Nothing Special   »   [go: up one dir, main page]

WO2018168929A1 - Optical module - Google Patents

Optical module Download PDF

Info

Publication number
WO2018168929A1
WO2018168929A1 PCT/JP2018/009975 JP2018009975W WO2018168929A1 WO 2018168929 A1 WO2018168929 A1 WO 2018168929A1 JP 2018009975 W JP2018009975 W JP 2018009975W WO 2018168929 A1 WO2018168929 A1 WO 2018168929A1
Authority
WO
WIPO (PCT)
Prior art keywords
mirror
optical
axis direction
mirror surface
fixed
Prior art date
Application number
PCT/JP2018/009975
Other languages
French (fr)
Japanese (ja)
Inventor
智史 鈴木
恭輔 港谷
達哉 杉本
Original Assignee
浜松ホトニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017133086A external-priority patent/JP6893449B2/en
Application filed by 浜松ホトニクス株式会社 filed Critical 浜松ホトニクス株式会社
Priority to US16/492,712 priority Critical patent/US11487104B2/en
Priority to DE112018001339.1T priority patent/DE112018001339T5/en
Priority to CN201880017380.6A priority patent/CN110402408B/en
Publication of WO2018168929A1 publication Critical patent/WO2018168929A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B3/00Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/45Interferometric spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/06Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the phase of light

