Nothing Special   »   [go: up one dir, main page]

WO2018163408A1 - 共振型電力送信装置及び共振型電力伝送システム - Google Patents

共振型電力送信装置及び共振型電力伝送システム Download PDF

Info

Publication number
WO2018163408A1
WO2018163408A1 PCT/JP2017/009733 JP2017009733W WO2018163408A1 WO 2018163408 A1 WO2018163408 A1 WO 2018163408A1 JP 2017009733 W JP2017009733 W JP 2017009733W WO 2018163408 A1 WO2018163408 A1 WO 2018163408A1
Authority
WO
WIPO (PCT)
Prior art keywords
inverter circuit
power
antenna
transmission
input impedance
Prior art date
Application number
PCT/JP2017/009733
Other languages
English (en)
French (fr)
Inventor
阿久澤 好幸
裕志 松盛
Original Assignee
三菱電機エンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機エンジニアリング株式会社 filed Critical 三菱電機エンジニアリング株式会社
Priority to PCT/JP2017/009733 priority Critical patent/WO2018163408A1/ja
Priority to JP2017521007A priority patent/JP6370484B1/ja
Priority to EP17900069.0A priority patent/EP3595131A4/en
Priority to CN201780088177.3A priority patent/CN110383632B/zh
Priority to US16/476,744 priority patent/US20190363589A1/en
Publication of WO2018163408A1 publication Critical patent/WO2018163408A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/70Circuit arrangements or systems for wireless supply or distribution of electric power involving the reduction of electric, magnetic or electromagnetic leakage fields
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/20Circuit arrangements or systems for wireless supply or distribution of electric power using microwaves or radio frequency waves

