Nothing Special   »   [go: up one dir, main page]

WO2018169076A1 - 金属担持物、担持金属触媒、アンモニアの製造方法、水素の製造方法及びシアナミド化合物の製造方法 - Google Patents

金属担持物、担持金属触媒、アンモニアの製造方法、水素の製造方法及びシアナミド化合物の製造方法 Download PDF

Info

Publication number
WO2018169076A1
WO2018169076A1 PCT/JP2018/010592 JP2018010592W WO2018169076A1 WO 2018169076 A1 WO2018169076 A1 WO 2018169076A1 JP 2018010592 W JP2018010592 W JP 2018010592W WO 2018169076 A1 WO2018169076 A1 WO 2018169076A1
Authority
WO
WIPO (PCT)
Prior art keywords
ammonia
reaction
catalyst
supported
metal
Prior art date
Application number
PCT/JP2018/010592
Other languages
English (en)
French (fr)
Inventor
細野 秀雄
和久 岸田
政明 北野
壽治 横山
Original Assignee
国立大学法人東京工業大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京工業大学 filed Critical 国立大学法人東京工業大学
Priority to EP18767282.9A priority Critical patent/EP3597292A4/en
Priority to JP2019506317A priority patent/JP7231157B2/ja
Priority to BR112019018745-6A priority patent/BR112019018745B1/pt
Priority to US16/492,975 priority patent/US11819827B2/en
Priority to CN201880018220.3A priority patent/CN110461466A/zh
Publication of WO2018169076A1 publication Critical patent/WO2018169076A1/ja
Priority to IL269222A priority patent/IL269222B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/75Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/462Ruthenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/58Platinum group metals with alkali- or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/78Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with alkali- or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • B01J27/26Cyanides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/612Surface area less than 10 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0238Impregnation, coating or precipitation via the gaseous phase-sublimation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/088Decomposition of a metal salt
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/047Decomposition of ammonia
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01CAMMONIA; CYANOGEN; COMPOUNDS THEREOF
    • C01C1/00Ammonia; Compounds thereof
    • C01C1/02Preparation, purification or separation of ammonia
    • C01C1/04Preparation of ammonia by synthesis in the gas phase
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01CAMMONIA; CYANOGEN; COMPOUNDS THEREOF
    • C01C1/00Ammonia; Compounds thereof
    • C01C1/02Preparation, purification or separation of ammonia
    • C01C1/04Preparation of ammonia by synthesis in the gas phase
    • C01C1/0405Preparation of ammonia by synthesis in the gas phase from N2 and H2 in presence of a catalyst
    • C01C1/0411Preparation of ammonia by synthesis in the gas phase from N2 and H2 in presence of a catalyst characterised by the catalyst
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01CAMMONIA; CYANOGEN; COMPOUNDS THEREOF
    • C01C3/00Cyanogen; Compounds thereof
    • C01C3/16Cyanamide; Salts thereof
    • C01C3/18Calcium cyanamide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the present invention relates to a metal supported product, a supported metal catalyst, a method for producing ammonia using the supported metal catalyst, a method for producing hydrogen, and a method for producing a cyanamide compound.
  • the Haber Bosch method which is a typical ammonia synthesis method, uses a double promoted iron catalyst containing several parts by mass of K 2 O or Al 2 O 3 with respect to 100 parts by mass of Fe 3 O 4. This is a method for producing ammonia by directly reacting a mixed gas of nitrogen and hydrogen under high temperature and high pressure conditions with this catalyst. This technology is still used industrially in the manufacturing process almost as it was when it was completed.
  • a catalyst using a transition metal such as Ru is known to be able to synthesize ammonia under milder conditions than the reaction conditions used in the Harbor Bosch method because of its very high activity. .
  • the reaction proceeds at a low temperature and a low pressure of 200 to 400 ° C. and a reaction pressure of about 1.1 to 1.1 MPa.
  • the representative composition of the mayenite type compound is represented by 12CaO ⁇ 7Al 2 O 3 , and two oxygen atoms are included as “free oxygen ions” in the space in the cage formed by the crystal skeleton.
  • C12A7 electride a catalyst having a transition metal supported as a catalytic active component on a mayenite compound (hereinafter referred to as C12A7 electride) obtained by substituting free oxygen ions in the mayenite compound with an electron is high as an ammonia synthesis catalyst. It was found to have activity.
  • Patent Document 2 Non-Patent Document 1
  • cyanamide compounds such as calcium cyanamide (CaCN 2 ) mainly used for nitrogen fertilizer and agricultural chemicals are known.
  • Calcium cyanamide is generally produced by the lime nitrogen method.
  • the lime nitrogen method is a reaction that generates calcium cyanamide by reacting calcium carbide (CaC 2 ) and nitrogen at a high temperature.
  • calcium cyanamide is obtained as a mixture (lime nitrogen) of carbon and by-products such as calcium oxide and calcium hydroxide.
  • the content of calcium cyanamide in lime nitrogen is usually 60% by mass or less.
  • Cyanamide compounds are also used as industrial raw materials for nitrogen compounds such as cyanide, and as reactive agents for nitriding agents and reducing agents. In this case, a cyanamide compound with high purity is usually used.
  • a method for producing a high-purity cyanamide compound for example, a method of synthesizing calcium cyanamide by reacting metal Ca and cyanamide (H 2 CN 2 ) in liquid ammonia, or a reaction of metal Ca and HCN in liquid ammonia.
  • Patent Document 3 A method of reacting CaCO 3 with ammonia gas or a mixed gas of ammonia and carbon dioxide has been reported (Non-patent Document 2).
  • An ammonia synthesis method using calcium cyanamide as a catalyst is also disclosed.
  • An ammonia synthesis method using a mixture of porous calcium cyanamide obtained by pyrolyzing Ca (CN) 2 and a transition metal as a catalyst is disclosed (Patent Document 3).
  • An ammonia synthesis method using calcium cyanamide pretreated with an iron carbonyl compound as a catalyst is also disclosed.
  • the metal-supported catalyst as described in Patent Document 1 usually uses a carbonaceous support such as activated carbon or an inorganic oxide support.
  • these metal supported catalysts have low reaction activity and have insufficient performance for practical use. That is, there is a need for an ammonia synthesis catalyst that has sufficient reaction activity even under lower temperature and lower pressure conditions than the reaction conditions of the Harbor Bosch method.
  • the catalyst described in Patent Document 2 has sufficient reaction activity even under low temperature and low pressure reaction conditions.
  • the catalyst described in Patent Document 2 requires high-temperature reaction conditions during its production. That is, there is a demand for a catalyst for ammonia synthesis having a high reaction activity that can be produced by a simpler method than this catalyst.
  • the conventional lime nitrogen method is not suitable for producing a highly pure cyanamide compound because a mixture containing various by-products is obtained.
  • a method for producing a high-purity cyanamide compound is generally disadvantageous in terms of production efficiency because it is a production method requiring complicated reaction equipment and production equipment such as liquid ammonia. Since the cyanamide compound production method described in Non-Patent Document 2 uses ammonia gas, the load on the reactor is relatively small. For example, in the production of calcium cyanamide, heating at 700 ° C. or higher is necessary. It is disadvantageous in terms of energy.
  • the present inventors have found that a catalyst having a high ammonia synthesis activity and advantageous in terms of production can be obtained by using a cyanamide compound carrying a transition metal and having a large specific surface area as a catalyst.
  • the present invention has been reached.
  • the present inventors have found that a high-purity cyanamide compound can be efficiently produced by reacting a metal salt and ammonia gas in a specific temperature range, and have reached the present invention.
  • a metal carrier having a transition metal supported on a carrier is a cyanamide compound represented by the following general formula (1): MCN 2 (1) (In the formula, M represents a Group II element of the periodic table.) And a metal support, wherein the cyanamide compound has a specific surface area of 1 m 2 g ⁇ 1 or more.
  • M is at least one selected from the group consisting of Ca, Sr and Ba.
  • the metal carrier according to [1] or [2], wherein the amount of the transition metal supported is 0.01 parts by mass or more and 50 parts by mass or less with respect to 100 parts by mass of the carrier.
  • a supported metal catalyst comprising the metal support according to any one of [1] to [3].
  • the supported metal catalyst according to [4] which is a catalyst for ammonia synthesis.
  • a process for producing ammonia comprising reacting nitrogen and hydrogen in the presence of the supported metal catalyst according to any one of [4] to [6].
  • a method for producing hydrogen comprising reacting ammonia in the presence of the supported metal catalyst according to any one of [4], [11] or [12] to decompose into nitrogen and hydrogen.
  • the metal carrier of the present invention can be used as a supported metal catalyst, and exhibits high catalytic activity when the supported metal catalyst of the present invention is used.
  • the supported metal catalyst of the present invention is particularly suitable as an ammonia synthesis catalyst because it has a high ammonia synthesis activity even at a low reaction temperature and a low reaction pressure.
  • ammonia By producing ammonia using the supported metal catalyst of the present invention, it is possible to synthesize ammonia with less energy, and even if the synthesis reaction is repeated, no decrease in catalytic activity is seen, so long-term chemical with high efficiency, It can be synthesized with thermal stability.
  • the supported metal catalyst of the present invention is used, an inexpensive compound composed only of the elements having the highest number of Clarke numbers such as calcium, carbon, and nitrogen is used in the method for continuously synthesizing ammonia by the reaction of hydrogen and nitrogen.
  • ammonia can be synthesized with low energy consumption and low reaction pressure. Further, since the catalytic activity does not decrease even when the synthesis reaction is repeated, it can be synthesized with high efficiency and long-term chemical and thermal stability.
  • the metal-supported product and the supported metal catalyst of the present invention can be obtained by supporting a transition metal on a cyanamide compound. Since the cyanamide compound is a compound that can be handled relatively easily, it can be produced by a simple and highly safe method, and further cost reduction can be expected.
  • the metal carrier of the present invention has high efficiency as an ammonia decomposition catalyst, it is suitable for a method for producing hydrogen by ammonia decomposition.
  • the method for producing a cyanamide compound of the present invention can produce a high-purity cyanamide compound efficiently and without requiring a complicated production apparatus or production method.
  • a cyanamide compound can be efficiently produced simply by supplying ammonia gas as a raw material without supplying a secondary raw material gas containing carbon such as CO 2 .
  • the shape or the like of the metal salt used as the raw material of the cyanamide compound can be easily adjusted. Therefore, the physical properties of a metal carrier using a cyanamide compound can be easily adjusted, and furthermore, when the metal carrier is used as a supported metal catalyst, it can be easily molded, so that a desired shape can be obtained.
  • a catalyst can be obtained.
  • a first aspect of the present invention is a metal carrier having a transition metal supported on a carrier, wherein the carrier is a cyanamide compound represented by the following general formula (1): MCN 2 (1) (In the formula, M represents a Group II element of the periodic table.)
  • M represents a Group II element of the periodic table.
  • the present invention relates to a metal support characterized in that the cyanamide compound has a specific surface area of 1 m 2 g ⁇ 1 or more.
  • the metal support may be simply abbreviated as “support”.
  • the first aspect of the present invention also relates to a supported metal catalyst comprising this metal support.
  • the second aspect of the present invention relates to a supported metal catalyst, an ammonia production method using the supported metal catalyst, or a hydrogen production method.
  • a third aspect of the present invention is a method for producing a cyanamide compound represented by the general formula (1), wherein ammonia gas is added to the M carbonate or the organic acid salt having 1 or more carbon atoms at 650 ° C. or less. It is related with the manufacturing method of the cyanamide compound characterized by making it act. Each invention is described in detail below.
  • the metal carrier of the present invention is a metal carrier having a transition metal supported on a carrier, wherein the carrier is a cyanamide compound represented by the above general formula (1), and the cyanamide compound has a specific surface area of 1 m 2. g ⁇ 1 or more.
  • the cyanamide compound used in the present invention is a cyanamide compound represented by the following general formula (1).
  • M represents a periodic table group II element.
  • M is at least one element selected from Be, Mg, Ca, Sr, and Ba, preferably Mg, Ca, Sr, and Ba, more preferably heat even under high temperature reaction conditions.
  • Ca, Sr, and Ba are preferable because they are stable without decomposition, and Ca is more preferable because it has a small atomic number and it is easy to increase the area per unit weight (specific surface area). That is, the cyanamide compound used in the present invention is specifically a salt of cyanamide (CN 2 H 2 ) with a Group II element of the periodic table.
  • the specific surface area of the cyanamide compound used in the present invention is 1 m 2 g ⁇ 1 or more.
  • the upper limit is not particularly limited, but is usually 200 m 2 g ⁇ 1 or less, preferably 100 m 2 g ⁇ 1 or less, more preferably 50 m 2 g ⁇ 1 or less. This is because if it is not more than the above upper limit value, it is advantageous in terms of workability.
  • the manufacturing method of the cyanamide compound used by this invention is not specifically limited, It is preferable to use what was synthesize
  • the method for producing a cyanamide compound according to the third aspect of the present invention is a production in which ammonia gas is allowed to act on the carbonate of M or an organic acid salt having 1 or more carbon atoms (hereinafter sometimes referred to generically as a raw material salt). Is the method. Specifically, a cyanamide compound is obtained by allowing ammonia gas to act on a carbonate of a Group II element of the periodic table or a salt of a Group II element of the periodic table and an organic acid having 1 or more carbon atoms. In the production method of the present invention, decomposition is performed by allowing ammonia gas to act at a reaction temperature described later, and the compound serving as the element source of M is used.
  • decomposition is performed in the same manner as carbonate or carbonate.
  • An organic acid salt having 1 or more carbon atoms is used.
  • the production method of the cyanamide compound of the present invention proceeds according to the following formula, taking the case where the raw material salt is carbonate as an example.
  • the raw material salt is not particularly limited, and specific examples of the carbonate include magnesium carbonate, calcium carbonate, strontium carbonate, and barium carbonate.
  • the crystal system of the carbonate is not particularly limited, but may be a crystalline polymorph such as calcite, aragonite, vaterite, or amorphous. Alternatively, a powder whose surface is treated with a dispersant may be used.
  • the organic acid having 1 or more carbon atoms forming the raw material salt is not particularly limited, but is preferably one that is easily decomposed at a reaction temperature with ammonia gas, which will be described later, and a lower decomposition temperature is more preferable. A smaller carbon number is preferred.
  • the upper limit of the carbon number is not particularly limited, but is usually 12 or less, and preferably 6 or less from the viewpoint of ease of preparation.
  • glycolic acid, citric acid, malic acid, tartaric acid, lactic acid, formic acid, acetic acid, propionic acid, butyric acid, valeric acid, oxalic acid, malonic acid, succinic acid, adipic acid, fumaric acid, maleic acid, alanine , Arginine, asparagine, aspartic acid, and the like, and a salt of any combination of these organic acids and M can be used.
  • glycolate, citrate, malate, tartrate, lactate, formate, acetate, propionate, butyrate, which are water-soluble organic acid salts, Oxalates, malonates, and maleates, and citrates, malates, lactates, acetates, and oxalates are more preferable because they are easily decomposed by heat.
  • the raw material salt may be a salt containing crystal water or an anhydrous salt.
  • a carbonate or an organic acid salt having 1 to 6 carbon atoms is preferable in terms of ease of handling, and a carbonate is more preferable in terms of availability.
  • the shape of the raw material salt is not particularly limited and may be any shape such as powder, lump, and film, but is preferably powder.
  • the production of a cyanamide compound having a specific surface area of 1 m 2 g ⁇ 1 or more is not particularly limited, but can be obtained by using a raw material salt having a large specific surface area.
  • the ammonia gas used in the production method of the present invention is not limited as long as it does not inhibit the reaction represented by the above reaction formula, and any of commercially available ammonia gas and ammonia gas obtained by various synthesis methods are used. be able to.
  • the ammonia gas used in the present invention may be used alone in the reaction with the raw material salt or may be diluted with various carrier gases as long as the reaction represented by the reaction formula is not inhibited.
  • the use of ammonia alone is preferable from the viewpoint of reducing the ammonia dilution step and cost.
  • the carrier gas is not particularly limited, but usually helium, nitrogen, argon or the like is used.
  • the moisture concentration in the raw material gas is not particularly limited, but is preferably lower, specifically 0.1 volume. % Or less is preferable, and 0.01% by volume or less is more preferable. This is because, as is apparent from the reaction formula, when the water concentration is high, the formation of the cyanamide compound may be suppressed.
  • the raw material salt and ammonia gas are reacted at a temperature of 650 ° C. or lower. This is because, if the temperature is exceeded, side reactions such as decomposition of the raw material salt are likely to occur.
  • Reaction temperature with ammonia gas preferably 630 ° C. or less, more preferably 610 ° C. or less, further preferably 600 ° C. or less, and the lower limit is not particularly limited, but is usually 450 ° C. or more, Preferably it is 480 degreeC or more, More preferably, it is 500 degreeC or more. This is because the reaction does not occur sufficiently below the lower limit.
  • the reaction pressure is not particularly limited, but the reaction is preferably carried out under low pressure conditions. This is because the method for producing the cyanamide compound of the present invention is a volume increase reaction in which three molecules of H 2 O are generated from two molecules of NH 3 as shown in the above reaction formula. More preferably, the synthesis is performed at atmospheric pressure. This is because a pressure adjusting device is not necessary, which is advantageous in terms of cost.