Definitions

  • This disclosure relates to an optical module.
  • An optical module in which an interference optical system is formed on an SOI (Silicon On Insulator) substrate by MEMS (Micro Electro Mechanical Systems) technology is known (see, for example, Patent Document 1).
  • Such an optical module is attracting attention because it can provide an FTIR (Fourier transform infrared spectroscopic analyzer) in which a highly accurate optical arrangement is realized.
  • the optical module as described above has the following problems in that, for example, the size of the mirror surface of the movable mirror depends on the achievement level of deep drilling on the SOI substrate. That is, since the achievement level of deep drilling on the SOI substrate is about 500 ⁇ m at the maximum, there is a limit to improving the sensitivity in FTIR by increasing the mirror surface of the movable mirror.
  • a technique is conceivable in which a movable mirror formed separately is mounted on a base made of, for example, an SOI substrate. In such a technique, it has been found that it is necessary to measure whether or not the angular deviation of the mirror surface of the movable mirror is within a predetermined range.
  • the present disclosure provides an optical module capable of easily measuring whether or not the angular deviation of the mirror surface of the movable mirror is within a predetermined range while increasing the size of the mirror surface of the movable mirror. Objective.
  • An optical module has a main surface, a base provided with a mounting region and a driving region that moves the mounting region along a first direction parallel to the main surface, and the main surface.
  • a movable mirror mounted in the mounting region, a first fixed mirror having a mirror surface in a positional relationship intersecting the main surface, and fixed in position relative to the base, and movable A beam splitter unit constituting a first interference optical system for measurement light together with the mirror and the first fixed mirror, and the mirror surface of the movable mirror and the mirror surface of the first fixed mirror are directed to one side in the first direction. ing.
  • a movable mirror having a mirror surface in a positional relationship intersecting with the main surface of the base is mounted in the mounting region of the base.
  • the mirror surface of the movable mirror mounted in the mounting region and the mirror surface of the first fixed mirror whose position with respect to the base are fixed are on one side in the first direction parallel to the main surface of the base. Suitable for.
  • the mirror surface of the movable mirror is used as a reference.
  • an opening is formed in the mounting region, and the movable mirror is configured to have a mirror part having a mirror surface, an elastic part connected to the mirror part, and elastic deformation of the elastic part. And a support part to which an elastic force is applied according to the elastic part.
  • the support part is inserted into the opening in a state where the elastic force of the elastic part is applied, and the movable mirror is applied to the support part from the inner surface of the opening. It may be fixed to the mounting area by the reaction force of the elastic force. According to this, the movable mirror can be easily and accurately mounted in the mounting area.
  • the mirror surface of the movable mirror may be deviated due to particles being sandwiched between the support portion and the inner surface of the opening.
  • a configuration that can easily measure whether or not the angular deviation of the mirror surface is within a predetermined range is particularly effective.
  • the first fixed mirror is located on one side with respect to the movable mirror in the second direction parallel to the main surface and perpendicular to the first direction, and at least in the drive region.
  • a part may be located on one side or the other side of the first fixed mirror in the first direction when viewed from a third direction perpendicular to the main surface.
  • the beam splitter unit reflects a part of the measurement light reflected by the half mirror surface that reflects a part of the measurement light and transmits the remaining part of the measurement light.
  • the half mirror surface and the total reflection mirror surface may be parallel to each other. According to this, even if a deviation occurs in the mounting angle of the beam splitter unit around the axis perpendicular to the main surface of the base, if the incident angle of the measurement light to the beam splitter unit is constant, The measurement light emission angle is constant.
  • the mirror surface of the movable mirror can be enlarged, even if a deviation occurs in the measurement light emission position from the beam splitter unit, the deviation can be substantially ignored. . Therefore, the alignment accuracy of the beam splitter unit can be relaxed.
  • the first fixed mirror may be mounted on the base. According to this, it is possible to facilitate the alignment of the movable mirror and the first fixed mirror.
  • the beam splitter unit may be mounted on the base. According to this, it is possible to facilitate the alignment of the movable mirror and the beam splitter unit.
  • An optical module is disposed on at least one optical path of a first optical path between the beam splitter unit and the movable mirror and a second optical path between the beam splitter unit and the first fixed mirror.
  • a light transmissive member that corrects the optical path difference between the first optical path and the second optical path may be further provided. According to this, the interference light of the measurement light can be obtained easily and with high accuracy.
  • the light transmitting member may be mounted on the base. According to this, it is possible to facilitate the alignment of the movable mirror and the light transmission member.
  • An optical module is arranged so that measurement light incident portions are arranged so that measurement light is incident on the first interference optical system from the outside, and measurement light is emitted from the first interference optical system to the outside. And a measurement light emitting unit that has been provided. According to this, FTIR provided with the measurement light incident part and the measurement light emission part can be obtained.
  • the optical module according to one aspect of the present disclosure further includes a second fixed mirror having a mirror surface that is in a positional relationship intersecting with the main surface, and having a fixed position with respect to the base.
  • the beam splitter unit includes the movable mirror and the second mirror.
  • the second interference optical system may be configured for the laser light together with the fixed mirror, and the mirror surface of the second fixed mirror may be directed to one side in the first direction. According to this, the position of the mirror surface of the movable mirror can be measured by detecting the interference light of the laser light.
  • the mirror surface of the second fixed mirror is also directed to one side in the first direction parallel to the main surface of the base, like the mirror surface of the movable mirror. Thereby, by using the mirror surface of the second fixed mirror as a reference, it is possible to easily measure whether or not the angular deviation of the mirror surface of the movable mirror is within a predetermined range.
  • the first fixed mirror and the second fixed mirror are respectively located on both sides of the movable mirror in the second direction parallel to the main surface and perpendicular to the first direction.
  • At least a part of the drive region, when viewed from the third direction perpendicular to the main surface, is one side or the other side of the first fixed mirror in the first direction and the second fixed mirror in the first direction. It may be located on one side or the other side. According to this, space saving in the plane parallel to the main surface of the base can be achieved, and the increase in the size of the entire optical module can be suppressed.
  • the optical module according to one aspect of the present disclosure may further include a filter that is disposed on an optical path in which the laser light does not travel and the measurement light travels, and that cuts light in a wavelength range including the center wavelength of the laser light. According to this, it is possible to prevent the measurement light from becoming noise in the detection of the interference light of the laser light.
  • the optical module according to one aspect of the present disclosure further includes a light source that generates laser light to be incident on the second interference optical system, and a photodetector that detects the laser light emitted from the second interference optical system. Good. According to this, since the position of the movable mirror can be detected in real time by detecting the laser light, a more accurate FTIR can be obtained.
  • the base has a main surface, a device layer provided with a mounting region and a drive region, a support layer that supports the device layer, and a support layer between the support layer and the device layer.
  • An intermediate layer provided, the support layer is a first silicon layer of the SOI substrate, the device layer is a second silicon layer of the SOI substrate, and the intermediate layer is an insulating layer of the SOI substrate. May be. According to this, the structure for the reliable movement of the movable mirror mounted on the device layer can be suitably realized by the SOI substrate.
  • an optical module capable of easily measuring whether or not the angular deviation of the mirror surface of the movable mirror is within a predetermined range while increasing the size of the mirror surface of the movable mirror. It becomes possible.
  • FIG. 1 is a plan view of the optical module of the first embodiment.
  • FIG. 2 is a sectional view taken along line II-II in FIG. 3 is a cross-sectional view taken along line III-III in FIG.
  • FIG. 4 is a schematic diagram showing a modification of the first embodiment.
  • FIG. 5 is a plan view of the optical module of the second embodiment.
  • FIG. 6 is a diagram showing a spectrum of light incident on the photodetector in the optical module of FIG.
  • FIG. 7 is a schematic diagram showing a modification of the second embodiment.
  • FIG. 8 is a schematic diagram showing a modification of the second embodiment.
  • FIG. 9 is a schematic diagram showing a modification of the second embodiment.
  • the optical module 1 ⁇ / b> A includes a base 10.
  • the base 10 includes a support layer 2, a device layer 3 provided on the support layer 2, and an intermediate layer 4 provided between the support layer 2 and the device layer 3.
  • the support layer 2 supports the device layer 3 through the intermediate layer 4.
  • the base 10 has a main surface 10a.
  • the main surface 10a is a surface of the device layer 3 opposite to the support layer 2.
  • the support layer 2, the device layer 3, and the intermediate layer 4 are configured by an SOI substrate.
  • the support layer 2 is a first silicon layer of an SOI substrate.
  • the device layer 3 is a second silicon layer of the SOI substrate.
  • the intermediate layer 4 is an insulating layer of the SOI substrate.
  • the support layer 2 When the support layer 2, the device layer 3, and the intermediate layer 4 are viewed from the Z-axis direction (direction parallel to the Z-axis) that is the stacking direction thereof (the direction perpendicular to the main surface 10a, the third direction), for example, ,
  • One side has a rectangular shape of about 10 mm.
  • the thickness of each of the support layer 2 and the device layer 3 is, for example, about several hundred ⁇ m.
  • the thickness of the intermediate layer 4 is, for example, about several ⁇ m.
  • the device layer 3 and the intermediate layer 4 are shown with one corner of the device layer 3 and one corner of the intermediate layer 4 cut out.
  • the device layer 3 is provided with a mounting area 31 and a driving area 32.
  • the drive region 32 includes a pair of actuator regions 33 and a pair of elastic support regions 34.
  • the mounting region 31 and the drive region 32 (that is, the mounting region 31 and the pair of actuator regions 33 and the pair of elastic support regions 34) are integrally formed on a part of the device layer 3 by MEMS technology (patterning and etching). Yes.
  • the pair of actuator regions 33 are disposed on both sides of the mounting region 31 in the X-axis direction parallel to the main surface 10a (the direction parallel to the X-axis orthogonal to the Z-axis, the first direction). That is, the mounting area 31 is sandwiched between the pair of actuator areas 33 in the X-axis direction.
  • Each actuator region 33 is fixed to the support layer 2 via the intermediate layer 4.
  • a first comb tooth portion 33 a is provided on the side surface of each actuator region 33 on the mounting region 31 side.
  • Each first comb-tooth portion 33 a is in a state of floating with respect to the support layer 2 by removing the intermediate layer 4 immediately below the first comb-tooth portion 33 a.
  • Each actuator region 33 is provided with a first electrode 35.
  • the pair of elastic support regions 34 are provided on both sides of the mounting region 31 in the Y-axis direction (direction parallel to the Z-axis and the Y-axis perpendicular to the X-axis, the second direction) parallel to the main surface 10a and perpendicular to the X-axis direction. Has been placed. That is, the mounting region 31 is sandwiched between the pair of elastic support regions 34 in the Y-axis direction. Both end portions 34 a of each elastic support region 34 are fixed to the support layer 2 through the intermediate layer 4.
  • Each elastic support region 34 has an elastic deformation portion 34b (a portion between both end portions 34a) having a structure in which a plurality of leaf springs are connected.
  • each elastic support region 34 is in a state of floating with respect to the support layer 2 by removing the intermediate layer 4 immediately below the elastic deformation portion 34b.
  • a second electrode 36 is provided at each of both end portions 34 a.
  • each elastic support area 34 is connected to the mounting area 31.
  • the mounting region 31 is in a state of floating with respect to the support layer 2 by removing the intermediate layer 4 immediately below the mounting region 31. That is, the mounting area 31 is supported by the pair of elastic support areas 34.
  • a second comb tooth portion 31 a is provided on the side surface of each mounting region 31 on the side of each actuator region 33. Each second comb tooth portion 31 a is in a state of floating with respect to the support layer 2 by removing the intermediate layer 4 immediately below the second comb tooth portion 31 a. In the first comb tooth portion 33a and the second comb tooth portion 31a facing each other, the comb teeth of the first comb tooth portion 33a are located between the comb teeth of the second comb tooth portion 31a.
  • the pair of elastic support regions 34 sandwich the mounting region 31 from both sides when viewed from the direction A parallel to the X axis, and when the mounting region 31 moves along the direction A, the mounting region 31 returns to the initial position.
  • an elastic force is applied to the mounting region 31. Therefore, when a voltage is applied between the first electrode 35 and the second electrode 36 and an electrostatic attractive force acts between the first comb tooth portion 33a and the second comb tooth portion 31a facing each other, the electrostatic attractive force is applied.
  • the mounting region 31 is moved along the direction A to a position where the elastic force by the pair of elastic support regions 34 is balanced.
  • the drive area 32 functions as an electrostatic actuator and moves the mounting area 31 along the X-axis direction.
  • the optical module 1A further includes a movable mirror 5, a fixed mirror (first fixed mirror) 6, a beam splitter unit 7, a measurement light incident part 8, a measurement light emission part 9, and a light transmission member 11. ing.
  • the movable mirror 5, the fixed mirror 6, and the beam splitter unit 7 are arranged on the device layer 3 so as to constitute an interference optical system (first interference optical system) I1 for the measurement light L0.
  • the interference optical system I1 is a Michelson interference optical system.
  • the movable mirror 5 is mounted on the mounting area 31 of the device layer 3.
  • the movable mirror 5 has a mirror part 51.
  • the mirror part 51 has a mirror surface 51a in a positional relationship intersecting with the main surface 10a.
  • the mirror surface 51 a is located on the opposite side of the support layer 2 with respect to the device layer 3.
  • the mirror surface 51a is, for example, a surface perpendicular to the X-axis direction (that is, a surface perpendicular to the direction A), and is directed to one side (beam splitter unit 7 side) in the X-axis direction.
  • the fixed mirror 6 is mounted in the mounting area 37 of the device layer 3. That is, the fixed mirror 6 is mounted on the base 10.
  • the position of the fixed mirror 6 with respect to the base 10 (the position of the base 10 with respect to the region excluding the mounting region 31 and the drive region 32) is fixed.
  • the fixed mirror 6 is located on one side with respect to the movable mirror 5 in the Y-axis direction. That is, the fixed mirror 6 is shifted to one side in the Y-axis direction with respect to the movable mirror 5.
  • At least a part of the drive region 32 is located on one side of the fixed mirror 6 in the X-axis direction when viewed from the Z-axis direction.
  • the drive region 32 is aligned with the fixed mirror 6 in the X-axis direction when viewed from the Z-axis direction.
  • one elastic support region 34 in the drive region 32 is located on one side of the fixed mirror 6 in the X-axis direction when viewed from the Z-axis direction.
  • the fixed mirror 6 has a mirror part 61.
  • the mirror part 61 has a mirror surface 61a in a positional relationship intersecting with the main surface 10a.
  • the mirror surface 61 a is located on the side opposite to the support layer 2 with respect to the device layer 3.
  • the mirror surface 61a is, for example, a surface perpendicular to the X-axis direction (that is, a surface perpendicular to the direction A) and is directed to one side (beam splitter unit 7 side) in the X-axis direction.
  • the beam splitter unit 7 is located on one side of the movable mirror 5 and the fixed mirror 6 in the X-axis direction.
  • the beam splitter unit 7 is positioned on the base 10 with one corner on the bottom surface side of the beam splitter unit 7 positioned at one corner of the rectangular opening 3 a formed in the device layer 3. ing. More specifically, in the beam splitter unit 7, both side surfaces constituting the one corner in the beam splitter unit 7 are brought into contact with both side surfaces reaching the one corner in the opening 3 a. Thus, the base 10 is positioned.
  • the beam splitter unit 7 is mounted on the support layer 2 by being fixed to the support layer 2 by bonding or the like in a positioned state. That is, the beam splitter unit 7 is mounted on the base 10. Since the one corner of the opening 3a is provided with relief, the one corner of the beam splitter unit 7 does not contact the one corner of the opening 3a.
  • the beam splitter unit 7 has a half mirror surface 71, a total reflection mirror surface 72, and a plurality of optical surfaces 73a, 73b, 73c, 73d.
  • the half mirror surface 71, the total reflection mirror surface 72, and the plurality of optical surfaces 73 a, 73 b, 73 c, and 73 d are located on the side opposite to the support layer 2 with respect to the device layer 3.
  • the beam splitter unit 7 is configured by joining a plurality of optical blocks.
  • the half mirror surface 71 is formed of, for example, a dielectric multilayer film.
  • the total reflection mirror surface 72 is formed of, for example, a metal film.
  • the optical surface 73a is, for example, a surface perpendicular to the X-axis direction, and overlaps with the mirror surface 61a of the fixed mirror 6 when viewed from the X-axis direction.
  • the optical surface 73a transmits the measurement light L0 incident along the X-axis direction.
  • the half mirror surface 71 is, for example, a surface inclined by 45 ° with respect to the optical surface 73a, and overlaps the mirror surface 61a of the fixed mirror 6 when viewed from the X-axis direction.
  • the half mirror surface 71 reflects a part of the measurement light L0 incident on the optical surface 73a along the X-axis direction along the Y-axis direction, and the remaining part of the measurement light L0 along the X-axis direction. Permeate to the side.
  • the total reflection mirror surface 72 is a surface parallel to the half mirror surface 71, overlaps the mirror surface 51a of the movable mirror 5 when viewed from the X-axis direction, and half mirror surface 71 when viewed from the Y-axis direction. It overlaps with.
  • the total reflection mirror surface 72 reflects a part of the measurement light L0 reflected by the half mirror surface 71 toward the movable mirror 5 along the X-axis direction.
  • the optical surface 73b is a surface parallel to the optical surface 73a and overlaps the mirror surface 51a of the movable mirror 5 when viewed from the X-axis direction.
  • the optical surface 73b transmits a part of the measurement light L0 reflected by the total reflection mirror surface 72 to the movable mirror 5 side along the X-axis direction.
  • the optical surface 73c is a surface parallel to the optical surface 73a and overlaps the mirror surface 61a of the fixed mirror 6 when viewed from the X-axis direction.
  • the optical surface 73c transmits the remaining part of the measurement light L0 transmitted through the half mirror surface 71 to the fixed mirror 6 side along the X-axis direction.
  • the optical surface 73d is, for example, a surface perpendicular to the Y-axis direction, and overlaps the half mirror surface 71 and the total reflection mirror surface 72 when viewed from the Y-axis direction.
  • the optical surface 73d transmits the measurement light L1 along the Y-axis direction.
  • the measurement light L1 is partly reflected by the mirror surface 51a and the total reflection mirror surface 72 of the movable mirror 5 and transmitted through the half mirror surface 71, and the mirror surface 61a and the half mirror surface of the fixed mirror 6. Interference light with the remainder of the measurement light L0 sequentially reflected by 71.
  • the measurement light incident part 8 is arranged so that the measurement light L0 is incident on the interference optical system I1 from the outside.
  • the measurement light incident part 8 is mounted on the device layer 3 on one side of the beam splitter unit 7 in the X-axis direction.
  • the measurement light incident part 8 faces the optical surface 73a of the beam splitter unit 7 in the X-axis direction.
  • the measurement light incident part 8 is constituted by, for example, an optical fiber and a collimating lens.
  • the measurement light emitting unit 9 is arranged to emit measurement light L1 (interference light) from the interference optical system I1 to the outside.
  • the measurement light emitting unit 9 is mounted on the device layer 3 on one side of the beam splitter unit 7 in the Y-axis direction.
  • the measurement light emitting unit 9 faces the optical surface 73d of the beam splitter unit 7 in the Y-axis direction.
  • the measurement light emitting unit 9 is configured by, for example, an optical fiber and a collimating lens.
  • the light transmitting member 11 is disposed between the beam splitter unit 7 and the fixed mirror 6.
  • the light transmissive member 11 is positioned on the base 10 with one corner on the bottom surface side of the light transmissive member 11 positioned at one corner of the rectangular opening 3b formed in the device layer 3. ing. More specifically, the light transmitting member 11 is brought into contact with each of both side surfaces reaching the one corner in the opening 3b and both side surfaces constituting the one corner in the light transmitting member 11. Thus, the base 10 is positioned.
  • the light transmission member 11 is mounted on the support layer 2 by being fixed to the support layer 2 by adhesion or the like in a positioned state. That is, the light transmission member 11 is mounted on the base 10.
  • the relief is provided in the one corner in the opening 3b, the one corner in the light transmitting member 11 does not contact the one corner in the opening 3b.
  • the light transmitting member 11 includes a pair of optical surfaces 11a and 11b.
  • the pair of optical surfaces 11 a and 11 b are located on the opposite side of the support layer 2 with respect to the device layer 3.
  • Each of the pair of optical surfaces 11a and 11b is, for example, a surface perpendicular to the X-axis direction.
  • the pair of optical surfaces 11a and 11b are parallel to each other.
  • the light transmission member 11 includes an optical path (first optical path) P1 between the beam splitter unit 7 and the movable mirror 5 and an optical path (second optical path) P2 between the beam splitter unit 7 and the fixed mirror 6. Correct the optical path difference.
  • the optical path P1 is an optical path from the half mirror surface 71 to the mirror surface 51a of the movable mirror 5 located at the reference position through the total reflection mirror surface 72 and the optical surface 73b in order, and is measured. This is an optical path along which a part of the light L0 travels.
  • the optical path P2 is an optical path from the half mirror surface 71 to the mirror surface 61a of the fixed mirror 6 through the optical surface 73c, and is an optical path along which the remainder of the measurement light L0 travels.
  • the light transmitting member 11 includes an optical path length of the optical path P1 (an optical path length considering the refractive index of each medium passing through the optical path P1) and an optical path length of the optical path P2 (an optical path length considering the refractive index of each medium passing through the optical path P2). For example, the optical path difference between the optical path P1 and the optical path P2 is corrected so that the difference between the two becomes zero.
  • the light transmitting member 11 is formed of the same light transmitting material as the light transmitting material (for example, glass) used for each optical block constituting the beam splitter unit 7.
  • a part of the measurement light L0 is a half mirror surface of the beam splitter unit 7. 71 and the total reflection mirror surface 72 are sequentially reflected and proceed toward the mirror surface 51 a of the movable mirror 5.
  • a part of the measurement light L 0 is reflected by the mirror surface 51 a of the movable mirror 5, travels on the same optical path (that is, the optical path P 1), and passes through the half mirror surface 71 of the beam splitter unit 7.
  • the remaining part of the measurement light L0 passes through the half mirror surface 71 of the beam splitter unit 7 and proceeds toward the mirror surface 61a of the fixed mirror 6.
  • the remainder of the measurement light L0 is reflected by the mirror surface 61a of the fixed mirror 6, travels on the same optical path (that is, the optical path P2), and is reflected by the half mirror surface 71 of the beam splitter unit 7.
  • the measurement light L1 is emitted from the interference optical system I1 to the outside via the measurement light emitting unit 9.
  • the optical module 1A since the movable mirror 5 can be reciprocated at high speed along the direction A, a small and highly accurate FTIR can be provided. [Movable mirror and surrounding structure]
  • the movable mirror 5 includes a mirror part 51, an elastic part 52, a connecting part 53, a pair of leg parts (support parts) 54, and a pair of locking parts (support parts). 55).
  • the movable mirror 5 configured as described below is integrally formed by MEMS technology (patterning and etching).
  • the mirror part 51 is formed in a plate shape (for example, a disk shape) having the mirror surface 51a as a main surface.
  • the elastic part 52 is formed in an annular shape (for example, an annular shape) surrounding the mirror part 51 while being separated from the mirror part 51 when viewed from the X-axis direction (direction perpendicular to the mirror surface 51a).
  • the connecting portion 53 connects the mirror portion 51 and the elastic portion 52 to each other on one side in the Y-axis direction with respect to the center of the mirror portion 51 when viewed from the X-axis direction.
  • the pair of leg portions 54 are connected to the outer surface of the elastic portion 52 on both sides in the Y-axis direction with respect to the center of the mirror portion 51 when viewed from the X-axis direction. That is, the mirror part 51 and the elastic part 52 are sandwiched between the pair of leg parts 54 in the Y-axis direction. Each leg portion 54 extends closer to the mounting region 31 than the mirror portion 51 and the elastic portion 52.
  • the pair of locking portions 55 are provided at the end portions on the mounting region 31 side of the respective leg portions 54. Each locking portion 55 is formed so as to be bent in, for example, a V shape on the inner side (side closer to each other) when viewed from the X-axis direction.
  • the movable mirror 5 configured as described above is mounted in the mounting region 31 by arranging the pair of locking portions 55 in the opening 31b formed in the mounting region 31.
  • the openings 31b are opened on both sides of the mounting region 31 in the Z-axis direction. A part of each locking portion 55 protrudes from the surface on the intermediate layer 4 side in the mounting region 31. That is, the movable mirror 5 penetrates the mounting area 31.
  • an elastic force acts on the outside (side away from each other) according to the elastic deformation of the elastic portion 52. That is, the pair of locking portions 55 are inserted into the opening 31b in a state where the elastic force of the elastic portion 52 is applied.
  • the elastic force is generated when the annular elastic portion 52 compressed when the movable mirror 5 is mounted in the mounting region 31 is restored to the initial state.
  • the movable mirror 5 is fixed to the mounting region 31 by the reaction force of the elastic force applied to the pair of locking portions 55 from the inner surface of the opening 31b.
  • the opening 31 b is formed in a trapezoidal shape spreading toward the opposite side to the beam splitter unit 7 when viewed from the Z-axis direction.
  • the movable mirror 5 is automatically operated in each of the X-axis direction, the Y-axis direction, and the Z-axis direction by engaging the pair of locking portions 55 having a shape bent inward with the opening 31b having such a shape. Positioned (self-aligned).
  • the intermediate layer 4 has an opening 41 formed therein.
  • the openings 41 are open on both sides of the intermediate layer 4 in the Z-axis direction.
  • An opening 21 is formed in the support layer 2.
  • the openings 21 are open on both sides of the support layer 2 in the Z-axis direction.
  • a continuous space S ⁇ b> 1 is configured by the region in the opening 41 of the intermediate layer 4 and the region in the opening 21 of the support layer 2. That is, the space S ⁇ b> 1 includes a region in the opening 41 of the intermediate layer 4 and a region in the opening 21 of the support layer 2.
  • the space S ⁇ b> 1 is formed between the support layer 2 and the device layer 3 and corresponds to at least the mounting region 31 and the drive region 32.
  • the region in the opening 41 of the intermediate layer 4 and the region in the opening 21 of the support layer 2 include a range in which the mounting region 31 moves when viewed from the Z-axis direction.
  • a region in the opening 41 of the intermediate layer 4 is a portion to be separated from the support layer 2 in the mounting region 31 and the drive region 32 (that is, a portion to be floated with respect to the support layer 2, for example,
  • a gap for separating the entire mounting region 31, the elastic deformation portion 34 b of each elastic support region 34, the first comb tooth portion 33 a and the second comb tooth portion 31 a) from the support layer 2 is formed.
  • the space S1 corresponding to at least the mounting region 31 and the drive region 32 is the support layer 2 and the device layer so that the entire mounting region 31 and at least a part of the drive region 32 are separated from the support layer 2.
  • 3 means a space formed between the two.
  • each locking portion 55 of the movable mirror 5 is located in the space S1. Specifically, a part of each locking portion 55 is located in a region in the opening 21 of the support layer 2 via a region in the opening 41 of the intermediate layer 4. A part of each locking portion 55 protrudes from the surface of the device layer 3 on the intermediate layer 4 side into the space S1, for example, about 100 ⁇ m. As described above, the region in the opening 41 of the intermediate layer 4 and the region in the opening 21 of the support layer 2 include a range in which the mounting region 31 moves when viewed from the Z-axis direction. Is reciprocated along the direction A, a part of each locking portion 55 of the movable mirror 5 positioned in the space S1 does not come into contact with the intermediate layer 4 and the support layer 2. [Fixed mirror and its peripheral structure]
  • the fixed mirror 6 has the same configuration as the movable mirror 5. As shown in FIG. 1, the fixed mirror 6 is mounted in the mounting region 37 by arranging a pair of locking portions in an opening 37 a formed in the mounting region 37. [Action and effect]
  • the movable mirror 5 having the mirror surface 51 a that is in a positional relationship intersecting the main surface 10 a of the base 10 is mounted in the mounting region 31 of the base 10. Thereby, the mirror surface 51a of the movable mirror 5 can be increased in size.
  • the mirror surface 51a of the movable mirror 5 mounted in the mounting region 31 and the mirror surface 61a of the fixed mirror 6 whose position with respect to the base 10 are fixed are parallel to the main surface 10a of the base 10. It faces one side in the axial direction.
  • the mirror surface 61a of the fixed mirror 6 is used as a reference. It is possible to easily measure whether or not the angular deviation of the mirror surface 51a is within a predetermined range. As described above, according to the optical module 1A, it is easily measured whether or not the angular deviation of the mirror surface 51a of the movable mirror 5 is within a predetermined range while increasing the size of the mirror surface 51a of the movable mirror 5. be able to.
  • the movable mirror 5 is fixed to the mounting region 31 by the reaction force of the elastic force applied to the locking portion 55 from the inner surface of the opening 31b of the mounting region 31.
  • the movable mirror 5 can be easily and accurately mounted on the mounting region 31 using self-alignment.
  • the mirror surface 51a of the movable mirror 5 may be angularly shifted due to particles caught between the locking portion 55 and the inner surface of the opening 31b.
  • a configuration that can easily measure whether or not the angular deviation of the mirror surface 51a of the movable mirror 5 is within a predetermined range is particularly effective.
  • the fixed mirror 6 when the fixed mirror 6 is positioned on one side with respect to the movable mirror 5 in the Y-axis direction, and at least a part of the drive region 32 is viewed from the Z-axis direction, It is located on one side of the fixed mirror 6 in the X-axis direction. Thereby, space saving in the surface parallel to the main surface 10a of the base 10 can be achieved, and the enlargement of the entire optical module 1A can be suppressed.