Definitions

  • the present invention relates to a resonant power transmission apparatus and a resonant power transmission system that transmit high-frequency power.
  • a transmission antenna and a reception antenna are each covered with a magnetic shield member in order to suppress a disturbance wave and a decrease in power transmission efficiency due to radiation of a leakage electromagnetic field (see, for example, Patent Document 1).
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a resonance type power transmission device that can suppress the generation of an interference wave without using a magnetic shield member.
  • a resonant power transmission device includes a resonance circuit having an inductor and a capacitor, and includes an inverter circuit that outputs power and a transmission antenna that transmits power output by the inverter circuit.
  • a resonance circuit having an inductor and a capacitor
  • an inverter circuit that outputs power
  • a transmission antenna that transmits power output by the inverter circuit.
  • at least one of the inductance of the inductor and the capacitance of the capacitor is variable.
  • FIG. 3A is a diagram showing an example of change in the switching voltage Vds
  • FIG. 3B is a diagram showing the output voltage Vo.
  • FIG. 3A is a diagram showing an example of change in the switching voltage Vds
  • FIG. 3B is a diagram showing the output voltage Vo.
  • FIG. 3A is a diagram showing an example of change in the switching voltage Vds
  • FIG. 3B is a diagram showing the output voltage Vo.
  • FIG. 3A is a diagram showing an example of change in the switching voltage Vds
  • FIG. 3B is a diagram showing the output voltage Vo.
  • FIG. 3A is a diagram showing an example of change in the switching voltage Vds
  • FIG. 3B is a diagram showing the output voltage Vo.
  • FIG. 3A is a diagram showing an example of change in the switching voltage Vds
  • FIG. 3B is a diagram showing the output voltage Vo.
  • FIG. 3A is a diagram showing an example of change in the switching voltage Vds
  • FIG. 3B
  • FIG. 5A to 5C are diagrams for explaining an operation example of the interface power supply according to Embodiment 2 of the present invention.
  • FIG. 5A is a diagram showing a change example of the switching voltage Vds
  • FIG. 5B is a diagram showing the output voltage Vo.
  • FIG. 5C is a diagram showing an example of control of the input voltage V I.
  • FIG. 1 is a diagram showing a configuration example of a resonant power transmission system according to Embodiment 1 of the present invention.
  • the resonant power transmission system includes a resonant transmission power supply device 1, a transmission antenna (TX-ANT) 2, a reception antenna (RX-ANT) 3, a reception circuit 4 and a load 5.
  • the resonant transmission power supply device 1 includes an interface power supply (V I -I / F) 6 and an inverter circuit 7.
  • the receiving circuit 4 includes a rectifier circuit (REC) 8 and an interface power supply (V O -I / F) 9.
  • the resonant transmission power supply device 1 and the transmission antenna 2 constitute a resonant power transmission device
  • the reception antenna 3 and the reception circuit 4 constitute a resonant power reception device.
  • the interface power supply 6 has the function of a converter that increases and decreases the voltage input to the resonant transmission power supply device 1 and outputs DC.
  • the interface power supply 6 has a DC / DC converter function when DC power is input to the resonant transmission power supply device 1, and AC / DC when AC power is input to the resonant transmission power supply device 1. Has the function of a converter. The electric power obtained by the interface power supply 6 is output to the inverter circuit 7.
  • the inverter circuit 7 converts the power output from the interface power supply 6 into high-frequency power having the same frequency (including substantially the same meaning) as the resonance frequency of the transmission antenna 2 and outputs the high-frequency power.
  • the inverter circuit 7 is a class E inverter circuit having a resonance circuit having an inductor L2 and a capacitor C2, as shown in FIG. Further, the inverter circuit 7 has a function of controlling the output impedance Zo of the inverter circuit 7 (resonance type transmission power supply device 1) according to the input impedance Zin of the transmission antenna 2. Specifically, the inverter circuit 7 varies at least one of the inductance of the inductor L2 and the capacitance of the capacitor C2 in accordance with the input impedance Zin.
  • the inverter circuit 7 controls the inductance to a value proportional to the input impedance Zin. Further, when changing the capacitance of the capacitor C2, the inverter circuit 7 controls the capacitance to a value inversely proportional to the input impedance Zin. Moreover, the inverter circuit 7 detects the change of the said input impedance Zin indirectly by detecting the change of the operation state of self (inverter circuit 7).
  • the transmitting antenna 2 performs power transmission by resonating at the same frequency (including substantially the same meaning) as the frequency of the high-frequency power output from the inverter circuit 7.
  • the receiving antenna 3 receives the high-frequency power transmitted from the transmitting antenna 2 by resonating at the same frequency (including substantially the same meaning) as the resonant frequency of the transmitting antenna 2.
  • the high frequency power (AC power) received by the receiving antenna 3 is output to the rectifier circuit 8.
  • the power transmission method between the transmitting antenna 2 and the receiving antenna 3 is not particularly limited, and any of a magnetic field resonance method, an electric field resonance method, and an electromagnetic induction method may be used. Further, the transmitting antenna 2 and the receiving antenna 3 are not limited to non-contact as shown in FIG.
  • the rectifier circuit 8 converts AC power output from the receiving antenna 3 into DC power.
  • the DC power obtained by the rectifier circuit 8 is output to the interface power supply 9.
  • the interface power supply 9 has a function of a DC / DC converter that increases / decreases the DC voltage output from the rectifier circuit 8.
  • the DC power obtained by the interface power supply 9 is output to the load 5.
  • the load 5 is a circuit or device that functions by DC power output from the interface power supply 9.
  • the output impedance of the inverter circuit 7 is assumed to be Zo.
  • the input impedance of the transmission antenna 2 is assumed to be Zin.
  • the input impedance of the rectifier circuit 8 is assumed to be Ro.
  • L TX be the inductance of the transmitting antenna 2.
  • M be the mutual inductance between the transmitting antenna 2 and the receiving antenna 3.
  • the distance between the transmission antenna 2 and the reception antenna 3 is d.
  • the input voltage of the interface power supply 9 is Vin.
  • the input current of the interface power supply 9 is Iin.
  • the resistance at the load 5 is RL.
  • the input impedance Zin of the transmission antenna 2 is expressed by the following equation (1).
  • 2 ⁇ f
  • f is the transmission frequency.
  • Zin ( ⁇ M) 2 / Ro (1)
  • the input impedance Ro of the rectifier circuit 8 is expressed by the following equation (2). In Expression (2), it is assumed that there is almost no loss in the rectifier circuit 8. Ro ⁇ Vin / Iin (2)
  • the input impedance Zin of the transmission antenna 2 is expressed by the following expression (3).
  • the output impedance Zo of the inverter circuit 7 shown in FIG. 2 is expressed by the following expression (4).
  • 2 ⁇ f
  • Q L is a Q value in the resonance circuit (L2, C2, Zo).
  • a a coefficient in a switching condition that establishes ZVS (zero voltage switching).
  • the output impedance Zo of the inverter circuit 7 changes in proportion to the inductance of the inductor L2. Further, the output impedance Zo of the inverter circuit 7 changes in inverse proportion to the capacitance of the capacitor C2.
  • the inverter circuit 7 controls the output impedance Zo by controlling at least one of the inductance of the inductor L2 and the capacitance of the capacitor C2 in accordance with the input impedance Zin of the transmitting antenna 2.
  • the inverter circuit 7 controls the inductance to a value proportional to the input impedance Zin.
  • the inverter circuit 7 controls the capacitance to a value inversely proportional to the input impedance Zin.
  • the inverter circuit 7 cannot directly detect the input impedance Zin of the transmission antenna 2.
  • the operating state of the inverter circuit 7 changes.
  • the switching voltage (drain-source voltage of the switching element Q1) Vds and the output voltage Vo change.
  • the solid line shows the case of Zo ⁇ Zin (impedance matching)
