Nothing Special   »   [go: up one dir, main page]

WO2018176828A1 - 金属微晶玻璃粉及其制备方法及导电浆料 - Google Patents

金属微晶玻璃粉及其制备方法及导电浆料 Download PDF

Info

Publication number
WO2018176828A1
WO2018176828A1 PCT/CN2017/108275 CN2017108275W WO2018176828A1 WO 2018176828 A1 WO2018176828 A1 WO 2018176828A1 CN 2017108275 W CN2017108275 W CN 2017108275W WO 2018176828 A1 WO2018176828 A1 WO 2018176828A1
Authority
WO
WIPO (PCT)
Prior art keywords
parts
glass
metal
conductive paste
powder
Prior art date
Application number
PCT/CN2017/108275
Other languages
English (en)
French (fr)
Inventor
周欣山
汪山
包娜
Original Assignee
苏州晶银新材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州晶银新材料股份有限公司 filed Critical 苏州晶银新材料股份有限公司
Publication of WO2018176828A1 publication Critical patent/WO2018176828A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F77/00Constructional details of devices covered by this subclass
    • H10F77/20Electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F77/00Constructional details of devices covered by this subclass
    • H10F77/20Electrodes
    • H10F77/206Electrodes for devices having potential barriers
    • H10F77/211Electrodes for devices having potential barriers for photovoltaic cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the invention relates to a metal microcrystalline glass powder, a preparation method thereof and a conductive paste, and belongs to the technical field of functional materials of solar cells.
  • photovoltaic cells have achieved rapid development in recent years. Photovoltaic cell technology is also changing with each passing day. The entire industry chain is actively promoting the conversion efficiency of photovoltaic cells and reducing costs through technological innovation, striving to achieve parity online and replacing traditional high pollution. energy.
  • Crystalline silicon photovoltaic cells are the most important type of photovoltaic cells, accounting for more than 90%.
  • the principle of photoelectric conversion is: boron-doped P-type silicon and phosphorus-doped N-type silicon form PN junction, when sunlight is irradiated, PN The junction absorbs photon energy to excite electron transitions, forming electron-hole pairs, which generate carriers.
  • a conductive metal paste is coated on the light-receiving surface (front surface) and the backlight surface (back surface) of the photovoltaic cell, and after sintering, a metal electrode can be formed, and the PN junction generates carriers which are led out through the metal electrode to form a current.
  • the metal electrode forms a good ohmic contact with the silicon substrate, has a low ohmic contact resistance and bulk resistance, reduces current loss, and improves solar cell conversion efficiency.
  • the glass plays an important role.
  • the glass reacts with the anti-reflective layer (SiNx), corrodes the anti-reflective layer and contacts the silicon-based layer, and the liquid glass dissolves the silver, and the silver-based contact crystallizes the silver particles upon cooling to lower the ohmic contact resistance.
  • the present invention provides a metal microcrystalline glass powder and a conductive paste which are more excellent in electrical properties.
  • the present invention relates to a metal microcrystalline glass powder, in parts by weight, comprising the following components:
  • the metal microcrystalline glass powder of the present application further comprises one or more of lead, magnesium, aluminum, vanadium, cobalt, strontium, barium, sodium, potassium, indium, calcium, titanium and nickel oxide, and the number is 1 -10 servings.
  • the metal microcrystalline glass powder of the present application has a particle diameter D50 of 0.3 to 2 ⁇ m.
  • the application also provides a method for preparing a metal microcrystalline glass powder:
