Nothing Special   »   [go: up one dir, main page]

WO2018163610A1 - 電気泳動解析方法、電気泳動解析装置及び電気泳動解析プログラム - Google Patents

電気泳動解析方法、電気泳動解析装置及び電気泳動解析プログラム Download PDF

Info

Publication number
WO2018163610A1
WO2018163610A1 PCT/JP2018/001395 JP2018001395W WO2018163610A1 WO 2018163610 A1 WO2018163610 A1 WO 2018163610A1 JP 2018001395 W JP2018001395 W JP 2018001395W WO 2018163610 A1 WO2018163610 A1 WO 2018163610A1
Authority
WO
WIPO (PCT)
Prior art keywords
peak
rna
quality
waveform
electrophoresis
Prior art date
Application number
PCT/JP2018/001395
Other languages
English (en)
French (fr)
Inventor
健太 知野見
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to CN201880011477.6A priority Critical patent/CN110291388B/zh
Priority to EP18764749.0A priority patent/EP3594674A4/en
Priority to JP2019504360A priority patent/JP6725057B2/ja
Priority to US16/490,747 priority patent/US20200080965A1/en
Publication of WO2018163610A1 publication Critical patent/WO2018163610A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/447Systems using electrophoresis
    • G01N27/44704Details; Accessories
    • G01N27/44717Arrangements for investigating the separated zones, e.g. localising zones
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6806Preparing nucleic acids for analysis, e.g. for polymerase chain reaction [PCR] assay
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/447Systems using electrophoresis