  • the reaction method of the raw material salt and ammonia gas is not particularly limited as long as the effect of the present invention is obtained, but it is usually carried out by passing ammonia gas through the raw material salt. Is called. Usually, a method in which ammonia gas is passed into the reaction vessel containing the raw material salt can be mentioned.
  • the type of the reaction apparatus is not particularly limited, and a reaction apparatus that can be usually used when a gas is used for the reaction can be used.
  • a specific reaction format for example, a batch type reaction format, a closed circulation system reaction format, a circulation system reaction format, or the like can be used, and among these, a circulation system reaction format is preferable.
  • the synthesis reaction of the cyanamide compound used in the present invention involves the by-product of water simultaneously with the generation of MCN 2 as described above, the equilibrium can be shifted by removing water from the reaction system. Therefore, considering the removal of water, it is preferable to carry out the reaction apparatus in an open system capable of circulating gas.
  • the specific shape is not particularly limited, but a cylinder (tube) type suitable for gas flow is preferable.
  • the reaction can be carried out by batch reaction or continuous reaction, but it is preferably carried out by continuous reaction from the viewpoint of production efficiency.
  • the reaction apparatus suitably used in the case of carrying out the continuous reaction is a gas flow type heater, and examples thereof include a rotary kiln, a shaft type stirring type baking machine, a kneader type baking machine, and a fluidized heating furnace.
  • the main body (drum) rotates, the raw material salt moves, the screw forcibly moves the raw material salt, the apron (dish plate holder), etc.
  • a device for moving the raw material salt with an air current Of these, a rotating drum type and a screw conveyor type are more preferable.
  • the method for producing the cyanamide compound of the present invention is not particularly limited, but a cyanamide compound having a large specific surface area can be obtained, and a cyanamide compound having a specific surface area of 1 m 2 g ⁇ 1 or more is preferably obtained. Specifically, when a raw material salt having a large specific surface area, specifically, for example, a raw material salt having a specific surface area of 1 m 2 g ⁇ 1 or more is used, the specific surface area of the raw material salt is normally maintained or further increased. A cyanamide compound having a large specific surface area is obtained. As a reaction product obtained through the method for producing a cyanamide compound of the present invention, one having a high content of cyanamide compound is usually obtained.
  • the raw material salt is converted into a cyanamide compound, and initially a mixture with the raw material salt is formed, and as the reaction proceeds, the cyanamide compound is contained. The rate goes up.
  • the reaction product is analyzed by X-ray diffraction or the like, and can be adjusted to a desired content by confirming the content of the raw material salt. By confirming, a reaction product having a high cyanamide compound content can be obtained.
  • the content of the cyanamide compound in the reaction product (hereinafter sometimes referred to as “cyanamide compound purity”) is not particularly limited, but is usually 70% by mass or more, and preferably 80% by mass or more.
  • the production method of the cyanamide compound of the present invention can appropriately suppress the content of the raw material salt, and usually has a low content of decomposition products.
  • the transition metal used in the present invention is not particularly limited, but is usually a transition metal of Group 6, Group 7, Group 8, Group 9, Group 10 of the periodic table, preferably Group 6, It is a group 8 or group 9 transition metal, more preferably a group 8 or group 9 metal.
  • the specific metal element is not particularly limited, but is usually Cr, Mo, Mn, Re, Fe, Ru, Os, Co, Rh, Ni, Pd, or Pt, and preferably a bond with nitrogen. Mo, Re, Fe, Ru, Os, Co, in terms of high energy, more preferably Ru, Co, Fe, or Ni in terms of having ammonia decomposition activity when used as a supported metal catalyst.
  • each element is used alone or in combination of two or more. More preferably, the use of each element alone is advantageous in terms of cost. Specifically, when the metal support of the present invention is used as a catalyst for ammonia synthesis, Ru, Co or Fe is preferable, and Ru is more preferable. Moreover, when using the metal carrier of this invention as a catalyst for ammonia decomposition, Ru, Co, Fe, or Ni is preferable and Ru is more preferable.
  • the amount of the transition metal supported with respect to 100 parts by mass of the cyanamide compound is not particularly limited, but is usually 0.01 parts by mass or more, preferably 0.05 parts by mass or more, more preferably It is 0.1 mass part or more, and is 30 mass parts or less normally, Preferably it is 20 mass parts or less, More preferably, it is 15 mass parts or less. If it is at least the lower limit, the effect of the present invention can be obtained, and if it is not more than the upper limit, the effect of the present invention can be obtained in accordance with the carrying amount and cost.
  • the specific surface area of the metal support of the present invention is not particularly limited, but is usually the same as that of the cyanamide compound to be used, and is usually 1.0 m 2 g ⁇ 1 or more, preferably 5 m 2 g ⁇ 1 or more. Preferably it is 10 m 2 g ⁇ 1 or more.
  • the upper limit is not particularly limited, but is usually 200 m 2 g ⁇ 1 or less, preferably 100 m 2 g ⁇ 1 or less, more preferably 50 m 2 g ⁇ 1 or less. This is because if it is not more than the above upper limit value, it is advantageous in terms of workability.
  • the shape of the metal carrier of the present invention is not particularly limited, and specifically may be any shape such as a lump shape, a powder shape, and a film shape, but is usually a powder shape.
  • the particle size of the powder metal support is not particularly limited, but is usually 10 nm or more and 50 ⁇ m or less.
  • the particle diameter of the transition metal in the metal carrier of the present invention is not particularly limited, but is usually 1 nm or more and 100 nm or less. Preferably, it is 10 nm or less, more preferably 5 nm or less, which is advantageous in that the number of step sites, which are active sites for nitrogen dissociation, increases when used as an ammonia synthesis catalyst.
  • the metal support of the present invention is produced by supporting the transition metal on the cyanamide compound.
  • the production method is not particularly limited, it is usually produced by supporting the cyanamide compound with a transition metal or a compound serving as a transition metal precursor (hereinafter referred to as a transition metal compound).
  • the cyanamide compound used as a raw material for the metal-supported product of the present invention may be a commercially available reagent or industrial raw material, or may be obtained from a corresponding metal by a known method. It is preferable to use the cyanamide compound obtained by the third aspect.
  • the method for supporting the transition metal on the cyanamide compound used in the present invention is not particularly limited, and a known method can be used. Usually, a transition metal compound that is supported, which can be converted to a transition metal by reduction, thermal decomposition, or the like, is supported on the cyanamide compound and then converted to a transition metal. .
  • the transition metal compound is not particularly limited, and an inorganic compound or organic transition metal complex of a transition metal that is easily thermally decomposed can be used.
  • transition metal salts such as transition metal complexes, transition metal oxides, nitrates, and hydrochlorides can be used.
  • Ru compound triruthenium dodecacarbonyl [Ru 3 (CO) 12 ], dichlorotetrakis (triphenylphosphine) ruthenium (II) [RuCl 2 (PPh 3 ) 4 ], dichlorotris (triphenylphosphine) ruthenium (II) ) [RuCl 2 (PPh 3 ) 3 ], tris (acetylacetonato) ruthenium (III) [Ru (acac) 3 ], ruthenocene [Ru (C 5 H 5 )], ruthenium nitrosyl nitrate [Ru (NO) (NO 3 ) 3 ], potassium ruthenate, ruthenium oxide, ruthenium nitrate, ruthenium chloride and the like.
  • Fe compounds include pentacarbonyl iron [Fe (CO) 5 ], dodecacarbonyl triiron [Fe 3 (CO) 12 ], nonacarbonyl iron [Fe 2 (CO) 9 ], tetracarbonyl iron iodide [Fe (CO ) 4 I 2 ], tris (acetylacetonato) iron (III) [Fe (acac) 3 ], ferrocene [Fe (C 5 H 5 ) 2 ], iron oxide, iron nitrate, iron chloride (FeCl 3 ), etc. Can be mentioned.
  • Co compound examples include cobalt octacarbonyl [Co 2 (CO) 8 ], tris (acetylacetonato) cobalt (III) [Co (acac) 3 ], cobalt (II) acetylacetonate [Co (acac) 2 ], Examples include cobaltocene [Co (C 5 H 5 ) 2 ], cobalt oxide, cobalt nitrate, and cobalt chloride.
  • transition metal compounds [Ru 3 (CO) 12 ], [Fe (CO) 5 ], [Fe 3 (CO) 12 ], [Fe 2 (CO) 9 ], [Co 2 (CO) 8
  • the transition metal carbonyl complex such as is supported by heating after being supported, which is preferable in that the reduction treatment described later can be omitted in the production of the metal support of the present invention.
  • the amount of the transition metal compound used is not particularly limited, and an amount for realizing a desired loading amount can be appropriately used, but usually, with respect to 100 parts by mass of the cyanamide compound to be used, 0.01 parts by mass or more, preferably 0.05 parts by mass or more, more preferably 0.1 parts by mass or more, and usually 30 parts by mass or less, preferably 20 parts by mass or less, more preferably 15 parts by mass or less. .
  • Specific examples of the method for supporting the transition metal compound on the cyanamide compound include an impregnation method, a physical mixing method, a CVD method (chemical vaporization method), and a sputtering method.
  • the cyanamide compound is added to the solution of the transition metal compound and stirred.
  • the solvent at this time is not particularly limited, and water or various organic solvents can be used, but an organic solvent is preferable in order to suppress decomposition of the cyanamide compound.
  • the transition metal compound may be dissolved or dispersed in a solvent.
  • it is heated to dryness in an inert gas stream such as nitrogen, argon, helium or under vacuum.
  • the heating temperature at this time is not particularly limited, but is usually 50 ° C. or higher and 300 ° C. or lower.
  • the heating time is not particularly limited, but is usually 30 minutes or longer and 20 hours or shorter.
  • the transition metal compound is converted into a transition metal by pyrolysis
  • the transition metal is usually supported at this stage, and becomes the metal support of the present invention.
  • the metal carrier of the present invention is obtained by usually reducing the dried transition metal compound.
  • the method for reducing the transition metal compound (hereinafter referred to as reduction treatment) is not particularly limited as long as it does not impair the object of the present invention.
  • a method performed in an atmosphere containing a reducing gas A method of adding a reducing agent such as NaBH 4 , NH 2 NH 2 or formalin to the solution containing the solution and precipitating it on the surface of the cyanamide compound can be mentioned, but it is preferably performed in an atmosphere containing a reducing gas.
  • the reducing gas include hydrogen, ammonia, methanol (steam), ethanol (steam), methane, and ethane.
  • components other than the reducing gas that do not inhibit the object of the present invention, particularly the ammonia synthesis reaction may coexist in the reaction system.
  • a gas such as argon or nitrogen that does not inhibit the reaction may coexist, and it is preferable to coexist nitrogen.
  • the reduction treatment in addition to a reducing gas such as hydrogen, a gas such as argon or nitrogen that does not inhibit the reaction may coexist, and it is preferable to coexist nitrogen.
  • a gas containing hydrogen it can be performed in parallel with the production of ammonia, which will be described later, by coexisting nitrogen with hydrogen. That is, when the metal carrier of the present invention is used as a catalyst for ammonia synthesis, which will be described later, the transition metal compound supported on the cyanamide compound is placed in the reaction conditions of the ammonia synthesis reaction, whereby the transition The metal compound may be reduced and converted to a transition metal.
  • the temperature during the reduction treatment is not particularly limited, but is usually 200 ° C. or higher, preferably 300 ° C. or higher, usually 1000 ° C. or lower, preferably 600 ° C. or lower. This is because the transition metal grows sufficiently and in a preferable range by performing the reduction treatment within the temperature range.
  • the pressure in the said reduction process is not specifically limited, Usually, it is 0.01 MPa or more and 10 MPa or less. If the pressure during the reduction treatment is the same as the ammonia synthesis conditions described later, a complicated operation is unnecessary, which is advantageous in terms of production efficiency.
  • the time for the reduction treatment is not particularly limited, but when it is carried out at normal pressure, it is usually 1 hour or longer and preferably 2 hours or longer. When the reaction is performed under a high reaction pressure, for example, 1 MPa or more, 1 hour or more is preferable.
  • the physical mixing method is a method in which the cyanamide compound and the transition metal compound are solid-phase mixed and then heated in an inert gas stream such as nitrogen, argon, helium, or under vacuum.
  • the heating temperature and heating time are the same as in the above impregnation method.
  • the supported metal catalyst of the present invention comprises the metal support.
  • the supported metal catalyst of the present invention is preferably a supported metal catalyst in which a transition metal is supported on a carrier, and the carrier is a cyanamide compound represented by the following general formula (1).
  • MCN 2 (1) M represents a Group II element in the periodic table and is the same as M in the metal carrier of the present invention.
  • the supported metal catalyst of the present invention may be used in the reaction as it is, or may be molded as necessary, as long as the effects of the present invention are not impaired.
  • components other than the transition metal may be included, it is usually preferable to use the metal support of the present invention as it is.
  • SiO 2 , Al 2 O 3 , ZrO 2 , MgO, activated carbon, graphite, SiC, and the like may further be included as a carrier for the metal hydride.
  • the amount of the transition metal supported with respect to 100 parts by mass of the carrier is not particularly limited, but is usually 0.01 parts by mass or more, preferably 0.05 parts by mass or more, more preferably 0. .1 part by mass or more, usually 30 parts by mass or less, preferably 20 parts by mass or less, more preferably 15 parts by mass or less. If it is at least the lower limit, the effect of the present invention can be obtained, and if it is not more than the upper limit, the effect of the present invention can be obtained in accordance with the carrying amount and cost.
  • the specific surface area of the supported metal catalyst of the present invention is not particularly limited, but is usually 0.1 m 2 g ⁇ 1 or more, preferably 1 m 2 g ⁇ 1 or more, more preferably 3 m 2 g ⁇ 1 or more. is there.
  • the upper limit is not particularly limited, but is usually 200 m 2 g ⁇ 1 or less, preferably 100 m 2 g ⁇ 1 or less, more preferably 50 m 2 g ⁇ 1 or less. This is because if it is not more than the above upper limit value, it is advantageous in terms of workability.
  • the shape of the supported metal catalyst of the present invention is not particularly limited, and specifically may be any shape such as a lump shape, a powder shape, and a film shape, but is usually a powder shape.
  • the particle diameter of the powdery metal carrier is not particularly limited, but is usually 10 nm or more and 50 ⁇ m or less.
  • the particle diameter of the transition metal in the supported metal catalyst of the present invention is not particularly limited, but is usually 1 nm or more and 100 nm or less. Preferably, it is 10 nm or less, more preferably 5 nm or less, where the number of step sites, which are active sites for nitrogen dissociation, increases.
  • the supported metal catalyst of the present invention can be used as a molded body using a normal molding technique. Specific examples include granular, spherical, tablet, ring, macaroni, four-leaf, dice, and honeycomb shapes. It can also be used after coating on a suitable support.
  • the supported metal catalyst of the present invention can be used as a catalyst for various reactions, but is suitable as a catalyst for ammonia synthesis reaction. Since the catalyst has high ammonia synthesis activity, it is possible to produce ammonia with high reaction efficiency.
  • the reaction activity is not particularly limited, but it is 0.5 ⁇ 10 3 ⁇ mol ⁇ g when the production rate of ammonia at a reaction temperature of 340 ° C. and a reaction pressure of 0.1 MPa is taken as an example.
  • ⁇ 1 h ⁇ 1 or more is preferable, and 1.0 ⁇ 10 3 ⁇ mol ⁇ g ⁇ 1 h ⁇ 1 or more is more preferable because it is suitable for practical production conditions, and 2.0 ⁇ 10 3 Those having ⁇ mol ⁇ g ⁇ 1 h ⁇ 1 or more are more preferable because they are suitable for highly efficient production conditions, and those having 3.0 ⁇ 10 3 ⁇ mol ⁇ g ⁇ 1 h ⁇ 1 or more are even more efficient. It is further preferable in that it is suitable for the production conditions.
  • the supported metal catalyst of the present invention is suitable as an ammonia decomposition catalyst.
  • the catalyst has high activity of ammonia decomposition reaction, which is a reverse reaction of ammonia synthesis, and can produce hydrogen with high reaction efficiency.
  • the supported metal catalyst of the present invention is used for hydrogenation reactions of unsaturated carbon compounds, for example, hydrogenation reactions of olefins, acetylene compounds and carbonyl compounds, and nuclear hydrogenation reactions of aromatic compounds and heterocyclic compounds. Can do.
  • a method for producing ammonia using the supported metal catalyst of the present invention will be described.
  • the ammonia production method of the present invention is a method of synthesizing ammonia by using the supported metal catalyst of the present invention as a catalyst and reacting hydrogen and nitrogen on the catalyst.
  • a specific production method is not particularly limited as long as it is a method of synthesizing ammonia by bringing hydrogen and nitrogen into contact with each other on the catalyst, and can be produced according to known production methods as appropriate.
  • the catalyst is heated to produce ammonia.
  • the reaction temperature in the production method of the present invention is not particularly limited, but is usually 200 ° C. or higher, preferably 250 ° C. or higher, more preferably 300 ° C. or higher, usually 600 ° C. or lower, preferably 500 ° C. or lower. Yes, more preferably 450 ° C or lower. Since ammonia synthesis is an exothermic reaction, the low temperature region is more advantageous for ammonia production in terms of chemical equilibrium. However, in order to obtain a sufficient ammonia production rate, the reaction is preferably performed in the above temperature range.
  • the molar ratio of nitrogen and hydrogen to be brought into contact with the catalyst is not particularly limited, but is usually the ratio of hydrogen to nitrogen (H 2 / N 2 (volume / volume)), 0.4 or more, preferably 0.5 or more, more preferably 1 or more, usually 10 or less, preferably 5 or less.