  • Step 1 Mixing the materials of any one of claims 1 to 3 in parts by weight, raising the temperature to 900 to 1000 ° C under mixing of H 2 and argon, holding the glass for 10 to 60 minutes, and then forming the glass. The liquid is quenched on a steel plate or a stainless steel roll machine to obtain a base glass;
  • Step 2 the base glass is kept at 200-400 ° C for 20 to 60 minutes in an oxygen-free atmosphere, and then slowly cooled at room temperature or with the furnace temperature to obtain a metal crystallized glass;
  • Step 3 then crushing the metal crystallized glass obtained in the second step and then ball milling with a planetary ball mill to obtain a metal microcrystalline glass powder.
  • the application further provides a conductive paste for a solar cell, the conductive paste comprising the following parts by weight:
  • the metal glass ceramic powder is the above metal glass ceramic powder.
  • the conductive paste for a solar cell of the present application has a spherical shape, a polyhedral shape, a short rod shape, a dendritic shape or a sheet shape.
  • the conductive paste for solar cells of the present application wherein the organic solvent is terpineol, butyl carbitol, propylene glycol phenyl ether, propylene glycol methyl ether, dimethyl glutarate, dimethyl succinate One or more.
  • the organic carrier is butyl carbitol acetate, ethyl cellulose, acrylate, oleic acid, polypropylene glycol, polyamide wax according to (50-80): 1-10): (0-15): (0-5): (0-3): (0.5-6) by weight mixing.
  • the conductive paste for solar cells of the present application is formed by heating and stirring at a temperature of 50 to 90 degrees.
  • the present invention has the following advantages and effects compared with the prior art:
  • the present invention relates to a metal microcrystalline glass and a conductive paste for a solar cell, which comprises 10 to 50 parts of cerium oxide, 15 to 70 parts of cerium oxide, 2 to 10 parts of zinc oxide, and 1 to 15 parts of tungsten oxide. 5 to 20 parts of lithium oxide, which can precipitate "metal microcrystalline glass" when cooled.
  • This metal microcrystalline glass is applied to the front electrode silver paste of crystalline silicon photovoltaic cell, which has superior performance and performance compared with conventional amorphous glass. Improve the conversion efficiency of the battery, and also have the characteristics of high temperature viscosity and large surface tension. When the slurry is sintered, the molten glass does not easily flow and maintains a fine line shape;
  • the metal cermet glass powder and the conductive paste of the present application have the highest conversion efficiency.
  • the series resistance is reduced by 0.2-0.4m ⁇
  • the fill factor is increased by up to 1%
  • the ohmic contact resistance is reduced by about half.
  • the conductive paste for solar cells of the present invention wherein the organic carrier is butyl carbitol acetate, ethyl cellulose, acrylate, oleic acid, polypropylene glycol, polyamide wax according to (50-80): 1-10): (0-15): (0-5): (0-3): (0.5-6) by weight mixing, not only helps to improve the infiltration of the paste and stainless steel screen, which is beneficial to The paste is evenly spread during the printing process; moreover, it overcomes the defect that the silver powder and the metal microcrystalline glass powder in the conductive paste are relatively easy to agglomerate and settle, and forms a slurry in which the silver powder and the metal microcrystalline glass powder are uniformly dispersed.
  • the organic carrier is butyl carbitol acetate, ethyl cellulose, acrylate, oleic acid, polypropylene glycol, polyamide wax according to (50-80): 1-10): (0-15): (0-5): (0-3): (0.5-6) by weight mixing
  • Examples 1-18 provide a metal microcrystalline glass frit, respectively, and the metal frit glass powder of each example consists of the components of Table 1:
  • Example 16 Example 17
