WO2018179456A1 - フェライト系ステンレス鋼 - Google Patents
フェライト系ステンレス鋼 Download PDFInfo
- Publication number
- WO2018179456A1 WO2018179456A1 PCT/JP2017/019514 JP2017019514W WO2018179456A1 WO 2018179456 A1 WO2018179456 A1 WO 2018179456A1 JP 2017019514 W JP2017019514 W JP 2017019514W WO 2018179456 A1 WO2018179456 A1 WO 2018179456A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- content
- less
- stainless steel
- ferritic stainless
- deep drawing
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/002—Heat treatment of ferrous alloys containing Cr
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/004—Heat treatment of ferrous alloys containing Cr and Ni
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/005—Heat treatment of ferrous alloys containing Mn
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/007—Heat treatment of ferrous alloys containing Co
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/008—Heat treatment of ferrous alloys containing Si
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0205—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0226—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0236—Cold rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/005—Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/44—Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/46—Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/48—Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/50—Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/52—Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/54—Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/005—Ferrite
Definitions
- the present invention relates to a ferritic stainless steel excellent in the shape and corrosion resistance of a welded portion, which is suitably used for manufacturing a structure that is joined by welding after deep drawing.
- ferritic stainless steel is inferior in terms of press formability compared to austenitic stainless steel, high-tensile steel plate, etc., and its use is restricted for applications that require excellent press formability. I came.
- Patent Document 1 discloses a ferritic stainless steel sheet excellent in deep drawability.
- the component composition and manufacturing conditions of the steel are controlled within an appropriate range, the average r value of the steel sheet after finish annealing is 2.0 or more, the average crystal grain size is 50 ⁇ m or less, and (tensile strength (MPa) ⁇
- MPa tensile strength
- Patent Document 2 discloses a ferritic stainless steel cold-rolled steel sheet excellent in press formability.
- fine precipitation of AlN is prevented to reduce precipitation strengthening by fine AlN, and the local elongation is increased by making the ferrite grain size less than 10 ⁇ m.
- the uniform elongation is improved by setting the average particle size of Cr carbonitride in the ferrite grains to 0.6 ⁇ m or more, and the press formability is improved.
- Patent Document 3 discloses a ferritic stainless steel sheet excellent in deep drawability.
- the ferrite grain having an average ferrite crystal grain size of 40 ⁇ m or less and an orientation difference between ⁇ 111 ⁇ // ND in the cross section composed of the rolling direction and the sheet thickness direction is within 10 °.
- Deep drawability is improved by setting the ratio of crystal grains to 20% or more.
- Patent Document 4 discloses a ferritic stainless steel sheet having excellent deep drawability, secondary work brittleness resistance and corrosion resistance.
- this steel sheet in addition to adding appropriate amounts of Nb and / or Ti and B and V, the average grain size of the steel sheet after finishing annealing, pickling or further skin pass rolling is 40 ⁇ m or less and the surface roughness By making Ra Ra 0.30 ⁇ m or less, both deep drawability and secondary work brittleness resistance are achieved.
- the present invention causes cracks in the vicinity of the weld due to expansion / contraction and deformation due to the thermal effect of welding when welding is performed after deep drawing.
- An object of the present invention is to provide a ferritic stainless steel that is difficult and has excellent corrosion resistance in the vicinity of a weld.
- the present inventors investigated the correlation between the component composition of ferritic stainless steel and cracks and corrosion resistance in the vicinity of the weld, and obtained the following findings (1) to (3). It was. (1) When welding is performed on a region where the strength of the grain boundary is reduced by deep drawing, cracks are generated in the vicinity of the weld due to the expansion and contraction stress generated in the vicinity of the weld due to the heat of welding. (2) Since the addition of Co decreases the thermal expansion coefficient, the expansion and contraction due to the heat of welding decrease, and the deformation of the weld and the stress near the weld decrease. As a result, cracks near the weld are less likely to occur due to the addition of Co. (3) Since addition of B suppresses a decrease in the strength of the crystal grain boundary due to deep drawing, cracks are less likely to occur even if thermal stress is generated in the vicinity of the weld after deep drawing.
- the present invention is configured. That is, the present invention is summarized as follows.
- the Mo content is 0.30 to 1.50%, the Ti content is 0.25 to 0.40%, the Nb content is 0.03 to 0.13%, and the V content is The ferritic stainless steel according to [1], which has 0.02 to 0.13% and the Co content of 0.02 to 0.30%, and satisfies the following formulas (2) and (3).
- Co / B 10 to 150 (2) Nb + V ⁇ 0.22% (3)
- the element symbols in the formulas (2) and (3) mean the content (% by mass) of each element.
- ferritic stainless steel of the present invention is used for manufacturing a structure that is joined by welding after deep drawing, cracks in the vicinity of the weld are caused by expansion and contraction due to the thermal effect of welding and stress due to deformation. A structure that hardly occurs and has excellent corrosion resistance in the vicinity of the weld is obtained.
- the said structure is excellent in the shape of a welded part from the crack being difficult to generate
- the component composition of the ferritic stainless steel of the present invention (first invention) is as follows: C: 0.001 to 0.020%, Si: 0.01 to 0.30%, Mn: 0.01 to 0.00. 50%, P: 0.04% or less, S: 0.01% or less, Cr: 18.0 to 24.0%, Ni: 0.01 to 0.40%, Mo: 0.30 to 3.0 %, Al: 0.01 to 0.15%, Ti: 0.01 to 0.50%, Nb: 0.01 to 0.50%, V: 0.01 to 0.50%, Co: 0.0. Contains 01 to 6.00%, B: 0.0002 to 0.0050%, N: 0.001 to 0.020%, satisfies the following formula (1), and the balance is Fe and inevitable impurities . 0.30% ⁇ Ti + Nb + V ⁇ 0.60% (1)
- the element symbol in the formula (1) means the content (% by mass) of each element.
- composition of the ferritic stainless steel of the present invention is, in mass%, Zr: 0.5% or less, W: 1.0% or less, REM: 0.1% or less. 1 type or 2 or more types may be contained.
- the C content is set to 0.001 to 0.020%.
- the lower limit is preferably 0.002% or more, more preferably 0.003% or more, and further preferably 0.004% or more.
- the upper limit is preferably 0.018% or less. More preferably, it is 0.015% or less. More preferably, it is 0.014% or less.
- Si 0.01 to 0.30% Si is an element useful for deoxidation. The effect is acquired by 0.01% or more of containing. However, if the Si content exceeds 0.30%, the workability deteriorates significantly and is not suitable for deep drawing. Therefore, the Si content is set to 0.01% to 0.30%. About a minimum, Preferably it is 0.05% or more, More preferably, it is 0.08% or more, More preferably, it is 0.11% or more. The upper limit is preferably 0.20% or less, more preferably 0.18% or less, and further preferably 0.16% or less.
- Mn 0.01 to 0.50% Mn has the effect of increasing strength. The effect is acquired by 0.01% or more of containing. On the other hand, if Mn is contained excessively, the workability is remarkably lowered and it is not suitable for deep drawing. Therefore, the Mn content is suitably 0.50% or less. Therefore, the Mn content is set to 0.01 to 0.50%.
- the lower limit is preferably 0.03% or more, more preferably 0.05% or more, and further preferably 0.11% or more.
- the upper limit is preferably 0.40% or less, more preferably 0.30% or less, and still more preferably 0.20% or less. In addition, since Mn is inevitably contained in steel, if the Mn content inevitably contained is in the above range, it is not necessary to add Mn.
- P 0.04% or less
- P is an element inevitably contained in steel, and segregates at the grain boundary after deep drawing to reduce the strength of the grain boundary and to easily cause grain boundary cracking. It is an element. Therefore, the P content is preferably as low as possible, and may not be included from the viewpoint of obtaining the effects of the present invention (may be 0%). Therefore, the P content is set to 0.04% or less. More preferably, it is 0.03% or less.
- S 0.01% or less S is an element inevitably contained in steel. If the S content exceeds 0.01%, the formation of water-soluble sulfides such as CaS and MnS is promoted and the corrosion resistance is lowered. Further, from the viewpoint of obtaining the effects of the present invention, S may not be included (may be 0%). Therefore, the S content is set to 0.01% or less. More preferably, it is 0.005% or less.
- Cr 18.0 to 24.0% Cr is the most important element that determines the corrosion resistance of stainless steel. If the Cr content is less than 18.0%, sufficient corrosion resistance as stainless steel cannot be obtained. In particular, the corrosion resistance at the weld is insufficient. On the other hand, when Cr is excessively contained, workability is lowered and it is not suitable for deep drawing. Therefore, the Cr content is suitably 24.0% or less. Therefore, the Cr content is set to 18.0 to 24.0%.
