(Porosity of each layer)
Each formed layer (inner pore layer, outer pore layer, other pore layer and pore layer) was peeled off from the conductor in a cylindrical shape, and the mass W2 of each cylindrical layer was measured. Further, the apparent volume V1 was obtained from the outer shape of each cylindrical layer, and the mass W1 when there was no pore was calculated by multiplying V1 by the density ρ1 of the material of each layer. From the values of W1 and W2, the porosity was calculated by the following formula.
Porosity = (W1-W2) × 100 / W1 (volume%)
(気孔中の独立気孔率)
 筒状に剥離して得た各層の断面を、走査型電子顕微鏡(SEM)で観察し、隣接する気孔との間に絶縁性を有する樹脂組成物を介することにより互いに開口していないもの(独立気孔)と独立気孔以外の気孔とを区別するように二値化して、気孔中の独立気孔率(体積%)を算出した。
(Independent porosity in pores)
A cross section of each layer obtained by peeling into a cylindrical shape is observed with a scanning electron microscope (SEM), and is not opened to each other by interposing an insulating resin composition between adjacent pores (independent Binarization was performed so as to distinguish pores other than independent pores, and the independent porosity (volume%) in the pores was calculated.
(絶縁層の誘電率)
 No.1~No.3の絶縁電線について、絶縁層3の誘電率εを測定した。図4は、誘電率の測定方法を説明するための模式図である。図4では、絶縁電線に図1と同じ符号を付している。まず、絶縁電線の表面3カ所に銀ペーストPを塗布すると共に、絶縁電線の一端側の絶縁層3を剥離して導体2を露出させた測定用のサンプルを作製した。ここで、絶縁電線の表面3カ所に塗布した銀ペーストPの絶縁電線長手方向の塗布長さは、長手方向に沿って順に10mm、100mm、10mmとした。長さ10mmで塗布した2カ所の銀ペーストPを接地し、これらの2カ所の銀ペーストの間に塗布した長さ100mmの銀ペーストPと露出させた導体2との間の静電容量をLCRメータMで測定した。測定した静電容量及び絶縁層3の平均厚さから絶縁層3の誘電率εを算出した。なお、誘電率εの測定は、105℃で1時間加熱した後にn=3で実施し、その平均値を求めた。
(Dielectric constant of insulating layer)
No. 1-No. For the insulated wire 3, the dielectric constant ε of the insulating layer 3 was measured. FIG. 4 is a schematic diagram for explaining a dielectric constant measurement method. In FIG. 4, the same code | symbol as FIG. 1 is attached | subjected to the insulated wire. First, a silver sample P was applied to three places on the surface of the insulated wire, and a measurement sample was prepared in which the conductor 2 was exposed by peeling off the insulating layer 3 on one end side of the insulated wire. Here, the coating length in the longitudinal direction of the insulated wire of the silver paste P applied to the three places on the surface of the insulated wire was 10 mm, 100 mm, and 10 mm in order along the longitudinal direction. The two silver pastes P applied at a length of 10 mm are grounded, and the capacitance between the silver paste P applied at a length of 100 mm between these two silver pastes and the exposed conductor 2 is determined as LCR. Measured with meter M. The dielectric constant ε of the insulating layer 3 was calculated from the measured capacitance and the average thickness of the insulating layer 3. The dielectric constant ε was measured at n = 3 after heating at 105 ° C. for 1 hour, and the average value was obtained.
(コロナ放電開始電圧)
 部分放電試験機(菊水電子工業社の「KPD2050S」)を使用して測定した。2本の絶縁電線の面同士を長さ100mmにわたって隙間が無いように密着させ、2本の導体間に電極を繋いだ。25℃にて、周波数60Hzで昇圧し、100pC以上の部分放電が発生した時の電圧を読み取った。n=5で実施し、その平均値で評価した。
(Corona discharge start voltage)
Measurement was performed using a partial discharge tester (“KPD2050S” manufactured by Kikusui Electronics Corporation). The surfaces of the two insulated wires were brought into close contact with each other over a length of 100 mm, and electrodes were connected between the two conductors. The voltage was increased at 25 ° C. at a frequency of 60 Hz, and the voltage when a partial discharge of 100 pC or more occurred was read. It implemented by n = 5 and evaluated by the average value.
(絶縁破壊電圧)
 絶縁破壊試験機(FAITH社の「BREAK-DOWN TESTER ”CONTROL UNIT F8150-1”」)を使用して測定した。No.1~No.3の絶縁電線に幅10mmのアルミ箔を巻き、電極の片方を導体に、もう一方をアルミ箔に接続した。昇圧速度500V/秒で昇圧して、15mA以上の電流が流れたときの電圧を読み取った。n=5で実施し、その平均値で評価した。