  • Example 18 Cerium oxide 50 copies 25 copies 15 copies Yttrium oxide 15 copies 50 copies 70 copies
  • Embodiments 19-36 respectively provide a method for preparing a metal microcrystalline glass powder
  • Step 1 Mix the materials in Examples 1-18 according to the ratio in Table 1, heat up to T1 °C under the mixture of H 2 and argon, heat the M1 minutes to form a glass solution, and then place the glass solution on the steel plate or stainless steel. Rapidly forming a base glass on a roller machine;
  • Step 2 The base glass is kept at T2 ° C for 2 minutes in an oxygen-free atmosphere, and then slowly cooled at room temperature or with the furnace temperature to obtain a metal crystallized glass;
  • Step 3 then crushing the metal crystallized glass obtained in the second step and then ball milling with a planetary ball mill to obtain a metal microcrystalline glass powder.
  • the oxygen-free atmosphere is vacuum, inert gas or nitrogen.
  • T1, M1, T2 and M2 are shown in Table 2.
  • Embodiments 37-54 respectively provide a conductive paste for a solar cell
  • the semiconductor substrate is selected from a boron-doped P-type silicon substrate, which is 180-250 ⁇ m thick 125*125 mm or 156*156 mm or other typical size silicon wafer.
  • the side of the silicon substrate is etched with an alkali solution to form a pyramidal (single crystal) or rugged (polycrystalline) anti-reflective suede, and the black silicon nano-sue can also be formed by a wet black silicon technique.
  • an N-type diffusion layer is formed on the other side of the P-type silicon substrate to form a PN junction
  • the N-type diffusion layer may be a gas phase thermal diffusion method using gaseous phosphorus oxychloride as a diffusion source, or a phosphorus ion implantation method, or The slurry containing phosphorus pentoxide is coated with a thermal diffusion method or the like.
  • a layer of 80 nm thick SiNx anti-reflection layer is deposited on the side of the silicon substrate, which is also a similar coating with good anti-reflection effect.
  • the Al electrode layer and the main gate silver electrode layer are printed or coated on one side of the P-type silicon substrate, and a passivation layer may be formed on the back surface of the battery by using SiNx or Al2O3 as a back reflector to increase long-wavelength light. Absorption.
  • the slurry of Examples 37 to 54 is formed on the N-type silicon substrate side antireflection film by screen printing, coating or inkjet printing to form a vertical and horizontal main gate and a fine gate at a certain sintering temperature.
  • the electrode body is formed by co-firing.
  • the recommended temperature sintering procedure is 250-350-450-550-600-700-800-900 °C.
  • the contact resistance test method the contact resistance is tested using a commonly used TLM (line transmission line model).
  • the experimental conditions used in the comparison group were as follows: the glass powder was a bismuth-lead-bismuth-lithium system glass powder.
  • the formulation contains 10 to 50 parts of cerium oxide, 15 to 70 parts of cerium oxide, 2 to 10 parts of zinc oxide, 1 to 15 parts of tungsten oxide, and 5 to 20 parts of lithium oxide.
  • metal microcrystalline glass can be precipitated. This metal microcrystalline glass is applied to the front electrode silver paste of the crystalline silicon photovoltaic cell, which has superior performance than the conventional amorphous glass, and effectively improves the conversion efficiency of the battery.
  • the high temperature viscosity is large and the surface tension is large.
  • the metal cermet glass powder and the conductive paste of the above embodiment have a conversion efficiency of up to about 0.5%, a series resistance of 0.2-0.4 m ⁇ , a fill factor of up to 1%, and an ohmic contact resistance of about half.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Photovoltaic Devices (AREA)
  • Conductive Materials (AREA)