  • the reaction pressure in the ammonia production method of the present invention is not particularly limited, but is usually 0.01 MPa or more, preferably 0.1 MPa or more, usually 20 MPa or less, preferably 15 MPa or less, in terms of the pressure of the mixed gas containing nitrogen and hydrogen. More preferably, it is 10 MPa or less. In consideration of practical use, it is preferable to carry out the reaction under a pressurized condition of atmospheric pressure or higher.
  • the method for producing ammonia of the present invention it is preferable to remove moisture and oxides adhering to the catalyst using hydrogen gas or the like before bringing nitrogen and hydrogen into contact with the catalyst.
  • a removal method reduction treatment can be mentioned.
  • the water content in nitrogen and hydrogen used in the production method of the present invention is small, and although not particularly limited, The total water content in the mixed gas of hydrogen and hydrogen is 100 ppm or less, preferably 50 ppm or less.
  • the type of the reaction vessel is not particularly limited, and a reaction vessel that can be usually used for the ammonia synthesis reaction can be used.
  • a specific reaction format for example, a batch type reaction format, a closed circulation system reaction format, a circulation system reaction format, or the like can be used.
  • the flow reaction system is preferable.
  • any one method of a reactor filled with a catalyst, a method of connecting a plurality of reactors, or a reactor having a plurality of reaction layers in the same reactor can be used.
  • reaction for synthesizing ammonia from hydrogen and nitrogen is an exothermic reaction with volume shrinkage
  • a known reaction apparatus may be used. For example, specifically, a method of removing a heat by connecting a plurality of reactors filled with a catalyst in series and installing an intercooler at the outlet of each reactor may be used.
  • the ammonia synthesis catalyst obtained by the production method of the present invention can be used alone or in combination with other known catalysts that can be usually used for ammonia synthesis.
  • Ammonia obtained by the method for producing ammonia of the present invention can also be used in the method for producing a cyanamide compound according to the third aspect of the present invention.
  • the method for producing hydrogen of the present invention is a method of synthesizing hydrogen and nitrogen by using the supported metal catalyst of the present invention as a catalyst and reacting ammonia on the catalyst to decompose it.
  • the reaction is represented by the following formula (2). 2NH 3 ⁇ 3H 2 + N 2 (2)
  • a specific production method is not particularly limited as long as it is a method in which ammonia is brought into contact with the catalyst and decomposed to synthesize hydrogen, and production can be appropriately performed according to a known production method.
  • the catalyst In the method for producing hydrogen of the present invention, normally, when ammonia is brought into contact with the catalyst, the catalyst is heated to produce hydrogen and nitrogen.
  • the reaction temperature in the production method of the present invention is not particularly limited, but is usually 200 ° C. or higher, preferably 250 ° C. or higher, more preferably 300 ° C. or higher, usually 800 ° C. or lower, preferably 600 ° C. or lower. Yes, more preferably 500 ° C. or less. Since the ammonia decomposition reaction is an equilibrium reaction and an endothermic reaction, the high temperature region is more advantageous. However, in order to obtain a sufficient ammonia decomposition reaction rate, the reaction is preferably performed in the above temperature range.
  • the reaction temperature is more preferably 400 ° C. or more and 600 ° C. or less.
  • the reaction temperature is more preferably 500 ° C. or more and 750 ° C. or less.
  • the reaction pressure in the method for producing hydrogen of the present invention is not particularly limited, but is usually 0.01 MPa or more, preferably 0.05 MPa or more, usually 1.0 MPa or less, preferably 0.5 MPa or less, more preferably 0.1 MPa. It is as follows. Since the ammonia decomposition reaction is an equilibrium reaction and the reaction increases in volume, the low pressure condition is more advantageous. However, in order to obtain a sufficient ammonia decomposition reaction rate, the reaction should be performed in the above pressure range. preferable. In view of equipment, it is advantageous to perform the reaction at 0.1 MPa.
  • the ammonia used in the method for producing hydrogen of the present invention is not particularly limited, and may be either ammonia alone or ammonia diluted with a balance gas. That is, ammonia gas having a volume fraction of 0.1 to 100% can be used.
  • ammonia volume fraction is preferably higher, and the volume fraction is preferably 5% or more, more preferably It is 20% or more, more preferably 70% or more.
  • WHSV weight space velocity
  • a high NH 3 conversion rate can be obtained usually by carrying out at 500 ml ⁇ g ⁇ 1 h ⁇ 1 or more.
  • the catalyst before bringing ammonia into contact with the catalyst, the catalyst is exposed to an atmosphere of a reducing gas such as hydrogen to activate the transition metal that is a catalytically active component. It is preferable in terms of improvement.
  • a reducing gas such as hydrogen
  • the temperature at the time of the said exposure is not specifically limited, Usually, it is 300 to 700 degreeC.
  • the exposure time is not particularly limited, and is usually 30 minutes or longer and 2 hours or shorter.
  • the type of the reaction vessel is not particularly limited, and a reaction vessel that can be usually used for ammonia decomposition reaction can be used.
  • a specific reaction format for example, a batch type reaction format, a closed circulation system reaction format, a circulation system reaction format, or the like can be used, and among these, a circulation system reaction format is preferable.
  • a known method for supplying heat of reaction can be used.
  • a method of performing an ammonia decomposition reaction while oxidizing a part of the ammonia raw material with air to obtain combustion heat can be mentioned.
  • the material of the reaction vessel is not particularly limited, and a known material for ammonia decomposition reaction can be used.
  • a normal gas phase-solid phase contact reaction apparatus using a corrosion resistant material such as stainless steel is used. Can be done.
  • the ammonia decomposition reaction can be carried out using one kind of reactor filled with a catalyst or a plurality of reactors, as in the conventional method.
  • any of a method of connecting a plurality of reactors and a reactor having a plurality of reaction layers in the same reactor can be used.
  • BET specific surface area measurement The BET specific surface area was measured by adsorbing nitrogen gas on the surface of the object at liquid nitrogen temperature and measuring the amount of nitrogen adsorbed on the monomolecular layer.
  • the measurement conditions are as follows.
  • Measuring device Specific surface area / pore distribution measuring device BELSORP-mini II manufactured by Microtrack Bell Adsorption gas: Nitrogen (99.99995% by volume) Adsorption temperature: Liquid nitrogen temperature (-196 ° C)
  • the content of the cyanamide compound in the synthesized reaction product was determined by analyzing the powder X-ray diffraction measurement result by the Rietveld method. Fitting the diffraction pattern of the synthetic sample obtained by the powder X-ray diffraction method and the theoretical diffraction pattern assuming a mixed sample containing CaCN 2 , CaCO 3 , and CaO by the least square method to refine the crystal structure parameters. The content rate was determined.
  • Measuring device X-ray diffractometer D8 ADVANCE manufactured by BRUKER X-ray source: CuK ⁇ Measurement temperature: Room temperature Measurement angle range: 10-80 ° Scan speed: 0.2 seconds / step Scan step: 0.02 °
  • Analysis program RIETAN-FP (F. Izumi and K. Momma, “Three-dimensional visualization in powder diffraction,” Solid State Phenom., 130, 15-20 (2007).)
  • Ru dispersion measurement The measurement of the Ru dispersion degree was obtained by a pulse adsorption method using carbon monoxide (CO) molecules. Assuming that CO molecules are adsorbed on the surface of the object and one CO molecule is chemisorbed per Ru atom, the number of Ru atoms exposed on the surface is estimated from the amount of adsorbed CO molecules, This was done by dividing by the number of Ru atoms. Specifically, it is obtained by the following formula.
  • the measurement conditions are as follows.
  • Measuring device Catalyst analyzer BELCAT-A manufactured by Microtrack Bell Adsorption gas: CO-He mixed gas (CO concentration: 9.5% by volume) Adsorption temperature: 50 ° C Carrier gas: He Gas detector: TCD
  • ammonia synthesis catalyst supported metal catalysts of the present invention Evaluation as ammonia synthesis catalyst supported metal catalysts of the present invention, the generation amount of NH 3 generated with an ammonia synthesis catalyst of the present invention, a gas chromatograph or by dissolving the NH 3 produced in the sulfuric acid solution, the The solution was quantified by ion chromatography to determine the ammonia synthesis rate, and the ammonia synthesis activity was evaluated based on the production rate.
  • Measuring device Gas chromatograph GC-14B manufactured by Shimadzu Corporation Column: Porapak Q4 1000mm manufactured by GL Sciences Inc. Column temperature: 80 ° C Carrier gas: He Gas detector: TCD
  • Measuring device High performance liquid chromatograph made by Shimadzu Corporation General-purpose HPLC Prominence Column: Shimadzu Shim-pack IC-C4, length 150 mm, inner diameter 4.6 mm Eluent: Oxalic acid (3 mM), 18-crown-6-ether (2.0 mM) mixed aqueous solution Column temperature: 40 ° C Flow rate: 1.0 mL / min
  • the turnover frequency (TOF) is a number indicating how many times one active point contributed to the reaction per unit time in a catalytic reaction, and the number of reaction molecules generated per unit time is the number of catalytic active points. It is obtained by dividing by.
  • the transition metal is Ru and the active site is Ru
  • the number of Ru atoms exposed on the catalyst surface is obtained by CO adsorption
  • the number of ammonia molecules generated per unit time is determined by the Ru atoms. Calculated by dividing by number.
  • Example 1 ⁇ Synthesis of CaCN 2 > CaCO 3 (manufactured by High-Purity Chemical Laboratory Co., Ltd., powder, BET specific surface area 3.1 m 2 g ⁇ 1 ) was heated at 550 ° C. for 20 hours in an NH 3 stream (100 mL / min) to synthesize CaCN 2 .
  • the obtained CaCN 2 was in powder form, and its BET specific surface area was 6.4 m 2 g ⁇ 1 .
  • the purity of the obtained CaCN 2 (the content of CaCN 2 in the reaction product) is 98.7% by mass.
  • the content of CaCO 3 is 0.6% by mass
  • CaO is 0%. 0.7% by mass.
  • the gas coming out of the fixed bed flow type reactor was bubbled into a 0.005 M sulfuric acid aqueous solution, the produced ammonia was dissolved in the solution, and the generated ammonium ions were quantified by ion chromatography.
  • the synthesis rate of ammonia at 340 ° C. was 3.0 ⁇ 10 3 ⁇ mol ⁇ g ⁇ 1 h ⁇ 1 .
  • the TOF was 48.9 ⁇ 10 ⁇ 3 s ⁇ 1 .
  • Example 2 Instead of CaCO 3 used in Example 1, Ca (CH 3 COO) 2 .H 2 O (manufactured by Kanto Chemical Co., Inc., powder form) was used in the same manner as in Example 1 at 20 ° C. in an NH 3 stream at 550 ° C. heating time, were synthesized CaCN 2.
  • the obtained CaCN 2 was in the form of powder, and its BET specific surface area was 15.0 m 2 g ⁇ 1 .
  • the CaCN 2 in the same manner as in Example 1 to prepare a 2 wt% Ru / CaCN 2 catalyst.
  • the catalyst had a BET specific surface area of 18.1 m 2 g ⁇ 1 .
  • the degree of Ru dispersion measured by the CO adsorption method was 16.3%.
  • Example 1 Commercial CaCN 2 (manufactured by Tokyo Kasei Kogyo Co., Ltd., BET specific surface area 0.1 m 2 g -1) instead of CaCN 2 used in Example 1 except for using 2 mass% Ru in the same manner as in Example 1 / CaCN 2 was prepared.
  • the Ru supported product had a BET specific surface area of 0.2 m 2 g ⁇ 1 .
  • An ammonia synthesis reaction was carried out under the same conditions as in Example 1. However, ammonia was not obtained, and the ammonia synthesis rate at 340 ° C. was 0.0 mol ⁇ g ⁇ 1 h ⁇ 1 . The results are shown in Table 1.
  • Comparative Example 4 2 mass% Ru / MgO was prepared in the same manner as in Comparative Example 1 except that the amount of Ru supported in Comparative Example 1 was changed to 2 parts by mass.
  • the 2 mass% Ru / MgO was put into an absolute ethanol solution (100 mL) in which CsNO 3 was dissolved, and stirred for 12 hours. At this time, the amount of CsNO 3 added was adjusted so that the mass of Cs was doubled by the element ratio with respect to the mass of Ru. Thereafter, absolute ethanol was removed under reduced pressure to obtain MgO carrying 2 mass% of Ru metal fine particles to which Cs was added (hereinafter referred to as Cs-2 mass% Ru / MgO).
  • Example 3 0.5% by mass Ru / CaCN 2 was prepared in the same manner as in Example 1 except that the Ru supported amount described in Example 1 was changed to 0.5 parts by mass. Using this Ru supported material as a catalyst, an ammonia synthesis reaction was carried out under the same conditions as in Example 1. The synthesis rate of ammonia at 340 ° C. was 0.5 ⁇ 10 3 ⁇ mol ⁇ g ⁇ 1 h ⁇ 1 . The results are shown in Table 2.
  • Example 4 1.0 mass% Ru / CaCN 2 was prepared in the same manner as in Example 1 except that the Ru loading of the Ru supported material described in Example 1 was 1.0 mass part. Using this Ru supported material as a catalyst, an ammonia synthesis reaction was carried out under the same conditions as in Example 1. The synthesis rate of ammonia at 340 ° C. was 0.6 ⁇ 10 3 ⁇ mol ⁇ g ⁇ 1 h ⁇ 1 . The results are shown in Table 2.
  • Example 5 5.0 mass% Ru / CaCN 2 was prepared in the same manner as in Example 1 except that the Ru loading of the Ru supported material described in Example 1 was 5.0 mass parts. Using this Ru supported material as a catalyst, an ammonia synthesis reaction was carried out under the same conditions as in Example 1. The synthesis rate of ammonia at 340 ° C. was 2.6 ⁇ 10 3 ⁇ mol ⁇ g ⁇ 1 h ⁇ 1 . The results are shown in Table 2.
  • FIG. 3 shows the results of ammonia synthesis using 2 mass% Ru / CaCN 2 of Example 1 as a catalyst.
  • the catalytic activity gradually increased from the start of the reaction, and showed a constant value at about 70 hours. No decrease in catalytic activity was confirmed during the reaction, and it was found that ammonia was stably produced even in a reaction of 90 hours or longer.
  • Example 6 ⁇ Ammonia decomposition reaction> Using 2 mass% Ru / CaCN 2 prepared in Example 1 as a supported metal catalyst, ammonia was decomposed to produce nitrogen and hydrogen. 0.1 g of the above Ru-supported material was packed in a glass tube as an ammonia decomposition catalyst and reacted in a fixed bed flow type reactor. The gas flow rate was set to NH 3 : 5 mL / min, and the reaction was performed at a reaction pressure of 0.1 MPa. The gas coming out of the fixed bed flow reactor was quantified by gas chromatography. The decomposition efficiency of ammonia at 400 ° C. was 76.4%. The results are shown in FIG.
  • Comparative Example 5 2 mass% Ru / MgO prepared by the same method as Comparative Example 1 was prepared except that the Ru loading of Ru / MgO described in Comparative Example 2 was changed to 2 parts by mass. Using this as a catalyst, an ammonia decomposition reaction was carried out under the same conditions as in Example 10. The decomposition efficiency of ammonia at 400 ° C. was 47.3%. The results are shown in FIG.
  • Example 6 shows that ammonia can be decomposed with high efficiency when the metal-supported product of the present invention is used as a supported metal catalyst in an ammonia decomposition reaction.
  • Example 7 ⁇ Preparation of Co-supported CaCN 2 > 1 g of CaCN 2 powder obtained in Example 1 was mixed with 0.059 g of Co 2 (CO) 8 powder in a glove box under an Ar atmosphere and sealed in vacuum quartz glass. The sample enclosed above was heated stepwise to 250 ° C. while rotating, and then heated at the same temperature for 2 hours. As a result, CaCN 2 (hereinafter sometimes referred to as a Co-supported product) supporting 2 % by mass of metal Co was obtained. The BET specific surface area of this support was 6.9 m 2 g ⁇ 1 . The ammonia synthesis reaction was carried out under the same conditions as in Example 1, using the Co-supported material as a catalyst. The synthesis rate of ammonia at 340 ° C. was 0.2 ⁇ 10 3 ⁇ mol ⁇ g ⁇ 1 h ⁇ 1 . The results are shown in Table 3.
  • Example 8 ⁇ Preparation of CaCN 2 supporting Fe> Instead of using Co 2 (CO) 8 , except for using 0.066 g of Fe 2 (CO) 9 powder, a CaCN 2 supporting 2 mass% of metal Fe was obtained through the same procedure as in Example 7. (Hereinafter sometimes referred to as Fe-supported material). The BET specific surface area of the Fe-supported product was 7.0 m 2 g ⁇ 1 . The ammonia synthesis reaction was carried out under the same conditions as in Example 1 using the Fe support as a catalyst. The synthesis rate of ammonia at 340 ° C. was 0.4 ⁇ 10 3 ⁇ mol ⁇ g ⁇ 1 h ⁇ 1 . The results are shown in Table 3.
  • Example 9 ⁇ Synthesis of SrCN 2 > SrCO 3 (manufactured by High-Purity Chemical Laboratory Co., Ltd., powder, BET specific surface area 6.1 m 2 g ⁇ 1 ) was heated at 600 ° C. for 20 hours under an NH 3 air flow (100 mL / min) to synthesize SrCN 2 .
  • the obtained SrCN 2 was in the form of powder, and its BET specific surface area was 2.8 m 2 g ⁇ 1 .
  • Table 3 shows the ammonia synthesis activity when a support in which Co and Fe are supported on CaCN 2 instead of Ru is used as a catalyst.
  • the support supporting Co or Fe (Examples 7 and 8) is inferior in performance as a catalyst, but existing Ru other than Ru—Cs / MgO of Comparative Example 4 is inferior.
  • the catalyst performance was comparable to that of the catalyst.
  • Table 4 shows the ammonia synthesis activity when using a support in which Ru is supported on SrCN 2 as a catalyst. Compared to the support of Example 1, the support of Example 9 showed higher catalyst performance in both ammonia synthesis rate and TOF. All of the support of Example 9 exhibited TOA and higher catalyst performance than the existing Ru catalyst, and the support of Example 9 exhibited higher catalyst performance than the existing Ru catalyst at the ammonia synthesis rate.
  • the metal carrier of the present invention can be used as a supported metal catalyst, and exhibits high catalytic activity when the supported metal catalyst of the present invention is used.
  • the supported metal catalyst of the present invention is particularly suitable as an ammonia synthesis catalyst because it has a high ammonia synthesis activity even at a low reaction temperature and a low reaction pressure.
  • ammonia By producing ammonia using the supported metal catalyst of the present invention, it is possible to synthesize ammonia with less energy, and even if the synthesis reaction is repeated, no decrease in catalytic activity is seen, so long-term chemical with high efficiency, It can be synthesized with thermal stability.
  • the metal-supported product and the supported metal catalyst of the present invention can be obtained by supporting a transition metal on a cyanamide compound. Since the cyanamide compound is a compound that can be handled relatively easily, it can be produced by a simple and highly safe method, and further cost reduction can be expected.
  • the metal carrier of the present invention has high efficiency as an ammonia decomposition catalyst, it is suitable for a method for producing hydrogen by ammonia decomposition.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Toxicology (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