  • the broken line shows the case of Zo ⁇ Zin (impedance mismatch). Therefore, the inverter circuit 7 indirectly detects a change in the input impedance Zin of the transmitting antenna 2 by detecting a change in its operating state.
  • the inverter circuit 7 controls at least one of the inductance of the inductor L2 and the capacitance of the capacitor C2 so that the impedance mismatching state is changed to the impedance matching state.
  • the inverter that controls the output impedance Zo by varying at least one of the inductance of the inductor L2 and the capacitance of the capacitor C2 according to the input impedance Zin of the transmitting antenna 2. Since the circuit 7 is provided, the interference wave can be suppressed without using the magnetic shield member.
  • an interference wave is generated by harmonics from the resonant transmission power supply device 1.
  • harmonics from the resonant transmission power supply device 1 can be suppressed, and the generation of interference waves can be suppressed.
  • an interference wave is also generated due to mismatch of input / output impedances between circuits constituting the resonance type power transmission device and the resonance type power reception device.
  • the output impedance Zo according to the input impedance Zin by the inverter circuit 7, it is possible to eliminate the mismatch of the input / output impedances between the above circuits, so that the generation of interference waves can be suppressed.
  • an interference wave is also generated by resonance due to parasitic impedance on each circuit constituting the resonant power transmitter and the resonant power receiver.
  • the output impedance Zo is controlled by the inverter circuit 7 in accordance with the input impedance Zin, so that the mismatch of the input / output impedance between the circuits can be eliminated. Can be lowered.
  • the resonance phenomenon that amplifies the harmonics is reduced. Therefore, generation
  • the resonance type power transmission system when the position of the resonance type power receiving apparatus changes and the transmission / reception antennas 2 and 3 are displaced, the impedance between the resonance type power transmitting apparatus and the resonance type power receiving apparatus is reduced. Interference is generated due to mismatch.
  • the positions of the transmitting and receiving antennas 2 and 3 are shifted, the mutual inductance M is changed, and the input impedance Zin is also changed from the equation (3).
  • the inverter circuit 7 controls the output impedance Zo according to the input impedance Zin.
  • the input voltage Vin can be changed, and the input impedance Zin can be changed.
  • the amplitude of the input voltage and the input current of the transmission antenna 2 is changed by changing the output impedance Zo by the inverter circuit 7, and the amplitude of the input voltage and the input current of the reception antenna 3 is also changed accordingly. is there.
  • the load resistance RL when the load resistance RL changes, the impedance between the resonance type power transmission device and the resonance type power reception device becomes mismatched, so that an interference wave is generated.
  • the input impedance Zin when the load resistance RL changes, the input impedance Zin also changes.
  • the inverter circuit 7 controls the output impedance Zo according to the input impedance Zin. Therefore, even if the load resistance RL changes, impedance matching between the resonant power transmission device and the resonant power reception device can be maintained, and the occurrence of interference waves can be suppressed.
  • the generation of the interference wave is suppressed by the circuit design. Therefore, a system with low power loss and high power transmission efficiency can be configured.
  • the apparatus can be configured without using a magnetic shield member, cost reduction, size reduction, and weight reduction can be achieved.
  • FIG. 4 is a diagram showing a configuration example of a resonant power transmission system according to Embodiment 2 of the present invention. In the resonant power transmission system according to the second embodiment shown in FIG.
  • the interface power supply 6 and the inverter circuit 7 are replaced with the interface power supply 6b and the inverter circuit as compared with the resonant power transmission system according to the first embodiment shown in FIG. It is changed to 7b.
  • Other configurations are the same, and the same reference numerals are given and description thereof is omitted.
  • the interface power supply 6b has a converter function of increasing / decreasing the voltage input to the resonant transmission power supply device 1 and outputting a direct current.
  • the interface power supply 6b functions as a DC / DC converter when DC power is input to the resonant transmission power supply device 1, and AC / DC when AC power is input to the resonant transmission power supply device 1.
  • the electric power obtained by the interface power supply 6b is output to the inverter circuit 7b.
  • the interface power supply 6b has a function of controlling the output impedance Zo of the inverter circuit 7b (resonance type transmission power supply device 1) according to the input impedance Zin of the transmission antenna 2.
  • interface power supply 6b controls the input voltage V I of the inverter circuit 7b to the value proportional to the square root of the input impedance Zin. Further, the interface power supply 6b indirectly detects the change in the input impedance Zin from the change in the operation state detected by the inverter circuit 7b.
  • the inverter circuit 7b converts the power output from the interface power supply 6b into high-frequency power having the same frequency (including substantially the same meaning) as the resonance frequency of the transmission antenna 2 and outputs the high-frequency power.
  • the inverter circuit 7b is a class E inverter circuit having a resonance circuit having an inductor L2 and a capacitor C2, as shown in FIG.
  • the inverter circuit 7b also has a function of detecting a change in the operation state of itself (inverter circuit 7b) and notifying the interface power supply 6b.
  • interface power supply 6b is controlled to a value which is proportional to the square root of the input impedance Zin of the input voltage V I of the inverter circuit 7b.
  • the interface power supply 6b and the inverter circuit 7b cannot directly detect the input impedance Zin of the transmission antenna 2.
  • the operating state of the inverter circuit 7b changes. For example, as shown in FIGS. 5A and 5B, the switching voltage Vds and the output voltage Vo change.
  • the solid line shows the case of Zo ⁇ Zin (impedance matching)
  • the broken line shows the case of Zo ⁇ Zin (impedance mismatch). Therefore, the inverter circuit 7b detects a change in its own operating state and notifies the interface power supply 6b.
  • interface power supply 6b indirectly detects a change in the input impedance Zin of the transmission antenna 2 from the change in the operation state. Then, as shown in FIG. 5C, interface power supply 6b is such that the state of impedance matching the state of the impedance mismatch is controlled to a value which is proportional to the square root of the input impedance Zin of the input voltage V I of the inverter circuit 7b .
  • the inverter circuit 7b detects a change in its own operation state, and the interface power supply 6b indirectly detects a change in the input impedance Zin of the transmission antenna 2 from the change in the operation state.
  • the indirect detection method of the change of the input impedance Zin is not limited to this.
  • the operation state of the interface power supply (second interface power supply) 9 also changes. Specifically, the input voltage Vin of the interface power supply 9 changes.
  • the interface power supply 9 detects a change in the operation state of itself (interface power supply 9), and the interface power supply 6b indirectly detects the change in the input impedance Zin of the transmission antenna 2 from the change in the operation state. It may be detected. In this method, the interface power supply 6b can easily detect a change in the mutual inductance M.
  • the resonant power transmission device can suppress generation of interference waves without using a magnetic shield member, and is suitable for use in a resonant power transmission device that transmits high-frequency power.
  • SYMBOLS 1 Resonance type transmission power supply device 2 Transmitting antenna (TX-ANT), 3 Receiving antenna (RX-ANT), 4 Receiving circuit, 5 Load, 6, 6b Interface power supply (V I- I / F), 7, 7b Inverter circuit, 8 a rectifier circuit (REC), 9 interface supply (V O -I / F).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Inverter Devices (AREA)