Abstract

一种金属微晶玻璃粉及其制备方法及导电浆料,所述导电浆料,以重量份计,包括以下组分:银粉75~92份、有机溶剂5~12份、有机载体2~3份、分散剂0.5~1份、金属微晶玻璃粉0.8~5.3份;所述金属微晶玻璃粉的粒径D50为0.3-2μm;所述金属微晶玻璃粉包括:二氧化碲10~50份、氧化铋15~70份、氧化锌2~10份、氧化钨1~15份、氧化锂5~20份、硼酸0.4~2份、氯化钼1~6份、氧化硅1~4份、碳酸钡1~2份。该导电浆料能够有效提高电池转化效率,降低串联电阻,提高填充因子,降低欧姆接触电阻。

Description

金属微晶玻璃粉及其制备方法及导电浆料 技术领域
本发明涉及一种金属微晶玻璃粉及其制备方法及导电浆料,属于太阳能电池功能材料技术领域。
背景技术
光伏电池作为新型清洁能源重要分支,近几年已经取得突飞猛进发展,光伏电池技术也是日新月异,全产业链都在积极通过技术创新提升光伏电池转化效率并降低成本,努力实现平价上网,替代传统高污染能源。
晶硅光伏电池是目前光伏电池最主要类型,占比90%以上,其光电转换原理为:硼掺杂的P型硅和磷掺杂的N型硅形成PN结,当太阳光照射时,PN结就会吸收光子能量激发电子跃迁,形成电子-空穴对,从而产生载流子。
在光伏电池受光面(正面)和背光面(背面)涂覆导电金属浆料,经过烧结后能够形成金属电极,PN结产生载流子通过金属电极导出,形成电流。金属电极要与硅基底形成良好欧姆接触,有较低的欧姆接触电阻和体电阻,降低电流损失,提高太阳能电池转化效率。
为了实现良好的欧姆接触,提高电极导电性,业内技术人员已经做了大量研究,其中玻璃扮演重要角色。比如,玻璃要与减反射层(SiNx)反应,腐蚀掉减反层后与硅基接触,并且,液态玻璃能够溶解银,在冷却时在硅基接触层析出银颗粒,降低欧姆接触电阻。如前人研究的氧化铅、氧化碲作用原理。为获得转化效率更高、电性性能更加优异的太阳能电池的导电浆料是本领域技术人员的一致追求,而现有的氧化铅、氧化碲系导电浆料的提升空间有限,急需开发一种全新的导电浆料体系。
发明内容
为进一步提高太阳能电池的导电浆料的电性性能,本发明提供一种电性性能更加优良的金属微晶玻璃粉及导电浆料。
本申请一种金属微晶玻璃粉,以重量份计,包括以下组分:
Figure PCTCN2017108275-appb-000001
Figure PCTCN2017108275-appb-000002
本申请的金属微晶玻璃粉,还包括铅、镁、铝、钒、钴、锗、锶、钠、钾、铟、钙、钛、镍氧化物中的一种或多种,份数为1-10份。
本申请的金属微晶玻璃粉,所述金属微晶玻璃粉的粒径D50为0.3-2μm。
本申请还提供一种金属微晶玻璃粉的制备方法:
包括以下步骤:
步骤一、以重量份计,将权利要求1-3中任一项中的物质混合,在H2和氩气混合下升温至900~1000℃,保温10~60分钟形成玻璃液,然后将玻璃液在钢板或不锈钢对辊机上急冷成型得到基体玻璃;
步骤二、将基体玻璃在无氧气氛下200~400℃保温20~60分钟,然后常温或随炉温缓慢冷却,得到金属微晶玻璃;
步骤三、然后将步骤二获得的金属微晶玻璃破碎后用行星式球磨机球磨,得到金属微晶玻璃粉。
本申请再提供一种用于太阳能电池的导电浆料,所述导电浆料包括下列重量份的组分:
Figure PCTCN2017108275-appb-000003
所述金属微晶玻璃粉为上述的金属微晶玻璃粉。
本申请的用于太阳能电池的导电浆料,所述银粉形状为球型、多面体型、短棒形、树枝型或者片型。
本申请的用于太阳能电池的导电浆料,所述有机溶剂为松油醇、丁基卡必醇、丙二醇苯醚、丙二醇甲醚、戊二酸二甲酯、丁二酸二甲酯中的一种或多种。