- the lower limit is preferably 19.0% or more, more preferably 20.0% or more, and further preferably 20.5% or more.
- the upper limit is preferably 23.5% or less, more preferably 22.5% or less, and further preferably 22.0% or less. More preferably, it is 21.5% or less.
- Ni 0.01-0.40%
- Ni is an element that improves the corrosion resistance of stainless steel, and is an element that suppresses the progress of corrosion in a corrosive environment in which a passive film cannot be formed and active dissolution occurs. The effect is acquired by making Ni content 0.01% or more. However, when the Ni content is 0.40% or more, the workability deteriorates, so that it is not suitable for deep drawing. Therefore, the Ni content is set to 0.01 to 0.40%.
- the lower limit is preferably 0.03% or more, more preferably 0.07% or more, and further preferably 0.11% or more.
- the upper limit is preferably 0.35% or less, more preferably 0.25% or less, and still more preferably 0.18% or less.
- Mo 0.30 to 3.0%
- Mo is an element that promotes repassivation of the passive film and improves the corrosion resistance of stainless steel. The effect becomes more remarkable by containing with Cr. The effect of improving the corrosion resistance by Mo is obtained with a content of 0.30% or more. However, if the Mo content exceeds 3.0%, the high-temperature strength increases and the rolling load increases, so the productivity decreases. Therefore, the Mo content is set to 0.30 to 3.0%.
- the lower limit is preferably 0.40% or more, more preferably 0.50% or more, and further preferably 0.60% or more.
- the upper limit is preferably 2.0% or less, more preferably 1.8% or less, and still more preferably 1.5% or less. When excellent workability is required, 0.90% or less is more preferable.
- Al 0.01 to 0.15%
- Al is an element useful for deoxidation, and the effect is obtained when the Al content is 0.01% or more. However, if the Al content exceeds 0.15%, the ferrite crystal grain size tends to increase, and cracks in the vicinity of the welded portion tend to occur. Therefore, the Al content is set to 0.01 to 0.15%.
- the lower limit is preferably 0.02% or more, more preferably 0.03% or more, and still more preferably 0.05% or more.
- the upper limit is preferably 0.10% or less, more preferably 0.08% or less, and still more preferably 0.07% or less.
- Ti 0.01 to 0.50%
- Ti is an element that binds preferentially to C and N and suppresses a decrease in corrosion resistance due to precipitation of Cr carbonitride. The effect is obtained when the Ti content is 0.01% or more. However, when the Ti content exceeds 0.50%, the dissolved C and N are excessively reduced, the strength of the crystal grain boundary after deep drawing becomes insufficient, and cracks are likely to occur near the weld. Therefore, the Ti content is set to 0.01 to 0.50%.
- the lower limit is preferably 0.15% or more, more preferably 0.20% or more, and further preferably 0.25% or more.
- the upper limit is preferably 0.45% or less, more preferably 0.40% or less, and further preferably 0.35% or less.
- carbonitride includes carbide and nitride.
- Nb 0.01 to 0.50%
- Nb is an element that binds preferentially to C and N and suppresses a decrease in corrosion resistance due to precipitation of Cr carbonitride. The effect is obtained when the Nb content is 0.01% or more. However, if the Nb content exceeds 0.50%, the dissolved C and N are excessively reduced, the strength of the crystal grain boundary after deep drawing becomes insufficient, and cracks are likely to occur near the weld. Therefore, the Nb content is set to 0.01 to 0.50%.
- the lower limit is preferably 0.05% or more, more preferably 0.10% or more, and further preferably 0.15% or more.
- the upper limit is preferably 0.40% or less, more preferably 0.30% or less, and still more preferably 0.25% or less.
- V 0.01 to 0.50%
- V is an element that suppresses a decrease in corrosion resistance due to precipitation of Cr carbonitride. The effect is obtained when the V content is 0.01% or more. However, excessive content exceeding 0.50% deteriorates workability and is not suitable for deep drawing. Therefore, the V content is set to 0.01 to 0.50%.
- the lower limit is preferably 0.02% or more, more preferably 0.04% or more, and further preferably 0.06% or more.
- the upper limit is preferably 0.30% or less, more preferably 0.20% or less, and still more preferably 0.10% or less.
- Ti, Nb, and V are all elements that suppress the formation of Cr carbonitride and improve the corrosion resistance of the weld.
- the total of Ti content, Nb content, and V content must be 0.30% or more. is there. Preferably it is 0.35% or more. More preferably, it is 0.37% or more, More preferably, it is 0.40% or more.
- the total content of Ti, Nb, and V exceeds 0.60%, the workability deteriorates and is not suitable for deep drawing. Therefore, the total of Ti content, Nb content, and V content is set to 0.60% or less. Preferably, it is 0.55% or less, more preferably 0.50% or less, and still more preferably 0.45% or less.
- Co 0.01 to 6.00%
- Co content changes the electronic state of the ferritic stainless steel and lowers the thermal expansion coefficient. This reduction in thermal expansion coefficient mitigates the expansion and deformation of the weld caused by the heat of welding. In the vicinity of the welded portion after deep drawing, cracks may occur due to stress caused by thermal expansion and deformation due to welding.
- the decrease in the thermal expansion coefficient due to the inclusion of Co alleviates the stress load applied to the vicinity of the weld due to the thermal effect and deformation of welding, and suppresses the occurrence of cracks. The effect is obtained when the Co content is 0.01% or more. On the other hand, if the Co content exceeds 6.00%, the workability deteriorates and is not suitable for deep drawing.
- the Co content is set to 0.01 to 6.00%.
- the lower limit is preferably 0.03% or more, more preferably 0.04% or more, and further preferably 0.05% or more.
- the upper limit is preferably 3.00% or less, more preferably 2.50% or less, and still more preferably 2.00% or less.
- B 0.0002 to 0.0050% B is an important element for the present invention.
- P is segregated at the crystal grain boundaries of the wall surface portion of the deep drawing by deep drawing, and the crystal boundaries become brittle. Therefore, a crack may occur along the deep drawing direction after excessive deep drawing. In particular, the tendency is remarkable in the component which reduced C and N which dissolved in Ti and Nb.
- stress loading due to the thermal effect of welding may cause cracks.
- the inclusion of B suppresses the segregation of P by deep drawing and strengthens the grain boundary, thereby suppressing the occurrence of such cracks. This effect is acquired by containing B 0.0002% or more.
- the B content is set to 0.0002 to 0.0050%.
- the lower limit is preferably 0.0003% or more, more preferably 0.0004% or more, and further preferably 0.0006% or more.
- the upper limit is preferably 0.0020% or less, more preferably 0.0015% or less, and still more preferably 0.0010% or less.
- N 0.001 to 0.020%
- N has the effect of increasing the strength of the steel by solid solution strengthening. The effect is obtained when the N content is 0.001% or more. However, when the N content exceeds 0.020%, the workability deteriorates remarkably and is not suitable for deep drawing. Therefore, the N content is set to 0.001 to 0.020%.
- the lower limit is preferably 0.002% or more, more preferably 0.003% or more, and further preferably 0.007% or more.
- the upper limit is preferably 0.018% or less, more preferably 0.015% or less, and still more preferably 0.013% or less.
- ferritic stainless steel of the present invention may contain the following components (arbitrary components).
- Zr 1.0% or less
- Zr combines with C and N and has an effect of suppressing sensitization.
- the effect is acquired by making Zr content 0.01% or more.
- it is 0.03% or more, More preferably, it is 0.06% or more.
- inclusion of excess Zr reduces workability.
- the content of Zr is set to 1.0% or less.
- it is 0.60% or less, More preferably, it is 0.30% or less.
- W 1.0% or less W, like Mo, has the effect of improving corrosion resistance.
- the effect is acquired by making W content 0.01% or more.
- W content 0.01% or more.
- it is 0.10% or more, more preferably 0.30% or more.
- the W content is 1.0% or less.
- it is 0.80% or less, More preferably, it is 0.60% or less.
- REM 0.1% or less REM improves oxidation resistance, suppresses the formation of oxide scale, and improves the corrosion resistance of welds.
- the effect is acquired by making REM content 0.001% or more.
- it is 0.004% or more, More preferably, it is 0.006% or more.
- the content of REM is set to 0.1% or less.
- it is 0.04% or less, More preferably, it is 0.02% or less.
- the remainder other than the above is Fe and inevitable impurities.
- Inevitable impurities include Zn: 0.03% or less, Sn: 0.3% or less, Cu: less than 0.1%, and the like.