Definitions

  • the present invention relates to an electrophoretic analysis method, an electrophoretic analysis apparatus, and an electrophoretic analysis program for evaluating the quality of an RNA molecule by waveform analysis on an electrophoretic waveform.
  • RNA Ribonucleic acid
  • an electrophoretic analyzer When evaluating the quality of RNA (ribonucleic acid), an electrophoretic analyzer may be used. RNA is degraded and deteriorated by various factors such as an enzyme (RNase), heat, and ultraviolet rays. The degree of RNA degradation can be evaluated by analyzing the shape of an electrophoretic waveform (electropherogram) obtained by electrophoresis of an RNA sample. In addition, degradation information of RNA obtained by waveform analysis on the electrophoresis waveform is treated as an important parameter in gene expression studies.
  • RNA degradation information various indicators such as RIN, LINE, RQS, RQI, RQN, and RIS are provided. These degradation indicators are values calculated using specific waveform regions (time ranges) in the electrophoresis waveform obtained from the RNA sample, and the waveform regions used for each indicator are different.
  • FIG. 8 is a diagram for explaining each waveform region in the electrophoresis waveform obtained from the RNA sample.
  • the electrophoresis waveform obtained from the RNA sample includes an 18S fragment peak (18S peak P101) and an 28S fragment peak (28S peak P102).
  • Each deterioration index as described above is calculated using the 18S peak P101 and the 28S peak P102.
  • RIN which is an example of a degradation index
  • a degradation index is a degradation index used in 2100BioAnalyzer provided by, for example, Agilent Technologies.
  • the deterioration index RIN is calculated using other waveform areas such as a waveform area including a 5S peak in addition to a waveform area including an 18S peak and a waveform area including a 28S peak (for example, Patent Document 1 and Non-Patent Document below). Reference 1).
  • RQI which is another example of the degradation index
  • the deterioration index RQI is calculated using the waveform region immediately before the 18S peak in addition to the waveform region including the 18S peak and the waveform region including the 28S peak (see, for example, Patent Document 2 and Non-Patent Document 2 below).
  • RQS which is still another example of the deterioration index, is a deterioration index used in, for example, LabChip GX provided by Perkin Elmer.
  • the deterioration index RQS is calculated by linear combination of four feature amounts based on the 18S peak and the 28S peak (for example, see Non-Patent Document 3 below).
  • the above-described degradation indexes conventionally used are calculated using the 18S peak and the 28S peak, and these 18S peak and 28S peak disappear with a decrease in peak intensity as the RNA deteriorates. There is a characteristic to do. Therefore, when evaluating the quality of RNA that has deteriorated to some extent, there is a problem that it cannot be evaluated accurately.
  • the present invention has been made in view of the above circumstances, and provides an electrophoresis analysis method, an electrophoresis analysis apparatus, and an electrophoresis analysis program capable of accurately evaluating the quality of degraded RNA. Objective.
  • a degradation product peak that appears along with degradation of RNA exists in a region (first region) on the lower molecular side than the 18S peak in the electrophoresis waveform of RNA. It was found that the peak shifts to the low molecular side as the RNA deteriorates. More specifically, although the 18S peak and the 28S peak exist in the electrophoresis waveform of RNA before degradation, the peak intensity of these 18S peak and 28S peak decreases with the degradation of RNA, After the 28S peak disappears, the 18S peak disappears. When the RNA further deteriorates, a degradation product peak appears, shifts to the low molecular side as the RNA deteriorates, and eventually disappears.
  • An electrophoretic analysis method is an electrophoretic analysis method for evaluating RNA quality by waveform analysis on an electrophoretic waveform, wherein the RNA is applied to a region on the lower molecular side than the 18S peak in the electrophoretic waveform. The quality of the RNA is evaluated based on the feature amount corresponding to the position of the degradation product peak that appears along with the degradation.
  • the quality of degraded RNA can be evaluated based on the feature amount corresponding to the position of the degraded product peak in the electrophoresis waveform. That is, the degradation product peak appears after the RNA has degraded to the extent that the 18S peak disappears, and then appears in the region on the low molecular side of the 18S peak as the RNA degrades, and shifts to the low molecular side as the RNA degrades. Based on the feature quantity corresponding to the position of the deteriorated product peak, the quality of the deteriorated RNA can be accurately evaluated.
  • the feature amount corresponding to the position of the deteriorated product peak may be a value representing the position of the peak top of the deteriorated product peak.
  • the feature amount corresponding to the position of the deteriorated product peak can be accurately represented using the position of the peak top of the deteriorated product peak. Therefore, based on the feature amount, quality can be accurately evaluated even for degraded RNA.
  • the feature amount corresponding to the position of the degradation product peak may be a value representing an area ratio when the area of the degradation product peak is divided into a low molecular side region and a polymer side region.
  • the feature amount corresponding to the position of the deteriorated product peak is accurately expressed using the area ratio when the area of the deteriorated product peak is divided into the low molecular side region and the polymer side region. be able to. Therefore, based on the feature amount, quality can be accurately evaluated even for degraded RNA.
  • the feature amount corresponding to the position of the deteriorated product peak may be a value representing the position of the center of gravity of the deteriorated product peak.
  • the feature amount corresponding to the position of the deteriorated product peak can be accurately expressed using the position of the center of gravity of the deteriorated product peak. Therefore, based on the feature amount, quality can be accurately evaluated even for degraded RNA.
  • the quality of RNA may be evaluated using a feature amount corresponding to the position of the degradation product peak and a feature amount based on the 18S peak or 28S peak.
  • the quality of the RNA is evaluated using the feature quantity based on the 18S peak or the 28S peak until the RNA is deteriorated to some extent, and after the RNA is deteriorated to some extent, the position of the degradation product peak is obtained.
  • the quality of RNA can be evaluated using the corresponding feature amount. Therefore, the degradation state of RNA can be evaluated over a wider range.
  • An electrophoretic analyzer is an electrophoretic analyzer that evaluates the quality of RNA by waveform analysis of an electrophoretic waveform, and the RNA is present in a region on the lower molecular side than the 18S peak in the electrophoretic waveform.
  • a quality value calculation unit that calculates a quality value representing the quality of the RNA based on the feature amount corresponding to the position of the degradation product peak that appears as a result of degradation.
  • the electrophoretic analysis program according to the present invention is an electrophoretic analysis program for evaluating the quality of RNA by waveform analysis on the electrophoretic waveform, wherein the RNA is applied to a region on the lower molecular side than the 18S peak in the electrophoretic waveform.
  • the computer is caused to function as a quality value calculation unit that calculates a quality value representing the quality of RNA based on the feature amount corresponding to the position of the degradation product peak that appears along with the degradation of.
  • the degradation product peak appears along with the degradation of RNA in the region on the lower molecular side than the 18S peak after the RNA has degraded to the extent that the 18S peak disappears. Therefore, even if it is degraded RNA, the quality can be accurately evaluated based on the feature amount corresponding to the position of the degraded product peak.
  • FIG. 1 is a block diagram showing an electrical configuration of an electrophoresis analysis apparatus according to an embodiment of the present invention. It is a figure which shows the electrophoresis waveform obtained by using 12 RNAs from which quality differs as a sample. It is a figure for demonstrating the area ratio of FPF and FPL. It is an experimental result which shows the relationship between each feature-value according to the position of a degradation product peak, and the quality of RNA. It is the flowchart which showed the process at the time of a data processing part calculating a quality value. It is the flowchart which showed the 1st modification of the process at the time of a data processing part calculating a quality value. It is the flowchart which showed the 2nd modification of the process at the time of a data processing part calculating a quality value. It is a figure for demonstrating each waveform area
  • FIG. 1 is a block diagram showing an electrical configuration of an electrophoresis analyzer according to an embodiment of the present invention.
  • This electrophoresis analysis device is a device for separating components in a sample using electrophoresis and detecting the separated components by the detection unit 1.
  • the electrophoretic analyzer according to the present embodiment includes, for example, a microchip (not shown) in which a sample channel is formed, and a liquid sample is placed in the channel filled with the electrophoresis medium (separation buffer). By injecting and applying a predetermined voltage, the liquid sample can be electrophoresed.
  • This electrophoretic analyzer is provided with a data processing unit 2 and a storage unit 3 in addition to the detection unit 1.
  • the data processing unit 2 includes, for example, a CPU (Central Processing Unit), and functions as the waveform acquisition unit 21 and the quality evaluation processing unit 22 when the CPU executes a program.
  • the storage unit 3 includes, for example, a ROM (Read-Only Memory), a RAM (Random-Access Memory), a hard disk, and the like.
  • the waveform acquisition unit 21 acquires electrophoresis waveform data based on the detection signal from the detection unit 1 and stores the data in the storage unit 3.
  • the electrophoresis waveform is waveform data in which the intensity of the detection signal in the detection unit 1 is associated with the elapsed time, and a peak corresponding to each component in the sample separated by electrophoresis appears.
  • the quality evaluation processing unit 22 performs a process of evaluating the quality of the sample by waveform analysis on the electrophoresis waveform stored in the storage unit 3.
  • RNA ribonucleic acid
  • the quality evaluation processing unit 22 includes, for example, a waveform preprocessing unit 221, a size axis conversion unit 222, a feature amount calculation unit 223, a quality value calculation unit 224, and the like.
  • the waveform pre-processing unit 221 performs various pre-processing such as noise removal and baseline correction on the electrophoretic waveform stored in the storage unit 3 as necessary. Since the process of removing noise from the waveform data and correcting the baseline is well known, detailed description thereof will be omitted.
  • the size axis conversion unit 222 performs processing for converting the time axis to the size axis for the electrophoretic waveform pre-processed by the waveform pre-processing unit 221. At this time, the time axis is converted into the size axis using a waveform (ladder waveform) obtained from the external standard substance.
  • the size axis may be expressed, for example, in nt (nucleotide) units, or may be expressed in index units.
  • the feature amount calculation unit 223 performs a process of calculating the feature amount based on the electrophoretic waveform in which the time axis is converted into the size axis by the size axis conversion unit 222. Although processing for calculating the feature amount will be described later, in the present embodiment, the feature amount corresponding to the position of a specific peak in the electrophoresis waveform is calculated.
  • the quality value calculation unit 224 performs a process of calculating a quality value representing the quality of the RNA based on the feature amount unique to the electrophoresis waveform calculated by the feature amount calculation unit 223.
  • the feature amount calculated by the feature amount calculation unit 223 may be calculated as a quality value as it is, or a quality value different from the feature amount may be calculated. Further, the feature amount may be converted into a quality value by performing processing such as linear conversion as necessary. Based on the quality value thus calculated, the quality of RNA can be evaluated.
