Nothing Special   »   [go: up one dir, main page]

WO2018179456A1 - フェライト系ステンレス鋼 - Google Patents

フェライト系ステンレス鋼 Download PDF

Info

Publication number
WO2018179456A1
WO2018179456A1 PCT/JP2017/019514 JP2017019514W WO2018179456A1 WO 2018179456 A1 WO2018179456 A1 WO 2018179456A1 JP 2017019514 W JP2017019514 W JP 2017019514W WO 2018179456 A1 WO2018179456 A1 WO 2018179456A1
Authority
WO
WIPO (PCT)
Prior art keywords
content
less
stainless steel
ferritic stainless
deep drawing
Prior art date
Application number
PCT/JP2017/019514
Other languages
English (en)
French (fr)
Inventor
知洋 石井
光幸 藤澤
杉原 玲子
力 上
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to JP2017550953A priority Critical patent/JP6274372B1/ja
Priority to ES17904332T priority patent/ES2864725T3/es
Priority to EP17904332.8A priority patent/EP3604588B1/en
Priority to US16/497,507 priority patent/US11560604B2/en
Priority to KR1020197027901A priority patent/KR20190121818A/ko
Priority to CN201780089128.1A priority patent/CN110462079B/zh
Publication of WO2018179456A1 publication Critical patent/WO2018179456A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/007Heat treatment of ferrous alloys containing Co
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite

Definitions

  • the present invention relates to a ferritic stainless steel excellent in the shape and corrosion resistance of a welded portion, which is suitably used for manufacturing a structure that is joined by welding after deep drawing.
  • ferritic stainless steel is inferior in terms of press formability compared to austenitic stainless steel, high-tensile steel plate, etc., and its use is restricted for applications that require excellent press formability. I came.
  • Patent Document 1 discloses a ferritic stainless steel sheet excellent in deep drawability.
  • the component composition and manufacturing conditions of the steel are controlled within an appropriate range, the average r value of the steel sheet after finish annealing is 2.0 or more, the average crystal grain size is 50 ⁇ m or less, and (tensile strength (MPa) ⁇
  • MPa tensile strength
  • Patent Document 2 discloses a ferritic stainless steel cold-rolled steel sheet excellent in press formability.
  • fine precipitation of AlN is prevented to reduce precipitation strengthening by fine AlN, and the local elongation is increased by making the ferrite grain size less than 10 ⁇ m.
  • the uniform elongation is improved by setting the average particle size of Cr carbonitride in the ferrite grains to 0.6 ⁇ m or more, and the press formability is improved.
  • Patent Document 3 discloses a ferritic stainless steel sheet excellent in deep drawability.
  • the ferrite grain having an average ferrite crystal grain size of 40 ⁇ m or less and an orientation difference between ⁇ 111 ⁇ // ND in the cross section composed of the rolling direction and the sheet thickness direction is within 10 °.
  • Deep drawability is improved by setting the ratio of crystal grains to 20% or more.
  • Patent Document 4 discloses a ferritic stainless steel sheet having excellent deep drawability, secondary work brittleness resistance and corrosion resistance.
  • this steel sheet in addition to adding appropriate amounts of Nb and / or Ti and B and V, the average grain size of the steel sheet after finishing annealing, pickling or further skin pass rolling is 40 ⁇ m or less and the surface roughness By making Ra Ra 0.30 ⁇ m or less, both deep drawability and secondary work brittleness resistance are achieved.
  • the present invention causes cracks in the vicinity of the weld due to expansion / contraction and deformation due to the thermal effect of welding when welding is performed after deep drawing.
  • An object of the present invention is to provide a ferritic stainless steel that is difficult and has excellent corrosion resistance in the vicinity of a weld.
  • the present inventors investigated the correlation between the component composition of ferritic stainless steel and cracks and corrosion resistance in the vicinity of the weld, and obtained the following findings (1) to (3). It was. (1) When welding is performed on a region where the strength of the grain boundary is reduced by deep drawing, cracks are generated in the vicinity of the weld due to the expansion and contraction stress generated in the vicinity of the weld due to the heat of welding. (2) Since the addition of Co decreases the thermal expansion coefficient, the expansion and contraction due to the heat of welding decrease, and the deformation of the weld and the stress near the weld decrease. As a result, cracks near the weld are less likely to occur due to the addition of Co. (3) Since addition of B suppresses a decrease in the strength of the crystal grain boundary due to deep drawing, cracks are less likely to occur even if thermal stress is generated in the vicinity of the weld after deep drawing.
  • the present invention is configured. That is, the present invention is summarized as follows.
  • the Mo content is 0.30 to 1.50%, the Ti content is 0.25 to 0.40%, the Nb content is 0.03 to 0.13%, and the V content is The ferritic stainless steel according to [1], which has 0.02 to 0.13% and the Co content of 0.02 to 0.30%, and satisfies the following formulas (2) and (3).
  • Co / B 10 to 150 (2) Nb + V ⁇ 0.22% (3)
  • the element symbols in the formulas (2) and (3) mean the content (% by mass) of each element.
  • ferritic stainless steel of the present invention is used for manufacturing a structure that is joined by welding after deep drawing, cracks in the vicinity of the weld are caused by expansion and contraction due to the thermal effect of welding and stress due to deformation. A structure that hardly occurs and has excellent corrosion resistance in the vicinity of the weld is obtained.
  • the said structure is excellent in the shape of a welded part from the crack being difficult to generate
  • the component composition of the ferritic stainless steel of the present invention (first invention) is as follows: C: 0.001 to 0.020%, Si: 0.01 to 0.30%, Mn: 0.01 to 0.00. 50%, P: 0.04% or less, S: 0.01% or less, Cr: 18.0 to 24.0%, Ni: 0.01 to 0.40%, Mo: 0.30 to 3.0 %, Al: 0.01 to 0.15%, Ti: 0.01 to 0.50%, Nb: 0.01 to 0.50%, V: 0.01 to 0.50%, Co: 0.0. Contains 01 to 6.00%, B: 0.0002 to 0.0050%, N: 0.001 to 0.020%, satisfies the following formula (1), and the balance is Fe and inevitable impurities . 0.30% ⁇ Ti + Nb + V ⁇ 0.60% (1)
  • the element symbol in the formula (1) means the content (% by mass) of each element.
  • composition of the ferritic stainless steel of the present invention is, in mass%, Zr: 0.5% or less, W: 1.0% or less, REM: 0.1% or less. 1 type or 2 or more types may be contained.
  • the C content is set to 0.001 to 0.020%.
  • the lower limit is preferably 0.002% or more, more preferably 0.003% or more, and further preferably 0.004% or more.
  • the upper limit is preferably 0.018% or less. More preferably, it is 0.015% or less. More preferably, it is 0.014% or less.
  • Si 0.01 to 0.30% Si is an element useful for deoxidation. The effect is acquired by 0.01% or more of containing. However, if the Si content exceeds 0.30%, the workability deteriorates significantly and is not suitable for deep drawing. Therefore, the Si content is set to 0.01% to 0.30%. About a minimum, Preferably it is 0.05% or more, More preferably, it is 0.08% or more, More preferably, it is 0.11% or more. The upper limit is preferably 0.20% or less, more preferably 0.18% or less, and further preferably 0.16% or less.
  • Mn 0.01 to 0.50% Mn has the effect of increasing strength. The effect is acquired by 0.01% or more of containing. On the other hand, if Mn is contained excessively, the workability is remarkably lowered and it is not suitable for deep drawing. Therefore, the Mn content is suitably 0.50% or less. Therefore, the Mn content is set to 0.01 to 0.50%.
  • the lower limit is preferably 0.03% or more, more preferably 0.05% or more, and further preferably 0.11% or more.
  • the upper limit is preferably 0.40% or less, more preferably 0.30% or less, and still more preferably 0.20% or less. In addition, since Mn is inevitably contained in steel, if the Mn content inevitably contained is in the above range, it is not necessary to add Mn.
  • P 0.04% or less
  • P is an element inevitably contained in steel, and segregates at the grain boundary after deep drawing to reduce the strength of the grain boundary and to easily cause grain boundary cracking. It is an element. Therefore, the P content is preferably as low as possible, and may not be included from the viewpoint of obtaining the effects of the present invention (may be 0%). Therefore, the P content is set to 0.04% or less. More preferably, it is 0.03% or less.
  • S 0.01% or less S is an element inevitably contained in steel. If the S content exceeds 0.01%, the formation of water-soluble sulfides such as CaS and MnS is promoted and the corrosion resistance is lowered. Further, from the viewpoint of obtaining the effects of the present invention, S may not be included (may be 0%). Therefore, the S content is set to 0.01% or less. More preferably, it is 0.005% or less.
  • Cr 18.0 to 24.0% Cr is the most important element that determines the corrosion resistance of stainless steel. If the Cr content is less than 18.0%, sufficient corrosion resistance as stainless steel cannot be obtained. In particular, the corrosion resistance at the weld is insufficient. On the other hand, when Cr is excessively contained, workability is lowered and it is not suitable for deep drawing. Therefore, the Cr content is suitably 24.0% or less. Therefore, the Cr content is set to 18.0 to 24.0%.
  • the lower limit is preferably 19.0% or more, more preferably 20.0% or more, and further preferably 20.5% or more.
  • the upper limit is preferably 23.5% or less, more preferably 22.5% or less, and further preferably 22.0% or less. More preferably, it is 21.5% or less.
  • Ni 0.01-0.40%
  • Ni is an element that improves the corrosion resistance of stainless steel, and is an element that suppresses the progress of corrosion in a corrosive environment in which a passive film cannot be formed and active dissolution occurs. The effect is acquired by making Ni content 0.01% or more. However, when the Ni content is 0.40% or more, the workability deteriorates, so that it is not suitable for deep drawing. Therefore, the Ni content is set to 0.01 to 0.40%.
  • the lower limit is preferably 0.03% or more, more preferably 0.07% or more, and further preferably 0.11% or more.
  • the upper limit is preferably 0.35% or less, more preferably 0.25% or less, and still more preferably 0.18% or less.
  • Mo 0.30 to 3.0%
  • Mo is an element that promotes repassivation of the passive film and improves the corrosion resistance of stainless steel. The effect becomes more remarkable by containing with Cr. The effect of improving the corrosion resistance by Mo is obtained with a content of 0.30% or more. However, if the Mo content exceeds 3.0%, the high-temperature strength increases and the rolling load increases, so the productivity decreases. Therefore, the Mo content is set to 0.30 to 3.0%.
  • the lower limit is preferably 0.40% or more, more preferably 0.50% or more, and further preferably 0.60% or more.
  • the upper limit is preferably 2.0% or less, more preferably 1.8% or less, and still more preferably 1.5% or less. When excellent workability is required, 0.90% or less is more preferable.
  • Al 0.01 to 0.15%
  • Al is an element useful for deoxidation, and the effect is obtained when the Al content is 0.01% or more. However, if the Al content exceeds 0.15%, the ferrite crystal grain size tends to increase, and cracks in the vicinity of the welded portion tend to occur. Therefore, the Al content is set to 0.01 to 0.15%.
  • the lower limit is preferably 0.02% or more, more preferably 0.03% or more, and still more preferably 0.05% or more.
  • the upper limit is preferably 0.10% or less, more preferably 0.08% or less, and still more preferably 0.07% or less.
  • Ti 0.01 to 0.50%
  • Ti is an element that binds preferentially to C and N and suppresses a decrease in corrosion resistance due to precipitation of Cr carbonitride. The effect is obtained when the Ti content is 0.01% or more. However, when the Ti content exceeds 0.50%, the dissolved C and N are excessively reduced, the strength of the crystal grain boundary after deep drawing becomes insufficient, and cracks are likely to occur near the weld. Therefore, the Ti content is set to 0.01 to 0.50%.
  • the lower limit is preferably 0.15% or more, more preferably 0.20% or more, and further preferably 0.25% or more.
  • the upper limit is preferably 0.45% or less, more preferably 0.40% or less, and further preferably 0.35% or less.
  • carbonitride includes carbide and nitride.
  • Nb 0.01 to 0.50%
  • Nb is an element that binds preferentially to C and N and suppresses a decrease in corrosion resistance due to precipitation of Cr carbonitride. The effect is obtained when the Nb content is 0.01% or more. However, if the Nb content exceeds 0.50%, the dissolved C and N are excessively reduced, the strength of the crystal grain boundary after deep drawing becomes insufficient, and cracks are likely to occur near the weld. Therefore, the Nb content is set to 0.01 to 0.50%.
  • the lower limit is preferably 0.05% or more, more preferably 0.10% or more, and further preferably 0.15% or more.
  • the upper limit is preferably 0.40% or less, more preferably 0.30% or less, and still more preferably 0.25% or less.
  • V 0.01 to 0.50%
  • V is an element that suppresses a decrease in corrosion resistance due to precipitation of Cr carbonitride. The effect is obtained when the V content is 0.01% or more. However, excessive content exceeding 0.50% deteriorates workability and is not suitable for deep drawing. Therefore, the V content is set to 0.01 to 0.50%.
  • the lower limit is preferably 0.02% or more, more preferably 0.04% or more, and further preferably 0.06% or more.
  • the upper limit is preferably 0.30% or less, more preferably 0.20% or less, and still more preferably 0.10% or less.
  • Ti, Nb, and V are all elements that suppress the formation of Cr carbonitride and improve the corrosion resistance of the weld.
  • the total of Ti content, Nb content, and V content must be 0.30% or more. is there. Preferably it is 0.35% or more. More preferably, it is 0.37% or more, More preferably, it is 0.40% or more.
  • the total content of Ti, Nb, and V exceeds 0.60%, the workability deteriorates and is not suitable for deep drawing. Therefore, the total of Ti content, Nb content, and V content is set to 0.60% or less. Preferably, it is 0.55% or less, more preferably 0.50% or less, and still more preferably 0.45% or less.
  • Co 0.01 to 6.00%
  • Co content changes the electronic state of the ferritic stainless steel and lowers the thermal expansion coefficient. This reduction in thermal expansion coefficient mitigates the expansion and deformation of the weld caused by the heat of welding. In the vicinity of the welded portion after deep drawing, cracks may occur due to stress caused by thermal expansion and deformation due to welding.
  • the decrease in the thermal expansion coefficient due to the inclusion of Co alleviates the stress load applied to the vicinity of the weld due to the thermal effect and deformation of welding, and suppresses the occurrence of cracks. The effect is obtained when the Co content is 0.01% or more. On the other hand, if the Co content exceeds 6.00%, the workability deteriorates and is not suitable for deep drawing.
  • the Co content is set to 0.01 to 6.00%.
  • the lower limit is preferably 0.03% or more, more preferably 0.04% or more, and further preferably 0.05% or more.
  • the upper limit is preferably 3.00% or less, more preferably 2.50% or less, and still more preferably 2.00% or less.
  • B 0.0002 to 0.0050% B is an important element for the present invention.
  • P is segregated at the crystal grain boundaries of the wall surface portion of the deep drawing by deep drawing, and the crystal boundaries become brittle. Therefore, a crack may occur along the deep drawing direction after excessive deep drawing. In particular, the tendency is remarkable in the component which reduced C and N which dissolved in Ti and Nb.
  • stress loading due to the thermal effect of welding may cause cracks.
  • the inclusion of B suppresses the segregation of P by deep drawing and strengthens the grain boundary, thereby suppressing the occurrence of such cracks. This effect is acquired by containing B 0.0002% or more.
  • the B content is set to 0.0002 to 0.0050%.
  • the lower limit is preferably 0.0003% or more, more preferably 0.0004% or more, and further preferably 0.0006% or more.
  • the upper limit is preferably 0.0020% or less, more preferably 0.0015% or less, and still more preferably 0.0010% or less.
  • N 0.001 to 0.020%
  • N has the effect of increasing the strength of the steel by solid solution strengthening. The effect is obtained when the N content is 0.001% or more. However, when the N content exceeds 0.020%, the workability deteriorates remarkably and is not suitable for deep drawing. Therefore, the N content is set to 0.001 to 0.020%.
  • the lower limit is preferably 0.002% or more, more preferably 0.003% or more, and further preferably 0.007% or more.
  • the upper limit is preferably 0.018% or less, more preferably 0.015% or less, and still more preferably 0.013% or less.
  • ferritic stainless steel of the present invention may contain the following components (arbitrary components).
  • Zr 1.0% or less
  • Zr combines with C and N and has an effect of suppressing sensitization.
  • the effect is acquired by making Zr content 0.01% or more.
  • it is 0.03% or more, More preferably, it is 0.06% or more.
  • inclusion of excess Zr reduces workability.
  • the content of Zr is set to 1.0% or less.
  • it is 0.60% or less, More preferably, it is 0.30% or less.
  • W 1.0% or less W, like Mo, has the effect of improving corrosion resistance.
  • the effect is acquired by making W content 0.01% or more.
  • W content 0.01% or more.
  • it is 0.10% or more, more preferably 0.30% or more.
  • the W content is 1.0% or less.
  • it is 0.80% or less, More preferably, it is 0.60% or less.
  • REM 0.1% or less REM improves oxidation resistance, suppresses the formation of oxide scale, and improves the corrosion resistance of welds.
  • the effect is acquired by making REM content 0.001% or more.
  • it is 0.004% or more, More preferably, it is 0.006% or more.
  • the content of REM is set to 0.1% or less.
  • it is 0.04% or less, More preferably, it is 0.02% or less.
  • the remainder other than the above is Fe and inevitable impurities.