(Dielectric breakdown voltage)
The measurement was made using a dielectric breakdown tester (“BREAK-DOWN TESTER“ CONTROL UNIT F8150-1 ”from FAITH). No. 1-No. An aluminum foil having a width of 10 mm was wound around the insulated wire No. 3, and one electrode was connected to a conductor and the other was connected to the aluminum foil. The voltage was increased at a voltage increase rate of 500 V / sec, and the voltage when a current of 15 mA or more flowed was read. It implemented by n = 5 and evaluated by the average value.
(長時間加熱後の絶縁破壊電圧)
 No.1~No.3の絶縁電線を、220℃、空気雰囲気下の恒温室で2000時間保管した後に、上記方法で絶縁破壊電圧を測定した。
(Dielectric breakdown voltage after prolonged heating)
No. 1-No. After the insulated wires 3 were stored at 220 ° C. in a thermostatic chamber under an air atmosphere for 2000 hours, the dielectric breakdown voltage was measured by the above method.
(プレス後皮膜厚減少率)
 No.1~No.3の絶縁電線を、その長手方向の一部にプレス圧がかかるように、プレス加工機に設置した。所定のプレス圧になるように、プレス圧(MPa)×プレス面積(mm)で求められる荷重(N)をかけ、荷重が安定してから、10秒間プレスした。プレスした箇所の絶縁層の平均厚さT1と、プレスしていない箇所の絶縁層の平均厚さT2とを測定し、T1及びT2の測定値から(T2-T1)×100/T2(%)の式により、プレス後皮膜厚減少率を算出した。プレス後皮膜厚減少率の測定は、プレス圧を、50MPa、100MPa、200MPaとしてそれぞれ行った。また、絶縁層の平均厚さT1及びT2は、絶縁電線の断面方向において3点測定し、その平均値を用いた。
(Thickness reduction rate after pressing)
No. 1-No. The insulated wire 3 was installed in a press machine so that a pressing pressure was applied to a part of the longitudinal direction. A load (N) obtained by pressing pressure (MPa) × pressing area (mm 2 ) was applied so as to obtain a predetermined pressing pressure, and the pressing was performed for 10 seconds after the load was stabilized. The average thickness T1 of the insulating layer at the pressed location and the average thickness T2 of the insulating layer at the non-pressed location are measured. From the measured values of T1 and T2, (T2-T1) × 100 / T2 (%) The thickness reduction rate after pressing was calculated by the following formula. The thickness reduction rate after pressing was measured with the pressing pressure set to 50 MPa, 100 MPa, and 200 MPa, respectively. The average thicknesses T1 and T2 of the insulating layer were measured at three points in the cross-sectional direction of the insulated wire, and the average value was used.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1の結果より、No.1及びNo.2の絶縁電線では、内側気孔層の気孔率は1体積%以上10体積%以下であり、外側気孔層の気孔率は25体積%以上50体積%以下であり、絶縁層における気孔中の独立気孔率は80体積%以上である。No.1及びNo.2の絶縁電線は、長時間加熱後の絶縁破壊電圧が高く、プレス後の皮膜厚減少率が低く抑えられており、絶縁性及び機械的強度に優れていることが分かる。一方、No.3の絶縁電線は、上記層構成を備えておらず、長時間加熱後の絶縁破壊電圧及びプレス後の皮膜厚減少率が悪化していた。 From the results in Table 1, No. 1 and no. In the insulated wire of 2, the porosity of the inner pore layer is 1% by volume or more and 10% by volume or less, and the porosity of the outer pore layer is 25% by volume or more and 50% by volume or less, and the independent pores in the pores in the insulating layer The rate is 80% by volume or more. No. 1 and no. It can be seen that the insulated wire No. 2 has a high dielectric breakdown voltage after heating for a long time, a low film thickness reduction rate after pressing, and is excellent in insulation and mechanical strength. On the other hand, no. The insulated wire No. 3 did not have the above layer structure, and the dielectric breakdown voltage after heating for a long time and the film thickness reduction rate after pressing deteriorated.
 1 絶縁電線
 2 導体
 3 絶縁層
 3a 内側気孔層
 3b 外側気孔層
 3c 他の気孔層
 4 気孔
 5 中空形成粒子
 6 コア
 7 シェル
 M LCRメータ
 P 銀ペースト
DESCRIPTION OF SYMBOLS 1 Insulated electric wire 2 Conductor 3 Insulating layer 3a Inner pore layer 3b Outer pore layer 3c Other pore layer 4 Pore 5 Hollow forming particle 6 Core 7 Shell M LCR meter P Silver paste