  • FIG. 2 is a diagram showing an electrophoresis waveform obtained using 12 RNAs having different qualities as samples. The quality of sample 1 is the highest, and the quality gradually deteriorates toward sample 12.
  • the electrophoresis waveform of RNA includes a peak of 18S fragment (18S peak P1) and a peak of 28S fragment (28S peak P2).
  • These 18S peak P1 and 28S peak P2 have a characteristic that the peak intensity decreases as RNA deteriorates.
  • the intensity of the 18S peak P1 in the sample 1 gradually decreases as the samples 2, 3, 4,.
  • the intensity of the 28S peak P2 in the sample 1 gradually decreases as the samples 2, 3,..., And almost disappears in the sample 4.
  • the feature amount corresponding to the position is calculated by using the degradation product peak P3 appearing in the low molecular side region (particularly in the first region) of the 18S peak in the electrophoresis waveform.
  • the quality of RNA is evaluated based on the obtained feature amount. That is, the degradation product peak P3 appears after the RNA has degraded to the extent that the 18S peak P1 disappears, and then appears in the region on the lower molecular side than the 18S peak P1 due to the degradation of RNA. Since the shift is performed, the quality of the degraded RNA can be accurately evaluated based on the feature amount corresponding to the position of the degraded product peak P3.
  • the value representing the peak top position of the degradation product peak P3 is a feature amount (peak top) corresponding to the position of the degradation product peak P3. It is used as the position feature quantity f 1 ).
  • the peak top position feature quantity f 1 is expressed by the following formula (1).
  • R is a region where the degradation product peak P3 can occur (for example, a first region).
  • the value of i that maximizes e [i] in the region R is the peak top position feature value f 1.
  • the feature amount (peak top position feature amount f 1 ) corresponding to the position of the deteriorated product peak P3 can be accurately expressed using the position of the peak top of the deteriorated product peak P3. Based on the amount, quality can be accurately evaluated even for degraded RNA.
  • each area when the area of the degradation product peak P3 is divided into a low molecular side region (FPF) and a high molecular side region (FPL) A value representing the area ratio of the region is used as a feature amount (peak area ratio feature amount f 2 ) corresponding to the position of the degradation product peak P3.
  • FIG. 3 is a diagram for explaining the area ratio of FPF and FPL.
  • a local region (FPF + FPL) is set in advance in a region R where a degradation product peak P3 can occur, and the region is divided into two parts, FPF and FPL.
  • the area S FPF of the degradation product peak P3 in the FPF region is represented by the following formula (2)
  • the area S FPL of the degradation product peak P3 in the FPL region is represented by the following formula (3).
  • the ratio of the area S FPL of the local region area of degradation product peak P3 in (FPF + FPL) degradation products in the FPL in the region for (S FPF + S FPL) peak P3 is represented by the following formula (4).
  • Area ratio represented by the above formula (4) is used as the peak area ratio feature amount f 2.
  • the value of the peak area ratio feature amount f 2 in order to vary with the position of the degradation product peak P3 RNA is degraded is shifted, it is possible to evaluate the quality of the RNA on the basis of the change.
  • the feature amount (peak area ratio) corresponding to the position of the degradation product peak P3 is used.
  • the feature quantity f 2 ) can be expressed accurately. Therefore, based on the feature amount, quality can be accurately evaluated even for degraded RNA.
  • a value representing the centroid position of the degradation product peak P3 is a feature amount (peak centroid feature) corresponding to the position of the degradation product peak P3. Used as quantity f 3 ).
  • the center of gravity of the signal values in the region R where the degradation product peak P3 may occur is represented by the following formula (5), this value is calculated as the peak centroid feature value f 3.
  • the quality of the RNA is evaluated based on the change. can do.
  • the feature amount (peak center-of-gravity feature amount f 3 ) corresponding to the position of the degradation product peak P3 can be accurately expressed by using the gravity center position of the degradation product peak P3. Therefore, based on the feature amount, quality can be accurately evaluated even for degraded RNA.
  • FIG. 4 shows the experimental results showing the relationship between each feature amount and RNA quality according to the position of the degradation product peak P3.
  • a peak top position feature quantity f 1 a peak area ratio feature quantity f 2 , and a peak centroid feature quantity f 3 are obtained using an electrophoresis waveform (see FIG. 2) of the Human River total RNA degraded in 12 stages. Each was calculated.
  • FIG. 4 shows the result of plotting the calculated feature values (quality values) in association with the samples 1 to 12.
  • any feature amount decreases as the quality of RNA deteriorates.
  • RNA deteriorates to a deterioration level of 8 or more that is, about the level of sample 8
  • it is possible to easily distinguish the change in quality so that it can be confirmed that quality can be accurately evaluated even with deteriorated RNA.
  • FIG. 5 is a flowchart showing a process when the data processing unit 2 calculates a quality value.
  • the data processing unit 2 acquires the electrophoretic waveform data by the waveform acquisition unit 21 based on the detection signal from the detection unit 1, and stores the data in the storage unit 3 (step S101).
  • the waveform pre-processing unit 221 performs pre-processing on the electrophoretic waveform stored in the storage unit 3 (step S102).
  • the size axis conversion unit 222 converts the time axis into the size axis for the electrophoretic waveform that has been preprocessed (step S103).
  • features such as a peak top position feature quantity f 1 , a peak area ratio feature quantity f 2 , a peak centroid feature quantity f 3, etc. Any one of the quantities is calculated by the feature quantity calculator 223 (step S104). Then, the feature amount is converted into a quality value representing the quality of RNA by the quality value calculation unit 224 (step S105).
  • FIG. 6 is a flowchart showing a first modified example of processing when the data processing unit 2 calculates a quality value.
  • the data processing unit 2 acquires electrophoretic waveform data by the waveform acquisition unit 21 based on the detection signal from the detection unit 1, and stores the data in the storage unit 3 (step S201).
  • the waveform pre-processing unit 221 performs pre-processing on the electrophoretic waveform stored in the storage unit 3 (step S202).
  • a process for converting the time axis into the size axis is performed by the size axis conversion unit 222 on the electrophoretic waveform that has been preprocessed (step S203).
  • the quality value representing the quality of RNA is calculated by paying attention to the 18S peak and the 28S peak as well as the region on the lower molecular side than the 18S peak in the electrophoresis waveform.
  • low-quality RNA feature quantities such as peak top position feature quantity f 1 , peak area ratio feature quantity f 2 , peak centroid feature quantity f 3 , but also 18S peak and 28S
  • a quality value is also calculated using a high-quality feature quantity based on the peak.
  • the feature quantity calculation unit 223 calculates a high quality feature quantity by a known algorithm in addition to the low quality feature quantity (step S204).
  • the quality value calculator 224 calculates a quality value by linear combination based on the low quality feature quantity and the high quality feature quantity calculated by the feature quantity calculator 223 (step S205). Specifically, a low quality feature quantity such as a peak top position feature quantity f 1 , a peak area ratio feature quantity f 2 , a peak centroid feature quantity f 3 is f L, and a high quality feature quantity based on the 18S peak and the 28S peak is used.
  • f H by using the coefficients C 0, C 1, C 2 , may represent a quality value Q 1 by the following equation (6).
  • Q 1 C 0 + C 1 f L + C 2 f H (6)
  • the feature amount (low quality feature amount f L ) corresponding to the position of the degradation product peak P3 and the feature amount based on the 18S peak and the 28S peak (high quality feature amount f H ) are obtained.
  • the calculated quality value Q 1 it is possible to evaluate the quality of the RNA on the basis of the quality value Q 1.
  • a high-quality feature amount f H to assess the quality of the RNA, after which RNA was somewhat deteriorated, evaluating the quality of RNA using a low quality characteristic amount f L be able to. Therefore, the degradation state of RNA can be evaluated over a wider range.
  • the high quality feature quantity f H is not limited to the one calculated using both the 18S peak and the 28S peak, and may be calculated using either the 18S peak or the 28S peak.
  • a high quality feature quantity based on the 18S peak or the like, or a high quality feature quantity based on the 28S peak or the like may be obtained by calculating a high quality feature quantity using a region other than the 18S peak or the 28S peak.
  • FIG. 7 is a flowchart showing a second modified example of processing when the data processing unit 2 calculates a quality value.
  • the data processing unit 2 acquires electrophoretic waveform data by the waveform acquisition unit 21 based on the detection signal from the detection unit 1, and stores the data in the storage unit 3 (step S301).
  • the waveform pre-processing unit 221 performs pre-processing on the electrophoretic waveform stored in the storage unit 3 (step S302).
  • a process of converting the time axis into the size axis is performed by the size axis conversion unit 222 on the electrophoretic waveform that has been preprocessed (step S303).
  • the quality value representing the quality of RNA is calculated by paying attention to the 18S peak and the 28S peak as well as the region on the lower molecular side than the 18S peak in the electrophoresis waveform.
  • low-quality RNA feature quantities such as peak top position feature quantity f 1 , peak area ratio feature quantity f 2 , peak centroid feature quantity f 3 , 18S peak and 28S peak
  • the quality value is calculated by switching the high quality feature value based on the quality value.
  • the feature quantity calculation unit 223 calculates a high quality feature quantity using a known algorithm in addition to the low quality feature quantity (step S304).
  • the quality value calculation unit 224 switches to either the low quality feature quantity or the high quality feature quantity depending on whether or not the high quality feature quantity is equal to or less than a certain value (step S305), and the quality based on the feature quantity A value is calculated (step S306).
  • a low quality feature quantity such as a peak top position feature quantity f 1 , a peak area ratio feature quantity f 2 , a peak centroid feature quantity f 3 is f L, and a high quality feature quantity based on the 18S peak and the 28S peak is used.
  • the quality value Q 2 the following formula (7) can be represented by (8).
  • the quality value Q 2 is calculated using Expression (7), and if the high quality feature quantity f H is equal to or less than the constant value ⁇ , the quality value Q 2 is calculated. Is done.
  • Q 2 C 01 + C 1 f H (f H > ⁇ ) (7)
  • Q 2 C 02 + C 2 f L (f H ⁇ ⁇ ) (8)
  • the feature amount (low quality feature amount f L ) corresponding to the position of the degradation product peak P3 and the feature amount based on the 18S peak and the 28S peak (high quality feature amount f H ) are obtained.
  • the calculated quality value Q 2 it is possible to evaluate the quality of the RNA on the basis of the quality value Q 2.
  • a high-quality feature amount f H to assess the quality of the RNA, after which RNA was somewhat deteriorated, evaluating the quality of RNA using a low quality characteristic amount f L be able to. Therefore, the degradation state of RNA can be evaluated over a wider range.
  • the high quality feature quantity f H is not limited to the one calculated using both the 18S peak and the 28S peak, and may be calculated using either the 18S peak or the 28S peak.
  • a high quality feature quantity based on the 18S peak or the like, or a high quality feature quantity based on the 28S peak or the like may be obtained by calculating a high quality feature quantity using a region other than the 18S peak or the 28S peak.
  • the present invention is not limited to this configuration, and at least a part of each step of the electrophoresis analysis method may be manually performed by the user.
  • the program may be provided in a state stored in a storage medium, or may be configured such that the program itself is provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Zoology (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Electrochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

