WO2018170691A1 - 上行传输的方法、终端设备和网络设备 - Google Patents
上行传输的方法、终端设备和网络设备 Download PDFInfo
- Publication number
- WO2018170691A1 WO2018170691A1 PCT/CN2017/077352 CN2017077352W WO2018170691A1 WO 2018170691 A1 WO2018170691 A1 WO 2018170691A1 CN 2017077352 W CN2017077352 W CN 2017077352W WO 2018170691 A1 WO2018170691 A1 WO 2018170691A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- ports
- data transmission
- terminal device
- bits
- sri
- Prior art date
Links
Images
Definitions
- the present application relates to the field of communications, and more particularly, to a method, a terminal device, and a network device for uplink transmission.
- the terminal device can use a single antenna port or multiple antenna ports for uplink transmission.
- the number of different antenna ports is different for the Downlink Control Information (DCI).
- the terminal device can send multiple probe references.
- Signaling Reference Signal (SRS) resources different SRS resources use different transmit beams
- network devices can determine the SRS resources with the best received signal quality, and the SRS resource indication (SRI) is included in the DCI through the scheduled data transmission.
- SRS Signaling Reference Signal
- SRI SRS resource indication
- the information indicating the best quality SRS resource is received, so that the terminal device can determine the corresponding transmit beam according to the SRS resource indicated by the SRI, so that the transmit beam can be determined as the transmit beam used by the data transmission, but
- the number of transmit beams required is different for different antenna port numbers.
- the terminal device When the terminal device supports only a single antenna port, the terminal device can switch between multiple antennas, and the transmission antenna in the DCI indicates a Transmit Antenna Indication (TAI), which can be used by the network device to indicate the use to the terminal device. Which antenna is used for uplink transmission.
- TAI Transmit Antenna Indication
- the uplink transmission uses different number of antenna ports, and the requirements for transmission parameters are different. Therefore, for the terminal device, how to flexibly adjust the transmission parameters according to the number of antenna ports is an urgent problem to be solved.
- the embodiment of the present application provides a method for uplink transmission, a terminal device, and a network device, which can flexibly adjust transmission parameters according to the number of antenna ports.
- a method for uplink transmission including: determining, by a terminal device, a number of target ports, where the number of target ports is a port number for data transmission or a port of a sounding reference signal SRS resource associated with the data transmission And determining, according to the number of the target ports, the number of bits of the SRS resource indication SRI in the downlink control information DCI for scheduling the data transmission, or the number of bits of the transmission antenna indicating the TAI; and the number of bits according to the SRI from the DCI Obtain an SRI, or according to the TAI The number of bits is obtained from the DCI; the corresponding SRS resource is determined according to the SRI, or a corresponding transmitting antenna is determined according to the TAI; and the data transmission is determined according to the SRS resource or the transmitting antenna. Transfer parameters. The data transmission is performed using the determined transmission parameters.
- the number of ports for data transmission includes a number of transmission ports for a physical uplink shared channel PUSCH or a physical uplink control channel PUCCH.
- the SRS resource associated with the data transmission includes scheduling an SRS resource indicated by an SRI in a DCI of the data transmission.
- the SRS resource associated with the data transmission includes an SRS resource for determining a transmission parameter of the data transmission, where the transmission parameter includes the following At least one item:
- the number of transmission layers, precoding matrix, modulation and coding mode, and time-frequency physical resources are defined.
- the terminal device determines a target port number, including:
- the terminal device determines the number of the target ports according to the high layer signaling or the DCI.
- the determining, according to the number of the target ports, the number of bits of the SRS resource indication SRI in the downlink control information DCI for scheduling the data transmission, or the transmission antenna indication The number of bits in the TAI, including:
- the number of bits of the SRI is determined according to the number of the target ports and the first mapping relationship between the number of ports and the number of SRI bits.
- the first mapping relationship is pre-configured by the network device to the terminal device, or protocol agreed upon.
- the number of ports is 1 and the number of ports is greater than 1 respectively corresponding to different SRI bit numbers.
- the first port number corresponds to the first SRI bit number
- the second port number corresponds to the second SRI bit number, if The number of the first port is greater than the number of the second port, and the number of the first SRI bits is smaller than the number of the second SRI bits.
- the determining, according to the number of the target ports, the number of bits of the SRS resource indication SRI in the downlink control information DCI for scheduling the data transmission, or the transmission antenna indication The number of bits in the TAI, including:
- the second mapping relationship is pre-configured by the network device to the terminal device, or protocol agreed.
- the number of TAI bits corresponding to the number of ports greater than 1 is zero, and the number of TAI bits corresponding to the number of ports equal to 1 is greater than zero.
- the number of TAI bits corresponding to the number of ports equal to 1 is pre-configured by the network device to the terminal device, or determined by the terminal device according to the reported number of antennas.
- the determining, according to the SRI, the corresponding SRS resource includes:
- the determining, according to the TAI, a corresponding transmit antenna includes:
- the transmitting antenna corresponding to the TAI is determined.
- the determining, according to the SRS resource or the transmitting antenna, a transmission parameter for the data transmission includes:
- a transmit beam used for the data transmission is determined based on the transmit beam.
- the determining, by the terminal device, the transmit beam used by the data transmission according to the transmit beam includes:
- the transmit beam is determined to be a transmit beam used for the data transmission.
- the according to the SRS resource Or the transmitting antenna determines transmission parameters for the data transmission, including:
- the number of transmission layers used for the data transmission is determined according to the number of ports of the SRS resource and the number of transmission layers in the DCI in the case where the number of transmission layers in the DCI indicates the correspondence between the RI and the number of transmission layers.
- the determining, according to the SRS resource or the transmitting antenna, a transmission parameter for the data transmission includes:
- different port numbers correspond to different codebooks.
- the third mapping relationship is pre-configured by the network device to the terminal device, or protocol agreed upon.
- the determining, according to the SRS resource or the transmitting antenna, a transmission parameter for the data transmission includes:
- the transmitting antenna is determined as a transmission antenna for the data transmission.
- the second aspect provides a method for uplink transmission, including: determining, by the network device, the number of bits of the sounding reference signal SRS resource indication SRI in the downlink control information DCI of the scheduled data transmission according to the number of the target port, or the transmitting antenna indicating the TAI a number of bits, wherein the number of target ports is a number of ports used by the terminal device to perform the data transmission or a number of ports of the SRS resource associated with the data transmission; according to the number of bits of the SRI, or a bit of the TAI And generating the DCI; transmitting the DCI to the terminal device.
- the number of ports for data transmission includes a number of transmission ports for a physical uplink shared channel PUSCH or a physical uplink control channel PUCCH.
- the SRS resource associated with the data transmission includes scheduling an SRS resource indicated by an SRI in a DCI of the data transmission.
- the SRS resource associated with the data transmission includes an SRS resource for determining a transmission parameter of the data transmission, where the transmission parameter includes the following At least one item:
- the number of transmission layers, precoding matrix, modulation and coding mode, and time-frequency physical resources are defined.
- the network device determines, according to the number of target ports, the number of bits of the sounding reference signal SRS resource indication SRI in the downlink control information DCI for scheduling data transmission, or the transmission antenna Indicates the number of bits in the TAI, including:
- the number of bits of the SRI is determined according to the number of the target ports and the first mapping relationship between the number of ports and the number of SRI bits.
- the number of ports is 1 and the number of ports is greater than 1 respectively corresponding to different SRI bit numbers.
- the first port number corresponds to the first SRI bit number
- the second port number corresponds to the second SRI bit number, if The number of the first port is greater than the number of the second port, and the number of the first SRI bits is smaller than the number of the second SRI bits.
- the network device determines, according to the number of target ports, the number of bits of the sounding reference signal SRS resource indication SRI in the downlink control information DCI for scheduling data transmission, or the transmission antenna Indicates the number of bits in the TAI, including:
- the number of TAI bits corresponding to the number of ports greater than 1 is zero, and the number of TAI bits corresponding to the number of ports equal to 1 is greater than zero.
- the method further includes:
- the network device sends a DCI for scheduling the data transmission to the terminal device, where the DCI includes the target port number.
- a terminal device comprising means for performing the method of the first aspect or various implementations thereof.
- a network device comprising means for performing the method of the second aspect or various implementations thereof.
- a fifth aspect provides a terminal device including a memory, a processor, and a transceiver, wherein the memory is configured to store a program, the processor is configured to execute a program, when the program is executed, The processor performs the method of the first aspect based on the transceiver.
- a network device comprising: a memory for storing a program, a processor for executing a program, and when the program is executed, the processor is based on the The transceiver performs the method of the second aspect.
- a computer readable medium storing program code for execution by a terminal device, the program code comprising instructions for performing the method of the first aspect.
- a computer readable medium storing program code for execution by a terminal device, the program code comprising instructions for performing the method of the second aspect.
- FIG. 1 is a schematic diagram of a wireless communication system in accordance with an embodiment of the present application.
- FIG. 2 is a schematic flowchart of a method for uplink transmission according to an embodiment of the present application.
- FIG. 3 is a schematic flowchart of a method for uplink transmission according to another embodiment of the present application.
- FIG. 4 is a schematic block diagram of a terminal device according to an embodiment of the present application.
- FIG. 5 is a schematic block diagram of a network device according to an embodiment of the present application.
- FIG. 6 is a schematic block diagram of a terminal device according to another embodiment of the present application.
- FIG. 7 is a schematic block diagram of a network device according to another embodiment of the present application.
- system and “network” are used interchangeably herein.
- the term “and/or” in this context is merely an association describing the associated object, indicating that there may be three relationships, for example, A and / or B, which may indicate that A exists separately, and both A and B exist, respectively. B these three situations.
- the character "/" in this article generally indicates that the contextual object is an "or" relationship.
- GSM Global System of Mobile communication
- CDMA Code Division Multiple Access
- WCDMA Wideband Code Division Multiple Access
- GPRS general purpose Packet Radio Service
- LTE Long Term Evolution
- FDD Frequency Division Duplex
- TDD Time Division Duplex
- UMTS Universal Mobile Telecommunication System
- WiMAX Worldwide Interoperability for Microwave Access
- FIG. 1 shows a wireless communication system 100 to which an embodiment of the present application is applied.
- the wireless communication system 100 can include a network device 110.
- Network device 100 can be a device that communicates with a terminal device.
- Network device 100 may provide communication coverage for a particular geographic area and may communicate with terminal devices (e.g., UEs) located within the coverage area.
- the network device 100 may be a base station (Base Transceiver Station, BTS) in a GSM system or a CDMA system, or may be a base station (NodeB, NB) in a WCDMA system, or may be an evolved base station in an LTE system.
- BTS Base Transceiver Station
- NodeB NodeB
- the network device can be a relay station, an access point, an in-vehicle device, a wearable device, A network side device in a future 5G network or a network device in a publicly available Public Land Mobile Network (PLMN) in the future.
- PLMN Public Land Mobile Network
- the wireless communication system 100 also includes at least one terminal device 120 located within the coverage of the network device 110.
- Terminal device 120 can be mobile or fixed.
- the terminal device 120 can refer to an access terminal, a user equipment (User Equipment, UE), a subscriber unit, a subscriber station,
- UE User Equipment
- subscriber unit a subscriber station
- the access terminal may be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a Personal Digital Assistant (PDA), with wireless communication.
- SIP Session Initiation Protocol
- WLL Wireless Local Loop
- PDA Personal Digital Assistant
- D2D device to device communication
- D2D device to device
- the 5G system or network may also be referred to as a New Radio (NR) system or network.
- NR New Radio
- FIG. 1 exemplarily shows one network device and two terminal devices.
- the wireless communication system 100 may include a plurality of network devices and may include other numbers of terminal devices within the coverage of each network device. The application embodiment does not limit this.
- FIG. 2 is a schematic flowchart of a method 200 for uplink transmission according to an embodiment of the present application.
- the method 200 may be performed by a terminal device in the wireless communication system shown in FIG. 1. As shown in FIG. 2, the method 200 includes :
- the terminal device determines a number of target ports, where the number of target ports is a number of ports used for data transmission or a number of ports of sounding reference signal SRS resources associated with the data transmission;
- the number of ports used for data transmission includes a transmission port for a physical uplink shared channel (PUSCH) or a physical uplink control channel (PUCCH). number.
- PUSCH physical uplink shared channel
- PUCCH physical uplink control channel
- the terminal device can determine the number of ports for PUSCH or PUCCH.
- the SRS resource associated with the data transmission includes scheduling an SRS resource indicated by an SRI in a DCI of the data transmission.
- the terminal device may send multiple SRS resources, and each SRS resource uses one transmit beam, that is, the multiple SRS resources use different transmit beams, or the multiple SRSs and multiple
- the network device can determine the best received SRS resource according to the receiving condition of the multiple SRS resources, and the SRI in the DCI of the uplink transmission is used to indicate that the network device determines the best receiving quality.