高い触媒活性を示す金属担持物、担持金属触媒、前記担持金属触媒を用いたアンモニアの製造方法と水素の製造方法、及びシアナミド化合物の製造方法を提供する。本発明の金属担持物は、担体に遷移金属を担持した金属担持物であって、前記担体が、下記一般式(1)で表わされるシアナミド化合物であり、 MCN2 ・・・(1) (式中、Mは、周期表第II族元素を表わす。) かつ前記シアナミド化合物の比表面積が1m2g-1以上である。

Description

金属担持物、担持金属触媒、アンモニアの製造方法、水素の製造方法及びシアナミド化合物の製造方法
 本発明は、金属担持物、担持金属触媒、前記担持金属触媒を用いたアンモニアの製造方法と水素の製造方法、及びシアナミド化合物の製造方法に関する。
 本願は、2017年3月17日に、日本に出願された特願2017-053525号に基づき優先権を主張し、その内容をここに援用する。
 代表的なアンモニア合成法であるハーバー・ボッシュ法は、Fe 100質量部に対して数質量部のKOやAlを含んだ二重促進鉄(doubly promoted iron)触媒を用い、この触媒に窒素と水素の混合気体を高温高圧条件で直接反応させ、アンモニアを製造する方法である。この技術は現在でも、ほぼ完成当時のままの製造工程で工業的に用いられている。
 一方、ハーバー・ボッシュ法の反応温度よりも低い温度でアンモニアを合成する方法が検討されている。窒素及び水素と接触させることでアンモニアを合成することができる触媒が検討され、遷移金属がその触媒活性成分として検討されている。このうち、触媒活性成分としてルテニウム(Ru)を各種担体に担持させてアンモニア合成用触媒として用いる方法が、効率のよい方法として提案されている(例えば特許文献1)。
 Ru等の遷移金属を用いた触媒は、その活性が非常に高いため、ハーバー・ボッシュ法で用いられている反応条件に比べ、より温和な条件でアンモニアを合成することができることが知られている。例えば反応温度200~400℃、反応圧力は大気圧から1.1MPa程度の低温・低圧下で反応が進行することが知られている。
 CaO、Al、SiOを構成成分とするアルミノケイ酸カルシウムであって、マイエナイトと同型の結晶構造を有する「マイエナイト型化合物」と呼ばれる化合物がある。前記マイエナイト型化合物は、その代表組成が、12CaO・7Alで表わされ、またその結晶骨格で形成されるケージ内の空間に「フリー酸素イオン」として2個の酸素原子が包接されている構造を有する。
 本発明者は、前記マイエナイト型化合物中のフリー酸素イオンを電子で置換したマイエナイト型化合物(以下、C12A7エレクトライドという)に、触媒活性成分として遷移金属を担持した触媒が、アンモニア合成用触媒として高い活性を有することを見出した。(特許文献2、非特許文献1)。
 一方、主として窒素肥料及び農薬等に用いられるカルシウムシアナミド(CaCN)等のシアナミド化合物が知られている。カルシウムシアナミドは、一般的には石灰窒素法により製造されている。石灰窒素法は、炭化カルシウム(CaC)と窒素とを高温で反応させることにより、カルシウムシアナミドを生成する反応である。通常、カルシウムシアナミドは炭素と、酸化カルシウムや水酸化カルシウムのような副生成物との混合物(石灰窒素)として得られる。石灰窒素中のカルシウムシアナミドの含有率は、通常60質量%以下である。
 シアナミド化合物は、シアン化物等の窒素化合物の工業原料や、窒化剤や還元剤としての反応剤としても用いられている。この場合、通常は、純度の高いシアナミド化合物が用いられる。純度の高いシアナミド化合物の製造方法としては、例えば液体アンモニア中で金属Caとシアナミド(HCN)とを反応させてカルシウムシアナミドを合成する方法や、液体アンモニア中で金属CaとHCNとの反応によって得られたCa(CN)を熱分解して合成する方法が開示されている(特許文献3)。また、CaCOと、アンモニアガス又はアンモニアと二酸化炭素との混合ガスとを反応させる方法が報告されている(非特許文献2)。
 カルシウムシアナミドを触媒として用いたアンモニア合成方法も開示されている。Ca(CN)を熱分解して得られた多孔質のカルシウムシアナミドと、遷移金属との混合物を触媒として用いるアンモニア合成方法が開示されている(特許文献3)。また鉄カルボニル化合物で前処理したカルシウムシアナミドを触媒として用いるアンモニア合成方法が開示されている(特許文献4)。
特開2001-246251号公報 国際公開第2012/077658号 米国特許公報第1,352,178号明細書 独国特許発明第559,170号明細書
Kitano,M.,Inoue,Y.,Yamazaki,Y.,Hayashi,F.,Kanbara,S.,Matsuishi,S.,Yokoyama,T.,Kim,S.W.,Hara,M.,Hosono,H.,"Nature Chemistry"4,934-940(2012) 永井彰一郎,山口悟郎,工業化学雑誌,43(8),534-538(1940)
 主として二重促進鉄触媒を用いるハーバー・ボッシュ法によるアンモニア合成は、実用化されているが、高温高圧条件を必要とするため、装置面、コスト面での負担が大きいという問題がある。
 特許文献1に記載されるような金属担持触媒は、通常、活性炭等の炭素質担体や、無機酸化物担体を用いている。しかし、これらの金属担持触媒は、反応活性が低く、実用に用いるには不十分な性能しか有していない。
 すなわちハーバー・ボッシュ法の反応条件に比べ、より低温、低圧の条件下でも十分な反応活性を有するアンモニア合成用触媒が求められている。
 特許文献2に記載の触媒は、低温、低圧の反応条件下でも十分な反応活性を有する。しかし特許文献2に記載の触媒は、その製造時に高温の反応条件が必要である。
 すなわち、この触媒に比べて、より簡便な方法で製造可能な、反応活性の高いアンモニア合成用触媒が求められている。
 特許文献3及び4に記載のCaCNを触媒として用いるアンモニア合成方法は、触媒に用いる高純度なCaCNの製造に、金属Ca及び液体アンモニアを利用することから、複雑な反応操作や製造設備が必要であり、製造コスト面で不利である。また、CaCNの安定性を確保するために、混合した遷移金属がアンモニア合成反応中に窒化物を形成する必要がある。それゆえ、この触媒を用いてアンモニアを合成する場合の反応温度は、遷移金属の窒化物形成温度である400~600℃に制限され、アンモニア合成の効率が悪いという課題がある。
 一方、シアナミド化合物を製造する際、従来の石灰窒素法では、各種の副生成物を含む混合物が得られるため、純度の高いシアナミド化合物を製造する際には不向きである。
 また純度の高いシアナミド化合物を製造する方法も、通常、液体アンモニアのような、複雑な反応装置や製造設備を必要とする製造方法であるため、製造効率上不利である。
 非特許文献2に記載のシアナミド化合物の製造方法は、アンモニアガスを使用するため、比較的反応装置等の負荷が小さいが、例えばカルシウムシアナミドの製造においては700℃以上の加熱が必要であるため、エネルギー面で不利である。
 すなわち、大気中で取扱いが可能で、容易に製造可能な、アンモニア合成用の触媒が求められ、特に低温低圧下で効率的にアンモニアを製造するアンモニア合成方法が求められている。
 また特殊な反応設備等を要さない、かつエネルギー面等でも有利な、高純度のシアナミド化合物の製造方法が求められている。
 本発明者は、シアナミド化合物に遷移金属を担持し、かつその比表面積が大きいものを触媒として用いることで、高いアンモニア合成活性を有し、かつ製造面で有利な触媒が得られることを見出し、本発明に至った。
 さらには、特定の温度域で、金属塩とアンモニアガスを反応させることにより、高純度のシアナミド化合物を、効率よく製造できることを見出し、本発明に至った。
 すなわち本発明は次の事項に関する。
〔1〕 担体に遷移金属を担持した金属担持物であって、
 前記担体が、下記一般式(1)で表わされるシアナミド化合物であり、
  MCN  ・・・(1)
(式中、Mは、周期表第II族元素を表わす。)
 かつ前記シアナミド化合物の比表面積が1m-1以上であることを特徴とする金属担持物。
〔2〕 前記Mが、Ca,Sr及びBaからなる群から選ばれる少なくとも一種である〔1〕記載の金属担持物。
〔3〕 前記遷移金属の担持量が、前記担体100質量部に対して0.01質量部以上、50質量部以下である〔1〕又は〔2〕に記載の金属担持物。
〔4〕 〔1〕~〔3〕に記載の金属担持物からなる担持金属触媒。
〔5〕 アンモニア合成用触媒である、〔4〕に記載の担持金属触媒。
〔6〕 前記遷移金属が、Ru,CoおよびFeからなる群から選ばれる少なくとも一種である〔5〕に記載の担持金属触媒。
〔7〕 〔4〕~〔6〕のいずれかに記載の担持金属触媒の存在下、窒素と水素を反応させることを特徴とするアンモニアの製造方法。
〔8〕 窒素と水素を反応させる際の反応温度が、100℃以上、600℃以下である〔7〕に記載のアンモニアの製造方法。
〔9〕 窒素と水素を反応させる際の反応圧力が、0.01MPa以上、20MPa以下である〔7〕又は〔8〕に記載のアンモニアの製造方法。
〔10〕 窒素と水素を反応させる際の窒素に対する水素の体積比(H/N=(体積)/(体積))が、0.4以上、3以下である〔7〕~〔9〕のいずれかに記載のアンモニアの製造方法。
〔11〕 アンモニア分解用触媒である、〔4〕に記載の担持金属触媒。
〔12〕 前記遷移金属が、Ru,Co,FeおよびNiからなる群から選ばれる少なくとも一種である〔4〕又は〔11〕に記載の担持金属触媒。
〔13〕 〔4〕、〔11〕又は〔12〕のいずれかに記載の担持金属触媒の存在下、アンモニアを反応させ、窒素と水素に分解することを特徴とする水素の製造方法。
〔14〕 アンモニアを分解させる際の反応温度が、200℃以上、800℃以下である〔13〕に記載の水素の製造方法。
〔15〕 アンモニアを分解させる際の反応圧力が、0.01MPa以上、1.0MPa以下である〔13〕又は〔14〕に記載の水素の製造方法。
〔16〕 下記一般式(1)で表わされるシアナミド化合物の製造方法であって、
  MCN    ・・・(1)
 (式中、Mは、周期表第II族元素を表わす。)
 前記Mの炭酸塩、又は炭素数1以上の有機酸塩に、アンモニアガスを、650℃以下で作用させることを特徴とするシアナミド化合物の製造方法。
〔17〕 前記製造方法で得られるシアナミド化合物の比表面積が1m-1以上である〔16〕に記載のシアナミド化合物の製造方法。
〔18〕 前記Mが、Ca,Sr及びBaからなる群から選ばれる少なくとも一種である〔16〕又は〔17〕に記載のシアナミド化合物の製造方法。
 本発明の金属担持物は、担持金属触媒として用いることができ、本発明の担持金属触媒を用いた際に、高い触媒活性を示す。
 本発明の担持金属触媒は、低い反応温度かつ低い反応圧力でも高いアンモニア合成活性を有するため、特にアンモニア合成用触媒として好適である。本発明の担持金属触媒を用いてアンモニアを製造することにより、より少ないエネルギーでアンモニアを合成でき、かつ合成反応を繰り返しても触媒活性の低下が見られないので、高効率に長期の化学的、熱的な安定性をもって合成できる。
 本発明の担持金属触媒を用いれば、水素と窒素の反応により連続的にアンモニアを合成する方法において、カルシウム、炭素、窒素といったクラーク数の順位が上位の元素のみで構成された安価な化合物を用い、かつ低い反応圧力で少ないエネルギー消費をもってアンモニアを合成できる。更に合成反応を繰り返しても触媒活性の低下が見られないので、高効率に長期の化学的、熱的な安定性をもって合成できる。
 本発明の金属担持物及び担持金属触媒は、シアナミド化合物に、遷移金属を担持することで得られる。シアナミド化合物は、比較的容易に取り扱うことができる化合物であることから、簡便に、かつ安全性の高い方法で、製造することが可能であり、更にはコスト低減が期待できる。
 本発明の金属担持物は、アンモニア分解触媒としても高い効率を有するため、アンモニア分解による水素の製造方法に好適である。
 本発明のシアナミド化合物の製造方法は、高純度のシアナミド化合物を、効率よく、かつ複雑な製造装置や製造方法を要することなく製造することができる。具体的には、CO等の炭素を含有する副原料ガスを供給することなく、原料であるアンモニアガスの供給をするだけで効率よくシアナミド化合物を製造することができる。
 さらにはシアナミド化合物の原料として用いる金属塩の形状等を調整することにより、得られるシアナミド化合物の形状等を容易に調整することができる。
 そのため、シアナミド化合物を用いた金属担持体の物性を容易に調整することができ、さらにはその金属担持体を担持金属触媒として用いる際に、容易に成型をすることができるため、所望の形状の触媒を得ることができる。
各種担体上にRuを担持した触媒によるアンモニア合成反応の触媒活性を示すグラフである。 Ru担持CaCNとRu担持Cs/MgOを用いて様々な反応温度でアンモニア合成反応を行った時のアンモニア合成速度を示すグラフである。 実施例1の触媒についての安定性評価試験の結果を示すグラフである。 実施例6、比較例5及び比較例6に示すアンモニア分解反応の結果を表すグラフである。
 以下、本発明をさらに詳細に説明する。但し、必ずしも具体的記述した事例だけに限定されるものではない。
 本発明を以下に詳細に説明する。
 本発明の第一の態様は、担体に遷移金属を担持した金属担持物であって、前記担体が、下記一般式(1)で表わされるシアナミド化合物であり、
  MCN ・・・(1)
(式中、Mは、周期表第II族元素を表わす。)
かつ前記シアナミド化合物の比表面積が1m-1以上であることを特徴とする金属担持物、に関する。
 以下で、前記金属担持物を、単に「担持物」と略することがある。
 また、本発明の第一の態様は、この金属担持物からなる担持金属触媒にも関する。
 本発明の第二の態様は、担持金属触媒と、前記担持金属触媒を用いたアンモニア製造方法、もしくは水素の製造方法に関する。
 本発明の第三の態様は前記一般式(1)で表わされるシアナミド化合物の製造方法であって、前記Mの炭酸塩、又は炭素数1以上の有機酸塩に、アンモニアガスを、650℃以下で作用させることを特徴とするシアナミド化合物の製造方法に関する。
 以下に各発明について詳述する。
(金属担持物)
 本発明の金属担持物は、担体に遷移金属を担持した金属担持物であって、前記担体が、上記一般式(1)で表わされるシアナミド化合物であり、かつ前記シアナミド化合物の比表面積が1m-1以上であることを特徴とする。
<シアナミド化合物>
 本発明で用いられる、シアナミド化合物とは、下記一般式(1)で表わされるシアナミド化合物である。
  MCN ・・・(1)
 前記一般式(1)において、Mは、周期表第II族元素を表わす。
 Mは具体的には、Be、Mg、Ca、Sr、Baの中から選ばれる少なくとも一種の元素であり、好ましくは、Mg、Ca、Sr、Baであり、より好ましくは高温の反応条件でも熱分解することなく安定であることから、Ca、Sr、Baであり、更に好ましくは原子番号が小さく、単位重量当たりの面積(比表面積)を大きくすることが容易なことからCaである。
 すなわち、本発明で用いられるシアナミド化合物は、具体的にはシアナミド(Cyanamide・CN)の周期表第II族元素との塩である。
 本発明で用いられるシアナミド化合物の比表面積は、1m-1以上である。比表面積は大きいほど、特に担持金属触媒に用いた場合、有利であるため、好ましくは3m-1以上であり、より好ましくは5m-1以上であり、更に好ましくは10m-1以上である。上限は特に限定されるものではないが、通常は200m-1以下であり、好ましくは100m-1以下であり、より好ましくは50m-1以下である。上記上限値以下であれば加工性の面で有利であるためである。
 本発明で用いられるシアナミド化合物の製造方法は、特に限定されるものではないが、以下に示す製造方法(本発明の第三の態様)により合成されたものを使用することが好ましい。