Abstract

インダクタ及びコンデンサを有する共振回路を有し、電力を出力するインバータ回路(7)と、インバータ回路により出力された電力を伝送する送信アンテナ(2)とを備え、インバータ回路は、送信アンテナの入力インピーダンスに応じ、インダクタのインダクタンス及びコンデンサのキャパシタンスのうちの少なくとも一方を可変する。

Description

共振型電力送信装置及び共振型電力伝送システム
 この発明は、高周波数の電力を伝送する共振型電力送信装置及び共振型電力伝送システムに関する。
 従来の共振型電力伝送システムでは、漏洩電磁界の放射による妨害波と電力伝送効率の低下を抑制するため、送信アンテナ及び受信アンテナをそれぞれ磁気シールド部材で覆っている(例えば特許文献1参照)。
特開2012-248747号公報
 従来構成では、磁気シールド部材を用いて漏洩電磁界の放射を抑制している。この際、磁気シールド部材は、送信アンテナと受信アンテナとの間の磁界を遮ることがないように、アンテナとの間隙を確保してアンテナ全体を覆う必要がある。そのため、送信装置及び受信装置を構造的に小さくできないという課題がある。
 また、従来構成では、送受信アンテナから発生した漏洩電磁界の放射を抑制しており、漏洩電磁界の発生を抑制するものではない。また、送信アンテナと受信アンテナとの間の空隙に対しては磁気シールド部材を設けることができない。そのため、この空隙部分から漏洩電磁界が放射されるという課題がある。この漏洩電磁界は、電力伝送を行う際の基本波の高調波であり、約1GHzまでの広帯域に渡って妨害波としても作用し、ラジオ、無線機又は携帯電話等における通信周波数帯へ悪影響を及ぼす。
 この発明は、上記のような課題を解決するためになされたもので、磁気シールド部材を用いずに妨害波の発生を抑制できる共振型電力送信装置を提供することを目的としている。
 この発明に係る共振型電力送信装置は、インダクタ及びコンデンサを有する共振回路を有し、電力を出力するインバータ回路と、インバータ回路により出力された電力を伝送する送信アンテナとを備え、インバータ回路は、送信アンテナの入力インピーダンスに応じ、インダクタのインダクタンス及びコンデンサのキャパシタンスのうちの少なくとも一方を可変することを特徴とする。
 この発明によれば、上記のように構成したので、磁気シールド部材を用いずに妨害波の発生を抑制できる。
この発明の実施の形態1に係る共振型電力伝送システムの構成例を示す図である。 この発明の実施の形態1におけるインバータ回路の等価回路図である。 図3A、図3Bは、この発明の実施の形態1におけるインバータ回路の動作例を説明する図であって、図3Aはスイッチング電圧Vdsの変化例を示す図であり、図3Bは出力電圧Voの変化例を示す図である。 この発明の実施の形態2に係る共振型電力伝送システムの構成例を示す図である。 図5A~図5Cは、この発明の実施の形態2におけるインタフェース電源の動作例を説明する図であって、図5Aはスイッチング電圧Vdsの変化例を示す図であり、図5Bは出力電圧Voの変化例を示す図であり、図5Cは入力電圧Vの制御例を示す図である。
 以下、この発明の実施の形態について図面を参照しながら詳細に説明する。
実施の形態1.
 図1はこの発明の実施の形態1に係る共振型電力伝送システムの構成例を示す図である。
 共振型電力伝送システムは、図1に示すように、共振型送信電源装置1、送信アンテナ(TX-ANT)2、受信アンテナ(RX-ANT)3、受信回路4及び負荷5を備えている。共振型送信電源装置1は、インタフェース電源(V-I/F)6及びインバータ回路7を有している。また、受信回路4は、整流回路(REC)8及びインタフェース電源(V-I/F)9を有している。また、共振型送信電源装置1及び送信アンテナ2は共振型電力送信装置を構成し、受信アンテナ3及び受信回路4は共振型電力受信装置を構成する。
 インタフェース電源6は、共振型送信電源装置1に入力された電圧を増減して直流出力するコンバータの機能を有する。インタフェース電源6は、共振型送信電源装置1に直流電力が入力される場合にはDC/DCコンバータの機能を有し、共振型送信電源装置1に交流電力が入力される場合にはAC/DCコンバータの機能を有する。このインタフェース電源6により得られた電力は、インバータ回路7へ出力される。
 インバータ回路7は、インタフェース電源6から出力された電力を送信アンテナ2が有する共振周波数と同一(略同一の意味を含む)の周波数を有する高周波電力に変換して出力する。このインバータ回路7は、図2に示すような、インダクタL2及びコンデンサC2を有する共振回路を有するE級インバータ回路である。
 また、インバータ回路7は、送信アンテナ2の入力インピーダンスZinに応じ、インバータ回路7(共振型送信電源装置1)の出力インピーダンスZoを制御する機能を有している。具体的には、インバータ回路7は、上記入力インピーダンスZinに応じ、インダクタL2のインダクタンス及びコンデンサC2のキャパシタンスのうちの少なくとも一方を可変する。ここで、インバータ回路7は、インダクタL2のインダクタンスを可変する場合には、当該インダクタンスを上記入力インピーダンスZinに比例した値に制御する。また、インバータ回路7は、コンデンサC2のキャパシタンスを可変する場合には、当該キャパシタンスを上記入力インピーダンスZinに反比例した値に制御する。また、インバータ回路7は、自身(インバータ回路7)の動作状態の変化を検出することで、上記入力インピーダンスZinの変化を間接的に検出する。
 送信アンテナ2は、インバータ回路7から出力された高周波電力が有する周波数と同一(略同一の意味を含む)の周波数で共振することで、電力伝送を行う。
 受信アンテナ3は、送信アンテナ2が有する共振周波数と同一(略同一の意味を含む)の周波数で共振することで、送信アンテナ2から伝送された高周波電力を受信する。この受信アンテナ3により受信された高周波電力(交流電力)は、整流回路8へ出力される。
 なお、送信アンテナ2と受信アンテナ3との間の電力伝送方式は特に限定されず、磁界共鳴による方式、電界共鳴による方式、又は、電磁誘導による方式の何れでもよい。また、送信アンテナ2と受信アンテナ3は、図1に示すような非接触に限らない。
 整流回路8は、受信アンテナ3から出力された交流電力を直流電力に変換する。この整流回路8により得られた直流電力は、インタフェース電源9へ出力される。
 インタフェース電源9は、整流回路8から出力された直流電圧を増減するDC/DCコンバータの機能を有する。このインタフェース電源9により得られた直流電力は、負荷5へ出力される。
 負荷5は、インタフェース電源9から出力された直流電力により機能する回路又は機器である。
 次に、実施の形態1におけるインバータ回路7の機能について説明する。