  • the beam splitter unit 7 reflects a part of the measurement light L0 and transmits the remaining part of the measurement light L0, and one of the measurement light L0 reflected by the half mirror surface 71.
  • the total reflection mirror surfaces 72 that reflect the portions are parallel to each other. Thereby, even if the mounting angle of the beam splitter unit 7 around the axis perpendicular to the main surface 10a of the base 10 is deviated, the measurement light L0 to the beam splitter unit 7 (specifically, the optical surface 73a) is shifted. If the incident angle is constant, the emission angle of the measurement light L0 from the beam splitter unit 7 (specifically, the optical surface 73b) is constant.
  • the mirror surface 51a of the movable mirror 5 can be enlarged, even if a deviation occurs in the emission position of the measurement light L0 from the beam splitter unit 7, the deviation is substantially ignored. can do. Therefore, the alignment accuracy of the beam splitter unit 7 can be relaxed.
  • the fixed mirror 6 is mounted on the base 10. Thereby, the positioning of the movable mirror 5 and the fixed mirror 6 can be facilitated.
  • the beam splitter unit 7 is mounted on the base 10. Thereby, the positioning of the movable mirror 5 and the beam splitter unit 7 can be facilitated.
  • the light transmission member 11 is disposed on the optical path P1, and corrects the optical path difference between the optical path P1 and the optical path P2. Thereby, the interference light (measurement light L1) of the measurement light L0 can be obtained easily and with high accuracy.
  • the light transmitting member 11 is mounted on the base 10. Thereby, the positioning of the movable mirror 5 and the light transmission member 11 can be facilitated.
  • the measurement light incident part 8 is arranged so that the measurement light L0 is incident on the interference optical system I1 from the outside, and the measurement light emitting part 9 is externally measured from the interference optical system I1. It arrange
  • the base 10 is configured by an SOI substrate.
  • the structure for the reliable movement of the movable mirror 5 mounted on the device layer 3 can be suitably realized by the SOI substrate.
  • the fixed mirror 6 may be provided on the optical surface 11b of the light transmitting member 11. Moreover, as shown in FIG. 4B, the mirror surface 51a of the movable mirror 5 and the mirror surface 61a of the fixed mirror 6 may be located on the same plane. In this case, the light transmission member 11 may be disposed between the beam splitter unit 7 and the movable mirror 5, and the light transmission member 17 may be disposed between the beam splitter unit 7 and the fixed mirror 6.
  • the light transmitting member 17 includes optical surfaces 17a and 17b and total reflection mirror surfaces 17c and 17d.
  • the optical surface 17a is, for example, a surface perpendicular to the X-axis direction.
  • the optical surface 17a transmits the remainder of the measurement light L0 incident along the X-axis direction.
  • the total reflection mirror surface 17c is, for example, a surface inclined by 45 ° with respect to the optical surface 17a.
  • the total reflection mirror surface 17c reflects the remainder of the measurement light L0 incident on the optical surface 17a along the X-axis direction along the Y-axis direction.
  • the total reflection mirror surface 17d is a surface parallel to the total reflection mirror surface 17c.
  • the total reflection mirror surface 17d reflects the remainder of the measurement light L0 reflected by the total reflection mirror surface 17c toward the fixed mirror 6 along the X-axis direction.
  • the optical surface 17b is a surface parallel to the optical surface 17a. The optical surface 17b transmits the remainder of the measurement light L0 incident along the X-axis direction.
  • the light transmitting member 11 and the light transmitting member 17 are provided between the beam splitter unit 7 and the movable mirror 5, and between the beam splitter unit 7 and the fixed mirror 6. In the configuration shown in FIG. The optical path difference from the optical path P2 is corrected.
  • the optical module 1 ⁇ / b> B includes the above-described optical module 1 ⁇ / b> A in that it further includes a fixed mirror (second fixed mirror) 12, a light source 13, a photodetector 14, and a filter 15. Mainly different.
  • the movable mirror 5, the fixed mirror 6, and the beam splitter unit 7 are arranged on the device layer 3 so as to configure the interference optical system (first interference optical system) I1 for the measurement light L0.
  • the movable mirror 5, the fixed mirror 12, and the beam splitter unit 7 are arranged on the device layer 3 so as to constitute an interference optical system (second interference optical system) I2 with respect to the laser light L10. Yes.
  • each of the interference optical systems I1 and I2 is a Michelson interference optical system.
  • the fixed mirror 12 is mounted in the mounting area 38 of the device layer 3. That is, the fixed mirror 12 is mounted on the base 10.
  • the fixed mirror 12 is fixed at a position relative to the base 10 (a position relative to an area of the base 10 excluding the mounting area 31 and the drive area 32).
  • the fixed mirror 12 is located on the other side with respect to the movable mirror 5 in the Y-axis direction (the side opposite to the one side on which the fixed mirror 6 is displaced). That is, the fixed mirror 12 is shifted to the other side in the Y-axis direction with respect to the movable mirror 5.
  • the fixed mirrors 6 and 12 are positioned on both sides of the movable mirror 5 in the Y-axis direction. At least a part of the drive region 32 is located on one side of the fixed mirror 6 in the X-axis direction and one side of the fixed mirror 12 in the X-axis direction when viewed from the Z-axis direction. That is, at least a part of the drive region 32 is aligned with the fixed mirrors 6 and 12 in the X-axis direction when viewed from the Z-axis direction. Specifically, one elastic support region 34 in the drive region 32 is located on one side of the fixed mirror 6 in the X-axis direction when viewed from the Z-axis direction. Further, the other elastic support region 34 of the drive region 32 is located on one side of the fixed mirror 12 in the X-axis direction when viewed from the Z-axis direction.
  • the fixed mirror 12 has a mirror part 121.
  • the mirror part 121 has a mirror surface 121a in a positional relationship intersecting the main surface 10a.
  • the mirror surface 121 a is located on the side opposite to the support layer 2 with respect to the device layer 3.
  • the mirror surface 121a is, for example, a surface perpendicular to the X-axis direction (that is, a surface perpendicular to the direction A) and is directed to one side (beam splitter unit 7 side) in the X-axis direction.
  • the fixed mirror 12 has the same configuration as that of the movable mirror 5 and is mounted in the mounting region 38 by arranging a pair of locking portions in the opening 38 a formed in the mounting region 38.
  • the beam splitter unit 7 has a plurality of half mirror surfaces 71a and 71b, a total reflection mirror surface 72, a dichroic mirror surface 74, and a plurality of optical surfaces 75a, 75b, 75c, 75d, 75e, and 75f.
  • the plurality of half mirror surfaces 71a and 71b, the total reflection mirror surface 72, the dichroic mirror surface 74, and the plurality of optical surfaces 75a, 75b, 75c, 75d, 75e, and 75f are opposite to the support layer 2 with respect to the device layer 3. Is located.
  • the beam splitter unit 7 is configured by joining a plurality of optical blocks.
  • Each half mirror surface 71a, 71b is formed of a dielectric multilayer film, for example.
  • the total reflection mirror surface 72 is formed of, for example, a metal film.
  • the dichroic mirror surface 74 is formed of a dielectric multilayer film, for example.
  • the optical surface 75a is, for example, a surface perpendicular to the X-axis direction, and overlaps the mirror surface 61a of the fixed mirror 6 when viewed from the X-axis direction.
  • the optical surface 75a transmits the measurement light L0 incident along the X-axis direction.
  • the half mirror surface 71a is, for example, a surface inclined by 45 ° with respect to the optical surface 75a, and overlaps the mirror surface 61a of the fixed mirror 6 when viewed from the X-axis direction.
  • the half mirror surface 71a reflects a part of the measurement light L0 incident on the optical surface 75a along the X-axis direction along the Y-axis direction, and the remaining part of the measurement light L0 along the X-axis direction. Permeate to the side.
  • the optical surface 75b is, for example, a surface perpendicular to the X-axis direction, and overlaps the mirror surface 51a of the movable mirror 5 when viewed from the X-axis direction.
  • the optical surface 75b transmits the laser beam L10 incident along the X-axis direction.
  • the half mirror surface 71b is a surface parallel to the half mirror surface 71a, overlaps the mirror surface 51a of the movable mirror 5 when viewed from the X-axis direction, and the half mirror surface 71a when viewed from the Y-axis direction. overlapping.
  • the half mirror surface 71b reflects a part of the laser light L10 incident on the optical surface 75b along the X-axis direction along the Y-axis direction and the remaining part of the laser light L10 along the X-axis direction. Permeate to the side.
  • the half mirror surface 71b reflects a part of the measurement light L0 reflected by the half mirror surface 71a to the movable mirror 5 side along the X-axis direction.
  • the total reflection mirror surface 72 is a surface parallel to the half mirror surfaces 71a and 71b, overlaps the mirror surface 121a of the fixed mirror 12 when viewed from the X-axis direction, and is a half mirror when viewed from the Y-axis direction. It overlaps with the surfaces 71a and 71b.
  • the total reflection mirror surface 72 reflects a part of the laser light L10 reflected by the half mirror surface 71b to the fixed mirror 12 side along the X-axis direction.
  • the optical surface 75c is a surface parallel to the optical surfaces 75a and 75b, and overlaps the mirror surface 51a of the movable mirror 5 when viewed from the X-axis direction.
  • the optical surface 75c transmits a part of the measurement light L0 reflected by the half mirror surface 71b and the remaining part of the laser light L10 transmitted through the half mirror surface 71b to the movable mirror 5 side along the X-axis direction.
  • the optical surface 75d is a surface parallel to the optical surfaces 75a and 75b, and overlaps the mirror surface 121a of the fixed mirror 12 when viewed from the X-axis direction.
  • the optical surface 75d transmits part of the laser light L10 reflected by the total reflection mirror surface 72 to the fixed mirror 12 side along the X-axis direction.
  • the optical surface 75e is a surface parallel to the optical surfaces 75a and 75b, and overlaps the mirror surface 61a of the fixed mirror 6 when viewed from the X-axis direction.
  • the optical surface 75e transmits the remaining portion of the measurement light L0 transmitted through the half mirror surface 71a to the fixed mirror 6 side along the X-axis direction.
  • the dichroic mirror surface 74 is parallel to the half mirror surfaces 71a and 71b and the total reflection mirror surface 72, and overlaps the half mirror surfaces 71a and 71b and the total reflection mirror surface 72 when viewed from the Y-axis direction.
  • the dichroic mirror surface 74 transmits the measurement light L1 along the Y-axis direction and reflects the laser light L11 along the X-axis direction.
  • the measurement light L1 is partly reflected by the mirror surface 51a and the half mirror surface 71b of the movable mirror 5 and transmitted through the half mirror surface 71a, and the mirror surface 61a and the half mirror surface 71a of the fixed mirror 6.
  • the laser beam L11 is sequentially reflected by the mirror surface 121a and the total reflection mirror surface 72 of the fixed mirror 12 and sequentially transmitted through the half mirror surface 71b and the half mirror surface 71a. This is interference light with the remainder of the laser beam L10 that is sequentially reflected by the mirror surface 51a and the half mirror surface 71b and transmitted through the half mirror surface 71a.
  • the optical surface 75f is a surface parallel to the optical surfaces 75c, 75d, and 75e, and overlaps the dichroic mirror surface 74 when viewed from the X-axis direction.
  • the optical surface 75f transmits the laser light L11 reflected by the dichroic mirror surface 74 along the X-axis direction.
  • the measurement light incident part 8 is arranged so that the measurement light L0 is incident on the interference optical system I1 from the outside.
  • the measurement light incident part 8 is mounted on the device layer 3 on one side of the beam splitter unit 7 in the X-axis direction.
  • the measurement light incident part 8 faces the optical surface 75a of the beam splitter unit 7 in the X-axis direction.
  • the measurement light incident part 8 is constituted by, for example, an optical fiber and a collimating lens.
  • the measurement light emitting unit 9 is arranged so as to emit measurement light L1 from the interference optical system I1 to the outside.
  • the measurement light emitting unit 9 is mounted on the device layer 3 on one side of the beam splitter unit 7 in the Y-axis direction.
  • the measurement light emitting unit 9 faces the dichroic mirror surface 74 of the beam splitter unit 7 in the Y-axis direction.
  • the measurement light emitting unit 9 is configured by, for example, an optical fiber and a collimating lens.
  • the light source 13 generates a laser beam L10 that is incident on the interference optical system I2.
  • the light source 13 is a laser diode, for example.
  • the light source 13 is mounted on the device layer 3 on one side of the beam splitter unit 7 in the X-axis direction.
  • the light source 13 faces the optical surface 75b of the beam splitter unit 7 in the X-axis direction.
  • the light detector 14 detects the laser light L11 emitted from the interference optical system I2.
  • the photodetector 14 is, for example, a photodiode.
  • the photodetector 14 is mounted on the device layer 3 on one side of the beam splitter unit 7 in the X-axis direction.
  • the photodetector 14 faces the optical surface 75f of the beam splitter unit 7 in the X-axis direction.
  • the filter 15 is disposed on the optical path where the laser beam L10 does not travel and the measurement beam L0 travels. Specifically, the filter 15 is disposed between the measurement light incident portion 8 and the beam splitter unit 7. The filter 15 cuts light in a wavelength range including the center wavelength of the laser light L10.
  • the optical module 1 ⁇ / b> B configured as described above, when the measurement light L ⁇ b> 0 enters the interference optical system I ⁇ b> 1 from the outside via the measurement light incident unit 8 and the filter 15, a part of the measurement light L ⁇ b> 0 is part of the beam splitter unit 7.
  • the light is sequentially reflected by the half mirror surface 71 a and the half mirror surface 71 b and travels toward the mirror surface 51 a of the movable mirror 5.
  • a part of the measurement light L 0 is reflected by the mirror surface 51 a of the movable mirror 5, travels on the same optical path (that is, the optical path P 1), and passes through the half mirror surface 71 a of the beam splitter unit 7.
  • the remaining part of the measurement light L0 passes through the half mirror surface 71a of the beam splitter unit 7 and proceeds toward the mirror surface 61a of the fixed mirror 6.
  • the remainder of the measurement light L0 is reflected by the mirror surface 61a of the fixed mirror 6, travels on the same optical path (that is, the optical path P2), and is reflected by the half mirror surface 71a of the beam splitter unit 7.
  • the measurement light L1 passes through the dichroic mirror surface 74 of the beam splitter unit 7 and is emitted from the interference optical system I1 to the outside via the measurement light emitting unit 9.
  • the laser light L10 when the laser light L10 is incident on the interference optical system I2 from the light source 13, a part of the laser light L10 is sequentially reflected by the half mirror surface 71b and the total reflection mirror surface 72 of the beam splitter unit 7. Then, it proceeds toward the mirror surface 121a of the fixed mirror 12. A part of the laser beam L10 is reflected by the mirror surface 121a of the fixed mirror 12, and travels on the same optical path (that is, the optical path P3 (third optical path) between the beam splitter unit 7 and the fixed mirror 12). The light travels through the half mirror surface 71 b of the beam splitter unit 7.
  • the remaining part of the laser beam L10 passes through the half mirror surface 71b of the beam splitter unit 7 and proceeds toward the mirror surface 51a of the movable mirror 5.
  • the remainder of the laser beam L10 is reflected by the mirror surface 51a of the movable mirror 5, travels on the same optical path (that is, the optical path P1), and is reflected by the half mirror surface 71b of the beam splitter unit 7.
  • a part of the laser light L10 transmitted through the half mirror surface 71b of the beam splitter unit 7 and the remaining part of the laser light L10 reflected by the half mirror surface 71b of the beam splitter unit 7 become laser light L11 that is interference light.
  • the laser beam L11 passes through the half mirror surface 71a of the beam splitter unit 7, is reflected by the dichroic mirror surface 74 of the beam splitter unit 7, is emitted from the interference optical system I2, and is detected by the photodetector 14.
  • the optical module 1B since the position of the movable mirror 5 can be detected in real time by detecting the laser light L11, more accurate FTIR can be provided.
  • the filter 15 disposed between the measurement light incident portion 8 and the beam splitter unit 7 causes light in a wavelength range including the center wavelength of the laser light L10 (for example, a wavelength of 1 ⁇ m or less) from the measurement light L0.
  • the measuring light L0) in the range is cut.
  • the laser light L11 and the measurement light L1 are prevented from being mixed in the light incident on the photodetector 14.
  • the mirror surface 51a of the movable mirror 5 is enlarged while the angular deviation of the mirror surface 51a of the movable mirror 5 is within a predetermined range. Whether or not there is can be easily measured.
  • the fixed mirrors 6 and 12 are positioned on both sides of the movable mirror 5 in the Y-axis direction, and at least a part of the drive region 32 is viewed from the Z-axis direction. , One side of the fixed mirror 6 in the X-axis direction and one side of the fixed mirror 12 in the X-axis direction. Thereby, the space saving in the surface parallel to the main surface 10a of the base 10 can be achieved, and the enlargement of the entire optical module 1B can be suppressed.
  • the filter 15 that cuts light in a wavelength range including the center wavelength of the laser light L10 is disposed on the optical path where the laser light L10 does not travel and the measurement light L0 travels. Thereby, it is possible to prevent the measurement light L1 from becoming noise in detecting the interference light (laser light L11) of the laser light L10.
  • the optical module 1B also includes a light source 13 that generates a laser beam L10 that is incident on the interference optical system I2, and a photodetector 14 that detects the laser beam L11 emitted from the interference optical system I2.
  • a light source 13 that generates a laser beam L10 that is incident on the interference optical system I2
  • a photodetector 14 that detects the laser beam L11 emitted from the interference optical system I2.
  • the light source 13 and the photodetector 14 may be mounted on a circuit board 16 provided separately from the base 10.
  • the fixed mirror 6 may be provided on the optical surface 11 b of the light transmitting member 11. 7B, the fixed mirrors 6 and 12 may be located on one side with respect to the movable mirror 5 in the Y-axis direction.
  • the beam splitter unit 7 may be configured as follows.
  • the optical surface 75a is, for example, a surface perpendicular to the X-axis direction and overlaps the mirror surface 61a of the fixed mirror 6 when viewed from the X-axis direction. .
  • the optical surface 75a transmits the measurement light L0 incident along the X-axis direction.
  • the half mirror surface 71a is, for example, a surface inclined by 45 ° with respect to the optical surface 75a, and overlaps the mirror surface 61a of the fixed mirror 6 when viewed from the X-axis direction.
  • the half mirror surface 71a reflects a part of the measurement light L0 incident on the optical surface 75a along the X-axis direction along the Y-axis direction, and the remaining part of the measurement light L0 along the X-axis direction. Permeate to the side.
  • the optical surface 75b is, for example, a surface perpendicular to the X-axis direction, and overlaps with the mirror surface 121a of the fixed mirror 12 when viewed from the X-axis direction.
  • the optical surface 75b transmits the laser beam L10 incident along the X-axis direction.
  • the half mirror surface 71b is a surface parallel to the half mirror surface 71a, overlaps with the mirror surface 121a of the fixed mirror 12 when viewed from the X-axis direction, and the half mirror surface 71a when viewed from the Y-axis direction. overlapping.
  • the half mirror surface 71b reflects a part of the laser light L10 incident on the optical surface 75b along the X-axis direction along the Y-axis direction and the remaining part of the laser light L10 along the X-axis direction. Permeate to the side.
  • the half mirror surface 71a transmits part of the laser light L10 reflected by the half mirror surface 71b along the Y-axis direction.
  • the total reflection mirror surface 72 is a surface parallel to the half mirror surfaces 71a and 71b, overlaps the mirror surface 51a of the movable mirror 5 when viewed from the X-axis direction, and is a half mirror when viewed from the Y-axis direction. It overlaps with the surfaces 71a and 71b.
  • the total reflection mirror surface 72 reflects a part of the measurement light L0 reflected by the half mirror surface 71a and a part of the laser light L10 reflected by the half mirror surface 71b to the movable mirror 5 side along the X-axis direction. To do.
  • the optical surface 75c is a surface parallel to the optical surfaces 75a and 75b, and overlaps the mirror surface 61a of the fixed mirror 6 when viewed from the X-axis direction.
  • the optical surface 75c transmits the remaining portion of the measurement light L0 transmitted through the half mirror surface 71a to the fixed mirror 6 side along the X-axis direction.
  • the optical surface 75d is a surface parallel to the optical surfaces 75a and 75b, and overlaps the mirror surface 51a of the movable mirror 5 when viewed from the X-axis direction.
  • the optical surface 75d transmits part of the measurement light L0 and part of the laser light L10 reflected by the total reflection mirror surface 72 to the movable mirror 5 side along the X-axis direction.
  • the optical surface 75e is a surface parallel to the optical surfaces 75a and 75b, and overlaps the mirror surface 121a of the fixed mirror 12 when viewed from the X-axis direction.
  • the optical surface 75e transmits the remaining part of the laser light L10 transmitted through the half mirror surface 71a to the fixed mirror 12 side along the X-axis direction.
  • the dichroic mirror surface 74 is parallel to the half mirror surfaces 71a and 71b and the total reflection mirror surface 72, and overlaps the half mirror surfaces 71a and 71b and the total reflection mirror surface 72 when viewed from the Y-axis direction.
  • the dichroic mirror surface 74 transmits the measurement light L1 along the Y-axis direction and reflects the laser light L11 along the X-axis direction.
  • the measurement light L1 is partly reflected by the mirror surface 51a and the total reflection mirror surface 72 of the movable mirror 5 and sequentially transmitted through the half mirror surfaces 71a and 71b, and the mirror surface 61a of the fixed mirror 6.
  • the laser beam L11 is partly reflected by the mirror surface 51a and the total reflection mirror surface 72 of the movable mirror 5 and sequentially transmitted through the half mirror surfaces 71a and 71b, and the mirror surface 121a of the fixed mirror 12. And interference light with the remainder of the laser light L10 reflected sequentially by the half mirror surface 71b.
  • the optical surface 75f is a surface parallel to the optical surfaces 75c, 75d, and 75e, and overlaps the dichroic mirror surface 74 when viewed from the X-axis direction.
  • the optical surface 75f transmits the laser light L11 reflected by the dichroic mirror surface 74 along the X-axis direction.
  • the movable mirror 5, the fixed mirror 6, and the beam splitter unit 7 constitute the interference optical system I1 for the measurement light L0 and the interference optical system for the laser light L10. I2 may be configured.
  • the beam splitter unit 7 may be configured as follows.
  • the optical surface 75a is, for example, a surface perpendicular to the X-axis direction and overlaps the mirror surface 61a of the fixed mirror 6 when viewed from the X-axis direction. .
  • the optical surface 75a transmits the measurement light L0 incident along the X-axis direction.
  • the half mirror surface 71a is, for example, a surface inclined by 45 ° with respect to the optical surface 75a, and overlaps the mirror surface 61a of the fixed mirror 6 when viewed from the X-axis direction.
  • the half mirror surface 71a reflects a part of the measurement light L0 incident on the optical surface 75a along the X-axis direction along the Y-axis direction, and the remaining part of the measurement light L0 along the X-axis direction. Permeate to the side.
  • the optical surface 75b is, for example, a surface perpendicular to the X-axis direction, and is located on one side of the optical surface 75a in the Y-axis direction.
  • the optical surface 75b transmits the laser beam L10 incident along the X-axis direction.
  • the half mirror surface 71b is a surface parallel to the half mirror surface 71a, and overlaps the optical surface 75b when viewed from the X-axis direction and overlaps the half mirror surface 71a when viewed from the Y-axis direction.
  • the half mirror surface 71b reflects the laser light L10 incident on the optical surface 75b along the X-axis direction along the Y-axis direction.
  • the half mirror surface 71a transmits part of the laser light L10 reflected by the half mirror surface 71b along the Y-axis direction and reflects the remaining part of the laser light L10 toward the fixed mirror 6 along the X-axis direction.
  • the total reflection mirror surface 72 is a surface parallel to the half mirror surfaces 71a and 71b, overlaps the mirror surface 51a of the movable mirror 5 when viewed from the X-axis direction, and is a half mirror when viewed from the Y-axis direction. It overlaps with the surfaces 71a and 71b.
  • the total reflection mirror surface 72 reflects a part of the measurement light L0 reflected by the half mirror surface 71a and a part of the laser light L10 transmitted through the half mirror surface 71a to the movable mirror 5 side along the X-axis direction. .
  • the optical surface 75c is a surface parallel to the optical surfaces 75a and 75b, and overlaps the mirror surface 61a of the fixed mirror 6 when viewed from the X-axis direction.
  • the optical surface 75c transmits the remaining portion of the measurement light L0 transmitted through the half mirror surface 71a and the remaining portion of the laser light L10 reflected by the half mirror surface 71a to the fixed mirror 6 side along the X-axis direction.
  • the optical surface 75d is a surface parallel to the optical surfaces 75a and 75b, and overlaps the mirror surface 51a of the movable mirror 5 when viewed from the X-axis direction.
  • the optical surface 75d transmits part of the measurement light L0 and part of the laser light L10 reflected by the total reflection mirror surface 72 to the movable mirror 5 side along the X-axis direction.
  • the half mirror surface 71c is a surface parallel to the half mirror surfaces 71a and 71b and the total reflection mirror surface 72, and is located between the half mirror surface 71a and the half mirror surface 71b in the Y-axis direction.
  • the half mirror surface 71c reflects the measurement light L1 along the X-axis direction and transmits the laser light L11 along the Y-axis direction.
  • the half mirror surface 71b transmits the laser light L11 transmitted through the half mirror surface 71c along the Y-axis direction.
  • the measurement light L1 is partly reflected by the mirror surface 51a and the total reflection mirror surface 72 of the movable mirror 5 and transmitted through the half mirror surface 71a, and the mirror surface 61a and the half mirror surface of the fixed mirror 6.
  • the laser beam L11 is partly reflected by the mirror surface 51a and the total reflection mirror surface 72 of the movable mirror 5 and transmitted through the half mirror surface 71a, and the mirror surface 61a and the half mirror surface of the fixed mirror 6. It is interference light with the remainder of the laser beam L10 reflected sequentially by 71a.
  • the optical surface 75f is a surface parallel to the optical surfaces 75c and 75d, and overlaps the half mirror surface 71c when viewed from the X-axis direction.
  • the optical surface 75f transmits the measurement light L1 reflected by the half mirror surface 71c along the X-axis direction.
  • the total reflection mirror surface 72 for the measurement light L0 is caused to function as a half mirror surface for the laser light L10.
  • the movable mirror 5, the fixed mirror 12, and the beam splitter unit 7 can constitute the interference optical system I2 for the laser light L10.
  • the fixed mirror 12 is disposed so that the mirror surface 121a faces the total reflection mirror surface 72 in the Y-axis direction, and the measurement light L1 and laser light L11 emitted from the optical surface 73d.
  • a dichroic mirror 76 is arranged so as to separate the two.
  • the movable mirror 5, the fixed mirror 6, and the beam The splitter unit 7 can constitute an interference optical system I1 for the measurement light L0 and an interference optical system I2 for the laser light L10.
  • the movable mirror 5, the fixed mirror 6, and The beam splitter unit 7 can constitute an interference optical system I1 for the measurement light L0 and an interference optical system I2 for the laser light L10.
  • the optical block 77 shown in FIGS. 9A and 9B includes a plurality of optical surfaces 77a and 77b and half mirror surfaces 77c and 77d.
  • the optical surface 77a is, for example, a surface perpendicular to the X-axis direction, and transmits the laser light L10 incident along the X-axis direction.
  • the half mirror surface 77c is, for example, a surface inclined by 45 ° with respect to the optical surface 77a, and overlaps the optical surface 77a when viewed from the X-axis direction.
  • the half mirror surface 77c reflects the laser light L10 transmitted through the optical surface 77a along the Y-axis direction.
  • the half mirror surface 77d is a surface parallel to the half mirror surface 77c, and overlaps the optical surface 73a when viewed from the X axis direction and overlaps the half mirror surface 77c when viewed from the Y axis direction.
  • the half mirror surface 77d transmits the measurement light L0 incident along the X axis direction and reflects the laser light L10 reflected by the half mirror surface 77c toward the optical surface 73a side along the X axis direction.
  • the optical surface 77b is a surface parallel to the optical surface 77a, and overlaps the optical surface 73a when viewed from the X-axis direction.
  • the optical surface 77b transmits the measurement light L0 transmitted through the half mirror surface 77d and the laser light L10 reflected by the half mirror surface 77d to the optical surface 73a side along the X-axis direction.
  • the measurement light L1 is emitted from the optical surface 73d as in the configuration shown in FIGS. 4A and 4B.
  • the laser beam L11 sequentially passes through the optical surfaces 73a and 77b, is reflected by the half mirror surface 77d, and is emitted from the half mirror surface 77c.
  • the measurement light L1 is partly reflected by the mirror surface 51a and the total reflection mirror surface 72 of the movable mirror 5 and transmitted through the half mirror surface 71, and the mirror surface 61a and the half mirror surface of the fixed mirror 6. Interference light with the remainder of the measurement light L0 sequentially reflected by 71.
  • the laser light L11 is reflected by the mirror surface 51a of the movable mirror 5, the part of the laser light L10 sequentially reflected by the total reflection mirror surface 72 and the half mirror surface 71, and the mirror surface 61a of the fixed mirror 6 and reflected by the half mirror. Interference light with the remainder of the laser beam L10 that has passed through the surface 71.
  • this indication is not limited to the above-mentioned embodiment.
  • the fixed mirror 6 may be disposed between one elastic support region 34 of the drive region 32 and the beam splitter unit 7.
  • at least a part of the drive region 32 is located not on one side of the fixed mirror 12 in the X-axis direction but on the other side of the fixed mirror 12 in the X-axis direction when viewed from the Z-axis direction. May be.
  • the fixed mirror 12 may be disposed between one elastic support region 34 of the drive region 32 and the beam splitter unit 7.
  • At least one of the fixed mirrors 6 and 12, the beam splitter unit 7, and the light transmission member 11 may not be mounted on the base 10.
  • at least one of the fixed mirrors 6, 12, the beam splitter unit 7, and the light transmission member 11 may be mounted on a base different from the base 10.
  • the light transmitting member 11 may be disposed on the optical path P1 between the beam splitter unit 7 and the movable mirror 5, as shown in FIG. 4B.
  • the light transmitting member 11 may be disposed on both the optical path P1 between the beam splitter unit 7 and the movable mirror 5 and the optical path P2 between the beam splitter unit 7 and the fixed mirror 6.
  • the light transmission member 11 is disposed on at least one optical path of the optical path P1 between the beam splitter unit 7 and the movable mirror 5 and the optical path P2 between the beam splitter unit 7 and the fixed mirror 6. That's fine.
  • the position of the filter 15 is not limited as long as the filter 15 is arranged on the optical path where the laser light does not travel and the measurement light travels.
  • the filter 15 may be disposed between the beam splitter unit 7 and the movable mirror 5 and between the beam splitter unit 7 and the fixed mirror 6.
  • a support layer is provided for the device layer 3. It is not limited to what is located on the opposite side to 2.
  • the mirror surface 51 a of the movable mirror 5, the mirror surface 61 a of the fixed mirror 6, and the mirror surface 121 a of the fixed mirror 12 directly intersect the main surface 10 a of the base 10 such as directly passing through the device layer 3. It may be.
  • Locking part (supporting part), 61a ... Mirror surface 71 ... half mirror surface, 72 ... total reflection mirror surface, 121a ... mirror surface, L0, L1 ... measurement light, L10, L11 ... laser light, I1 ... interference optical system (first interference optical system), I2 ... interference optics System (second interference optical system), P1... Optical path (first Road), P2 ... optical path (second optical path).