- the information about the SRS resource the terminal device may determine, according to the SRI in the DCI, the SRS resource with the best reception quality for the network device. Since the SRS resource and the transmission beam have a one-to-one correspondence, the terminal device may determine the reception.
- the transmit beam corresponding to the best quality SRS resource so that the transmit beam can be determined as the transmit beam used for the data transmission.
- the SRS resource associated with the data transmission may be an SRS resource indicated by an SRI in a DCI for scheduling the data transmission, or the SRS resource associated with the data transmission.
- the best received SRS resource for the network device may be an SRS resource indicated by an SRI in a DCI for scheduling the data transmission, or the SRS resource associated with the data transmission.
- the SRS resource associated with the data transmission includes an SRS resource for determining a transmission parameter of the data transmission, the transmission parameter including at least one of the following:
- the number of transmission layers, precoding matrix, modulation and coding mode, and time-frequency physical resources are defined.
- the SRS resource associated with the data transmission may be for scheduling the data transmission.
- the SRS resource indicated by the SRI in the transmitted DCI that is, the SRS resource used to determine the transmission beam of the data transmission, may also be an SRS resource for determining a transmission parameter (or scheduling information) of the data transmission.
- the terminal device determines the number of target ports, including:
- the terminal device determines the number of the target ports according to the high layer signaling or the DCI.
- the network device may configure the target port number to the terminal device by using high layer signaling or scheduling DCI of the data transmission.
- the DCI size for scheduling the data transmission is the same.
- the terminal device may determine the number of the target port according to a Port Number Indication (PNI) in a DCI that schedules the data transmission.
- PNI Port Number Indication
- S220 Determine, according to the number of the target ports, a number of bits of the SRS resource indication SRI in the downlink control information DCI for scheduling the data transmission, or a number of bits of the transmission antenna indicating the TAI;
- the terminal device may determine the number of bits of the SRI according to the number of the target ports. For example, if the number of the target ports is 1, that is, the terminal device uses a single antenna port for data transmission, in order to improve uplink transmission gain.
- the terminal device may determine a larger number of SRI bits, so that the SRI may indicate more SRS resources, because the SRS resources and the transmit beams are in one-to-one correspondence, that is, the SRI may indicate more beams, thereby enabling Increase the uplink transmission gain when a single antenna port is used. For example, if the number of the target ports is greater than 1 or greater than the first threshold, that is, the terminal device uses multiple antenna ports for data transmission.
- the terminal device determines that the SRI in the DCI is a smaller number of SRI bits, thereby reducing DCI overhead.
- the number of SRI bits can be determined when the number of ports is 1, and the number of SRI bits is determined when the number of ports is greater than 1, or more when the number of ports is less than the first threshold.
- the number of SRI bits is determined.
- the number of SRI bits corresponding to each port number may be determined, that is, the number of ports and the number of SRI bits are one-to-one correspondence, and the number of ports is It is inversely proportional to the number of SRI bits, that is, the more ports, the number of SRI bits The less.
- the terminal device determines that there is an N-bit SRI in a single-antenna port scenario, that is, when the number of ports is 1, in a multi-antenna port scenario, that is, when the number of ports is greater than 1, the terminal device determines An MRI with M bits, where N>M, if the terminal device uses the same size of DCI to schedule data transmission in different port number scenarios, then the number of NM bits of the SRI is at the port number when the number of ports is 1. When it is greater than 1, it can be used to indicate other information, for example, to indicate broadband or narrow-band Precoding Matrix Indication (PMI) information, thereby being capable of reducing DCI overhead in a multi-antenna port scenario.
- PMI Precoding Matrix Indication
- the terminal device may further determine a number of bits of the TAI according to the number of the target ports.
- the terminal device may switch between multiple transmission antennas, where the TAI is used to indicate network device configuration. Antenna for current data transmission.
- the terminal device may determine the number of bits of the TAI according to the number of the target ports. For example, the terminal device may have a target port number of 1.
- the terminal device determines that there are N bits of TAI in a scenario of a single antenna port, that is, when the number of ports is 1, in a multi-antenna port scenario, that is, when the number of ports is greater than 1, the terminal device determines If there is a zero-bit TAI, if the terminal device uses the same size DCI to schedule data transmission in different port number scenarios, then when the number of ports is 1, the N bits of the TAI can be used when the number of ports is greater than 1. Indicating other information, for example, to indicate broadband or wideband PMI information, thereby reducing DCI overhead in a multi-antenna port scenario.
- determining, according to the number of the target ports, the number of bits of the SRS resource indication SRI in the downlink control information DCI for scheduling the data transmission, or the number of bits of the transmission antenna indicating the TAI including :
- the number of bits of the SRI is determined according to the number of the target ports and the first mapping relationship between the number of ports and the number of SRI bits.
- the number of ports and the number of bits of the SRI may have a first mapping relationship, and the first mapping relationship may be a one-to-one mapping relationship, that is, different port numbers correspond to different SRI bit numbers, for example, the number of ports is 1.
- the number of SRI bits corresponding to 2, 4 respectively is 4, 3, 2; or may be a many-to-one mapping relationship, for example, the number of ports is 1 and the number of ports is greater than 1 corresponding to different number of bits, that is, The number of ports is greater than 1 for the same number of bits, or the number of ports can be divided into several parts, and each part corresponds to the corresponding number of SRI bits.
- the number of ports is divided into ports, the number of ports is 1 to 3, and the number of ports is > 3 three parts, each part corresponds to the corresponding number of SRI bits, for example, the number of ports is 1 corresponding to the number of SRI bits 8, the number of ports is 1 to 3, the number of SRI bits is 4, and the number of ports > 3 corresponds to the number of SRI bits is 2,
- the specific embodiment of the application embodiment does not limit the number of ports and the number of SRI bits.
- the number of ports is 1 and the number of ports is greater than 1 respectively corresponding to different SRI bit numbers.
- a single-antenna port scenario and a multi-antenna port scenario can be configured, which respectively correspond to different SRI bit numbers.
- the first port number corresponds to the first SRI bit number
- the second port number corresponds to the second SRI bit number, if the first port number is greater than The second port number, the first SRI bit number is smaller than the second SRI bit number.
- the more the number of ports the smaller the number of corresponding bits. This is because the more the number of ports, the better the uplink transmission performance. Therefore, it is not necessary to indicate more beams by SRI to improve the uplink beamforming performance, or By indicating more beams by more SRI bits, the uplink transmission performance is limited, and the DCI overhead is increased. On the other hand, the smaller the number of ports, the lower the uplink transmission performance is. It is necessary to determine that more SRI bit numbers indicate more beams to improve the uplink beamforming performance.
- the first mapping relationship may be that the network device is pre-configured to the terminal device, for example, the network device may configure the first device to the terminal device by using high layer signaling.
- the mapping relationship, or the first mapping relationship may also be a protocol contract.
- determining, according to the number of the target ports, the number of bits of the SRS resource indication SRI in the downlink control information DCI for scheduling the data transmission, or the number of bits of the transmission antenna indicating the TAI including :
- the number of ports and the number of bits of the TAI may have a second mapping relationship, and the second mapping relationship may be a one-to-one mapping relationship, that is, different port numbers correspond to different TAI bit numbers, or may be multiple pairs.
- a mapping relationship for example, the number of ports is 1 and the number of ports is greater than 1 corresponding to different number of bits, that is, the number of ports is greater than 1 corresponding to the same number of bits, or the number of ports may be divided into several parts, each part corresponding to the corresponding TAI bit
- the number of the port and the TAI are not limited in this embodiment. The specific correspondence of the number of bits.
- the number of TAI bits corresponding to the number of ports greater than 1 is zero, and the number of TAI bits corresponding to the number of ports equal to 1 is greater than zero.
- the single-antenna port scenario and the multi-antenna port scenario can be configured to correspond to different TAI bit numbers.
- the TAI is used to indicate the currently used transmission antenna configured by the network device.
- the TAI is hardly used. Therefore, when the number of ports is 1, that is, the single-antenna port scenario, the number of TAI bits is greater than zero, and the number of ports is greater than 1, that is, a multi-antenna port scenario, and the number of TAI bits can be configured to be equal to zero, that is, multiple antennas. Under the port, the TAI is not included in the DCI.
- the size of the number of TAI bits corresponding to the number of ports is equal to 1 by the network device, or is determined by the terminal device according to the number of reported antennas.
- the network device may pre-configure the number of TAI bits corresponding to the number of ports when the port number is 1 by using the high-layer signaling, or the size of the corresponding TAI bit when the number of ports is 1, may also be determined by the terminal device according to the size of the TAI bit.
- the number of reported antennas is determined. For example, if the number of antennas reported by the terminal device is 4, the terminal device can switch between 4 antennas, and the number of TAI bits can be 2, for indicating the 4 antennas, or if the terminal The number of antennas reported by the device is 6, and the number of TAI bits determined by the terminal device may be 3.
- the second mapping relationship may be that the network device is pre-configured to the terminal device, for example, the network device may configure the second device to the terminal device by using high layer signaling.
- the mapping relationship, or the second mapping relationship may also be a protocol contract.
- the terminal device may acquire an SRI from the DCI according to the number of bits of the SRI, that is, obtain information of the SRS resource from the DCI, or acquire a TAI from the DCI according to the number of bits of the TAI, That is, the information of the transmission antenna is obtained from the DCI. Therefore, the method for uplink transmission using the embodiment of the present application only needs to detect the size of one DCI, thereby being able to reduce the complexity of the blind detection DCI of the terminal device.
- S240 Determine a corresponding SRS resource according to the SRI, or determine a corresponding transmit antenna according to the TAI.
- the determining, according to the SRI, the corresponding SRS resource includes:
- the terminal device may send an SRS sent on multiple SRS resources, and determine a transmission parameter of the data transmission, for example, a transmission layer number, a precoding matrix, a modulation coding mode, or a time-frequency physical resource, or the like, or It can also be used to determine the transmit beam for data transmission.
- the terminal device may determine, according to the SRI, the SRS resource corresponding to the SRI from the multiple SRS resources that are used by the SRS.
- the multiple SRS resources may be configured by the network device to the terminal device.
- each SRS resource may correspond to one transmit beam, that is, the SRS is sent on different SRS resources to use different transmit beams, and the terminal device may send the transmit beam corresponding to the SRS resource as the data transmission. Beam.
- determining, according to the TAI, a corresponding transmit antenna including:
- the transmitting antenna corresponding to the TAI is determined.
- the terminal device may determine, according to the TAI, a transmitting antenna corresponding to the TAI from a plurality of transmitting antennas that are used by the SRS, and optionally, the terminal device may correspond to the TAI.
- the transmitting antenna serves as a transmitting antenna for the data transmission.
- determining, according to the SRS resource or the sending antenna, a transmission parameter for the data transmission including:
- a transmit beam used for the data transmission is determined based on the transmit beam.
- the terminal device sends the SRS on the multiple SRS resources by using different transmit beams, where the SRS resource is one of the multiple SRS resources, and the terminal device may determine, according to the SRS resource, the SRS.
- the transmission beam used for transmitting the SRS is transmitted on the resource, so that the transmission beam used for the data transmission can be determined according to the transmission beam.
- the terminal device may determine the transmit beam as a transmit beam used for the data transmission.
- determining, according to the SRS resource or the sending antenna, a transmission parameter for the data transmission including:
- the number of transmission layers used for the data transmission is determined according to the number of ports of the SRS resource and the number of transmission layers in the DCI in the case where the number of transmission layers in the DCI indicates the correspondence between the RI and the number of transmission layers.
- the SRS resource may be used to determine transmission parameters such as a transmission layer number, a precoding matrix, or a modulation and coding mode of the data transmission. It can be assumed that, in the case of a different number of ports, the number of the transmission layer indicator (RI) in the DCI has a corresponding relationship with the number of transmission layers, and the terminal device can combine the number of ports according to the SRS resource.
- the correspondence between the RI and the number of transport layers determines the number of transport layers used for data transmission in the case of the number of ports. For example, the number of bits of the RI is 3, the state is from 000 to 111, and when the number of ports is 1, the number of transmission layers cannot be greater than 1.
- the states 000 to 111 can both be used to indicate the number of transmission layers 1; when the number of ports is 4, The number of transmission layers cannot exceed 4, then the status 000 to 111 can be used to indicate the number of transmission layers 1 to 4.
- 000 and 001 can be set to indicate the number of transmission layers 1, 010 and 011 indicate the number of transmission layers 2, 100 and 101 indicate transmission.
- the number of layers 3, 110, and 111 indicates the number of transmission layers 4.