 ここで、インバータ回路7の出力インピーダンスをZoとする。また、送信アンテナ2の入力インピーダンスをZinとする。また、整流回路8の入力インピーダンスをRoとする。また、送信アンテナ2のインダクタンスをLTXとする。また、受信アンテナ3のインダクタンスをLRXとする。また、送信アンテナ2と受信アンテナ3との相互インダクタンスをMとする。また、送信アンテナ2と受信アンテナ3との間の距離をdとする。また、インタフェース電源9の入力電圧をVinとする。また、インタフェース電源9の入力電流をIinとする。負荷5における抵抗(負荷抵抗)をRLとする。
 ここで、送信アンテナ2の入力インピーダンスZinは下式(1)で表される。式(1)において、ω=2πfであり、fは伝送周波数である。
Zin=(ωM)/Ro   (1)
 また、整流回路8の入力インピーダンスRoは下式(2)で表される。式(2)では、整流回路8での損失がほぼ無いと仮定している。
Ro≒Vin/Iin     (2)
 式(1),(2)から、送信アンテナ2の入力インピーダンスZinは下式(3)となる。
Zin≒(ωM)/(Vin/Iin)  (3)
 また、負荷抵抗RLが変化するとVin/Iinが比例して変化する。よって、送信アンテナ2の入力インピーダンスZin≒(ωM)/(Vin/Iin)は負荷抵抗RLに反比例して変化する。
 また、図2に示すインバータ回路7の出力インピーダンスZoは下式(4)で表される。なお式(4)において、ω=2πfであり、fはスイッチング周波数(=伝送周波数)である。また、Qは、共振回路(L2,C2,Zo)におけるQ値である。また、aは、ZVS(ゼロボルテージスイッチング)が成立するスイッチング条件における係数である。
Zo=ωL2/Q=1/(ωC2(Q-a))   (4)
 式(4)から、インバータ回路7の出力インピーダンスZoは、インダクタL2のインダクタンスに比例して変化する。また、インバータ回路7の出力インピーダンスZoは、コンデンサC2のキャパシタンスに反比例して変化する。
 そこで、インバータ回路7が、送信アンテナ2の入力インピーダンスZinに応じ、インダクタL2のインダクタンス及びコンデンサC2のキャパシタンスのうちの少なくとも一方を制御することで、出力インピーダンスZoの制御を行う。ここで、インバータ回路7は、インダクタL2のインダクタンスを可変する場合には、当該インダクタンスを上記入力インピーダンスZinに比例した値に制御する。また、インバータ回路7は、コンデンサC2のキャパシタンスを可変する場合には、当該キャパシタンスを上記入力インピーダンスZinに反比例した値に制御する。
 なお、インバータ回路7では、送信アンテナ2の入力インピーダンスZinを直接は検出できない。一方、インバータ回路7の出力インピーダンスZoと送信アンテナ2の入力インピーダンスZinとがずれることで、インバータ回路7の動作状態が変化する。例えば図3に示すように、スイッチング電圧(スイッチング素子Q1のドレイン-ソース間電圧)Vds及び出力電圧Voが変化する。図3において、実線がZo≒Zin(インピーダンス整合)の場合を示し、破線がZo≠Zin(インピーダンス不整合)の場合を示している。
 そこで、インバータ回路7では、自身の動作状態の変化を検出することで、送信アンテナ2の入力インピーダンスZinの変化を間接的に検出する。そして、インバータ回路7は、インピーダンス不整合の状態からインピーダンス整合の状態となるように、インダクタL2のインダクタンス及びコンデンサC2のキャパシタンスのうちの少なくとも一方を制御する。
 これにより、Zo≒Zinの関係を維持でき、共振型電力送信装置と共振型電力受信装置との間のインピーダンス整合が図られるため、妨害波の発生を抑制できる。
 以上のように、この実施の形態1によれば、送信アンテナ2の入力インピーダンスZinに応じ、インダクタL2のインダクタンス及びコンデンサC2のキャパシタンスのうちの少なくとも一方を可変することで出力インピーダンスZoを制御するインバータ回路7を備えたので、磁気シールド部材を用いずに妨害波を抑制できる。
 具体的には、共振型電力伝送システムでは、共振型送信電源装置1からの高調波によって、妨害波が発生する。
 それに対して、インバータ回路7で入力インピーダンスZinに応じて出力インピーダンスZoを制御することで、共振型送信電源装置1からの高調波を抑制でき、妨害波の発生を抑制できる。
 また、共振型電力伝送システムでは、共振型電力送信装置及び共振型電力受信装置を構成する各回路間の入出力インピーダンスの不整合によっても、妨害波が発生する。
 それに対して、インバータ回路7で入力インピーダンスZinに応じて出力インピーダンスZoを制御することで、上記各回路間の入出力インピーダンスの不整合を解消できるため、妨害波の発生を抑制できる。
 また、共振型電力伝送システムでは、共振型電力送信装置及び共振型電力受信装置を構成する各回路上の寄生インピーダンスによる共振によっても、妨害波が発生する。
 それに対して、インバータ回路7で入力インピーダンスZinに応じて出力インピーダンスZoを制御することで、上記各回路間の入出力インピーダンスの不整合を解消できるため、各回路に入る高調波のレベルを限りなく低くできる。その結果、回路上に寄生インピーダンスが存在しても、高調波を増幅してしまう共振現象は少なくなる。よって、妨害波の発生を抑制できる。
 また、共振型電力伝送システムでは、共振型電力受信装置の位置が変化して送受信アンテナ2,3に位置ずれが生じた場合、共振型電力送信装置と共振型電力受信装置との間のインピーダンスが不整合となるため、妨害波が発生する。
 それに対して、送受信アンテナ2,3の位置がずれると、相互インダクタンスMが変化し、式(3)から、入力インピーダンスZinも変化する。そして、インバータ回路7では、入力インピーダンスZinに応じて出力インピーダンスZoを制御する。そのため、共振型電力受信装置の位置が変化して送受信アンテナ2,3に位置ずれが生じたとしても、共振型電力送信装置と共振型電力受信装置との間のインピーダンス整合を維持でき、妨害波の発生を抑制できる。
 なお、インバータ回路7で出力インピーダンスZoを制御することで、入力電圧Vinを変化させることができ、入力インピーダンスZinを変化させることができる。これは、インバータ回路7で出力インピーダンスZoを変えることで、送信アンテナ2の入力電圧及び入力電流の振幅が変化し、これに伴って受信アンテナ3の入力電圧及び入力電流の振幅も変化するためである。
 また、共振型電力伝送システムでは、負荷抵抗RLが変化すると、共振型電力送信装置と共振型電力受信装置との間のインピーダンスが不整合となるため、妨害波が発生する。