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Health & Medical Sciences (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)
  • Spectrometry And Color Measurement (AREA)

Abstract

This optical module is provided with: a base which has a main surface, and which is provided with a mounting region, and a drive region that moves the mounting region along a first direction parallel to the main surface; a movable mirror which has a mirror surface in a positional relation intersecting the main surface and which is mounted on the mounting region; a first fixed mirror which has a mirror surface in a positional relation intersecting the main surface and which has a position fixed with respect to the base; and a beam splitter unit which, together with the movable mirror and the first fixed mirror, configures a first interference optical system for measurement light. The mirror surface of the movable mirror and the mirror surface of the first fixed mirror face the same direction in the first direction.

Description

光モジュールOptical module
 本開示は、光モジュールに関する。 This disclosure relates to an optical module.
 MEMS(Micro Electro Mechanical Systems)技術によってSOI(Silicon On Insulator)基板に干渉光学系が形成された光モジュールが知られている(例えば、特許文献1参照)。このような光モジュールは、高精度な光学配置が実現されたFTIR(フーリエ変換型赤外分光分析器)を提供し得るため、注目されている。 An optical module in which an interference optical system is formed on an SOI (Silicon On Insulator) substrate by MEMS (Micro Electro Mechanical Systems) technology is known (see, for example, Patent Document 1). Such an optical module is attracting attention because it can provide an FTIR (Fourier transform infrared spectroscopic analyzer) in which a highly accurate optical arrangement is realized.
特表2012-524295号公報Special table 2012-524295 gazette
 しかし、上述したような光モジュールには、例えば可動ミラーのミラー面のサイズがSOI基板に対する深堀加工の達成度に依存する点で、次のような課題がある。すなわち、SOI基板に対する深堀加工の達成度は最大でも500μm程度であるため、可動ミラーのミラー面の大型化によってFTIRにおける感度を向上させるのには限界がある。 However, the optical module as described above has the following problems in that, for example, the size of the mirror surface of the movable mirror depends on the achievement level of deep drilling on the SOI substrate. That is, since the achievement level of deep drilling on the SOI substrate is about 500 μm at the maximum, there is a limit to improving the sensitivity in FTIR by increasing the mirror surface of the movable mirror.
 そこで、別体で形成された可動ミラーを、例えばSOI基板によって構成されたベースに実装する技術が考えられる。このような技術においては、可動ミラーのミラー面の角度ずれが所定範囲内に収まっているか否かを計測する必要があることが分かった。 Therefore, a technique is conceivable in which a movable mirror formed separately is mounted on a base made of, for example, an SOI substrate. In such a technique, it has been found that it is necessary to measure whether or not the angular deviation of the mirror surface of the movable mirror is within a predetermined range.
 本開示は、可動ミラーのミラー面の大型化を図りつつも、可動ミラーのミラー面の角度ずれが所定範囲内に収まっているか否かを容易に計測することができる光モジュールを提供することを目的とする。 The present disclosure provides an optical module capable of easily measuring whether or not the angular deviation of the mirror surface of the movable mirror is within a predetermined range while increasing the size of the mirror surface of the movable mirror. Objective.
 本開示の一側面の光モジュールは、主面を有し、実装領域、及び、主面に平行な第1方向に沿って実装領域を移動させる駆動領域が設けられたベースと、主面と交差する位置関係にあるミラー面を有し、実装領域に実装された可動ミラーと、主面と交差する位置関係にあるミラー面を有し、ベースに対する位置が固定された第1固定ミラーと、可動ミラー及び第1固定ミラーと共に測定光について第1干渉光学系を構成するビームスプリッタユニットと、を備え、可動ミラーのミラー面及び第1固定ミラーのミラー面は、第1方向における一方の側に向いている。 An optical module according to an aspect of the present disclosure has a main surface, a base provided with a mounting region and a driving region that moves the mounting region along a first direction parallel to the main surface, and the main surface. A movable mirror mounted in the mounting region, a first fixed mirror having a mirror surface in a positional relationship intersecting the main surface, and fixed in position relative to the base, and movable A beam splitter unit constituting a first interference optical system for measurement light together with the mirror and the first fixed mirror, and the mirror surface of the movable mirror and the mirror surface of the first fixed mirror are directed to one side in the first direction. ing.
 この光モジュールでは、ベースの主面と交差する位置関係にあるミラー面を有する可動ミラーがベースの実装領域に実装されている。これにより、可動ミラーのミラー面の大型化を図ることができる。しかも、この光モジュールでは、実装領域に実装された可動ミラーのミラー面、及びベースに対する位置が固定された第1固定ミラーのミラー面が、ベースの主面に平行な第1方向における一方の側に向いている。これにより、例えば、可動ミラーのミラー面及び第1固定ミラーのミラー面が互いに直交する位置関係にある場合に比べ、第1固定ミラーのミラー面を基準とすることで、可動ミラーのミラー面の角度ずれが所定範囲内に収まっているか否かを容易に計測することができる。以上により、この光モジュールによれば、可動ミラーのミラー面の大型化を図りつつも、可動ミラーのミラー面の角度ずれが所定範囲内に収まっているか否かを容易に計測することができる。 In this optical module, a movable mirror having a mirror surface in a positional relationship intersecting with the main surface of the base is mounted in the mounting region of the base. Thereby, the enlargement of the mirror surface of a movable mirror can be achieved. In addition, in this optical module, the mirror surface of the movable mirror mounted in the mounting region and the mirror surface of the first fixed mirror whose position with respect to the base are fixed are on one side in the first direction parallel to the main surface of the base. Suitable for. Thereby, for example, compared with the case where the mirror surface of the movable mirror and the mirror surface of the first fixed mirror are orthogonal to each other, the mirror surface of the movable mirror is used as a reference. It is possible to easily measure whether or not the angular deviation is within a predetermined range. As described above, according to this optical module, it is possible to easily measure whether or not the angular deviation of the mirror surface of the movable mirror is within a predetermined range while increasing the size of the mirror surface of the movable mirror.
 本開示の一側面の光モジュールでは、実装領域には、開口が形成されており、可動ミラーは、ミラー面を有するミラー部と、ミラー部に連結された弾性部と、弾性部の弾性変形に応じて弾性力が付与される支持部と、を有し、支持部は、弾性部の弾性力が付与された状態で開口に挿入されており、可動ミラーは、開口の内面から支持部に付与される弾性力の反力によって、実装領域に固定されていてもよい。これによれば、実装領域に可動ミラーを容易且つ高精度に実装することができる。その一方で、例えば、支持部と開口の内面との間にパーティクルが挟まること等に起因して可動ミラーのミラー面に角度ずれが生じることが懸念されるため、上述したように、可動ミラーのミラー面の角度ずれが所定範囲内に収まっているか否かを容易に計測し得る構成は、特に有効である。 In the optical module of one aspect of the present disclosure, an opening is formed in the mounting region, and the movable mirror is configured to have a mirror part having a mirror surface, an elastic part connected to the mirror part, and elastic deformation of the elastic part. And a support part to which an elastic force is applied according to the elastic part. The support part is inserted into the opening in a state where the elastic force of the elastic part is applied, and the movable mirror is applied to the support part from the inner surface of the opening. It may be fixed to the mounting area by the reaction force of the elastic force. According to this, the movable mirror can be easily and accurately mounted in the mounting area. On the other hand, for example, there is a concern that the mirror surface of the movable mirror may be deviated due to particles being sandwiched between the support portion and the inner surface of the opening. A configuration that can easily measure whether or not the angular deviation of the mirror surface is within a predetermined range is particularly effective.
 本開示の一側面の光モジュールでは、第1固定ミラーは、主面に平行且つ第1方向に垂直な第2方向において、可動ミラーに対して一方の側に位置しており、駆動領域の少なくとも一部は、主面に垂直な第3方向から見た場合に、第1方向における第1固定ミラーの一方の側又は他方の側に位置していてもよい。これによれば、ベースの主面に平行な面内における省スペース化を図り、光モジュール全体の大型化を抑制することができる。 In the optical module of one aspect of the present disclosure, the first fixed mirror is located on one side with respect to the movable mirror in the second direction parallel to the main surface and perpendicular to the first direction, and at least in the drive region. A part may be located on one side or the other side of the first fixed mirror in the first direction when viewed from a third direction perpendicular to the main surface. According to this, space saving in the plane parallel to the main surface of the base can be achieved, and the increase in the size of the entire optical module can be suppressed.
 本開示の一側面の光モジュールでは、ビームスプリッタユニットは、測定光の一部を反射し且つ測定光の残部を透過させるハーフミラー面と、ハーフミラー面によって反射された測定光の一部を反射する全反射ミラー面と、を含み、ハーフミラー面と全反射ミラー面とは、互いに平行であってもよい。これによれば、ベースの主面に垂直な軸線回りにおけるビームスプリッタユニットの取付角度にずれが生じたとしても、ビームスプリッタユニットへの測定光の入射角度が一定であれば、ビームスプリッタユニットからの測定光の出射角度が一定になる。しかも、この光モジュールでは、可動ミラーのミラー面の大型化が可能であるため、ビームスプリッタユニットからの測定光の出射位置にずれが生じたとしても、当該ずれを実質的に無視することができる。よって、ビームスプリッタユニットのアライメント精度を緩和することができる。 In the optical module of one aspect of the present disclosure, the beam splitter unit reflects a part of the measurement light reflected by the half mirror surface that reflects a part of the measurement light and transmits the remaining part of the measurement light. The half mirror surface and the total reflection mirror surface may be parallel to each other. According to this, even if a deviation occurs in the mounting angle of the beam splitter unit around the axis perpendicular to the main surface of the base, if the incident angle of the measurement light to the beam splitter unit is constant, The measurement light emission angle is constant. In addition, in this optical module, since the mirror surface of the movable mirror can be enlarged, even if a deviation occurs in the measurement light emission position from the beam splitter unit, the deviation can be substantially ignored. . Therefore, the alignment accuracy of the beam splitter unit can be relaxed.
 本開示の一側面の光モジュールでは、第1固定ミラーは、ベースに実装されていてもよい。これによれば、可動ミラー及び第1固定ミラーの位置合わせの容易化を図ることができる。 In the optical module according to one aspect of the present disclosure, the first fixed mirror may be mounted on the base. According to this, it is possible to facilitate the alignment of the movable mirror and the first fixed mirror.
 本開示の一側面の光モジュールでは、ビームスプリッタユニットは、ベースに実装されていてもよい。これによれば、可動ミラー及びビームスプリッタユニットの位置合わせの容易化を図ることができる。 In the optical module according to one aspect of the present disclosure, the beam splitter unit may be mounted on the base. According to this, it is possible to facilitate the alignment of the movable mirror and the beam splitter unit.
 本開示の一側面の光モジュールは、ビームスプリッタユニットと可動ミラーとの間の第1光路、及び、ビームスプリッタユニットと第1固定ミラーとの間の第2光路の少なくとも1つの光路上に配置され、第1光路と第2光路との間の光路差を補正する光透過部材を更に備えてもよい。これによれば、測定光の干渉光を容易に且つ高精度で得ることができる。 An optical module according to one aspect of the present disclosure is disposed on at least one optical path of a first optical path between the beam splitter unit and the movable mirror and a second optical path between the beam splitter unit and the first fixed mirror. A light transmissive member that corrects the optical path difference between the first optical path and the second optical path may be further provided. According to this, the interference light of the measurement light can be obtained easily and with high accuracy.
 本開示の一側面の光モジュールでは、光透過部材は、ベースに実装されていてもよい。これによれば、可動ミラー及び光透過部材の位置合わせの容易化を図ることができる。 In the optical module according to one aspect of the present disclosure, the light transmitting member may be mounted on the base. According to this, it is possible to facilitate the alignment of the movable mirror and the light transmission member.
 本開示の一側面の光モジュールは、外部から第1干渉光学系に測定光を入射させるように配置された測定光入射部と、第1干渉光学系から外部に測定光を出射させるように配置された測定光出射部と、を更に備えてもよい。これによれば、測定光入射部及び測定光出射部を備えるFTIRを得ることができる。 An optical module according to an aspect of the present disclosure is arranged so that measurement light incident portions are arranged so that measurement light is incident on the first interference optical system from the outside, and measurement light is emitted from the first interference optical system to the outside. And a measurement light emitting unit that has been provided. According to this, FTIR provided with the measurement light incident part and the measurement light emission part can be obtained.
 本開示の一側面の光モジュールは、主面と交差する位置関係にあるミラー面を有し、ベースに対する位置が固定された第2固定ミラーを更に備え、ビームスプリッタユニットは、可動ミラー及び第2固定ミラーと共にレーザ光について第2干渉光学系を構成し、第2固定ミラーのミラー面は、第1方向における一方の側に向いていてもよい。これによれば、レーザ光の干渉光を検出することで、可動ミラーのミラー面の位置を計測することができる。しかも、第2固定ミラーのミラー面も、可動ミラーのミラー面と同様に、ベースの主面に平行な第1方向における一方の側に向いている。これにより、第2固定ミラーのミラー面を基準とすることで、可動ミラーのミラー面の角度ずれが所定範囲内に収まっているか否かを容易に計測することができる。 The optical module according to one aspect of the present disclosure further includes a second fixed mirror having a mirror surface that is in a positional relationship intersecting with the main surface, and having a fixed position with respect to the base. The beam splitter unit includes the movable mirror and the second mirror. The second interference optical system may be configured for the laser light together with the fixed mirror, and the mirror surface of the second fixed mirror may be directed to one side in the first direction. According to this, the position of the mirror surface of the movable mirror can be measured by detecting the interference light of the laser light. In addition, the mirror surface of the second fixed mirror is also directed to one side in the first direction parallel to the main surface of the base, like the mirror surface of the movable mirror. Thereby, by using the mirror surface of the second fixed mirror as a reference, it is possible to easily measure whether or not the angular deviation of the mirror surface of the movable mirror is within a predetermined range.
 本開示の一側面の光モジュールでは、第1固定ミラー及び第2固定ミラーは、主面に平行且つ第1方向に垂直な第2方向において、可動ミラーに対して両側にそれぞれ位置しており、駆動領域の少なくとも一部は、主面に垂直な第3方向から見た場合に、第1方向における第1固定ミラーの一方の側又は他方の側、及び、第1方向における第2固定ミラーの一方の側又は他方の側に位置していてもよい。これによれば、ベースの主面に平行な面内における省スペース化を図り、光モジュール全体の大型化を抑制することができる。 In the optical module of one aspect of the present disclosure, the first fixed mirror and the second fixed mirror are respectively located on both sides of the movable mirror in the second direction parallel to the main surface and perpendicular to the first direction. At least a part of the drive region, when viewed from the third direction perpendicular to the main surface, is one side or the other side of the first fixed mirror in the first direction and the second fixed mirror in the first direction. It may be located on one side or the other side. According to this, space saving in the plane parallel to the main surface of the base can be achieved, and the increase in the size of the entire optical module can be suppressed.
 本開示の一側面の光モジュールは、レーザ光が進行せず且つ測定光が進行する光路上に配置され、レーザ光の中心波長を含む波長範囲の光をカットするフィルタを更に備えてもよい。これによれば、レーザ光の干渉光の検出において測定光がノイズとなるのを防止することができる。 The optical module according to one aspect of the present disclosure may further include a filter that is disposed on an optical path in which the laser light does not travel and the measurement light travels, and that cuts light in a wavelength range including the center wavelength of the laser light. According to this, it is possible to prevent the measurement light from becoming noise in the detection of the interference light of the laser light.
 本開示の一側面の光モジュールは、第2干渉光学系に入射させるレーザ光を発生する光源と、第2干渉光学系から出射されたレーザ光を検出する光検出器と、を更に備えてもよい。これによれば、レーザ光を検出することで可動ミラーの位置をリアルタイムで検出することができるので、より高精度のFTIRを得ることができる。 The optical module according to one aspect of the present disclosure further includes a light source that generates laser light to be incident on the second interference optical system, and a photodetector that detects the laser light emitted from the second interference optical system. Good. According to this, since the position of the movable mirror can be detected in real time by detecting the laser light, a more accurate FTIR can be obtained.
 本開示の一側面の光モジュールでは、ベースは、主面を有し、実装領域及び駆動領域が設けられたデバイス層と、デバイス層を支持する支持層と、支持層とデバイス層との間に設けられた中間層と、を有し、支持層は、SOI基板の第1シリコン層であり、デバイス層は、SOI基板の第2シリコン層であり、中間層は、SOI基板の絶縁層であってもよい。これによれば、デバイス層に実装された可動ミラーの確実な移動のための構成をSOI基板によって好適に実現することができる。 In the optical module according to one aspect of the present disclosure, the base has a main surface, a device layer provided with a mounting region and a drive region, a support layer that supports the device layer, and a support layer between the support layer and the device layer. An intermediate layer provided, the support layer is a first silicon layer of the SOI substrate, the device layer is a second silicon layer of the SOI substrate, and the intermediate layer is an insulating layer of the SOI substrate. May be. According to this, the structure for the reliable movement of the movable mirror mounted on the device layer can be suitably realized by the SOI substrate.
 本開示によれば、可動ミラーのミラー面の大型化を図りつつも、可動ミラーのミラー面の角度ずれが所定範囲内に収まっているか否かを容易に計測することができる光モジュールを提供することが可能となる。 According to the present disclosure, it is possible to provide an optical module capable of easily measuring whether or not the angular deviation of the mirror surface of the movable mirror is within a predetermined range while increasing the size of the mirror surface of the movable mirror. It becomes possible.
図1は、第1実施形態の光モジュールの平面図である。FIG. 1 is a plan view of the optical module of the first embodiment. 図2は、図1のII-II線に沿っての断面図である。FIG. 2 is a sectional view taken along line II-II in FIG. 図3は、図1のIII-III線に沿っての断面図である。3 is a cross-sectional view taken along line III-III in FIG. 図4は、第1実施形態の変形例を示す模式図である。FIG. 4 is a schematic diagram showing a modification of the first embodiment. 図5は、第2実施形態の光モジュールの平面図である。FIG. 5 is a plan view of the optical module of the second embodiment. 図6は、図5の光モジュールにおいて光検出器に入射する光のスペクトルを示す図である。FIG. 6 is a diagram showing a spectrum of light incident on the photodetector in the optical module of FIG. 図7は、第2実施形態の変形例を示す模式図である。FIG. 7 is a schematic diagram showing a modification of the second embodiment. 図8は、第2実施形態の変形例を示す模式図である。FIG. 8 is a schematic diagram showing a modification of the second embodiment. 図9は、第2実施形態の変形例を示す模式図である。FIG. 9 is a schematic diagram showing a modification of the second embodiment.
 以下、本開示の実施形態について、図面を参照して詳細に説明する。なお、各図において同一又は相当部分には同一符号を付し、重複する部分を省略する。
[第1実施形態]
[光モジュールの構成]
Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings. In addition, in each figure, the same code | symbol is attached | subjected to the same or an equivalent part, and the overlapping part is abbreviate | omitted.
[First Embodiment]
[Configuration of optical module]
 図1に示されるように、光モジュール1Aは、ベース10を備えている。ベース10は、支持層2と、支持層2上に設けられたデバイス層3と、支持層2とデバイス層3との間に設けられた中間層4と、を有している。支持層2は、中間層4を介してデバイス層3を支持している。ベース10は、主面10aを有している。主面10aは、デバイス層3における支持層2とは反対側の表面である。支持層2、デバイス層3及び中間層4は、SOI基板によって構成されている。具体的には、支持層2は、SOI基板の第1シリコン層である。デバイス層3は、SOI基板の第2シリコン層である。中間層4は、SOI基板の絶縁層である。支持層2、デバイス層3及び中間層4は、それらの積層方向(主面10aに垂直な方向、第3方向)であるZ軸方向(Z軸に平行な方向)から見た場合に、例えば、一辺が10mm程度の矩形状を呈している。支持層2及びデバイス層3のそれぞれの厚さは、例えば数百μm程度である。中間層4の厚さは、例えば数μm程度である。なお、図1では、デバイス層3の1つの角部及び中間層4の1つの角部が切り欠かれた状態で、デバイス層3及び中間層4が示されている。 As shown in FIG. 1, the optical module 1 </ b> A includes a base 10. The base 10 includes a support layer 2, a device layer 3 provided on the support layer 2, and an intermediate layer 4 provided between the support layer 2 and the device layer 3. The support layer 2 supports the device layer 3 through the intermediate layer 4. The base 10 has a main surface 10a. The main surface 10a is a surface of the device layer 3 opposite to the support layer 2. The support layer 2, the device layer 3, and the intermediate layer 4 are configured by an SOI substrate. Specifically, the support layer 2 is a first silicon layer of an SOI substrate. The device layer 3 is a second silicon layer of the SOI substrate. The intermediate layer 4 is an insulating layer of the SOI substrate. When the support layer 2, the device layer 3, and the intermediate layer 4 are viewed from the Z-axis direction (direction parallel to the Z-axis) that is the stacking direction thereof (the direction perpendicular to the main surface 10a, the third direction), for example, , One side has a rectangular shape of about 10 mm. The thickness of each of the support layer 2 and the device layer 3 is, for example, about several hundred μm. The thickness of the intermediate layer 4 is, for example, about several μm. In FIG. 1, the device layer 3 and the intermediate layer 4 are shown with one corner of the device layer 3 and one corner of the intermediate layer 4 cut out.
 デバイス層3には、実装領域31及び駆動領域32が設けられている。駆動領域32は、一対のアクチュエータ領域33と、一対の弾性支持領域34と、を含んでいる。実装領域31及び駆動領域32(すなわち、実装領域31並びに一対のアクチュエータ領域33及び一対の弾性支持領域34)は、MEMS技術(パターニング及びエッチング)によってデバイス層3の一部に一体的に形成されている。 The device layer 3 is provided with a mounting area 31 and a driving area 32. The drive region 32 includes a pair of actuator regions 33 and a pair of elastic support regions 34. The mounting region 31 and the drive region 32 (that is, the mounting region 31 and the pair of actuator regions 33 and the pair of elastic support regions 34) are integrally formed on a part of the device layer 3 by MEMS technology (patterning and etching). Yes.
 一対のアクチュエータ領域33は、主面10aに平行なX軸方向(Z軸に直交するX軸に平行な方向、第1方向)において実装領域31の両側に配置されている。つまり、実装領域31は、X軸方向において一対のアクチュエータ領域33に挟まれている。各アクチュエータ領域33は、中間層4を介して支持層2に固定されている。各アクチュエータ領域33における実装領域31側の側面には、第1櫛歯部33aが設けられている。各第1櫛歯部33aは、その直下の中間層4が除去されることで、支持層2に対して浮いた状態となっている。各アクチュエータ領域33には、第1電極35が設けられている。 The pair of actuator regions 33 are disposed on both sides of the mounting region 31 in the X-axis direction parallel to the main surface 10a (the direction parallel to the X-axis orthogonal to the Z-axis, the first direction). That is, the mounting area 31 is sandwiched between the pair of actuator areas 33 in the X-axis direction. Each actuator region 33 is fixed to the support layer 2 via the intermediate layer 4. A first comb tooth portion 33 a is provided on the side surface of each actuator region 33 on the mounting region 31 side. Each first comb-tooth portion 33 a is in a state of floating with respect to the support layer 2 by removing the intermediate layer 4 immediately below the first comb-tooth portion 33 a. Each actuator region 33 is provided with a first electrode 35.
 一対の弾性支持領域34は、主面10aに平行且つX軸方向に垂直なY軸方向(Z軸及びX軸に直交するY軸に平行な方向、第2方向)において実装領域31の両側に配置されている。つまり、実装領域31は、Y軸方向において一対の弾性支持領域34に挟まれている。各弾性支持領域34の両端部34aは、中間層4を介して支持層2に固定されている。各弾性支持領域34の弾性変形部34b(両端部34aの間の部分)は、複数の板バネが連結された構造を有している。各弾性支持領域34の弾性変形部34bは、その直下の中間層4が除去されることで、支持層2に対して浮いた状態となっている。各弾性支持領域34において両端部34aのそれぞれには、第2電極36が設けられている。 The pair of elastic support regions 34 are provided on both sides of the mounting region 31 in the Y-axis direction (direction parallel to the Z-axis and the Y-axis perpendicular to the X-axis, the second direction) parallel to the main surface 10a and perpendicular to the X-axis direction. Has been placed. That is, the mounting region 31 is sandwiched between the pair of elastic support regions 34 in the Y-axis direction. Both end portions 34 a of each elastic support region 34 are fixed to the support layer 2 through the intermediate layer 4. Each elastic support region 34 has an elastic deformation portion 34b (a portion between both end portions 34a) having a structure in which a plurality of leaf springs are connected. The elastic deformation portion 34b of each elastic support region 34 is in a state of floating with respect to the support layer 2 by removing the intermediate layer 4 immediately below the elastic deformation portion 34b. In each elastic support region 34, a second electrode 36 is provided at each of both end portions 34 a.
 実装領域31には、各弾性支持領域34の弾性変形部34bが接続されている。実装領域31は、その直下の中間層4が除去されることで、支持層2に対して浮いた状態となっている。つまり、実装領域31は、一対の弾性支持領域34によって支持されている。実装領域31における各アクチュエータ領域33側の側面には、第2櫛歯部31aが設けられている。各第2櫛歯部31aは、その直下の中間層4が除去されることで、支持層2に対して浮いた状態となっている。互いに対向する第1櫛歯部33a及び第2櫛歯部31aにおいては、第1櫛歯部33aの各櫛歯が第2櫛歯部31aの各櫛歯間に位置している。 The elastic deformation part 34b of each elastic support area 34 is connected to the mounting area 31. The mounting region 31 is in a state of floating with respect to the support layer 2 by removing the intermediate layer 4 immediately below the mounting region 31. That is, the mounting area 31 is supported by the pair of elastic support areas 34. A second comb tooth portion 31 a is provided on the side surface of each mounting region 31 on the side of each actuator region 33. Each second comb tooth portion 31 a is in a state of floating with respect to the support layer 2 by removing the intermediate layer 4 immediately below the second comb tooth portion 31 a. In the first comb tooth portion 33a and the second comb tooth portion 31a facing each other, the comb teeth of the first comb tooth portion 33a are located between the comb teeth of the second comb tooth portion 31a.
 一対の弾性支持領域34は、X軸に平行な方向Aから見た場合に両側から実装領域31を挟んでおり、実装領域31が方向Aに沿って移動すると、実装領域31が初期位置に戻るように実装領域31に弾性力を作用させる。したがって、第1電極35と第2電極36との間に電圧が印加されて、互いに対向する第1櫛歯部33a及び第2櫛歯部31a間に静電引力が作用すると、当該静電引力と一対の弾性支持領域34による弾性力とがつり合う位置まで、方向Aに沿って実装領域31が移動させられる。このように、駆動領域32は、静電アクチュエータとして機能し、X軸方向に沿って実装領域31を移動させる。 The pair of elastic support regions 34 sandwich the mounting region 31 from both sides when viewed from the direction A parallel to the X axis, and when the mounting region 31 moves along the direction A, the mounting region 31 returns to the initial position. As described above, an elastic force is applied to the mounting region 31. Therefore, when a voltage is applied between the first electrode 35 and the second electrode 36 and an electrostatic attractive force acts between the first comb tooth portion 33a and the second comb tooth portion 31a facing each other, the electrostatic attractive force is applied. The mounting region 31 is moved along the direction A to a position where the elastic force by the pair of elastic support regions 34 is balanced. Thus, the drive area 32 functions as an electrostatic actuator and moves the mounting area 31 along the X-axis direction.
 光モジュール1Aは、可動ミラー5と、固定ミラー(第1固定ミラー)6と、ビームスプリッタユニット7と、測定光入射部8と、測定光出射部9と、光透過部材11と、を更に備えている。可動ミラー5、固定ミラー6及びビームスプリッタユニット7は、測定光L0について干渉光学系(第1干渉光学系)I1を構成するように、デバイス層3上に配置されている。干渉光学系I1は、ここでは、マイケルソン干渉光学系である。 The optical module 1A further includes a movable mirror 5, a fixed mirror (first fixed mirror) 6, a beam splitter unit 7, a measurement light incident part 8, a measurement light emission part 9, and a light transmission member 11. ing. The movable mirror 5, the fixed mirror 6, and the beam splitter unit 7 are arranged on the device layer 3 so as to constitute an interference optical system (first interference optical system) I1 for the measurement light L0. Here, the interference optical system I1 is a Michelson interference optical system.
 可動ミラー5は、デバイス層3の実装領域31に実装されている。可動ミラー5は、ミラー部51を有している。ミラー部51は、主面10aと交差する位置関係にあるミラー面51aを有している。ミラー面51aは、デバイス層3に対して支持層2とは反対側に位置している。ミラー面51aは、例えばX軸方向に垂直な面(すなわち、方向Aに垂直な面)であり、X軸方向における一方の側(ビームスプリッタユニット7側)に向いている。 The movable mirror 5 is mounted on the mounting area 31 of the device layer 3. The movable mirror 5 has a mirror part 51. The mirror part 51 has a mirror surface 51a in a positional relationship intersecting with the main surface 10a. The mirror surface 51 a is located on the opposite side of the support layer 2 with respect to the device layer 3. The mirror surface 51a is, for example, a surface perpendicular to the X-axis direction (that is, a surface perpendicular to the direction A), and is directed to one side (beam splitter unit 7 side) in the X-axis direction.