- the terminal device determines that the number of target ports is 4, and the RI in the acquired DCI is 100, the terminal device can determine that the number of transmission layers is 3. It should be understood that the present application does not limit the specific correspondence between the RI and the number of transport layers in the DCI in the case of different port numbers.
- the RI and the number of transport layers in the DCI may also have such a Corresponding relationship, 000 indicates the number of transmission layers 1, 001 indicates the number of transmission layers 2, 010 indicates the number of transmission layers 3, 011 to 111 indicate the number of transmission layers 4.
- determining, according to the SRS resource or the sending antenna, a transmission parameter for the data transmission including:
- the SRS resource may be used to determine transmission parameters such as a transmission layer number, a precoding matrix, a modulation coding mode, or a time-frequency physical resource of the data transmission.
- the terminal device may determine, according to the number of ports of the SRS resource, a third mapping relationship between the port number and the codebook, a target codebook used for the data transmission, and then according to the PMI in the DCI, A precoding matrix for the data transmission is determined in the object codebook.
- the third mapping relationship different port numbers correspond to different codebooks, that is, the number of ports and the codebook are one-to-one correspondence, and the third mapping relationship may be that the network device is pre-configured to The terminal device may also be a protocol, and the application The embodiment does not limit this.
- the terminal device may send an SRS on multiple SRS resources, and the terminal device may determine a corresponding SRS resource according to the SRI, so that a transmit beam used by the SRS may be determined to be sent on the SRS resource, so that The terminal device may determine the transmit beam as a transmit beam used by the data transmission, such that the transmit signal may be used for the data transmission.
- the terminal device may determine, according to the TAI, a transmit antenna corresponding to the TAI, by using a plurality of transmit antennas that are sent by the SRS from the terminal device, so that the transmit antenna corresponding to the TAI may be determined as the data.
- the transmitting antenna used for transmission such that the terminal device can perform the data transmission using the transmitting antenna corresponding to the TAI.
- the terminal device may further determine a transmission parameter used for the data transmission, for example, a transmission layer number, a precoding matrix, a modulation coding mode, or a time-frequency physical resource, so that the terminal device may use the The transmission parameters are used for the data transmission.
- a transmission parameter used for the data transmission for example, a transmission layer number, a precoding matrix, a modulation coding mode, or a time-frequency physical resource.
- a method for uplink transmission according to an embodiment of the present application is described in detail from the perspective of a terminal device.
- a method for uplink transmission according to an embodiment of the present application is described in detail from the perspective of a network device. It should be understood that the description on the network device side and the description on the terminal device side correspond to each other. For a similar description, refer to the above. To avoid repetition, details are not described herein again.
- FIG. 3 is a schematic flowchart of a method for uplink transmission according to another embodiment of the present application. As shown in FIG. 3, the method 300 includes:
- the network device determines, according to the number of target ports, the number of bits of the sounding reference signal SRS resource indication SRI in the downlink control information DCI for scheduling data transmission, or the number of bits of the transmission antenna indicating the TAI, where the target port number is used for The number of ports on which the terminal device performs the data transmission or the number of ports of the SRS resource associated with the data transmission;
- the S310 may refer to the related description of S220 of the method 200 described in FIG. 2, and details are not described herein for brevity.
- the network device may generate a corresponding DCI according to the number of bits of the SRI or the number of bits of the TAI, and the network device may determine the specific SRS indicated in the SRI according to the actual measured quality of the SRS resource.
- the information of the resource the network device can determine which antenna is indicated in the TAI according to actual conditions.
- the number of ports used for data transmission includes a number of transmission ports for a physical uplink shared channel PUSCH or a physical uplink control channel PUCCH.
- the SRS resource associated with the data transmission includes scheduling an SRS resource indicated by an SRI in a DCI of the data transmission.
- the SRS resource associated with the data transmission includes an SRS resource for determining a transmission parameter of the data transmission, the transmission parameter including at least one of the following:
- the number of transmission layers, precoding matrix, modulation and coding mode, and time-frequency physical resources are defined.
- the network device determines, according to the number of target ports, the number of bits of the sounding reference signal SRS resource indication SRI in the downlink control information DCI of the scheduled data transmission, or the number of bits of the transmission antenna indicating the TAI, include:
- the number of bits of the SRI is determined according to the number of the target ports and the first mapping relationship between the number of ports and the number of SRI bits.
- the number of ports is 1 and the number of ports is greater than 1 respectively corresponding to different SRI bit numbers.
- the first port number corresponds to the first SRI bit number
- the second port number corresponds to the second SRI bit number, if the first port number is greater than The second port number, the first SRI bit number is smaller than the second SRI bit number.
- the network device determines, according to the number of target ports, the number of bits of the sounding reference signal SRS resource indication SRI in the downlink control information DCI of the scheduled data transmission, or the number of bits of the transmission antenna indicating the TAI, include:
- the number of TAI bits corresponding to the number of ports greater than 1 is zero, and the number of TAI bits corresponding to the number of ports equal to 1 is greater than zero.
- the method further includes:
- the network device sends a DCI for scheduling the data transmission to the terminal device, where the DCI includes the target port number.
- the method embodiment of the present application is described in detail above with reference to FIG. 2 to FIG. 3, which is combined with FIG. 4 below.
- the device embodiment of the present application is described in detail with reference to FIG. 7. It should be understood that the device embodiment and the method embodiment correspond to each other, and a similar description may refer to the method embodiment.
- FIG. 4 is a schematic block diagram of a terminal device according to an embodiment of the present application.
- the terminal device 400 of FIG. 4 includes:
- a determining module 410 configured to determine a number of target ports, and determine, according to the number of the target ports, a number of bits of the SRS resource indication SRI in the downlink control information DCI for scheduling the data transmission, or a number of bits of the transmission antenna indicating the TAI, where
- the number of target ports is the number of ports used for data transmission or the number of ports of sounding reference signal SRS resources associated with the data transmission;
- the obtaining module 420 is configured to obtain an SRI from the DCI according to the number of bits of the SRI, or obtain a TAI from the DCI according to the number of bits of the TAI;
- the determining module 410 is further configured to: determine a corresponding SRS resource according to the SRI, or determine a corresponding transmit antenna according to the TAI; and determine a transmission parameter used for the data transmission according to the SRS resource or the transmit antenna .
- the communication module 430 is configured to perform the data transmission by using the determined transmission parameter.
- the number of ports used for data transmission includes a number of transmission ports for a physical uplink shared channel PUSCH or a physical uplink control channel PUCCH.
- the SRS resource associated with the data transmission includes scheduling an SRS resource indicated by an SRI in a DCI of the data transmission.
- the SRS resource associated with the data transmission includes an SRS resource for determining a transmission parameter of the data transmission, the transmission parameter including at least one of the following:
- the number of transmission layers, precoding matrix, modulation and coding mode, and time-frequency physical resources are defined.
- the communication module 430 is further configured to:
- the determining module 410 is specifically configured to:
- the determining module 410 is specifically configured to:
- the first mapping relationship is pre-configured by the network device to the terminal device, or protocol agreed.
- the number of ports is 1 and the number of ports is greater than 1 respectively corresponding to different SRI bit numbers.
- the first port number corresponds to the first SRI bit number
- the second port number corresponds to the second SRI bit number, if the first port number is greater than The second port number, the first SRI bit number is smaller than the second SRI bit number.
- the determining module 410 is specifically configured to:
- the second mapping relationship is pre-configured by the network device to the terminal device, or protocol agreed.
- the number of TAI bits corresponding to the number of ports greater than 1 is zero, and the number of TAI bits corresponding to the number of ports equal to 1 is greater than zero.
- the number of TAI bits corresponding to the number of ports equal to 1 is pre-configured by the network device to the terminal device, or determined by the terminal device according to the reported number of antennas.
- the determining module 410 is specifically configured to:
- the determining module 410 is specifically configured to:
- the transmitting antenna corresponding to the TAI is determined.
- the determining module 410 is specifically configured to:
- a transmit beam used for the data transmission is determined based on the transmit beam.
- the determining module 410 is specifically configured to:
- the transmit beam is determined to be a transmit beam used for the data transmission.
- the determining module 410 is specifically configured to:
- the determining module 410 is specifically configured to:
- different port numbers correspond to different codebooks.
- the third mapping relationship is pre-configured by the network device to the terminal device, or protocol agreed.
- the determining module 410 is specifically configured to:
- the transmitting antenna is determined as a transmission antenna for the data transmission.
- FIG. 5 is a schematic block diagram of a network device according to an embodiment of the present application.
- the network device 500 shown in FIG. 5 includes:
- the determining module 510 determines, according to the number of the target ports, the number of bits of the sounding reference signal SRS resource indication SRI in the downlink control information DCI of the scheduled data transmission, or the number of bits of the transmission antenna indicating the TAI, wherein the target port number is used The number of ports on which the terminal device performs the data transmission or the number of ports of the SRS resource associated with the data transmission;
- a generating module 520 configured to generate the DCI according to the number of bits of the SRI, or the number of bits of the TAI;
- the communication module 530 is configured to send the DCI to the terminal device.
- the number of ports used for data transmission includes a number of transmission ports for a physical uplink shared channel PUSCH or a physical uplink control channel PUCCH.
- the SRS resource associated with the data transmission includes scheduling an SRS resource indicated by an SRI in a DCI of the data transmission.
- the SRS resource associated with the data transmission includes an SRS resource for determining a transmission parameter of the data transmission, the transmission parameter including at least one of the following:
- the number of transmission layers, precoding matrix, modulation and coding mode, and time-frequency physical resources are defined.
- the determining module 510 is specifically configured to:
- the number of ports is 1 and the number of ports is greater than 1 respectively corresponding to different SRI bit numbers.
- the first port number corresponds to the first SRI bit number
- the second port number corresponds to the second SRI bit number, if the first port number is greater than The second port number, the first SRI bit number is smaller than the second SRI bit number.
- the determining module 510 is specifically configured to:
- the number of TAI bits corresponding to the number of ports greater than 1 is zero, and the number of TAI bits corresponding to the number of ports equal to 1 is greater than zero.
- the communication module further includes:
- the network device sends a DCI for scheduling the data transmission to the terminal device, where the DCI includes the target port number.
- the embodiment of the present application further provides a terminal device 600, which may be the terminal device 400 in FIG. 4, which can be used to execute a terminal device corresponding to the method 200 in FIG. content.
- the terminal device 600 includes an input interface 610, an output interface 620, a processor 630, and a memory 640.
- the input interface 610, the output interface 620, the processor 630, and the memory 640 can be connected through a bus system.
- the memory 640 is used to store programs, instructions or code.
- the processor 630 is configured to execute a program, an instruction or a code in the memory 640 to control the input interface 610 to receive a signal, control the output interface 620 to send a signal, and complete the operations in the foregoing method embodiments.
- the processor 630 may be a central processing unit (“CPU"), and the processor 630 may also be other general-purpose processors, digital signal processors ( DSP), application specific integrated circuit (ASIC), off-the-shelf programmable gate array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, and the like.
- the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
- the memory 640 can include a read only memory and a random access memory, and 630 provides instructions and data. A portion of the memory 640 can also include a non-volatile random access memory. For example, the memory 640 can also store information of the device type.
- each content of the foregoing method may be completed by an integrated logic circuit of hardware in the processor 630 or an instruction in a form of software.
- the content of the method disclosed in the embodiments of the present application may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
- the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
- the storage medium is located in the memory 640, and the processor 630 reads the information in the memory 640 and completes the contents of the above method in combination with its hardware. To avoid repetition, it will not be described in detail here.
- the determining module 410 included in the terminal device in FIG. 4, the obtaining module 420 can be implemented by the processor 630 of FIG. 6, and the communication module 430 included in the terminal device 400 can use the input interface 610 and the output interface of FIG. 620 implementation.
- the embodiment of the present application further provides a network device 700, which may be the network device 500 in FIG. 5, which can be used to execute a network device corresponding to the method 300 in FIG. content.
- the network device 700 includes an input interface 710, an output interface 720, a processor 730, and a memory 740.
- the input interface 710, the output interface 720, the processor 730, and the memory 740 can be connected by a bus system.
- the memory 740 is configured to store programs, instructions or code.
- the processor 730 is configured to execute a program, an instruction or a code in the memory 740 to control the input interface 710 to receive a signal, control the output interface 720 to send a signal, and complete the operations in the foregoing method embodiments.
- the processor 730 may be a central processing unit (“CPU"), and the processor 730 may also be other general-purpose processors, digital signal processors ( DSP), application specific integrated circuit (ASIC), off-the-shelf programmable gate array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, and the like.
- the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
- the memory 740 can include read only memory and random access memory and provides instructions and data to the processor 730. A portion of the memory 740 can also include a non-volatile random access memory. For example, the memory 740 can also store information of the device type.