- Cu has the effect of increasing the passive state maintaining current to make the passive film unstable and lowering the corrosion resistance. From this viewpoint, it is better not to contain Cu. When Cu is contained, its content is suitably less than 0.1%. Therefore, the content of Cu as an impurity is set to less than 0.1% as described above.
- the method for producing the ferritic stainless steel of the present invention is not particularly limited. An example of a suitable manufacturing method is shown below.
- hot rolling is performed so that the finishing temperature is 700 to 1000 ° C., the winding temperature is 400 to 800 ° C., and the plate thickness is 2.0 to 5.0 mm. .
- the hot rolled steel strip thus produced is annealed at a temperature of 800 to 1100 ° C. and pickled.
- cold rolling is performed to obtain a sheet thickness of 0.5 to 2.0 mm, and cold rolling sheet annealing is performed at a temperature of 700 to 1050 ° C.
- pickling is performed to remove scale. Skin pass rolling may be performed on the cold-rolled steel strip from which the scale has been removed.
- the Mo content, Ti content, Nb content, V content, and Co content are adjusted to specific ranges, and the expressions (2) and (3) described below are used. If it is satisfied, there is an effect that roughness of the processed skin is further reduced.
- the invention (second invention) having this effect will be described below.
- Ridging is a wrinkled wrinkle formed when ferritic stainless steel is press-formed. These wrinkles not only detract from the aesthetics of stainless steel, but cracks may occur along these wrinkles during severe processing.
- the coarse columnar structure generated in the casting stage is not sufficiently refined by hot rolling and recrystallization, and forms a texture with similar crystal orientation. It is said that wrinkle-like wrinkles are formed by showing similar deformation behavior. Therefore, in order to suppress ridging, it is important to decrease the ratio of the columnar structure in the cast structure and increase the ratio of the equiaxed crystal structure.
- JP 2000-144342A discloses ferritic stainless steel and ferritic stainless steel slabs excellent in formability.
- This invention reduces solute Al and disperses Al inclusions in molten steel.
- Ti-based inclusions are dispersed and precipitated in the molten steel with Al-based inclusions as nuclei, and become equiaxed crystal generation sites, so that the equiaxed crystal ratio of the cast structure increases.
- there is a problem that it is very difficult in actual operation to control the solid solution Al to 0.015% by mass or less after adding a sufficient amount of Al for deoxidation.
- Orange peel is rough skin caused by coarse crystal grains, and miniaturization of crystal grains is effective as a countermeasure.
- 2003-138349 discloses a ferritic stainless steel sheet excellent in deep drawability.
- the present invention controls the steel component composition and production conditions within an appropriate range, the steel sheet after finish annealing has an average r value of 2.0 or more, an average crystal grain size of 50 ⁇ m or less, and (tensile strength (MPa) ⁇
- MPa tensile strength
- JP-A-2002-285300 discloses a ferritic stainless steel sheet and a manufacturing method thereof.
- a grain size number of 6.0 or more is achieved by performing cold rolling twice or more including intermediate annealing.
- the method of performing cold rolling twice has a problem that the production load is high and the production takes time.
- the present invention (second invention) that adjusts the Mo content, Ti content, Nb content, V content and Co content to specific ranges and satisfies the formulas (2) and (3) described below is Solve the problem. That is, the second invention is easy to manufacture, suitable for structures formed by processing such as deep drawing, overhanging and bending, and is also used for applications where surface properties after processing are required. It is a ferritic stainless steel that is suitable for roughing the work surface.
- the knowledge gained in completing the second invention is as follows. We examined the effects of Co, B and other elements added to the ferritic stainless steel on the equiaxed crystal ratio of the cast structure and the grain size of the final product. I got the knowledge. (1) By appropriately controlling the contents of Ti, Nb, and V, a low recrystallization temperature can be realized without reducing the corrosion resistance of the welded portion, and the control of the crystal grain size becomes easy. (2) The equiaxed crystal ratio of the cast structure is improved by adjusting the contents of Co and B to an appropriate range. Moreover, the growth of crystal grains by hot rolling annealing was suppressed, and the crystal grains were refined.
- Mo 0.30 to 1.50%
- the Mo content of the second invention is as described above and is narrower than the Mo content of the first invention. Therefore, in the second invention, Mo also has the technical significance of Mo in the first invention.
- the technical significance of Mo in the second invention is as follows. Mo is an element that promotes repassivation of the passive film and improves the corrosion resistance of stainless steel. The effect becomes more remarkable by containing with Cr. The effect of improving the corrosion resistance by Mo is obtained with a content of 0.30% or more. However, when the Mo content exceeds 1.50%, the strength increases, the workability decreases, and rough skin tends to occur. Therefore, the Mo content is set to 0.30 to 1.50%.
- the lower limit is preferably 0.40% or more, more preferably 0.50% or more, and further preferably 0.55% or more.
- the upper limit is preferably 1.40% or less, more preferably 0.90% or less, and still more preferably 0.70% or less.
- Ti 0.25 to 0.40%
- the Ti content of the second invention is as described above, and is narrower than the Ti content of the first invention. Therefore, in the second invention, Ti also has the technical significance of Ti in the first invention.
- the technical significance of Ti in the second invention is as follows. Ti, like Nb and V, is an element that combines with solid solution C and N to form carbonitride and suppress sensitization.
- TiN is crystallized from the molten steel to become an equiaxed crystal nuclei, and is an element that improves the equiaxed crystal ratio of the solidified structure. The effect of promoting crystallization of equiaxed crystals can be obtained when Ti is 0.25% or more.
- the Ti content is set to 0.25 to 0.40%.
- the lower limit is preferably 0.27% or more, more preferably 0.29% or more, and further preferably 0.31% or more.
- the upper limit is preferably 0.38% or less, more preferably 0.35% or less, and further preferably 0.34% or less.
- Nb 0.03-0.13%
- V 0.02 to 0.13%
- the Nb and V contents of the second invention are as described above, and are narrower than the Nb and V contents of the first invention. Therefore, in the second invention, Nb and V also have the technical significance of Nb and V in the first invention.
- the technical significance of Nb and V in the second invention is as follows. Nb and V are both elements that form carbonitride by combining with solute C and N. By fixing the solid solutions C and N, sensitization of the welded portion is suppressed, and the corrosion resistance is improved. In particular, when all of Ti, Nb and V are contained, C and N can be rendered more harmless due to the difference in the precipitation temperature.
- the Nb content needs to be 0.03% or more.
- the Nb content is set to 0.03% to 0.13%.
- the lower limit is preferably 0.06% or more, more preferably 0.07% or more, and further preferably 0.08% or more.
- the upper limit is preferably 0.11% or less, more preferably 0.10% or less, and still more preferably 0.09% or less.
- the V content is set to 0.02 to 0.13%.
- the lower limit is preferably 0.04% or more, more preferably 0.06% or more, and further preferably 0.07% or more.
- the upper limit is preferably 0.11% or less, more preferably 0.10% or less, and further preferably 0.08% or less.
- Nb + V is set to 0.22% or less. Preferably it is 0.20% or less, More preferably, it is 0.18% or less, More preferably, it is 0.16% or less.
- the lower limit of Nb + V is not particularly limited, but is preferably 0.08% or more, and more preferably 0.10% or more.
- the element symbol of “Nb + V” in the formula (3) means the content (% by mass) of each element.
- Co and B also have the technical significance of Co and B in the first invention.
- the technical significance of Co and B in the second invention is as follows.
- the gist of the processing surface roughness reduction method is to increase the equiaxed crystal ratio by precipitating (Cr, Fe) 2 B in a moderately dispersed state at the grain boundaries in the solidification stage of the casting process. It is an important element for the invention.
- (Cr, Fe) 2 B that is dispersed and precipitated is considered to have an effect of suppressing crystal grain growth during hot rolling annealing.
- the content of B is set to 0.0002 to 0.0050%.
- the lower limit is preferably 0.0003% or more, more preferably 0.0004% or more, and still more preferably 0.0006% or more.
- the upper limit is preferably 0.0020% or less, more preferably 0.0018% or less, and still more preferably 0.0015% or less.
- Co is considered to have an effect of suppressing aggregation of (Cr, Fe) 2 B and maintaining an appropriate dispersion state. As a result, it is considered that the growth of the columnar crystal structure is suppressed and the roughening of the processed skin is reduced. Therefore, Co is an important element for the present invention. This effect is obtained when the Co content is 0.02% or more. On the other hand, when Co is contained exceeding 0.30%, workability is lowered and cracking is likely to occur. Therefore, the Co content is set to 0.02 to 0.30%.