<シアナミド化合物の合成>
 本発明の第三の態様であるシアナミド化合物の製造方法は、前記Mの炭酸塩又は炭素数1以上の有機酸塩(以下、総称し原料塩ということがある)に、アンモニアガスを作用させる製造方法である。
 具体的には周期表第II族元素の炭酸塩、又は周期表第II族元素と、炭素数1以上の有機酸との塩にアンモニアガスを作用させることによりシアナミド化合物を得るものである。
 本発明の製造方法では、後述する反応温度で、アンモニアガスを作用させることで分解し、前記Mの元素源となる化合物が用いられ、具体的には炭酸塩、又は炭酸塩と同様に分解する炭素数1以上の有機酸塩が用いられる。
 本発明のシアナミド化合物の製造方法は、前記原料塩を炭酸塩とした場合を例に取ると、以下の式にしたがって進行する。
  MCO+2NH3 → MCN+3HO 
 前記原料塩は、特に限定はされないが、具体的には炭酸塩としては炭酸マグネシウム、炭酸カルシウム、炭酸ストロンチウム、炭酸バリウム等が挙げられる。
 前記炭酸塩の結晶系は特に限定はされないが、カルサイト、アラゴナイト、バテライト等の結晶質多形体でも非晶質のものでもよい。また、炭酸塩の粒子表面を分散剤で表面処理した粉体を用いてもよい。
 前記原料塩を形成する炭素数1以上の有機酸としては、特に限定はされないが、後述するアンモニアガスとの反応温度において分解されやすいものが好ましく、その分解温度が低いほうがより好ましい。また炭素数が小さい方が好ましい。
 炭素数の上限は特に限定されないが、通常は炭素数12以下であり、好ましくは調製の簡便さの点で、6以下である。
 具体的には例えば、グリコール酸、クエン酸、リンゴ酸、酒石酸、乳酸、ギ酸、酢酸、プロピオン酸、酪酸、吉草酸、シュウ酸、マロン酸、こはく酸、アジピン酸、フマル酸、マレイン酸、アラニン、アルギニン、アスパラギン、アスパラギン酸等を用いることができ、これらの有機酸と、前記Mとの任意の組合せの塩を使用することができる。
 好ましくは、調製の簡便さの点で、水溶性の有機酸塩であるグリコール酸塩、クエン酸塩、リンゴ酸塩、酒石酸塩、乳酸塩、ギ酸塩、酢酸塩、プロピオン酸塩、酪酸塩、シュウ酸塩、マロン酸塩、マレイン酸塩であり、より好ましくは熱分解が容易な点で、クエン酸塩、リンゴ酸塩、乳酸塩、酢酸塩、シュウ酸塩である。
 前記原料塩は、結晶水を含んだ塩であっても無水塩であってもよい。
 前記原料塩としては、取扱い易さの点で炭酸塩または炭素数1以上、6以下の有機酸塩が好ましく、入手のしやすさの面で炭酸塩がより好ましい。
 前記原料塩の形状は、特に限定されず、粉末状、塊状、被膜状等のいずれの形状でもよいが、好ましくは粉末状である。 
 特に比表面積1m-1以上のシアナミド化合物を製造するためには、特に限定はされないが、比表面積の大きな原料塩を用いることにより、得ることができる。
 本発明の製造方法で用いられるアンモニアガスは、前記反応式で表される反応を阻害しない限りにおいて限定はされず、市販のアンモニアガスや、各種合成方法によって得られたアンモニアガスのいずれも使用することができる。
 本発明において用いられるアンモニアガスは、アンモニアを前記原料塩との反応に単独で用いても、前記反応式で表される反応を阻害しない限りにおいて、各種のキャリアガスで希釈してもよいが、好ましくはアンモニア単独で用いる方が、アンモニアの希釈工程の削減が図れる点や、コストの上で好ましい。
 前記キャリアガスは特に限定はされないが、通常、ヘリウム、窒素、アルゴン等が用いられる。
 本発明で、前記原料塩との反応に供給するガスを、原料ガスとした場合、前記原料ガス中の水分濃度は、特に限定はされないが、低い方が好ましく、具体的には0.1体積%以下が好ましく、0.01体積%以下がより好ましい。前記反応式から明らかな通り、水分濃度が高い場合、シアナミド化合物の生成が抑制される場合があるためである。
 本発明の製造方法は、前記原料塩とアンモニアガスとを、650℃以下の温度で反応させる。前記温度超過では、前記原料塩の分解等の副反応が起こりやすくなるためである。アンモニアガスとの反応温度、好ましくは630℃以下であり、より好ましくは、610℃以下であり、更に好ましくは600℃以下であり、下限は特に限定はされないが、通常、450℃以上であり、好ましくは480℃以上であり、より好ましくは500℃以上である。前記下限値未満では十分に反応が起こらないためである。
 本発明の製造方法において、反応圧力は特に限定されるものではないが、好ましくは低圧条件下で反応を行う。前記の反応式で示す通り、本発明のシアナミド化合物の製造方法は2分子のNHから3分子のHOが生成する体積増加反応であるためである。より好ましくは大気圧で合成を行う。圧力調整用の装置等が不要となり、コスト面で有利であるためである。
 本発明の製造方法において、前記原料塩とアンモニアガスの反応方法は、本発明の効果が得られる範囲において特に限定されるものではないが、通常は前記原料塩に、アンモニアガスを通じることにより行われる。通常は前記原料塩を納めた反応容器中に、アンモニアガスを通じる方法が挙げられる。
 反応装置の形式は特に限定されず、気体を反応に用いる際に通常用いることができる反応装置を用いることができる。具体的な反応形式としては、例えばバッチ式反応形式、閉鎖循環系反応形式、流通系反応形式等を用いることができ、このうち実用的な観点からは流通系反応形式が好ましい。
 本発明で用いられるシアナミド化合物の合成反応は、前記の通りMCNの生成と同時に水の副生成を伴うため、水を反応系外に除去することで平衡を移動させることができる。そのため水の除去を考慮し、反応装置はガスを流通させることが可能な開放系で行うことが好ましい。具体的な形状は特に限定されないが、ガスの流通に適した筒(管)型が好ましい。
 反応の方法はバッチ反応でも連続反応でも実施できるが、生産効率の点から連続反応で実施するのが好ましい。
 連続反応で行う場合に好適に用いられる反応装置はガスフロータイプの加熱機であり、例えばロータリーキルン、シャフト方式攪拌型焼成機、ニーダー型 焼成機、流動加熱炉等が挙げられる。また前記原料塩を流動させながら反応をおこなってもよい。前記原料塩を流動させる装置としては、本体(ドラム)が回転し原料塩を移動させる装置、スクリュー等で強制的に原料塩を移動させる装置、エプロン(皿板受け)等に原料塩を乗せ 移動させる装置、気流と同伴させて原料塩を移動させる装置等が挙げられる。中でも回転 ドラムタイプ、スクリューコンベアタイプがより好ましい。また前記原料塩や反応生成物が付着した場合、付着物を剥離させるような機能を持った装置を有していてもよい。
 本発明のシアナミド化合物の製造方法は、特に限定はされないが、比表面積の大きなシアナミド化合物を得ることができ、好ましくは比表面積1m-1以上のシアナミド化合物が得られる。具体的には、比表面積の大きな原料塩、具体的には例えば比表面積1m-1以上の原料塩を用いると、その原料塩の比表面積が、通常は維持、又は更に大きくなるため、比表面積の大きなシアナミド化合物が得られる。
 本発明のシアナミド化合物の製造方法を経て得られる反応生成物は、通常、シアナミド化合物の含有率の高いものが得られる。具体的には、前記の反応が進行するに従い、前記原料塩が、シアナミド化合物に変換されていき、当初は前記原料塩との混合物が生成し、反応の進行に伴って、前記シアナミド化合物の含有率が上がっていく。本発明のシアナミド化合物の製造においては、反応生成物をX線回折等で分析し、前記原料塩の含有率を確認することにより所望の含有率に調整することができ、前記原料塩の消失を確認することによりシアナミド化合物の含有率の高い反応生成物を得ることができる。反応生成物中のシアナミド化合物の含有率(以下、「シアナミド化合物の純度」ということがある)は、特に限定はされないが、通常70質量%以上であり、好ましくは80質量%以上であり、より好ましくは90質量%以上であり、更に好ましくは95質量%以上である。
 なお反応生成物のX線回折分析を行う場合は、特に限定はされないが、例えばその中に結晶部分と非晶質部分が混在する場合は、通常結晶部分において測定した値により含有率を求める。
 反応生成物中には、目的のシアナミド化合物以外に、前記原料塩や、その分解生成物等は含まれていてもよいが、これらの含有率は小さい方が好ましい。本発明のシアナミド化合物の製造方法は前記の通り、前記原料塩の含有率を適宜小さく抑えることができ、また通常は分解生成物の含有率も小さい。
<遷移金属>
 本発明において用いられる遷移金属は、特に限定されるものではないが、通常、周期表第6族、7族、8族、9族、10族の遷移金属であり、好ましくは、第6族、8族、又は9族の遷移金属であり、より好ましくは第8族又は9族金属である。
 また具体的な金属元素としては、特に限定はされないが、通常、Cr、Mo、Mn、Re、Fe、Ru、Os、Co、Rh、Ni、Pd、Ptであり、好ましくは、窒素との結合エネルギーが高い点でMo、Re、Fe、Ru、Os、Co、であり、より好ましくは、担持金属触媒として用いた際に、アンモニア分解活性を有する点で、Ru、Co、Fe、又はNiであり、更に好ましくはアンモニア合成活性を有する点で、Ru、Co又はFeであり、更に好ましくは、最も高い触媒活性を有する点でRuである。
 前記の各元素は単独で用いても、2種類以上を組み合わせて用いてもよい。またこれらの元素の金属間化合物、例えば、CoMoN、FeMoN、NiMoN、MoN等を用いることもできる。好ましくは各元素を単独又は2種類以上の組み合わせであり、より好ましくは、単独で用いることがコストの面で有利である。
 具体的には、本発明の金属担持物を、アンモニア合成用触媒として用いる場合には、Ru、Co又はFeが好ましく、Ruがより好ましい。
 また本発明の金属担持物を、アンモニア分解用触媒として用いる場合には、Ru、Co、Fe、又はNiが好ましく、Ruがより好ましい。
<金属担持物の組成>
 本発明の金属担持物における、前記シアナミド化合物100質量部に対する前記遷移金属の担持量は、特に限定はされないが、通常、0.01質量部以上、好ましくは0.05質量部以上、より好ましくは0.1質量部以上であり、通常30質量部以下、好ましくは20質量部以下、より好ましくは15質量部以下である。前記下限値以上であれば、本発明の効果が得られ、前記上限値以下であれば、担持量とコストの見合った本発明の効果が得られる。
<金属担持物の比表面積>
 本発明の金属担持物の比表面積は、特に限定はされないが、通常、用いるシアナミド化合物と同様であり、通常1.0m-1以上であり、好ましくは5m-1以上であり、好ましくは10m-1以上である。上限は特に限定されるものではないが、通常は200m-1以下であり、好ましくは100m-1以下であり、より好ましくは50m-1以下である。上記上限値以下であれば加工性の面で有利なためである。
<金属担持物の形状>
 本発明の金属担持物の形状は、特に限定はされず、具体的には塊状、粉末状、被膜状等のいずれの形状でもよいが、通常は粉末状である。粉末状の金属担持物の粒子径は特に限定はされないが、通常、10nm以上、50μm以下である。
 本発明の金属担持物における遷移金属の粒子径は、特に限定はされないが、通常、1nm以上、100nm以下である。好ましくは、アンモニア合成用触媒として使用した際に、窒素解離の活性点であるステップサイト数が多くなる点で有利な10nm以下、より好ましくは5nm以下である。
(金属担持物の製造方法)
 本発明の金属担持物は、前記シアナミド化合物に、前記遷移金属を担持させて製造する。製造方法は特に限定されないが、通常は、前記シアナミド化合物に対し、遷移金属、又は遷移金属の前駆体となる化合物(以下、遷移金属化合物)を担持させて製造する。
本発明の金属担持物の原料となる、前記シアナミド化合物は、市販の試薬や工業原料を用いても、対応する金属から既知の方法により得られたものを使用してもよいが、本発明の第三の態様により得られるシアナミド化合物を用いることが好ましい。
 本発明で用いられる前記シアナミド化合物に、前記遷移金属を担持させる方法は、特に限定されず、既知の方法を用いることができる。通常は、担持する遷移金属の化合物であって、還元や熱分解等により遷移金属に変換することができる遷移金属化合物を、前記シアナミド化合物に担持させた後、遷移金属に変換する方法が用いられる。
 前記遷移金属化合物は特に限定されないが、熱分解し易い遷移金属の無機化合物又は有機遷移金属錯体等を用いることができる。具体的には遷移金属の錯体、遷移金属の酸化物、硝酸塩、塩酸塩等の遷移金属塩等を用いることができる。
 例えばRu化合物としては、トリルテニウムドデカカルボニル[Ru(CO)12]、ジクロロテトラキス(トリフェニルホスフィン)ルテニウム(II)[RuCl(PPh]、ジクロロトリス(トリフェニルホスフィン)ルテニウム(II)[RuCl(PPh]、トリス(アセチルアセトナト)ルテニウム(III)[Ru(acac)]、ルテノセン[Ru(C)]、ニトロシル硝酸ルテニウム[Ru(NO)(NO]、ルテニウム酸カリウム、酸化ルテニウム、硝酸ルテニウム、塩化ルテニウム等が挙げられる。
 Fe化合物としては、ペンタカルボニル鉄[Fe(CO)]、ドデカカルボニル三鉄[Fe(CO)12]、ノナカルボニル鉄[Fe(CO)]、テトラカルボニル鉄ヨウ化物[Fe(CO)]、トリス(アセチルアセトナト)鉄(III) [Fe(acac)]、フェロセン[Fe(C]、酸化鉄、硝酸鉄、塩化鉄(FeCl)等が挙げられる。
 Co化合物としては、コバルトオクタカルボニル[Co(CO)]、トリス(アセチルアセトナト)コバルト(III)[Co(acac)]、コバルト(II)アセチルアセトナト[Co(acac)]、コバルトセン[Co(C]、酸化コバルト、硝酸コバルト、塩化コバルト等が挙げられる。
 これらの遷移金属化合物のうち、[Ru(CO)12]、[Fe(CO)]、[Fe(CO)12]、[Fe(CO)]、[Co(CO)]等の遷移金属のカルボニル錯体は、担持した後、加熱することにより、遷移金属が担持されることから、本発明の金属担持物を製造する上で、後述する還元処理を省略できる点で好ましい。
 前記遷移金属化合物の使用量は、特に限定はされず、所望の担持量を実現するための量を適宜使用することができるが、通常は、用いる前記シアナミド化合物100質量部に対して、通常、0.01質量部以上、好ましくは0.05質量部以上、より好ましくは0.1質量部以上であり、通常30質量部以下、好ましくは20質量部以下、より好ましくは15質量部以下である。
 前記遷移金属化合物をシアナミド化合物に担持させる方法としては、具体的には例えば、含浸法、物理的混合法、CVD法(化学蒸藩法)、スパッタ法等の方法を使用できる。
 含浸法としては、次の工程を採用できる。例えば、前記シアナミド化合物を、前記遷移金属化合物の溶液、に加えて撹拌する。このときの溶媒は特に限定はされず、水や各種有機溶媒を用いることができるが、好ましくは前記シアナミド化合物の分解を抑えるため有機溶媒がよい。また前記遷移金属化合物は、溶媒に溶解させても、分散させてもよい。
 次に窒素、アルゴン、ヘリウム等の不活性ガス気流中、又は真空下で加熱し、乾固する。このときの加熱温度は特に限定はされないが、通常50℃以上、300℃以下である。
加熱時間は特に限定はされないが、通常30分以上、20時間以下である。
 ここで熱分解により遷移金属に変換される遷移金属化合物であれば、この段階で通常、遷移金属が、担持され、本発明の金属担持体となる。
 熱分解により遷移金属に変換される遷移金属化合物以外のものを用いた場合は、乾固した遷移金属化合物を、通常還元することにより、本発明の金属担持体となる。
 前記遷移金属化合物を還元する方法(以下、還元処理という)は、本発明の目的を阻害しない限りにおいて特に限定されないが、例えば、還元性ガスを含む雰囲気下で行なう方法や、前記遷移金属化合物を含む溶液に、NaBH、NHNH又は、ホルマリン等の還元剤を加えて前記シアナミド化合物の表面に析出させる方法が挙げられるが、好ましくは還元性ガスを含む雰囲気下で行なう。前記還元性ガスとしては水素、アンモニア、メタノール(蒸気)、エタノール(蒸気)、メタン、エタン等が挙げられる。