 固定ミラー6は、デバイス層3の実装領域37に実装されている。つまり、固定ミラー6は、ベース10に実装されている。固定ミラー6は、ベース10に対する位置(ベース10のうち実装領域31及び駆動領域32を除く領域に対する位置)が固定されている。固定ミラー6は、Y軸方向において可動ミラー5に対して一方の側に位置している。つまり、固定ミラー6は、可動ミラー5に対して、Y軸方向における一方の側にずれている。駆動領域32の少なくとも一部は、Z軸方向から見た場合に、X軸方向における固定ミラー6の一方の側に位置している。つまり、駆動領域32の少なくとも一部は、Z軸方向から見た場合に、X軸方向において固定ミラー6と並んでいる。具体的には、駆動領域32のうち一方の弾性支持領域34が、Z軸方向から見た場合に、X軸方向における固定ミラー6の一方の側に位置している。 The fixed mirror 6 is mounted in the mounting area 37 of the device layer 3. That is, the fixed mirror 6 is mounted on the base 10. The position of the fixed mirror 6 with respect to the base 10 (the position of the base 10 with respect to the region excluding the mounting region 31 and the drive region 32) is fixed. The fixed mirror 6 is located on one side with respect to the movable mirror 5 in the Y-axis direction. That is, the fixed mirror 6 is shifted to one side in the Y-axis direction with respect to the movable mirror 5. At least a part of the drive region 32 is located on one side of the fixed mirror 6 in the X-axis direction when viewed from the Z-axis direction. That is, at least a part of the drive region 32 is aligned with the fixed mirror 6 in the X-axis direction when viewed from the Z-axis direction. Specifically, one elastic support region 34 in the drive region 32 is located on one side of the fixed mirror 6 in the X-axis direction when viewed from the Z-axis direction.
 固定ミラー6は、ミラー部61を有している。ミラー部61は、主面10aと交差する位置関係にあるミラー面61aを有している。ミラー面61aは、デバイス層3に対して支持層2とは反対側に位置している。ミラー面61aは、例えばX軸方向に垂直な面(すなわち、方向Aに垂直な面)であり、X軸方向における一方の側(ビームスプリッタユニット7側)に向いている。 The fixed mirror 6 has a mirror part 61. The mirror part 61 has a mirror surface 61a in a positional relationship intersecting with the main surface 10a. The mirror surface 61 a is located on the side opposite to the support layer 2 with respect to the device layer 3. The mirror surface 61a is, for example, a surface perpendicular to the X-axis direction (that is, a surface perpendicular to the direction A) and is directed to one side (beam splitter unit 7 side) in the X-axis direction.
 ビームスプリッタユニット7は、X軸方向における可動ミラー5及び固定ミラー6の一方の側に位置している。ビームスプリッタユニット7は、デバイス層3に形成された矩形状の開口3aにおける1つの隅部に、ビームスプリッタユニット7における底面側の1つの角部が位置させられた状態で、ベース10において位置決めされている。より具体的には、ビームスプリッタユニット7は、開口3aにおいて当該1つの隅部に至る両側面のそれぞれに、ビームスプリッタユニット7において当該1つの角部を構成する両側面のそれぞれが接触させられることで、ベース10において位置決めされている。ビームスプリッタユニット7は、位置決めされた状態で接着等によって支持層2に固定されることで、支持層2に実装されている。つまり、ビームスプリッタユニット7は、ベース10に実装されている。なお、開口3aにおける当該1つの隅部には逃げが設けられているため、ビームスプリッタユニット7における当該1つの角部が開口3aにおける当該1つの隅部に接触することはない。 The beam splitter unit 7 is located on one side of the movable mirror 5 and the fixed mirror 6 in the X-axis direction. The beam splitter unit 7 is positioned on the base 10 with one corner on the bottom surface side of the beam splitter unit 7 positioned at one corner of the rectangular opening 3 a formed in the device layer 3. ing. More specifically, in the beam splitter unit 7, both side surfaces constituting the one corner in the beam splitter unit 7 are brought into contact with both side surfaces reaching the one corner in the opening 3 a. Thus, the base 10 is positioned. The beam splitter unit 7 is mounted on the support layer 2 by being fixed to the support layer 2 by bonding or the like in a positioned state. That is, the beam splitter unit 7 is mounted on the base 10. Since the one corner of the opening 3a is provided with relief, the one corner of the beam splitter unit 7 does not contact the one corner of the opening 3a.
 ビームスプリッタユニット7は、ハーフミラー面71、全反射ミラー面72及び複数の光学面73a,73b,73c,73dを有している。ハーフミラー面71、全反射ミラー面72及び複数の光学面73a,73b,73c,73dは、デバイス層3に対して支持層2とは反対側に位置している。ビームスプリッタユニット7は、複数の光学ブロックが接合されることで構成されている。ハーフミラー面71は、例えば誘電体多層膜によって形成されている。全反射ミラー面72は、例えば金属膜によって形成されている。 The beam splitter unit 7 has a half mirror surface 71, a total reflection mirror surface 72, and a plurality of optical surfaces 73a, 73b, 73c, 73d. The half mirror surface 71, the total reflection mirror surface 72, and the plurality of optical surfaces 73 a, 73 b, 73 c, and 73 d are located on the side opposite to the support layer 2 with respect to the device layer 3. The beam splitter unit 7 is configured by joining a plurality of optical blocks. The half mirror surface 71 is formed of, for example, a dielectric multilayer film. The total reflection mirror surface 72 is formed of, for example, a metal film.
 光学面73aは、例えばX軸方向に垂直な面であり、X軸方向から見た場合に固定ミラー6のミラー面61aと重なっている。光学面73aは、X軸方向に沿って入射した測定光L0を透過させる。 The optical surface 73a is, for example, a surface perpendicular to the X-axis direction, and overlaps with the mirror surface 61a of the fixed mirror 6 when viewed from the X-axis direction. The optical surface 73a transmits the measurement light L0 incident along the X-axis direction.
 ハーフミラー面71は、例えば光学面73aに対して45°傾斜した面であり、X軸方向から見た場合に固定ミラー6のミラー面61aと重なっている。ハーフミラー面71は、X軸方向に沿って光学面73aに入射した測定光L0の一部をY軸方向に沿って反射し且つ当該測定光L0の残部をX軸方向に沿って固定ミラー6側に透過させる。 The half mirror surface 71 is, for example, a surface inclined by 45 ° with respect to the optical surface 73a, and overlaps the mirror surface 61a of the fixed mirror 6 when viewed from the X-axis direction. The half mirror surface 71 reflects a part of the measurement light L0 incident on the optical surface 73a along the X-axis direction along the Y-axis direction, and the remaining part of the measurement light L0 along the X-axis direction. Permeate to the side.
 全反射ミラー面72は、ハーフミラー面71に平行な面であり、X軸方向から見た場合に可動ミラー5のミラー面51aと重なっており且つY軸方向から見た場合にハーフミラー面71と重なっている。全反射ミラー面72は、ハーフミラー面71によって反射された測定光L0の一部をX軸方向に沿って可動ミラー5側に反射する。 The total reflection mirror surface 72 is a surface parallel to the half mirror surface 71, overlaps the mirror surface 51a of the movable mirror 5 when viewed from the X-axis direction, and half mirror surface 71 when viewed from the Y-axis direction. It overlaps with. The total reflection mirror surface 72 reflects a part of the measurement light L0 reflected by the half mirror surface 71 toward the movable mirror 5 along the X-axis direction.
 光学面73bは、光学面73aに平行な面であり、X軸方向から見た場合に可動ミラー5のミラー面51aと重なっている。光学面73bは、全反射ミラー面72によって反射された測定光L0の一部をX軸方向に沿って可動ミラー5側に透過させる。 The optical surface 73b is a surface parallel to the optical surface 73a and overlaps the mirror surface 51a of the movable mirror 5 when viewed from the X-axis direction. The optical surface 73b transmits a part of the measurement light L0 reflected by the total reflection mirror surface 72 to the movable mirror 5 side along the X-axis direction.
 光学面73cは、光学面73aに平行な面であり、X軸方向から見た場合に固定ミラー6のミラー面61aと重なっている。光学面73cは、ハーフミラー面71を透過した測定光L0の残部をX軸方向に沿って固定ミラー6側に透過させる。 The optical surface 73c is a surface parallel to the optical surface 73a and overlaps the mirror surface 61a of the fixed mirror 6 when viewed from the X-axis direction. The optical surface 73c transmits the remaining part of the measurement light L0 transmitted through the half mirror surface 71 to the fixed mirror 6 side along the X-axis direction.
 光学面73dは、例えばY軸方向に垂直な面であり、Y軸方向から見た場合にハーフミラー面71及び全反射ミラー面72と重なっている。光学面73dは、測定光L1をY軸方向に沿って透過させる。測定光L1は、可動ミラー5のミラー面51a及び全反射ミラー面72で順次に反射されてハーフミラー面71を透過した測定光L0の一部と、固定ミラー6のミラー面61a及びハーフミラー面71で順次に反射された測定光L0の残部との干渉光である。 The optical surface 73d is, for example, a surface perpendicular to the Y-axis direction, and overlaps the half mirror surface 71 and the total reflection mirror surface 72 when viewed from the Y-axis direction. The optical surface 73d transmits the measurement light L1 along the Y-axis direction. The measurement light L1 is partly reflected by the mirror surface 51a and the total reflection mirror surface 72 of the movable mirror 5 and transmitted through the half mirror surface 71, and the mirror surface 61a and the half mirror surface of the fixed mirror 6. Interference light with the remainder of the measurement light L0 sequentially reflected by 71.
 測定光入射部8は、外部から干渉光学系I1に測定光L0を入射させるように配置されている。測定光入射部8は、X軸方向におけるビームスプリッタユニット7の一方の側において、デバイス層3に実装されている。測定光入射部8は、X軸方向においてビームスプリッタユニット7の光学面73aと向かい合っている。測定光入射部8は、例えば光ファイバ及びコリメートレンズ等によって構成されている。 The measurement light incident part 8 is arranged so that the measurement light L0 is incident on the interference optical system I1 from the outside. The measurement light incident part 8 is mounted on the device layer 3 on one side of the beam splitter unit 7 in the X-axis direction. The measurement light incident part 8 faces the optical surface 73a of the beam splitter unit 7 in the X-axis direction. The measurement light incident part 8 is constituted by, for example, an optical fiber and a collimating lens.
 測定光出射部9は、干渉光学系I1から外部に測定光L1(干渉光)を出射させるように配置されている。測定光出射部9は、Y軸方向におけるビームスプリッタユニット7の一方の側において、デバイス層3に実装されている。測定光出射部9は、Y軸方向においてビームスプリッタユニット7の光学面73dと向かい合っている。測定光出射部9は、例えば光ファイバ及びコリメートレンズ等によって構成されている。 The measurement light emitting unit 9 is arranged to emit measurement light L1 (interference light) from the interference optical system I1 to the outside. The measurement light emitting unit 9 is mounted on the device layer 3 on one side of the beam splitter unit 7 in the Y-axis direction. The measurement light emitting unit 9 faces the optical surface 73d of the beam splitter unit 7 in the Y-axis direction. The measurement light emitting unit 9 is configured by, for example, an optical fiber and a collimating lens.
 光透過部材11は、ビームスプリッタユニット7と固定ミラー6との間に配置されている。光透過部材11は、デバイス層3に形成された矩形状の開口3bにおける1つの隅部に、光透過部材11における底面側の1つの角部が位置させられた状態で、ベース10において位置決めされている。より具体的には、光透過部材11は、開口3bにおいて当該1つの隅部に至る両側面のそれぞれに、光透過部材11において当該1つの角部を構成する両側面のそれぞれが接触させられることで、ベース10において位置決めされている。光透過部材11は、位置決めされた状態で接着等によって支持層2に固定されることで、支持層2に実装されている。つまり、光透過部材11は、ベース10に実装されている。なお、開口3bにおける当該1つの隅部には逃げが設けられているため、光透過部材11における当該1つの角部が開口3bにおける当該1つの隅部に接触することはない。 The light transmitting member 11 is disposed between the beam splitter unit 7 and the fixed mirror 6. The light transmissive member 11 is positioned on the base 10 with one corner on the bottom surface side of the light transmissive member 11 positioned at one corner of the rectangular opening 3b formed in the device layer 3. ing. More specifically, the light transmitting member 11 is brought into contact with each of both side surfaces reaching the one corner in the opening 3b and both side surfaces constituting the one corner in the light transmitting member 11. Thus, the base 10 is positioned. The light transmission member 11 is mounted on the support layer 2 by being fixed to the support layer 2 by adhesion or the like in a positioned state. That is, the light transmission member 11 is mounted on the base 10. In addition, since the relief is provided in the one corner in the opening 3b, the one corner in the light transmitting member 11 does not contact the one corner in the opening 3b.
 光透過部材11は、一対の光学面11a,11bを含んでいる。一対の光学面11a,11bは、デバイス層3に対して支持層2とは反対側に位置している。一対の光学面11a,11bのそれぞれは、例えばX軸方向に垂直な面である。一対の光学面11a,11bは、互いに平行である。光透過部材11は、ビームスプリッタユニット7と可動ミラー5との間の光路(第1光路)P1と、ビームスプリッタユニット7と固定ミラー6との間の光路(第2光路)P2との間の光路差を補正する。 The light transmitting member 11 includes a pair of optical surfaces 11a and 11b. The pair of optical surfaces 11 a and 11 b are located on the opposite side of the support layer 2 with respect to the device layer 3. Each of the pair of optical surfaces 11a and 11b is, for example, a surface perpendicular to the X-axis direction. The pair of optical surfaces 11a and 11b are parallel to each other. The light transmission member 11 includes an optical path (first optical path) P1 between the beam splitter unit 7 and the movable mirror 5 and an optical path (second optical path) P2 between the beam splitter unit 7 and the fixed mirror 6. Correct the optical path difference.
 具体的には、光路P1は、ハーフミラー面71から、全反射ミラー面72及び光学面73bを順次に介して、基準位置に位置する可動ミラー5のミラー面51aに至る光路であって、測定光L0の一部が進行する光路である。光路P2は、ハーフミラー面71から、光学面73cを介して、固定ミラー6のミラー面61aに至る光路であって、測定光L0の残部が進行する光路である。光透過部材11は、光路P1の光路長(光路P1が通る各媒質の屈折率を考慮した光路長)と光路P2の光路長(光路P2が通る各媒質の屈折率を考慮した光路長)との差が例えば0となるように、光路P1と光路P2との間の光路差を補正する。なお、光透過部材11は、ビームスプリッタユニット7を構成する各光学ブロックに用いられる光透過性材料(例えば、ガラス)と同一の光透過性材料によって形成されている。 Specifically, the optical path P1 is an optical path from the half mirror surface 71 to the mirror surface 51a of the movable mirror 5 located at the reference position through the total reflection mirror surface 72 and the optical surface 73b in order, and is measured. This is an optical path along which a part of the light L0 travels. The optical path P2 is an optical path from the half mirror surface 71 to the mirror surface 61a of the fixed mirror 6 through the optical surface 73c, and is an optical path along which the remainder of the measurement light L0 travels. The light transmitting member 11 includes an optical path length of the optical path P1 (an optical path length considering the refractive index of each medium passing through the optical path P1) and an optical path length of the optical path P2 (an optical path length considering the refractive index of each medium passing through the optical path P2). For example, the optical path difference between the optical path P1 and the optical path P2 is corrected so that the difference between the two becomes zero. The light transmitting member 11 is formed of the same light transmitting material as the light transmitting material (for example, glass) used for each optical block constituting the beam splitter unit 7.
 以上のように構成された光モジュール1Aでは、測定光入射部8を介して外部から干渉光学系I1に測定光L0が入射すると、測定光L0の一部は、ビームスプリッタユニット7のハーフミラー面71及び全反射ミラー面72で順次に反射されて、可動ミラー5のミラー面51aに向かって進行する。そして、測定光L0の一部は、可動ミラー5のミラー面51aで反射されて、同一の光路(すなわち、光路P1)上を進行し、ビームスプリッタユニット7のハーフミラー面71を透過する。 In the optical module 1A configured as described above, when the measurement light L0 is incident on the interference optical system I1 from the outside via the measurement light incident unit 8, a part of the measurement light L0 is a half mirror surface of the beam splitter unit 7. 71 and the total reflection mirror surface 72 are sequentially reflected and proceed toward the mirror surface 51 a of the movable mirror 5. A part of the measurement light L 0 is reflected by the mirror surface 51 a of the movable mirror 5, travels on the same optical path (that is, the optical path P 1), and passes through the half mirror surface 71 of the beam splitter unit 7.
 一方、測定光L0の残部は、ビームスプリッタユニット7のハーフミラー面71を透過して、固定ミラー6のミラー面61aに向かって進行する。そして、測定光L0の残部は、固定ミラー6のミラー面61aで反射されて、同一光路(すなわち、光路P2)上を進行し、ビームスプリッタユニット7のハーフミラー面71で反射される。 On the other hand, the remaining part of the measurement light L0 passes through the half mirror surface 71 of the beam splitter unit 7 and proceeds toward the mirror surface 61a of the fixed mirror 6. The remainder of the measurement light L0 is reflected by the mirror surface 61a of the fixed mirror 6, travels on the same optical path (that is, the optical path P2), and is reflected by the half mirror surface 71 of the beam splitter unit 7.
 ビームスプリッタユニット7のハーフミラー面71を透過した測定光L0の一部と、ビームスプリッタユニット7のハーフミラー面71で反射された測定光L0の残部とは、干渉光である測定光L1となり、測定光L1は、測定光出射部9を介して干渉光学系I1から外部に出射する。光モジュール1Aによれば、方向Aに沿って可動ミラー5を高速で往復動させることができるので、小型且つ高精度のFTIRを提供することができる。
[可動ミラー及びその周辺構造]
A part of the measurement light L0 transmitted through the half mirror surface 71 of the beam splitter unit 7 and the remaining part of the measurement light L0 reflected by the half mirror surface 71 of the beam splitter unit 7 become the measurement light L1 that is interference light. The measurement light L1 is emitted from the interference optical system I1 to the outside via the measurement light emitting unit 9. According to the optical module 1A, since the movable mirror 5 can be reciprocated at high speed along the direction A, a small and highly accurate FTIR can be provided.
[Movable mirror and surrounding structure]
 図2及び図3に示されるように、可動ミラー5は、ミラー部51と、弾性部52と、連結部53と、一対の脚部(支持部)54と、一対の係止部(支持部)55と、を有している。以下のように構成される可動ミラー5は、MEMS技術(パターニング及びエッチング)によって一体的に形成されている。 2 and 3, the movable mirror 5 includes a mirror part 51, an elastic part 52, a connecting part 53, a pair of leg parts (support parts) 54, and a pair of locking parts (support parts). 55). The movable mirror 5 configured as described below is integrally formed by MEMS technology (patterning and etching).
 ミラー部51は、ミラー面51aを主面として有する板状(例えば、円板状)に形成されている。弾性部52は、X軸方向(ミラー面51aに垂直な方向)から見た場合にミラー部51から離間しつつミラー部51を囲む環状(例えば、円環状)に形成されている。連結部53は、X軸方向から見た場合にミラー部51の中心に対してY軸方向における一方の側において、ミラー部51と弾性部52とを互いに連結している。 The mirror part 51 is formed in a plate shape (for example, a disk shape) having the mirror surface 51a as a main surface. The elastic part 52 is formed in an annular shape (for example, an annular shape) surrounding the mirror part 51 while being separated from the mirror part 51 when viewed from the X-axis direction (direction perpendicular to the mirror surface 51a). The connecting portion 53 connects the mirror portion 51 and the elastic portion 52 to each other on one side in the Y-axis direction with respect to the center of the mirror portion 51 when viewed from the X-axis direction.
 一対の脚部54は、X軸方向から見た場合にミラー部51の中心に対してY軸方向における両側において、弾性部52における外側の表面に連結されている。つまり、ミラー部51及び弾性部52は、Y軸方向において一対の脚部54に挟まれている。各脚部54は、ミラー部51及び弾性部52よりも実装領域31側に延在している。一対の係止部55は、各脚部54における実装領域31側の端部にそれぞれ設けられている。各係止部55は、X軸方向から見た場合に内側(互いに近づく側)に例えばV字状に屈曲するように形成されている。 The pair of leg portions 54 are connected to the outer surface of the elastic portion 52 on both sides in the Y-axis direction with respect to the center of the mirror portion 51 when viewed from the X-axis direction. That is, the mirror part 51 and the elastic part 52 are sandwiched between the pair of leg parts 54 in the Y-axis direction. Each leg portion 54 extends closer to the mounting region 31 than the mirror portion 51 and the elastic portion 52. The pair of locking portions 55 are provided at the end portions on the mounting region 31 side of the respective leg portions 54. Each locking portion 55 is formed so as to be bent in, for example, a V shape on the inner side (side closer to each other) when viewed from the X-axis direction.
 以上のように構成された可動ミラー5は、実装領域31に形成された開口31bに一対の係止部55が配置されることで、実装領域31に実装されている。開口31bは、Z軸方向において実装領域31の両側に開口している。各係止部55の一部は、実装領域31における中間層4側の表面から突出している。つまり、可動ミラー5は、実装領域31を貫通している。 The movable mirror 5 configured as described above is mounted in the mounting region 31 by arranging the pair of locking portions 55 in the opening 31b formed in the mounting region 31. The openings 31b are opened on both sides of the mounting region 31 in the Z-axis direction. A part of each locking portion 55 protrudes from the surface on the intermediate layer 4 side in the mounting region 31. That is, the movable mirror 5 penetrates the mounting area 31.
 実装領域31の開口31bに配置された一対の係止部55には、弾性部52の弾性変形に応じて外側(互いに遠ざかる側)に弾性力が作用している。つまり、一対の係止部55は、弾性部52の弾性力が付与された状態で開口31bに挿入されている。当該弾性力は、可動ミラー5が実装領域31に実装される際に圧縮された環状の弾性部52が初期状態に復元しようとして生じているものである。可動ミラー5は、開口31bの内面から一対の係止部55に付与される弾性力の反力によって、実装領域31に固定されている。 In the pair of locking portions 55 disposed in the opening 31b of the mounting region 31, an elastic force acts on the outside (side away from each other) according to the elastic deformation of the elastic portion 52. That is, the pair of locking portions 55 are inserted into the opening 31b in a state where the elastic force of the elastic portion 52 is applied. The elastic force is generated when the annular elastic portion 52 compressed when the movable mirror 5 is mounted in the mounting region 31 is restored to the initial state. The movable mirror 5 is fixed to the mounting region 31 by the reaction force of the elastic force applied to the pair of locking portions 55 from the inner surface of the opening 31b.
 なお、図1に示されるように、開口31bは、Z軸方向から見た場合にビームスプリッタユニット7とは反対側に末広がりの台形状に形成されている。このような形状を呈する開口31bに、内側に屈曲する形状を呈する一対の係止部55が係合することで、可動ミラー5は、X軸方向、Y軸方向及びZ軸方向のそれぞれにおいて自動的に位置決めされる(セルフアライメントされる)。 As shown in FIG. 1, the opening 31 b is formed in a trapezoidal shape spreading toward the opposite side to the beam splitter unit 7 when viewed from the Z-axis direction. The movable mirror 5 is automatically operated in each of the X-axis direction, the Y-axis direction, and the Z-axis direction by engaging the pair of locking portions 55 having a shape bent inward with the opening 31b having such a shape. Positioned (self-aligned).
 図2及び図3に示されるように、中間層4には、開口41が形成されている。開口41は、Z軸方向において中間層4の両側に開口している。支持層2には、開口21が形成されている。開口21は、Z軸方向において支持層2の両側に開口している。光モジュール1Aでは、中間層4の開口41内の領域及び支持層2の開口21内の領域によって、一続きの空間S1が構成されている。つまり、空間S1は、中間層4の開口41内の領域及び支持層2の開口21内の領域を含んでいる。 2 and 3, the intermediate layer 4 has an opening 41 formed therein. The openings 41 are open on both sides of the intermediate layer 4 in the Z-axis direction. An opening 21 is formed in the support layer 2. The openings 21 are open on both sides of the support layer 2 in the Z-axis direction. In the optical module 1 </ b> A, a continuous space S <b> 1 is configured by the region in the opening 41 of the intermediate layer 4 and the region in the opening 21 of the support layer 2. That is, the space S <b> 1 includes a region in the opening 41 of the intermediate layer 4 and a region in the opening 21 of the support layer 2.
 空間S1は、支持層2とデバイス層3との間に形成されており、少なくとも実装領域31及び駆動領域32に対応している。具体的には、中間層4の開口41内の領域及び支持層2の開口21内の領域は、Z軸方向から見た場合に実装領域31が移動する範囲を含んでいる。中間層4の開口41内の領域は、実装領域31及び駆動領域32のうち支持層2から離間させるべき部分(すなわち、支持層2に対して浮いた状態とすべき部分であって、例えば、実装領域31の全体、各弾性支持領域34の弾性変形部34b、第1櫛歯部33a及び第2櫛歯部31a)を支持層2から離間させるための隙間を形成している。つまり、少なくとも実装領域31及び駆動領域32に対応する空間S1とは、実装領域31の全体と、駆動領域32の少なくとも一部と、が支持層2から離間するように、支持層2とデバイス層3との間に形成された空間を意味する。 The space S <b> 1 is formed between the support layer 2 and the device layer 3 and corresponds to at least the mounting region 31 and the drive region 32. Specifically, the region in the opening 41 of the intermediate layer 4 and the region in the opening 21 of the support layer 2 include a range in which the mounting region 31 moves when viewed from the Z-axis direction. A region in the opening 41 of the intermediate layer 4 is a portion to be separated from the support layer 2 in the mounting region 31 and the drive region 32 (that is, a portion to be floated with respect to the support layer 2, for example, A gap for separating the entire mounting region 31, the elastic deformation portion 34 b of each elastic support region 34, the first comb tooth portion 33 a and the second comb tooth portion 31 a) from the support layer 2 is formed. That is, the space S1 corresponding to at least the mounting region 31 and the drive region 32 is the support layer 2 and the device layer so that the entire mounting region 31 and at least a part of the drive region 32 are separated from the support layer 2. 3 means a space formed between the two.
 空間S1には、可動ミラー5が有する各係止部55の一部が位置している。具体的には、各係止部55の一部は、中間層4の開口41内の領域を介して、支持層2の開口21内の領域に位置している。各係止部55の一部は、デバイス層3における中間層4側の表面から空間S1内に、例えば100μm程度突出している。上述したように、中間層4の開口41内の領域及び支持層2の開口21内の領域は、Z軸方向から見た場合に実装領域31が移動する範囲を含んでいるため、実装領域31が方向Aに沿って往復動した際に、可動ミラー5の各係止部55のうち空間S1に位置する一部が、中間層4及び支持層2と接触することはない。
[固定ミラー及びその周辺構造]
A part of each locking portion 55 of the movable mirror 5 is located in the space S1. Specifically, a part of each locking portion 55 is located in a region in the opening 21 of the support layer 2 via a region in the opening 41 of the intermediate layer 4. A part of each locking portion 55 protrudes from the surface of the device layer 3 on the intermediate layer 4 side into the space S1, for example, about 100 μm. As described above, the region in the opening 41 of the intermediate layer 4 and the region in the opening 21 of the support layer 2 include a range in which the mounting region 31 moves when viewed from the Z-axis direction. Is reciprocated along the direction A, a part of each locking portion 55 of the movable mirror 5 positioned in the space S1 does not come into contact with the intermediate layer 4 and the support layer 2.
[Fixed mirror and its peripheral structure]
 固定ミラー6は、可動ミラー5と同様の構成を有している。図1に示されるように、固定ミラー6は、実装領域37に形成された開口37aに一対の係止部が配置されることで、実装領域37に実装されている。
[作用及び効果]
The fixed mirror 6 has the same configuration as the movable mirror 5. As shown in FIG. 1, the fixed mirror 6 is mounted in the mounting region 37 by arranging a pair of locking portions in an opening 37 a formed in the mounting region 37.
[Action and effect]
 光モジュール1Aでは、ベース10の主面10aと交差する位置関係にあるミラー面51aを有する可動ミラー5がベース10の実装領域31に実装されている。これにより、可動ミラー5のミラー面51aの大型化を図ることができる。しかも、光モジュール1Aでは、実装領域31に実装された可動ミラー5のミラー面51a、及びベース10に対する位置が固定された固定ミラー6のミラー面61aが、ベース10の主面10aに平行なX軸方向における一方の側に向いている。これにより、例えば、可動ミラー5のミラー面51a及び固定ミラー6のミラー面61aが互いに直交する位置関係にある場合に比べ、固定ミラー6のミラー面61aを基準とすることで、可動ミラー5のミラー面51aの角度ずれが所定範囲内に収まっているか否かを容易に計測することができる。以上により、光モジュール1Aによれば、可動ミラー5のミラー面51aの大型化を図りつつも、可動ミラー5のミラー面51aの角度ずれが所定範囲内に収まっているか否かを容易に計測することができる。 In the optical module 1 </ b> A, the movable mirror 5 having the mirror surface 51 a that is in a positional relationship intersecting the main surface 10 a of the base 10 is mounted in the mounting region 31 of the base 10. Thereby, the mirror surface 51a of the movable mirror 5 can be increased in size. In addition, in the optical module 1A, the mirror surface 51a of the movable mirror 5 mounted in the mounting region 31 and the mirror surface 61a of the fixed mirror 6 whose position with respect to the base 10 are fixed are parallel to the main surface 10a of the base 10. It faces one side in the axial direction. Thereby, for example, compared with the case where the mirror surface 51a of the movable mirror 5 and the mirror surface 61a of the fixed mirror 6 are in a positional relationship orthogonal to each other, the mirror surface 61a of the fixed mirror 6 is used as a reference. It is possible to easily measure whether or not the angular deviation of the mirror surface 51a is within a predetermined range. As described above, according to the optical module 1A, it is easily measured whether or not the angular deviation of the mirror surface 51a of the movable mirror 5 is within a predetermined range while increasing the size of the mirror surface 51a of the movable mirror 5. be able to.
 また、光モジュール1Aでは、可動ミラー5が、実装領域31の開口31bの内面から係止部55に付与される弾性力の反力によって、実装領域31に固定されている。これにより、例えばセルフアライメントを利用して、実装領域31に可動ミラー5を容易且つ高精度に実装することができる。その一方で、例えば、係止部55と開口31bの内面との間にパーティクルが挟まること等に起因して可動ミラー5のミラー面51aに角度ずれが生じることが懸念されるため、上述したように、可動ミラー5のミラー面51aの角度ずれが所定範囲内に収まっているか否かを容易に計測し得る構成は、特に有効である。 In the optical module 1A, the movable mirror 5 is fixed to the mounting region 31 by the reaction force of the elastic force applied to the locking portion 55 from the inner surface of the opening 31b of the mounting region 31. Thereby, for example, the movable mirror 5 can be easily and accurately mounted on the mounting region 31 using self-alignment. On the other hand, for example, there is a concern that the mirror surface 51a of the movable mirror 5 may be angularly shifted due to particles caught between the locking portion 55 and the inner surface of the opening 31b. In addition, a configuration that can easily measure whether or not the angular deviation of the mirror surface 51a of the movable mirror 5 is within a predetermined range is particularly effective.
 また、光モジュール1Aでは、固定ミラー6が、Y軸方向において、可動ミラー5に対して一方の側に位置しており、駆動領域32の少なくとも一部が、Z軸方向から見た場合に、X軸方向における固定ミラー6の一方の側に位置している。これにより、ベース10の主面10aに平行な面内における省スペース化を図り、光モジュール1A全体の大型化を抑制することができる。 In the optical module 1A, when the fixed mirror 6 is positioned on one side with respect to the movable mirror 5 in the Y-axis direction, and at least a part of the drive region 32 is viewed from the Z-axis direction, It is located on one side of the fixed mirror 6 in the X-axis direction. Thereby, space saving in the surface parallel to the main surface 10a of the base 10 can be achieved, and the enlargement of the entire optical module 1A can be suppressed.