本申请的用于太阳能电池的导电浆料,所述有机载体为丁基卡必醇醋酸酯、乙基纤维素、丙烯酸酯、油酸、聚丙二醇、聚酰胺蜡按(50-80):(1-10):(0-15):(0-5):(0-3):(0.5-6)重量比混合而成。
本申请的用于太阳能电池的导电浆料,所述有机载体在50-90度温度条件下加热搅拌混合而成。
由于上述技术方案运用,本发明与现有技术相比具有下列优点和效果:
1.本发明为金属微晶玻璃及用于太阳能电池的导电浆料,其配方中含有二氧化碲10~50份、氧化铋15~70份、氧化锌2~10份、氧化钨1~15份、氧化锂5~20份,在冷却时可以析出“金属微晶玻璃”,这种金属微晶玻璃应用于晶硅光伏电池正面电极银浆,取得了比常规无定型玻璃优异的性能,有效提高电池转化效率,也具有高温粘度大、表面张力大特点,浆料在烧结时熔融玻璃不易流动,保持精细线型;
其次,其在玻璃粉中进一步添加硼酸0.4~2份、氧化硅1~4份、碳酸钡1~2份,可以降低玻璃熔点,并且在高于熔点较大温度窗口内保持高粘度,可以在降低电极烧结温度同时拓宽烧结窗口,增大烧结稳定性,提高电池成品率;再次,其基于二氧化碲10~50份、氧化铋15~70份、氧化锌2~10份、氧化钨1~15份、氧化锂5~20份体系中进一步添加氯化钼,实现了金属微晶玻璃与硅基形成良好欧姆接触,最终,本申请的金属微晶玻璃粉及导电浆料,转化效率最高提升0.5%左右,串联电阻降低了0.2-0.4mΩ,填充因子提高了最多1%,欧姆接触电阻降低了一半左右。
2.本发明用于太阳能电池的导电浆料,其有机载体采用丁基卡必醇醋酸酯、乙基纤维素、丙烯酸酯、油酸、聚丙二醇、聚酰胺蜡按(50-80):(1-10):(0-15):(0-5):(0-3):(0.5-6)重量比混合而成,不仅有利于改善膏体与不锈钢丝网网版浸润性,利于印刷过程中膏体均匀铺展;而且,克服了导电浆料中银粉和金属微晶玻璃粉较容易团聚沉降的缺陷,形成银粉和金属微晶玻璃粉均匀分散的浆料。
具体实施方式
下面结合实施例对本发明作进一步描述:
实施例1-18
实施例1-18分别提供一种金属微晶玻璃粉,各实施例的金属微晶玻璃粉由表1中的组分组成:
表1实施例1-18的金属微晶玻璃粉成分表
Figure PCTCN2017108275-appb-000004
Figure PCTCN2017108275-appb-000005
续表1
Figure PCTCN2017108275-appb-000006
续表1
Figure PCTCN2017108275-appb-000007
Figure PCTCN2017108275-appb-000008
续表1
组分 实施例16 实施例17 实施例18
二氧化碲 50份 25份 15份
氧化铋 15份 50份 70份
氧化锌 2份 5份 10份
氧化钨 1份 8份 15份
氧化锂 20份 12份 5份
硼酸 2份 1.2份 0.4份
氯化钼 1份 2.5份 6份
氧化硅 4份 2份 1份
碳酸钡 2份 1.5份 1份
其它氧化物
实施例19-36
实施例19-36分别提供一种金属微晶玻璃粉的制备方法,
包括以下步骤:
步骤一、将实施例1-18中各物质按表1中的比例进行混合,在H2和氩气混合下升温至T1℃,保温M1分钟形成玻璃液,然后将玻璃液在钢板或不锈钢对辊机上急冷成型得到基体玻璃;
步骤二、将基体玻璃在无氧气氛下T2℃保温M2分钟,然后常温或随炉温缓慢冷却,得到金属微晶玻璃;
步骤三、然后将步骤二获得的金属微晶玻璃破碎后用行星式球磨机球磨,得到金属微晶玻璃粉。
上述步骤二中无氧气氛为真空、惰性气体或者氮气。
T1、M1、T2、M2的值见表2
表2实施例19-36中T1、M1、T2、M2的值及最终产物的粒径D50
Figure PCTCN2017108275-appb-000009
Figure PCTCN2017108275-appb-000010