  • Inevitable impurities include Zn: 0.03% or less, Sn: 0.3% or less, Cu: less than 0.1%, and the like.
  • Cu has the effect of increasing the passive state maintaining current to make the passive film unstable and lowering the corrosion resistance. From this viewpoint, it is better not to contain Cu. When Cu is contained, its content is suitably less than 0.1%. Therefore, the content of Cu as an impurity is set to less than 0.1% as described above.
  • the method for producing the ferritic stainless steel of the present invention is not particularly limited. An example of a suitable manufacturing method is shown below.
  • hot rolling is performed so that the finishing temperature is 700 to 1000 ° C., the winding temperature is 400 to 800 ° C., and the plate thickness is 2.0 to 5.0 mm. .
  • the hot rolled steel strip thus produced is annealed at a temperature of 800 to 1100 ° C. and pickled.
  • cold rolling is performed to obtain a sheet thickness of 0.5 to 2.0 mm, and cold rolling sheet annealing is performed at a temperature of 700 to 1050 ° C.
  • pickling is performed to remove scale. Skin pass rolling may be performed on the cold-rolled steel strip from which the scale has been removed.
  • the Mo content, Ti content, Nb content, V content, and Co content are adjusted to specific ranges, and the expressions (2) and (3) described below are used. If it is satisfied, there is an effect that roughness of the processed skin is further reduced.
  • the invention (second invention) having this effect will be described below.
  • Ridging is a wrinkled wrinkle formed when ferritic stainless steel is press-formed. These wrinkles not only detract from the aesthetics of stainless steel, but cracks may occur along these wrinkles during severe processing.
  • the coarse columnar structure generated in the casting stage is not sufficiently refined by hot rolling and recrystallization, and forms a texture with similar crystal orientation. It is said that wrinkle-like wrinkles are formed by showing similar deformation behavior. Therefore, in order to suppress ridging, it is important to decrease the ratio of the columnar structure in the cast structure and increase the ratio of the equiaxed crystal structure.
  • JP 2000-144342A discloses ferritic stainless steel and ferritic stainless steel slabs excellent in formability.
  • This invention reduces solute Al and disperses Al inclusions in molten steel.
  • Ti-based inclusions are dispersed and precipitated in the molten steel with Al-based inclusions as nuclei, and become equiaxed crystal generation sites, so that the equiaxed crystal ratio of the cast structure increases.
  • there is a problem that it is very difficult in actual operation to control the solid solution Al to 0.015% by mass or less after adding a sufficient amount of Al for deoxidation.
  • Orange peel is rough skin caused by coarse crystal grains, and miniaturization of crystal grains is effective as a countermeasure.
  • 2003-138349 discloses a ferritic stainless steel sheet excellent in deep drawability.
  • the present invention controls the steel component composition and production conditions within an appropriate range, the steel sheet after finish annealing has an average r value of 2.0 or more, an average crystal grain size of 50 ⁇ m or less, and (tensile strength (MPa) ⁇
  • MPa tensile strength
  • JP-A-2002-285300 discloses a ferritic stainless steel sheet and a manufacturing method thereof.
  • a grain size number of 6.0 or more is achieved by performing cold rolling twice or more including intermediate annealing.
  • the method of performing cold rolling twice has a problem that the production load is high and the production takes time.
  • the present invention (second invention) that adjusts the Mo content, Ti content, Nb content, V content and Co content to specific ranges and satisfies the formulas (2) and (3) described below is Solve the problem. That is, the second invention is easy to manufacture, suitable for structures formed by processing such as deep drawing, overhanging and bending, and is also used for applications where surface properties after processing are required. It is a ferritic stainless steel that is suitable for roughing the work surface.
  • the knowledge gained in completing the second invention is as follows. We examined the effects of Co, B and other elements added to the ferritic stainless steel on the equiaxed crystal ratio of the cast structure and the grain size of the final product. I got the knowledge. (1) By appropriately controlling the contents of Ti, Nb, and V, a low recrystallization temperature can be realized without reducing the corrosion resistance of the welded portion, and the control of the crystal grain size becomes easy. (2) The equiaxed crystal ratio of the cast structure is improved by adjusting the contents of Co and B to an appropriate range. Moreover, the growth of crystal grains by hot rolling annealing was suppressed, and the crystal grains were refined.
  • Mo 0.30 to 1.50%
  • the Mo content of the second invention is as described above and is narrower than the Mo content of the first invention. Therefore, in the second invention, Mo also has the technical significance of Mo in the first invention.
  • the technical significance of Mo in the second invention is as follows. Mo is an element that promotes repassivation of the passive film and improves the corrosion resistance of stainless steel. The effect becomes more remarkable by containing with Cr. The effect of improving the corrosion resistance by Mo is obtained with a content of 0.30% or more. However, when the Mo content exceeds 1.50%, the strength increases, the workability decreases, and rough skin tends to occur. Therefore, the Mo content is set to 0.30 to 1.50%.
  • the lower limit is preferably 0.40% or more, more preferably 0.50% or more, and further preferably 0.55% or more.
  • the upper limit is preferably 1.40% or less, more preferably 0.90% or less, and still more preferably 0.70% or less.
  • Ti 0.25 to 0.40%
  • the Ti content of the second invention is as described above, and is narrower than the Ti content of the first invention. Therefore, in the second invention, Ti also has the technical significance of Ti in the first invention.
  • the technical significance of Ti in the second invention is as follows. Ti, like Nb and V, is an element that combines with solid solution C and N to form carbonitride and suppress sensitization.
  • TiN is crystallized from the molten steel to become an equiaxed crystal nuclei, and is an element that improves the equiaxed crystal ratio of the solidified structure. The effect of promoting crystallization of equiaxed crystals can be obtained when Ti is 0.25% or more.
  • the Ti content is set to 0.25 to 0.40%.
  • the lower limit is preferably 0.27% or more, more preferably 0.29% or more, and further preferably 0.31% or more.
  • the upper limit is preferably 0.38% or less, more preferably 0.35% or less, and further preferably 0.34% or less.
  • Nb 0.03-0.13%
  • V 0.02 to 0.13%
  • the Nb and V contents of the second invention are as described above, and are narrower than the Nb and V contents of the first invention. Therefore, in the second invention, Nb and V also have the technical significance of Nb and V in the first invention.
  • the technical significance of Nb and V in the second invention is as follows. Nb and V are both elements that form carbonitride by combining with solute C and N. By fixing the solid solutions C and N, sensitization of the welded portion is suppressed, and the corrosion resistance is improved. In particular, when all of Ti, Nb and V are contained, C and N can be rendered more harmless due to the difference in the precipitation temperature.
  • the Nb content needs to be 0.03% or more.
  • the Nb content is set to 0.03% to 0.13%.
  • the lower limit is preferably 0.06% or more, more preferably 0.07% or more, and further preferably 0.08% or more.
  • the upper limit is preferably 0.11% or less, more preferably 0.10% or less, and still more preferably 0.09% or less.
  • the V content is set to 0.02 to 0.13%.
  • the lower limit is preferably 0.04% or more, more preferably 0.06% or more, and further preferably 0.07% or more.
  • the upper limit is preferably 0.11% or less, more preferably 0.10% or less, and further preferably 0.08% or less.
  • Nb + V is set to 0.22% or less. Preferably it is 0.20% or less, More preferably, it is 0.18% or less, More preferably, it is 0.16% or less.
  • the lower limit of Nb + V is not particularly limited, but is preferably 0.08% or more, and more preferably 0.10% or more.
  • the element symbol of “Nb + V” in the formula (3) means the content (% by mass) of each element.
  • Co and B also have the technical significance of Co and B in the first invention.
  • the technical significance of Co and B in the second invention is as follows.
  • the gist of the processing surface roughness reduction method is to increase the equiaxed crystal ratio by precipitating (Cr, Fe) 2 B in a moderately dispersed state at the grain boundaries in the solidification stage of the casting process. It is an important element for the invention.
  • (Cr, Fe) 2 B that is dispersed and precipitated is considered to have an effect of suppressing crystal grain growth during hot rolling annealing.
  • the content of B is set to 0.0002 to 0.0050%.
  • the lower limit is preferably 0.0003% or more, more preferably 0.0004% or more, and still more preferably 0.0006% or more.
  • the upper limit is preferably 0.0020% or less, more preferably 0.0018% or less, and still more preferably 0.0015% or less.
  • Co is considered to have an effect of suppressing aggregation of (Cr, Fe) 2 B and maintaining an appropriate dispersion state. As a result, it is considered that the growth of the columnar crystal structure is suppressed and the roughening of the processed skin is reduced. Therefore, Co is an important element for the present invention. This effect is obtained when the Co content is 0.02% or more. On the other hand, when Co is contained exceeding 0.30%, workability is lowered and cracking is likely to occur. Therefore, the Co content is set to 0.02 to 0.30%.
  • the lower limit is preferably 0.03% or more, more preferably 0.04% or more, and further preferably 0.05% or more.
  • the upper limit is preferably 0.20% or less, more preferably 0.10% or less, and further preferably 0.08% or less.
  • Co / B is 150 or less. Therefore, Co / B is set to 10 to 150.
  • the lower limit is preferably 20 or more, more preferably 30 or more, and still more preferably 40 or more.
  • the upper limit is preferably 120 or less, more preferably 100 or less, and still more preferably 80 or less.
  • a slab having a thickness of 100 to 300 mm is produced by continuous casting at a molten steel superheating degree ⁇ T of 20 to 80 ° C. and a casting speed of 0.4 to 1.1 m / min. .
  • the obtained slab is heated to 1100 to 1300 ° C. and then hot rolled to a plate thickness of 2.0 to 5.0 mm with a finishing temperature of 600 to 900 ° C. and a winding temperature of 400 to 800 ° C.
  • the rolling reduction of the final rolling is 15% or more.
  • the finishing temperature is preferably 600 to 750 ° C., and the rolling reduction of the final rolling is preferably 40% or more.
  • the winding temperature is preferably 400 to 450 ° C.
  • the hot rolled steel strip thus produced is annealed at a temperature of 800 to 980 ° C.
  • the soaking time in annealing is suitably 10 to 300 s.
  • the annealing temperature is preferably low in the temperature range where recrystallization is possible, and 800 to 900 ° C. is preferable.
  • the annealing time is preferably short, and is preferably 10 to 180 s.
  • pickling is performed, and then cold rolling is performed to produce a cold rolled steel strip having a thickness of 0.3 to 3.0 mm.
  • the obtained cold-rolled steel strip is subjected to cold rolling annealing at a temperature of 700 to 1050 ° C.
  • pickling is performed to remove scale. You may perform the descaling process by mechanical actions, such as skin pass rolling and shot blasting, and the grinding / polishing process by a grinder or a polishing belt in the middle of these manufacturing steps and finally.
  • Stainless steel shown in Table 1 was vacuum-melted in a 100 kg steel ingot, heated to 1200 ° C., hot-rolled to a thickness of 4 mm, annealed in the range of 800 to 1000 ° C., and scale was removed by pickling. Further, it was cold-rolled to a thickness of 0.8 mm, annealed in the range of 800 to 950 ° C., pickled, and used as a test material.
  • a ⁇ 72 mm disk was collected from the prepared test material, and four-stage cylindrical deep drawing was performed using ⁇ 49 mm, ⁇ 35 mm, ⁇ 26 mm, and ⁇ 22 mm punches (all with a shoulder radius of 2 mm) in order.
  • the ears were excised so as to be 50 mm (FIG. 1A).
  • a ⁇ 5 mm hole was drilled in the center of the deep drawing bottom to produce a cylindrical deep drawing test piece.
  • a ⁇ 23 mm disc was joined by TIG welding so as to close the ⁇ 22 mm opening of the test piece (FIG. 1B).
  • the welding conditions were a welding current of 100 A and a welding speed of 60 cm / min.
  • the shielding gas was Ar, and the flow rate was 20 L / min.
  • water was poured from a hole with a diameter of 5 mm, the inside of the test piece was filled with water, and a pressure of 10 atm was applied to check for cracks.
  • the vicinity of the welded portion of the cylindrical deep-drawn wall surface was observed with an optical microscope at a magnification of 200 times (observation of the crack observation position in FIG. 1B), and the length of the crack I confirmed.
  • the results are shown in Table 2 with “ ⁇ ” (failure) indicating that the crack was 0.5 mm or more in length and “ ⁇ ” (pass) indicating that there was no crack. Note that no cracks were observed in any of the specimens on the fusion line.
  • the corrosion resistance of the welded part as-welded was evaluated using a test piece that was confirmed for cracks.
  • a neutral salt spray cycle test based on JIS H8502 was conducted for 5 cycles, and the presence or absence of corrosion in the vicinity of the welded portion (in the range from the weld bead center to 5 mm from the fusion line) was visually confirmed.
  • the test piece was placed in the corrosion test tank so that the hole of ⁇ 5 mm was down. Table 5 shows the case where corrosion having a major axis of 1 mm or more occurred in the vicinity of the welded part in a 5-cycle test as “x” (failed) and the case where corrosion did not occur as “ ⁇ ” (passed).
  • No. 12, No. 13, and No. 14 were all corroded from cracks in the vicinity of the weld. Since No. 16 did not satisfy the formula (1), corrosion occurred from the weld bead. In No. 17, the Cr content was small, and corrosion occurred from the weld bead and the temper portion. Since No. 18 did not contain Nb, corrosion occurred from the weld bead. Since No. 19 did not contain Ti, corrosion occurred from the weld bead. Since No. 20 did not contain V, corrosion occurred from the weld bead.
  • Stainless steel having the components shown in Table 3 was continuously cast under the conditions of a superheat of molten steel of 60 ° C. and a casting speed of 0.6 m / min to produce a slab having a thickness of 200 mm.
  • the produced slab was heated to 1200 ° C., and then hot-rolled to a sheet thickness of 4 mm under conditions of a finishing temperature of 700 ° C., a winding temperature of 400 ° C., and a rolling reduction of 30%, and a soaking time of 60 s at 950 ° C. Annealed to become. Thereafter, it was cold-rolled to a thickness of 0.8 mm, annealed at 900 ° C. so as to have a soaking time of 30 s, and after removing the surface scale by polishing, it was used as a test material as a finish of Emery polishing paper # 600.
  • a ⁇ 72 mm disk was collected from the prepared test material, and four-stage cylindrical deep drawing was performed using ⁇ 49 mm, ⁇ 35 mm, ⁇ 26 mm, and ⁇ 22 mm punches (all with a shoulder radius of 2 mm) in order, and the height after processing was The ears were excised so as to be 50 mm (FIG. 1A).
  • the surface of 5 mm in the circumferential direction at a position of 10 mm from the opening is selected so that each measurement position is 90 ° on the circumference, and the surface is measured using a laser microscope. was measured (measurement at the unevenness measurement position in FIG. 1A).
  • a hole of ⁇ 5 mm was made in the center of the deep drawing bottom to produce a cylindrical deep drawing test piece.
  • a ⁇ 23 mm disc was joined by TIG welding so as to close the ⁇ 22 mm opening of the test piece (FIG. 1B).
  • the welding conditions were a welding current of 100 A and a welding speed of 60 cm / min.
  • the shielding gas was Ar, and the flow rate was 20 L / min.
  • water was poured from a hole with a diameter of 5 mm, the inside of the test piece was filled with water, and a pressure of 10 atm was applied to check for cracks.
  • the present invention it is possible to obtain a ferritic stainless steel excellent in the shape and corrosion resistance of a welded portion, which is suitable for use in a structure that is joined by welding after deep drawing.
  • the ferritic stainless steel obtained by the present invention is suitable for applications in which a structure is produced by welding after deep drawing, for example, electronic parts such as battery cases, and automotive parts such as converters.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