電気泳動波形中の18SピークP1よりも低分子側の領域にRNAの劣化に伴って現れる劣化生成物ピークP3の位置に応じた特徴量に基づいて、RNAの品質を評価する。劣化生成物ピークP3は、18SピークP1が消失する程度までRNAが劣化した後、18SピークP1よりも低分子側の領域にRNAの劣化に伴って現れ、RNAの劣化とともに低分子側にシフトするため、この劣化生成物ピークP3の位置に応じた特徴量に基づいて、劣化したRNAであっても精度よく品質を評価することができる。

Description

電気泳動解析方法、電気泳動解析装置及び電気泳動解析プログラム
 本発明は、電気泳動波形に対する波形解析によりRNA分子の品質を評価する電気泳動解析方法、電気泳動解析装置及び電気泳動解析プログラムに関するものである。
 RNA(リボ核酸)の品質を評価する際に、電気泳動解析装置が用いられる場合がある。RNAは、酵素(RNase)、熱、紫外線などの各種要因によって分解され、劣化する。このRNAの劣化の程度は、RNAサンプルに対する電気泳動により得られた電気泳動波形(エレクトロフェログラム)の形状を解析することにより評価することが可能である。また、電気泳動波形に対する波形解析により得られたRNAの劣化情報は、遺伝子発現研究において重要なパラメータとして扱われる。
 RNAの劣化情報として、RIN、RINe、RQS、RQI、RQN、RISなどの各種指標が提供されている。これらの劣化指標は、RNAサンプルから得られる電気泳動波形における特定の波形領域(時間範囲)を用いて算出される値であり、指標ごとに使用する波形領域が異なっている。
 図8は、RNAサンプルから得られる電気泳動波形における各波形領域について説明するための図である。この図8に示すように、RNAサンプルから得られる電気泳動波形には、18Sフラグメントのピーク(18SピークP101)と、28Sフラグメントのピーク(28SピークP102)とが含まれている。上記のような各劣化指標は、いずれも18SピークP101及び28SピークP102を用いて算出されている。
 劣化指標の一例であるRINは、例えばAgilent Technologies社により提供される2100BioAnalyzerにおいて用いられる劣化指標である。この劣化指標RINは、18Sピークを含む波形領域及び28Sピークを含む波形領域の他、5Sピークを含む波形領域などの他の波形領域も用いて算出される(例えば、下記特許文献1及び非特許文献1参照)。
 劣化指標の別の例であるRQIは、例えばBio-Rad社により提供されるExperionにおいて用いられる劣化指標である。この劣化指標RQIは、18Sピークを含む波形領域及び28Sピークを含む波形領域の他、18Sピークの直前の波形領域も用いて算出される(例えば、下記特許文献2及び非特許文献2参照)。
 劣化指標のさらに別の例であるRQSは、例えばPerkin Elmer社により提供されるLabChip GXにおいて用いられる劣化指標である。この劣化指標RQSは、18Sピーク及び28Sピークをベースとした4つの特徴量の線形結合によって劣化指標が算出される(例えば、下記非特許文献3参照)。
特許第4664280号公報 特許第5620382号公報
Andreas Schroeder 外9名、「The RIN: an RNA integrity number for assigning integrity values to RNA measurements」、[online]、2006年1月31日、BioMed Central、[2017年2月9日検索]、インターネット〈URL:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1413964/〉 Vladimir Denisov 外4名、「Development and validation of RQI: an RNA quality indicator for the Experion automated electrophoresis system」、[online]、2008年、Bio-Rad Laboratories, Inc.、[2017年2月9日検索]、インターネット〈URL:http://www.gene-quantification.com/Bio-Rad-bulletin-5761.pdf〉 「RNA Quality Score (RQS) Calculation and Correlation to RIN」、[online]、2009年11月9日、Caliper Life Sciences, Inc.、[2017年2月9日検索]、インターネット〈URL:https://rtsf.natsci.msu.edu/genomics/tech-notes/caliper-gx-rin-calculations/〉
 上記のような従来から用いられている劣化指標は、18Sピーク及び28Sピークを用いて算出されるが、これらの18Sピーク及び28Sピークは、RNAの劣化に伴ってピーク強度が減少し、やがて消失するという特性がある。そのため、ある程度劣化したRNAの品質を評価する場合には、精度よく評価できないという問題がある。
 本発明は、上記実情に鑑みてなされたものであり、劣化したRNAであっても精度よく品質を評価することができる電気泳動解析方法、電気泳動解析装置及び電気泳動解析プログラムを提供することを目的とする。
 本願発明者は、鋭意検討の結果、RNAの電気泳動波形における18Sピークよりも低分子側の領域(ファーストリージョン)に、RNAの劣化に伴って現れる劣化生成物ピークが存在し、この劣化生成物ピークがRNAの劣化とともに低分子側にシフトすることを見出した。より具体的には、劣化する前のRNAの電気泳動波形には、18Sピーク及び28Sピークが存在しているが、これらの18Sピーク及び28SピークはRNAの劣化に伴ってピーク強度が減少し、28Sピークが消失した後、18Sピークが消失する。そして、さらにRNAが劣化すると、劣化生成物ピークが現れ、RNAの劣化とともに低分子側にシフトし、やがて消失する。
(1)本発明に係る電気泳動解析方法は、電気泳動波形に対する波形解析によりRNAの品質を評価する電気泳動解析方法であって、電気泳動波形中の18Sピークよりも低分子側の領域にRNAの劣化に伴って現れる劣化生成物ピークの位置に応じた特徴量に基づいて、RNAの品質を評価する。
 このような構成によれば、電気泳動波形中の劣化生成物ピークの位置に応じた特徴量に基づいて、劣化したRNAの品質を評価することができる。すなわち、劣化生成物ピークは、18Sピークが消失する程度までRNAが劣化した後、18Sピークよりも低分子側の領域にRNAの劣化に伴って現れ、RNAの劣化とともに低分子側にシフトするため、この劣化生成物ピークの位置に応じた特徴量に基づいて、劣化したRNAであっても精度よく品質を評価することができる。
(2)前記劣化生成物ピークの位置に応じた特徴量は、前記劣化生成物ピークのピークトップの位置を表す値であってもよい。
 このような構成によれば、劣化生成物ピークのピークトップの位置を用いて、劣化生成物ピークの位置に応じた特徴量を的確に表すことができる。したがって、当該特徴量に基づいて、劣化したRNAであっても精度よく品質を評価することができる。
(3)前記劣化生成物ピークの位置に応じた特徴量は、前記劣化生成物ピークの面積を低分子側領域と高分子側領域に分割したときの面積比を表す値であってもよい。
 このような構成によれば、劣化生成物ピークの面積を低分子側領域と高分子側領域に分割したときの面積比を用いて、劣化生成物ピークの位置に応じた特徴量を的確に表すことができる。したがって、当該特徴量に基づいて、劣化したRNAであっても精度よく品質を評価することができる。
(4)前記劣化生成物ピークの位置に応じた特徴量は、前記劣化生成物ピークの重心位置を表す値であってもよい。
 このような構成によれば、劣化生成物ピークの重心位置を用いて、劣化生成物ピークの位置に応じた特徴量を的確に表すことができる。したがって、当該特徴量に基づいて、劣化したRNAであっても精度よく品質を評価することができる。
(5)前記劣化生成物ピークの位置に応じた特徴量と、18Sピーク又は28Sピークに基づく特徴量とを用いて、RNAの品質を評価してもよい。
 このような構成によれば、RNAがある程度劣化するまでは、18Sピーク又は28Sピークに基づく特徴量を用いてRNAの品質を評価し、RNAがある程度劣化した後は、劣化生成物ピークの位置に応じた特徴量を用いてRNAの品質を評価することができる。したがって、RNAの劣化状態をより広い範囲にわたって評価することができる。
(6)本発明に係る電気泳動解析装置は、電気泳動波形に対する波形解析によりRNAの品質を評価する電気泳動解析装置であって、電気泳動波形中の18Sピークよりも低分子側の領域にRNAの劣化に伴って現れる劣化生成物ピークの位置に応じた特徴量に基づいて、RNAの品質を表す品質値を算出する品質値算出部を備える。
(7)本発明に係る電気泳動解析プログラムは、電気泳動波形に対する波形解析によりRNAの品質を評価する電気泳動解析プログラムであって、電気泳動波形中の18Sピークよりも低分子側の領域にRNAの劣化に伴って現れる劣化生成物ピークの位置に応じた特徴量に基づいて、RNAの品質を表す品質値を算出する品質値算出部としてコンピュータを機能させる。