实施例37-54
实施例37-54分别提供一种用于太阳能电池的导电浆料,
表3实施例37-54中各组分的值
Figure PCTCN2017108275-appb-000011
表4实施例37-54中有机载体的组分表(重量比)
Figure PCTCN2017108275-appb-000012
效果实施例
应用到太阳能电池装置后电性性能测试:
太阳能电池装置制备:
半导体衬底选择掺杂硼的P型硅基底,P型硅基底为180-250μm厚的125*125mm或156*156mm或其它典型尺寸的硅片。
第一步,用碱溶液对硅基底一侧进行腐蚀职称金字塔形(单晶)或凹凸不平(多晶)减反射绒面,也可以用湿法黑硅技术制成黑硅纳米绒面。
第二步,在P型硅基底另一侧形成N型扩散层制成PN结,N型扩散层可以是以气态三氯氧磷作为扩散源的气相热扩散法,或者磷离子注入法,或者含有五氧化二磷的浆料涂覆热扩散法等。
第三步,在硅基底绒面一侧沉覆一层80nm厚的SiNx减反层,也可以是相近的其它具有良好减反射效果的涂层。
第四步,在P型硅基底一侧印刷或涂覆Al电极层和主栅银电极层,另外,也可以利用SiNx或Al2O3在电池背面形成钝化层,作为背反射器,增加长波光 的吸收。
第五步,将实施例37~54的浆料在N型硅基底一侧减反膜上通过丝网印刷、涂覆或喷墨打印等方式形成纵横的主栅和细栅,在一定烧结温度程序下,共烧形成电极体。推荐使用的温度烧结程序为250-350-450-550-600-700-800-900℃。
太阳能电池片电性能测试,使用太阳能模拟电效率测试仪,在标准条件下测试(AM1.5,1000W/m2,25℃)。
接触电阻测试方法,选用常用的TLM(线传输线模型)测试接触电阻。
测试结果如表5所示:
表6太阳能电池装置的接触电阻测试结果
Figure PCTCN2017108275-appb-000013
Figure PCTCN2017108275-appb-000014
对比组采用的实验条件为:玻璃粉为碲-铅-铋-锂体系玻璃粉。
采用上述用于太阳能电池的导电浆料时,其配方中含有二氧化碲10~50份、氧化铋15~70份、氧化锌2~10份、氧化钨1~15份、氧化锂5~20份,在冷却时可以析出“金属微晶玻璃”,这种金属微晶玻璃应用于晶硅光伏电池正面电极银浆,取得了比常规无定型玻璃优异的性能,有效提高电池转化效率,也具有高温粘度大、表面张力大特点,浆料在烧结时熔融玻璃不易流动,保持精细线型;其次,其在玻璃粉中进一步添加硼酸0.4~2份、氧化硅1~4份、碳酸钡1~2份,可以降低玻璃熔点,并且在高于熔点较大温度窗口内保持高粘度,可以在降低电极烧结温度同时拓宽烧结窗口,增大烧结稳定性,提高电池成品率;再次,其基于二氧化碲10~50份、氧化铋15~70份、氧化锌2~10份、氧化钨1~15份、氧化锂5~20份体系中进一步添加氯化钼,经研究发现氯化钼的添加可以实现金属微晶玻璃与硅基形成良好欧姆接触,降低了串联电阻。再次,其不仅有利于改善膏体与不锈钢丝网网版浸润性,利于印刷过程中膏体均匀铺展;而且,克服了导电浆料中银粉和金属微晶玻璃粉较容易团聚沉降的缺陷,形成银粉和金属微晶玻璃粉均匀分散的浆料。最终,上述实施例的金属微晶玻璃粉及导电浆料,转化效率最高提升0.5%左右,串联电阻降低了0.2-0.4mΩ,填充因子提高了最多1%,欧姆接触电阻降低了一半左右。
上述实施例只为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人士能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡根据本发明精神实质所作的等效变化或修饰,都应涵盖在本发明的保护范围之内。