- the lower limit is preferably 0.03% or more, more preferably 0.04% or more, and further preferably 0.05% or more.
- the upper limit is preferably 0.20% or less, more preferably 0.10% or less, and further preferably 0.08% or less.
- Co / B is 150 or less. Therefore, Co / B is set to 10 to 150.
- the lower limit is preferably 20 or more, more preferably 30 or more, and still more preferably 40 or more.
- the upper limit is preferably 120 or less, more preferably 100 or less, and still more preferably 80 or less.
- a slab having a thickness of 100 to 300 mm is produced by continuous casting at a molten steel superheating degree ⁇ T of 20 to 80 ° C. and a casting speed of 0.4 to 1.1 m / min. .
- the obtained slab is heated to 1100 to 1300 ° C. and then hot rolled to a plate thickness of 2.0 to 5.0 mm with a finishing temperature of 600 to 900 ° C. and a winding temperature of 400 to 800 ° C.
- the rolling reduction of the final rolling is 15% or more.
- the finishing temperature is preferably 600 to 750 ° C., and the rolling reduction of the final rolling is preferably 40% or more.
- the winding temperature is preferably 400 to 450 ° C.
- the hot rolled steel strip thus produced is annealed at a temperature of 800 to 980 ° C.
- the soaking time in annealing is suitably 10 to 300 s.
- the annealing temperature is preferably low in the temperature range where recrystallization is possible, and 800 to 900 ° C. is preferable.
- the annealing time is preferably short, and is preferably 10 to 180 s.
- pickling is performed, and then cold rolling is performed to produce a cold rolled steel strip having a thickness of 0.3 to 3.0 mm.
- the obtained cold-rolled steel strip is subjected to cold rolling annealing at a temperature of 700 to 1050 ° C.
- pickling is performed to remove scale. You may perform the descaling process by mechanical actions, such as skin pass rolling and shot blasting, and the grinding / polishing process by a grinder or a polishing belt in the middle of these manufacturing steps and finally.
- Stainless steel shown in Table 1 was vacuum-melted in a 100 kg steel ingot, heated to 1200 ° C., hot-rolled to a thickness of 4 mm, annealed in the range of 800 to 1000 ° C., and scale was removed by pickling. Further, it was cold-rolled to a thickness of 0.8 mm, annealed in the range of 800 to 950 ° C., pickled, and used as a test material.
- a ⁇ 72 mm disk was collected from the prepared test material, and four-stage cylindrical deep drawing was performed using ⁇ 49 mm, ⁇ 35 mm, ⁇ 26 mm, and ⁇ 22 mm punches (all with a shoulder radius of 2 mm) in order.
- the ears were excised so as to be 50 mm (FIG. 1A).
- a ⁇ 5 mm hole was drilled in the center of the deep drawing bottom to produce a cylindrical deep drawing test piece.
- a ⁇ 23 mm disc was joined by TIG welding so as to close the ⁇ 22 mm opening of the test piece (FIG. 1B).
- the welding conditions were a welding current of 100 A and a welding speed of 60 cm / min.
- the shielding gas was Ar, and the flow rate was 20 L / min.
- water was poured from a hole with a diameter of 5 mm, the inside of the test piece was filled with water, and a pressure of 10 atm was applied to check for cracks.
- the vicinity of the welded portion of the cylindrical deep-drawn wall surface was observed with an optical microscope at a magnification of 200 times (observation of the crack observation position in FIG. 1B), and the length of the crack I confirmed.
- the results are shown in Table 2 with “ ⁇ ” (failure) indicating that the crack was 0.5 mm or more in length and “ ⁇ ” (pass) indicating that there was no crack. Note that no cracks were observed in any of the specimens on the fusion line.
- the corrosion resistance of the welded part as-welded was evaluated using a test piece that was confirmed for cracks.
- a neutral salt spray cycle test based on JIS H8502 was conducted for 5 cycles, and the presence or absence of corrosion in the vicinity of the welded portion (in the range from the weld bead center to 5 mm from the fusion line) was visually confirmed.
- the test piece was placed in the corrosion test tank so that the hole of ⁇ 5 mm was down. Table 5 shows the case where corrosion having a major axis of 1 mm or more occurred in the vicinity of the welded part in a 5-cycle test as “x” (failed) and the case where corrosion did not occur as “ ⁇ ” (passed).
- No. 12, No. 13, and No. 14 were all corroded from cracks in the vicinity of the weld. Since No. 16 did not satisfy the formula (1), corrosion occurred from the weld bead. In No. 17, the Cr content was small, and corrosion occurred from the weld bead and the temper portion. Since No. 18 did not contain Nb, corrosion occurred from the weld bead. Since No. 19 did not contain Ti, corrosion occurred from the weld bead. Since No. 20 did not contain V, corrosion occurred from the weld bead.
- Stainless steel having the components shown in Table 3 was continuously cast under the conditions of a superheat of molten steel of 60 ° C. and a casting speed of 0.6 m / min to produce a slab having a thickness of 200 mm.
- the produced slab was heated to 1200 ° C., and then hot-rolled to a sheet thickness of 4 mm under conditions of a finishing temperature of 700 ° C., a winding temperature of 400 ° C., and a rolling reduction of 30%, and a soaking time of 60 s at 950 ° C. Annealed to become. Thereafter, it was cold-rolled to a thickness of 0.8 mm, annealed at 900 ° C. so as to have a soaking time of 30 s, and after removing the surface scale by polishing, it was used as a test material as a finish of Emery polishing paper # 600.
- a ⁇ 72 mm disk was collected from the prepared test material, and four-stage cylindrical deep drawing was performed using ⁇ 49 mm, ⁇ 35 mm, ⁇ 26 mm, and ⁇ 22 mm punches (all with a shoulder radius of 2 mm) in order, and the height after processing was The ears were excised so as to be 50 mm (FIG. 1A).
- the surface of 5 mm in the circumferential direction at a position of 10 mm from the opening is selected so that each measurement position is 90 ° on the circumference, and the surface is measured using a laser microscope. was measured (measurement at the unevenness measurement position in FIG. 1A).
- a hole of ⁇ 5 mm was made in the center of the deep drawing bottom to produce a cylindrical deep drawing test piece.
- a ⁇ 23 mm disc was joined by TIG welding so as to close the ⁇ 22 mm opening of the test piece (FIG. 1B).
- the welding conditions were a welding current of 100 A and a welding speed of 60 cm / min.
- the shielding gas was Ar, and the flow rate was 20 L / min.
- water was poured from a hole with a diameter of 5 mm, the inside of the test piece was filled with water, and a pressure of 10 atm was applied to check for cracks.
- the present invention it is possible to obtain a ferritic stainless steel excellent in the shape and corrosion resistance of a welded portion, which is suitable for use in a structure that is joined by welding after deep drawing.