 本発明によれば、劣化生成物ピークは、18Sピークが消失する程度までRNAが劣化した後、18Sピークよりも低分子側の領域にRNAの劣化に伴って現れ、RNAの劣化とともに低分子側にシフトするため、この劣化生成物ピークの位置に応じた特徴量に基づいて、劣化したRNAであっても精度よく品質を評価することができる。
本発明の一実施形態に係る電気泳動解析装置の電気的構成を示したブロック図である。 品質が異なる12個のRNAをサンプルとして得られた電気泳動波形を示す図である。 FPFとFPLの面積比について説明するための図である。 劣化生成物ピークの位置に応じた各特徴量とRNAの品質との関係を示す実験結果である。 データ処理部が品質値を算出する際の処理を示したフローチャートである。 データ処理部が品質値を算出する際の処理の第1変形例を示したフローチャートである。 データ処理部が品質値を算出する際の処理の第2変形例を示したフローチャートである。 RNAサンプルから得られる電気泳動波形における各波形領域について説明するための図である。
1.電気泳動解析装置の電気的構成
 図1は、本発明の一実施形態に係る電気泳動解析装置の電気的構成を示したブロック図である。この電気泳動解析装置は、電気泳動を用いてサンプル中の成分を分離し、その分離された成分を検出部1で検出するための装置である。本実施形態に係る電気泳動解析装置は、例えばサンプルの流路が形成されたマイクロチップ(図示せず)を備えており、泳動媒体(分離バッファ)が充填された上記流路内に液体サンプルを注入し、所定の電圧を印加することにより、液体サンプルを電気泳動させることができる。
 この電気泳動解析装置には、上記検出部1の他に、データ処理部2及び記憶部3が備えられている。データ処理部2は、例えばCPU(Central Processing Unit)を含む構成であり、当該CPUがプログラムを実行することにより、波形取得部21及び品質評価処理部22などとして機能する。また、記憶部3は、例えばROM(Read-Only Memory)、RAM(Random-Access Memory)及びハードディスクなどにより構成されている。
 波形取得部21は、検出部1からの検出信号に基づいて、電気泳動波形のデータを取得し、そのデータを記憶部3に記憶させる。電気泳動波形は、検出部1における検出信号の強度が経過時間に対応付けられた波形データであり、電気泳動により分離されたサンプル中の各成分に対応するピークが現れる。
 品質評価処理部22は、記憶部3に記憶されている電気泳動波形に対する波形解析により、サンプルの品質を評価する処理を行う。本実施形態では、サンプルとしてRNA(リボ核酸)が用いられ、電気泳動によりRNAの品質を評価する場合について説明する。品質評価処理部22には、例えば波形前処理部221、サイズ軸変換部222、特徴量算出部223及び品質値算出部224などが含まれる。
 波形前処理部221は、記憶部3に記憶されている電気泳動波形に対して、ノイズ除去やベースライン補正などの各種前処理を必要に応じて実行する。波形データからノイズを除去したり、ベースラインを補正したりする処理については周知であるため、詳細な説明を省略する。
 サイズ軸変換部222は、波形前処理部221により前処理が行われた電気泳動波形に対して、時間軸をサイズ軸に変換する処理を行う。このとき、外部標準物質から得られる波形(ラダー波形)を用いて、時間軸がサイズ軸に変換される。サイズ軸は、例えばnt(ヌクレオチド)単位で表されてもよいし、インデックス単位で表されてもよい。
 特徴量算出部223は、サイズ軸変換部222により時間軸がサイズ軸に変換された電気泳動波形に基づいて、特徴量を算出する処理を行う。この特徴量を算出する処理については後述するが、本実施形態では、電気泳動波形中の特定のピークの位置に応じた特徴量が算出される。
 品質値算出部224は、特徴量算出部223により算出された電気泳動波形に固有の特徴量に基づいて、RNAの品質を表す品質値を算出する処理を行う。このとき、特徴量算出部223により算出された特徴量が、そのまま品質値として算出されてもよいし、特徴量とは異なる品質値が算出されてもよい。また、必要に応じて線形変換などの処理が行われることにより、特徴量が品質値に変換されてもよい。このようにして算出された品質値に基づいて、RNAの品質を評価することができる。
2.RNAの電気泳動波形
 図2は、品質が異なる12個のRNAをサンプルとして得られた電気泳動波形を示す図である。サンプル1の品質が最も高く、サンプル12に向かうにつれて徐々に品質が劣化している。
 RNAの電気泳動波形には、18Sフラグメントのピーク(18SピークP1)と、28Sフラグメントのピーク(28SピークP2)とが含まれることが知られている。これらの18SピークP1及び28SピークP2は、RNAの劣化に伴ってピーク強度が減少するという特性がある。図2の例では、サンプル1における18SピークP1の強度が、サンプル2,3,4,・・・と徐々に減少し、サンプル5ではほぼ消失している。また、サンプル1における28SピークP2の強度は、サンプル2,3,・・・と徐々に減少し、サンプル4ではほぼ消失している。
 その一方で、電気泳動波形中の18Sピークよりも低分子側(泳動時間が短い側)の領域に着目すると、18SピークP1及び28SピークP2が消失する程度までRNAが劣化したサンプル6において、RNAの劣化に伴い生じる新たなピーク(劣化生成物ピークP3)が現れている。この劣化生成物ピークP3は、そのピーク強度がサンプル7,8,9,・・・と徐々に増加しながら、ピークトップ位置が低分子側に徐々にシフトする。そして、さらにRNAが劣化すると、ピークトップ位置がサンプル10,11,・・・と低分子側に徐々にシフトし続けながら、ピーク強度が徐々に減少し、サンプル12ではほぼ消失する。
 本実施形態では、電気泳動波形中の18Sピークよりも低分子側の領域(特にファーストリージョン内)に現れる上記劣化生成物ピークP3を用いて、その位置に応じた特徴量を算出し、算出された特徴量に基づいてRNAの品質を評価する。すなわち、劣化生成物ピークP3は、18SピークP1が消失する程度までRNAが劣化した後、18SピークP1よりも低分子側の領域にRNAの劣化に伴って現れ、RNAの劣化とともに低分子側にシフトするため、この劣化生成物ピークP3の位置に応じた特徴量に基づいて、劣化したRNAであっても精度よく品質を評価することができる。
3.品質評価の第1実施例
 RNAの品質を評価する方法の第1実施例では、劣化生成物ピークP3のピークトップ位置を表す値が、劣化生成物ピークP3の位置に応じた特徴量(ピークトップ位置特徴量f)として用いられる。
 例えば、サイズ軸の値をiとし、そのサイズにおける電気泳動波形の強度をe[i]とした場合に、ピークトップ位置特徴量fは下記式(1)で表される。式(1)において、Rは劣化生成物ピークP3が生じ得る領域(例えばファーストリージョン)である。
Figure JPOXMLDOC01-appb-M000001
 すなわち、劣化生成物ピークP3が生じ得る領域R内において、e[i]のargmaxを算出することにより、領域R内でe[i]を最大にするiの値がピークトップ位置特徴量fとして算出される。このピークトップ位置特徴量fの値は、RNAの劣化とともに変化(減少)するため、その変化に基づいてRNAの品質を評価することができる。このように、劣化生成物ピークP3のピークトップの位置を用いて、劣化生成物ピークP3の位置に応じた特徴量(ピークトップ位置特徴量f)を的確に表すことができるため、当該特徴量に基づいて、劣化したRNAであっても精度よく品質を評価することができる。
4.品質評価の第2実施例
 RNAの品質を評価する方法の第2実施例では、劣化生成物ピークP3の面積を低分子側領域(FPF)と高分子側領域(FPL)に分割したときの各領域の面積比を表す値が、劣化生成物ピークP3の位置に応じた特徴量(ピーク面積比特徴量f)として用いられる。
 図3は、FPFとFPLの面積比について説明するための図である。この図3に示すように、劣化生成物ピークP3が生じ得る領域R内に局所領域(FPF+FPL)が予め設定され、その領域がFPFとFPLに二等分される。この場合、FPFの領域内における劣化生成物ピークP3の面積SFPFは下記式(2)で表され、FPLの領域内における劣化生成物ピークP3の面積SFPLは下記式(3)で表される。
Figure JPOXMLDOC01-appb-M000002
 したがって、局所領域(FPF+FPL)における劣化生成物ピークP3の面積(SFPF+SFPL)に対するFPLの領域内における劣化生成物ピークP3の面積SFPLの割合は、下記式(4)で表される。
Figure JPOXMLDOC01-appb-M000003
 上記式(4)で表される面積比がピーク面積比特徴量fとして用いられる。このピーク面積比特徴量fの値は、RNAが劣化して劣化生成物ピークP3の位置がシフトするのに伴って変化するため、その変化に基づいてRNAの品質を評価することができる。このように、劣化生成物ピークP3の面積を低分子側領域FPFと高分子側領域FPLに分割したときの面積比を用いて、劣化生成物ピークP3の位置に応じた特徴量(ピーク面積比特徴量f)を的確に表すことができる。したがって、当該特徴量に基づいて、劣化したRNAであっても精度よく品質を評価することができる。
