WO2018159812A1 - Laminated film, laminate for image display device, and image display device - Google Patents
Laminated film, laminate for image display device, and image display device Download PDFInfo
- Publication number
- WO2018159812A1 WO2018159812A1 PCT/JP2018/008012 JP2018008012W WO2018159812A1 WO 2018159812 A1 WO2018159812 A1 WO 2018159812A1 JP 2018008012 W JP2018008012 W JP 2018008012W WO 2018159812 A1 WO2018159812 A1 WO 2018159812A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- film
- resin
- laminated film
- porosity
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/32—Layered products comprising a layer of synthetic resin comprising polyolefins
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B5/00—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
- B32B5/18—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J7/00—Adhesives in the form of films or foils
- C09J7/20—Adhesives in the form of films or foils characterised by their carriers
- C09J7/22—Plastics; Metallised plastics
- C09J7/24—Plastics; Metallised plastics based on macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J7/00—Adhesives in the form of films or foils
- C09J7/20—Adhesives in the form of films or foils characterised by their carriers
- C09J7/22—Plastics; Metallised plastics
- C09J7/24—Plastics; Metallised plastics based on macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
- C09J7/241—Polyolefin, e.g.rubber
- C09J7/243—Ethylene or propylene polymers
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J7/00—Adhesives in the form of films or foils
- C09J7/20—Adhesives in the form of films or foils characterised by their carriers
- C09J7/22—Plastics; Metallised plastics
- C09J7/26—Porous or cellular plastics
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J7/00—Adhesives in the form of films or foils
- C09J7/20—Adhesives in the form of films or foils characterised by their carriers
- C09J7/29—Laminated material
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L59/00—Thermal insulation in general
- F16L59/02—Shape or form of insulating materials, with or without coverings integral with the insulating materials
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J2203/00—Applications of adhesives in processes or use of adhesives in the form of films or foils
- C09J2203/326—Applications of adhesives in processes or use of adhesives in the form of films or foils for bonding electronic components such as wafers, chips or semiconductors
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J2301/00—Additional features of adhesives in the form of films or foils
- C09J2301/30—Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier
- C09J2301/312—Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier parameters being the characterizing feature
Definitions
- the present application relates to a laminated film, a laminate for an image display device, and an image display device.
- Thermal insulation materials are widely applied to various products such as precision instruments, home appliances, interiors of various vehicles, residential walls, ceilings, etc., which are greatly affected by temperature changes.
- mobile electronic devices such as smartphones and tablet terminals
- the influence on users and internal components due to heat generation has become a problem, and a heat insulating material having a high heat insulating effect in a limited installation space has become a problem.
- a heat insulating material a urethane foam obtained by foaming urethane resin with Freon gas, or a heat insulating material using hydrocarbons as a foaming gas instead of Freon gas, is used, while these heat insulating materials have high heat insulating properties, Since it is difficult to reduce the thickness of the film, its use is limited to applications that can secure a sufficient installation space.
- Glass mats using glass fibers Patent Document 1
- heat insulating materials in which xerogel and / or airgel particles are dispersed in the fibers Patent Documents 2 and 3
- propylene-based resins There is a heat insulating material (Patent Document 4) made porous by stretching.
- Such a heat insulating material can be easily made into a thin film and can easily follow a complicated shape. Therefore, it is easy to use even in a limited space such as the interior of various vehicles and mobile electronic devices.
- Patent Document 5 discloses a laminated heat insulating sheet composed of a non-porous layer and a porous layer made of a propylene-based resin and an elastomer. Since the front and back layers of this sheet are non-porous layers, it is considered that the risk of the adhesive or pressure-sensitive adhesive soaking in is reduced.
- a thin and high-performance heat insulating material is required when used in a limited space such as a mobile electronic device, but a laminated heat insulating sheet obtained by the manufacturing method disclosed in Patent Document 5 is required. It has been found by the inventors that high heat insulation properties cannot be obtained.
- the present invention has been made in view of the above problems, and is a laminated film excellent in heat insulation and processability even in a thin film, a laminate for an image display device provided with the laminated film, and the It is an object to provide an image display device provided with a laminate for an image display device.