- the ferritic stainless steel obtained by the present invention is suitable for applications in which a structure is produced by welding after deep drawing, for example, electronic parts such as battery cases, and automotive parts such as converters.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Abstract
Description
(1)深絞り加工により結晶粒界の強度が低下した領域に対して溶接を行うと、溶接の熱により溶接部近傍に発生した膨張および収縮の応力によって溶接部近傍に割れが発生する。
(2)Coの添加は熱膨張係数を減少させるため、溶接の熱による膨張および収縮が減少し、溶接部の変形および溶接部近傍での応力が低下する。その結果、Co添加によって溶接部近傍の割れが発生しにくくなる。
(3)Bの添加は深絞り加工による結晶粒界の強度の低下を抑制するため、深絞り加工後の溶接部近傍に熱応力が発生しても割れが発生しにくくなる。
0.30%≦Ti+Nb+V≦0.60% (1)
(1)式における元素記号は各元素の含有量(質量%)を意味する。
Co/B:10~150 (2)
Nb+V≦0.22% (3)
(2)式、(3)式における元素記号は、各元素の含有量(質量%)を意味する。
0.30%≦Ti+Nb+V≦0.60% (1)
(1)式における元素記号は各元素の含有量(質量%)を意味する。
Cの含有量が多いと強度が向上し、少ないと加工性が向上する。適度な強度を得るためには0.001%以上の含有が適当である。しかし、C含有量が0.020%を超えると加工性の低下が顕著となり、深絞り加工に適さない。よって、C含有量は0.001~0.020%とした。下限について好ましくは、0.002%以上、より好ましくは0.003%以上、さらに好ましくは0.004%以上である。
上限について好ましくは、0.018%以下である。より好ましくは0.015%以下である。さらに好ましくは0.014%以下である。なお、不可避的に含まれるCのみでC含有量が上記範囲になる場合には、Cを積極的に添加する必要はない。
Siは脱酸に有用な元素である。その効果は0.01%以上の含有で得られる。しかし、Si含有量が0.30%を超えると、加工性の低下が顕著となり、深絞り加工には適さない。よって、Siの含有量は0.01%~0.30%とした。下限について、好ましくは0.05%以上、より好ましくは0.08%以上、さらに好ましくは0.11%以上である。上限について好ましくは0.20%以下、より好ましくは0.18%以下、さらに好ましくは0.16%以下である。
Mnには強度を高める効果がある。その効果は0.01%以上の含有で得られる。一方、Mnを過剰に含有すると加工性が顕著に低下し、深絞り加工には適さなくなる。したがって、Mn含有量は0.50%以下が適当である。よって、Mnの含有量は0.01~0.50%とした。下限に付いて好ましくは0.03%以上、より好ましくは0.05%以上、さらに好ましくは0.11%以上である。
上限について好ましくは0.40%以下、より好ましは0.30%以下、さらに好ましくは0.20%以下である。なお、Mnは鋼に不可避的に含まれるため、不可避的に含まれるMn含有量が上記範囲にあれば、Mnを添加する必要はない。
Pは鋼に不可避的に含まれる元素であり、深絞り加工後の結晶粒界に偏析して、結晶粒界の強度を低下させ、粒界割れを発生しやすくする元素である。よって、P含有量は少ないほど好ましく、本発明の効果を得る観点からは含まなくてもよい(0%でもよい)。そこで、P含有量は0.04%以下とした。より好ましくは0.03%以下である。
Sは鋼に不可避的に含まれる元素である。S含有量が0.01%を超えるとCaSやMnSなどの水溶性硫化物の形成が促進され耐食性が低下する。また、本発明の効果を得る観点からはSを含まなくてもよい(0%でもよい)。よって、S含有量は0.01%以下とした。より好ましくは0.005%以下である。
Crはステンレス鋼の耐食性を決定付ける最も重要な元素である。Cr含有量が18.0%未満ではステンレス鋼として十分な耐食性が得られない。特に溶接部での耐食性が不十分となる。一方で、過剰にCrを含有すると、加工性が低下し、深絞り加工に適さない。そこで、Cr含有量は24.0%以下が適当である。よって、Cr含有量は18.0~24.0%とした。下限について好ましくは19.0%以上、より好ましくは20.0%以上、さらに好ましくは20.5%以上である。上限について好ましくは23.5%以下、より好ましくは22.5%以下、さらに好ましくは22.0%以下である。さらに好ましくは21.5%以下である。
Niはステンレス鋼の耐食性を向上させる元素であり、不動態皮膜が形成できず活性溶解が起こる腐食環境において腐食の進行を抑制する元素である。その効果はNi含有量を0.01%以上にすることで得られる。しかし、Ni含有量が0.40%以上になると、加工性が低下するため、深絞り加工には適さない。よって、Niの含有量は0.01~0.40%とした。下限について好ましくは0.03%以上、より好ましくは0.07%以上、さらに好ましくは0.11%以上である。
上限について好ましくは、0.35%以下、より好ましくは0.25%以下、さらに好ましくは0.18%以下である。
Moは不動態皮膜の再不動態化を促進し、ステンレス鋼の耐食性を向上する元素である。Crとともに含有することによってその効果はより顕著となる。Moによる耐食性向上効果は0.30%以上の含有で得られる。しかし、Mo含有量が3.0%を超えると高温強度が増加し、圧延負荷が大きくなるため製造性が低下する。よって、Mo含有量は0.30~3.0%とした。下限について好ましくは0.40%以上、より好ましくは0.50%以上、さらに好ましくは0.60%以上である。上限について好ましくは2.0%以下、より好ましくは1.8%以下、さらに好ましくは1.5%以下である。優れた加工性が必要とされる場合は0.90%以下がさらに好ましい。
Alは脱酸に有用な元素であり、その効果は、Alの含有量が0.01%以上で得られる。しかし、Alの含有量が0.15%を超えるとフェライト結晶粒径が増大しやすくなり、溶接部近傍の割れが起こりやすくなる。よって、Al含有量は0.01~0.15%とした。下限について好ましくは0.02%以上、より好ましくは0.03%以上、さらに好ましくは0.05%以上である。上限について好ましくは0.10%以下、より好ましくは0.08%以下、さらに好ましくは0.07%以下である。
TiはC、Nと優先的に結合してCr炭窒化物の析出による耐食性の低下を抑制する元素である。その効果は、Ti含有量が0.01%以上で得られる。しかし、Ti含有量が0.50%を超えると固溶したC、Nが過度に減少し、深絞り後の結晶粒界の強度が不十分となり、溶接部近傍で割れが発生しやすくなる。よって、Ti含有量は0.01~0.50%とした。下限について好ましくは0.15%以上、より好ましくは0.20%以上、さらに好ましくは0.25%以上である。上限について好ましくは0.45%以下、より好ましくは0.40%以下、さらに好ましくは0.35%以下である。なお、本明細書において、炭窒化物には、炭化物、窒化物も含む。
NbはC、Nと優先的に結合してCr炭窒化物の析出による耐食性の低下を抑制する元素である。その効果は、Nb含有量が0.01%以上で得られる。しかし、Nb含有量が0.50%を超えると固溶したC、Nが過度に減少し、深絞り後の結晶粒界の強度が不十分となり、溶接部近傍で割れが発生しやすくなる。よって、Nbの含有量は0.01~0.50%とした。下限について好ましくは、0.05%以上、より好ましくは0.10%以上、さらに好ましくは0.15%以上である。上限について好ましくは0.40%以下、より好ましくは0.30%以下、さらに好ましくは0.25%以下である。
Vは、Cr炭窒化物の析出による耐食性の低下を抑制する元素である。その効果は、V含有量が0.01%以上で得られる。しかし、0.50%を超える過剰な含有は加工性を低下させ、深絞り加工には適さない。よって、V含有量は0.01~0.50%とした。下限について好ましくは0.02%以上、より好ましくは0.04%以上、さらに好ましくは0.06%以上である。上限について好ましくは0.30%以下、より好ましくは0.20%以下、さらに好ましくは0.10%以下である。
上述のようにTi、Nb、VはいずれもCr炭窒化物の生成を抑制し、溶接部の耐食性を向上させる元素である。Cr炭窒化物析出による鋭敏化を抑制し、溶接部の耐食性を十分なものとするためにはTi含有量、Nb含有量、V含有量の合計が0.30%以上になることが必要である。好ましくは0.35%以上である。より好ましくは0.37%以上、さらに好ましくは0.40%以上である。加えて、溶接部の冷却速度は通常、非常に速いため、Ti、Nb、Vのいずれか単独あるいは2種のみの含有では、それぞれの元素の炭窒化物の析出しやすい温度域を急速に通過してしまい、C、Nを完全には無害化しきれない場合がある。そのため、Ti、Nb、Vのいずれの元素も0.01%以上の含有が必要である。
Coは本発明にとって重要な元素である。Coの含有はフェライト系ステンレス鋼の電子状態を変化させ、熱膨張係数を低下させる。この熱膨張係数の低下は溶接の熱によって引き起こされる溶接部の膨張および変形を緩和する。深絞り加工後の溶接部近傍では、溶接による熱膨張および変形によって生じる応力によって割れが発生する場合がある。Coの含有による熱膨張係数の低下は、溶接の熱影響および変形によって溶接部近傍にかかる応力負荷を緩和し、割れの発生を抑制する。その効果はCo含有量が0.01%以上で得られる。一方で、Co含有量が6.00%を超えると加工性が低下するため、深絞り加工には適さない。よってCo含有量は0.01~6.00%とした。下限について好ましくは0.03%以上、より好ましくは0.04%以上、さらに好ましくは0.05%以上である。上限について好ましくは3.00%以下、より好ましくは2.50%以下、さらに好ましくは2.00%以下である。