- each content of the foregoing method may be completed by an integrated logic circuit of hardware in the processor 730 or an instruction in a form of software.
- the content of the method disclosed in the embodiment of the present application is combined. It can be directly implemented as a hardware processor or completed by a combination of hardware and software modules in the processor.
- the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
- the storage medium is located in the memory 740, and the processor 730 reads the information in the memory 740 and completes the contents of the above method in combination with its hardware. To avoid repetition, it will not be described in detail here.
- the determining module 510 included in the network device in FIG. 5, the generating module 520 can be implemented by the processor 730 of FIG. 7, and the communication module 530 included in the network device 500 can use the input interface 710 and the output interface of FIG. 720 implementation.
- the disclosed systems, devices, and methods may be implemented in other manners.
- the device embodiments described above are merely illustrative.
- the division of the unit is only a logical function division.
- there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
- the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
- the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
- each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
- the function is implemented in the form of a software functional unit and sold or made as a standalone product When used, it can be stored in a computer readable storage medium.
- the technical solution of the present application which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product stored in a storage medium.
- a number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present application.
- the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .
Landscapes
- Mobile Radio Communication Systems (AREA)
Abstract
本申请实施例提供了一种上行传输的方法,终端设备和网络设备,能够根据端口数,灵活调整用于上行传输的传输参数,该方法包括:终端设备确定目标端口数,所述目标端口数为用于数据传输的端口数或与所述数据传输关联的探测参考信号SRS资源的端口数;根据所述目标端口数,确定调度所述数据传输的下行控制信息DCI中的SRS资源指示SRI的比特数,或传输天线指示TAI的比特数;根据所述SRI的比特数从所述DCI中获取SRI,或根据所述TAI的比特数从所述DCI中获取TAI;根据所述SRI确定对应的SRS资源,或根据所述TAI确定对应的发送天线;根据所述SRS资源或所述发送天线确定用于所述数据传输的传输参数。使用确定的所述传输参数进行所述数据传输。
Description
本申请涉及通信领域,并且更具体地,涉及一种上行传输的方法、终端设备和网络设备。
在5G系统中,终端设备可以采用单天线端口或多天线端口进行上行传输,不同的天线端口数,对于下行控制信息(Downlink Control Information,DCI)的开销要求不同,终端设备可以发送多个探测参考信号(Sounding Reference Signal,SRS)资源,不同的SRS资源使用不同的发送波束,网络设备可以确定接收信号质量最好的SRS资源,通过调度数据传输的DCI中包括SRS资源指示(SRS Resource Indication,SRI)指示接收质量最好的SRS资源的信息,从而终端设备可以根据所述SRI指示的SRS资源,确定对应的发送波束,从而可以将所述发送波束确定为所述数据传输使用的发送波束,但是对于不同的天线端口数,需要的发送波束的数量是不同的。
在终端设备只支持单天线端口时,终端设备可以在多个天线中间进行切换,所述DCI中的传输天线指示TAI(Transmit Antenna Indication,TAI),可以用于所述网络设备向终端设备指示使用哪个天线进行上行传输。
因此,上行传输使用不同的天线端口数,对传输参数的要求是不同的,因此,对于终端设备而言,如何根据天线端口数,灵活调整传输参数是一项亟需解决的问题。
发明内容
本申请实施例提供了一种上行传输的方法、终端设备和网络设备,能够根据天线端口数,灵活调整传输参数。
第一方面,提供了一种上行传输的方法,包括:终端设备确定目标端口数,所述目标端口数为用于数据传输的端口数或与所述数据传输关联的探测参考信号SRS资源的端口数;根据所述目标端口数,确定调度所述数据传输的下行控制信息DCI中的SRS资源指示SRI的比特数,或传输天线指示TAI的比特数;根据所述SRI的比特数从所述DCI中获取SRI,或根据所述TAI
的比特数从所述DCI中获取TAI;根据所述SRI确定对应的SRS资源,或根据所述TAI确定对应的发送天线;根据所述SRS资源或所述发送天线确定用于所述数据传输的传输参数。使用确定的所述传输参数进行所述数据传输。
结合第一方面,在第一方面的某些实现方式中,所述用于数据传输的端口数包括用于物理上行共享信道PUSCH或物理上行控制信道PUCCH的传输端口数。
结合第一方面,在第一方面的某些实现方式中,所述与所述数据传输关联的SRS资源包括调度所述数据传输的DCI中的SRI所指示的SRS资源。
结合第一方面,在第一方面的某些实现方式中,所述与所述数据传输关联的SRS资源包括用于确定所述数据传输的传输参数的SRS资源,所述传输参数包括以下中的至少一项:
传输层数、预编码矩阵、调制编码方式和时频物理资源。
结合第一方面,在第一方面的某些实现方式中,所述终端设备确定目标端口数,包括:
所述终端设备接收网络设备发送的高层信令,所述高层信令包括所述目标端口数;或者,
所述终端设备接收所述网络设备发送的用于调度所述数据传输的DCI,所述DCI包括所述目标端口数;
所述终端设备根据所述高层信令或所述DCI,确定所述目标端口数。
结合第一方面,在第一方面的某些实现方式中,所述根据所述目标端口数,确定调度所述数据传输的下行控制信息DCI中的SRS资源指示SRI的比特数,或传输天线指示TAI的比特数,包括:
根据所述目标端口数,以及端口数和SRI比特数的第一映射关系,确定所述SRI的比特数。
结合第一方面,在第一方面的某些实现方式中,所述第一映射关系是所述网络设备预配置给所述终端设备的,或协议约定的。
结合第一方面,在第一方面的某些实现方式中,在所述第一映射关系中,端口数为1和端口数大于1分别对应不同的SRI比特数。
结合第一方面,在第一方面的某些实现方式中,在所述第一映射关系中,第一端口数对应第一SRI比特数,第二端口数对应第二SRI比特数,若所述
第一端口数大于所述第二端口数,所述第一SRI比特数小于所述第二SRI比特数。
结合第一方面,在第一方面的某些实现方式中,所述根据所述目标端口数,确定调度所述数据传输的下行控制信息DCI中的SRS资源指示SRI的比特数,或传输天线指示TAI的比特数,包括:
根据所述目标端口数,以及端口数和TAI比特数的第二映射关系,确定所述TAI的比特数。
结合第一方面,在第一方面的某些实现方式中,所述第二映射关系是所述网络设备预配置给所述终端设备的,或协议约定的。
结合第一方面,在第一方面的某些实现方式中,在所述第二映射关系中,端口数大于1对应的TAI比特数为零,端口数等于1对应的TAI比特数大于零。
结合第一方面,在第一方面的某些实现方式中,端口数等于1对应的TAI比特数的大小由网络设备预先配置给所述终端设备,或者由终端设备根据上报的天线数确定。
结合第一方面,在第一方面的某些实现方式中,所述根据所述SRI确定对应的SRS资源,包括:
根据所述SRI,从所述终端设备发送SRS采用的多个SRS资源中,确定所述SRI对应的SRS资源。
结合第一方面,在第一方面的某些实现方式中,所述根据所述TAI确定对应的发送天线,包括:
根据所述TAI,从终端设备发送SRS采用的多个发送天线中,确定所述TAI对应的发送天线。
结合第一方面,在第一方面的某些实现方式中,所述根据所述SRS资源或所述发送天线确定用于所述数据传输的传输参数,包括:
确定在所述SRS资源上传输SRS所用的发送波束;
根据所述发送波束,确定所述数据传输所用的发送波束。
结合第一方面,在第一方面的某些实现方式中,所述终端设备根据所述发送波束,确定所述数据传输所用的发送波束,包括:
将所述发送波束,确定为所述数据传输所用的发送波束。
结合第一方面,在第一方面的某些实现方式中,所述根据所述SRS资源
或所述发送天线确定用于所述数据传输的传输参数,包括:
根据所述SRS资源的端口数,以及所述SRS资源的端口数情况下DCI中的传输层数指示RI和传输层数的对应关系,确定用于所述数据传输的传输层数。
结合第一方面,在第一方面的某些实现方式中,所述根据所述SRS资源或所述发送天线确定用于所述数据传输的传输参数,包括:
根据所述SRS资源的端口数,以及第三映射关系,确定用于所述数据传输的目标码本,所述第三映射关系指示端口数与码本的对应关系;
根据所述DCI中的预编码矩阵指示PMI,在所述目标码本中确定用于所述数据传输的预编码矩阵。
结合第一方面,在第一方面的某些实现方式中,在所述第三映射关系中,不同的端口数对应不同的码本。
结合第一方面,在第一方面的某些实现方式中,所述第三映射关系是所述网络设备预配置给所述终端设备的,或协议约定的。
结合第一方面,在第一方面的某些实现方式中,所述根据所述SRS资源或所述发送天线确定用于所述数据传输的传输参数,包括:
将所述发送天线确定为用于所述数据传输的传输天线。
第二方面,提供了一种上行传输的方法,包括:网络设备根据目标端口数,确定调度数据传输的下行控制信息DCI中的探测参考信号SRS资源指示SRI的比特数,或传输天线指示TAI的比特数,其中,所述目标端口数为用于终端设备进行所述数据传输的端口数或,与所述数据传输关联的SRS资源的端口数;根据所述SRI的比特数,或TAI的比特数,生成所述DCI;向所述终端设备发送所述DCI。
结合第二方面,在第二方面的某些实现方式中,所述用于数据传输的端口数包括用于物理上行共享信道PUSCH或物理上行控制信道PUCCH的传输端口数。
结合第二方面,在第二方面的某些实现方式中,所述与所述数据传输关联的SRS资源包括调度所述数据传输的DCI中的SRI所指示的SRS资源。
结合第二方面,在第二方面的某些实现方式中,所述与所述数据传输关联的SRS资源包括用于确定所述数据传输的传输参数的SRS资源,所述传输参数包括以下中的至少一项:
传输层数、预编码矩阵、调制编码方式和时频物理资源。
结合第二方面,在第二方面的某些实现方式中,所述网络设备根据目标端口数,确定调度数据传输的下行控制信息DCI中的探测参考信号SRS资源指示SRI的比特数,或传输天线指示TAI的比特数,包括:
根据所述目标端口数,以及端口数和SRI比特数的第一映射关系,确定所述SRI的比特数。
结合第二方面,在第二方面的某些实现方式中,在所述第一映射关系中,端口数为1和端口数大于1分别对应不同的SRI比特数。
结合第二方面,在第二方面的某些实现方式中,在所述第一映射关系中,第一端口数对应第一SRI比特数,第二端口数对应第二SRI比特数,若所述第一端口数大于所述第二端口数,所述第一SRI比特数小于所述第二SRI比特数。
结合第二方面,在第二方面的某些实现方式中,所述网络设备根据目标端口数,确定调度数据传输的下行控制信息DCI中的探测参考信号SRS资源指示SRI的比特数,或传输天线指示TAI的比特数,包括:
根据所述目标端口数,以及端口数和TAI比特数的第二映射关系,确定所述TAI的比特数。
结合第二方面,在第二方面的某些实现方式中,在所述第二映射关系中,端口数大于1对应的TAI比特数为零,端口数等于1对应的TAI比特数大于零。
结合第二方面,在第二方面的某些实现方式中,所述方法还包括:
所述网络设备向所述终端设备发送高层信令,所述高层信令包括所述目标端口数;或者,
所述网络设备向所述终端设备发送用于调度所述数据传输的DCI,所述DCI包括所述目标端口数。
第三方面,提供了一种终端设备,包括用于执行第一方面或其各种实现方式中的方法的单元。
第四方面,提供了一种网络设备,包括用于执行第二方面或其各种实现方式中的方法的单元。
第五方面,提供一种终端设备,包括存储器、处理器和收发器,所述存储器用于存储程序,所述处理器用于执行程序,当所述程序被执行时,所述
处理器基于所述收发器执行第一方面中的方法。
第六方面,提供一种网络设备,包括存储器、处理器和收发器,所述存储器用于存储程序,所述处理器用于执行程序,当所述程序被执行时,所述处理器基于所述收发器执行第二方面中的方法。
第七方面,提供一种计算机可读介质,所述计算机可读介质存储用于终端设备执行的程序代码,所述程序代码包括用于执行第一方面中的方法的指令。
第八方面,提供一种计算机可读介质,所述计算机可读介质存储用于终端设备执行的程序代码,所述程序代码包括用于执行第二方面中的方法的指令。
图1是根据本申请实施例的无线通信系统的示意性图。
图2是根据本申请实施例的上行传输的方法的示意性流程图。
图3是根据本申请另一实施例的上行传输的方法的示意性流程图。
图4是根据本申请实施例的终端设备的示意性框图。
图5是根据本申请实施例的网络设备的示意性框图。
图6是根据本申请另一实施例的终端设备的示意性框图。
图7是根据本申请另一实施例的网络设备的示意性框图。
下面将结合附图,对本申请实施例中的技术方案进行描述。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,简称为“GSM”)系统、码分多址(Code Division Multiple Access,简称为“CDMA”)系统、宽带码分多址(Wideband Code Division Multiple Access,简称为“WCDMA”)系统、通用
分组无线业务(General Packet Radio Service,简称为“GPRS”)、长期演进(Long Term Evolution,简称为“LTE”)系统、LTE频分双工(Frequency Division Duplex,简称为“FDD”)系统、LTE时分双工(Time Division Duplex,简称为“TDD”)、通用移动通信系统(Universal Mobile Telecommunication System,简称为“UMTS”)、全球互联微波接入(Worldwide Interoperability for Microwave Access,简称为“WiMAX”)通信系统或未来的5G系统等。
图1示出了本申请实施例应用的无线通信系统100。该无线通信系统100可以包括网络设备110。网络设备100可以是与终端设备通信的设备。网络设备100可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备(例如UE)进行通信。可选地,该网络设备100可以是GSM系统或CDMA系统中的基站(Base Transceiver Station,BTS),也可以是WCDMA系统中的基站(NodeB,NB),还可以是LTE系统中的演进型基站(Evolutional Node B,eNB或eNodeB),或者是云无线接入网络(Cloud Radio Access Network,CRAN)中的无线控制器,或者该网络设备可以为中继站、接入点、车载设备、可穿戴设备、未来5G网络中的网络侧设备或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)中的网络设备等。
该无线通信系统100还包括位于网络设备110覆盖范围内的至少一个终端设备120。终端设备120可以是移动的或固定的。可选地,终端设备120可以指接入终端、用户设备(User Equipment,UE)、用户单元、用户站、
移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、未来5G网络中的终端设备或者未来演进的PLMN中的终端设备等。
可选地,终端设备120之间可以进行终端直连(Device to Device,D2D)通信。
可选地,5G系统或网络还可以称为新无线(New Radio,NR)系统或网络。
图1示例性地示出了一个网络设备和两个终端设备,可选地,该无线通信系统100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
图2是根据本申请实施例的上行传输的方法200的示意性流程图,所述方法200可以由图1所示的无线通信系统中的终端设备执行,如图2所示,该方法200包括:
S210,终端设备确定目标端口数,所述目标端口数为用于数据传输的端口数或与所述数据传输关联的探测参考信号SRS资源的端口数;
可选地,在一些实施例中,所述用于数据传输的端口数包括用于物理上行共享信道(Physical Uplink Shared Channel,PUSCH)或物理上行控制信道(Physical Uplink Control Channel,PUCCH)的传输端口数。
也就是说,所述终端设备可以确定用于PUSCH或PUCCH的端口数。
可选地,在一些实施例中,所述与所述数据传输关联的SRS资源包括调度所述数据传输的DCI中的SRI所指示的SRS资源。
具体的,在进行数据传输之前,终端设备可以发送多个SRS资源,每个SRS资源使用一个发送波束,即所述多个SRS资源使用不同的发送波束,或者说,所述多个SRS和多个发送波束一一对应,网络设备可以根据所述多个SRS资源的接收情况,确定接收质量最好的SRS资源,通过调度所述上行传输的DCI中的SRI指示网络设备确定的接收质量最好的SRS资源的信息,终端设备可以根据所述DCI中的SRI确定对于网络设备而言接收质量最好的SRS资源,由于SRS资源和发送波束是一一对应的关系,因此,终端设备可以确定接收质量最好的SRS资源对应的发送波束,从而可以将所述发送波束确定为所述数据传输使用的发送波束。在本申请实施例中,所述与所述数据传输关联的SRS资源可以为调度所述数据传输的DCI中的SRI所指示的SRS资源,或者说,所述与所述数据传输关联的SRS资源为网络设备确定的接收质量最好的SRS资源。
可选地,在一些实施例中,所述与所述数据传输关联的SRS资源包括用于确定所述数据传输的传输参数的SRS资源,所述传输参数包括以下中的至少一项:
传输层数、预编码矩阵、调制编码方式和时频物理资源。
总的来说,所述与所述数据传输关联的SRS资源可以为调度所述数据传
输的DCI中的SRI指示的SRS资源,即用于确定所述数据传输的发送波束的SRS资源,也可以为用于确定所述数据传输的传输参数(或者说,调度信息)的SRS资源。
可选地,在一些实施例中,所述终端设备确定目标端口数,包括:
所述终端设备接收网络设备发送的高层信令,所述高层信令包括所述目标端口数;或
所述终端设备接收所述网络设备发送的用于调度所述数据传输的DCI,所述DCI包括所述目标端口数;
所述终端设备根据所述高层信令或所述DCI,确定所述目标端口数。
即所述网络设备可以通过高层信令或调度所述数据传输的DCI给所述终端设备配置所述目标端口数。
可选地,在一些实施例中,不同的端口数场景下,调度所述数据传输的DCI大小是相同的。所述终端设备可以根据调度所述数据传输的DCI中的端口数指示信息(Port Number Indication,PNI)确定所述目标端口数。
S220,根据所述目标端口数,确定调度所述数据传输的下行控制信息DCI中的SRS资源指示SRI的比特数,或传输天线指示TAI的比特数;
具体的,所述终端设备可以根据所述目标端口数,确定SRI的比特数,例如,若所述目标端口数为1,即所述终端设备采用单天线端口进行数据传输,为了提高上行传输增益,所述终端设备可以确定较多的SRI比特数,这样SRI可以指示更多的SRS资源,由于SRS资源和发送波束是一一对应的,也就是所述SRI可以指示更多的波束,从而能够提高单天线端口时的上行传输增益。再例如,若所述目标端口数大于1或大于第一数量阈值,即终端设备采用多天线端口进行数据传输,这种情况下,通过所述SRI指示更多的波束,对于上行传输增益的提升效果不明显,因此,所述终端设备可以在目标端口数大于1或大于一定的第一数量阈值时,确定所述DCI中的SRI为较少的SRI比特数,从而能够降低DCI开销。
也就是说,可以在端口数为1时确定较多的SRI比特数,在端口数大于1时确定较少的SRI比特数;或者也可以在端口数小于第一数量阈值时,确定较多的SRI比特数,在端口数大于第一数量阈值时,确定较少的SRI比特数;或者也可以确定每个端口数对应相应的SRI比特数,即端口数和SRI比特数一一对应,端口数和SRI比特数成反比,即端口数越多,SRI比特数
越少。
可选地,若在单天线端口场景下,即端口数为1时,所述终端设备确定有N个比特的SRI,在多天线端口场景下,即端口数大于1时,所述终端设备确定有M个比特的SRI,其中,N>M,如果所述终端设备在不同的端口数场景下都采用相同大小的DCI调度数据传输,那么在端口数为1时SRI的N-M个比特在端口数大于1时可以用于指示其他信息,例如,用于指示宽带或窄带预编码矩阵指示(Precoding Matrix Indication,PMI)信息,从而能够降低多天线端口场景下的DCI开销。
可选地,所述终端设备还可以根据所述目标端口数,确定TAI的比特数,在单天线场景下,终端设备可以在多个传输天线之间切换,所述TAI用于指示网络设备配置的用于当前数据传输的天线。在多天线场景下,所述TAI不使用或较少使用,因此,所述终端设备可以根据所述目标端口数,确定TAI的比特数,例如,所述终端设备可以在目标端口数为1时,确定TAI比特数大于零,在目标端口数大于1时,确定TAI比特数为零,或者在目标端口数小于第二数量阈值时,确定TAI的比特数大于零,大于所述第二数量阈值时,确定TAI的比特数为零。
可选地,若在单天线端口场景下,即端口数为1时,所述终端设备确定有N个比特的TAI,在多天线端口场景下,即端口数大于1时,所述终端设备确定有零个比特的TAI,如果所述终端设备在不同的端口数场景下都采用相同大小的DCI调度数据传输,那么在端口数为1时TAI的N个比特在端口数大于1时可以用于指示其他信息,例如,用于指示宽带或宽带PMI信息,从而能够降低多天线端口场景下的DCI开销。
可选地,在一些实施例中,所述根据所述目标端口数,确定调度所述数据传输的下行控制信息DCI中的SRS资源指示SRI的比特数,或传输天线指示TAI的比特数,包括:
根据所述目标端口数,以及端口数和SRI比特数的第一映射关系,确定所述SRI的比特数。
具体的,端口数和SRI的比特数可以具有第一映射关系,所述第一映射关系可以是一对一的映射关系,即不同的端口数对应不同的SRI比特数,例如,端口数为1,2,4分别对应的SRI比特数为4,3,2;或者也可以是多对一的映射关系,例如,端口数为1和端口数大于1对应不同的比特数,即
端口数大于1对应相同的比特数,或者也可以将端口数分成几部分,每部分对应相应的SRI比特数,例如,将端口数分成端口数为1,端口数为1~3,端口数>3三部分,每部分对应相应的SRI比特数,例如,端口数为1对应SRI比特数8,端口数为1~3对应SRI比特数为4,端口数>3对应SRI比特数为2,本申请实施例不限定端口数和SRI比特数的具体的对应关系。
可选地,在一些实施例中,在所述第一映射关系中,端口数为1和端口数大于1分别对应不同的SRI比特数。
即可以配置单天线端口场景和多天线端口场景,分别对应不同的SRI比特数。
可选地,在一些实施例中,在所述第一映射关系中,第一端口数对应第一SRI比特数,第二端口数对应第二SRI比特数,若所述第一端口数大于所述第二端口数,所述第一SRI比特数小于所述第二SRI比特数。
也就是说,端口数越多对应的比特数越少,这是由于端口数越多,上行传输性能越好,因此,不必通过SRI指示更多的波束来提高上行波束赋形性能,或者说,通过更多的SRI比特数指示更多的波束,对上行传输性能的提升效果有限,反而增大了DCI开销,从另一方面来讲,端口数越少,上行传输性能相当较差,因此,需要确定更多的SRI比特数指示更多的波束来提高上行波束赋形性能。
应理解,在本申请实施例中,所述第一映射关系可以是网络设备预配置给所述终端设备的,例如,所述网络设备可以通过高层信令给所述终端设备配置所述第一映射关系,或所述第一映射关系也可以是协议约定的。
可选地,在一些实施例中,所述根据所述目标端口数,确定调度所述数据传输的下行控制信息DCI中的SRS资源指示SRI的比特数,或传输天线指示TAI的比特数,包括:
根据所述目标端口数,以及端口数和TAI比特数的第二映射关系,确定所述TAI的比特数。
具体的,端口数和TAI的比特数可以具有第二映射关系,所述第二映射关系可以是一对一的映射关系,即不同的端口数对应不同的TAI比特数,或者也可以是多对一的映射关系,例如,端口数为1和端口数大于1对应不同的比特数,即端口数大于1对应相同的比特数,或者也可以将端口数分成几部分,每部分对应相应的TAI比特数,本申请实施例不限定端口数和TAI
比特数具体的对应关系。
可选地,在一些实施例中,在所述第二映射关系中,端口数大于1对应的TAI比特数为零,端口数等于1对应的TAI比特数大于零。
即可以配置单天线端口场景和多天线端口场景,分别对应不同的TAI比特数,在单天线端口场景下,由于TAI用于指示网络设备配置的当前使用的传输天线,在多天线端口场景下,所述TAI几乎不使用,因此,在端口数为1,即单天线端口场景,可以配置TAI比特数大于零,端口数大于1,即多天线端口场景,可以配置TAI比特数等于零,即多天线端口下,DCI中不包括TAI。
可选地,作为一个实施例,端口数等于1对应的TAI比特数的大小由网络设备预先配置给所述终端设备,或者由终端设备根据上报的天线数确定。
例如,所述网络设备可以通过高层信令给所述终端设备预配置端口数为1时对应的TAI比特数的大小,或者端口数为1时对应的TAI比特数的大小也可以由终端设备根据上报的天线数确定,例如,终端设备上报的天线数为4,那么终端设备可以在4个天线之间进行切换,那么TAI比特数可以为2,用于指示所述4个天线,或若终端设备上报的天线数为6,那么终端设备确定的TAI比特数可以为3。