深絞り加工の後に溶接を行った際に、溶接の熱影響による膨張収縮および変形による応力によって溶接部近傍での割れが発生しにくく、溶接部近傍の耐食性に優れるフェライト系ステンレス鋼を提供する。 成分組成を、質量%で、C:0.001~0.020%、Si:0.01~0.30%、Mn:0.01~0.50%、P:0.04%以下、S:0.01%以下、Cr:18.0~24.0%、Ni:0.01~0.40%、Mo:0.30~3.0%、Al:0.01~0.15%、Ti:0.01~0.50%、Nb:0.01~0.50%、V:0.01~0.50%、Co:0.01~6.00%、B:0.0002~0.0050%、N:0.001~0.020%を含有し、0.30%≦Ti+Nb+V≦0.60%を満足し、残部がFeおよび不可避的不純物とする。

Description

フェライト系ステンレス鋼
 本発明は、深絞り加工の後に溶接によって接合が行われる構造体の製造に好適に用いられる、溶接部の形状および耐食性に優れるフェライト系ステンレス鋼に関する。
 従来、フェライト系ステンレス鋼は、オーステナイト系ステンレス鋼や高張力鋼板などと比較して、プレス成形性の面で劣っており、優れたプレス成形性が必要とされる用途にはその使用が制限されてきた。
 しかし、近年のフェライト系ステンレス鋼のプレス成形性、特に深絞り加工性の向上は目覚しく、厳しいプレス加工が施される用途、たとえば厨房用材料や電気機器部品、自動車用部品などへのフェライト系ステンレス鋼の適用が進んでいる。
 特許文献1には深絞り性に優れたフェライト系ステンレス鋼板が開示されている。この鋼板では、鋼の成分組成と製造条件を適正範囲に制御し、仕上焼鈍後の鋼板の平均r値を2.0以上、平均結晶粒径を50μm以下、かつ、(引張強度(MPa)×平均r値)/(結晶粒径(μm)))を20以上とすることにより、深絞り性を改善している。
 特許文献2には、プレス成形性に優れたフェライト系ステンレス冷延鋼板が開示されている。この鋼板では、AlNの微細析出を防止して微細AlNによる析出強化を低減するとともに、フェライト粒径を10μm未満とすることにより局部伸びを増加させる。さらに、この文献では、フェライト粒内のCr炭窒化物の平均粒径を0.6μm以上とすることにより均一伸びを向上させて、プレス成形性を向上させている。
 また、特許文献3には深絞り性に優れたフェライト系ステンレス鋼板が開示されている。この鋼板では、熱間圧延条件を調整することにより、平均フェライト結晶粒径を40μm以下、圧延方向と板厚方向からなる断面に占める{111}//NDとの方位差が10°以内のフェライト結晶粒の割合を20%以上として、深絞り性を向上している。
 しかしながら、これらのプレス成形性に優れたフェライト系ステンレス鋼板を用いても厳しいプレス成形を行った際に発生する縦割れの発生は必ずしも十分に抑制することはできない。
 この縦割れを抑制するために特許文献4には深絞り性、耐2次加工脆性および耐食性に優れるフェライト系ステンレス鋼板が開示されている。この鋼板では、Nbおよび/またはTiならびにBおよび、Vを適正量添加することに加え、仕上焼鈍し、酸洗した後あるいはさらにスキンパス圧延した後の鋼板の平均結晶粒径を40μm以下かつ表面粗さRaを0.30μm以下とすることで、深絞り性と耐2次加工脆性を両立している。
特開2003-138349号公報 特開2007-119847号公報 特開2009-299116号公報 特開2003-201547号公報
 しかし、特許文献4のフェライト系ステンレス鋼板を用いても、特に、プレス成形後に溶接を行った場合に発生する溶接部近傍の割れは、完全に防止することはできない。
 従来技術の抱える上記のような問題点に鑑み、本発明は、深絞り加工の後に溶接を行った際に、溶接の熱影響による膨張収縮および変形による応力によって溶接部近傍での割れが発生しにくく、溶接部近傍の耐食性に優れるフェライト系ステンレス鋼を提供することを目的とする。
 本発明者らは、上記課題を解決するために、フェライト系ステンレス鋼の成分組成と溶接部近傍での割れおよび耐食性との相関を調査し、以下の(1)~(3)の知見を得た。
(1)深絞り加工により結晶粒界の強度が低下した領域に対して溶接を行うと、溶接の熱により溶接部近傍に発生した膨張および収縮の応力によって溶接部近傍に割れが発生する。
(2)Coの添加は熱膨張係数を減少させるため、溶接の熱による膨張および収縮が減少し、溶接部の変形および溶接部近傍での応力が低下する。その結果、Co添加によって溶接部近傍の割れが発生しにくくなる。
(3)Bの添加は深絞り加工による結晶粒界の強度の低下を抑制するため、深絞り加工後の溶接部近傍に熱応力が発生しても割れが発生しにくくなる。
 以上の結果に基づき、本発明は構成される。すなわち本発明は下記の構成を要旨とするものである。
 [1]質量%で、C:0.001~0.020%、Si:0.01~0.30%、Mn:0.01~0.50%、P:0.04%以下、S:0.01%以下、Cr:18.0~24.0%、Ni:0.01~0.40%、Mo:0.30~3.0%、Al:0.01~0.15%、Ti:0.01~0.50%、Nb:0.01~0.50%、V:0.01~0.50%、Co:0.01~6.00%、B:0.0002~0.0050%、N:0.001~0.020%を含有し、下記(1)式を満足し、残部がFeおよび不可避的不純物である成分組成を有するフェライト系ステンレス鋼。
0.30%≦Ti+Nb+V≦0.60%   (1)
(1)式における元素記号は各元素の含有量(質量%)を意味する。
 [2]前記Mo含有量が0.30~1.50%、前記Ti含有量が0.25~0.40%、前記Nb含有量が0.03~0.13%、前記V含有量が0.02~0.13%、前記Co含有量が0.02~0.30%、であり、下記(2)式、(3)式を満足する[1]に記載のフェライト系ステンレス鋼。
Co/B:10~150    (2)
Nb+V≦0.22%    (3)
 (2)式、(3)式における元素記号は、各元素の含有量(質量%)を意味する。
 [3]さらに、質量%で、Zr:1.0%以下、W:1.0%以下、REM:0.1%以下のいずれか1種または2種以上を含有する[1]または[2]に記載のフェライト系ステンレス鋼。
 本発明のフェライト系ステンレス鋼であれば、深絞り加工の後に溶接によって接合が行われる構造体の製造に用いても、溶接の熱影響による膨張収縮および変形による応力によって溶接部近傍での割れが発生しにくく、溶接部近傍の耐食性に優れる構造体が得られる。
 なお、溶接部近傍での割れが発生しにくいことから、上記構造体は、溶接部の形状に優れるといえる。
円筒深絞り形状の試験片を説明するための模式図である。
 以下、本発明の実施形態について説明する。なお、本発明は以下の実施形態に限定されない。
 本発明(第一発明)のフェライト系ステンレス鋼の成分組成は、質量%でC:0.001~0.020%、Si:0.01~0.30%、Mn:0.01~0.50%、P:0.04%以下、S:0.01%以下、Cr:18.0~24.0%、Ni:0.01~0.40%、Mo:0.30~3.0%、Al:0.01~0.15%、Ti:0.01~0.50%、Nb:0.01~0.50%、V:0.01~0.50%、Co:0.01~6.00%、B:0.0002~0.0050%、N:0.001~0.020%を含有し、下記(1)式を満足し、残部がFeおよび不可避的不純物である。
0.30%≦Ti+Nb+V≦0.60%   (1)
(1)式における元素記号は各元素の含有量(質量%)を意味する。
 また、本発明(第一発明)のフェライト系ステンレス鋼の成分組成は、さらに、質量%で、Zr:0.5%以下、W:1.0%以下、REM:0.1%以下のいずれか1種または2種以上を含有してもよい。
 以下に本発明(第一発明)のフェライト系ステンレス鋼の成分組成について詳細に説明する。なお、各元素の含有量を示す%は特に記載しない限り質量%とする。
 C:0.001~0.020%
 Cの含有量が多いと強度が向上し、少ないと加工性が向上する。適度な強度を得るためには0.001%以上の含有が適当である。しかし、C含有量が0.020%を超えると加工性の低下が顕著となり、深絞り加工に適さない。よって、C含有量は0.001~0.020%とした。下限について好ましくは、0.002%以上、より好ましくは0.003%以上、さらに好ましくは0.004%以上である。
上限について好ましくは、0.018%以下である。より好ましくは0.015%以下である。さらに好ましくは0.014%以下である。なお、不可避的に含まれるCのみでC含有量が上記範囲になる場合には、Cを積極的に添加する必要はない。
 Si:0.01~0.30%
 Siは脱酸に有用な元素である。その効果は0.01%以上の含有で得られる。しかし、Si含有量が0.30%を超えると、加工性の低下が顕著となり、深絞り加工には適さない。よって、Siの含有量は0.01%~0.30%とした。下限について、好ましくは0.05%以上、より好ましくは0.08%以上、さらに好ましくは0.11%以上である。上限について好ましくは0.20%以下、より好ましくは0.18%以下、さらに好ましくは0.16%以下である。
 Mn:0.01~0.50%
 Mnには強度を高める効果がある。その効果は0.01%以上の含有で得られる。一方、Mnを過剰に含有すると加工性が顕著に低下し、深絞り加工には適さなくなる。したがって、Mn含有量は0.50%以下が適当である。よって、Mnの含有量は0.01~0.50%とした。下限に付いて好ましくは0.03%以上、より好ましくは0.05%以上、さらに好ましくは0.11%以上である。
上限について好ましくは0.40%以下、より好ましは0.30%以下、さらに好ましくは0.20%以下である。なお、Mnは鋼に不可避的に含まれるため、不可避的に含まれるMn含有量が上記範囲にあれば、Mnを添加する必要はない。
 P:0.04%以下
 Pは鋼に不可避的に含まれる元素であり、深絞り加工後の結晶粒界に偏析して、結晶粒界の強度を低下させ、粒界割れを発生しやすくする元素である。よって、P含有量は少ないほど好ましく、本発明の効果を得る観点からは含まなくてもよい(0%でもよい)。そこで、P含有量は0.04%以下とした。より好ましくは0.03%以下である。
 S:0.01%以下
 Sは鋼に不可避的に含まれる元素である。S含有量が0.01%を超えるとCaSやMnSなどの水溶性硫化物の形成が促進され耐食性が低下する。また、本発明の効果を得る観点からはSを含まなくてもよい(0%でもよい)。よって、S含有量は0.01%以下とした。より好ましくは0.005%以下である。
 Cr:18.0~24.0%
 Crはステンレス鋼の耐食性を決定付ける最も重要な元素である。Cr含有量が18.0%未満ではステンレス鋼として十分な耐食性が得られない。特に溶接部での耐食性が不十分となる。一方で、過剰にCrを含有すると、加工性が低下し、深絞り加工に適さない。そこで、Cr含有量は24.0%以下が適当である。よって、Cr含有量は18.0~24.0%とした。下限について好ましくは19.0%以上、より好ましくは20.0%以上、さらに好ましくは20.5%以上である。上限について好ましくは23.5%以下、より好ましくは22.5%以下、さらに好ましくは22.0%以下である。さらに好ましくは21.5%以下である。
 Ni:0.01~0.40%
 Niはステンレス鋼の耐食性を向上させる元素であり、不動態皮膜が形成できず活性溶解が起こる腐食環境において腐食の進行を抑制する元素である。その効果はNi含有量を0.01%以上にすることで得られる。しかし、Ni含有量が0.40%以上になると、加工性が低下するため、深絞り加工には適さない。よって、Niの含有量は0.01~0.40%とした。下限について好ましくは0.03%以上、より好ましくは0.07%以上、さらに好ましくは0.11%以上である。
上限について好ましくは、0.35%以下、より好ましくは0.25%以下、さらに好ましくは0.18%以下である。
 Mo:0.30~3.0%
 Moは不動態皮膜の再不動態化を促進し、ステンレス鋼の耐食性を向上する元素である。Crとともに含有することによってその効果はより顕著となる。Moによる耐食性向上効果は0.30%以上の含有で得られる。しかし、Mo含有量が3.0%を超えると高温強度が増加し、圧延負荷が大きくなるため製造性が低下する。よって、Mo含有量は0.30~3.0%とした。下限について好ましくは0.40%以上、より好ましくは0.50%以上、さらに好ましくは0.60%以上である。上限について好ましくは2.0%以下、より好ましくは1.8%以下、さらに好ましくは1.5%以下である。優れた加工性が必要とされる場合は0.90%以下がさらに好ましい。
 Al:0.01~0.15%
 Alは脱酸に有用な元素であり、その効果は、Alの含有量が0.01%以上で得られる。しかし、Alの含有量が0.15%を超えるとフェライト結晶粒径が増大しやすくなり、溶接部近傍の割れが起こりやすくなる。よって、Al含有量は0.01~0.15%とした。下限について好ましくは0.02%以上、より好ましくは0.03%以上、さらに好ましくは0.05%以上である。上限について好ましくは0.10%以下、より好ましくは0.08%以下、さらに好ましくは0.07%以下である。
 Ti:0.01~0.50%
 TiはC、Nと優先的に結合してCr炭窒化物の析出による耐食性の低下を抑制する元素である。その効果は、Ti含有量が0.01%以上で得られる。しかし、Ti含有量が0.50%を超えると固溶したC、Nが過度に減少し、深絞り後の結晶粒界の強度が不十分となり、溶接部近傍で割れが発生しやすくなる。よって、Ti含有量は0.01~0.50%とした。下限について好ましくは0.15%以上、より好ましくは0.20%以上、さらに好ましくは0.25%以上である。上限について好ましくは0.45%以下、より好ましくは0.40%以下、さらに好ましくは0.35%以下である。なお、本明細書において、炭窒化物には、炭化物、窒化物も含む。
 Nb:0.01~0.50%