5.品質評価の第3実施例
 RNAの品質を評価する方法の第3実施例では、劣化生成物ピークP3の重心位置を表す値が、劣化生成物ピークP3の位置に応じた特徴量(ピーク重心特徴量f)として用いられる。劣化生成物ピークP3が生じ得る領域R内における信号値の重心は、下記式(5)で表され、この値がピーク重心特徴量fとして算出される。
Figure JPOXMLDOC01-appb-M000004
 上記式(5)で表されるピーク重心特徴量fは、RNAが劣化して劣化生成物ピークP3の位置がシフトするのに伴って変化するため、その変化に基づいてRNAの品質を評価することができる。このように、劣化生成物ピークP3の重心位置を用いて、劣化生成物ピークP3の位置に応じた特徴量(ピーク重心特徴量f)を的確に表すことができる。したがって、当該特徴量に基づいて、劣化したRNAであっても精度よく品質を評価することができる。
6.各特徴量についての実験結果
 図4は、劣化生成物ピークP3の位置に応じた各特徴量とRNAの品質との関係を示す実験結果である。この実験では、12段階で劣化させたHuman LiverのtotalRNAの電気泳動波形(図2参照)を用いて、ピークトップ位置特徴量f、ピーク面積比特徴量f、ピーク重心特徴量fをそれぞれ算出した。図4には、算出された特徴量(品質値)を各サンプル1~12に対応付けてプロットした結果が示されている。
 この図4に示すように、いずれの特徴量についても、RNAの品質が劣化するにつれて減少している。特に、劣化レベルが8以上、すなわちサンプル8の程度までRNAが劣化すると、品質の変化を容易に区別することができるため、劣化したRNAであっても精度よく品質を評価できることが確認できる。
7.品質値算出処理のフローチャート
 図5は、データ処理部2が品質値を算出する際の処理を示したフローチャートである。まず、データ処理部2は、検出部1からの検出信号に基づいて、波形取得部21により電気泳動波形のデータを取得し、そのデータを記憶部3に記憶させる(ステップS101)。その後、記憶部3に記憶されている電気泳動波形に対して、波形前処理部221により前処理が行われる(ステップS102)。そして、前処理が行われた電気泳動波形に対して、サイズ軸変換部222により時間軸をサイズ軸に変換する処理が行われる(ステップS103)。
 本実施形態では、電気泳動波形中の18Sピークよりも低分子側の領域のみに着目して、ピークトップ位置特徴量f、ピーク面積比特徴量f、ピーク重心特徴量fなどの特徴量のいずれかが特徴量算出部223により算出される(ステップS104)。そして、当該特徴量が、品質値算出部224によりRNAの品質を表す品質値に変換される(ステップS105)。
8.品質値算出処理の第1変形例
 図6は、データ処理部2が品質値を算出する際の処理の第1変形例を示したフローチャートである。まず、データ処理部2は、検出部1からの検出信号に基づいて、波形取得部21により電気泳動波形のデータを取得し、そのデータを記憶部3に記憶させる(ステップS201)。その後、記憶部3に記憶されている電気泳動波形に対して、波形前処理部221により前処理が行われる(ステップS202)。そして、前処理が行われた電気泳動波形に対して、サイズ軸変換部222により時間軸をサイズ軸に変換する処理が行われる(ステップS203)。
 この変形例では、電気泳動波形中の18Sピークよりも低分子側の領域だけでなく、18Sピーク及び28Sピークにも着目して、RNAの品質を表す品質値が算出される。具体的には、ピークトップ位置特徴量f、ピーク面積比特徴量f、ピーク重心特徴量fなどの低品質のRNAの特徴量(低品質特徴量)だけでなく、18Sピーク及び28Sピークに基づく高品質特徴量も用いて、品質値が算出される。この場合、特徴量算出部223は、低品質特徴量に加えて、高品質特徴量も公知のアルゴリズムにより算出する(ステップS204)。
 品質値算出部224は、特徴量算出部223により算出された低品質特徴量及び高品質特徴量に基づいて、線形結合により品質値を算出する(ステップS205)。具体的には、ピークトップ位置特徴量f、ピーク面積比特徴量f、ピーク重心特徴量fなどの低品質特徴量をfとし、18Sピーク及び28Sピークに基づく高品質特徴量をfとした場合に、係数C、C、Cを用いて、品質値Qを下記式(6)で表すことができる。
  Q=C+C+C  ・・・(6)
 このように、本実施形態では、劣化生成物ピークP3の位置に応じた特徴量(低品質特徴量f)と、18Sピーク及び28Sピークに基づく特徴量(高品質特徴量f)とを用いて、品質値Qが算出され、その品質値Qに基づいてRNAの品質を評価することができる。これにより、RNAがある程度劣化するまでは、高品質特徴量fを用いてRNAの品質を評価し、RNAがある程度劣化した後は、低品質特徴量fを用いてRNAの品質を評価することができる。したがって、RNAの劣化状態をより広い範囲にわたって評価することができる。ただし、高品質特徴量fは、18Sピーク及び28Sピークの両方を用いて算出されるものに限らず、18Sピーク又は28Sピークのいずれか一方を用いて算出されるものであってもよい。この場合、18Sピークや28Sピーク以外の領域も併用して高品質特徴量を算出することにより、18Sピークなどに基づく高品質特徴量、又は、28Sピークなどに基づく高品質特徴量としてもよい。
9.品質値算出処理の第2変形例
 図7は、データ処理部2が品質値を算出する際の処理の第2変形例を示したフローチャートである。まず、データ処理部2は、検出部1からの検出信号に基づいて、波形取得部21により電気泳動波形のデータを取得し、そのデータを記憶部3に記憶させる(ステップS301)。その後、記憶部3に記憶されている電気泳動波形に対して、波形前処理部221により前処理が行われる(ステップS302)。そして、前処理が行われた電気泳動波形に対して、サイズ軸変換部222により時間軸をサイズ軸に変換する処理が行われる(ステップS303)。
 この変形例では、電気泳動波形中の18Sピークよりも低分子側の領域だけでなく、18Sピーク及び28Sピークにも着目して、RNAの品質を表す品質値が算出される。具体的には、ピークトップ位置特徴量f、ピーク面積比特徴量f、ピーク重心特徴量fなどの低品質のRNAの特徴量(低品質特徴量)と、18Sピーク及び28Sピークに基づく高品質特徴量とを切り替えて、品質値が算出される。この場合、特徴量算出部223は、低品質特徴量に加えて、高品質特徴量も公知のアルゴリズムにより算出する(ステップS304)。
 品質値算出部224は、高品質特徴量が一定値以下であるか否かに応じて、低品質特徴量又は高品質特徴量のいずれ一方に切り換え(ステップS305)、その特徴量に基づいて品質値を算出する(ステップS306)。具体的には、ピークトップ位置特徴量f、ピーク面積比特徴量f、ピーク重心特徴量fなどの低品質特徴量をfとし、18Sピーク及び28Sピークに基づく高品質特徴量をfとした場合に、係数C01、C02、C、Cを用いて、品質値Qを下記式(7)、(8)で表すことができる。すなわち、高品質特徴量fが一定値αより大きければ式(7)を用い、高品質特徴量fが一定値α以下であれば式(8)を用いて、品質値Qが算出される。
  Q=C01+C  (f>α)  ・・・(7)
  Q=C02+C  (f≦α)  ・・・(8)
 このように、本実施形態では、劣化生成物ピークP3の位置に応じた特徴量(低品質特徴量f)と、18Sピーク及び28Sピークに基づく特徴量(高品質特徴量f)とを用いて、品質値Qが算出され、その品質値Qに基づいてRNAの品質を評価することができる。これにより、RNAがある程度劣化するまでは、高品質特徴量fを用いてRNAの品質を評価し、RNAがある程度劣化した後は、低品質特徴量fを用いてRNAの品質を評価することができる。したがって、RNAの劣化状態をより広い範囲にわたって評価することができる。ただし、高品質特徴量fは、18Sピーク及び28Sピークの両方を用いて算出されるものに限らず、18Sピーク又は28Sピークのいずれか一方を用いて算出されるものであってもよい。この場合、18Sピークや28Sピーク以外の領域も併用して高品質特徴量を算出することにより、18Sピークなどに基づく高品質特徴量、又は、28Sピークなどに基づく高品質特徴量としてもよい。
 以上の実施形態では、電気泳動解析装置の処理により、本発明に係る電気泳動解析方法が行われるような構成について説明した。しかし、このような構成に限らず、電気泳動解析方法の各ステップの少なくとも一部がユーザにより手動で行われてもよい。
 また、上述のような電気泳動解析装置としてコンピュータを機能させるためのプログラム(電気泳動解析プログラム)を提供することも可能である。この場合、前記プログラムは、記憶媒体に記憶された状態で提供されるような構成であってもよいし、プログラム自体が提供されるような構成であってもよい。
1   検出部
2   データ処理部
3   記憶部
21  波形取得部
22  品質評価処理部
221 波形前処理部
222 サイズ軸変換部
223 特徴量算出部
224 品質値算出部