Bは本発明にとって重要な元素である。高純度のフェライト系ステンレス鋼では深絞り加工によって、深絞り加工の壁面部分の結晶粒界にPが偏析し、結晶粒界が脆くなる。そのため、過度の深絞り加工を行った後に、深絞り方向に沿って割れが発生する場合がある。特にTiやNbによって固溶したC、Nを低減した成分でその傾向が顕著である。深絞り加工によって割れが発生しやすくなった結晶粒界では、溶接の熱影響による応力負荷が割れを発生させる場合がある。Bの含有は深絞り加工によるPの偏析を抑制し結晶粒界を強化して、このような割れの発生を抑制する。この効果はBを0.0002%以上含有することで得られる。一方で、B含有量が0.0050%を超えると加工性が低下するため、深絞り加工には適さない。よって、B含有量は0.0002~0.0050%とした。下限について好ましくは0.0003%以上、より好ましくは0.0004%以上、さらに好ましくは0.0006%以上である。上限について好ましくは0.0020%以下、より好ましくは0.0015%以下、さらに好ましくは0.0010%以下である。
Nは、固溶強化により鋼の強度を上昇させる効果がある。その効果はN含有量が0.001%以上で得られる。しかし、N含有量が0.020%を超えると加工性の低下が顕著となり、深絞り加工に適さない。よって、N含有量は0.001~0.020%とした。下限について好ましくは0.002%以上、より好ましくは0.003%以上、さらに好ましくは0.007%以上である。上限について好ましくは0.018%以下、より好ましくは0.015%以下、さらに好ましくは0.013%以下である。
ZrはC、Nと結合して、鋭敏化を抑制する効果がある。その効果は、Zr含有量を0.01%以上にすることで得られる。好ましくは0.03%以上、より好ましくは0.06%以上である。しかし、過剰のZrの含有は加工性を低下させる。また、Zrは価格が非常に高い元素であるため、過剰のZr含有はコストの増大を招く。よって、Zrの含有量は1.0%以下とした。好ましくは0.60%以下、より好ましくは0.30%以下である。
WはMoと同様に耐食性を向上させる効果がある。その効果はW含有量を0.01%以上にすることで得られる。好ましくは0.10%以上、より好ましくは0.30%以上である。しかし、過剰のWの含有は強度を上昇させ、製造性を低下させる。よって、W含有量は1.0%以下とする。好ましくは0.80%以下、より好ましくは0.60%以下である。
REMは耐酸化性を向上して、酸化スケールの形成を抑制し、溶接部の耐食性を向上する。その効果はREM含有量を0.001%以上にすることで得られる。好ましくは0.004%以上、より好ましくは0.006%以上である。しかし、過剰にREMを含有すると、酸洗性などの製造性を低下させるうえ、コストの増大を招く。よってREMの含有量は0.1%以下とした。好ましくは0.04%以下、より好ましくは0.02%以下である。
(1)Ti、Nb、Vの含有量を適切に制御することで、溶接部の耐食性を低下させることなく、低い再結晶温度を実現でき、結晶粒径の制御が容易となる。
(2)CoおよびBの含有量を適正な範囲に調整することで、鋳造組織の等軸晶率が向上する。また、熱延焼鈍による結晶粒の成長が抑制され、結晶粒が微細化した。
その結果、(1)、(2)の知見に加えて、Moの含有量も調整することで、加工による肌荒れが低減した。以下、第二発明における、Mo含有量、Ti含有量、Nb含有量、V含有量、Co含有量、(2)式、(3)式について説明する。また、B含有量は第一発明と同様であるが、(3)式にBが含まれることから明らかなように、Bは第二発明においても重要である。そこで、以下では、第二発明におけるBについても説明する。また、第一発明の説明と同様に、「%」は「質量%」を意味する。なお、Mo含有量、Ti含有量、Nb含有量、V含有量、Co含有量、B含有量以外の成分については、任意成分も含めて、第一発明と同様であるため説明を省略する。また、第二発明においても、(1)式を満たす必要があるが、これについても第一発明と同様のため説明を省略する。
第二発明のMo含有量は上記の通りであり、第一発明のMo含有量よりも狭い。したがって、第二発明において、Moは、第一発明でのMoの技術的意義をも有する。第二発明におけるMoの技術的意義は以下の通りである。Moは不動態皮膜の再不動態化を促進し、ステンレス鋼の耐食性を向上する元素である。Crとともに含有することによってその効果はより顕著となる。Moによる耐食性向上効果は0.30%以上の含有で得られる。しかし、Mo含有量が1.50%を超えると強度が増加し、加工性が低下して肌荒れが発生しやすくなる。よって、Moの含有量は0.30~1.50%とした。下限について好ましくは0.40%以上、より好ましくは0.50%以上、さらに好ましくは0.55%以上である。上限について好ましくは1.40%以下、より好ましくは0.90%以下、さらに好ましくは0.70%以下である。
第二発明のTi含有量は上記の通りであり、第一発明のTi含有量よりも狭い。したがって、第二発明において、Tiは、第一発明でのTiの技術的意義をも有する。第二発明におけるTiの技術的意義は以下の通りである。TiはNb、Vと同様に固溶C、Nと結合して炭窒化物を形成して鋭敏化を抑制する元素である。加えて、溶鋼中からTiNを晶出して等軸晶の晶出核となり、凝固組織の等軸晶率を向上する元素である。等軸晶の晶出促進効果は、Tiが0.25%以上で得られる。しかし、含有量が0.40%を超えると加工部の脆化が促進され、加工によって割れが発生しやすくなり、加工性が低下する。よって、Tiの含有量は0.25~0.40%とした。下限について好ましくは0.27%以上、より好ましくは0.29%以上、さらに好ましくは0.31%以上である。上限について好ましくは0.38%以下、より好ましくは0.35%以下、さらに好ましくは0.34%以下である。
V:0.02~0.13%、
Nb+V≦0.22% (3)式
第二発明のNbおよびV含有量は上記の通りであり、第一発明のNbおよびV含有量よりも狭い。したがって、第二発明において、NbおよびVは、第一発明でのNbおよびVの技術的意義をも有する。第二発明におけるNbおよびVの技術的意義は以下の通りである。NbとVはいずれも固溶C、Nと結合して炭窒化物を形成する元素である。固溶CおよびNが固定されることで溶接部の鋭敏化が抑制され、耐食性を向上させる。特にTi、NbおよびVがいずれも含有されると、その析出温度の違いから、より適切にCおよびNの無害化を行える。その効果を得るためには、Nb含有量は0.03%以上が必要である。しかし、Nb含有量が0.13%を超えると再結晶が阻害され、適切な組織を得るためにより高い焼鈍温度が必要となり、微細な組織の形成が困難となり、加工時に肌荒れが発生しやすくなる。よって、Nbの含有量は0.03~0.13%とした。下限について好ましくは0.06%以上、より好ましくは0.07%以上、さらに好ましくは0.08%以上である。上限について好ましくは0.11%以下、より好ましくは0.10%以下、さらに好ましくは0.09%以下である。
Co:0.02~0.30%
Co/B:10~150 (2)式
第二発明のCo含有量は上記の通りであり、第一発明のCo含有量よりも狭い。また、B含有量は第一発明の範囲と同様である。したがって、第二発明において、CoおよびBは、第一発明でのCoおよびBの技術的意義をも有する。第二発明におけるCoおよびBの技術的意義は以下の通りである。加工肌荒れ低減手法の要旨は、鋳造工程の凝固段階において、結晶粒界に(Cr,Fe)2Bを適度に分散した状態で析出させ、等軸晶率を増加させることであり、Bは本発明にとって重要な元素である。また、分散析出した(Cr,Fe)2Bには熱延焼鈍の際の結晶粒成長を抑制する効果もあると考えられる。このように、集合組織の発達を抑制しつつ、結晶粒の成長を抑制することで、本発明では加工肌荒れを低減している。この効果は、B含有量が0.0002%以上で得られる。一方で、0.0050%超のBの含有は加工性を低下させ、割れが発生しやすくなる。よって、Bの含有量は0.0002~0.0050%とした。下限について0.0003%以上が好ましく、より好ましくは0.0004%以上、さらに好ましくは0.0006%以上である。上限について好ましくは0.0020%以下、より好ましくは0.0018%以下、さらに好ましくは0.0015%以下である。
溶接条件は、溶接電流100A、溶接速度60cm/minとした。シールドガスはArを用い、流量は20L/minとした。溶接後、24h経過した後にφ5mmの穴から水を入れて、試験片内部を水で満たし、10気圧の圧力をかけて割れの有無を確認した。その後、光学顕微鏡を用いて200倍の倍率で円筒深絞り壁面の溶接部近傍(フュージョンラインから2~5mmの位置)を観察し(図1(b)の割れ観察位置の観察)、割れの長さを確認した。長さが0.5mm以上の割れのあったものを「×」(不合格)、割れのなかったものを「○」(合格)として結果を表2に示す。なお,フュージョンラインには、いずれの試験片も割れは認められなかった。
Claims (3)
- 質量%で、
C:0.001~0.020%、
Si:0.01~0.30%、
Mn:0.01~0.50%、
P:0.04%以下、
S:0.01%以下、
Cr:18.0~24.0%、
Ni:0.01~0.40%、
Mo:0.30~3.0%、
Al:0.01~0.15%、
Ti:0.01~0.50%、
Nb:0.01~0.50%、
V:0.01~0.50%、
Co:0.01~6.00%、
B:0.0002~0.0050%、
N:0.001~0.020%を含有し、
下記(1)式を満足し、残部がFeおよび不可避的不純物である成分組成を有するフェライト系ステンレス鋼。
0.30%≦Ti+Nb+V≦0.60% (1)
(1)式における元素記号は各元素の含有量(質量%)を意味する。 - 前記Mo含有量が0.30~1.50%、
前記Ti含有量が0.25~0.40%、
前記Nb含有量が0.03~0.13%、
前記V含有量が0.02~0.13%、
前記Co含有量が0.02~0.30%、であり、下記(2)式、(3)式を満足する請求項1に記載のフェライト系ステンレス鋼。
Co/B:10~150 (2)
Nb+V≦0.22% (3)
(2)式、(3)式における元素記号は、各元素の含有量(質量%)を意味する。 - さらに、質量%で、
Zr:1.0%以下、
W:1.0%以下、
REM:0.1%以下のいずれか1種または2種以上を含有する請求項1または2に記載のフェライト系ステンレス鋼。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017550953A JP6274372B1 (ja) | 2017-03-30 | 2017-05-25 | フェライト系ステンレス鋼 |
ES17904332T ES2864725T3 (es) | 2017-03-30 | 2017-05-25 | Acero inoxidable ferrítico |
EP17904332.8A EP3604588B1 (en) | 2017-03-30 | 2017-05-25 | Ferritic stainless steel |