应理解,在本申请实施例中,所述第二映射关系可以是网络设备预配置给所述终端设备的,例如,所述网络设备可以通过高层信令给所述终端设备配置所述第二映射关系,或所述第二映射关系也可以是协议约定的。
S230,根据所述SRI的比特数从所述DCI中获取SRI,或根据所述TAI的比特数从所述DCI中获取TAI;
也就是说,所述终端设备可以根据所述SRI的比特数从所述DCI获取SRI,即从所述DCI中获取SRS资源的信息,或根据所述TAI的比特数从所述DCI获取TAI,即从DCI中获取传输天线的信息。因此,采用本申请实施例的上行传输的方法只需要检测一个DCI的大小,从而能能够降低终端设备盲检DCI的复杂度。
S240,根据所述SRI确定对应的SRS资源,或根据所述TAI确定对应的发送天线。
可选地,在一些实施例中,所述根据所述SRI确定对应的SRS资源,包括:
根据所述SRI,从所述终端设备发送SRS采用的多个SRS资源中,确定所述SRI对应的SRS资源。
具体的,所述终端设备可以发送在多个SRS资源上发送SRS,用于确定数据传输的传输参数,例如,传输层数,预编码矩阵、调制编码方式或时频物理资源等传输参数,或者也可以用于确定用于数据传输的发送波束。所述终端设备可以根据所述SRI,从之前发送SRS采用的所述多个SRS资源中确定所述SRI对应的SRS资源。可选地,在本申请实施例中,所述多个SRS资源可以由网络设备配置给所述终端设备。
可选地,每个SRS资源可以对应一个发送波束,即在不同的SRS资源上发送SRS使用不同的发送波束,所述终端设备可以将所述SRS资源对应的发送波束作为所述数据传输的发送波束。
可选地,在一些实施例中,所述根据所述TAI确定对应的发送天线,包括:
根据所述TAI,从终端设备发送SRS采用的多个发送天线中,确定所述TAI对应的发送天线。
具体的,所述终端设备可以根据所述TAI,从之前发送所述SRS采用的多个发送天线中,确定所述TAI对应的发送天线,可选地,所述终端设备可以将所述TAI对应的发送天线作为所述数据传输的发送天线。
S250,根据所述SRS资源或所述发送天线确定用于所述数据传输的传输参数。
可选地,在一些实施例中,所述根据所述SRS资源或所述发送天线确定用于所述数据传输的传输参数,包括:
确定在所述SRS资源上传输SRS所用的发送波束;
根据所述发送波束,确定所述数据传输所用的发送波束。
具体的,终端设备使用不同的发送波束在多个SRS资源上发送SRS,所述SRS资源为多个SRS资源中的一个SRS资源,所述终端设备可以根据所述SRS资源,确定在所述SRS资源上传输SRS所用的发送波束,从而可以根据所述发送波束,确定所述数据传输所用的发送波束。可选地,所述终端设备可以将所述发送波束确定为所述数据传输所用的发送波束。
可选地,在一些实施例中,所述根据所述SRS资源或所述发送天线确定用于所述数据传输的传输参数,包括:
根据所述SRS资源的端口数,以及所述SRS资源的端口数情况下DCI中的传输层数指示RI和传输层数的对应关系,确定用于所述数据传输的传输层数。
具体的,所述SRS资源可以用于确定所述数据传输的传输层数、预编码矩阵或调制编码方式等传输参数。可以假设在不同的端口数情况下,DCI中的传输层数指示(Rank Indicator,RI)与传输层数具有相应的对应关系,所述终端设备可以根据所述SRS资源的端口数,结合所述SRS资源的端口数情况下,RI和传输层数的对应关系,确定所述端口数情况下的用于数据传输的传输层数。例如,RI的比特数为3,状态从000~111,端口数为1时,传输层数不能大于1,因此,状态000~111可以都用来表示传输层数1;端口数为4时,传输层数不能超过4,那么状态000~111可以用来指示传输层数1~4,例如,可以设置000和001指示传输层数1,010和011指示传输层数2,100和101指示传输层数3,110和111指示传输层数4,当所述终端设备确定目标端口数为4时,获取DCI中的RI为100,那么所述终端设备可以确定传输层数为3。应理解,本申请不限定不同的端口数情况下,DCI中的RI与传输层数的具体的对应关系,例如,对于端口数为4时,DCI中的RI与传输层数还可以具有这样的对应关系,000指示传输层数1,001指示传输层数2,010指示传输层数3,011~111都指示传输层数4。
可选地,在一些实施例中,所述根据所述SRS资源或所述发送天线确定用于所述数据传输的传输参数,包括:
根据所述SRS资源的端口数,以及第三映射关系,确定用于所述数据传输的目标码本,所述第三映射关系指示端口数与码本的对应关系;
根据所述DCI中的预编码矩阵指示PMI,在所述目标码本中确定用于所述数据传输的预编码矩阵。
具体的,所述SRS资源可以用于确定所述数据传输的传输层数、预编码矩阵、调制编码方式或时频物理资源等传输参数。所述终端设备可以根据所述SRS资源的端口数,以及端口数和码本的第三映射关系,确定用于所述数据传输的目标码本,然后根据所述DCI中的PMI,在所述目标码本中确定用于所述数据传输的预编码矩阵。可选地,在所述第三映射关系中,不同的端口数对应不同的码本,即端口数和码本是一一对应的,所述第三映射关系可以是所述网络设备预配置给所述终端设备的,也可以是协议约定的,本申请
实施例对此不作限定。
S260,使用确定的所述传输参数进行所述数据传输。
具体地,所述终端设备可以在多个SRS资源上发送SRS,所述终端设备可以根据SRI,确定对应的SRS资源,从而可以确定在所述SRS资源上发送SRS使用的发送波束,这样所述终端设备可以将所述发送波束确定为所述数据传输使用的发送波束,从而可以使用所述发送波束进行所述数据传输。或者所述终端设备可以根据所述TAI,从所述终端设备发送SRS采用的多个发送天线中,确定所述TAI对应的发送天线,从而可以将所述TAI对应的发送天线确定为所述数据传输使用的发送天线,这样所述终端设备可以使用所述TAI对应的发送天线进行所述数据传输。或者,所述终端设备还可以确定用于所述数据传输的传输参数,例如,传输层数、预编码矩阵、调制编码方式或时频物理资源等传输参数,从而所述终端设备可以使用所述传输参数进行所述数据传输。
上文结合图2,从终端设备的角度详细描述了根据本申请实施例的上行传输的方法,下文结合图3,从网络设备的角度详细描述根据本申请实施例的上行传输的方法。应理解,网络设备侧的描述与终端设备侧的描述相互对应,相似的描述可以参见上文,为避免重复,此处不再赘述。
图3是根据本申请另一实施例的上行传输的方法的示意性流程图,如图3所示,所述方法300包括:
S310,网络设备根据目标端口数,确定调度数据传输的下行控制信息DCI中的探测参考信号SRS资源指示SRI的比特数,或传输天线指示TAI的比特数,其中,所述目标端口数为用于终端设备进行所述数据传输的端口数或,与所述数据传输关联的SRS资源的端口数;
具体的,所述S310可以参考图2所述的方法200的S220的相关描述,为了简洁,这里不再赘述。
S320,根据所述SRI的比特数,或TAI的比特数,生成所述DCI;
具体的,所述网络设备可以根据SRI的比特数,或TAI的比特数生成相应的DCI,所述网络设备可以根据实际测量的SRS资源的接收质量的情况确定所述SRI中指示的具体的SRS资源的信息,,所述网络设备可以根据实际情况确定TAI中指示哪个天线。
S330,向所述终端设备发送所述DCI。
可选地,在一些实施例中,所述用于数据传输的端口数包括用于物理上行共享信道PUSCH或物理上行控制信道PUCCH的传输端口数。
可选地,在一些实施例中,所述与所述数据传输关联的SRS资源包括调度所述数据传输的DCI中的SRI所指示的SRS资源。
可选地,在一些实施例中,所述与所述数据传输关联的SRS资源包括用于确定所述数据传输的传输参数的SRS资源,所述传输参数包括以下中的至少一项:
传输层数、预编码矩阵、调制编码方式和时频物理资源。
可选地,在一些实施例中,所述网络设备根据目标端口数,确定调度数据传输的下行控制信息DCI中的探测参考信号SRS资源指示SRI的比特数,或传输天线指示TAI的比特数,包括:
根据所述目标端口数,以及端口数和SRI比特数的第一映射关系,确定所述SRI的比特数。
可选地,在一些实施例中,在所述第一映射关系中,端口数为1和端口数大于1分别对应不同的SRI比特数。
可选地,在一些实施例中,在所述第一映射关系中,第一端口数对应第一SRI比特数,第二端口数对应第二SRI比特数,若所述第一端口数大于所述第二端口数,所述第一SRI比特数小于所述第二SRI比特数。
可选地,在一些实施例中,所述网络设备根据目标端口数,确定调度数据传输的下行控制信息DCI中的探测参考信号SRS资源指示SRI的比特数,或传输天线指示TAI的比特数,包括:
根据所述目标端口数,以及端口数和TAI比特数的第二映射关系,确定所述TAI的比特数。
可选地,在一些实施例中,在所述第二映射关系中,端口数大于1对应的TAI比特数为零,端口数等于1对应的TAI比特数大于零。
可选地,在一些实施例中,所述方法还包括:
所述网络设备向所述终端设备发送高层信令,所述高层信令包括所述目标端口数;或者,
所述网络设备向所述终端设备发送用于调度所述数据传输的DCI,所述DCI包括所述目标端口数。
上文结合图2至图3,详细描述了本申请的方法实施例,下文结合图4
至图7,详细描述本申请的装置实施例,应理解,装置实施例与方法实施例相互对应,类似的描述可以参照方法实施例。
图4是根据本申请实施例的终端设备的示意性框图。图4的终端设备400包括:
确定模块410,用于确定目标端口数,根据所述目标端口数,确定调度所述数据传输的下行控制信息DCI中的SRS资源指示SRI的比特数,或传输天线指示TAI的比特数,其中,所述目标端口数为用于数据传输的端口数或与所述数据传输关联的探测参考信号SRS资源的端口数;
获取模块420,用于根据所述SRI的比特数从所述DCI中获取SRI,或根据所述TAI的比特数从所述DCI中获取TAI;
所述确定模块410还用于:根据所述SRI确定对应的SRS资源,或根据所述TAI确定对应的发送天线;根据所述SRS资源或所述发送天线确定用于所述数据传输的传输参数。
通信模块430,用于使用确定的所述传输参数进行所述数据传输。
可选地,在一些实施例中,所述用于数据传输的端口数包括用于物理上行共享信道PUSCH或物理上行控制信道PUCCH的传输端口数。
可选地,在一些实施例中,所述与所述数据传输关联的SRS资源包括调度所述数据传输的DCI中的SRI所指示的SRS资源。
可选地,在一些实施例中,所述与所述数据传输关联的SRS资源包括用于确定所述数据传输的传输参数的SRS资源,所述传输参数包括以下中的至少一项:
传输层数、预编码矩阵、调制编码方式和时频物理资源。
可选地,在一些实施例中,所述通信模块430还用于:
接收网络设备发送的高层信令,所述高层信令包括所述目标端口数;或者,
接收所述网络设备发送的用于调度所述数据传输的DCI,所述DCI包括所述目标端口数;
所述确定模块410具体用于:
根据所述高层信令或所述DCI,确定所述目标端口数。
可选地,在一些实施例中,所述确定模块410具体用于:
根据所述目标端口数,以及端口数和SRI比特数的第一映射关系,确定
所述SRI的比特数。
可选地,在一些实施例中,所述第一映射关系是所述网络设备预配置给所述终端设备的,或协议约定的。
可选地,在一些实施例中,在所述第一映射关系中,端口数为1和端口数大于1分别对应不同的SRI比特数。
可选地,在一些实施例中,在所述第一映射关系中,第一端口数对应第一SRI比特数,第二端口数对应第二SRI比特数,若所述第一端口数大于所述第二端口数,所述第一SRI比特数小于所述第二SRI比特数。
可选地,在一些实施例中,所述确定模块410具体用于:
根据所述目标端口数,以及端口数和TAI比特数的第二映射关系,确定所述TAI的比特数。
可选地,在一些实施例中,所述第二映射关系是所述网络设备预配置给所述终端设备的,或协议约定的。
可选地,在一些实施例中,在所述第二映射关系中,端口数大于1对应的TAI比特数为零,端口数等于1对应的TAI比特数大于零。
可选地,在一些实施例中,端口数等于1对应的TAI比特数的大小由网络设备预先配置给所述终端设备,或者由终端设备根据上报的天线数确定。
可选地,在一些实施例中,所述确定模块410具体用于:
根据所述SRI,从所述终端设备发送SRS采用的多个SRS资源中,确定所述SRI对应的SRS资源。
可选地,在一些实施例中,所述确定模块410具体用于:
根据所述TAI,从终端设备发送SRS采用的多个发送天线中,确定所述TAI对应的发送天线。
可选地,在一些实施例中,所述确定模块410具体用于:
确定在所述SRS资源上传输SRS所用的发送波束;
根据所述发送波束,确定所述数据传输所用的发送波束。
可选地,在一些实施例中,所述确定模块410具体用于:
将所述发送波束,确定为所述数据传输所用的发送波束。
可选地,在一些实施例中,所述确定模块410具体用于:
根据所述SRS资源的端口数,以及所述SRS资源的端口数情况下DCI中的传输层数指示RI和传输层数的对应关系,确定用于所述数据传输的传
输层数。
可选地,在一些实施例中,所述确定模块410具体用于:
根据所述SRS资源的端口数,以及第三映射关系,确定用于所述数据传输的目标码本,所述第三映射关系指示端口数与码本的对应关系;
根据所述DCI中的预编码矩阵指示PMI,在所述目标码本中确定用于所述数据传输的预编码矩阵。
可选地,在一些实施例中,在所述第三映射关系中,不同的端口数对应不同的码本。
可选地,在一些实施例中,所述第三映射关系是所述网络设备预配置给所述终端设备的,或协议约定的。
可选地,在一些实施例中,所述确定模块410具体用于:
将所述发送天线确定为用于所述数据传输的传输天线。
图5是根据本申请实施例的网络设备的示意性框图。图5所示的网络设备500包括:
确定模块510,由于根据目标端口数,确定调度数据传输的下行控制信息DCI中的探测参考信号SRS资源指示SRI的比特数,或传输天线指示TAI的比特数,其中,所述目标端口数为用于终端设备进行所述数据传输的端口数或,与所述数据传输关联的SRS资源的端口数;
生成模块520,用于根据所述SRI的比特数,或TAI的比特数,生成所述DCI;
通信模块530,用于向所述终端设备发送所述DCI。
可选地,在一些实施例中,所述用于数据传输的端口数包括用于物理上行共享信道PUSCH或物理上行控制信道PUCCH的传输端口数。