- a laminated film having an air permeability of 1000 seconds / dL or more and a porosity of 50% or more [2] The laminated film according to [1], wherein the resin film having the porous layer (I) and the layer (II) has a thermal conductivity of less than 0.025 W / mK.
- a laminate for an image display device comprising at least one selected from the group consisting of a touch panel, an image display panel, a surface protection panel, a retardation film, a polarizing film, a color filter, and a flexible substrate.
- An image display device provided with the laminate for an image display device according to [6].
- the laminated film of this invention is excellent in sufficient heat insulation, and excellent in workability.
- the laminated film of the present invention has a porous layer (I) and reduces pore heat transfer.
- the air permeability is 1000 seconds / dL or more and the porosity of the film is 50% or more, material heat transfer is reduced and excellent heat insulation is provided.
- the laminated film of the present invention has the layer (II), when the adhesive layer or the adhesive layer is provided on the layer (II), the adhesive or adhesive material is dyed when the adhesive or adhesive is applied. The pores derived from the internal porous structure are maintained, and the heat insulating property does not deteriorate.
- the laminated film of the present invention forms a porous layer by making it porous upon stretching, it does not use a foaming agent such as gas and has high environmental compatibility.
- a foaming agent such as gas
- no foaming agent since no foaming agent is used, it is easy to make a thin film, and it can be used in limited installation spaces such as interiors of various vehicles and mobile electronic devices.
- Laminated film A laminated film according to an embodiment of the present invention includes a porous layer (I) mainly composed of a propylene-based resin (A) and a porous layer (I ) At least on one side of the layer (II) mainly composed of the propylene-based resin (B), and an adhesive layer or an adhesive layer on the layer (II), and the air permeability is 1000 seconds / dL or more. And a laminated film having a porosity of 50% or more.
- the “adhesive layer or adhesive layer” may be referred to as “layer (III)”.
- Air permeability The air permeability of this film is 1000 seconds / dL or more, preferably 5000 seconds / dL or more, and more preferably 10,000 seconds / dL or more.
- the air permeability represents the difficulty in passing through the air in the thickness direction of the laminated film, and is specifically expressed in the number of seconds required for 100 ml of air to pass through the laminated film. Therefore, it means that the smaller the numerical value is, the easier it is to pass through, and the higher numerical value is, the more difficult it is to pass. That is, the smaller the value means that the communication in the thickness direction of the laminated film is better, and the larger the value means that the communication in the thickness direction of the laminated film is worse.
- Communication is the degree of connection of holes in the thickness direction of the laminated film.
- the air permeability of the laminated film By setting the air permeability of the laminated film to 1000 seconds / dL or more, air communication in the thickness direction of the film is lowered, so that the laminated film is excellent in heat insulation.
- a layer (II) described later it becomes easy to obtain a film having an air permeability in the above range.
- the adhesive film or adhesive is applied to form the adhesive layer or the adhesive layer on the layer (II) because the laminated film has the layer (II), adhesion to the porous layer (I) portion Intrusion of the adhesive or the pressure-sensitive adhesive can be prevented, and a decrease in heat insulation can be suppressed.
- the air permeability (seconds / 100 ml) can be measured according to JIS P8117, and specifically can be measured by the method described in the examples.
- the porosity of the film is an important factor for defining the porous structure, and is a numerical value indicating the ratio of the space portion of the porous layer in the film. In general, it is known that the higher the porosity, the better the heat insulating properties.
- the porosity of the film is 50% or more, preferably 55% or more, more preferably 60%. That's it. If the porosity is 50% or more, a laminated film having excellent heat insulation can be obtained. The upper limit is not particularly defined but is usually 75% or less.
- the method for measuring the porosity is as follows.
- the density of the resin composition is calculated by heating the laminated film to the melting point or higher to melt the film and eliminating the voids, and then producing a press sample and measuring the volume and mass of the press sample. To do.
- the porosity of the resin film portion having the porous layer (I) and the layer (II) excluding the adhesive layer or the adhesive layer is 50% or more. Preferably it is 55% or more, more preferably 60% or more. If the porosity is 50% or more, a laminated film having excellent heat insulation can be obtained.
- the “resin film” refers to a film having a porous layer (I) and a layer (II) and not having an adhesive layer and an adhesive layer, and is a stretched film or an unstretched film. It doesn't matter if it exists.