 NbはC、Nと優先的に結合してCr炭窒化物の析出による耐食性の低下を抑制する元素である。その効果は、Nb含有量が0.01%以上で得られる。しかし、Nb含有量が0.50%を超えると固溶したC、Nが過度に減少し、深絞り後の結晶粒界の強度が不十分となり、溶接部近傍で割れが発生しやすくなる。よって、Nbの含有量は0.01~0.50%とした。下限について好ましくは、0.05%以上、より好ましくは0.10%以上、さらに好ましくは0.15%以上である。上限について好ましくは0.40%以下、より好ましくは0.30%以下、さらに好ましくは0.25%以下である。
 V:0.01~0.50%
 Vは、Cr炭窒化物の析出による耐食性の低下を抑制する元素である。その効果は、V含有量が0.01%以上で得られる。しかし、0.50%を超える過剰な含有は加工性を低下させ、深絞り加工には適さない。よって、V含有量は0.01~0.50%とした。下限について好ましくは0.02%以上、より好ましくは0.04%以上、さらに好ましくは0.06%以上である。上限について好ましくは0.30%以下、より好ましくは0.20%以下、さらに好ましくは0.10%以下である。
 0.30%≦Ti+Nb+V≦0.60% (1)
 上述のようにTi、Nb、VはいずれもCr炭窒化物の生成を抑制し、溶接部の耐食性を向上させる元素である。Cr炭窒化物析出による鋭敏化を抑制し、溶接部の耐食性を十分なものとするためにはTi含有量、Nb含有量、V含有量の合計が0.30%以上になることが必要である。好ましくは0.35%以上である。より好ましくは0.37%以上、さらに好ましくは0.40%以上である。加えて、溶接部の冷却速度は通常、非常に速いため、Ti、Nb、Vのいずれか単独あるいは2種のみの含有では、それぞれの元素の炭窒化物の析出しやすい温度域を急速に通過してしまい、C、Nを完全には無害化しきれない場合がある。そのため、Ti、Nb、Vのいずれの元素も0.01%以上の含有が必要である。
 一方で、Ti、Nb、Vの含有量の合計が0.60%を超えると加工性が低下するため、深絞り加工には適さない。よって、Ti含有量、Nb含有量、V含有量の合計が0.60%以下とした。好ましくは、0.55%以下、より好ましくは0.50%以下、さらに好ましくは0.45%以下である。
 Co:0.01~6.00%
 Coは本発明にとって重要な元素である。Coの含有はフェライト系ステンレス鋼の電子状態を変化させ、熱膨張係数を低下させる。この熱膨張係数の低下は溶接の熱によって引き起こされる溶接部の膨張および変形を緩和する。深絞り加工後の溶接部近傍では、溶接による熱膨張および変形によって生じる応力によって割れが発生する場合がある。Coの含有による熱膨張係数の低下は、溶接の熱影響および変形によって溶接部近傍にかかる応力負荷を緩和し、割れの発生を抑制する。その効果はCo含有量が0.01%以上で得られる。一方で、Co含有量が6.00%を超えると加工性が低下するため、深絞り加工には適さない。よってCo含有量は0.01~6.00%とした。下限について好ましくは0.03%以上、より好ましくは0.04%以上、さらに好ましくは0.05%以上である。上限について好ましくは3.00%以下、より好ましくは2.50%以下、さらに好ましくは2.00%以下である。
 B:0.0002~0.0050%
 Bは本発明にとって重要な元素である。高純度のフェライト系ステンレス鋼では深絞り加工によって、深絞り加工の壁面部分の結晶粒界にPが偏析し、結晶粒界が脆くなる。そのため、過度の深絞り加工を行った後に、深絞り方向に沿って割れが発生する場合がある。特にTiやNbによって固溶したC、Nを低減した成分でその傾向が顕著である。深絞り加工によって割れが発生しやすくなった結晶粒界では、溶接の熱影響による応力負荷が割れを発生させる場合がある。Bの含有は深絞り加工によるPの偏析を抑制し結晶粒界を強化して、このような割れの発生を抑制する。この効果はBを0.0002%以上含有することで得られる。一方で、B含有量が0.0050%を超えると加工性が低下するため、深絞り加工には適さない。よって、B含有量は0.0002~0.0050%とした。下限について好ましくは0.0003%以上、より好ましくは0.0004%以上、さらに好ましくは0.0006%以上である。上限について好ましくは0.0020%以下、より好ましくは0.0015%以下、さらに好ましくは0.0010%以下である。
 N:0.001~0.020%
 Nは、固溶強化により鋼の強度を上昇させる効果がある。その効果はN含有量が0.001%以上で得られる。しかし、N含有量が0.020%を超えると加工性の低下が顕著となり、深絞り加工に適さない。よって、N含有量は0.001~0.020%とした。下限について好ましくは0.002%以上、より好ましくは0.003%以上、さらに好ましくは0.007%以上である。上限について好ましくは0.018%以下、より好ましくは0.015%以下、さらに好ましくは0.013%以下である。
 また、本発明のフェライト系ステンレス鋼は、以下の成分(任意成分)を含んでもよい。
 Zr:1.0%以下
 ZrはC、Nと結合して、鋭敏化を抑制する効果がある。その効果は、Zr含有量を0.01%以上にすることで得られる。好ましくは0.03%以上、より好ましくは0.06%以上である。しかし、過剰のZrの含有は加工性を低下させる。また、Zrは価格が非常に高い元素であるため、過剰のZr含有はコストの増大を招く。よって、Zrの含有量は1.0%以下とした。好ましくは0.60%以下、より好ましくは0.30%以下である。
 W:1.0%以下
 WはMoと同様に耐食性を向上させる効果がある。その効果はW含有量を0.01%以上にすることで得られる。好ましくは0.10%以上、より好ましくは0.30%以上である。しかし、過剰のWの含有は強度を上昇させ、製造性を低下させる。よって、W含有量は1.0%以下とする。好ましくは0.80%以下、より好ましくは0.60%以下である。
 REM:0.1%以下
 REMは耐酸化性を向上して、酸化スケールの形成を抑制し、溶接部の耐食性を向上する。その効果はREM含有量を0.001%以上にすることで得られる。好ましくは0.004%以上、より好ましくは0.006%以上である。しかし、過剰にREMを含有すると、酸洗性などの製造性を低下させるうえ、コストの増大を招く。よってREMの含有量は0.1%以下とした。好ましくは0.04%以下、より好ましくは0.02%以下である。
 上記以外の残部はFeおよび不可避的不純物である。不可避的不純物としてはZn:0.03%以下、Sn:0.3%以下、Cu:0.1%未満等が挙げられる。なお、本発明のCr含有量、Mo含有量を有する耐食性に優れたフェライト系ステンレス鋼では、Cuは不動態維持電流を増加させて不動態皮膜を不安定とし、耐食性を低下させる作用がある。この観点からはCuを含まない方がよい。Cuを含有する場合、その含有量は0.1%未満が適当である。よって、不純物としてのCuの含有量は上記の通り0.1%未満とした。
 本発明のフェライト系ステンレス鋼の製造方法は特に限定されない。好適な製造方法の一例を以下に示す。
 上記成分組成のステンレス鋼を1100~1300℃に加熱後、仕上温度を700~1000℃、巻取温度を400~800℃として板厚2.0~5.0mmになるように熱間圧延を施す。こうして作製した熱間圧延鋼帯を800~1100℃の温度で焼鈍し酸洗を行う。次に、板厚0.5~2.0mmになるように冷間圧延を行い、700~1050℃の温度で冷延板焼鈍を行う。冷延板焼鈍後には酸洗を行い、スケールを除去する。スケールを除去した冷間圧延鋼帯にはスキンパス圧延を行ってもよい。
 以上の本発明(第一発明)において、Mo含有量、Ti含有量、Nb含有量、V含有量、Co含有量を特定の範囲に調整し、後述する(2)式、(3)式を満たすようにすれば、さらに、加工肌荒れが少なくなるという効果を奏する。以下、この効果を有する発明(第二発明)について説明する。
 先ず、加工肌荒れという課題について説明する。フェライト系ステンレス鋼をプレスなどの加工によって成形した場合、加工肌荒れが激しいことが問題になる場合がある。
 フェライト系ステンレス鋼の加工肌荒れとしては、リジングとオレンジピールがよく知られている。
 リジングは、フェライト系ステンレス鋼をプレス成形した時に形成させる畝状のしわのことである。このしわはステンレス鋼の美観を損ねるばかりか、厳しい加工の際には、このしわに沿って割れが発生する場合もある。
 このリジングは、鋳造段階において生成した粗大な柱状組織が、熱延、再結晶によって十分に微細化されずに、結晶方位の類似した集合組織を形成して、プレス成型の際にこの集合組織が類似した変形挙動を示すことで畝状のしわが形成されるといわれている。したがって、リジングの抑制には鋳造組織に占める柱状組織の割合を減少させ、等軸晶組織の割合を増加させることが重要である。
 鋳造組織の等軸晶を増加させる技術としては、たとえば、特開2000-144342号公報に成形性に優れたフェライト系ステンレス鋼及びフェライト系ステンレス鋼鋳片が開示されている。この発明は、固溶Alを低減し、かつ、Al系介在物を溶鋼中に分散させる。これにより、Ti系介在物がAl系介在物を核として溶鋼中に分散析出し、等軸晶の生成サイトとなるため、鋳造組織の等軸晶率が増加する。しかしながら、脱酸のために十分な量のAl添加を行ったうえで、固溶Alを0.015質量%以下に制御することは、実操業上、非常に困難であるという問題がある。
 オレンジピールは、粗大な結晶粒に起因する肌荒れであり、その対策には結晶粒の微細化が有効である。オレンジピールを低減する技術としては、たとえば、2003-138349号公報に深絞り性に優れたフェライト系ステンレス鋼板が開示されている。この発明は、鋼の成分組成と製造条件を適正範囲に制御し、仕上焼鈍後の鋼板の平均r値を2.0以上、平均結晶粒径を50μm以下、かつ、(引張強度(MPa)×平均r値)/(結晶粒径(μm)))を20以上とすることにより、優れた深絞り性と耐肌荒れ性を両立している。しかしながら、この発明では結晶粒の微細化を行うために熱間圧延の圧下率を大きくとる必要があり、耐食性の高い材料(CrやMoの含有量が多い材料)では焼き付きや肌荒れが起こって表面性状を低下させる場合があるという問題がある。
 また、リジングやオレンジピールといった加工肌荒れを抑制する技術としては、たとえば、特開2002-285300号公報にフェライト系ステンレス鋼板およびその製造法が開示されている。この発明は、中間焼鈍を含む2回以上の冷間圧延を行うことで、結晶粒の粒度番号6.0以上を達成している。しかしながら、2回の冷間圧延を行う方法は、製造負荷が高く、製造に時間がかかるという問題がある。
 上記のように加工肌荒れを改善する従来技術では、実操業に適用できる適切な手法が得られていないのが現状である。
 Mo含有量、Ti含有量、Nb含有量、V含有量およびCo含有量を特定の範囲に調整し、後述する(2)式および(3)式を満たす本発明(第二発明)は、これらの問題点を解決する。即ち、第二発明は、製造が簡便で、深絞り加工、張り出し加工および曲げ加工などの加工を行い成形される構造体に好適であり、加工後の表面性状が求められる用途にもちいるのに好適な、加工肌荒れが少ないフェライト系ステンレス鋼である。
  第二発明を完成するにあたって得た知見は以下の通りである。鋳造組織の等軸晶率および最終製品の結晶粒径におよぼすフェライト系ステンレス鋼への、Co、B、その他元素添加の影響を検討し、成分と加工肌荒れおよび加工部の耐食性との相関から以下の知見を得た。
(1)Ti、Nb、Vの含有量を適切に制御することで、溶接部の耐食性を低下させることなく、低い再結晶温度を実現でき、結晶粒径の制御が容易となる。
(2)CoおよびBの含有量を適正な範囲に調整することで、鋳造組織の等軸晶率が向上する。また、熱延焼鈍による結晶粒の成長が抑制され、結晶粒が微細化した。
その結果、(1)、(2)の知見に加えて、Moの含有量も調整することで、加工による肌荒れが低減した。以下、第二発明における、Mo含有量、Ti含有量、Nb含有量、V含有量、Co含有量、(2)式、(3)式について説明する。また、B含有量は第一発明と同様であるが、(3)式にBが含まれることから明らかなように、Bは第二発明においても重要である。そこで、以下では、第二発明におけるBについても説明する。また、第一発明の説明と同様に、「%」は「質量%」を意味する。なお、Mo含有量、Ti含有量、Nb含有量、V含有量、Co含有量、B含有量以外の成分については、任意成分も含めて、第一発明と同様であるため説明を省略する。また、第二発明においても、(1)式を満たす必要があるが、これについても第一発明と同様のため説明を省略する。
 Mo:0.30~1.50%
 第二発明のMo含有量は上記の通りであり、第一発明のMo含有量よりも狭い。したがって、第二発明において、Moは、第一発明でのMoの技術的意義をも有する。第二発明におけるMoの技術的意義は以下の通りである。Moは不動態皮膜の再不動態化を促進し、ステンレス鋼の耐食性を向上する元素である。Crとともに含有することによってその効果はより顕著となる。Moによる耐食性向上効果は0.30%以上の含有で得られる。しかし、Mo含有量が1.50%を超えると強度が増加し、加工性が低下して肌荒れが発生しやすくなる。よって、Moの含有量は0.30~1.50%とした。下限について好ましくは0.40%以上、より好ましくは0.50%以上、さらに好ましくは0.55%以上である。上限について好ましくは1.40%以下、より好ましくは0.90%以下、さらに好ましくは0.70%以下である。
 Ti:0.25~0.40%
 第二発明のTi含有量は上記の通りであり、第一発明のTi含有量よりも狭い。したがって、第二発明において、Tiは、第一発明でのTiの技術的意義をも有する。第二発明におけるTiの技術的意義は以下の通りである。TiはNb、Vと同様に固溶C、Nと結合して炭窒化物を形成して鋭敏化を抑制する元素である。加えて、溶鋼中からTiNを晶出して等軸晶の晶出核となり、凝固組織の等軸晶率を向上する元素である。等軸晶の晶出促進効果は、Tiが0.25%以上で得られる。しかし、含有量が0.40%を超えると加工部の脆化が促進され、加工によって割れが発生しやすくなり、加工性が低下する。よって、Tiの含有量は0.25~0.40%とした。下限について好ましくは0.27%以上、より好ましくは0.29%以上、さらに好ましくは0.31%以上である。上限について好ましくは0.38%以下、より好ましくは0.35%以下、さらに好ましくは0.34%以下である。