US16/497,507 US11560604B2 (en) | 2017-03-30 | 2017-05-25 | Ferritic stainless steel |
KR1020197027901A KR20190121818A (ko) | 2017-03-30 | 2017-05-25 | 페라이트계 스테인리스강 |
CN201780089128.1A CN110462079B (zh) | 2017-03-30 | 2017-05-25 | 铁素体系不锈钢 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-068023 | 2017-03-30 | ||
JP2017068023 | 2017-03-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018179456A1 true WO2018179456A1 (ja) | 2018-10-04 |
Family
ID=63674809
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/019514 WO2018179456A1 (ja) | 2017-03-30 | 2017-05-25 | フェライト系ステンレス鋼 |
Country Status (7)
Country | Link |
---|---|
US (1) | US11560604B2 (ja) |
EP (1) | EP3604588B1 (ja) |
JP (1) | JP6274372B1 (ja) |
KR (1) | KR20190121818A (ja) |
CN (1) | CN110462079B (ja) |
ES (1) | ES2864725T3 (ja) |
WO (1) | WO2018179456A1 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7014754B2 (ja) * | 2019-07-09 | 2022-02-01 | Jfeスチール株式会社 | 硫化物系固体電池の集電体用のフェライト系ステンレス鋼板 |
Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1997003216A1 (en) * | 1995-07-07 | 1997-01-30 | Highveld Steel & Vanadium Corporation Limited | A steel |
JP2000144342A (ja) | 1998-01-30 | 2000-05-26 | Sumitomo Metal Ind Ltd | 成形性に優れたフェライト系ステンレス鋼及びフェライト系ステンレス鋼鋳片 |
JP2000144258A (ja) * | 1998-11-02 | 2000-05-26 | Kawasaki Steel Corp | 耐リジング性に優れたTi含有フェライト系ステンレス鋼板の製造方法 |
JP2002030346A (ja) * | 2000-07-13 | 2002-01-31 | Kawasaki Steel Corp | 成形性に優れたCr含有耐熱耐食鋼板の製造方法 |
JP2002285300A (ja) | 2001-01-18 | 2002-10-03 | Kawasaki Steel Corp | フェライト系ステンレス鋼板およびその製造方法 |
JP2003138349A (ja) | 2001-10-31 | 2003-05-14 | Kawasaki Steel Corp | 深絞り性に優れたフェライト系ステンレス鋼板およびその製造方法 |
JP2003201547A (ja) | 2001-10-31 | 2003-07-18 | Jfe Steel Kk | 深絞り性、耐二次加工脆性および耐食性に優れるフェライト系ステンレス鋼板及びその製造方法 |
JP2007119847A (ja) | 2005-10-27 | 2007-05-17 | Jfe Steel Kk | プレス成形性に優れたフェライト系ステンレス冷延鋼板およびその製造方法 |
JP2009299116A (ja) | 2008-06-12 | 2009-12-24 | Jfe Steel Corp | 深絞り性に優れたフェライト系ステンレス鋼板およびその製造方法 |
JP2011179063A (ja) * | 2010-03-01 | 2011-09-15 | Nisshin Steel Co Ltd | 固体酸化物形燃料電池の導電部材 |
JP2015124420A (ja) * | 2013-12-27 | 2015-07-06 | Jfeスチール株式会社 | フェライト系ステンレス鋼 |
JP2016156072A (ja) * | 2015-02-25 | 2016-09-01 | 新日鐵住金ステンレス株式会社 | 穴拡げ性に優れたフェライト系ステンレス鋼鈑及びその製造方法 |
JP2016199803A (ja) * | 2015-04-10 | 2016-12-01 | Jfeスチール株式会社 | フェライト系ステンレス鋼 |
JP2017101267A (ja) * | 2015-11-30 | 2017-06-08 | Jfeスチール株式会社 | フェライト系ステンレス鋼 |
Family Cites Families (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4906193B2 (ja) | 2000-04-13 | 2012-03-28 | 新日鐵住金ステンレス株式会社 | フェライト系快削ステンレス鋼 |
US6426039B2 (en) * | 2000-07-04 | 2002-07-30 | Kawasaki Steel Corporation | Ferritic stainless steel |
CA2451147C (en) | 2002-04-05 | 2013-07-30 | Nippon Steel Corporation | Pearlitic steel rail excellent in wear resistance and ductility and method for producing the same |
CN100370048C (zh) | 2002-06-14 | 2008-02-20 | 杰富意钢铁株式会社 | 耐热性铁素体系不锈钢及其制造方法 |
JP4281535B2 (ja) * | 2003-11-27 | 2009-06-17 | Jfeスチール株式会社 | 耐面歪み性に優れたフェライト系ステンレス鋼板 |
CN101171353A (zh) * | 2005-06-09 | 2008-04-30 | 杰富意钢铁株式会社 | 波纹管原管用铁素体类不锈钢板 |
JP5291479B2 (ja) * | 2009-01-29 | 2013-09-18 | 大同特殊鋼株式会社 | 二相ステンレス鋼並びにそれを用いた鋼材及び鋼製品 |
CN103459641B (zh) * | 2011-03-29 | 2015-09-09 | 新日铁住金不锈钢株式会社 | 焊接部的耐腐蚀性及强度优异的铁素体系不锈钢及tig焊接结构物 |
EP2799577B1 (en) * | 2011-12-27 | 2016-11-09 | JFE Steel Corporation | Ferritic stainless steel |
JP5949057B2 (ja) * | 2012-03-30 | 2016-07-06 | Jfeスチール株式会社 | 溶接部の耐食性および低温靭性に優れたフェライト系ステンレス鋼 |
FI125855B (fi) * | 2012-06-26 | 2016-03-15 | Outokumpu Oy | Ferriittinen ruostumaton teräs |
MY155937A (en) * | 2012-09-25 | 2015-12-17 | Jfe Steel Corp | Ferritic stainless steel |
WO2014069543A1 (ja) | 2012-10-30 | 2014-05-08 | 新日鐵住金ステンレス株式会社 | 耐熱性に優れたフェライト系ステンレス鋼板 |
KR101706004B1 (ko) * | 2013-02-04 | 2017-02-10 | 닛폰 스틸 앤드 스미킨 스테인레스 스틸 코포레이션 | 가공성이 우수한 페라이트계 스테인리스 강판 및 그 제조 방법 |
CN105008590B (zh) | 2013-03-29 | 2017-09-19 | 新日铁住金不锈钢株式会社 | 钎焊性优良的铁素体系不锈钢板、热交换器、热交换器用铁素体系不锈钢板、铁素体系不锈钢、燃料供给体系构件用铁素体系不锈钢及燃料供给体系部件 |
JP6075349B2 (ja) | 2013-10-08 | 2017-02-08 | Jfeスチール株式会社 | フェライト系ステンレス鋼 |
JP5935792B2 (ja) * | 2013-12-27 | 2016-06-15 | Jfeスチール株式会社 | フェライト系ステンレス鋼 |
JP2015147975A (ja) * | 2014-02-06 | 2015-08-20 | 大同特殊鋼株式会社 | 析出硬化型ステンレス鋼及びセンサー用部品 |
WO2017138050A1 (ja) | 2016-02-08 | 2017-08-17 | Jfeスチール株式会社 | 油井用高強度ステンレス継目無鋼管およびその製造方法 |
JP6206624B1 (ja) | 2016-03-29 | 2017-10-04 | Jfeスチール株式会社 | フェライト系ステンレス鋼板 |
CN109312422B (zh) * | 2016-06-10 | 2020-06-23 | 杰富意钢铁株式会社 | 燃料电池的隔板用不锈钢板及其制造方法 |
CA3026612A1 (en) | 2016-06-10 | 2017-12-14 | Jfe Steel Corporation | Stainless steel sheet for fuel cell separators, and production method therefor |
MX2019001947A (es) * | 2016-09-02 | 2019-05-15 | Jfe Steel Corp | Acero inoxidable ferritico. |