 また、光モジュール1Aでは、ビームスプリッタユニット7において、測定光L0の一部を反射し且つ測定光L0の残部を透過させるハーフミラー面71と、ハーフミラー面71によって反射された測定光L0の一部を反射する全反射ミラー面72とが、互いに平行である。これにより、ベース10の主面10aに垂直な軸線回りにおけるビームスプリッタユニット7の取付角度にずれが生じたとしても、ビームスプリッタユニット7(具体的には、光学面73a)への測定光L0の入射角度が一定であれば、ビームスプリッタユニット7(具体的には、光学面73b)からの測定光L0の出射角度が一定になる。しかも、光モジュール1Aでは、可動ミラー5のミラー面51aの大型化が可能であるため、ビームスプリッタユニット7からの測定光L0の出射位置にずれが生じたとしても、当該ずれを実質的に無視することができる。よって、ビームスプリッタユニット7のアライメント精度を緩和することができる。 In the optical module 1A, the beam splitter unit 7 reflects a part of the measurement light L0 and transmits the remaining part of the measurement light L0, and one of the measurement light L0 reflected by the half mirror surface 71. The total reflection mirror surfaces 72 that reflect the portions are parallel to each other. Thereby, even if the mounting angle of the beam splitter unit 7 around the axis perpendicular to the main surface 10a of the base 10 is deviated, the measurement light L0 to the beam splitter unit 7 (specifically, the optical surface 73a) is shifted. If the incident angle is constant, the emission angle of the measurement light L0 from the beam splitter unit 7 (specifically, the optical surface 73b) is constant. Moreover, in the optical module 1A, since the mirror surface 51a of the movable mirror 5 can be enlarged, even if a deviation occurs in the emission position of the measurement light L0 from the beam splitter unit 7, the deviation is substantially ignored. can do. Therefore, the alignment accuracy of the beam splitter unit 7 can be relaxed.
 また、光モジュール1Aでは、固定ミラー6が、ベース10に実装されている。これにより、可動ミラー5及び固定ミラー6の位置合わせの容易化を図ることができる。 In the optical module 1A, the fixed mirror 6 is mounted on the base 10. Thereby, the positioning of the movable mirror 5 and the fixed mirror 6 can be facilitated.
 また、光モジュール1Aでは、ビームスプリッタユニット7が、ベース10に実装されている。これにより、可動ミラー5及びビームスプリッタユニット7の位置合わせの容易化を図ることができる。 In the optical module 1A, the beam splitter unit 7 is mounted on the base 10. Thereby, the positioning of the movable mirror 5 and the beam splitter unit 7 can be facilitated.
 また、光モジュール1Aでは、光透過部材11が、光路P1上に配置されており、光路P1と光路P2との間の光路差を補正する。これにより、測定光L0の干渉光(測定光L1)を容易に且つ高精度で得ることができる。 Further, in the optical module 1A, the light transmission member 11 is disposed on the optical path P1, and corrects the optical path difference between the optical path P1 and the optical path P2. Thereby, the interference light (measurement light L1) of the measurement light L0 can be obtained easily and with high accuracy.
 また、光モジュール1Aでは、光透過部材11が、ベース10に実装されている。これにより、可動ミラー5及び光透過部材11の位置合わせの容易化を図ることができる。 In the optical module 1A, the light transmitting member 11 is mounted on the base 10. Thereby, the positioning of the movable mirror 5 and the light transmission member 11 can be facilitated.
 また、光モジュール1Aでは、測定光入射部8が、外部から干渉光学系I1に測定光L0を入射させるように配置されており、測定光出射部9が、干渉光学系I1から外部に測定光L1を出射させるように配置されている。これにより、測定光入射部8及び測定光出射部9を備えるFTIRを得ることができる。 In the optical module 1A, the measurement light incident part 8 is arranged so that the measurement light L0 is incident on the interference optical system I1 from the outside, and the measurement light emitting part 9 is externally measured from the interference optical system I1. It arrange | positions so that L1 may be radiate | emitted. Thereby, FTIR provided with the measurement light incident part 8 and the measurement light emission part 9 can be obtained.
 また、光モジュール1Aでは、ベース10が、SOI基板によって構成されている。これにより、デバイス層3に実装された可動ミラー5の確実な移動のための構成をSOI基板によって好適に実現することができる。
[第1実施形態の変形例]
In the optical module 1A, the base 10 is configured by an SOI substrate. Thereby, the structure for the reliable movement of the movable mirror 5 mounted on the device layer 3 can be suitably realized by the SOI substrate.
[Modification of First Embodiment]
 図4の(a)に示されるように、固定ミラー6は、光透過部材11の光学面11bに設けられていてもよい。また、図4の(b)に示されるように、可動ミラー5のミラー面51aと固定ミラー6のミラー面61aとは、同一平面上に位置していてもよい。この場合、ビームスプリッタユニット7と可動ミラー5との間に光透過部材11が配置され、ビームスプリッタユニット7と固定ミラー6との間に光透過部材17が配置されてもよい。 4 (a), the fixed mirror 6 may be provided on the optical surface 11b of the light transmitting member 11. Moreover, as shown in FIG. 4B, the mirror surface 51a of the movable mirror 5 and the mirror surface 61a of the fixed mirror 6 may be located on the same plane. In this case, the light transmission member 11 may be disposed between the beam splitter unit 7 and the movable mirror 5, and the light transmission member 17 may be disposed between the beam splitter unit 7 and the fixed mirror 6.
 光透過部材17は、光学面17a,17b及び全反射ミラー面17c,17dを含んでいる。光学面17aは、例えばX軸方向に垂直な面である。光学面17aは、X軸方向に沿って入射した測定光L0の残部を透過させる。全反射ミラー面17cは、例えば光学面17aに対して45°傾斜した面である。全反射ミラー面17cは、X軸方向に沿って光学面17aに入射した測定光L0の残部をY軸方向に沿って反射する。全反射ミラー面17dは、全反射ミラー面17cに平行な面である。全反射ミラー面17dは、全反射ミラー面17cによって反射された測定光L0の残部をX軸方向に沿って固定ミラー6側に反射する。光学面17bは、光学面17aに平行な面である。光学面17bは、X軸方向に沿って入射した測定光L0の残部を透過させる。 The light transmitting member 17 includes optical surfaces 17a and 17b and total reflection mirror surfaces 17c and 17d. The optical surface 17a is, for example, a surface perpendicular to the X-axis direction. The optical surface 17a transmits the remainder of the measurement light L0 incident along the X-axis direction. The total reflection mirror surface 17c is, for example, a surface inclined by 45 ° with respect to the optical surface 17a. The total reflection mirror surface 17c reflects the remainder of the measurement light L0 incident on the optical surface 17a along the X-axis direction along the Y-axis direction. The total reflection mirror surface 17d is a surface parallel to the total reflection mirror surface 17c. The total reflection mirror surface 17d reflects the remainder of the measurement light L0 reflected by the total reflection mirror surface 17c toward the fixed mirror 6 along the X-axis direction. The optical surface 17b is a surface parallel to the optical surface 17a. The optical surface 17b transmits the remainder of the measurement light L0 incident along the X-axis direction.
 図4の(b)に示される構成では、光透過部材11及び光透過部材17が、ビームスプリッタユニット7と可動ミラー5との間の光路P1と、ビームスプリッタユニット7と固定ミラー6との間の光路P2との間の光路差を補正する。
[第2実施形態]
4B, the light transmitting member 11 and the light transmitting member 17 are provided between the beam splitter unit 7 and the movable mirror 5, and between the beam splitter unit 7 and the fixed mirror 6. In the configuration shown in FIG. The optical path difference from the optical path P2 is corrected.
[Second Embodiment]
 図5に示されるように、光モジュール1Bは、固定ミラー(第2固定ミラー)12と、光源13と、光検出器14と、フィルタ15と、を更に備える点で、上述した光モジュール1Aと主に相違している。光モジュール1Bでは、可動ミラー5、固定ミラー6及びビームスプリッタユニット7が、測定光L0について干渉光学系(第1干渉光学系)I1を構成するように、デバイス層3上に配置されている。また、光モジュール1Bでは、可動ミラー5、固定ミラー12及びビームスプリッタユニット7が、レーザ光L10について干渉光学系(第2干渉光学系)I2を構成するように、デバイス層3上に配置されている。各干渉光学系I1,I2は、ここでは、マイケルソン干渉光学系である。 As shown in FIG. 5, the optical module 1 </ b> B includes the above-described optical module 1 </ b> A in that it further includes a fixed mirror (second fixed mirror) 12, a light source 13, a photodetector 14, and a filter 15. Mainly different. In the optical module 1B, the movable mirror 5, the fixed mirror 6, and the beam splitter unit 7 are arranged on the device layer 3 so as to configure the interference optical system (first interference optical system) I1 for the measurement light L0. In the optical module 1B, the movable mirror 5, the fixed mirror 12, and the beam splitter unit 7 are arranged on the device layer 3 so as to constitute an interference optical system (second interference optical system) I2 with respect to the laser light L10. Yes. Here, each of the interference optical systems I1 and I2 is a Michelson interference optical system.
 固定ミラー12は、デバイス層3の実装領域38に実装されている。つまり、固定ミラー12は、ベース10に実装されている。固定ミラー12は、ベース10に対する位置(ベース10のうち実装領域31及び駆動領域32を除く領域に対する位置)が固定されている。固定ミラー12は、Y軸方向において可動ミラー5に対して他方の側(固定ミラー6がずれる一方の側とは反対側)に位置している。つまり、固定ミラー12は、可動ミラー5に対して、Y軸方向における他方の側にずれている。 The fixed mirror 12 is mounted in the mounting area 38 of the device layer 3. That is, the fixed mirror 12 is mounted on the base 10. The fixed mirror 12 is fixed at a position relative to the base 10 (a position relative to an area of the base 10 excluding the mounting area 31 and the drive area 32). The fixed mirror 12 is located on the other side with respect to the movable mirror 5 in the Y-axis direction (the side opposite to the one side on which the fixed mirror 6 is displaced). That is, the fixed mirror 12 is shifted to the other side in the Y-axis direction with respect to the movable mirror 5.
 光モジュール1Bでは、固定ミラー6,12が、Y軸方向において、可動ミラー5に対して両側に位置している。駆動領域32の少なくとも一部は、Z軸方向から見た場合に、X軸方向における固定ミラー6の一方の側、及び、X軸方向における固定ミラー12の一方の側に位置している。つまり、駆動領域32の少なくとも一部は、Z軸方向から見た場合に、X軸方向において各固定ミラー6,12と並んでいる。具体的には、駆動領域32のうち一方の弾性支持領域34が、Z軸方向から見た場合に、X軸方向における固定ミラー6の一方の側に位置している。また、駆動領域32のうち他方の弾性支持領域34が、Z軸方向から見た場合に、X軸方向における固定ミラー12の一方の側に位置している。 In the optical module 1B, the fixed mirrors 6 and 12 are positioned on both sides of the movable mirror 5 in the Y-axis direction. At least a part of the drive region 32 is located on one side of the fixed mirror 6 in the X-axis direction and one side of the fixed mirror 12 in the X-axis direction when viewed from the Z-axis direction. That is, at least a part of the drive region 32 is aligned with the fixed mirrors 6 and 12 in the X-axis direction when viewed from the Z-axis direction. Specifically, one elastic support region 34 in the drive region 32 is located on one side of the fixed mirror 6 in the X-axis direction when viewed from the Z-axis direction. Further, the other elastic support region 34 of the drive region 32 is located on one side of the fixed mirror 12 in the X-axis direction when viewed from the Z-axis direction.
 固定ミラー12は、ミラー部121を有している。ミラー部121は、主面10aと交差する位置関係にあるミラー面121aを有している。ミラー面121aは、デバイス層3に対して支持層2とは反対側に位置している。ミラー面121aは、例えばX軸方向に垂直な面(すなわち、方向Aに垂直な面)であり、X軸方向における一方の側(ビームスプリッタユニット7側)に向いている。固定ミラー12は、可動ミラー5と同様の構成を有しており、実装領域38に形成された開口38aに一対の係止部が配置されることで、実装領域38に実装されている。 The fixed mirror 12 has a mirror part 121. The mirror part 121 has a mirror surface 121a in a positional relationship intersecting the main surface 10a. The mirror surface 121 a is located on the side opposite to the support layer 2 with respect to the device layer 3. The mirror surface 121a is, for example, a surface perpendicular to the X-axis direction (that is, a surface perpendicular to the direction A) and is directed to one side (beam splitter unit 7 side) in the X-axis direction. The fixed mirror 12 has the same configuration as that of the movable mirror 5 and is mounted in the mounting region 38 by arranging a pair of locking portions in the opening 38 a formed in the mounting region 38.
 ビームスプリッタユニット7は、複数のハーフミラー面71a,71b、全反射ミラー面72、ダイクロイックミラー面74及び複数の光学面75a,75b,75c,75d,75e,75fを有している。複数のハーフミラー面71a,71b、全反射ミラー面72、ダイクロイックミラー面74及び複数の光学面75a,75b,75c,75d,75e,75fは、デバイス層3に対して支持層2とは反対側に位置している。ビームスプリッタユニット7は、複数の光学ブロックが接合されることで構成されている。各ハーフミラー面71a,71bは、例えば誘電体多層膜によって形成されている。全反射ミラー面72は、例えば金属膜によって形成されている。ダイクロイックミラー面74は、例えば誘電体多層膜によって形成されている。 The beam splitter unit 7 has a plurality of half mirror surfaces 71a and 71b, a total reflection mirror surface 72, a dichroic mirror surface 74, and a plurality of optical surfaces 75a, 75b, 75c, 75d, 75e, and 75f. The plurality of half mirror surfaces 71a and 71b, the total reflection mirror surface 72, the dichroic mirror surface 74, and the plurality of optical surfaces 75a, 75b, 75c, 75d, 75e, and 75f are opposite to the support layer 2 with respect to the device layer 3. Is located. The beam splitter unit 7 is configured by joining a plurality of optical blocks. Each half mirror surface 71a, 71b is formed of a dielectric multilayer film, for example. The total reflection mirror surface 72 is formed of, for example, a metal film. The dichroic mirror surface 74 is formed of a dielectric multilayer film, for example.
 光学面75aは、例えばX軸方向に垂直な面であり、X軸方向から見た場合に固定ミラー6のミラー面61aと重なっている。光学面75aは、X軸方向に沿って入射した測定光L0を透過させる。 The optical surface 75a is, for example, a surface perpendicular to the X-axis direction, and overlaps the mirror surface 61a of the fixed mirror 6 when viewed from the X-axis direction. The optical surface 75a transmits the measurement light L0 incident along the X-axis direction.
 ハーフミラー面71aは、例えば光学面75aに対して45°傾斜した面であり、X軸方向から見た場合に固定ミラー6のミラー面61aと重なっている。ハーフミラー面71aは、X軸方向に沿って光学面75aに入射した測定光L0の一部をY軸方向に沿って反射し且つ当該測定光L0の残部をX軸方向に沿って固定ミラー6側に透過させる。 The half mirror surface 71a is, for example, a surface inclined by 45 ° with respect to the optical surface 75a, and overlaps the mirror surface 61a of the fixed mirror 6 when viewed from the X-axis direction. The half mirror surface 71a reflects a part of the measurement light L0 incident on the optical surface 75a along the X-axis direction along the Y-axis direction, and the remaining part of the measurement light L0 along the X-axis direction. Permeate to the side.
 光学面75bは、例えばX軸方向に垂直な面であり、X軸方向から見た場合に可動ミラー5のミラー面51aと重なっている。光学面75bは、X軸方向に沿って入射したレーザ光L10を透過させる。 The optical surface 75b is, for example, a surface perpendicular to the X-axis direction, and overlaps the mirror surface 51a of the movable mirror 5 when viewed from the X-axis direction. The optical surface 75b transmits the laser beam L10 incident along the X-axis direction.
 ハーフミラー面71bは、ハーフミラー面71aに平行な面であり、X軸方向から見た場合に可動ミラー5のミラー面51aと重なっており且つY軸方向から見た場合にハーフミラー面71aと重なっている。ハーフミラー面71bは、X軸方向に沿って光学面75bに入射したレーザ光L10の一部をY軸方向に沿って反射し且つ当該レーザ光L10の残部をX軸方向に沿って可動ミラー5側に透過させる。ハーフミラー面71bは、ハーフミラー面71aによって反射された測定光L0の一部をX軸方向に沿って可動ミラー5側に反射する。 The half mirror surface 71b is a surface parallel to the half mirror surface 71a, overlaps the mirror surface 51a of the movable mirror 5 when viewed from the X-axis direction, and the half mirror surface 71a when viewed from the Y-axis direction. overlapping. The half mirror surface 71b reflects a part of the laser light L10 incident on the optical surface 75b along the X-axis direction along the Y-axis direction and the remaining part of the laser light L10 along the X-axis direction. Permeate to the side. The half mirror surface 71b reflects a part of the measurement light L0 reflected by the half mirror surface 71a to the movable mirror 5 side along the X-axis direction.
 全反射ミラー面72は、ハーフミラー面71a,71bに平行な面であり、X軸方向から見た場合に固定ミラー12のミラー面121aと重なっており且つY軸方向から見た場合にハーフミラー面71a,71bと重なっている。全反射ミラー面72は、ハーフミラー面71bによって反射されたレーザ光L10の一部をX軸方向に沿って固定ミラー12側に反射する。 The total reflection mirror surface 72 is a surface parallel to the half mirror surfaces 71a and 71b, overlaps the mirror surface 121a of the fixed mirror 12 when viewed from the X-axis direction, and is a half mirror when viewed from the Y-axis direction. It overlaps with the surfaces 71a and 71b. The total reflection mirror surface 72 reflects a part of the laser light L10 reflected by the half mirror surface 71b to the fixed mirror 12 side along the X-axis direction.
 光学面75cは、光学面75a,75bに平行な面であり、X軸方向から見た場合に可動ミラー5のミラー面51aと重なっている。光学面75cは、ハーフミラー面71bによって反射された測定光L0の一部、及びハーフミラー面71bを透過したレーザ光L10の残部をX軸方向に沿って可動ミラー5側に透過させる。 The optical surface 75c is a surface parallel to the optical surfaces 75a and 75b, and overlaps the mirror surface 51a of the movable mirror 5 when viewed from the X-axis direction. The optical surface 75c transmits a part of the measurement light L0 reflected by the half mirror surface 71b and the remaining part of the laser light L10 transmitted through the half mirror surface 71b to the movable mirror 5 side along the X-axis direction.
 光学面75dは、光学面75a,75bに平行な面であり、X軸方向から見た場合に固定ミラー12のミラー面121aと重なっている。光学面75dは、全反射ミラー面72によって反射されたレーザ光L10の一部をX軸方向に沿って固定ミラー12側に透過させる。 The optical surface 75d is a surface parallel to the optical surfaces 75a and 75b, and overlaps the mirror surface 121a of the fixed mirror 12 when viewed from the X-axis direction. The optical surface 75d transmits part of the laser light L10 reflected by the total reflection mirror surface 72 to the fixed mirror 12 side along the X-axis direction.
 光学面75eは、光学面75a,75bに平行な面であり、X軸方向から見た場合に固定ミラー6のミラー面61aと重なっている。光学面75eは、ハーフミラー面71aを透過した測定光L0の残部をX軸方向に沿って固定ミラー6側に透過させる。 The optical surface 75e is a surface parallel to the optical surfaces 75a and 75b, and overlaps the mirror surface 61a of the fixed mirror 6 when viewed from the X-axis direction. The optical surface 75e transmits the remaining portion of the measurement light L0 transmitted through the half mirror surface 71a to the fixed mirror 6 side along the X-axis direction.
 ダイクロイックミラー面74は、ハーフミラー面71a,71b及び全反射ミラー面72に平行な面であり、Y軸方向から見た場合にハーフミラー面71a,71b及び全反射ミラー面72と重なっている。ダイクロイックミラー面74は、測定光L1をY軸方向に沿って透過させ且つレーザ光L11をX軸方向に沿って反射する。測定光L1は、可動ミラー5のミラー面51a及びハーフミラー面71bで順次に反射されてハーフミラー面71aを透過した測定光L0の一部と、固定ミラー6のミラー面61a及びハーフミラー面71aで順次に反射された測定光L0の残部との干渉光である。レーザ光L11は、固定ミラー12のミラー面121a及び全反射ミラー面72で順次に反射されてハーフミラー面71b及びハーフミラー面71aを順次に透過したレーザ光L10の一部と、可動ミラー5のミラー面51a及びハーフミラー面71bで順次に反射されてハーフミラー面71aを透過したレーザ光L10の残部との干渉光である。 The dichroic mirror surface 74 is parallel to the half mirror surfaces 71a and 71b and the total reflection mirror surface 72, and overlaps the half mirror surfaces 71a and 71b and the total reflection mirror surface 72 when viewed from the Y-axis direction. The dichroic mirror surface 74 transmits the measurement light L1 along the Y-axis direction and reflects the laser light L11 along the X-axis direction. The measurement light L1 is partly reflected by the mirror surface 51a and the half mirror surface 71b of the movable mirror 5 and transmitted through the half mirror surface 71a, and the mirror surface 61a and the half mirror surface 71a of the fixed mirror 6. The interference light with the remainder of the measurement light L0 reflected in sequence. The laser beam L11 is sequentially reflected by the mirror surface 121a and the total reflection mirror surface 72 of the fixed mirror 12 and sequentially transmitted through the half mirror surface 71b and the half mirror surface 71a. This is interference light with the remainder of the laser beam L10 that is sequentially reflected by the mirror surface 51a and the half mirror surface 71b and transmitted through the half mirror surface 71a.
 光学面75fは、光学面75c,75d,75eに平行な面であり、X軸方向から見た場合にダイクロイックミラー面74と重なっている。光学面75fは、ダイクロイックミラー面74によって反射されたレーザ光L11をX軸方向に沿って透過させる。 The optical surface 75f is a surface parallel to the optical surfaces 75c, 75d, and 75e, and overlaps the dichroic mirror surface 74 when viewed from the X-axis direction. The optical surface 75f transmits the laser light L11 reflected by the dichroic mirror surface 74 along the X-axis direction.
 測定光入射部8は、外部から干渉光学系I1に測定光L0を入射させるように配置されている。測定光入射部8は、X軸方向におけるビームスプリッタユニット7の一方の側において、デバイス層3に実装されている。測定光入射部8は、X軸方向においてビームスプリッタユニット7の光学面75aと向かい合っている。測定光入射部8は、例えば光ファイバ及びコリメートレンズ等によって構成されている。 The measurement light incident part 8 is arranged so that the measurement light L0 is incident on the interference optical system I1 from the outside. The measurement light incident part 8 is mounted on the device layer 3 on one side of the beam splitter unit 7 in the X-axis direction. The measurement light incident part 8 faces the optical surface 75a of the beam splitter unit 7 in the X-axis direction. The measurement light incident part 8 is constituted by, for example, an optical fiber and a collimating lens.
 測定光出射部9は、干渉光学系I1から外部に測定光L1を出射させるように配置されている。測定光出射部9は、Y軸方向におけるビームスプリッタユニット7の一方の側において、デバイス層3に実装されている。測定光出射部9は、Y軸方向においてビームスプリッタユニット7のダイクロイックミラー面74と向かい合っている。測定光出射部9は、例えば光ファイバ及びコリメートレンズ等によって構成されている。 The measurement light emitting unit 9 is arranged so as to emit measurement light L1 from the interference optical system I1 to the outside. The measurement light emitting unit 9 is mounted on the device layer 3 on one side of the beam splitter unit 7 in the Y-axis direction. The measurement light emitting unit 9 faces the dichroic mirror surface 74 of the beam splitter unit 7 in the Y-axis direction. The measurement light emitting unit 9 is configured by, for example, an optical fiber and a collimating lens.
 光源13は、干渉光学系I2に入射させるレーザ光L10を発生する。光源13は、例えばレーザダイオードである。光源13は、X軸方向におけるビームスプリッタユニット7の一方の側において、デバイス層3に実装されている。光源13は、X軸方向においてビームスプリッタユニット7の光学面75bと向かい合っている。 The light source 13 generates a laser beam L10 that is incident on the interference optical system I2. The light source 13 is a laser diode, for example. The light source 13 is mounted on the device layer 3 on one side of the beam splitter unit 7 in the X-axis direction. The light source 13 faces the optical surface 75b of the beam splitter unit 7 in the X-axis direction.
 光検出器14は、干渉光学系I2から出射されたレーザ光L11を検出する。光検出器14は、例えばフォトダイオードである。光検出器14は、X軸方向におけるビームスプリッタユニット7の一方の側において、デバイス層3に実装されている。光検出器14は、X軸方向においてビームスプリッタユニット7の光学面75fと向かい合っている。 The light detector 14 detects the laser light L11 emitted from the interference optical system I2. The photodetector 14 is, for example, a photodiode. The photodetector 14 is mounted on the device layer 3 on one side of the beam splitter unit 7 in the X-axis direction. The photodetector 14 faces the optical surface 75f of the beam splitter unit 7 in the X-axis direction.
 フィルタ15は、レーザ光L10が進行せず且つ測定光L0が進行する光路上に配置されている。具体的には、フィルタ15は、測定光入射部8とビームスプリッタユニット7との間に配置されている。フィルタ15は、レーザ光L10の中心波長を含む波長範囲の光をカットする。 The filter 15 is disposed on the optical path where the laser beam L10 does not travel and the measurement beam L0 travels. Specifically, the filter 15 is disposed between the measurement light incident portion 8 and the beam splitter unit 7. The filter 15 cuts light in a wavelength range including the center wavelength of the laser light L10.
 以上のように構成された光モジュール1Bでは、測定光入射部8及びフィルタ15を介して外部から干渉光学系I1に測定光L0が入射すると、測定光L0の一部は、ビームスプリッタユニット7のハーフミラー面71a及びハーフミラー面71bで順次に反射されて、可動ミラー5のミラー面51aに向かって進行する。そして、測定光L0の一部は、可動ミラー5のミラー面51aで反射されて、同一の光路(すなわち、光路P1)上を進行し、ビームスプリッタユニット7のハーフミラー面71aを透過する。 In the optical module 1 </ b> B configured as described above, when the measurement light L <b> 0 enters the interference optical system I <b> 1 from the outside via the measurement light incident unit 8 and the filter 15, a part of the measurement light L <b> 0 is part of the beam splitter unit 7. The light is sequentially reflected by the half mirror surface 71 a and the half mirror surface 71 b and travels toward the mirror surface 51 a of the movable mirror 5. A part of the measurement light L 0 is reflected by the mirror surface 51 a of the movable mirror 5, travels on the same optical path (that is, the optical path P 1), and passes through the half mirror surface 71 a of the beam splitter unit 7.
 一方、測定光L0の残部は、ビームスプリッタユニット7のハーフミラー面71aを透過して、固定ミラー6のミラー面61aに向かって進行する。そして、測定光L0の残部は、固定ミラー6のミラー面61aで反射されて、同一光路(すなわち、光路P2)上を進行し、ビームスプリッタユニット7のハーフミラー面71aで反射される。 On the other hand, the remaining part of the measurement light L0 passes through the half mirror surface 71a of the beam splitter unit 7 and proceeds toward the mirror surface 61a of the fixed mirror 6. The remainder of the measurement light L0 is reflected by the mirror surface 61a of the fixed mirror 6, travels on the same optical path (that is, the optical path P2), and is reflected by the half mirror surface 71a of the beam splitter unit 7.
 ビームスプリッタユニット7のハーフミラー面71aを透過した測定光L0の一部と、ビームスプリッタユニット7のハーフミラー面71aで反射された測定光L0の残部とは、干渉光である測定光L1となり、測定光L1は、ビームスプリッタユニット7のダイクロイックミラー面74を透過して、測定光出射部9を介して干渉光学系I1から外部に出射する。 A part of the measurement light L0 transmitted through the half mirror surface 71a of the beam splitter unit 7 and the remaining part of the measurement light L0 reflected by the half mirror surface 71a of the beam splitter unit 7 become the measurement light L1 that is interference light. The measurement light L1 passes through the dichroic mirror surface 74 of the beam splitter unit 7 and is emitted from the interference optical system I1 to the outside via the measurement light emitting unit 9.
 また、光モジュール1Bでは、光源13から干渉光学系I2にレーザ光L10が入射すると、レーザ光L10の一部は、ビームスプリッタユニット7のハーフミラー面71b及び全反射ミラー面72で順次に反射されて、固定ミラー12のミラー面121aに向かって進行する。そして、レーザ光L10の一部は、固定ミラー12のミラー面121aで反射されて、同一の光路(すなわち、ビームスプリッタユニット7と固定ミラー12との間の光路P3(第3光路))上を進行し、ビームスプリッタユニット7のハーフミラー面71bを透過する。 In the optical module 1B, when the laser light L10 is incident on the interference optical system I2 from the light source 13, a part of the laser light L10 is sequentially reflected by the half mirror surface 71b and the total reflection mirror surface 72 of the beam splitter unit 7. Then, it proceeds toward the mirror surface 121a of the fixed mirror 12. A part of the laser beam L10 is reflected by the mirror surface 121a of the fixed mirror 12, and travels on the same optical path (that is, the optical path P3 (third optical path) between the beam splitter unit 7 and the fixed mirror 12). The light travels through the half mirror surface 71 b of the beam splitter unit 7.
 一方、レーザ光L10の残部は、ビームスプリッタユニット7のハーフミラー面71bを透過して、可動ミラー5のミラー面51aに向かって進行する。そして、レーザ光L10の残部は、可動ミラー5のミラー面51aで反射されて、同一光路(すなわち、光路P1)上を進行し、ビームスプリッタユニット7のハーフミラー面71bで反射される。 On the other hand, the remaining part of the laser beam L10 passes through the half mirror surface 71b of the beam splitter unit 7 and proceeds toward the mirror surface 51a of the movable mirror 5. The remainder of the laser beam L10 is reflected by the mirror surface 51a of the movable mirror 5, travels on the same optical path (that is, the optical path P1), and is reflected by the half mirror surface 71b of the beam splitter unit 7.
 ビームスプリッタユニット7のハーフミラー面71bを透過したレーザ光L10の一部と、ビームスプリッタユニット7のハーフミラー面71bで反射されたレーザ光L10の残部とは、干渉光であるレーザ光L11となり、レーザ光L11は、ビームスプリッタユニット7のハーフミラー面71aを透過した後、ビームスプリッタユニット7のダイクロイックミラー面74で反射されて、干渉光学系I2から出射され、光検出器14で検出される。光モジュール1Bによれば、レーザ光L11を検出することで可動ミラー5の位置をリアルタイムで検出することができるので、より高精度のFTIRを提供することができる。 A part of the laser light L10 transmitted through the half mirror surface 71b of the beam splitter unit 7 and the remaining part of the laser light L10 reflected by the half mirror surface 71b of the beam splitter unit 7 become laser light L11 that is interference light. The laser beam L11 passes through the half mirror surface 71a of the beam splitter unit 7, is reflected by the dichroic mirror surface 74 of the beam splitter unit 7, is emitted from the interference optical system I2, and is detected by the photodetector 14. According to the optical module 1B, since the position of the movable mirror 5 can be detected in real time by detecting the laser light L11, more accurate FTIR can be provided.
 光モジュール1Bでは、測定光入射部8とビームスプリッタユニット7との間に配置されたフィルタ15によって、測定光L0から、レーザ光L10の中心波長を含む波長範囲の光(例えば、1μm以下の波長範囲の測定光L0)がカットされる。これにより、図6に示されるように、光検出器14に入射する光において、レーザ光L11と測定光L1とが混在することが防止される。
[作用及び効果]
In the optical module 1B, the filter 15 disposed between the measurement light incident portion 8 and the beam splitter unit 7 causes light in a wavelength range including the center wavelength of the laser light L10 (for example, a wavelength of 1 μm or less) from the measurement light L0. The measuring light L0) in the range is cut. As a result, as shown in FIG. 6, the laser light L11 and the measurement light L1 are prevented from being mixed in the light incident on the photodetector 14.
[Action and effect]