 Nb:0.03~0.13%
 V:0.02~0.13%、
 Nb+V≦0.22% (3)式
 第二発明のNbおよびV含有量は上記の通りであり、第一発明のNbおよびV含有量よりも狭い。したがって、第二発明において、NbおよびVは、第一発明でのNbおよびVの技術的意義をも有する。第二発明におけるNbおよびVの技術的意義は以下の通りである。NbとVはいずれも固溶C、Nと結合して炭窒化物を形成する元素である。固溶CおよびNが固定されることで溶接部の鋭敏化が抑制され、耐食性を向上させる。特にTi、NbおよびVがいずれも含有されると、その析出温度の違いから、より適切にCおよびNの無害化を行える。その効果を得るためには、Nb含有量は0.03%以上が必要である。しかし、Nb含有量が0.13%を超えると再結晶が阻害され、適切な組織を得るためにより高い焼鈍温度が必要となり、微細な組織の形成が困難となり、加工時に肌荒れが発生しやすくなる。よって、Nbの含有量は0.03~0.13%とした。下限について好ましくは0.06%以上、より好ましくは0.07%以上、さらに好ましくは0.08%以上である。上限について好ましくは0.11%以下、より好ましくは0.10%以下、さらに好ましくは0.09%以下である。
 また、上記効果を得るためには、V含有量について0.02%以上が必要である。しかし、V含有量が0.13%を超える過剰な含有は,再結晶温度が上昇し,微細な組織の形成が困難となり、加工時に肌荒れが発生しやすくなる。よって、Vの含有量は0.02~0.13%とした。下限について好ましくは0.04%以上、より好ましくは0.06%以上、さらに好ましくは0.07%以上である。上限について好ましくは0.11%以下、より好ましくは0.10%以下、さらに好ましくは0.08%以下である。
 一方で、NbおよびVの炭窒化物は、ステンレス鋼の再結晶温度を上昇させるので、焼鈍のために高い温度が必要となる。そのため、これらの元素が合計で0.22%を超えて含有していると焼鈍温度の制御によって適切な組織を作りこむことが困難となり、オレンジピールなどの加工肌荒れが発生しやすくなる。よって、Nb+Vは0.22%以下とした。好ましくは0.20%以下、より好ましくは0.18%以下、さらに好ましくは0.16%以下である。Nb+Vの下限は特に限定されないが、0.08%以上が好ましく、より好ましくは0.10%以上である。なお、(3)式の「Nb+V」の元素記号は各元素の含有量(質量%)を意味する。
 B:0.0002~0.0050%
 Co:0.02~0.30%
 Co/B:10~150 (2)式
 第二発明のCo含有量は上記の通りであり、第一発明のCo含有量よりも狭い。また、B含有量は第一発明の範囲と同様である。したがって、第二発明において、CoおよびBは、第一発明でのCoおよびBの技術的意義をも有する。第二発明におけるCoおよびBの技術的意義は以下の通りである。加工肌荒れ低減手法の要旨は、鋳造工程の凝固段階において、結晶粒界に(Cr,Fe)Bを適度に分散した状態で析出させ、等軸晶率を増加させることであり、Bは本発明にとって重要な元素である。また、分散析出した(Cr,Fe)Bには熱延焼鈍の際の結晶粒成長を抑制する効果もあると考えられる。このように、集合組織の発達を抑制しつつ、結晶粒の成長を抑制することで、本発明では加工肌荒れを低減している。この効果は、B含有量が0.0002%以上で得られる。一方で、0.0050%超のBの含有は加工性を低下させ、割れが発生しやすくなる。よって、Bの含有量は0.0002~0.0050%とした。下限について0.0003%以上が好ましく、より好ましくは0.0004%以上、さらに好ましくは0.0006%以上である。上限について好ましくは0.0020%以下、より好ましくは0.0018%以下、さらに好ましくは0.0015%以下である。
 この鋳造段階での(Cr,Fe)Bの析出において、Coは(Cr,Fe)Bの凝集を抑制し、適切な分散状態に保つ効果があると考えられる。その結果、柱状晶組織の成長が抑制され、加工肌荒れが低減されると考えられる。したがって、Coは本発明にとって重要な元素である。この効果は、0.02%以上のCoの含有で得られる。一方で、0.30%を超えてCoを含有させると加工性が低下し、割れが発生しやすくなる。よってCoの含有量は0.02~0.30%とした。下限について好ましくは0.03%以上、より好ましくは0.04%以上、さらに好ましくは0.05%以上である。上限について好ましくは0.20%以下、より好ましくは0.10%以下、さらに好ましくは0.08%以下である。
 さらに、本発明では、適切な等軸晶率を得るために、CoとBの含有割合を適正な範囲にする必要がある。詳細な機構についてはまだ明確となっていないが、Coの含有量に対してBの含有量が多すぎる場合、Coが(Cr,Fe)Bの凝集を十分に抑制できないと考えられる。したがって、Co/Bは10以上が適切である。一方で、Coの含有量が多すぎる場合、(Cr,Fe)Bの析出温度が低下し、適切な温度において柱状晶の成長を抑制できなくなると考えられる。したがって、Co/Bは150以下が適切である。よって、Co/Bは10~150とした。下限について好ましくは20以上、より好ましくは30以上、さらに好ましくは40以上である。上限について好ましくは120以下、より好ましくは100以下、さらに好ましくは80以下である。
 最後に、第二発明のステンレス鋼の好適な製造方法の一例を以下に示す。
 転炉において、溶鋼を上記化学組成に調整した後、溶鋼過熱度ΔTを20~80℃、鋳造速度0.4~1.1m/minとして、連続鋳造により板厚100~300mmのスラブを作製する。得られたスラブを1100~1300℃に加熱後、仕上温度を600~900℃、巻取温度を400~800℃として板厚2.0~5.0mmに熱間圧延を施す。最終圧延の圧下率は15%以上とする。圧延の熱延焼鈍における結晶粒の微細化には、仕上温度は600~750℃が好ましく、最終圧延の圧下率は40%以上が好ましい。また、475℃脆化を抑制し良好な製造性を得るためには、巻き取り温度は400~450℃が好ましい。こうして作製した熱間圧延鋼帯を800~980℃の温度で焼鈍する。焼鈍における均熱時間は10~300sが適当である。結晶粒の微細化には再結晶が可能な温度範囲で焼鈍温度は低いほうが好ましく、800~900℃が好適である。焼鈍時間は短いほうが好ましく、10~180sが好適である。その後、酸洗を行い、次に、冷間圧延を行い、板厚0.3~3.0mmの冷間圧延鋼帯を作製する。得られた冷間圧延鋼帯に対して、700~1050℃の温度で冷延焼鈍を行う。冷延焼鈍後には酸洗を行い、スケールを除去する。これら製造工程の中間、および、最後にはスキンパス圧延、ショットブラストなどの機械的作用による脱スケール処理、グラインダーや研磨ベルトによる研削・研磨処理を行ってもよい。
 以下、実施例に基づいて本発明を説明する。
 表1に示すステンレス鋼を100kg鋼塊に真空溶製し、1200℃に加熱した後、板厚4mmまで熱間圧延し、800~1000℃の範囲で焼鈍し、酸洗によりスケールを除去した。さらに、板厚0.8mmまで冷間圧延し、800~950℃の範囲で焼鈍し、酸洗を行い、供試材とした。
 作製した供試材からφ72mmの円板を採取し、φ49mm、φ35mm、φ26mm、φ22mmのポンチ(いずれも肩半径2mm)を順に用いて4段の円筒深絞り加工を行い、加工後の高さが50mmとなるように耳を切除した(図1(a))。さらに、深絞り底部の中心部にφ5mmの穴をドリルで開け、円筒深絞り形状の試験片を作製した。その後、試験片のφ22mmの開口部をふさぐようにφ23mmの円板をTIG溶接にて接合した(図1(b))。
溶接条件は、溶接電流100A、溶接速度60cm/minとした。シールドガスはArを用い、流量は20L/minとした。溶接後、24h経過した後にφ5mmの穴から水を入れて、試験片内部を水で満たし、10気圧の圧力をかけて割れの有無を確認した。その後、光学顕微鏡を用いて200倍の倍率で円筒深絞り壁面の溶接部近傍(フュージョンラインから2~5mmの位置)を観察し(図1(b)の割れ観察位置の観察)、割れの長さを確認した。長さが0.5mm以上の割れのあったものを「×」(不合格)、割れのなかったものを「○」(合格)として結果を表2に示す。なお,フュージョンラインには、いずれの試験片も割れは認められなかった。
 表2のうち、本発明例ではいずれも溶接部近傍に割れは確認できなかった。一方で、比較例であるNo.12では、Coを含まないため割れが発生した。No.13ではBを含まないため割れが発生した。No.14ではAlが過剰に添加されたため割れが発生した。No.15ではCrが過剰に添加されたため割れが発生した。
 続いて、割れの有無を確認した試験片を用いて、溶接ままの溶接部の耐食性を評価した。JIS H 8502に準拠した中性塩水噴霧サイクル試験を5サイクル行い、溶接部近傍(溶接ビード中心からフージョンラインより5mmの範囲)の腐食の有無を目視により確認した。試験片はφ5mmの穴が下になるように腐食試験槽内に配置した。5サイクルの試験によって溶接部近傍に長径が1mm以上の腐食が発生したものを「×」(不合格)、腐食が発生しなかったものを「○」(合格)として表2に示した。
 No.12、No.13、No.14はいずれも溶接近傍の割れから腐食が発生した。No.16は(1)式を満たさなかったため溶接ビードから腐食が発生した。No.17はCr含有量が少なく溶接ビードおよびテンパー部から腐食が発生した。No.18はNbを含まないため、溶接ビードから腐食が発生した。No.19はTiを含まないため、溶接ビードから腐食が発生した。No.20はVを含まないため、溶接ビードから腐食が発生した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 以下、実施例に基づいて本発明を説明する。
 表3に示す成分のステンレス鋼を溶鋼過熱度60℃、鋳造速度0.6m/minの条件で連続鋳造し、板厚200mmのスラブを作製した。作製したスラブを、1200℃に加熱したのち、仕上温度700℃、巻取り温度400℃、最終圧延の圧下率30%の条件で板厚4mmまで熱間圧延し、950℃で均熱時間60sとなるように焼鈍した。その後、板厚0.8mmまで冷間圧延し、900℃で均熱時間30sとなるように焼鈍し、研磨により表面のスケールを除去したのちエメリー研磨紙#600仕上げとして供試材とした。
 作製した供試材からφ72mmの円板を採取し、φ49mm、φ35mm、φ26mm、φ22mmのポンチ(いずれも肩半径2mm)を順に用いて4段の円筒深絞り加工を行い、加工後の高さが50mmとなるように耳を切除した(図1(a))。作製した試験片について、開口部から10mmの位置で円周方向に5mmの長さをそれぞれの測定位置が円周上の90°の位置となるように4か所選び、レーザ顕微鏡を用いて表面の凹凸を測定した(図1(a)の凹凸測定位置での測定)。得られた測定結果をφ22mmの円弧上の凹凸と仮定して、平面上の凹凸となるように補正をかけ、最大山高さと最大谷深さの差を測定し、測定した4か所の結果を平均した。表3のステンレス鋼について最大山高さと最大谷深さの差が200μm以上あったものを「△」(従来技術と同等の顕著な凹凸がある)、200μm以下であったものを「◎」(顕著な凹凸がなく優れている)として結果を表4に示す。
 表3のうち、請求項2のMo、Ti、Nb、V、Co、式(2)および式(3)のすべてが範囲内のNo.34~46では深絞り加工後の壁面に顕著な凹凸は観察されなかった。一方、No.47~61では請求項2のMo、Ti、Nb、V、Co、式(2)および式(3)のいずれかが範囲外となるため、深絞り加工後の壁面に顕著な凹凸が観察された。No.62はBが請求項1の範囲外となるため、試験片壁面に顕著な凹凸が観察された。
 次に、深絞り底部の中心部にφ5mmの穴を開け、円筒深絞り形状の試験片を作製した。その後、試験片のφ22mmの開口部をふさぐようにφ23mmの円板をTIG溶接にて接合した(図1(b))。溶接条件は、溶接電流100A、溶接速度60cm/minとした。シールドガスはArを用い、流量は20L/minとした。溶接後、24h経過した後にφ5mmの穴から水を入れて、試験片内部を水で満たし、10気圧の圧力をかけて割れの有無を確認した。その後、光学顕微鏡を用いて200倍の倍率で円筒深絞り壁面の溶接部近傍(フュージョンラインから2~5mmの位置)を観察し(図1(b)の割れ観察位置の観察)、割れの長さを確認した。長さが0.5mm以上の割れのあったものを「×」(不合格)、割れのなかったものを「○」(合格)として結果を表4に示す。
 表3のうち、本発明例ではいずれも溶接部近傍に割れは確認できなかった。一方で、比較例であるNo.62では溶接部近傍に割れが発生した。
 続いて、割れの有無を確認した試験片を用いて、溶接ままの溶接部の耐食性を評価した。JIS H 8502に準拠した中性塩水噴霧サイクル試験を5サイクル行い、溶接部近傍(溶接ビード中心からフージョンラインより5mmの範囲)の腐食の有無を目視により確認した。試験片はφ5mmの穴が下になるように腐食試験槽内に配置した。5サイクルの試験によって溶接部近傍に長径が1mm以上の腐食が発生したものを「×」(不合格)、腐食が発生しなかったものを「○」(合格)として表4に示した。表4のうち、本発明例ではいずれも溶接部近傍に腐食は確認できなかった。一方で、比較例であるNo.62では腐食が発生した。
 以上の結果から,本発明によれば,加工肌荒れが少なく溶接部の形状および耐食性に優れたフェライト系ステンレス鋼が得られることが確認された。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 本発明によれば、深絞り加工の後に溶接によって接合が行われる構造体に用いるのに好適な、溶接部の形状および耐食性に優れるフェライト系ステンレス鋼が得られる。本発明で得られるフェライト系ステンレス鋼は、深絞り後に溶接によって構造体の作製が行われる用途、たとえば、電池ケースなどの電子機器部品、コンバータなどの自動車部品などへの適用に好適である。