 それに対して、負荷抵抗RLが変化すると入力インピーダンスZinも変化する。そして、インバータ回路7では、入力インピーダンスZinに応じて出力インピーダンスZoを制御する。そのため、負荷抵抗RLが変化しても、共振型電力送信装置と共振型電力受信装置との間のインピーダンス整合を維持でき、妨害波の発生を抑制できる。
 また、実施の形態1に係る共振型電力受信装置では、回路設計により妨害波の発生を抑制している。そのため、電力損失が少なく電力伝送効率の高いシステムを構成できる。また、磁気シールド部材を使用せずに装置を構成できるため、低コスト化、小型化及び軽量化を図れる。
実施の形態2.
 実施の形態1では、インバータ回路7が、送信アンテナ2の入力インピーダンスZinに応じ、インダクタL2のインダクタンス及びコンデンサC2のキャパシタンスのうちの少なくとも一方を可変することで出力インピーダンスZoを制御する場合を示した。これに対し、実施の形態2では、インタフェース電源6bが、送信アンテナ2の入力インピーダンスZinに応じ、インバータ回路7bの入力電圧Vを制御することで出力インピーダンスZoを制御する場合を示す。
 図4はこの発明の実施の形態2に係る共振型電力伝送システムの構成例を示す図である。この図4に示す実施の形態2に係る共振型電力伝送システムでは、図1に示す実施の形態1に係る共振型電力伝送システムに対し、インタフェース電源6及びインバータ回路7をインタフェース電源6b及びインバータ回路7bに変更している。その他の構成は同様であり、同一の符号を付してその説明を省略する。
 インタフェース電源6bは、共振型送信電源装置1に入力された電圧を増減して直流出力するコンバータの機能を有する。インタフェース電源6bは、共振型送信電源装置1に直流電力が入力される場合にはDC/DCコンバータの機能を有し、共振型送信電源装置1に交流電力が入力される場合にはAC/DCコンバータの機能を有する。このインタフェース電源6bにより得られた電力は、インバータ回路7bへ出力される。
 また、インタフェース電源6bは、送信アンテナ2の入力インピーダンスZinに応じ、インバータ回路7b(共振型送信電源装置1)の出力インピーダンスZoを制御する機能を有している。具体的には、インタフェース電源6bは、インバータ回路7bの入力電圧Vを上記入力インピーダンスZinの平方根に比例した値に制御する。また、インタフェース電源6bは、インバータ回路7bにより検出された動作状態の変化から、上記入力インピーダンスZinの変化を間接的に検出する。
 インバータ回路7bは、インタフェース電源6bから出力された電力を送信アンテナ2が有する共振周波数と同一(略同一の意味を含む)の周波数を有する高周波電力に変換して出力する。このインバータ回路7bは、図2に示すような、インダクタL2及びコンデンサC2を有する共振回路を有するE級インバータ回路である。
 また、インバータ回路7bは、自身(インバータ回路7b)の動作状態の変化を検出し、インタフェース電源6bに通知する機能も有している。
 次に、実施の形態2におけるインタフェース電源6bの機能について説明する。
 ここで、インバータ回路7bの入力電圧をVとし、インバータ回路7bの出力電力をPoとする。
 この場合、インバータ回路7bの出力インピーダンスZoは下式(5)で表される。式(5)から、インバータ回路7bの出力インピーダンスZoは、V に比例して変化する。
Zo=8V /((π+4)Po)   (5)
 また、負荷抵抗RL=(Vin/Iin)とおいた場合、下式(6)が成立する。
Zo=Zin=(ωM)/RL=8V /((π+4)Po)  (6)
 そこで、インタフェース電源6bが、インバータ回路7bの入力電圧Vを入力インピーダンスZinの平方根に比例した値に制御する。
 なお、インタフェース電源6b及びインバータ回路7bでは、送信アンテナ2の入力インピーダンスZinを直接は検出できない。一方、インバータ回路7bの出力インピーダンスZoと送信アンテナ2の入力インピーダンスZinとがずれることで、インバータ回路7bの動作状態が変化する。例えば図5A、図5Bに示すように、スイッチング電圧Vds及び出力電圧Voが変化する。図5において、実線がZo≒Zin(インピーダンス整合)の場合を示し、破線がZo≠Zin(インピーダンス不整合)の場合を示している。
 そこで、インバータ回路7bでは、自身の動作状態の変化を検出し、インタフェース電源6bに通知する。そして、インタフェース電源6bは、上記動作状態の変化から、送信アンテナ2の入力インピーダンスZinの変化を間接的に検出する。そして、図5Cに示すように、インタフェース電源6bは、インピーダンス不整合の状態からインピーダンス整合の状態となるように、インバータ回路7bの入力電圧Vを入力インピーダンスZinの平方根に比例した値に制御する。
 これにより、Zo≒Zinの関係を維持でき、共振型電力送信装置と共振型電力受信装置との間のインピーダンス整合が図られるため、妨害波の発生を抑制できる。
 以上のように、この実施の形態2によれば、送信アンテナ2の入力インピーダンスZinに応じ、インバータ回路7bの入力電圧Vを制御することで出力インピーダンスZoを制御するインタフェース電源6bを備えても、実施の形態1と同様の効果を得ることができる。
 なお上記では、インバータ回路7bが自身の動作状態の変化を検出し、インタフェース電源6bが当該動作状態の変化から送信アンテナ2の入力インピーダンスZinの変化を間接的に検出する場合を示した。しかしながら、上記入力インピーダンスZinの変化の間接的な検出方法はこれに限らない。
 例えば、インバータ回路7bの出力インピーダンスZoと送信アンテナ2の入力インピーダンスZinがずれることで、インタフェース電源(第2インタフェース電源)9の動作状態も変化する。具体的には、インタフェース電源9の入力電圧Vinが変化する。そこで、インバータ回路7bに代えてインタフェース電源9が自身(インタフェース電源9)の動作状態の変化を検出し、インタフェース電源6bが当該動作状態の変化から送信アンテナ2の入力インピーダンスZinの変化を間接的に検出してもよい。
 なおこの方法では、インタフェース電源6bが、相互インダクタンスMの変化を容易に検出可能となる。
 なお、本願発明はその発明の範囲内において、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。
 この発明に係る共振型電力送信装置は、磁気シールド部材を用いずに妨害波の発生を抑制でき、高周波数の電力を伝送する共振型電力送信装置等に用いるのに適している。
 1 共振型送信電源装置、2 送信アンテナ(TX-ANT)、3 受信アンテナ(RX-ANT)、4 受信回路、5 負荷、6,6b インタフェース電源(V-I/F)、7,7b インバータ回路、8 整流回路(REC)、9 インタフェース電源(V-I/F)。