Claims (7)

  1.  電気泳動波形に対する波形解析によりRNAの品質を評価する電気泳動解析方法であって、
     電気泳動波形中の18Sピークよりも低分子側の領域にRNAの劣化に伴って現れる劣化生成物ピークの位置に応じた特徴量に基づいて、RNAの品質を評価することを特徴とする電気泳動解析方法。
  2.  前記劣化生成物ピークの位置に応じた特徴量は、前記劣化生成物ピークのピークトップの位置を表す値であることを特徴とする請求項1に記載の電気泳動解析方法。
  3.  前記劣化生成物ピークの位置に応じた特徴量は、前記劣化生成物ピークの面積を低分子側領域と高分子側領域に分割したときの面積比を表す値であることを特徴とする請求項1に記載の電気泳動解析方法。
  4.  前記劣化生成物ピークの位置に応じた特徴量は、前記劣化生成物ピークの重心位置を表す値であることを特徴とする請求項1に記載の電気泳動解析方法。
  5.  前記劣化生成物ピークの位置に応じた特徴量と、18Sピーク又は28Sピークに基づく特徴量とを用いて、RNAの品質を評価することを特徴とする請求項1に記載の電気泳動解析方法。
  6.  電気泳動波形に対する波形解析によりRNAの品質を評価する電気泳動解析装置であって、
     電気泳動波形中の18Sピークよりも低分子側の領域にRNAの劣化に伴って現れる劣化生成物ピークの位置に応じた特徴量に基づいて、RNAの品質を表す品質値を算出する品質値算出部を備えることを特徴とする電気泳動解析装置。
  7.  電気泳動波形に対する波形解析によりRNAの品質を評価する電気泳動解析プログラムであって、
     電気泳動波形中の18Sピークよりも低分子側の領域にRNAの劣化に伴って現れる劣化生成物ピークの位置に応じた特徴量に基づいて、RNAの品質を表す品質値を算出する品質値算出部としてコンピュータを機能させることを特徴とする電気泳動解析プログラム。
PCT/JP2018/001395 2017-03-10 2018-01-18 電気泳動解析方法、電気泳動解析装置及び電気泳動解析プログラム WO2018163610A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201880011477.6A CN110291388B (zh) 2017-03-10 2018-01-18 电泳解析方法、电泳解析装置以及电泳解析程序
EP18764749.0A EP3594674A4 (en) 2017-03-10 2018-01-18 ELECTROPHORETIC ANALYSIS METHOD, ELECTROPHORETIC ANALYSIS DEVICE AND ELECTROPHORETIC ANALYSIS PROGRAM
JP2019504360A JP6725057B2 (ja) 2017-03-10 2018-01-18 電気泳動解析方法、電気泳動解析装置及び電気泳動解析プログラム
US16/490,747 US20200080965A1 (en) 2017-03-10 2018-01-18 Electrophoretic analysis method, electrophoretic analysis device, and electrophoretic analysis program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-046209 2017-03-10
JP2017046209 2017-03-10