Claims (9)

  1. 一种金属微晶玻璃粉,其特征在于,以重量份计,包括以下组分:
    Figure PCTCN2017108275-appb-100001
  2. 根据权利要求1所述的金属微晶玻璃粉,其特征在于,还包括铅、镁、铝、钒、钴、锗、锶、钠、钾、铟、钙、钛、镍氧化物中的一种或多种,份数为1-10份。
  3. 根据权利要求1或2所述的金属微晶玻璃粉,其特征在于,所述金属微晶玻璃粉的粒径D50为0.3-2μm。
  4. 一种金属微晶玻璃粉的制备方法:
    包括以下步骤:
    步骤一、以重量份计,将权利要求1-3中任一项中的物质混合,在H2和氩气混合下升温至900~1000℃,保温10~60分钟形成玻璃液,然后将玻璃液在钢板或不锈钢对辊机上急冷成型得到基体玻璃;
    步骤二、将基体玻璃在无氧气氛下200~400℃保温20~60分钟,然后常温或随炉温缓慢冷却,得到金属微晶玻璃;
    步骤三、然后将步骤二获得的金属微晶玻璃破碎后用行星式球磨机球磨,得到金属微晶玻璃粉。
  5. 一种用于太阳能电池的导电浆料,其特征在于:所述导电浆料包括下列重量份的组分:
    Figure PCTCN2017108275-appb-100002
    所述金属微晶玻璃粉为权利要求1或2或3中所述的金属微晶玻璃粉。
  6. 根据权利要求5所述的用于太阳能电池的导电浆料,其特征在于:所述银粉形状为球型、多面体型、短棒形、树枝型或者片型。
  7. 根据权利要求5所述的用于太阳能电池的导电浆料,其特征在于:所述有机溶剂为松油醇、丁基卡必醇、丙二醇苯醚、丙二醇甲醚、戊二酸二甲酯、丁二酸二甲酯中的一种或多种。
  8. 根据权利要求5所述的用于太阳能电池的导电浆料,其特征在于:所述有机载体为丁基卡必醇醋酸酯、乙基纤维素、丙烯酸酯、油酸、聚丙二醇、聚酰胺蜡按(50-80):(1-10):(0-15):(0-5):(0-3):(0.5-6)重量比混合而成。
  9. 根据权利要求5所述的用于太阳能电池的导电浆料,其特征在于:所述有机载体在50-90度温度条件下加热搅拌混合而成。
PCT/CN2017/108275 2017-03-27 2017-10-30 金属微晶玻璃粉及其制备方法及导电浆料 WO2018176828A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710188086.9A CN108666008A (zh) 2017-03-27 2017-03-27 用于太阳能电池的导电浆料
CN201710188086.9 2017-03-27

Publications (1)

Publication Number Publication Date
WO2018176828A1 true WO2018176828A1 (zh) 2018-10-04

Family

ID=63674163

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/108275 WO2018176828A1 (zh) 2017-03-27 2017-10-30 金属微晶玻璃粉及其制备方法及导电浆料

Country Status (2)

Country Link
CN (1) CN108666008A (zh)
WO (1) WO2018176828A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020252728A1 (zh) * 2019-06-20 2020-12-24 苏州晶银新材料股份有限公司 一种玻璃粉组合物、导电浆料及太阳能电池