Claims (3)

  1.  質量%で、
    C:0.001~0.020%、
    Si:0.01~0.30%、
    Mn:0.01~0.50%、
    P:0.04%以下、
    S:0.01%以下、
    Cr:18.0~24.0%、
    Ni:0.01~0.40%、
    Mo:0.30~3.0%、
    Al:0.01~0.15%、
    Ti:0.01~0.50%、
    Nb:0.01~0.50%、
    V:0.01~0.50%、
    Co:0.01~6.00%、
    B:0.0002~0.0050%、
    N:0.001~0.020%を含有し、
    下記(1)式を満足し、残部がFeおよび不可避的不純物である成分組成を有するフェライト系ステンレス鋼。
    0.30%≦Ti+Nb+V≦0.60%   (1)
    (1)式における元素記号は各元素の含有量(質量%)を意味する。
  2. 前記Mo含有量が0.30~1.50%、
    前記Ti含有量が0.25~0.40%、
    前記Nb含有量が0.03~0.13%、
    前記V含有量が0.02~0.13%、
    前記Co含有量が0.02~0.30%、であり、下記(2)式、(3)式を満足する請求項1に記載のフェライト系ステンレス鋼。
    Co/B:10~150    (2)
    Nb+V≦0.22%    (3)
    (2)式、(3)式における元素記号は、各元素の含有量(質量%)を意味する。
  3.  さらに、質量%で、
    Zr:1.0%以下、
    W:1.0%以下、
    REM:0.1%以下のいずれか1種または2種以上を含有する請求項1または2に記載のフェライト系ステンレス鋼。
PCT/JP2017/019514 2017-03-30 2017-05-25 フェライト系ステンレス鋼 WO2018179456A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2017550953A JP6274372B1 (ja) 2017-03-30 2017-05-25 フェライト系ステンレス鋼
ES17904332T ES2864725T3 (es) 2017-03-30 2017-05-25 Acero inoxidable ferrítico
EP17904332.8A EP3604588B1 (en) 2017-03-30 2017-05-25 Ferritic stainless steel
US16/497,507 US11560604B2 (en) 2017-03-30 2017-05-25 Ferritic stainless steel
KR1020197027901A KR20190121818A (ko) 2017-03-30 2017-05-25 페라이트계 스테인리스강
CN201780089128.1A CN110462079B (zh) 2017-03-30 2017-05-25 铁素体系不锈钢

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-068023 2017-03-30
JP2017068023 2017-03-30

Publications (1)

Publication Number Publication Date
WO2018179456A1 true WO2018179456A1 (ja) 2018-10-04

Family

ID=63674809

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/019514 WO2018179456A1 (ja) 2017-03-30 2017-05-25 フェライト系ステンレス鋼

Country Status (7)

Country Link
US (1) US11560604B2 (ja)
EP (1) EP3604588B1 (ja)
JP (1) JP6274372B1 (ja)
KR (1) KR20190121818A (ja)
CN (1) CN110462079B (ja)
ES (1) ES2864725T3 (ja)
WO (1) WO2018179456A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7014754B2 (ja) * 2019-07-09 2022-02-01 Jfeスチール株式会社 硫化物系固体電池の集電体用のフェライト系ステンレス鋼板