Claims (11)

  1.  インダクタ及びコンデンサを有する共振回路を有し、電力を出力するインバータ回路と、
     前記インバータ回路により出力された電力を伝送する送信アンテナとを備え、
     前記インバータ回路は、前記送信アンテナの入力インピーダンスに応じ、前記インダクタのインダクタンス及び前記コンデンサのキャパシタンスのうちの少なくとも一方を可変する
     ことを特徴とする共振型電力送信装置。
  2.  前記インバータ回路は、前記インダクタのインダクタンスを前記送信アンテナの入力インピーダンスに比例した値に制御する
     ことを特徴とする請求項1記載の共振型電力送信装置。
  3.  前記インバータ回路は、前記コンデンサのキャパシタンスを前記送信アンテナの入力インピーダンスに反比例した値に制御する
     ことを特徴とする請求項1記載の共振型電力送信装置。
  4.  前記インバータ回路は、自身の動作状態の変化から前記送信アンテナの入力インピーダンスの変化を間接的に検出する
     ことを特徴とする請求項1記載の共振型電力送信装置。
  5.  前記送信アンテナは、磁界共鳴、電界共鳴又は電磁誘導により電力伝送を行う
     ことを特徴とする請求項1記載の共振型電力送信装置。
  6.  電力を出力するインバータ回路と、
     前記インバータ回路により出力された電力を伝送する送信アンテナと、
     前記送信アンテナの入力インピーダンスに応じ、前記インバータ回路の入力電圧を制御するインタフェース電源と
     を備えた共振型電力送信装置。
  7.  前記インタフェース電源は、前記インバータ回路の入力電圧を前記送信アンテナの入力インピーダンスの平方根に比例した値に制御する
     ことを特徴とする請求項6記載の共振型電力送信装置。
  8.  前記インバータ回路は、自身の動作状態の変化を検出し、
     前記インタフェース電源は、前記インバータ回路により検出された動作状態の変化から前記送信アンテナの入力インピーダンスの変化を間接的に検出する
     ことを特徴とする請求項6記載の共振型電力送信装置。
  9.  前記送信アンテナは、磁界共鳴、電界共鳴又は電磁誘導により電力伝送を行う
     ことを特徴とする請求項6記載の共振型電力送信装置。
  10.  電力を出力するインバータ回路と、
     前記インバータ回路により出力された電力を伝送する送信アンテナと、
     前記送信アンテナの入力インピーダンスに応じ、前記インバータ回路の入力電圧を制御するインタフェース電源と
     を備えた共振型電力伝送システム。
  11.  前記送信アンテナにより伝送された電力を受信する受信アンテナと、
     前記受信アンテナにより受信された電力を直流電力に変換する整流回路と、
     前記整流回路により得られた直流電圧を増減する第2インタフェース電源とを備え、
     前記第2インタフェース電源は、自身の動作状態の変化を検出し、
     前記インタフェース電源は、前記第2インタフェース電源により検出された動作状態の変化から前記送信アンテナの入力インピーダンスの変化を間接的に検出する
     ことを特徴とする請求項10記載の共振型電力伝送システム。
PCT/JP2017/009733 2017-03-10 2017-03-10 共振型電力送信装置及び共振型電力伝送システム WO2018163408A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2017/009733 WO2018163408A1 (ja) 2017-03-10 2017-03-10 共振型電力送信装置及び共振型電力伝送システム
JP2017521007A JP6370484B1 (ja) 2017-03-10 2017-03-10 共振型電力送信装置及び共振型電力伝送システム
EP17900069.0A EP3595131A4 (en) 2017-03-10 2017-03-10 RESONANCE TYPE ENERGY TRANSMISSION DEVICE AND RESONANCE TYPE ENERGY TRANSFER SYSTEM
CN201780088177.3A CN110383632B (zh) 2017-03-10 2017-03-10 谐振型功率发送装置及谐振型功率传输系统
US16/476,744 US20190363589A1 (en) 2017-03-10 2017-03-10 Resonance-type power transmission device and resonance-type power transfer system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/009733 WO2018163408A1 (ja) 2017-03-10 2017-03-10 共振型電力送信装置及び共振型電力伝送システム

Publications (1)

Publication Number Publication Date
WO2018163408A1 true WO2018163408A1 (ja) 2018-09-13

Family

ID=63104294

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/009733 WO2018163408A1 (ja) 2017-03-10 2017-03-10 共振型電力送信装置及び共振型電力伝送システム

Country Status (5)

Country Link
US (1) US20190363589A1 (ja)
EP (1) EP3595131A4 (ja)
JP (1) JP6370484B1 (ja)
CN (1) CN110383632B (ja)
WO (1) WO2018163408A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021149283A1 (ja) * 2020-07-27 2021-07-29

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114144959B (zh) * 2019-07-25 2025-01-07 株式会社电装 非接触供电装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012135117A (ja) * 2010-12-21 2012-07-12 Panasonic Corp 非接触電力伝送システム
JP2012248747A (ja) 2011-05-30 2012-12-13 Toyota Industries Corp 共鳴型非接触給電システムのシールド装置
JP2013005614A (ja) * 2011-06-17 2013-01-07 Toyota Motor Corp 送電装置、受電装置、車両、および非接触給電システム
JP5738497B1 (ja) * 2014-09-02 2015-06-24 三菱電機エンジニアリング株式会社 共振結合型電力伝送システム、共振型電力送信装置及び共振型電力受信装置
JP5832702B1 (ja) * 2014-09-12 2015-12-16 三菱電機エンジニアリング株式会社 共振型電力伝送装置
WO2016136566A1 (ja) * 2015-02-26 2016-09-01 株式会社村田製作所 送電装置および電力伝送システム
JP5989285B1 (ja) * 2016-01-22 2016-09-07 三菱電機エンジニアリング株式会社 電力伝送装置、高周波電源及び高周波整流回路