EP3508597A4 (en) | 2016-09-02 | 2019-09-04 | JFE Steel Corporation | FERRITIC STAINLESS STEEL |
WO2018131340A1 (ja) | 2017-01-13 | 2018-07-19 | Jfeスチール株式会社 | 高強度ステンレス継目無鋼管およびその製造方法 |
KR102274976B1 (ko) | 2017-01-26 | 2021-07-07 | 제이에프이 스틸 가부시키가이샤 | 페라이트계 스테인리스 열연 강판 및 그 제조 방법 |
RU2716438C1 (ru) | 2017-02-24 | 2020-03-12 | ДжФЕ СТИЛ КОРПОРЕЙШН | Бесшовная высокопрочная труба из нержавеющей стали нефтепромыслового сортамента и способ её изготовления |
US11365467B2 (en) | 2017-05-26 | 2022-06-21 | Jfe Steel Corporation | Ferritic stainless steel |
EP3670693B1 (en) | 2017-08-15 | 2023-10-04 | JFE Steel Corporation | High-strength stainless steel seamless pipe for oil country tubular goods, and method for manufacturing same |
-
2017
- 2017-05-25 EP EP17904332.8A patent/EP3604588B1/en active Active
- 2017-05-25 KR KR1020197027901A patent/KR20190121818A/ko not_active IP Right Cessation
- 2017-05-25 WO PCT/JP2017/019514 patent/WO2018179456A1/ja unknown
- 2017-05-25 CN CN201780089128.1A patent/CN110462079B/zh active Active
- 2017-05-25 ES ES17904332T patent/ES2864725T3/es active Active
- 2017-05-25 JP JP2017550953A patent/JP6274372B1/ja active Active
- 2017-05-25 US US16/497,507 patent/US11560604B2/en active Active
Patent Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1997003216A1 (en) * | 1995-07-07 | 1997-01-30 | Highveld Steel & Vanadium Corporation Limited | A steel |
JP2000144342A (ja) | 1998-01-30 | 2000-05-26 | Sumitomo Metal Ind Ltd | 成形性に優れたフェライト系ステンレス鋼及びフェライト系ステンレス鋼鋳片 |
JP2000144258A (ja) * | 1998-11-02 | 2000-05-26 | Kawasaki Steel Corp | 耐リジング性に優れたTi含有フェライト系ステンレス鋼板の製造方法 |
JP2002030346A (ja) * | 2000-07-13 | 2002-01-31 | Kawasaki Steel Corp | 成形性に優れたCr含有耐熱耐食鋼板の製造方法 |
JP2002285300A (ja) | 2001-01-18 | 2002-10-03 | Kawasaki Steel Corp | フェライト系ステンレス鋼板およびその製造方法 |
JP2003138349A (ja) | 2001-10-31 | 2003-05-14 | Kawasaki Steel Corp | 深絞り性に優れたフェライト系ステンレス鋼板およびその製造方法 |
JP2003201547A (ja) | 2001-10-31 | 2003-07-18 | Jfe Steel Kk | 深絞り性、耐二次加工脆性および耐食性に優れるフェライト系ステンレス鋼板及びその製造方法 |
JP2007119847A (ja) | 2005-10-27 | 2007-05-17 | Jfe Steel Kk | プレス成形性に優れたフェライト系ステンレス冷延鋼板およびその製造方法 |
JP2009299116A (ja) | 2008-06-12 | 2009-12-24 | Jfe Steel Corp | 深絞り性に優れたフェライト系ステンレス鋼板およびその製造方法 |
JP2011179063A (ja) * | 2010-03-01 | 2011-09-15 | Nisshin Steel Co Ltd | 固体酸化物形燃料電池の導電部材 |
JP2015124420A (ja) * | 2013-12-27 | 2015-07-06 | Jfeスチール株式会社 | フェライト系ステンレス鋼 |
JP2016156072A (ja) * | 2015-02-25 | 2016-09-01 | 新日鐵住金ステンレス株式会社 | 穴拡げ性に優れたフェライト系ステンレス鋼鈑及びその製造方法 |
JP2016199803A (ja) * | 2015-04-10 | 2016-12-01 | Jfeスチール株式会社 | フェライト系ステンレス鋼 |
JP2017101267A (ja) * | 2015-11-30 | 2017-06-08 | Jfeスチール株式会社 | フェライト系ステンレス鋼 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3604588A4 |
Also Published As
Publication number | Publication date |
---|---|
EP3604588A4 (en) | 2020-02-05 |
EP3604588B1 (en) | 2021-03-03 |
JPWO2018179456A1 (ja) | 2019-04-04 |
ES2864725T3 (es) | 2021-10-14 |
JP6274372B1 (ja) | 2018-02-07 |
EP3604588A1 (en) | 2020-02-05 |
KR20190121818A (ko) | 2019-10-28 |
US20210277494A1 (en) | 2021-09-09 |
CN110462079B (zh) | 2021-07-13 |
CN110462079A (zh) | 2019-11-15 |
US11560604B2 (en) | 2023-01-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5318421B2 (ja) | 高い強度および成型性を有するオーステナイト系鋼、該鋼の製造方法およびその使用 | |
CN109642286B (zh) | 铁素体系不锈钢热轧退火钢板及其制造方法 | |
JP6383368B2 (ja) | 深絞りを適用するための冷間圧延された平鋼製品及びそれを製造するための方法 | |
CN110366601B (zh) | 铁素体系不锈钢板、热轧卷材和汽车排气系统法兰构件 | |
TWI553129B (zh) | Ferrous iron-type stainless steel hot-rolled steel sheet, its manufacturing method and fat iron-based stainless steel cold-rolled steel plate | |
TWI685574B (zh) | 肥粒鐵系不鏽鋼熱軋退火鋼板及其製造方法 | |
WO2017002147A1 (ja) | フェライト系ステンレス鋼板およびその製造方法 | |
CN110337503B (zh) | 铁素体系不锈钢板、热轧卷材以及汽车排气系统法兰构件 | |
KR101850231B1 (ko) | 페라이트계 스테인리스강 및 그 제조 방법 | |
JP2010100877A (ja) | 靭性に優れるフェライト系ステンレス熱延鋼板の製造方法 | |
JP6311633B2 (ja) | ステンレス鋼およびその製造方法 | |
JP6036645B2 (ja) | 低温靭性に優れたフェライト−マルテンサイト2相ステンレス鋼およびその製造方法 | |
CN111295458A (zh) | 铁素体系不锈钢板及其制造方法 | |
JP6274372B1 (ja) | フェライト系ステンレス鋼 | |
JP6645816B2 (ja) | フェライト系ステンレス鋼 | |
JP2001207244A (ja) | 延性、加工性および耐リジング性に優れたフェライト系ステンレス冷延鋼板およびその製造方法 | |
CN113166831B (zh) | 铁素体系不锈钢板及其制造方法 | |
JP6575650B2 (ja) | フェライト系ステンレス鋼 | |
JP2004225131A (ja) | 加工性に優れた高強度鋼管とその製造方法 | |
JP6421772B2 (ja) | 缶用鋼板の製造方法 | |
KR102587650B1 (ko) | 캔용 강판 및 그의 제조 방법 | |
JP2005008925A (ja) | Mo含有オ−ステナイト系ステンレス鋼とその鋼材の製造法 | |
JP2009132984A (ja) | 高強度かつエキスパンド成形性に優れた3ピース缶用鋼板および製造方法 | |
JP2020152941A (ja) | 二相ステンレス鋼およびその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2017550953 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17904332 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20197027901 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2017904332 Country of ref document: EP Effective date: 20191028 |