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102194537A (zh) * 2010-03-19 2011-09-21 第一毛织株式会社 用于太阳能电池电极的糊剂及使用这种糊剂的太阳能电池电极和太阳能电池
JP2014031294A (ja) * 2012-08-03 2014-02-20 Nippon Electric Glass Co Ltd 電極形成用ガラス及びこれを用いた電極形成材料
US20150075597A1 (en) * 2013-09-16 2015-03-19 Heraeus Precious Metals North America Conshohocken Llc Electroconductive paste with adhension promoting glass
CN104867534A (zh) * 2014-01-17 2015-08-26 赫劳斯贵金属北美康舍霍肯有限责任公司 用于导电糊组合物的铅-铋-碲无机反应体系
CN105097071A (zh) * 2015-07-22 2015-11-25 深圳市春仰科技有限公司 硅太阳能电池正面导电银浆及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1699806A (zh) * 2005-05-30 2005-11-23 及同寅 一种非金属流体机械阀门及其制造方法
CN101215091A (zh) * 2007-12-26 2008-07-09 彩虹集团公司 一种电子浆料用无铅玻璃粉末的制备方法
CN101531459B (zh) * 2009-04-20 2012-01-04 北京航空航天大学 一种稀土铥掺杂的铝酸盐发光玻璃及其制备方法
CN103915127B (zh) * 2013-01-03 2017-05-24 上海匡宇科技股份有限公司 用于表面高方阻硅基太阳能电池正面银浆及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102194537A (zh) * 2010-03-19 2011-09-21 第一毛织株式会社 用于太阳能电池电极的糊剂及使用这种糊剂的太阳能电池电极和太阳能电池
JP2014031294A (ja) * 2012-08-03 2014-02-20 Nippon Electric Glass Co Ltd 電極形成用ガラス及びこれを用いた電極形成材料
US20150075597A1 (en) * 2013-09-16 2015-03-19 Heraeus Precious Metals North America Conshohocken Llc Electroconductive paste with adhension promoting glass
CN104867534A (zh) * 2014-01-17 2015-08-26 赫劳斯贵金属北美康舍霍肯有限责任公司 用于导电糊组合物的铅-铋-碲无机反应体系
CN105097071A (zh) * 2015-07-22 2015-11-25 深圳市春仰科技有限公司 硅太阳能电池正面导电银浆及其制备方法

Also Published As

Publication number Publication date
CN108666008A (zh) 2018-10-16

Similar Documents

Publication Publication Date Title
CN107746184B (zh) 一种玻璃粉组合物及含有其的导电银浆和制备方法
CN101952903B (zh) 铝浆及其在硅太阳能电池生产中的用途
CN105679400B (zh) 一种用于太阳能电池的导电浆料及制备方法
CN111302638B (zh) 一种玻璃粉组合物及含有其的导电银浆和太阳能电池
CN105118578B (zh) 太阳能电池用无铅正面电极银浆的制备工艺
TW201432721A (zh) 玻璃料、包含其的用於太陽能電池電極的組合物和使用其製作的電極
CN104039728A (zh) 玻璃料,以及导电浆料组合物和包括该导电浆料组合物的太阳能电池
CN106024095B (zh) 一种太阳能电池无氧玻璃导电浆料
WO2021063149A1 (zh) 导电浆料、其制备方法和应用、包含其的太阳能电池电极和太阳能电池
CN102037573A (zh) 形成硅太阳能电池的方法
WO2019205223A1 (zh) 晶硅太阳能电池正面导电银浆及其制备方法和太阳能电池
CN110120274B (zh) 一种全铝背场的背电极浆料及其制备方法和应用
CN112289481B (zh) 一种太阳能电池正面电极浆料及其制备方法和应用
WO2020118781A1 (zh) 一种玻璃粉组合物及含有其的导电银浆和太阳能电池
CN105118873B (zh) 晶体硅太阳能电池正面电极银浆
CN108666007A (zh) 光伏电极银浆
TWI655784B (zh) 用於太陽能電池的前電極和包括其的太陽能電池
WO2019085576A1 (zh) 用于制备太阳能电池电极的多元纳米材料、包括其的糊剂组合物及太阳能电池电极和电池
KR20130078667A (ko) 실리콘 태양전지의 전면전극 형성용 무기첨가제 및 이를 이용하여 제조된 실리콘 태양전지
CN105405488A (zh) 一种用于激光开孔局部背接触-钝化发射极晶体硅太阳能电池的铝浆及其制备方法和应用
WO2018176828A1 (zh) 金属微晶玻璃粉及其制备方法及导电浆料
CN108665994A (zh) 银电极浆料
CN109427918A (zh) 晶体硅太阳能栅线用导电银浆
CN111302620A (zh) 一种玻璃粉组合物及含有其的导电银浆和太阳能电池
CN111128436A (zh) 一种适用于正极氧化铝-氮化硅叠层钝化晶体硅太阳能电池正银浆料及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17904070

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17904070

Country of ref document: EP

Kind code of ref document: A1