 また前記還元処理の際に、本発明の目的、特にアンモニア合成反応を阻害しない、還元性ガス以外の成分が反応系を共存していてもよい。具体的には、還元処理の際に、水素等の還元性ガスの他に反応を阻害しないアルゴンや窒素といったガスを共存させてもよく、窒素を共存させることが好ましい。
 前記還元処理を、水素を含むガス中で行なう場合、水素と共に窒素を共存させることで、後述するアンモニアの製造と並行して行なうことができる。すなわち、本発明の金属担持体を後述するアンモニア合成用触媒として用いる場合は、前記遷移金属化合物を、前記シアナミド化合物に担持させたものを、アンモニア合成反応の反応条件中に置くことにより、前記遷移金属化合物を還元し、遷移金属に変換してもよい。
 前記還元処理の際の温度は、特に限定はされないが、通常200℃以上であり、好ましくは300℃以上、通常1000℃以下であり、好ましくは600℃以下で行なう。前記の還元処理温度範囲内で行なうことで、前記遷移金属の成長が十分に、また好ましい範囲で起こるためである。
 前記還元処理の際の圧力は、特に限定はされないが、通常、0.01MPa以上、10MPa以下である。還元処理時の圧力は、後述するアンモニア合成条件と同じ条件にすると、煩雑な操作は不要になり製造効率の面で有利である。
 前記還元処理の時間は、特に限定されないが、常圧で実施する場合は、通常1時間以上であり、2時間以上が好ましい。
 また反応圧力の高い条件、例えば1MPa以上で行う場合は、1時間以上が好ましい。
 物理的混合法は、前記シアナミド化合物と、前記遷移金属化合物とを固相混合した後に窒素、アルゴン、ヘリウム等の不活性ガス気流中、又は真空下で加熱する方法である。加熱温度、加熱時間は、上記含浸法と同様である。前記還元処理をすることによって金属担持体とする。
(担持金属触媒)
 本発明の担持金属触媒は、前記金属担持物からなる。
 本発明の担持金属触媒は、好ましく、遷移金属を担体に担持した担持金属触媒であって、前記担体が、下記一般式(1)で表わされるシアナミド化合物である。
  MCN ・・・(1)
 Mは、周期表第II族元素を表わし、前記本発明の金属担持物におけるMと同じである。
 本発明の担持金属触媒は、本発明の金属担持物をそのまま反応に用いても、必要に応じた成型等を行なってもよく、また本発明の効果を損なわない限りにおいて、前記金属水酸化物及び前記遷移金属以外の成分を含んでいてもよいが、通常は、本発明の金属担持物をそのまま用いることが好ましい。
 前記金属水酸化物及び前記遷移金属以外の成分としては、SiO、Al、ZrO、MgO、活性炭、グラファイト、SiCなどを前記金属水素化物の担体としてさらに含んでいてもよい。
 本発明の担持金属触媒における、前記担体100質量部に対する前記遷移金属の担持量は、特に限定はされないが、通常、0.01質量部以上、好ましくは0.05質量部以上、より好ましくは0.1質量部以上であり、通常30質量部以下、好ましくは20質量部以下、より好ましくは15質量部以下である。前記下限値以上であれば、本発明の効果が得られ、前記上限値以下であれば、担持量とコストの見合った本発明の効果が得られる。
 本発明の担持金属触媒の比表面積は、特に限定はされないが、通常0.1m-1以上であり、好ましくは1m-1以上であり、より好ましくは3m-1以上である。上限は特に限定されるものではないが、通常は200m-1以下であり、好ましくは100m-1以下であり、より好ましくは50m-1以下である。上記上限値以下であれば加工性の面で有利なためである。
 本発明の担持金属触媒の形状は、特に限定はされず、具体的には塊状、粉末状、被膜状等のいずれの形状でもよいが、通常は粉末状である。粉末状の金属担持体の粒子径は特に限定はされないが、通常、10nm以上、50μm以下である。
 本発明の担持金属触媒における遷移金属の粒子径は、特に限定はされないが、通常、1nm以上、100nm以下である。好ましくは、窒素解離の活性点であるステップサイト数が多くなる10nm以下、より好ましくは5nm以下である。
 本発明の担持金属触媒は、通常の成型技術を用い成型体として使用することができる。
 具体的には、粒状、球状、タブレット、リング、マカロニ、四葉、サイコロ、ハニカム状などの形状が挙げられる。また、適当な支持体にコーティングしてから使用することもできる。
 本発明の担持金属触媒は、各種反応の触媒として用いることができるが、アンモニア合成反応用触媒として好適である。前記触媒は、アンモニア合成の活性が高いため、反応効率の高いアンモニアの製造が可能である。
 アンモニア合成用触媒として用いる際、その反応活性は特に限定はされないが、反応温度340℃、反応圧力0.1MPaにおけるアンモニアの生成速度を例に取った場合で、0.5×10μmol・g-1-1以上であることが好ましく、1.0×10μmol・g-1-1以上であることが実用の製造条件に適していることからより好ましく、2.0×10μmol・g-1-1以上であるものがより高効率の製造条件に適していることから更に好ましく、3.0×10μmol・g-1-1以上であるものが更に高効率の製造条件に適している点で更に好ましい。
 また、本発明の担持金属触媒は、アンモニア分解用触媒として好適である。前記触媒は、アンモニア合成の逆反応であるアンモニア分解反応の活性も高く、反応効率の高い水素の製造が可能である。
 更に、本発明の担持金属触媒は、不飽和炭素化合物の水素化反応、例えば、オレフィン、アセチレン化合物、カルボニル化合物の水素化反応、芳香族化合物、複素環式化合物の核水素化反応に使用することができる。
 以下に本発明の担持金属触媒を用いたアンモニアの製造方法について記す。
(アンモニアの製造方法)
 本発明のアンモニアの製造方法は、本発明の担持金属触媒を触媒として用い、水素と窒素とを前記触媒上で反応させてアンモニアを合成する方法である。
 具体的な製造方法としては、水素と窒素とを前記触媒上で接触させてアンモニアを合成する方法であれば、特に限定されず、適宜既知の製造方法に準じて製造をすることができる。
 本発明のアンモニアの製造方法では、通常、水素と窒素とを前記触媒上で接触させる際に、触媒を加熱して、アンモニアを製造する。
 本発明の製造方法における反応温度は特に限定はされないが、通常200℃以上、好ましくは250℃以上であり、より好ましくは300℃以上であり、通常600℃以下であり、好ましくは500℃以下であり、より好ましくは450℃以下である。アンモニア合成は発熱反応であることから、低温領域のほうが化学平衡論的にアンモニア生成に有利であるが、十分なアンモニア生成速度を得るためには上記の温度範囲で反応を行うことが好ましい。
 本発明のアンモニアの製造方法において、前記触媒に接触させる窒素と水素のモル比率は、特に限定はされないが、通常、窒素に対する水素の比率(H/N(体積/体積))で、通常0.4以上、好ましくは0.5以上、より好ましくは1以上、通常10以下、好ましくは5以下で行う。
 本発明のアンモニアの製造方法における反応圧力は、特に限定はされないが、窒素と水素を含む混合ガスの圧力で、通常0.01MPa以上、好ましくは0.1MPa以上、通常20MPa以下、好ましくは15MPa以下、より好ましくは10MPa以下である。
また実用的な利用を考慮すると、大気圧以上の加圧条件で反応を行うことが好ましい。
 本発明のアンモニアの製造方法において、窒素と水素とを前記触媒に接触させる前に、前記触媒に付着する水分や酸化物を、水素ガス等を用いて除去することが好ましい。除去の方法としては還元処理が挙げられる。
 本発明の製造方法においては、より良好なアンモニア収率を得るためには、本発明の製造方法に用いる窒素及び水素中の水分含有量が少ないことが好ましく、特に限定はされないが、通常、窒素と水素の混合ガス中の総水分含有量が100ppm以下、好ましくは、50ppm以下であることが好ましい。
 本発明のアンモニアの製造方法において、反応容器の形式は特に限定されず、アンモニア合成反応に通常用いることができる反応容器を用いることができる。具体的な反応形式としては、例えばバッチ式反応形式、閉鎖循環系反応形式、流通系反応形式等を用いることができる。このうち実用的な観点からは流通系反応形式が好ましい。また触媒を充填した一種類の反応器、又は複数の反応器を連結させる方法や、同一反応器内に複数の反応層を有する反応器の何れの方法も使用することができる。
 水素と窒素からアンモニアを合成する反応は、体積収縮を伴う発熱反応であることから、アンモニア収率を上げるために工業的には反応熱を除去することが好ましく、通常用いられる除熱手段を伴う既知の反応装置を用いてもよい。例えば具体的には触媒が充填された反応器を直列に複数個連結し、各反応器の出口にインタークーラーを設置して除熱する方法等を用いてもよい。
 本発明のアンモニアの製造方法においては、本発明の製造方法で得られるアンモニア合成用触媒を単独で用いても、アンモニア合成に通常用いることができる他の公知の触媒と組み合わせて使用することができる。
 本発明のアンモニアの製造方法で得られたアンモニアは、本発明の第三の態様であるシアナミド化合物の製造方法に用いることもできる。
(水素の製造方法)
 以下に本発明の担持金属触媒を用いて、アンモニアを分解させ水素を製造する方法について記す。
 本発明の水素の製造方法は、本発明の担持金属触媒を触媒として用い、アンモニアを前記触媒上で反応させて分解し、水素と窒素を合成する方法である。
 下記の式(2)で示される反応である。
  2NH→3H+N  ・・・・(2)
 具体的な製造方法としては、アンモニアを前記触媒上で接触させて分解し、水素を合成する方法であれば、特に限定されず、適宜既知の製造方法に準じて製造をすることができる。
 本発明の水素の製造方法では、通常、アンモニアを前記触媒上で接触させる際に、触媒を加熱して、水素及び窒素を製造する。
 本発明の製造方法における反応温度は特に限定はされないが、通常200℃以上、好ましくは250℃以上であり、より好ましくは300℃以上であり、通常800℃以下であり、好ましくは600℃以下であり、より好ましくは500℃以下である。アンモニア分解反応は平衡反応であり、且つ吸熱反応であるため、高温領域の方が有利であるが、十分なアンモニア分解反応速度を得るためには上記の温度範囲で反応を行うことが好ましい。
 前記温度範囲では、分解反応が十分に進行し、かつ設備面でも有利であるためである。
 なお、前記遷移金属としてRuを用いた場合は、その反応温度として400℃以上、600℃以下が更に好ましく、同様にNi又はCoを用いた場合は、500℃以上、750℃以下が更に好ましい。
 本発明の水素の製造方法における反応圧力は、特に限定はされないが、通常0.01MPa以上、好ましくは0.05MPa以上、通常1.0MPa以下、好ましくは0.5MPa以下、より好ましくは0.1MPa以下である。
 アンモニア分解反応は平衡反応であり、且つ体積が増加する反応であるため、低圧条件の方が有利であるが、十分なアンモニア分解反応速度を得るためには上記の圧力範囲で反応を行うことが好ましい。また、設備面を考慮すると、0.1MPaで反応を行うことが有利である。
 本発明の水素の製造方法で用いられるアンモニアは、特に限定はされないが、アンモニア単独でも、バランスガスで希釈したアンモニアの何れでもよい。すなわち、体積分率0.1~100%のアンモニアガスを使用できる。
 本発明の水素の製造方法においては、生成した水素と窒素を分離する必要があるので、特に限定はされないが、アンモニア体積分率は高い方が好ましく、体積分率で5%以上、より好ましくは20%以上、さらに好ましくは70%以上である。
 アンモニアの重量空間速度(WHSV)は、特に限定はされないが、通常500ml・g-1-1以上で行うことで、高いNH転化率が得られる。
 本発明の水素の製造方法では、アンモニアを前記触媒に接触させる前に、前記触媒を水素等の還元性のガスの雰囲気に曝露して触媒活性成分である遷移金属を活性化することが転化率の向上の点で好ましい。前記の曝露の際の温度は特に限定はされないが、通常300℃以上、700℃以下である。また前記曝露の時間は特に限定はされず、通常30分以上、2時間以下である。
 本発明の水素の製造方法において、反応容器の形式は特に限定されず、アンモニア分解反応に通常用いることができる反応容器を用いることができる。具体的な反応形式としては、例えばバッチ式反応形式、閉鎖循環系反応形式、流通系反応形式等を用いることができ、このうち実用的な観点からは流通系反応形式が好ましい。
 アンモニアの分解反応は吸熱反応のため、反応熱を供給しながら反応させると有利であり、工業的には収率をあげるため、反応熱を供給するための既知の方法を用いることができる。例えば、アンモニア原料の一部を、空気により酸化させて燃焼熱を得ながら、アンモニア分解反応を行う方法等が挙げられる。
 また反応容器の材質は、特に限定されず、既知のアンモニア分解反応用の材質を用いることができるが、例えば、ステンレス鋼等の耐食性材料を用いた通常の気相-固相接触反応装置を用いて行うことができる。
 本発明において、従来行われている方法と同様に、触媒を充填した一種類の反応器、又は複数の反応器を用いて、アンモニア分解反応を行うことができる。また、複数の反応器を連結させる方法や、同一反応器内に複数の反応層を有する反応器の何れの方法も使用することができる。
 以下、本発明を実施例によりさらに詳細に説明するが、本発明はこれら実施例により何ら制限されるものではない。
(BET比表面積測定)
 BET比表面積の測定は、対象物の表面に液体窒素温度で窒素ガスを吸着させ、単分子層吸着した窒素の量を測定することにより行った。測定条件は以下の通りである。
[測定条件]
 測定装置:マイクロトラック・ベル社製 比表面積/細孔分布測定装置 BELSORP-mini II
 吸着ガス:窒素(99.99995体積%)
 吸着温度:液体窒素温度(-196℃)
(反応生成物中のシアナミド化合物の含有率の評価)
 合成した反応生成物中のシアナミド化合物の含有率は、粉末X線回折測定結果をリートベルト法により解析することで決定した。粉末X線回折法により得た合成試料の回折図形と、CaCN、CaCO、CaOを含む混合試料を仮定した理論的な回折図形を最小二乗法でフィッテングして、結晶構造に関するパラメーターを精密化し含有率を求めた。
[測定条件]
 測定装置    :BRUKER社製 X線回折装置 D8 ADVANCE
 X線源     :CuKα
 測定温度    :常温
 測定角度範囲  :10-80°
 スキャンスピード:0.2秒/ステップ
 スキャンステップ:0.02°
 解析プログラム :RIETAN-FP(F.Izumi and K.Momma, “Three-dimensional visualization in powder diffraction,” Solid State Phenom.,130,15-20 (2007).)
(Ru分散度測定)
 Ru分散度の測定は、一酸化炭素(CO)分子を用いたパルス吸着法により求めた。CO分子を対象物表面に吸着させ、Ru原子1個当たりにCO分子1個が化学吸着していると仮定し、吸着したCO分子量から表面に露出しているRuの原子数を見積もり、全体のRu原子数で除すことで行った。具体的には下記式にて求められる。また、測定条件は以下の通りである。
 (Ru分散度)=(表面に露出しているRu原子数)/(担持されている全Ru原子数)×100(%)
 (CO/Ru=1として表面に露出しているRu原子数を見積もった)
[測定条件]
 測定装置:マイクロトラック・ベル社製 触媒分析装置 BELCAT-A
 吸着ガス:CO-He混合ガス(CO濃度:9.5体積%)
 吸着温度:50℃