 光モジュール1Bによれば、上述した光モジュール1Aと同様の理由により、可動ミラー5のミラー面51aの大型化を図りつつも、可動ミラー5のミラー面51aの角度ずれが所定範囲内に収まっているか否かを容易に計測することができる。 According to the optical module 1B, for the same reason as the optical module 1A described above, the mirror surface 51a of the movable mirror 5 is enlarged while the angular deviation of the mirror surface 51a of the movable mirror 5 is within a predetermined range. Whether or not there is can be easily measured.
 また、光モジュール1Bでは、固定ミラー6,12が、Y軸方向において、可動ミラー5に対して両側にそれぞれ位置しており、駆動領域32の少なくとも一部が、Z軸方向から見た場合に、X軸方向における固定ミラー6の一方の側、及び、X軸方向における固定ミラー12の一方の側に位置している。これにより、ベース10の主面10aに平行な面内における省スペース化を図り、光モジュール1B全体の大型化を抑制することができる。 Further, in the optical module 1B, the fixed mirrors 6 and 12 are positioned on both sides of the movable mirror 5 in the Y-axis direction, and at least a part of the drive region 32 is viewed from the Z-axis direction. , One side of the fixed mirror 6 in the X-axis direction and one side of the fixed mirror 12 in the X-axis direction. Thereby, the space saving in the surface parallel to the main surface 10a of the base 10 can be achieved, and the enlargement of the entire optical module 1B can be suppressed.
 また、光モジュール1Bでは、レーザ光L10の中心波長を含む波長範囲の光をカットするフィルタ15が、レーザ光L10が進行せず且つ測定光L0が進行する光路上に配置されている。これにより、レーザ光L10の干渉光(レーザ光L11)の検出において測定光L1がノイズとなるのを防止することができる。 In the optical module 1B, the filter 15 that cuts light in a wavelength range including the center wavelength of the laser light L10 is disposed on the optical path where the laser light L10 does not travel and the measurement light L0 travels. Thereby, it is possible to prevent the measurement light L1 from becoming noise in detecting the interference light (laser light L11) of the laser light L10.
 また、光モジュール1Bは、干渉光学系I2に入射させるレーザ光L10を発生する光源13と、干渉光学系I2から出射されたレーザ光L11を検出する光検出器14と、を備えている。これにより、レーザ光L11を検出することで可動ミラー5の位置をリアルタイムで検出することができるので、より高精度のFTIRを得ることができる。
[第2実施形態の変形例]
The optical module 1B also includes a light source 13 that generates a laser beam L10 that is incident on the interference optical system I2, and a photodetector 14 that detects the laser beam L11 emitted from the interference optical system I2. Thereby, since the position of the movable mirror 5 can be detected in real time by detecting the laser beam L11, more accurate FTIR can be obtained.
[Modification of Second Embodiment]
 図7の(a)及び(b)に示されるように、光源13及び光検出器14は、ベース10とは別に設けられた回路基板16上に実装されていてもよい。また、図7の(a)に示されるように、固定ミラー6は、光透過部材11の光学面11bに設けられていてもよい。また、図7の(b)に示されるように、固定ミラー6,12は、Y軸方向において、可動ミラー5に対して一方の側に位置していてもよい。この場合、ビームスプリッタユニット7は、次のように構成されてもよい。 7A and 7B, the light source 13 and the photodetector 14 may be mounted on a circuit board 16 provided separately from the base 10. Further, as shown in FIG. 7A, the fixed mirror 6 may be provided on the optical surface 11 b of the light transmitting member 11. 7B, the fixed mirrors 6 and 12 may be located on one side with respect to the movable mirror 5 in the Y-axis direction. In this case, the beam splitter unit 7 may be configured as follows.
 図7の(b)に示されるビームスプリッタユニット7では、光学面75aは、例えばX軸方向に垂直な面であり、X軸方向から見た場合に固定ミラー6のミラー面61aと重なっている。光学面75aは、X軸方向に沿って入射した測定光L0を透過させる。 In the beam splitter unit 7 shown in FIG. 7B, the optical surface 75a is, for example, a surface perpendicular to the X-axis direction and overlaps the mirror surface 61a of the fixed mirror 6 when viewed from the X-axis direction. . The optical surface 75a transmits the measurement light L0 incident along the X-axis direction.
 ハーフミラー面71aは、例えば光学面75aに対して45°傾斜した面であり、X軸方向から見た場合に固定ミラー6のミラー面61aと重なっている。ハーフミラー面71aは、X軸方向に沿って光学面75aに入射した測定光L0の一部をY軸方向に沿って反射し且つ当該測定光L0の残部をX軸方向に沿って固定ミラー6側に透過させる。 The half mirror surface 71a is, for example, a surface inclined by 45 ° with respect to the optical surface 75a, and overlaps the mirror surface 61a of the fixed mirror 6 when viewed from the X-axis direction. The half mirror surface 71a reflects a part of the measurement light L0 incident on the optical surface 75a along the X-axis direction along the Y-axis direction, and the remaining part of the measurement light L0 along the X-axis direction. Permeate to the side.
 光学面75bは、例えばX軸方向に垂直な面であり、X軸方向から見た場合に固定ミラー12のミラー面121aと重なっている。光学面75bは、X軸方向に沿って入射したレーザ光L10を透過させる。 The optical surface 75b is, for example, a surface perpendicular to the X-axis direction, and overlaps with the mirror surface 121a of the fixed mirror 12 when viewed from the X-axis direction. The optical surface 75b transmits the laser beam L10 incident along the X-axis direction.
 ハーフミラー面71bは、ハーフミラー面71aに平行な面であり、X軸方向から見た場合に固定ミラー12のミラー面121aと重なっており且つY軸方向から見た場合にハーフミラー面71aと重なっている。ハーフミラー面71bは、X軸方向に沿って光学面75bに入射したレーザ光L10の一部をY軸方向に沿って反射し且つ当該レーザ光L10の残部をX軸方向に沿って固定ミラー12側に透過させる。ハーフミラー面71aは、ハーフミラー面71bによって反射されたレーザ光L10の一部をY軸方向に沿って透過させる。 The half mirror surface 71b is a surface parallel to the half mirror surface 71a, overlaps with the mirror surface 121a of the fixed mirror 12 when viewed from the X-axis direction, and the half mirror surface 71a when viewed from the Y-axis direction. overlapping. The half mirror surface 71b reflects a part of the laser light L10 incident on the optical surface 75b along the X-axis direction along the Y-axis direction and the remaining part of the laser light L10 along the X-axis direction. Permeate to the side. The half mirror surface 71a transmits part of the laser light L10 reflected by the half mirror surface 71b along the Y-axis direction.
 全反射ミラー面72は、ハーフミラー面71a,71bに平行な面であり、X軸方向から見た場合に可動ミラー5のミラー面51aと重なっており且つY軸方向から見た場合にハーフミラー面71a,71bと重なっている。全反射ミラー面72は、ハーフミラー面71aによって反射された測定光L0の一部、及びハーフミラー面71bによって反射されたレーザ光L10の一部をX軸方向に沿って可動ミラー5側に反射する。 The total reflection mirror surface 72 is a surface parallel to the half mirror surfaces 71a and 71b, overlaps the mirror surface 51a of the movable mirror 5 when viewed from the X-axis direction, and is a half mirror when viewed from the Y-axis direction. It overlaps with the surfaces 71a and 71b. The total reflection mirror surface 72 reflects a part of the measurement light L0 reflected by the half mirror surface 71a and a part of the laser light L10 reflected by the half mirror surface 71b to the movable mirror 5 side along the X-axis direction. To do.
 光学面75cは、光学面75a,75bに平行な面であり、X軸方向から見た場合に固定ミラー6のミラー面61aと重なっている。光学面75cは、ハーフミラー面71aを透過した測定光L0の残部をX軸方向に沿って固定ミラー6側に透過させる。 The optical surface 75c is a surface parallel to the optical surfaces 75a and 75b, and overlaps the mirror surface 61a of the fixed mirror 6 when viewed from the X-axis direction. The optical surface 75c transmits the remaining portion of the measurement light L0 transmitted through the half mirror surface 71a to the fixed mirror 6 side along the X-axis direction.
 光学面75dは、光学面75a,75bに平行な面であり、X軸方向から見た場合に可動ミラー5のミラー面51aと重なっている。光学面75dは、全反射ミラー面72によって反射された測定光L0の一部及びレーザ光L10の一部をX軸方向に沿って可動ミラー5側に透過させる。 The optical surface 75d is a surface parallel to the optical surfaces 75a and 75b, and overlaps the mirror surface 51a of the movable mirror 5 when viewed from the X-axis direction. The optical surface 75d transmits part of the measurement light L0 and part of the laser light L10 reflected by the total reflection mirror surface 72 to the movable mirror 5 side along the X-axis direction.
 光学面75eは、光学面75a,75bに平行な面であり、X軸方向から見た場合に固定ミラー12のミラー面121aと重なっている。光学面75eは、ハーフミラー面71aを透過したレーザ光L10の残部をX軸方向に沿って固定ミラー12側に透過させる。 The optical surface 75e is a surface parallel to the optical surfaces 75a and 75b, and overlaps the mirror surface 121a of the fixed mirror 12 when viewed from the X-axis direction. The optical surface 75e transmits the remaining part of the laser light L10 transmitted through the half mirror surface 71a to the fixed mirror 12 side along the X-axis direction.
 ダイクロイックミラー面74は、ハーフミラー面71a,71b及び全反射ミラー面72に平行な面であり、Y軸方向から見た場合にハーフミラー面71a,71b及び全反射ミラー面72と重なっている。ダイクロイックミラー面74は、測定光L1をY軸方向に沿って透過させ且つレーザ光L11をX軸方向に沿って反射する。測定光L1は、可動ミラー5のミラー面51a及び全反射ミラー面72で順次に反射されてハーフミラー面71a,71bを順次に透過した測定光L0の一部と、固定ミラー6のミラー面61a及びハーフミラー面71aで順次に反射されてハーフミラー面71bを透過した測定光L0の残部との干渉光である。レーザ光L11は、可動ミラー5のミラー面51a及び全反射ミラー面72で順次に反射されてハーフミラー面71a,71bを順次に透過したレーザ光L10の一部と、固定ミラー12のミラー面121a及びハーフミラー面71bで順次に反射されたレーザ光L10の残部との干渉光である。 The dichroic mirror surface 74 is parallel to the half mirror surfaces 71a and 71b and the total reflection mirror surface 72, and overlaps the half mirror surfaces 71a and 71b and the total reflection mirror surface 72 when viewed from the Y-axis direction. The dichroic mirror surface 74 transmits the measurement light L1 along the Y-axis direction and reflects the laser light L11 along the X-axis direction. The measurement light L1 is partly reflected by the mirror surface 51a and the total reflection mirror surface 72 of the movable mirror 5 and sequentially transmitted through the half mirror surfaces 71a and 71b, and the mirror surface 61a of the fixed mirror 6. And interference light with the remainder of the measurement light L0 that is sequentially reflected by the half mirror surface 71a and transmitted through the half mirror surface 71b. The laser beam L11 is partly reflected by the mirror surface 51a and the total reflection mirror surface 72 of the movable mirror 5 and sequentially transmitted through the half mirror surfaces 71a and 71b, and the mirror surface 121a of the fixed mirror 12. And interference light with the remainder of the laser light L10 reflected sequentially by the half mirror surface 71b.
 光学面75fは、光学面75c,75d,75eに平行な面であり、X軸方向から見た場合にダイクロイックミラー面74と重なっている。光学面75fは、ダイクロイックミラー面74によって反射されたレーザ光L11をX軸方向に沿って透過させる。 The optical surface 75f is a surface parallel to the optical surfaces 75c, 75d, and 75e, and overlaps the dichroic mirror surface 74 when viewed from the X-axis direction. The optical surface 75f transmits the laser light L11 reflected by the dichroic mirror surface 74 along the X-axis direction.
 また、図8の(a)に示されるように、可動ミラー5、固定ミラー6及びビームスプリッタユニット7が、測定光L0について干渉光学系I1を構成していると共に、レーザ光L10について干渉光学系I2を構成していてもよい。この場合、ビームスプリッタユニット7は、次のように構成されてもよい。 Further, as shown in FIG. 8A, the movable mirror 5, the fixed mirror 6, and the beam splitter unit 7 constitute the interference optical system I1 for the measurement light L0 and the interference optical system for the laser light L10. I2 may be configured. In this case, the beam splitter unit 7 may be configured as follows.
 図8の(a)に示されるビームスプリッタユニット7では、光学面75aは、例えばX軸方向に垂直な面であり、X軸方向から見た場合に固定ミラー6のミラー面61aと重なっている。光学面75aは、X軸方向に沿って入射した測定光L0を透過させる。 In the beam splitter unit 7 shown in FIG. 8A, the optical surface 75a is, for example, a surface perpendicular to the X-axis direction and overlaps the mirror surface 61a of the fixed mirror 6 when viewed from the X-axis direction. . The optical surface 75a transmits the measurement light L0 incident along the X-axis direction.
 ハーフミラー面71aは、例えば光学面75aに対して45°傾斜した面であり、X軸方向から見た場合に固定ミラー6のミラー面61aと重なっている。ハーフミラー面71aは、X軸方向に沿って光学面75aに入射した測定光L0の一部をY軸方向に沿って反射し且つ当該測定光L0の残部をX軸方向に沿って固定ミラー6側に透過させる。 The half mirror surface 71a is, for example, a surface inclined by 45 ° with respect to the optical surface 75a, and overlaps the mirror surface 61a of the fixed mirror 6 when viewed from the X-axis direction. The half mirror surface 71a reflects a part of the measurement light L0 incident on the optical surface 75a along the X-axis direction along the Y-axis direction, and the remaining part of the measurement light L0 along the X-axis direction. Permeate to the side.
 光学面75bは、例えばX軸方向に垂直な面であり、Y軸方向において光学面75aの一方の側に位置している。光学面75bは、X軸方向に沿って入射したレーザ光L10を透過させる。 The optical surface 75b is, for example, a surface perpendicular to the X-axis direction, and is located on one side of the optical surface 75a in the Y-axis direction. The optical surface 75b transmits the laser beam L10 incident along the X-axis direction.
 ハーフミラー面71bは、ハーフミラー面71aに平行な面であり、X軸方向から見た場合に光学面75bと重なっており且つY軸方向から見た場合にハーフミラー面71aと重なっている。ハーフミラー面71bは、X軸方向に沿って光学面75bに入射したレーザ光L10をY軸方向に沿って反射する。ハーフミラー面71aは、ハーフミラー面71bによって反射されたレーザ光L10の一部をY軸方向に沿って透過させ当該レーザ光L10の残部をX軸方向に沿って固定ミラー6側に反射する。 The half mirror surface 71b is a surface parallel to the half mirror surface 71a, and overlaps the optical surface 75b when viewed from the X-axis direction and overlaps the half mirror surface 71a when viewed from the Y-axis direction. The half mirror surface 71b reflects the laser light L10 incident on the optical surface 75b along the X-axis direction along the Y-axis direction. The half mirror surface 71a transmits part of the laser light L10 reflected by the half mirror surface 71b along the Y-axis direction and reflects the remaining part of the laser light L10 toward the fixed mirror 6 along the X-axis direction.
 全反射ミラー面72は、ハーフミラー面71a,71bに平行な面であり、X軸方向から見た場合に可動ミラー5のミラー面51aと重なっており且つY軸方向から見た場合にハーフミラー面71a,71bと重なっている。全反射ミラー面72は、ハーフミラー面71aによって反射された測定光L0の一部、及びハーフミラー面71aを透過したレーザ光L10の一部をX軸方向に沿って可動ミラー5側に反射する。 The total reflection mirror surface 72 is a surface parallel to the half mirror surfaces 71a and 71b, overlaps the mirror surface 51a of the movable mirror 5 when viewed from the X-axis direction, and is a half mirror when viewed from the Y-axis direction. It overlaps with the surfaces 71a and 71b. The total reflection mirror surface 72 reflects a part of the measurement light L0 reflected by the half mirror surface 71a and a part of the laser light L10 transmitted through the half mirror surface 71a to the movable mirror 5 side along the X-axis direction. .
 光学面75cは、光学面75a,75bに平行な面であり、X軸方向から見た場合に固定ミラー6のミラー面61aと重なっている。光学面75cは、ハーフミラー面71aを透過した測定光L0の残部、及びハーフミラー面71aによって反射されたレーザ光L10の残部をX軸方向に沿って固定ミラー6側に透過させる。 The optical surface 75c is a surface parallel to the optical surfaces 75a and 75b, and overlaps the mirror surface 61a of the fixed mirror 6 when viewed from the X-axis direction. The optical surface 75c transmits the remaining portion of the measurement light L0 transmitted through the half mirror surface 71a and the remaining portion of the laser light L10 reflected by the half mirror surface 71a to the fixed mirror 6 side along the X-axis direction.
 光学面75dは、光学面75a,75bに平行な面であり、X軸方向から見た場合に可動ミラー5のミラー面51aと重なっている。光学面75dは、全反射ミラー面72によって反射された測定光L0の一部及びレーザ光L10の一部をX軸方向に沿って可動ミラー5側に透過させる。 The optical surface 75d is a surface parallel to the optical surfaces 75a and 75b, and overlaps the mirror surface 51a of the movable mirror 5 when viewed from the X-axis direction. The optical surface 75d transmits part of the measurement light L0 and part of the laser light L10 reflected by the total reflection mirror surface 72 to the movable mirror 5 side along the X-axis direction.
 ハーフミラー面71cは、ハーフミラー面71a,71b及び全反射ミラー面72に平行な面であり、Y軸方向においてハーフミラー面71aとハーフミラー面71bとの間に位置している。ハーフミラー面71cは、測定光L1をX軸方向に沿って反射し且つレーザ光L11をY軸方向に沿って透過させる。ハーフミラー面71bは、ハーフミラー面71cを透過したレーザ光L11をY軸方向に沿って透過させる。測定光L1は、可動ミラー5のミラー面51a及び全反射ミラー面72で順次に反射されてハーフミラー面71aを透過した測定光L0の一部と、固定ミラー6のミラー面61a及びハーフミラー面71aで順次に反射された測定光L0の残部との干渉光である。レーザ光L11は、可動ミラー5のミラー面51a及び全反射ミラー面72で順次に反射されてハーフミラー面71aを透過したレーザ光L10の一部と、固定ミラー6のミラー面61a及びハーフミラー面71aで順次に反射されたレーザ光L10の残部との干渉光である。 The half mirror surface 71c is a surface parallel to the half mirror surfaces 71a and 71b and the total reflection mirror surface 72, and is located between the half mirror surface 71a and the half mirror surface 71b in the Y-axis direction. The half mirror surface 71c reflects the measurement light L1 along the X-axis direction and transmits the laser light L11 along the Y-axis direction. The half mirror surface 71b transmits the laser light L11 transmitted through the half mirror surface 71c along the Y-axis direction. The measurement light L1 is partly reflected by the mirror surface 51a and the total reflection mirror surface 72 of the movable mirror 5 and transmitted through the half mirror surface 71a, and the mirror surface 61a and the half mirror surface of the fixed mirror 6. Interference light with the remainder of the measurement light L0 sequentially reflected by 71a. The laser beam L11 is partly reflected by the mirror surface 51a and the total reflection mirror surface 72 of the movable mirror 5 and transmitted through the half mirror surface 71a, and the mirror surface 61a and the half mirror surface of the fixed mirror 6. It is interference light with the remainder of the laser beam L10 reflected sequentially by 71a.
 光学面75fは、光学面75c,75dに平行な面であり、X軸方向から見た場合にハーフミラー面71cと重なっている。光学面75fは、ハーフミラー面71cによって反射された測定光L1をX軸方向に沿って透過させる。 The optical surface 75f is a surface parallel to the optical surfaces 75c and 75d, and overlaps the half mirror surface 71c when viewed from the X-axis direction. The optical surface 75f transmits the measurement light L1 reflected by the half mirror surface 71c along the X-axis direction.
 また、図8の(b)に示されるように、図1に示されるビームスプリッタユニット7の構成において、測定光L0についての全反射ミラー面72を、レーザ光L10についてハーフミラー面として機能させることで、可動ミラー5、固定ミラー12及びビームスプリッタユニット7によって、レーザ光L10についての干渉光学系I2を構成することが可能である。図8の(b)に示される構成では、ミラー面121aがY軸方向において全反射ミラー面72と向かい合うように固定ミラー12が配置され、光学面73dから出射された測定光L1及びレーザ光L11を分離するようにダイクロイックミラー76が配置されている。 Further, as shown in FIG. 8B, in the configuration of the beam splitter unit 7 shown in FIG. 1, the total reflection mirror surface 72 for the measurement light L0 is caused to function as a half mirror surface for the laser light L10. Thus, the movable mirror 5, the fixed mirror 12, and the beam splitter unit 7 can constitute the interference optical system I2 for the laser light L10. In the configuration shown in FIG. 8B, the fixed mirror 12 is disposed so that the mirror surface 121a faces the total reflection mirror surface 72 in the Y-axis direction, and the measurement light L1 and laser light L11 emitted from the optical surface 73d. A dichroic mirror 76 is arranged so as to separate the two.
 また、図9の(a)に示されるように、図4の(a)に示されるビームスプリッタユニット7の構成に、光学ブロック77を更に適用することで、可動ミラー5、固定ミラー6及びビームスプリッタユニット7によって、測定光L0についての干渉光学系I1、及びレーザ光L10についての干渉光学系I2を構成することが可能である。同様に、図9の(b)に示されるように、図4の(b)に示されるビームスプリッタユニット7の構成に、光学ブロック77を更に適用することで、可動ミラー5、固定ミラー6及びビームスプリッタユニット7によって、測定光L0についての干渉光学系I1、及びレーザ光L10についての干渉光学系I2を構成することが可能である。 Further, as shown in FIG. 9A, by further applying an optical block 77 to the configuration of the beam splitter unit 7 shown in FIG. 4A, the movable mirror 5, the fixed mirror 6, and the beam The splitter unit 7 can constitute an interference optical system I1 for the measurement light L0 and an interference optical system I2 for the laser light L10. Similarly, as shown in FIG. 9B, by further applying an optical block 77 to the configuration of the beam splitter unit 7 shown in FIG. 4B, the movable mirror 5, the fixed mirror 6, and The beam splitter unit 7 can constitute an interference optical system I1 for the measurement light L0 and an interference optical system I2 for the laser light L10.
 図9の(a)及び(b)に示される光学ブロック77は、複数の光学面77a,77b、ハーフミラー面77c,77dを含んでいる。光学面77aは、例えばX軸方向に垂直な面であり、X軸方向に沿って入射したレーザ光L10を透過させる。ハーフミラー面77cは、例えば光学面77aに対して45°傾斜した面であり、X軸方向から見た場合に光学面77aと重なっている。ハーフミラー面77cは、光学面77aを透過したレーザ光L10をY軸方向に沿って反射する。ハーフミラー面77dは、ハーフミラー面77cに平行な面であり、X軸方向から見た場合に光学面73aと重なっており且つY軸方向から見た場合にハーフミラー面77cと重なっている。ハーフミラー面77dは、X軸方向に沿って入射した測定光L0を透過させ、且つハーフミラー面77cによって反射されたレーザ光L10をX軸方向に沿って光学面73a側に反射する。光学面77bは、光学面77aに平行な面であり、X軸方向から見た場合に光学面73aと重なっている。光学面77bは、ハーフミラー面77dを透過した測定光L0、及びハーフミラー面77dによって反射されたレーザ光L10をX軸方向に沿って光学面73a側に透過させる。 The optical block 77 shown in FIGS. 9A and 9B includes a plurality of optical surfaces 77a and 77b and half mirror surfaces 77c and 77d. The optical surface 77a is, for example, a surface perpendicular to the X-axis direction, and transmits the laser light L10 incident along the X-axis direction. The half mirror surface 77c is, for example, a surface inclined by 45 ° with respect to the optical surface 77a, and overlaps the optical surface 77a when viewed from the X-axis direction. The half mirror surface 77c reflects the laser light L10 transmitted through the optical surface 77a along the Y-axis direction. The half mirror surface 77d is a surface parallel to the half mirror surface 77c, and overlaps the optical surface 73a when viewed from the X axis direction and overlaps the half mirror surface 77c when viewed from the Y axis direction. The half mirror surface 77d transmits the measurement light L0 incident along the X axis direction and reflects the laser light L10 reflected by the half mirror surface 77c toward the optical surface 73a side along the X axis direction. The optical surface 77b is a surface parallel to the optical surface 77a, and overlaps the optical surface 73a when viewed from the X-axis direction. The optical surface 77b transmits the measurement light L0 transmitted through the half mirror surface 77d and the laser light L10 reflected by the half mirror surface 77d to the optical surface 73a side along the X-axis direction.
 図9の(a)及び(b)に示される構成では、測定光L1は、図4の(a)及び(b)に示される構成と同様に、光学面73dから出射される。レーザ光L11は、光学面73a,77bを順次に透過した後、ハーフミラー面77dよって反射され、ハーフミラー面77cから出射される。測定光L1は、可動ミラー5のミラー面51a及び全反射ミラー面72で順次に反射されてハーフミラー面71を透過した測定光L0の一部と、固定ミラー6のミラー面61a及びハーフミラー面71で順次に反射された測定光L0の残部との干渉光である。レーザ光L11は、可動ミラー5のミラー面51a、全反射ミラー面72及びハーフミラー面71で順次に反射されたレーザ光L10の一部と、固定ミラー6のミラー面61aで反射されてハーフミラー面71を透過したレーザ光L10の残部との干渉光である。
[変形例]
In the configuration shown in FIGS. 9A and 9B, the measurement light L1 is emitted from the optical surface 73d as in the configuration shown in FIGS. 4A and 4B. The laser beam L11 sequentially passes through the optical surfaces 73a and 77b, is reflected by the half mirror surface 77d, and is emitted from the half mirror surface 77c. The measurement light L1 is partly reflected by the mirror surface 51a and the total reflection mirror surface 72 of the movable mirror 5 and transmitted through the half mirror surface 71, and the mirror surface 61a and the half mirror surface of the fixed mirror 6. Interference light with the remainder of the measurement light L0 sequentially reflected by 71. The laser light L11 is reflected by the mirror surface 51a of the movable mirror 5, the part of the laser light L10 sequentially reflected by the total reflection mirror surface 72 and the half mirror surface 71, and the mirror surface 61a of the fixed mirror 6 and reflected by the half mirror. Interference light with the remainder of the laser beam L10 that has passed through the surface 71.
[Modification]
 以上、本開示の一実施形態について説明したが、本開示は、上記実施形態に限定されない。例えば、駆動領域32の少なくとも一部は、Z軸方向から見た場合に、X軸方向における固定ミラー6の一方の側ではなく、X軸方向における固定ミラー6の他方の側に位置していてもよい。具体的には、固定ミラー6は、駆動領域32のうち一方の弾性支持領域34とビームスプリッタユニット7との間に配置されていてもよい。同様に、駆動領域32の少なくとも一部は、Z軸方向から見た場合に、X軸方向における固定ミラー12の一方の側ではなく、X軸方向における固定ミラー12の他方の側に位置していてもよい。具体的には、固定ミラー12は、駆動領域32のうち一方の弾性支持領域34とビームスプリッタユニット7との間に配置されていてもよい。 As mentioned above, although one embodiment of this indication was explained, this indication is not limited to the above-mentioned embodiment. For example, at least a part of the drive region 32 is located not on one side of the fixed mirror 6 in the X-axis direction but on the other side of the fixed mirror 6 in the X-axis direction when viewed from the Z-axis direction. Also good. Specifically, the fixed mirror 6 may be disposed between one elastic support region 34 of the drive region 32 and the beam splitter unit 7. Similarly, at least a part of the drive region 32 is located not on one side of the fixed mirror 12 in the X-axis direction but on the other side of the fixed mirror 12 in the X-axis direction when viewed from the Z-axis direction. May be. Specifically, the fixed mirror 12 may be disposed between one elastic support region 34 of the drive region 32 and the beam splitter unit 7.
 また、固定ミラー6,12、ビームスプリッタユニット7及び光透過部材11の少なくとも1つは、ベース10に実装されていなくてもよい。例えば、固定ミラー6,12、ビームスプリッタユニット7及び光透過部材11の少なくとも1つが、ベース10とは異なるベースに実装されていてもよい。 Further, at least one of the fixed mirrors 6 and 12, the beam splitter unit 7, and the light transmission member 11 may not be mounted on the base 10. For example, at least one of the fixed mirrors 6, 12, the beam splitter unit 7, and the light transmission member 11 may be mounted on a base different from the base 10.
 また、光透過部材11は、図4の(b)に示されるように、ビームスプリッタユニット7と可動ミラー5との間の光路P1上に配置されていてもよい。また、光透過部材11は、ビームスプリッタユニット7と可動ミラー5との間の光路P1、及び、ビームスプリッタユニット7と固定ミラー6との間の光路P2の両方の光路上に配置されていてもよい。つまり、光透過部材11は、ビームスプリッタユニット7と可動ミラー5との間の光路P1、及び、ビームスプリッタユニット7と固定ミラー6との間の光路P2の少なくとも1つの光路上に配置されていればよい。 Further, the light transmitting member 11 may be disposed on the optical path P1 between the beam splitter unit 7 and the movable mirror 5, as shown in FIG. 4B. The light transmitting member 11 may be disposed on both the optical path P1 between the beam splitter unit 7 and the movable mirror 5 and the optical path P2 between the beam splitter unit 7 and the fixed mirror 6. Good. That is, the light transmission member 11 is disposed on at least one optical path of the optical path P1 between the beam splitter unit 7 and the movable mirror 5 and the optical path P2 between the beam splitter unit 7 and the fixed mirror 6. That's fine.
 また、フィルタ15は、レーザ光が進行せず且つ測定光が進行する光路上に配置されていれば、その位置は限定されない。フィルタ15は、例えば、ビームスプリッタユニット7と可動ミラー5との間、及び、ビームスプリッタユニット7と固定ミラー6との間のそれぞれに配置されていてもよい。 Further, the position of the filter 15 is not limited as long as the filter 15 is arranged on the optical path where the laser light does not travel and the measurement light travels. For example, the filter 15 may be disposed between the beam splitter unit 7 and the movable mirror 5 and between the beam splitter unit 7 and the fixed mirror 6.
 また、可動ミラー5のミラー面51a、固定ミラー6のミラー面61a及び固定ミラー12のミラー面121aは、ベース10の主面10aと交差する位置関係にあれば、デバイス層3に対して支持層2とは反対側に位置しているものに限定されない。例えば、可動ミラー5のミラー面51a、固定ミラー6のミラー面61a及び固定ミラー12のミラー面121aは、デバイス層3を直接的に貫通する等、ベース10の主面10aと直接的に交差していてもよい。 If the mirror surface 51a of the movable mirror 5, the mirror surface 61a of the fixed mirror 6, and the mirror surface 121a of the fixed mirror 12 are in a positional relationship intersecting the main surface 10a of the base 10, a support layer is provided for the device layer 3. It is not limited to what is located on the opposite side to 2. For example, the mirror surface 51 a of the movable mirror 5, the mirror surface 61 a of the fixed mirror 6, and the mirror surface 121 a of the fixed mirror 12 directly intersect the main surface 10 a of the base 10 such as directly passing through the device layer 3. It may be.
 1A,1B…光モジュール、2…支持層、3…デバイス層、4…中間層、5…可動ミラー、6…固定ミラー(第1固定ミラー)、7…ビームスプリッタユニット、8…測定光入射部、9…測定光出射部、10…ベース、10a…主面、11…光透過部材、12…固定ミラー(第2固定ミラー)、13…光源、14…光検出器、15…フィルタ、31…実装領域、31b…開口、32…駆動領域、51…ミラー部、51a…ミラー面、52…弾性部、54…脚部(支持部)、55…係止部(支持部)、61a…ミラー面、71…ハーフミラー面、72…全反射ミラー面、121a…ミラー面、L0,L1…測定光、L10,L11…レーザ光、I1…干渉光学系(第1干渉光学系)、I2…干渉光学系(第2干渉光学系)、P1…光路(第1光路)、P2…光路(第2光路)。 DESCRIPTION OF SYMBOLS 1A, 1B ... Optical module, 2 ... Support layer, 3 ... Device layer, 4 ... Intermediate layer, 5 ... Movable mirror, 6 ... Fixed mirror (1st fixed mirror), 7 ... Beam splitter unit, 8 ... Measurement light incident part , 9: Measuring light emitting unit, 10: Base, 10a: Main surface, 11: Light transmitting member, 12: Fixed mirror (second fixed mirror), 13: Light source, 14: Photo detector, 15: Filter, 31 ... Mounting area, 31b ... Opening, 32 ... Drive area, 51 ... Mirror part, 51a ... Mirror surface, 52 ... Elastic part, 54 ... Leg part (supporting part), 55 ... Locking part (supporting part), 61a ... Mirror surface 71 ... half mirror surface, 72 ... total reflection mirror surface, 121a ... mirror surface, L0, L1 ... measurement light, L10, L11 ... laser light, I1 ... interference optical system (first interference optical system), I2 ... interference optics System (second interference optical system), P1... Optical path (first Road), P2 ... optical path (second optical path).