可选地,在一些实施例中,所述与所述数据传输关联的SRS资源包括调度所述数据传输的DCI中的SRI所指示的SRS资源。
可选地,在一些实施例中,所述与所述数据传输关联的SRS资源包括用于确定所述数据传输的传输参数的SRS资源,所述传输参数包括以下中的至少一项:
传输层数、预编码矩阵、调制编码方式和时频物理资源。
可选地,在一些实施例中,所述确定模块510具体用于:
根据所述目标端口数,以及端口数和SRI比特数的第一映射关系,确定
所述SRI的比特数。
可选地,在一些实施例中,在所述第一映射关系中,端口数为1和端口数大于1分别对应不同的SRI比特数。
可选地,在一些实施例中,在所述第一映射关系中,第一端口数对应第一SRI比特数,第二端口数对应第二SRI比特数,若所述第一端口数大于所述第二端口数,所述第一SRI比特数小于所述第二SRI比特数。
可选地,在一些实施例中,所述确定模块510具体用于:
根据所述目标端口数,以及端口数和TAI比特数的第二映射关系,确定所述TAI的比特数。
可选地,在一些实施例中,在所述第二映射关系中,端口数大于1对应的TAI比特数为零,端口数等于1对应的TAI比特数大于零。
可选地,在一些实施例中,所述通信模块还:
所述网络设备向所述终端设备发送高层信令,所述高层信令包括所述目标端口数;或者,
所述网络设备向所述终端设备发送用于调度所述数据传输的DCI,所述DCI包括所述目标端口数。
如图6所示,本申请实施例还提供了一种终端设备600,所述终端设备600可以为图4中的终端设备400,其能够用于执行与图2中方法200对应的终端设备的内容。所述终端设备600包括:输入接口610、输出接口620、处理器630以及存储器640,所述输入接口610、输出接口620、处理器630和存储器640可以通过总线系统相连。所述存储器640用于存储包括程序、指令或代码。所述处理器630,用于执行所述存储器640中的程序、指令或代码,以控制输入接口610接收信号、控制输出接口620发送信号以及完成前述方法实施例中的操作。
应理解,在本申请实施例中,所述处理器630可以是中央处理单元(Central Processing Unit,简称为“CPU”),所述处理器630还可以是其他通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者所述处理器也可以是任何常规的处理器等。
所述存储器640可以包括只读存储器和随机存取存储器,并向处理器
630提供指令和数据。存储器640的一部分还可以包括非易失性随机存取存储器。例如,存储器640还可以存储设备类型的信息。
在实现过程中,上述方法的各内容可以通过处理器630中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的内容可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。所述存储介质位于存储器640,处理器630读取存储器640中的信息,结合其硬件完成上述方法的内容。为避免重复,这里不再详细描述。
一个具体的实施方式中,图4中终端设备包括的确定模块410,获取模块420可以用图6的处理器630实现,终端设备400包括的通信模块430可以用图6的输入接口610和输出接口620实现。
如图7所示,本申请实施例还提供了一种网络设备700,所述网络设备700可以为图5中的网络设备500,其能够用于执行与图3中方法300对应的网络设备的内容。所述网络设备700包括:输入接口710、输出接口720、处理器730以及存储器740,所述输入接口710、输出接口720、处理器730和存储器740可以通过总线系统相连。所述存储器740用于存储包括程序、指令或代码。所述处理器730,用于执行所述存储器740中的程序、指令或代码,以控制输入接口710接收信号、控制输出接口720发送信号以及完成前述方法实施例中的操作。
应理解,在本申请实施例中,所述处理器730可以是中央处理单元(Central Processing Unit,简称为“CPU”),所述处理器730还可以是其他通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者所述处理器也可以是任何常规的处理器等。
所述存储器740可以包括只读存储器和随机存取存储器,并向处理器730提供指令和数据。存储器740的一部分还可以包括非易失性随机存取存储器。例如,存储器740还可以存储设备类型的信息。
在实现过程中,上述方法的各内容可以通过处理器730中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的内容
可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。所述存储介质位于存储器740,处理器730读取存储器740中的信息,结合其硬件完成上述方法的内容。为避免重复,这里不再详细描述。
一个具体的实施方式中,图5中网络设备包括的确定模块510,生成模块520可以用图7的处理器730实现,网络设备500包括的通信模块530可以用图7的输入接口710和输出接口720实现。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应所述理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使
用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者所述技术方案的部分可以以软件产品的形式体现出来,所述计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。
Claims (50)
- 一种上行传输的方法,其特征在于,包括:终端设备确定目标端口数,所述目标端口数为用于数据传输的端口数或与所述数据传输关联的探测参考信号SRS资源的端口数;根据所述目标端口数,确定调度所述数据传输的下行控制信息DCI中的SRS资源指示SRI的比特数,或传输天线指示TAI的比特数;根据所述SRI的比特数从所述DCI中获取SRI,或根据所述TAI的比特数从所述DCI中获取TAI;根据所述SRI确定对应的SRS资源,或根据所述TAI确定对应的发送天线;根据所述SRS资源或所述发送天线确定用于所述数据传输的传输参数;使用确定的所述传输参数进行所述数据传输。
- 根据权利要求1所述的方法,其特征在于,所述用于数据传输的端口数包括用于物理上行共享信道PUSCH或物理上行控制信道PUCCH的传输端口数。
- 根据权利要求1或2所述的方法,其特征在于,所述与所述数据传输关联的SRS资源包括调度所述数据传输的DCI中的SRI所指示的SRS资源。
- 根据权利要求1或2所述的方法,其特征在于,所述与所述数据传输关联的SRS资源包括用于确定所述数据传输的传输参数的SRS资源,所述传输参数包括以下中的至少一项:传输层数、预编码矩阵、调制编码方式和时频物理资源。
- 根据权利要求1至3中任一项所述的方法,其特征在于,所述终端设备确定目标端口数,包括:所述终端设备接收网络设备发送的高层信令,所述高层信令包括所述目标端口数;或者,所述终端设备接收所述网络设备发送的用于调度所述数据传输的DCI,所述DCI包括所述目标端口数;所述终端设备根据所述高层信令或所述DCI,确定所述目标端口数。
- 根据权利要求1至5中任一项所述的方法,其特征在于,所述根据所述目标端口数,确定调度所述数据传输的下行控制信息DCI中的SRS资 源指示SRI的比特数,或传输天线指示TAI的比特数,包括:根据所述目标端口数,以及端口数和SRI比特数的第一映射关系,确定所述SRI的比特数。
- 根据权利要求6所述的方法,其特征在于,所述第一映射关系是所述网络设备预配置给所述终端设备的,或协议约定的。
- 根据权利要求6或7所述的方法,其特征在于,在所述第一映射关系中,端口数为1和端口数大于1分别对应不同的SRI比特数。
- 根据权利要求6至8中任一项所述的方法,其特征在于,在所述第一映射关系中,第一端口数对应第一SRI比特数,第二端口数对应第二SRI比特数,若所述第一端口数大于所述第二端口数,所述第一SRI比特数小于所述第二SRI比特数。
- 根据权利要求1至9中任一项所述的方法,其特征在于,所述根据所述目标端口数,确定调度所述数据传输的下行控制信息DCI中的SRS资源指示SRI的比特数,或传输天线指示TAI的比特数,包括:根据所述目标端口数,以及端口数和TAI比特数的第二映射关系,确定所述TAI的比特数。
- 根据权利要求10所述的方法,其特征在于,所述第二映射关系是所述网络设备预配置给所述终端设备的,或协议约定的。
- 根据权利要求10或11所述的方法,其特征在于,在所述第二映射关系中,端口数大于1对应的TAI比特数为零,端口数等于1对应的TAI比特数大于零。
- 根据权利要求10至12中任一项所述的方法,其特征在于,端口数等于1对应的TAI比特数的大小由网络设备预先配置给所述终端设备,或者由终端设备根据上报的天线数确定。
- 根据权利要求1至13中任一项所述的方法,其特征在于,所述根据所述SRI确定对应的SRS资源,包括:根据所述SRI,从所述终端设备发送SRS采用的多个SRS资源中,确定所述SRI对应的SRS资源。
- 根据权利要求1至14中任一项所述的方法,其特征在于,所述根据所述TAI确定对应的发送天线,包括:根据所述TAI,从终端设备发送SRS采用的多个发送天线中,确定所述 TAI对应的发送天线。
- 根据权利要求1至15中任一项所述的方法,其特征在于,所述根据所述SRS资源或所述发送天线确定用于所述数据传输的传输参数,包括:确定在所述SRS资源上传输SRS所用的发送波束;根据所述发送波束,确定所述数据传输所用的发送波束。
- 根据权利要求16所述的方法,其特征在于,所述终端设备根据所述发送波束,确定所述数据传输所用的发送波束,包括:将所述发送波束,确定为所述数据传输所用的发送波束。
- 根据权利要求1至17中任一项所述的方法,其特征在于,所述根据所述SRS资源或所述发送天线确定用于所述数据传输的传输参数,包括:根据所述SRS资源的端口数,以及所述SRS资源的端口数情况下DCI中的传输层数指示RI和传输层数的对应关系,确定用于所述数据传输的传输层数。
- 根据权利要求1至18中任一项所述的方法,其特征在于,所述根据所述SRS资源或所述发送天线确定用于所述数据传输的传输参数,包括:根据所述SRS资源的端口数,以及第三映射关系,确定用于所述数据传输的目标码本,所述第三映射关系指示端口数与码本的对应关系;根据所述DCI中的预编码矩阵指示PMI,在所述目标码本中确定用于所述数据传输的预编码矩阵。
- 根据权利要求1至19中任一项所述的方法,其特征在于,所述根据所述SRS资源或所述发送天线确定用于所述数据传输的传输参数,包括:将所述发送天线确定为用于所述数据传输的传输天线。
- 一种上行传输的方法,其特征在于,包括:网络设备根据目标端口数,确定调度数据传输的下行控制信息DCI中的探测参考信号SRS资源指示SRI的比特数,或传输天线指示TAI的比特数,其中,所述目标端口数为用于终端设备进行所述数据传输的端口数或,与所述数据传输关联的SRS资源的端口数;根据所述SRI的比特数,或TAI的比特数,生成所述DCI;向所述终端设备发送所述DCI。
- 根据权利要求21所述的方法,其特征在于,所述用于数据传输的端口数包括用于物理上行共享信道PUSCH或物理上行控制信道PUCCH的 传输端口数。
- 根据权利要求21或22所述的方法,其特征在于,所述与所述数据传输关联的SRS资源包括调度所述数据传输的DCI中的SRI所指示的SRS资源。
- 根据权利要求21或22所述的方法,其特征在于,所述与所述数据传输关联的SRS资源包括用于确定所述数据传输的传输参数的SRS资源,所述传输参数包括以下中的至少一项:传输层数、预编码矩阵、调制编码方式和时频物理资源。
- 根据权利要求21至24中任一项所述的方法,其特征在于,所述方法还包括:所述网络设备向所述终端设备发送高层信令,所述高层信令包括所述目标端口数;或者,所述网络设备向所述终端设备发送用于调度所述数据传输的DCI,所述DCI包括所述目标端口数。
- 一种终端设备,其特征在于,包括:确定模块,用于确定目标端口数,根据所述目标端口数,确定调度所述数据传输的下行控制信息DCI中的SRS资源指示SRI的比特数,或传输天线指示TAI的比特数,其中,所述目标端口数为用于数据传输的端口数或与所述数据传输关联的探测参考信号SRS资源的端口数;获取模块,用于根据所述SRI的比特数从所述DCI中获取SRI,或根据所述TAI的比特数从所述DCI中获取TAI;所述确定模块还用于:根据所述SRI确定对应的SRS资源,或根据所述TAI确定对应的发送天线;根据所述SRS资源或所述发送天线确定用于所述数据传输的传输参数;通信模块,用于使用确定的所述传输参数进行所述数据传输。
- 根据权利要求26所述的终端设备,其特征在于,所述用于数据传输的端口数包括用于物理上行共享信道PUSCH或物理上行控制信道PUCCH的传输端口数。
- 根据权利要求26或27所述的终端设备,其特征在于,所述与所述数据传输关联的SRS资源包括调度所述数据传输的DCI中的SRI所指示的SRS资源。
- 根据权利要求26或27所述的终端设备,其特征在于,所述与所述数据传输关联的SRS资源包括用于确定所述数据传输的传输参数的SRS资源,所述传输参数包括以下中的至少一项:传输层数、预编码矩阵、调制编码方式和时频物理资源。
- 根据权利要求26至29中任一项所述的终端设备,其特征在于,所述通信模块还用于:接收网络设备发送的高层信令,所述高层信令包括所述目标端口数;或者,接收所述网络设备发送的用于调度所述数据传输的DCI,所述DCI包括所述目标端口数;所述确定模块具体用于:根据所述高层信令或所述DCI,确定所述目标端口数。
- 根据权利要求26至30中任一项所述的终端设备,其特征在于,所述确定模块具体用于:根据所述目标端口数,以及端口数和SRI比特数的第一映射关系,确定所述SRI的比特数。
- 根据权利要求31所述的终端设备,其特征在于,所述第一映射关系是所述网络设备预配置给所述终端设备的,或协议约定的。
- 根据权利要求31或32所述的终端设备,其特征在于,在所述第一映射关系中,端口数为1和端口数大于1分别对应不同的SRI比特数。