 キャリアガス:He
 ガス検出器:TCD
 本発明の担持金属触媒のアンモニア合成触媒としての評価は、本発明のアンモニア合成触媒を用いて生成したNHの生成量を、ガスクロマトグラフ又は、硫酸水溶液中に生成したNHを溶解させ、その溶液をイオンクロマトグラフにより定量してアンモニア合成速度を求め、その生成速度により、アンモニア合成活性の評価行った。
(ガスクロマトグラフ(GC)分析)
 以下の実施例及び比較例のアンモニア生成量は、ガスクロマトグラフ(GC)分析により、絶対検量線法を用いて求めた。測定条件は以下の通りである。
[測定条件]
 測定装置  :島津製作所社製 ガスクロマトグラフ GC-14B
 カラム   :ジーエルサイエンス社製 Porapak Q4 1000mm
 カラム温度 :80℃
 キャリアガス:He
 ガス検出器 :TCD
(イオンクロマトグラフ分析)
 以下の実施例及び比較例のアンモニア生成量は、生成したアンモニアガスを0.05M硫酸水溶液に溶解させ、その溶解液をイオンクロマトグラフ分析により、絶対検量線法を用いて求めた。測定条件は以下の通りである。
[測定条件]
 測定装置:島津製作所社製 高速液体クロマトグラフ 汎用HPLC Prominence
 カラム :島津製作所社製 Shim-pack IC-C4、長さ150mm、内径4.6mm
 溶離液 :シュウ酸(3mM)、18-クラウン-6-エーテル(2.0mM)混合水溶液
 カラム温度:40℃
 流速:1.0mL/min
(TOFの計算方法)
 ターンオーバー・フレクエンシー(TOF)とは、触媒反応において、1つの活性点が単位時間当たりに平均何回反応に寄与したかを表す数であり、単位時間当たりに生成した反応分子数を触媒活性点数で除すことで得られる。本実施例において、遷移金属がRuであり、活性点はRuであるため、触媒表面に露出しているRu原子数をCO吸着により求め、単位時間当たりに生成したアンモニア分子数を、そのRu原子数で除すことで求めた。
(実施例1)
<CaCNの合成>
 CaCO(高純度化学研究所社製、粉末状、BET比表面積3.1m-1)をNH気流(100mL/min)下、550℃で20時間加熱し、CaCNを合成した。得られたCaCNは粉末状であり、そのBET比表面積は6.4m-1であった。また得られたCaCNの純度(反応生成物中のCaCNの含有率)は、98.7質量%であり、その他の成分としてはCaCOの含有率が0.6質量%、CaOが0.7質量%であった。
<Ruを担持したCaCNの調製>
 前記の方法で合成したCaCN 1gを、Ar雰囲気のグローブボックス中でRu(CO)12(アルドリッチ社製、粉末状)0.042gと混合し、真空の石英ガラス中に封入した。前記で封入した混合物を回転させながら250℃まで段階的に昇温した後、同温度で2時間加熱した。これによりCaCN 100質量部に対して2質量部の金属Ruの粒子を担持したCaCN(以下、2質量%Ru/CaCNといい、Ruを担持したシアナミドを単に「Ru担持物」と総称することがある。)が得られた。前記Ru担持物のBET比表面積は、7.0m-1であった。前記CO吸着法で測定したRu分散度は9.4%であった。
<アンモニア合成反応>
 窒素ガス(N)と水素ガス(H)を、触媒と接触させ、アンモニア(NH)を合成する反応を行った。当該触媒として、前記Ru担持物0.1gをガラス管に詰めて用い、反応装置として固定床流通式反応装置で合成反応を行った。反応時のガスの流量は、N:15mL/min、H:45mL/min、計60mL/minであった。反応圧力は大気圧であり、反応温度は340℃で反応を行った。前記固定床流通式反応装置から出てきたガスを、0.005M硫酸水溶液中にバブリングさせ、生成したアンモニアを溶液中に溶解させ、生じたアンモニウムイオンをイオンクロマトグラフにより定量した。340℃におけるアンモニアの合成速度は、3.0×10μmol・g-1-1であった。TOFは48.9×10-3-1であった。結果を表1及び表2に示した。
(実施例2)
 実施例1で用いたCaCOに代えて、Ca(CHCOO)・HO(関東化学社製、粉末状)を、実施例1と同様に、NH気流下、550℃で20時間加熱し、CaCNを合成した。得られたCaCNは粉末状であり、そのBET比表面積は15.0m-1であった。
 当該CaCNを用いて、実施例1と同じ方法により、2質量%Ru/CaCN触媒を調製した。この触媒のBET比表面積は、18.1m-1であった。CO吸着法で測定したRu分散度は16.3%であった。
 当該Ru担持物を触媒として用いて、実施例1と同じ条件でアンモニア合成反応を実施した。340℃におけるアンモニアの合成速度は、2.9×10μmol・g-1-1であった。TOFは24.6×10-3-1であった。結果を表1に示した。
(比較例1)
 実施例1で用いたCaCNに代えて市販のCaCN(東京化成工業社製、BET比表面積0.1m-1)を用いた以外は、実施例1と同じ方法で2質量%Ru/CaCNを調製した。当該Ru担持物のBET比表面積は0.2m-1であった。
 実施例1と同じ条件でアンモニア合成反応を実施したが、アンモニアは得られず、340℃におけるアンモニアの合成速度は、0.0mol・g-1-1であった。結果を表1に示した。
(比較例2)
 MgO(宇部マテリアルズ社製 500A、BET比表面積40.0m-1)を真空中、500℃で6時間加熱し、水などの表面吸着分子を除去した。次に、Ar雰囲気のグローブボックス中でRu(CO)12を溶解させたTHF溶液(60mL)にMgOを入れ、4時間撹拌した。このときRuの担持量がMgO 100質量部に対して5質量部となるようにRu(CO)12の添加量を調節した。その後、THFを減圧除去し、さらに真空中450℃で1時間加熱することで、5質量部の金属Ru微粒子を担持したMgO(以下、5質量%Ru/MgO)を得た。
 前記5質量%Ru/MgOを触媒として用いて、実施例1と同じ条件でアンモニア合成反応を実施した。340℃におけるアンモニアの合成速度は、0.5×10μmol・g-1-1、TOFは1.7×10-3-1であった。結果を表1に示した。
(比較例3)
 比較例2のMgOに代えてγ-Al(高純度化学研究所社製、BET比表面積91.0m-1)を用いた以外は、比較例1と同じ方法で、MgO 100質量部に対して5質量部の金属Ru微粒子を担持したγ-Al(以下、5質量%Ru/γ-Al)を調製した。
 実施例1と同じ条件でアンモニア合成反応を実施した。340℃におけるアンモニアの合成速度は、0.2×10μmol・g-1-1、TOFは0.3×10-3-1であった。結果を表1に示した。
(比較例4)
 比較例1におけるRu担持量を2質量部にした以外は、比較例1と同じ方法で2質量%Ru/MgOを調製した。前記2質量%Ru/MgOを、CsNOを溶解させた無水エタノール溶液(100mL)に入れ、12時間撹拌した。このときCsの質量がRuの質量に対して元素比で2倍となるようにCsNOの添加量を調節した。その後、無水エタノールを減圧除去し、Csを添加した2質量%のRu金属微粒子を担持したMgO(以下、Cs-2質量%Ru/MgO)を得た。
 上記で得られたCs-2質量%Ru/MgOを触媒として用いて、実施例1と同じ条件でアンモニア合成反応を実施した。340℃におけるアンモニアの合成速度は、2.0×10μmol・g-1-1、TOFは5.3×10-3-1であった。結果を表1に示した。
Figure JPOXMLDOC01-appb-T000001
 表1に、各種担体にRuを担持した触媒によるアンモニア合成反応の結果を示す(反応条件は以下の通りである。触媒量:0.1g、反応温度:340℃、反応ガス流量:60mL/min、反応ガス組成:N/H=1/3、反応圧力:0.1MPa)。
(実施例3)
 実施例1に記載のRu担持物のRu担持量を0.5質量部にした以外は、実施例1と同じ方法で0.5質量%Ru/CaCNを調製した。
 このRu担持物を触媒として用いて、実施例1と同じ条件でアンモニア合成反応を実施した。340℃におけるアンモニアの合成速度は、0.5×10μmol・g-1-1であった。結果を表2に示した。
(実施例4)
 実施例1に記載のRu担持物のRu担持量を1.0質量部にした以外は、実施例1と同じ方法で1.0質量%Ru/CaCNを調製した。
 このRu担持物を触媒として用いて、実施例1と同じ条件でアンモニア合成反応を実施した。340℃におけるアンモニアの合成速度は、0.6×10μmol・g-1-1であった。結果を表2に示した。
(実施例5)
 実施例1に記載のRu担持物のRu担持量を5.0質量部にした以外は、実施例1と同じ方法で5.0質量%Ru/CaCNを調製した。
 このRu担持物を触媒として用いて、実施例1と同じ条件でアンモニア合成反応を実施した。340℃におけるアンモニアの合成速度は、2.6×10μmol・g-1-1であった。結果を表2に示した。
Figure JPOXMLDOC01-appb-T000002
(各種担体とのアンモニア合成速度の比較)
 本発明の方法で合成したCaCNにRuを担持した触媒(実施例1)と市販のCaCNにRuを担持した触媒(比較例1)とを比較すると、実施例1ではアンモニアの合成が確認されたが、比較例1ではアンモニアの合成が確認されなかった。したがって、CaCNをアンモニア合成触媒の担体として利用するには、本発明の合成方法が有効であることが分かった。また、Ruを担持したCaCNは、Ruを担持した既存の触媒担体(MgO、γ-Al、Cs/MgO)と比較すると、同じ重量あたりのアンモニア合成速度が高く、またTOF値も高い値を示す非常に優れた触媒であることが分かった。
[評価試験1]
 反応温度以外は実施例1と同様の条件により、アンモニア合成反応を行い、触媒の反応温度依存性を評価した。触媒量は0.1g、ガスの流量は、N:15mL/min,H:45mL/min,計60mL/minに設定し、圧力:大気圧で反応を行った。図2に、2質量%Ru/CaCNとCs-2質量%Ru/MgOを触媒として用いて、様々な反応温度でアンモニア合成反応を行った結果について示す。2質量%Ru/CaCNはCs-2質量%Ru/MgOと比較して評価したすべての温度領域において触媒活性が高いことが明らかとなった。
[評価試験2]
 アンモニア合成反応を反応温度400℃で92.5時間継続して行い、触媒の安定性を評価した。図3に、実施例1の2質量%Ru/CaCNを触媒として用いて、アンモニア合成を行った結果を示す。触媒活性は反応開始から徐々に上昇し、およそ70時間で一定の値を示した。反応中に触媒活性の低下は確認されず、90時間以上の反応においてもアンモニアを安定して生成することが分かった。
(実施例6)
<アンモニア分解反応>
 実施例1にて調製した2質量%Ru/CaCNを担持金属触媒として用いて、アンモニアを分解し、窒素と水素を製造する反応を行った。前記Ru担持物0.1gをアンモニア分解触媒としてガラス管に詰め、固定床流通式反応装置で反応を行った。ガスの流量は、NH:5mL/minに設定し、反応圧力は0.1MPaで反応を行った。前記固定床流通式反応装置から出てきたガスをガスクロマトグラフにより定量した。400℃におけるアンモニアの分解効率は76.4%であった。結果を図4に示す。
(比較例5)
 比較例2に記載のRu/MgOのRu担持量を2質量部にした以外は、比較例1と同じ方法で調製した2質量%Ru/MgOを調製した。
 これを触媒として用いて実施例10と同じ条件でアンモニア分解反応を実施した。400℃におけるアンモニアの分解効率は47.3%であった。結果を図4に示す。
(比較例6)
 比較例3に記載のRu/γ-Alに担持するRu担持量を2質量部にした以外は、比較例1と同じ方法で調製した2質量%Ru/γ-Alを調製した。
 これを触媒として用いて実施例6と同じ条件でアンモニア分解反応を実施した。400℃におけるアンモニアの分解効率は25.9%であった。結果を図4に示す。
 実施例6から、本発明の金属担持物を担持金属触媒としてアンモニア分解反応に用いた場合、高い効率でアンモニアを分解することができることが分かった。
(実施例7)
<Coを担持したCaCNの調製>
 実施例1で得られたCaCN粉末1gを、Ar雰囲気のグローブボックス中でCo(CO)粉末0.059gと混合し、真空の石英ガラスに封入した。前記で封入した試料を回転させながら250℃まで段階的に昇温した後、同温度で2時間加熱した。これにより2質量%の金属Coを担持したCaCN(以下、Co担持物ということがある)が得られた。この担持物のBET比表面積は、6.9m-1であった。
 前記Co担持物を触媒として用い、実施例1と同じ条件でアンモニア合成反応を実施した。340℃におけるアンモニアの合成速度は、0.2×10μmol・g-1-1であった。結果を表3に示した。
(実施例8)
<Feを担持したCaCNの調製>
 Co(CO)を用いる代わりに、Fe(CO)粉末0.066gを用いた以外は、実施例7と同様の手順を経ることにより、2質量%の金属Feを担持したCaCN(以下、Fe担持物ということがある)が得られた。前記Fe担持物のBET比表面積は、7.0m-1であった。
 前記Fe担持物を触媒として用い、実施例1と同じ条件でアンモニア合成反応を実施した。340℃におけるアンモニアの合成速度は、0.4×10μmol・g-1-1であった。結果を表3に示した。
Figure JPOXMLDOC01-appb-T000003
(実施例9)
<SrCNの合成>
 SrCO(高純度化学研究所社製、粉末状、BET比表面積6.1m-1)をNH気流(100mL/min)下、600℃で20時間加熱し、SrCNを合成した。得られたSrCNは粉末状であり、そのBET比表面積は2.8m-1であった。
<Ruを担持したSrCNの調製>
 得られたSrCNを用いた以外は、実施例1と同じ方法で、2質量%Ru/SrCNを調製した。この担持物のBET比表面積は、3.6m-1であった。
 前記担持物を触媒として用いて、実施例1と同じ条件でアンモニア合成反応を実施した。340℃におけるアンモニアの合成速度は、3.5×10μmol・g-1-1であった。TOFは74.4×10-3-1であった。結果を表4に示した。
Figure JPOXMLDOC01-appb-T000004
[評価試験3]
 Ruに代わりCo及びFeをCaCNに担持した担持物を触媒として用いた際のアンモニア合成活性を表3に示した。実施例1の担持物と比較すると、CoやFeを担持した担持物(実施例7、実施例8)は触媒としての性能は劣るが、比較例4のRu-Cs/MgO以外の既存のRu触媒に匹敵する触媒性能を示した。
 SrCNにRuを担持した担持物を触媒として用いた際のアンモニア合成活性を表4に示した。実施例1の担持物と比較すると、実施例9の担持物はアンモニア合成速度及びTOFの両方でより高い触媒性能を示した。実施例9の担持物はいずれもTOFで既存のRu触媒よりも高い触媒性能を示し、さらに実施例9の担持物はアンモニア合成速度でも既存のRu触媒よりも高い触媒性能を示した。
 本発明の金属担持物は、担持金属触媒として用いることができ、本発明の担持金属触媒を用いた際に、高い触媒活性を示す。
 本発明の担持金属触媒は、低い反応温度かつ低い反応圧力でも高いアンモニア合成活性を有するため、特にアンモニア合成用触媒として好適である。本発明の担持金属触媒を用いてアンモニアを製造することにより、より少ないエネルギーでアンモニアを合成でき、かつ合成反応を繰り返しても触媒活性の低下が見られないので、高効率に長期の化学的、熱的な安定性をもって合成できる。
 本発明の金属担持物及び担持金属触媒は、シアナミド化合物に、遷移金属を担持することで得られる。シアナミド化合物は、比較的容易に取り扱うことができる化合物であることから、簡便に、かつ安全性の高い方法で、製造することが可能であり、更にはコスト低減が期待できる。
 本発明の金属担持物は、アンモニア分解触媒としても高い効率を有するため、アンモニア分解による水素の製造方法に好適である。