- the porosity P1 (%) of the resin film having the porous layer (I) and the layer (II), and the porosity of the resin film in the laminated film It is preferable that the rate P2 (%) satisfies the following formula (2).
- the porosity P1 is a porosity of the resin film which has a porous layer (I) and a layer (II) and does not have an adhesive layer and an adhesive layer on the layer (II).
- the porosity P2 has a porous layer (I) and a layer (II), and a film having an adhesive layer or an adhesive layer on the layer (II), that is, a resin film portion of a laminated film. It is porosity.
- the resin film has a hole before the adhesive or the pressure-sensitive adhesive is applied on one side of the resin film.
- the rate is the porosity P1
- the porosity of the resin film after applying the adhesive or pressure-sensitive adhesive is the porosity P2.
- a resin film having the layer (II) on at least one surface of the porous layer (I) is produced, and the porosity P1 is calculated for this film.
- an adhesive or pressure-sensitive adhesive is applied to the resin film using a coating device such as a bar coater and dried, and then a PET film is pasted to obtain a measurement sample.
- an adhesive or a pressure-sensitive adhesive is applied on a PET film by the same method as in the measurement sample preparation and dried to obtain a comparative sample.
- the substantial amount W2 of the resin film part is calculated by calculating the difference in mass between the comparative sample and the measurement sample.
- the mass W0 when the porosity is 0% is calculated based on the density of the resin composition constituting the resin film, and the porosity P2 is calculated based on the following formula from these values.
- Porosity (%) ⁇ (W0 ⁇ W2) / W0 ⁇ ⁇ 100
- the porosity P2 can be calculated by the method using the PET film described above for the laminated film obtained by calculating and applying an adhesive or a pressure-sensitive adhesive to the resin film.
- the change in porosity can be measured by any measurement method.
- Pore abundance ratio of porous layer (I) The porosity of this film is 50% or more, and this film has a number of pore structures. Most of the pore structure is present in the porous layer. Porous layer of the present film (I) is preferably present ratio of the porous layer (I) hole is pore area 3 [mu] m 2 or more in the cross section of the (N A, pieces / 100 [mu] m 2) satisfies the formula (1) .
- abundance ratio of the porous layer (I) of at open area 3 [mu] m 2 or more in the cross section hole is one / 100 [mu] m 2 or less, to suppress the generation of coarse pore size leading to deterioration of holes heat transfer, the film It can have excellent heat insulation.
- the abundance ratio of pores having a pore area of 3 ⁇ m 2 or more in the cross section of the porous layer (I) is measured by the following method. Using a scanning electron microscope (SEM) (“S-4500 manufactured by Hitachi High-Technologies Corporation”), it was visually confirmed that the porous layer (I) and the layer (II) were formed from the cross-sectional image of the porous film. The porous layer (I) is confirmed, and image processing is performed using image analysis software “SPIP (version 6.6.4)” manufactured by Image Metrology.
- SPIP version 6.6.4
- the detection method is set as a threshold, the detection is set as a hole, the threshold type is set as a fixed level, the hole threshold level is set as 80 Arbitrary, and the area is selected in the output without defining the hole range by a filter. After measuring the area of each hole, the ratio of holes having a hole area of 3 ⁇ m 2 or more in the cross section of the porous layer (I) is calculated.
- the thickness of the film is not particularly limited, but is preferably 1.1 ⁇ m or more, more preferably 10 ⁇ m or more, and further preferably 20 ⁇ m or more.
- the upper limit is preferably 400 ⁇ m or less, more preferably 300 ⁇ m or less, and particularly preferably 200 ⁇ m or less. If thickness is 1.1 micrometers or more, Preferably it is 10 micrometers or more, it has a sufficient air layer in a porous layer, and can ensure heat insulation. Moreover, if thickness is 400 micrometers or less, use is easy also for the use used for the limited space where an installation place is narrow.
- the thermal conductivity is an important factor for defining the heat insulating material, and is one of the indexes of the heat insulating performance in this film.
- the thermal conductivity is preferably less than 0.025 (W / mK), more preferably less than 0.023 (W / mK), still more preferably less than 0.021 (W / mK). is there.
- the thermal conductivity is less than 0.025 (W / mK)
- a laminated film having excellent heat insulation is obtained. If the film satisfies the above “abundance ratio of pores in the porous layer” and the “porosity”, it is easy to obtain a film having a thermal conductivity in the above range.