Publications (1)

Publication Number Publication Date
WO2018163610A1 true WO2018163610A1 (ja) 2018-09-13

Family

ID=63448592

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/001395 WO2018163610A1 (ja) 2017-03-10 2018-01-18 電気泳動解析方法、電気泳動解析装置及び電気泳動解析プログラム

Country Status (5)

Country Link
US (1) US20200080965A1 (ja)
EP (1) EP3594674A4 (ja)
JP (1) JP6725057B2 (ja)
CN (1) CN110291388B (ja)
WO (1) WO2018163610A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111380941A (zh) * 2018-12-27 2020-07-07 株式会社岛津制作所 电泳分离数据的解析装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108780052B (zh) * 2016-03-11 2020-11-17 株式会社岛津制作所 图像重构处理方法、图像重构处理程序以及安装有该程序的断层摄影装置
JP7472771B2 (ja) * 2020-12-15 2024-04-23 株式会社島津製作所 電気泳動分析データ処理装置及びデータ処理プログラム

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5620382B2 (ja) 1972-02-14 1981-05-13
JP2007526979A (ja) * 2003-04-05 2007-09-20 アジレント・テクノロジーズ・インク 生体分子サンプルの特性を決定する方法
JP2012501458A (ja) * 2008-08-29 2012-01-19 バイオ−ラッド ラボラトリーズ,インコーポレイティド Rnaの完全性の測定
JP2015519887A (ja) * 2012-04-24 2015-07-16 アールエヌエー、ダイアグノスティックス、インコーポレイテッドRna Diagnostics Inc. Rna破壊を評価するためのアッセイ、方法および装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008118839A1 (en) * 2007-03-23 2008-10-02 Dana-Farber Cancer Institute, Inc. Exon grouping analysis
JP5256332B2 (ja) * 2010-12-16 2013-08-07 住友ゴム工業株式会社 劣化解析方法
CN102636547B (zh) * 2012-04-18 2014-05-07 北京理工大学 一种基于毛细管区带电泳的寡核苷酸文库分级和评价方法
KR101761680B1 (ko) * 2015-03-31 2017-08-23 포항공과대학교 산학협력단 수용액 이상계를 이용한 세포 밖 소포체의 분리방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5620382B2 (ja) 1972-02-14 1981-05-13
JP2007526979A (ja) * 2003-04-05 2007-09-20 アジレント・テクノロジーズ・インク 生体分子サンプルの特性を決定する方法
JP4664280B2 (ja) 2003-04-05 2011-04-06 アジレント・テクノロジーズ・インク 生体分子サンプルの特性を決定する方法
JP2012501458A (ja) * 2008-08-29 2012-01-19 バイオ−ラッド ラボラトリーズ,インコーポレイティド Rnaの完全性の測定
JP2015519887A (ja) * 2012-04-24 2015-07-16 アールエヌエー、ダイアグノスティックス、インコーポレイテッドRna Diagnostics Inc. Rna破壊を評価するためのアッセイ、方法および装置

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
ANDREAS SCHROEDER: "The RIN: an RNA integrity number for assigning integrity values to RNA measurements", BIOMED CENTRAL, 31 January 2006 (2006-01-31), Retrieved from the Internet <URL:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1413964>
FLEIGE, SIMONE ET AL.: "RNA integrity and the effect on the real-time qRT-PCR performance", MOLECULAR ASPECTS OF MEDICINE, vol. 27, no. 2-3, April 2006 (2006-04-01), pages 126 - 139, XP055542654 *
FONTANESI, L. ET AL.: "Evaluation of post mortem stability of porcine skeletal muscle RNA", MEAT SCIENCE, vol. 80, no. 4, 14 June 2008 (2008-06-14), pages 1345 - 1351, XP025465925 *
MUELLER, ODILO ET AL.: "RNA Integrity Number (RIN) - Standardization of RNA Quality Control", AGILENT TECHNOLOGIES, 1 May 2004 (2004-05-01), pages 1 - 8, XP055542656, Retrieved from the Internet <URL:http://gene-quantification.net/RIN.pdf> [retrieved on 20180315] *
See also references of EP3594674A4
VLADIMIR DENISOV4 OTHERS: "Development and validation of RQI: an RNA quality indicator for the Experion automated electrophoresis system", 9 February 2017, CALIPER LIFE SCIENCES, INC.

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111380941A (zh) * 2018-12-27 2020-07-07 株式会社岛津制作所 电泳分离数据的解析装置
CN111380941B (zh) * 2018-12-27 2023-12-01 株式会社岛津制作所 电泳分离数据的解析装置

Also Published As

Publication number Publication date
EP3594674A4 (en) 2020-11-25
EP3594674A1 (en) 2020-01-15
US20200080965A1 (en) 2020-03-12
CN110291388B (zh) 2022-08-23
JPWO2018163610A1 (ja) 2019-11-07
CN110291388A (zh) 2019-09-27
JP6725057B2 (ja) 2020-07-15

Similar Documents

Publication Publication Date Title
Li et al. RNA-Seq gene expression estimation with read mapping uncertainty
Arrigo et al. Evaluating the impact of scoring parameters on the structure of intra-specific genetic variation using RawGeno, an R package for automating AFLP scoring
Leggett et al. NextClip: an analysis and read preparation tool for Nextera Long Mate Pair libraries
Wu et al. SpliceTrap: a method to quantify alternative splicing under single cellular conditions
WO2018163610A1 (ja) 電気泳動解析方法、電気泳動解析装置及び電気泳動解析プログラム
Roberts et al. Streaming fragment assignment for real-time analysis of sequencing experiments
Laajala et al. A practical comparison of methods for detecting transcription factor binding sites in ChIP-seq experiments
Rogers et al. SpliceGrapher: detecting patterns of alternative splicing from RNA-Seq data in the context of gene models and EST data
Lindner et al. Metagenomic abundance estimation and diagnostic testing on species level
Diament et al. Estimation of ribosome profiling performance and reproducibility at various levels of resolution
Modolo et al. UrQt: an efficient software for the Unsupervised Quality trimming of NGS data
Wu et al. Assessing the impact of human genome annotation choice on RNA-seq expression estimates
Li et al. Identification of appropriate reference genes for human mesenchymal stem cell analysis by quantitative real-time PCR
Gogol-Döring et al. An overview of the analysis of next generation sequencing data
CA3010254A1 (en) Size-based analysis of fetal dna fraction in maternal plasma
Leonard et al. APERO: a genome-wide approach for identifying bacterial small RNAs from RNA-Seq data
Jackson et al. A heritability-based comparison of methods used to cluster 16S rRNA gene sequences into operational taxonomic units
Liu et al. Prediction of ribosome footprint profile shapes from transcript sequences
Wang et al. Localizing triplet periodicity in DNA and cDNA sequences
Gao et al. Accounting for 16S rRNA copy number prediction uncertainty and its implications in bacterial diversity analyses
Benegas et al. GPN-MSA: an alignment-based DNA language model for genome-wide variant effect prediction
EP3696816A1 (en) Periodic-combined-envelope-sequence generation device, periodic-combined-envelope-sequence generation method, periodic-combined-envelope-sequence generation program and recording medium
Zhao et al. RiboProP: a probabilistic ribosome positioning algorithm for ribosome profiling
US20160078169A1 (en) Method of and apparatus for providing information on a genomic sequence based personal marker
US8346486B2 (en) Determining the quality of biomolecule samples

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18764749

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019504360

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2018764749

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018764749

Country of ref document: EP

Effective date: 20191010