Claims (7)

  1.  線状の導体と、上記導体の外周面に被覆される絶縁層とを備える絶縁電線であって、
     上記絶縁層が、複数の気孔を有する内側気孔層と、上記内側気孔層の外側に配設され、複数の気孔を有する外側気孔層とを備え、
     上記絶縁層において、上記気孔中の独立気孔率が80体積%以上であり、
     上記内側気孔層の気孔率が1体積%以上10体積%以下であり、
     上記外側気孔層の気孔率が25体積%以上50体積%以下である絶縁電線。
    An insulated wire comprising a linear conductor and an insulating layer coated on the outer peripheral surface of the conductor,
    The insulating layer includes an inner pore layer having a plurality of pores, and an outer pore layer disposed outside the inner pore layer and having a plurality of pores,
    In the insulating layer, the independent porosity in the pores is 80% by volume or more,
    The porosity of the inner pore layer is 1% by volume to 10% by volume,
    An insulated wire in which the porosity of the outer pore layer is 25% by volume or more and 50% by volume or less.
  2.  上記内側気孔層の平均厚さが3μm以上15μm以下であり、
     上記外側気孔層の平均厚さが80μm以上160μm以下である請求項1に記載の絶縁電線。
    The average thickness of the inner pore layer is 3 μm or more and 15 μm or less,
    The insulated wire according to claim 1, wherein an average thickness of the outer pore layer is 80 µm or more and 160 µm or less.
  3.  上記絶縁層が、上記外側気孔層の外側にさらに複数の気孔を有する他の気孔層を備え、上記他の気孔層の気孔率が1体積%以上10体積%以下であり、平均厚さが3μm以上10μm以下である請求項1又は請求項2に記載の絶縁電線。 The insulating layer includes another pore layer having a plurality of pores outside the outer pore layer, the porosity of the other pore layer is 1% by volume to 10% by volume, and the average thickness is 3 μm. The insulated wire according to claim 1 or 2, which is 10 µm or less.
  4. 上記複数の気孔の周縁部に外殻を備え、上記外殻がコアシェル構造の中空形成粒子のシェルに由来する請求項1、請求項2又は請求項3に記載の絶縁電線。 The insulated wire according to claim 1, 2 or 3, wherein an outer shell is provided at a peripheral portion of the plurality of pores, and the outer shell is derived from a shell of hollow-forming particles having a core-shell structure.
  5.  上記外殻の主成分が、シリコーンである請求項4に記載の絶縁電線。 The insulated wire according to claim 4, wherein a main component of the outer shell is silicone.
  6.  上記複数の気孔が、扁平球体であって、
     上記複数の気孔の短径及び長径を含む断面において、長径に対する短径の長さの比の平均が0.95以下である請求項1から請求項5のいずれか1項に記載の絶縁電線。
    The plurality of pores are flat spheres,
    The insulated wire according to any one of claims 1 to 5, wherein an average ratio of a length of a minor axis to a major axis is 0.95 or less in a cross section including a minor axis and a major axis of the plurality of pores.
  7.  上記導体と上記絶縁層の間にプライマー層を備える請求項1から請求項6のいずれか1項に記載の絶縁電線。 The insulated wire according to any one of claims 1 to 6, further comprising a primer layer between the conductor and the insulating layer.
PCT/JP2018/006752 2017-03-31 2018-02-23 Insulated electric cable WO2018180080A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019508796A JP7016860B2 (en) 2017-03-31 2018-02-23 Insulated wire