- 根据权利要求31至33中任一项所述的终端设备,其特征在于,在所述第一映射关系中,第一端口数对应第一SRI比特数,第二端口数对应第二SRI比特数,若所述第一端口数大于所述第二端口数,所述第一SRI比特数小于所述第二SRI比特数。
- 根据权利要求26至34中任一项所述的终端设备,其特征在于,所述确定模块具体用于:根据所述目标端口数,以及端口数和TAI比特数的第二映射关系,确定所述TAI的比特数。
- 根据权利要求35所述的终端设备,其特征在于,所述第二映射关系是所述网络设备预配置给所述终端设备的,或协议约定的。
- 根据权利要求35或36所述的终端设备,其特征在于,在所述第二 映射关系中,端口数大于1对应的TAI比特数为零,端口数等于1对应的TAI比特数大于零。
- 根据权利要求35至37中任一项所述的终端设备,其特征在于,端口数等于1对应的TAI比特数的大小由网络设备预先配置给所述终端设备,或者由终端设备根据上报的天线数确定。
- 根据权利要求26至38中任一项所述的终端设备,其特征在于,所述确定模块具体用于:根据所述SRI,从所述终端设备发送SRS采用的多个SRS资源中,确定所述SRI对应的SRS资源。
- 根据权利要求26至39中任一项所述的终端设备,其特征在于,所述确定模块具体用于:根据所述TAI,从终端设备发送SRS采用的多个发送天线中,确定所述TAI对应的发送天线。
- 根据权利要求26至40中任一项所述的终端设备,其特征在于,所述确定模块具体用于:确定在所述SRS资源上传输SRS所用的发送波束;根据所述发送波束,确定所述数据传输所用的发送波束。
- 根据权利要求41所述的终端设备,其特征在于,所述确定模块具体用于:将所述发送波束,确定为所述数据传输所用的发送波束。
- 根据权利要求26至42中任一项所述的终端设备,其特征在于,所述确定模块具体用于:根据所述SRS资源的端口数,以及所述SRS资源的端口数情况下DCI中的传输层数指示RI和传输层数的对应关系,确定用于所述数据传输的传输层数。
- 根据权利要求26至43中任一项所述的终端设备,其特征在于,所述确定模块具体用于:根据所述SRS资源的端口数,以及第三映射关系,确定用于所述数据传输的目标码本,所述第三映射关系指示端口数与码本的对应关系;根据所述DCI中的预编码矩阵指示PMI,在所述目标码本中确定用于所述数据传输的预编码矩阵。
- 根据权利要求26至44中任一项所述的终端设备,其特征在于,所述确定模块具体用于:将所述发送天线确定为用于所述数据传输的传输天线。
- 一种网络设备,其特征在于,包括:确定模块,由于根据目标端口数,确定调度数据传输的下行控制信息DCI中的探测参考信号SRS资源指示SRI的比特数,或传输天线指示TAI的比特数,其中,所述目标端口数为用于终端设备进行所述数据传输的端口数或,与所述数据传输关联的SRS资源的端口数;生成模块,用于根据所述SRI的比特数,或TAI的比特数,生成所述DCI;通信模块,用于向所述终端设备发送所述DCI。
- 根据权利要求46所述的网络设备,其特征在于,所述用于数据传输的端口数包括用于物理上行共享信道PUSCH或物理上行控制信道PUCCH的传输端口数。
- 根据权利要求46或47所述的网络设备,其特征在于,所述与所述数据传输关联的SRS资源包括调度所述数据传输的DCI中的SRI所指示的SRS资源。
- 根据权利要求46或47所述的网络设备,其特征在于,所述与所述数据传输关联的SRS资源包括用于确定所述数据传输的传输参数的SRS资源,所述传输参数包括以下中的至少一项:传输层数、预编码矩阵、调制编码方式和时频物理资源。
- 根据权利要求46至49中任一项所述的网络设备,其特征在于,所述通信模块还:所述网络设备向所述终端设备发送高层信令,所述高层信令包括所述目标端口数;或者,所述网络设备向所述终端设备发送用于调度所述数据传输的DCI,所述DCI包括所述目标端口数。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201780048072.5A CN109565855B (zh) | 2017-03-20 | 2017-03-20 | 上行传输的方法、终端设备和网络设备 |
PCT/CN2017/077352 WO2018170691A1 (zh) | 2017-03-20 | 2017-03-20 | 上行传输的方法、终端设备和网络设备 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2017/077352 WO2018170691A1 (zh) | 2017-03-20 | 2017-03-20 | 上行传输的方法、终端设备和网络设备 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018170691A1 true WO2018170691A1 (zh) | 2018-09-27 |
Family
ID=63583937
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/077352 WO2018170691A1 (zh) | 2017-03-20 | 2017-03-20 | 上行传输的方法、终端设备和网络设备 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN109565855B (zh) |
WO (1) | WO2018170691A1 (zh) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7009505B2 (ja) * | 2017-05-04 | 2022-01-25 | オッポ広東移動通信有限公司 | アップリンク信号の伝送パラメータを確定する方法、端末及びネットワーク装置 |
CN111818629B (zh) * | 2019-04-10 | 2022-04-29 | 大唐移动通信设备有限公司 | 数据传输方法和设备 |
CN112398622B (zh) * | 2019-08-16 | 2022-05-20 | 大唐移动通信设备有限公司 | 一种上行发送方法、终端及网络侧设备 |
CN113271681B (zh) * | 2020-02-17 | 2023-04-07 | 维沃移动通信有限公司 | Pusch传输方法、终端及网络设备 |
CN113543326B (zh) * | 2020-04-17 | 2024-08-02 | 维沃移动通信有限公司 | 物理上行共享信道传输方法、网络设备及终端设备 |
US20230276371A1 (en) * | 2020-08-05 | 2023-08-31 | Ntt Docomo, Inc. | Terminal, radio communication method, and base station |
CN114070528B (zh) * | 2020-08-07 | 2023-07-14 | 大唐移动通信设备有限公司 | 一种信号传输方法、装置及存储介质 |
CN114389651B (zh) * | 2020-10-21 | 2023-06-23 | 华为技术有限公司 | 调度数据传输的方法和通信装置 |
CN114765879A (zh) * | 2021-01-15 | 2022-07-19 | 维沃移动通信有限公司 | Pusch传输方法、装置、设备及存储介质 |
CN116073972B (zh) * | 2021-11-04 | 2024-11-01 | 展讯通信(上海)有限公司 | 资源配置方法、装置及设备 |
WO2024026798A1 (zh) * | 2022-08-04 | 2024-02-08 | 北京小米移动软件有限公司 | 上行mimo传输的预编码矩阵确定方法及其装置 |
CN117693019B (zh) * | 2024-02-01 | 2024-06-25 | 荣耀终端有限公司 | 一种上行数据传输方法及相关设备 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101541063A (zh) * | 2009-04-27 | 2009-09-23 | 中兴通讯股份有限公司 | 一种下行控制信令的传输方法和装置 |
CN101908916A (zh) * | 2010-08-13 | 2010-12-08 | 中兴通讯股份有限公司 | 上行信息的传输方法及终端 |
CN104144513A (zh) * | 2013-05-10 | 2014-11-12 | 中兴通讯股份有限公司 | 一种多子帧调度方法、基站、终端和系统 |
US20160270115A1 (en) * | 2015-03-15 | 2016-09-15 | Qualcomm Incorporated | Self-contained time division duplex (tdd) subframe structure for wireless communications |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9191899B2 (en) * | 2011-09-05 | 2015-11-17 | Lg Electronics Inc. | Terminal apparatus for controlling uplink signal transmission power and method for same |
KR20160148024A (ko) * | 2014-06-30 | 2016-12-23 | 후아웨이 테크놀러지 컴퍼니 리미티드 | 서브 프레임 처리 방법 및 장치 |
-
2017
- 2017-03-20 CN CN201780048072.5A patent/CN109565855B/zh active Active
- 2017-03-20 WO PCT/CN2017/077352 patent/WO2018170691A1/zh active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101541063A (zh) * | 2009-04-27 | 2009-09-23 | 中兴通讯股份有限公司 | 一种下行控制信令的传输方法和装置 |
CN101908916A (zh) * | 2010-08-13 | 2010-12-08 | 中兴通讯股份有限公司 | 上行信息的传输方法及终端 |
CN104144513A (zh) * | 2013-05-10 | 2014-11-12 | 中兴通讯股份有限公司 | 一种多子帧调度方法、基站、终端和系统 |
US20160270115A1 (en) * | 2015-03-15 | 2016-09-15 | Qualcomm Incorporated | Self-contained time division duplex (tdd) subframe structure for wireless communications |
Also Published As
Publication number | Publication date |
---|---|
CN109565855A (zh) | 2019-04-02 |
CN109565855B (zh) | 2020-12-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018170691A1 (zh) | 上行传输的方法、终端设备和网络设备 | |
US11849446B2 (en) | Method for transmitting uplink data and terminal device | |
JP7033205B2 (ja) | データ伝送方法、基地局および端末 | |
WO2020035069A1 (zh) | 一种上行传输指示的方法、终端、基站及计算机存储介质 | |
WO2019137211A1 (zh) | 一种探测参考信号srs配置方法和装置 | |
US11575543B2 (en) | Method for uplink data transmission, terminal device and network device | |
US11539483B2 (en) | Wireless communication method and apparatus | |
US20210007060A1 (en) | Wireless communication method and device | |
WO2018126882A1 (zh) | 一种信号传输方法和网络设备以及终端设备 | |
TWI759517B (zh) | 資料傳輸的方法和終端設備 | |
WO2018157296A1 (zh) | 无线通信方法、终端设备和网络设备 | |
WO2016183835A1 (zh) | 传输信号的方法和设备 | |
US11309949B2 (en) | Signal processing method and apparatus | |
CN107404344B (zh) | 通信方法、网络设备和终端设备 | |
WO2018072062A1 (zh) | 信息传输方法和装置 | |
WO2019019055A1 (zh) | 传输数据的方法、终端设备和网络设备 | |
WO2019028704A1 (zh) | 下行信号传输的方法、终端设备和网络设备 | |
WO2018232719A1 (zh) | 无线通信方法和设备 | |
WO2019047122A1 (zh) | 信号上报的方法、终端设备和网络设备 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17902410 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17902410 Country of ref document: EP Kind code of ref document: A1 |