Claims (18)

  1.  担体に遷移金属を担持した金属担持物であって、
     前記担体が、下記一般式(1)で表わされるシアナミド化合物であり、
      MCN  ・・・(1)
    (式中、Mは、周期表第II族元素を表わす。)
     かつ前記シアナミド化合物の比表面積が1m-1以上であることを特徴とする金属担持物。
  2.  前記Mが、Ca,Sr及びBaからなる群から選ばれる少なくとも一種である請求項1記載の金属担持物。
  3.  前記遷移金属の担持量が、前記担体100質量部に対して0.01質量部以上、50質量部以下である請求項1又は2に記載の金属担持物。
  4.  請求項1~3に記載の金属担持物からなる担持金属触媒。
  5.  アンモニア合成用触媒である、請求項4に記載の担持金属触媒。
  6.  前記遷移金属が、Ru,CoおよびFeからなる群から選ばれる少なくとも一種である請求項5に記載の担持金属触媒。
  7.  請求項4~6のいずれかに記載の担持金属触媒の存在下、窒素と水素を反応させることを特徴とするアンモニアの製造方法。
  8.  窒素と水素を反応させる際の反応温度が、100℃以上、600℃以下である請求項7に記載のアンモニアの製造方法。
  9.  窒素と水素を反応させる際の反応圧力が、0.01MPa以上、20MPa以下である請求項7又は8に記載のアンモニアの製造方法。
  10.  窒素と水素を反応させる際の窒素に対する水素の体積比(H/N=(体積)/(体積))が、0.4以上、3以下である請求項7~9のいずれか1項に記載のアンモニアの製造方法。
  11.  アンモニア分解用触媒である、請求項4に記載の担持金属触媒。
  12.  前記遷移金属が、Ru,Co,FeおよびNiからなる群から選ばれる少なくとも一種である請求項4又は11に記載の担持金属触媒。
  13.  請求項4、11又は12のいずれかに記載の担持金属触媒の存在下、アンモニアを反応させ、窒素と水素に分解することを特徴とする水素の製造方法。
  14.  アンモニアを分解させる際の反応温度が、200℃以上、800℃以下である請求項13に記載の水素の製造方法。
  15.  アンモニアを分解させる際の反応圧力が、0.01MPa以上、1.0MPa以下である請求項13又は14に記載の水素の製造方法。
  16.  下記一般式(1)で表わされるシアナミド化合物の製造方法であって、
      MCN    ・・・(1)
     (式中、Mは、周期表第II族元素を表わす。)
     前記Mの炭酸塩、又は炭素数1以上の有機酸塩に、アンモニアガスを、650℃以下で作用させることを特徴とするシアナミド化合物の製造方法。
  17.  前記製造方法で得られるシアナミド化合物の比表面積が1m-1以上である請求項16に記載のシアナミド化合物の製造方法。
  18.  前記Mが、Ca,Sr及びBaからなる群から選ばれる少なくとも一種である請求項16又は17に記載のシアナミド化合物の製造方法。
PCT/JP2018/010592 2017-03-17 2018-03-16 金属担持物、担持金属触媒、アンモニアの製造方法、水素の製造方法及びシアナミド化合物の製造方法 WO2018169076A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP18767282.9A EP3597292A4 (en) 2017-03-17 2018-03-16 METAL SUPPORT, SUPPORTED METAL CATALYST, MANUFACTURING PROCESS FOR AMMONIA, MANUFACTURING PROCESS FOR HYDROGEN AND MANUFACTURING PROCESS FOR CYANAMIDE COMPOUND
JP2019506317A JP7231157B2 (ja) 2017-03-17 2018-03-16 金属担持物、担持金属触媒、アンモニアの製造方法、水素の製造方法及びシアナミド化合物の製造方法
BR112019018745-6A BR112019018745B1 (pt) 2017-03-17 2018-03-16 Material de metal suportado, catalisador de metal suportado,método de produção de amônia, método de produção de hidrogênio e método para a produção de um composto de cianamida
US16/492,975 US11819827B2 (en) 2017-03-17 2018-03-16 Supported metal material, supported metal catalyst, method of producing ammonia, method of producing hydrogen and method of producing cyanamide compound
CN201880018220.3A CN110461466A (zh) 2017-03-17 2018-03-16 金属负载物、负载金属催化剂、氨的制造方法、氢的制造方法以及氨腈化合物的制造方法
IL269222A IL269222B2 (en) 2017-03-17 2019-09-09 Supported metal material, supported metal catalyst, method for producing ammonia, method for producing hydrogen and method for producing a cyanamide compound

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017053525 2017-03-17
JP2017-053525 2017-03-17

Publications (1)

Publication Number Publication Date
WO2018169076A1 true WO2018169076A1 (ja) 2018-09-20

Family

ID=63522364

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/010592 WO2018169076A1 (ja) 2017-03-17 2018-03-16 金属担持物、担持金属触媒、アンモニアの製造方法、水素の製造方法及びシアナミド化合物の製造方法

Country Status (6)

Country Link
US (1) US11819827B2 (ja)
EP (1) EP3597292A4 (ja)
JP (1) JP7231157B2 (ja)
CN (1) CN110461466A (ja)
IL (1) IL269222B2 (ja)
WO (1) WO2018169076A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020085324A1 (ja) 2018-10-23 2020-04-30 つばめBhb株式会社 アンモニア合成システムおよびアンモニアの製造方法
WO2021010167A1 (ja) * 2019-07-12 2021-01-21 学校法人 東洋大学 燃料電池触媒用組成物およびそれを含む燃料電池
WO2021172107A1 (ja) * 2020-02-26 2021-09-02 国立研究開発法人科学技術振興機構 典型元素酸化物を含む金属担持物、アンモニア合成用触媒、及びアンモニアの合成方法
JP7492553B2 (ja) 2022-06-03 2024-05-29 大陽日酸株式会社 重水素化アンモニアの製造装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102426142B1 (ko) * 2020-05-07 2022-07-28 한국과학기술연구원 육방정 구조의 지지체에 촉매금속이 담지된 촉매 및 이의 제조방법
JP2022070143A (ja) * 2020-10-26 2022-05-12 国立大学法人東京工業大学 アンモニア合成用触媒及び該触媒を用いるアンモニアの合成方法
CN113332983B (zh) * 2021-04-29 2022-06-03 杭州师范大学 一种多孔棒状Fe21.34O32/C纳米棒复合材料的制备方法
KR102697796B1 (ko) * 2021-11-16 2024-08-21 아주대학교산학협력단 암모니아 분해 반응용 루테늄 촉매, 이의 제조 방법 및 이를 이용하여 수소를 생산하는 방법
CN117181237B (zh) * 2023-01-13 2024-06-11 昆明贵研催化剂有限责任公司 利用含CO和NOx的废气制氨的催化剂、制备方法及制氨的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1352178A (en) 1919-03-17 1920-09-07 Nitrogen Corp Ammonia synthesis and catalyst therefor
DE559170C (de) 1929-10-11 1932-09-16 Herbert Wittek Dr Verfahren zur katalytischen Ammoniaksynthese aus den Elementen unter Druck
GB730298A (en) * 1951-07-23 1955-05-18 Koppers Gmbh Heinrich Improvements in and relating to the manufacture of cyanamides
JP2001246251A (ja) 2000-03-09 2001-09-11 Nkk Corp アンモニア合成触媒の製造方法及びアンモニア合成方法
WO2012077658A1 (ja) 2010-12-07 2012-06-14 国立大学法人東京工業大学 アンモニア合成触媒及びアンモニア合成方法
JP2017053525A (ja) 2015-09-08 2017-03-16 昭夫 落合 廃油ストーブ

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1352177A (en) 1918-06-25 1920-09-07 Nitrogen Corp Ammonia synthesis catalyst and method of making same
GB140439A (en) * 1919-03-17 1921-09-19 Nitrogen Corp Improvements in and relating to the production of ammonia
GB180314A (en) 1921-05-17 1923-07-26 Nitrogen Corp Improvements in and relating to synthesis of ammonia
JP2015110486A (ja) 2012-03-23 2015-06-18 日産化学工業株式会社 シアナミド亜鉛の製造方法
JP6143761B2 (ja) * 2012-09-20 2017-06-07 国立大学法人東京工業大学 水素生成触媒及び水素の製造法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1352178A (en) 1919-03-17 1920-09-07 Nitrogen Corp Ammonia synthesis and catalyst therefor
DE559170C (de) 1929-10-11 1932-09-16 Herbert Wittek Dr Verfahren zur katalytischen Ammoniaksynthese aus den Elementen unter Druck
GB730298A (en) * 1951-07-23 1955-05-18 Koppers Gmbh Heinrich Improvements in and relating to the manufacture of cyanamides
JP2001246251A (ja) 2000-03-09 2001-09-11 Nkk Corp アンモニア合成触媒の製造方法及びアンモニア合成方法
WO2012077658A1 (ja) 2010-12-07 2012-06-14 国立大学法人東京工業大学 アンモニア合成触媒及びアンモニア合成方法
JP2017053525A (ja) 2015-09-08 2017-03-16 昭夫 落合 廃油ストーブ

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
ANONYMOUS: "[Extract]", KAGAKU DAJITEN = [CHEMISTRY DICTIONARY 5], vol. 5, 1979, pages 758 - 759, XP009518121 *
F. IZUMIK. MOMMA: "Three-dimensional visualization in powder diffraction", SOLID STATE PHENOM., vol. 130, 2007, pages 15 - 20
KITANO, M.INOUE, Y.YAMAZAKI, Y.HAYASHI, F.KANBARA, S.MATSUISHI, S.YOKOYAMA, T.KIM, S. W.HARA, M.HOSONO, H. ET AL., NATURE CHEMISTRY, vol. 4, 2012, pages 934 - 940
See also references of EP3597292A4
SHOICHIRO NAGAIGORO YAMAGUCHI, JOURNAL OF INDUSTRIAL CHEMISTRY, vol. 43, no. 8, 1940, pages 534 - 538
TAKEDA, T. ET AL.: "Ammonia Nitridation Synthesis and Structural Change of Strontium Cyanamide Polymorphs", JOURNAL OF THE CERAMIC SOCIETY OF JAPAN, vol. 115, pages 729 - 731, XP055558601 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020085324A1 (ja) 2018-10-23 2020-04-30 つばめBhb株式会社 アンモニア合成システムおよびアンモニアの製造方法
WO2021010167A1 (ja) * 2019-07-12 2021-01-21 学校法人 東洋大学 燃料電池触媒用組成物およびそれを含む燃料電池
WO2021172107A1 (ja) * 2020-02-26 2021-09-02 国立研究開発法人科学技術振興機構 典型元素酸化物を含む金属担持物、アンモニア合成用触媒、及びアンモニアの合成方法
JP7492553B2 (ja) 2022-06-03 2024-05-29 大陽日酸株式会社 重水素化アンモニアの製造装置

Also Published As

Publication number Publication date
JP7231157B2 (ja) 2023-03-01
BR112019018745A2 (pt) 2020-04-07
JPWO2018169076A1 (ja) 2020-01-23
US11819827B2 (en) 2023-11-21
US20200078771A1 (en) 2020-03-12
IL269222A (en) 2022-12-01
IL269222B2 (en) 2023-04-01
CN110461466A (zh) 2019-11-15
EP3597292A1 (en) 2020-01-22
EP3597292A4 (en) 2021-03-17

Similar Documents

Publication Publication Date Title
WO2018169076A1 (ja) 金属担持物、担持金属触媒、アンモニアの製造方法、水素の製造方法及びシアナミド化合物の製造方法
US20240226854A1 (en) Method for manufacturing ammonia synthesis catalyst, and method for manufacturing ammonia
Zhou et al. A single source method to generate Ru-Ni-MgO catalysts for methane dry reforming and the kinetic effect of Ru on carbon deposition and gasification
US10173202B2 (en) Supported metal catalyst and method of synthesizing ammonia using the same
US10759668B2 (en) Supported metal material, supported metal catalyst, and ammonia synthesis method using the same
JP2016155123A (ja) アンモニア合成触媒とその製造方法
WO2016133213A1 (ja) アンモニア合成触媒とその製造方法
Park et al. Promotional Effect of Ruthenium Addition to Co/α-Al 2 O 3 Catalyst for Dry Reforming of Methane
JP2019126776A (ja) アンモニア合成用触媒及び該触媒を用いるアンモニア合成法
JP7418849B2 (ja) 酸窒素水素化物、酸窒素水素化物を含む金属担持物、及びアンモニア合成用触媒
WO2021172107A1 (ja) 典型元素酸化物を含む金属担持物、アンモニア合成用触媒、及びアンモニアの合成方法
JP4163292B2 (ja) 炭化水素の改質用触媒及び改質方法
WO2021172109A1 (ja) 酸窒素水素化物、酸窒素水素化物を含む金属担持物、及びアンモニア合成用触媒
BR112019018745B1 (pt) Material de metal suportado, catalisador de metal suportado,método de produção de amônia, método de produção de hidrogênio e método para a produção de um composto de cianamida
WO2024154567A1 (ja) 金属間化合物、触媒、メタノールの製造方法、一酸化炭素の製造方法、および金属間化合物の製造方法
JP2024055069A (ja) 酸窒化物を触媒担体とするアンモニア分解触媒
WO2022264112A1 (en) Catalysts for ammonia synthesis
JP2023088762A (ja) アンモニア合成触媒用担体の製造方法及びアンモニア合成触媒の製造方法
CN117920219A (zh) 甲烷合成用催化剂及其制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18767282

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019506317

Country of ref document: JP

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019018745

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2018767282

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018767282

Country of ref document: EP

Effective date: 20191017

ENP Entry into the national phase

Ref document number: 112019018745

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190910