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997003216A1 (en) * 1995-07-07 1997-01-30 Highveld Steel & Vanadium Corporation Limited A steel
JP2000144342A (ja) 1998-01-30 2000-05-26 Sumitomo Metal Ind Ltd 成形性に優れたフェライト系ステンレス鋼及びフェライト系ステンレス鋼鋳片
JP2000144258A (ja) * 1998-11-02 2000-05-26 Kawasaki Steel Corp 耐リジング性に優れたTi含有フェライト系ステンレス鋼板の製造方法
JP2002030346A (ja) * 2000-07-13 2002-01-31 Kawasaki Steel Corp 成形性に優れたCr含有耐熱耐食鋼板の製造方法
JP2002285300A (ja) 2001-01-18 2002-10-03 Kawasaki Steel Corp フェライト系ステンレス鋼板およびその製造方法
JP2003138349A (ja) 2001-10-31 2003-05-14 Kawasaki Steel Corp 深絞り性に優れたフェライト系ステンレス鋼板およびその製造方法
JP2003201547A (ja) 2001-10-31 2003-07-18 Jfe Steel Kk 深絞り性、耐二次加工脆性および耐食性に優れるフェライト系ステンレス鋼板及びその製造方法
JP2007119847A (ja) 2005-10-27 2007-05-17 Jfe Steel Kk プレス成形性に優れたフェライト系ステンレス冷延鋼板およびその製造方法
JP2009299116A (ja) 2008-06-12 2009-12-24 Jfe Steel Corp 深絞り性に優れたフェライト系ステンレス鋼板およびその製造方法
JP2011179063A (ja) * 2010-03-01 2011-09-15 Nisshin Steel Co Ltd 固体酸化物形燃料電池の導電部材
JP2015124420A (ja) * 2013-12-27 2015-07-06 Jfeスチール株式会社 フェライト系ステンレス鋼
JP2016156072A (ja) * 2015-02-25 2016-09-01 新日鐵住金ステンレス株式会社 穴拡げ性に優れたフェライト系ステンレス鋼鈑及びその製造方法
JP2016199803A (ja) * 2015-04-10 2016-12-01 Jfeスチール株式会社 フェライト系ステンレス鋼
JP2017101267A (ja) * 2015-11-30 2017-06-08 Jfeスチール株式会社 フェライト系ステンレス鋼

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4906193B2 (ja) 2000-04-13 2012-03-28 新日鐵住金ステンレス株式会社 フェライト系快削ステンレス鋼
US6426039B2 (en) * 2000-07-04 2002-07-30 Kawasaki Steel Corporation Ferritic stainless steel
CA2451147C (en) 2002-04-05 2013-07-30 Nippon Steel Corporation Pearlitic steel rail excellent in wear resistance and ductility and method for producing the same
CN100370048C (zh) 2002-06-14 2008-02-20 杰富意钢铁株式会社 耐热性铁素体系不锈钢及其制造方法
JP4281535B2 (ja) * 2003-11-27 2009-06-17 Jfeスチール株式会社 耐面歪み性に優れたフェライト系ステンレス鋼板
CN101171353A (zh) * 2005-06-09 2008-04-30 杰富意钢铁株式会社 波纹管原管用铁素体类不锈钢板
JP5291479B2 (ja) * 2009-01-29 2013-09-18 大同特殊鋼株式会社 二相ステンレス鋼並びにそれを用いた鋼材及び鋼製品
CN103459641B (zh) * 2011-03-29 2015-09-09 新日铁住金不锈钢株式会社 焊接部的耐腐蚀性及强度优异的铁素体系不锈钢及tig焊接结构物
EP2799577B1 (en) * 2011-12-27 2016-11-09 JFE Steel Corporation Ferritic stainless steel
JP5949057B2 (ja) * 2012-03-30 2016-07-06 Jfeスチール株式会社 溶接部の耐食性および低温靭性に優れたフェライト系ステンレス鋼
FI125855B (fi) * 2012-06-26 2016-03-15 Outokumpu Oy Ferriittinen ruostumaton teräs
MY155937A (en) * 2012-09-25 2015-12-17 Jfe Steel Corp Ferritic stainless steel
WO2014069543A1 (ja) 2012-10-30 2014-05-08 新日鐵住金ステンレス株式会社 耐熱性に優れたフェライト系ステンレス鋼板
KR101706004B1 (ko) * 2013-02-04 2017-02-10 닛폰 스틸 앤드 스미킨 스테인레스 스틸 코포레이션 가공성이 우수한 페라이트계 스테인리스 강판 및 그 제조 방법
CN105008590B (zh) 2013-03-29 2017-09-19 新日铁住金不锈钢株式会社 钎焊性优良的铁素体系不锈钢板、热交换器、热交换器用铁素体系不锈钢板、铁素体系不锈钢、燃料供给体系构件用铁素体系不锈钢及燃料供给体系部件
JP6075349B2 (ja) 2013-10-08 2017-02-08 Jfeスチール株式会社 フェライト系ステンレス鋼
JP5935792B2 (ja) * 2013-12-27 2016-06-15 Jfeスチール株式会社 フェライト系ステンレス鋼
JP2015147975A (ja) * 2014-02-06 2015-08-20 大同特殊鋼株式会社 析出硬化型ステンレス鋼及びセンサー用部品
WO2017138050A1 (ja) 2016-02-08 2017-08-17 Jfeスチール株式会社 油井用高強度ステンレス継目無鋼管およびその製造方法
JP6206624B1 (ja) 2016-03-29 2017-10-04 Jfeスチール株式会社 フェライト系ステンレス鋼板
CN109312422B (zh) * 2016-06-10 2020-06-23 杰富意钢铁株式会社 燃料电池的隔板用不锈钢板及其制造方法
CA3026612A1 (en) 2016-06-10 2017-12-14 Jfe Steel Corporation Stainless steel sheet for fuel cell separators, and production method therefor
MX2019001947A (es) * 2016-09-02 2019-05-15 Jfe Steel Corp Acero inoxidable ferritico.
EP3508597A4 (en) 2016-09-02 2019-09-04 JFE Steel Corporation FERRITIC STAINLESS STEEL
WO2018131340A1 (ja) 2017-01-13 2018-07-19 Jfeスチール株式会社 高強度ステンレス継目無鋼管およびその製造方法
KR102274976B1 (ko) 2017-01-26 2021-07-07 제이에프이 스틸 가부시키가이샤 페라이트계 스테인리스 열연 강판 및 그 제조 방법
RU2716438C1 (ru) 2017-02-24 2020-03-12 ДжФЕ СТИЛ КОРПОРЕЙШН Бесшовная высокопрочная труба из нержавеющей стали нефтепромыслового сортамента и способ её изготовления
US11365467B2 (en) 2017-05-26 2022-06-21 Jfe Steel Corporation Ferritic stainless steel
EP3670693B1 (en) 2017-08-15 2023-10-04 JFE Steel Corporation High-strength stainless steel seamless pipe for oil country tubular goods, and method for manufacturing same

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997003216A1 (en) * 1995-07-07 1997-01-30 Highveld Steel & Vanadium Corporation Limited A steel
JP2000144342A (ja) 1998-01-30 2000-05-26 Sumitomo Metal Ind Ltd 成形性に優れたフェライト系ステンレス鋼及びフェライト系ステンレス鋼鋳片
JP2000144258A (ja) * 1998-11-02 2000-05-26 Kawasaki Steel Corp 耐リジング性に優れたTi含有フェライト系ステンレス鋼板の製造方法
JP2002030346A (ja) * 2000-07-13 2002-01-31 Kawasaki Steel Corp 成形性に優れたCr含有耐熱耐食鋼板の製造方法
JP2002285300A (ja) 2001-01-18 2002-10-03 Kawasaki Steel Corp フェライト系ステンレス鋼板およびその製造方法
JP2003138349A (ja) 2001-10-31 2003-05-14 Kawasaki Steel Corp 深絞り性に優れたフェライト系ステンレス鋼板およびその製造方法
JP2003201547A (ja) 2001-10-31 2003-07-18 Jfe Steel Kk 深絞り性、耐二次加工脆性および耐食性に優れるフェライト系ステンレス鋼板及びその製造方法
JP2007119847A (ja) 2005-10-27 2007-05-17 Jfe Steel Kk プレス成形性に優れたフェライト系ステンレス冷延鋼板およびその製造方法
JP2009299116A (ja) 2008-06-12 2009-12-24 Jfe Steel Corp 深絞り性に優れたフェライト系ステンレス鋼板およびその製造方法
JP2011179063A (ja) * 2010-03-01 2011-09-15 Nisshin Steel Co Ltd 固体酸化物形燃料電池の導電部材
JP2015124420A (ja) * 2013-12-27 2015-07-06 Jfeスチール株式会社 フェライト系ステンレス鋼
JP2016156072A (ja) * 2015-02-25 2016-09-01 新日鐵住金ステンレス株式会社 穴拡げ性に優れたフェライト系ステンレス鋼鈑及びその製造方法
JP2016199803A (ja) * 2015-04-10 2016-12-01 Jfeスチール株式会社 フェライト系ステンレス鋼
JP2017101267A (ja) * 2015-11-30 2017-06-08 Jfeスチール株式会社 フェライト系ステンレス鋼

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3604588A4

Also Published As

Publication number Publication date
EP3604588A4 (en) 2020-02-05
EP3604588B1 (en) 2021-03-03
JPWO2018179456A1 (ja) 2019-04-04
ES2864725T3 (es) 2021-10-14
JP6274372B1 (ja) 2018-02-07
EP3604588A1 (en) 2020-02-05
KR20190121818A (ko) 2019-10-28
US20210277494A1 (en) 2021-09-09
CN110462079B (zh) 2021-07-13
CN110462079A (zh) 2019-11-15
US11560604B2 (en) 2023-01-24

Similar Documents

Publication Publication Date Title
JP5318421B2 (ja) 高い強度および成型性を有するオーステナイト系鋼、該鋼の製造方法およびその使用
CN109642286B (zh) 铁素体系不锈钢热轧退火钢板及其制造方法
JP6383368B2 (ja) 深絞りを適用するための冷間圧延された平鋼製品及びそれを製造するための方法
CN110366601B (zh) 铁素体系不锈钢板、热轧卷材和汽车排气系统法兰构件
TWI553129B (zh) Ferrous iron-type stainless steel hot-rolled steel sheet, its manufacturing method and fat iron-based stainless steel cold-rolled steel plate
TWI685574B (zh) 肥粒鐵系不鏽鋼熱軋退火鋼板及其製造方法
WO2017002147A1 (ja) フェライト系ステンレス鋼板およびその製造方法
CN110337503B (zh) 铁素体系不锈钢板、热轧卷材以及汽车排气系统法兰构件
KR101850231B1 (ko) 페라이트계 스테인리스강 및 그 제조 방법
JP2010100877A (ja) 靭性に優れるフェライト系ステンレス熱延鋼板の製造方法
JP6311633B2 (ja) ステンレス鋼およびその製造方法
JP6036645B2 (ja) 低温靭性に優れたフェライト−マルテンサイト2相ステンレス鋼およびその製造方法
CN111295458A (zh) 铁素体系不锈钢板及其制造方法
JP6274372B1 (ja) フェライト系ステンレス鋼
JP6645816B2 (ja) フェライト系ステンレス鋼
JP2001207244A (ja) 延性、加工性および耐リジング性に優れたフェライト系ステンレス冷延鋼板およびその製造方法
CN113166831B (zh) 铁素体系不锈钢板及其制造方法
JP6575650B2 (ja) フェライト系ステンレス鋼
JP2004225131A (ja) 加工性に優れた高強度鋼管とその製造方法
JP6421772B2 (ja) 缶用鋼板の製造方法
KR102587650B1 (ko) 캔용 강판 및 그의 제조 방법
JP2005008925A (ja) Mo含有オ−ステナイト系ステンレス鋼とその鋼材の製造法
JP2009132984A (ja) 高強度かつエキスパンド成形性に優れた3ピース缶用鋼板および製造方法
JP2020152941A (ja) 二相ステンレス鋼およびその製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017550953

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17904332

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197027901

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017904332

Country of ref document: EP

Effective date: 20191028