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4561796B2 (ja) * 2007-08-31 2010-10-13 ソニー株式会社 受電装置、および電力伝送システム
JP4868077B2 (ja) * 2008-09-25 2012-02-01 トヨタ自動車株式会社 給電システムおよび電動車両
JP5459058B2 (ja) * 2009-11-09 2014-04-02 株式会社豊田自動織機 共鳴型非接触電力伝送装置
WO2011138860A1 (ja) * 2010-05-03 2011-11-10 パナソニック株式会社 発電装置、発電システム、および無線電力伝送装置
KR101184503B1 (ko) * 2010-08-13 2012-09-20 삼성전기주식회사 무선 전력 전송 장치 및 그 전송 방법
JP6105912B2 (ja) * 2012-09-18 2017-03-29 積水化学工業株式会社 電力伝送システム及び電力伝送装置
JP6098284B2 (ja) * 2013-03-28 2017-03-22 日本電気株式会社 電力伝送システム、送電装置、受電装置、及び電力伝送方法
KR102098647B1 (ko) * 2013-07-22 2020-04-08 삼성전자주식회사 무선 전력 전송 시스템의 멀티 타겟에 대한 임피던스 매칭 제어 방법 및 이를 채용한 무선 전력 전송 시스템
US9776522B2 (en) * 2013-09-26 2017-10-03 Nissan Motor Co., Ltd. Wireless power supply system and power transmission device
WO2015112029A1 (en) * 2014-01-22 2015-07-30 Powerbyproxi Limited Coupled-coil power control for inductive power transfer systems
US9634494B2 (en) * 2014-03-25 2017-04-25 Avago Technologies General Ip (Singapore) Pte. Ltd. Power amplifier for wireless power transmission
JP6379051B2 (ja) * 2015-01-23 2018-08-22 日東電工株式会社 中空型電子デバイス封止用シート
WO2016136567A1 (ja) * 2015-02-26 2016-09-01 株式会社村田製作所 電圧検出回路、送電装置および電力伝送システム
CN104701999B (zh) * 2015-03-27 2017-12-26 南京矽力杰半导体技术有限公司 谐振型非接触供电装置、电能发射端和控制方法
US10651657B2 (en) * 2015-06-08 2020-05-12 Qualcomm Incorporated Dynamic adjustment of power for wireless power transmission
JP6058222B1 (ja) * 2016-01-22 2017-01-11 三菱電機エンジニアリング株式会社 電力伝送装置、高周波電源及び高周波整流回路

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012135117A (ja) * 2010-12-21 2012-07-12 Panasonic Corp 非接触電力伝送システム
JP2012248747A (ja) 2011-05-30 2012-12-13 Toyota Industries Corp 共鳴型非接触給電システムのシールド装置
JP2013005614A (ja) * 2011-06-17 2013-01-07 Toyota Motor Corp 送電装置、受電装置、車両、および非接触給電システム
JP5738497B1 (ja) * 2014-09-02 2015-06-24 三菱電機エンジニアリング株式会社 共振結合型電力伝送システム、共振型電力送信装置及び共振型電力受信装置
JP5832702B1 (ja) * 2014-09-12 2015-12-16 三菱電機エンジニアリング株式会社 共振型電力伝送装置
WO2016136566A1 (ja) * 2015-02-26 2016-09-01 株式会社村田製作所 送電装置および電力伝送システム
JP5989285B1 (ja) * 2016-01-22 2016-09-07 三菱電機エンジニアリング株式会社 電力伝送装置、高周波電源及び高周波整流回路

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021149283A1 (ja) * 2020-07-27 2021-07-29
WO2021149283A1 (ja) 2020-07-27 2021-07-29 三菱電機エンジニアリング株式会社 無線電力伝送システム及び無線電力受信装置

Also Published As

Publication number Publication date
EP3595131A1 (en) 2020-01-15
US20190363589A1 (en) 2019-11-28
CN110383632B (zh) 2023-09-26
CN110383632A (zh) 2019-10-25
JPWO2018163408A1 (ja) 2019-03-14
JP6370484B1 (ja) 2018-08-08
EP3595131A4 (en) 2021-01-06

Similar Documents

Publication Publication Date Title
KR101436063B1 (ko) 무선 전력 송수신 장치
JP5738497B1 (ja) 共振結合型電力伝送システム、共振型電力送信装置及び共振型電力受信装置
US9203475B2 (en) Wireless power transmission system, wireless power receiving apparatus, and wireless power receiving method
US9373882B2 (en) Near field communication reader with variable power supply
US9024481B2 (en) Wireless feeding system
US20110175457A1 (en) Power supplying apparatus, power receiving apparatus, and wireless power supplying system
JP2015505664A (ja) 別々に整調可能な共振器を用いる無線電力伝送装置
US10084347B2 (en) Power transmitter, resonance-type contactless power supply and control method therefor
CN104701999B (zh) 谐振型非接触供电装置、电能发射端和控制方法
US10218210B2 (en) Adaptive impedance control for wireless charging
US20140103737A1 (en) Wireless power transmitter, wireless power receiver and wireless power transmission method
WO2014174785A1 (ja) 無線電力伝送装置
JP6370484B1 (ja) 共振型電力送信装置及び共振型電力伝送システム
JP6297218B1 (ja) 共振型電力受信装置
US10110071B2 (en) Resonance-type power transmitter
JP6969915B2 (ja) 高周波電源装置及び送電装置
WO2021149283A1 (ja) 無線電力伝送システム及び無線電力受信装置
KR20240027409A (ko) 임피던스 매칭 회로를 포함하는 무선 전력 송신 장치 및 무선 전력 송신 방법
KR20150117005A (ko) 유연한 무선전력 집전장치

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017521007

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17900069

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017900069

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017900069

Country of ref document: EP

Effective date: 20191010