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017071395 2017-03-31
JP2017-071395 2017-03-31

Publications (1)

Publication Number Publication Date
WO2018180080A1 true WO2018180080A1 (en) 2018-10-04

Family

ID=63677662

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/006752 WO2018180080A1 (en) 2017-03-31 2018-02-23 Insulated electric cable

Country Status (2)

Country Link
JP (1) JP7016860B2 (en)
WO (1) WO2018180080A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023153063A1 (en) * 2022-02-08 2023-08-17 住友電気工業株式会社 Insulated electrical wire and method for manufacturing insulated electrical wire
TWI830505B (en) * 2022-11-21 2024-01-21 遠東科技大學 Insulation assembly with ceramic insulating layer formed on concave curved surface thereof and its use for resisting voltage breakdown
EP4350716A1 (en) * 2022-10-07 2024-04-10 Proterial, Ltd. Insulated wire

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101054567B1 (en) * 2011-01-18 2011-08-04 이태우 Method of processing workpiece using autocad

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010064579A1 (en) * 2008-12-02 2010-06-10 株式会社フジクラ Transmitting cable and signal transmitting cable using same
WO2014123123A1 (en) * 2013-02-07 2014-08-14 古河電気工業株式会社 Insulating laminated body of enamel resin, and insulated wire and electric appliance using the same
WO2014123122A1 (en) * 2013-02-07 2014-08-14 古河電気工業株式会社 Insulated electric wire and motor
JP2016091865A (en) * 2014-11-06 2016-05-23 住友電気工業株式会社 Insulated electric wire

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010064579A1 (en) * 2008-12-02 2010-06-10 株式会社フジクラ Transmitting cable and signal transmitting cable using same
WO2014123123A1 (en) * 2013-02-07 2014-08-14 古河電気工業株式会社 Insulating laminated body of enamel resin, and insulated wire and electric appliance using the same
WO2014123122A1 (en) * 2013-02-07 2014-08-14 古河電気工業株式会社 Insulated electric wire and motor
JP2016091865A (en) * 2014-11-06 2016-05-23 住友電気工業株式会社 Insulated electric wire

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023153063A1 (en) * 2022-02-08 2023-08-17 住友電気工業株式会社 Insulated electrical wire and method for manufacturing insulated electrical wire
EP4350716A1 (en) * 2022-10-07 2024-04-10 Proterial, Ltd. Insulated wire
TWI830505B (en) * 2022-11-21 2024-01-21 遠東科技大學 Insulation assembly with ceramic insulating layer formed on concave curved surface thereof and its use for resisting voltage breakdown

Also Published As

Publication number Publication date
JP7016860B2 (en) 2022-02-07
JPWO2018180080A1 (en) 2020-02-06

Similar Documents

Publication Publication Date Title
JP6306220B2 (en) Insulated wire and varnish for insulating layer formation
WO2018180080A1 (en) Insulated electric cable
US10991477B2 (en) Insulated electrical cable
JP2012224714A (en) Insulating varnish for low dielectric constant and insulated wire using the same
JP6587383B2 (en) Insulated wire
JP7076429B2 (en) Insulated wire
WO2017138284A1 (en) Insulated wire
JP7214625B2 (en) insulated wire
CN108352221B (en) Insulated wire and method for manufacturing insulated wire
JP2016046061A (en) Insulation wire and manufacturing method of insulation wire
JP6781569B2 (en) Insulated wire and manufacturing method of insulated wire
JP2017045662A (en) Insulated wire and varnish for forming insulating layer
JP6912253B2 (en) Manufacturing method of insulated wire
JP2016110847A (en) Insulated electric wire and method for producing insulated electric wire
JP6690986B2 (en) Insulated wire and method of manufacturing insulated wire
JP2016110801A (en) Insulated electric wire and method for producing insulated electric wire
WO2023153063A1 (en) Insulated electrical wire and method for manufacturing insulated electrical wire
CN117280429A (en) Insulated wire

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18777806

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019508796

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18777806

Country of ref document: EP

Kind code of ref document: A1