Claims (14)

  1.  主面を有し、実装領域、及び、前記主面に平行な第1方向に沿って前記実装領域を移動させる駆動領域が設けられたベースと、
     前記主面と交差する位置関係にあるミラー面を有し、前記実装領域に実装された可動ミラーと、
     前記主面と交差する位置関係にあるミラー面を有し、前記ベースに対する位置が固定された第1固定ミラーと、
     前記可動ミラー及び前記第1固定ミラーと共に測定光について第1干渉光学系を構成するビームスプリッタユニットと、を備え、
     前記可動ミラーの前記ミラー面及び前記第1固定ミラーの前記ミラー面は、前記第1方向における一方の側に向いている、光モジュール。
    A base having a main surface, a mounting region, and a drive region that moves the mounting region along a first direction parallel to the main surface;
    A movable mirror mounted on the mounting region, having a mirror surface in a positional relationship intersecting the main surface;
    A first fixed mirror having a mirror surface in a positional relationship intersecting the main surface, the position of which is fixed with respect to the base;
    A beam splitter unit constituting a first interference optical system for measurement light together with the movable mirror and the first fixed mirror,
    The optical module, wherein the mirror surface of the movable mirror and the mirror surface of the first fixed mirror are directed to one side in the first direction.
  2.  前記実装領域には、開口が形成されており、
     前記可動ミラーは、前記ミラー面を有するミラー部と、前記ミラー部に連結された弾性部と、前記弾性部の弾性変形に応じて弾性力が付与される支持部と、を有し、
     前記支持部は、前記弾性部の弾性力が付与された状態で前記開口に挿入されており、
     前記可動ミラーは、前記開口の内面から前記支持部に付与される前記弾性力の反力によって、前記実装領域に固定されている、請求項1に記載の光モジュール。
    An opening is formed in the mounting region,
    The movable mirror includes a mirror part having the mirror surface, an elastic part coupled to the mirror part, and a support part to which an elastic force is applied according to elastic deformation of the elastic part,
    The support part is inserted into the opening in a state where the elastic force of the elastic part is applied,
    The optical module according to claim 1, wherein the movable mirror is fixed to the mounting region by a reaction force of the elastic force applied to the support portion from an inner surface of the opening.
  3.  前記第1固定ミラーは、前記主面に平行且つ前記第1方向に垂直な第2方向において、前記可動ミラーに対して一方の側に位置しており、
     前記駆動領域の少なくとも一部は、前記主面に垂直な第3方向から見た場合に、前記第1方向における前記第1固定ミラーの前記一方の側又は他方の側に位置している、請求項1又は2に記載の光モジュール。
    The first fixed mirror is located on one side with respect to the movable mirror in a second direction parallel to the main surface and perpendicular to the first direction,
    At least a part of the drive region is located on the one side or the other side of the first fixed mirror in the first direction when viewed from a third direction perpendicular to the main surface. Item 3. The optical module according to Item 1 or 2.
  4.  前記ビームスプリッタユニットは、
     前記測定光の一部を反射し且つ前記測定光の残部を透過させるハーフミラー面と、
     前記ハーフミラー面によって反射された前記測定光の前記一部を反射する全反射ミラー面と、を含み、
     前記ハーフミラー面と前記全反射ミラー面とは、互いに平行である、請求項1~3のいずれか一項に記載の光モジュール。
    The beam splitter unit is
    A half mirror surface that reflects a portion of the measurement light and transmits the remainder of the measurement light;
    A total reflection mirror surface that reflects the part of the measurement light reflected by the half mirror surface;
    The optical module according to any one of claims 1 to 3, wherein the half mirror surface and the total reflection mirror surface are parallel to each other.
  5.  前記第1固定ミラーは、前記ベースに実装されている、請求項1~4のいずれか一項に記載の光モジュール。 The optical module according to any one of claims 1 to 4, wherein the first fixed mirror is mounted on the base.
  6.  前記ビームスプリッタユニットは、前記ベースに実装されている、請求項1~5のいずれか一項に記載の光モジュール。 The optical module according to any one of claims 1 to 5, wherein the beam splitter unit is mounted on the base.
  7.  前記ビームスプリッタユニットと前記可動ミラーとの間の第1光路、及び、前記ビームスプリッタユニットと前記第1固定ミラーとの間の第2光路の少なくとも1つの光路上に配置され、前記第1光路と前記第2光路との間の光路差を補正する光透過部材を更に備える、請求項1~6のいずれか一項に記載の光モジュール。 A first optical path between the beam splitter unit and the movable mirror, and a second optical path between the beam splitter unit and the first fixed mirror, and the first optical path; The optical module according to any one of claims 1 to 6, further comprising a light transmission member that corrects an optical path difference between the second optical path and the second optical path.
  8.  前記光透過部材は、前記ベースに実装されている、請求項7に記載の光モジュール。 The optical module according to claim 7, wherein the light transmitting member is mounted on the base.
  9.  外部から前記第1干渉光学系に前記測定光を入射させるように配置された測定光入射部と、
     前記第1干渉光学系から外部に前記測定光を出射させるように配置された測定光出射部と、を更に備える、請求項1~8のいずれか一項に記載の光モジュール。
    A measurement light incident portion arranged to allow the measurement light to be incident on the first interference optical system from the outside;
    The optical module according to any one of claims 1 to 8, further comprising a measurement light emitting unit arranged to emit the measurement light to the outside from the first interference optical system.
  10.  前記主面と交差する位置関係にあるミラー面を有し、前記ベースに対する位置が固定された第2固定ミラーを更に備え、
     前記ビームスプリッタユニットは、前記可動ミラー及び前記第2固定ミラーと共にレーザ光について第2干渉光学系を構成し、
     前記第2固定ミラーの前記ミラー面は、前記第1方向における前記一方の側に向いている、請求項1~9のいずれか一項に記載の光モジュール。
    A second fixed mirror having a mirror surface in a positional relationship intersecting the main surface, the position of the second fixed mirror being fixed to the base;
    The beam splitter unit constitutes a second interference optical system for laser light together with the movable mirror and the second fixed mirror,
    The optical module according to any one of claims 1 to 9, wherein the mirror surface of the second fixed mirror faces the one side in the first direction.
  11.  前記第1固定ミラー及び前記第2固定ミラーは、前記主面に平行且つ前記第1方向に垂直な第2方向において、前記可動ミラーに対して両側にそれぞれ位置しており、
     前記駆動領域の少なくとも一部は、前記主面に垂直な第3方向から見た場合に、前記第1方向における前記第1固定ミラーの前記一方の側又は他方の側、及び、前記第1方向における前記第2固定ミラーの前記一方の側又は他方の側に位置している、請求項10に記載の光モジュール。
    The first fixed mirror and the second fixed mirror are respectively located on both sides of the movable mirror in a second direction parallel to the main surface and perpendicular to the first direction;
    At least a part of the drive region is one side or the other side of the first fixed mirror in the first direction and the first direction when viewed from a third direction perpendicular to the main surface. The optical module according to claim 10, wherein the optical module is located on the one side or the other side of the second fixed mirror.
  12.  前記レーザ光が進行せず且つ前記測定光が進行する光路上に配置され、前記レーザ光の中心波長を含む波長範囲の光をカットするフィルタを更に備える、請求項10又は11に記載の光モジュール。 The optical module according to claim 10, further comprising a filter that is disposed on an optical path through which the laser light does not travel and the measurement light travels, and that cuts light in a wavelength range including a center wavelength of the laser light. .
  13.  前記第2干渉光学系に入射させる前記レーザ光を発生する光源と、
     前記第2干渉光学系から出射された前記レーザ光を検出する光検出器と、を更に備える請求項10~12のいずれか一項に記載の光モジュール。
    A light source for generating the laser light to be incident on the second interference optical system;
    The optical module according to any one of claims 10 to 12, further comprising: a photodetector that detects the laser light emitted from the second interference optical system.
  14.  前記ベースは、
     前記主面を有し、前記実装領域及び前記駆動領域が設けられたデバイス層と、
     前記デバイス層を支持する支持層と、
     前記支持層と前記デバイス層との間に設けられた中間層と、を有し、
     前記支持層は、SOI基板の第1シリコン層であり、
     前記デバイス層は、前記SOI基板の第2シリコン層であり、
     前記中間層は、前記SOI基板の絶縁層である、請求項1~13のいずれか一項に記載の光モジュール。
    The base is
    A device layer having the main surface and provided with the mounting region and the driving region;
    A support layer for supporting the device layer;
    An intermediate layer provided between the support layer and the device layer,
    The support layer is a first silicon layer of an SOI substrate;
    The device layer is a second silicon layer of the SOI substrate;
    The optical module according to any one of claims 1 to 13, wherein the intermediate layer is an insulating layer of the SOI substrate.
PCT/JP2018/009975 2017-03-14 2018-03-14 Optical module WO2018168929A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/492,712 US11487104B2 (en) 2017-03-14 2018-03-14 Optical module
DE112018001339.1T DE112018001339T5 (en) 2017-03-14 2018-03-14 Optical module
CN201880017380.6A CN110402408B (en) 2017-03-14 2018-03-14 Optical assembly

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017048561 2017-03-14
JP2017-048561 2017-03-14
JP2017133086A JP6893449B2 (en) 2017-03-14 2017-07-06 Optical module
JP2017-133086 2017-07-06

Publications (1)

Publication Number Publication Date
WO2018168929A1 true WO2018168929A1 (en) 2018-09-20

Family

ID=63523176

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/009975 WO2018168929A1 (en) 2017-03-14 2018-03-14 Optical module

Country Status (1)

Country Link
WO (1) WO2018168929A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113424028A (en) * 2019-01-30 2021-09-21 浜松光子学株式会社 Optical module, signal processing system, and signal processing method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030049879A1 (en) * 2001-07-25 2003-03-13 Chuang-Chia Lin Method of making a mems element having perpendicular portion formed from substrate
JP2003159698A (en) * 2001-09-17 2003-06-03 Nikon Corp Micro actuator and micro actuator device using the same, optical switch, and optical switch array
JP2005043870A (en) * 2003-07-10 2005-02-17 Sumitomo Electric Ind Ltd Movable mirror device, dispersion compensator, gain equivalencer and optical adm device
JP2010170029A (en) * 2009-01-26 2010-08-05 Hamamatsu Photonics Kk Optical module
JP2011002698A (en) * 2009-06-19 2011-01-06 Nikon Corp Phase modulation device, and observation system using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030049879A1 (en) * 2001-07-25 2003-03-13 Chuang-Chia Lin Method of making a mems element having perpendicular portion formed from substrate
JP2003159698A (en) * 2001-09-17 2003-06-03 Nikon Corp Micro actuator and micro actuator device using the same, optical switch, and optical switch array
JP2005043870A (en) * 2003-07-10 2005-02-17 Sumitomo Electric Ind Ltd Movable mirror device, dispersion compensator, gain equivalencer and optical adm device
JP2010170029A (en) * 2009-01-26 2010-08-05 Hamamatsu Photonics Kk Optical module
JP2011002698A (en) * 2009-06-19 2011-01-06 Nikon Corp Phase modulation device, and observation system using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113424028A (en) * 2019-01-30 2021-09-21 浜松光子学株式会社 Optical module, signal processing system, and signal processing method
US11898841B2 (en) 2019-01-30 2024-02-13 Hamamatsu Photonics K.K. Optical module, signal processing system, and signal processing method

Similar Documents

Publication Publication Date Title
US11635290B2 (en) Optical module
JP6893449B2 (en) Optical module
WO2018168929A1 (en) Optical module
US10935426B2 (en) Optical module for spectral analysis
US11131848B2 (en) Optical module
JP2012026935A (en) Sensor apparatus
CN114175683B (en) Optical transducer and method for measuring displacement
US11579438B2 (en) Optical module
JP6793066B2 (en) Optical module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18766630

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18766630

Country of ref document: EP

Kind code of ref document: A1