- the measurement method of thermal conductivity is as follows.
- the film is cut into 10 mm squares, and the thickness is measured with a micrometer.
- the thermal diffusivity is evaluated using a xenon flash method (manufactured by NETZSCH, model: LFA447 nanoflash).
- the thermal conductivity is obtained from the product of the bulk density calculated from this value and the mass and the specific heat measured by a differential scanning calorimeter (DSC Pyris 1 manufactured by Perkin Elmer).
- the laminated film of the present invention comprises a porous layer (I) containing propylene resin (A) as a main component and a layer (II) containing propylene resin (B) as a main component on at least one surface of the porous layer (I). And a layered structure having the layer (III) (adhesive layer or adhesive layer) on the layer (II).
- the layer (II) is provided on at least one surface of the porous layer (I)
- the adhesive layer or the pressure-sensitive adhesive layer is applied to the surface of the layer (II) to form the adhesive layer or the pressure-sensitive adhesive layer. Since the pore structure is not blocked, the heat insulation can be prevented from lowering, so that the laminated film has excellent workability. So to speak, the layer (II) functions as a protective layer for protecting the pores of the porous layer (I) from being blocked.
- the layer structure of the laminated film of the present invention is not particularly limited, and the porous layer (I) mainly composed of the propylene resin (A) and the layer (II) mainly composed of the propylene resin (B).
- the porous layer (I) mainly composed of the propylene resin (A) and the layer (II) mainly composed of the propylene resin (B).
- a multilayer structure of four layers, five layers, or more may be used.
- it has a layer (II) on at least one side of the porous layer (I), and has an adhesive layer or an adhesive layer on the layer (II)
- it has excellent heat insulation, It becomes a laminated film excellent in workability.
- the porous layer (I) is arranged in the intermediate layer, and the layer (II) is arranged in the front and back layers of the porous layer (I).
- the laminated film of the present invention is a laminated heat insulating film.
- the adhesive layer or the pressure-sensitive adhesive layer formed on the layer (II) is a resin after stretching a resin film including the porous layer (I) and the layer (II). It is preferable to form an adhesive layer or an adhesive layer by applying an adhesive or an adhesive to the surface of the layer (II) of the film.
- the ratio of the thickness of each layer (laminate ratio) of the laminated film of the present invention is not particularly limited.
- the thickness ratio between the porous layer (I) and the layer (II) in the laminated film of the present invention can be appropriately adjusted according to the application and purpose.
- the layer thickness of the layer (III) adheresive layer or adhesive layer
- the thickness ratio [(I) :( II)] between the porous layer (I) and the layer (II) is preferably 1: 1 to 1: 0.025, more preferably. Is from 1: 0.5 to 1: 0.05.
- the thickness ratio between the porous layer (I) and the layer (II) is in the above range, the balance between the heat insulating properties and the mechanical properties is good, and it is particularly suitable for use as a heat insulating film.
- the “thickness of the porous layer (I)” refers to the total thickness of the plurality of porous layers (I). The same applies to layer (II). Adjustment of the thickness and thickness ratio of the porous layer (I) and the layer (II) in the laminated film can be controlled by adjusting the thickness of the nonporous film-like material before stretching, stretching conditions, and the like.
- the lamination ratio of the porous layer (I) with respect to the total thickness is preferably 50% or more and 97% or less, more preferably 55% or more and 96% or less, and further preferably 60% or more and 95% or less.
- the thickness of the porous layer (I) layer in the laminated film is preferably 5 to 290 ⁇ m, more preferably 10 ⁇ m to 280 ⁇ m. If the thickness ratio of the porous layer (I) and the thickness in the film are within this range, the film can have excellent heat insulation properties.
- the lamination ratio of the layer (II) with respect to the total thickness is preferably 3% or more and 50% or less, more preferably 4% or more and 45% or less, and further preferably 5% or more and 40% or less.
- the thickness of the layer (II) in the laminated film is preferably 1 to 100 ⁇ m, and more preferably 2 to 95 ⁇ m. If the thickness ratio of the layer (II) and the thickness in the film are within this range, when the adhesive or adhesive is applied onto the layer (II), the penetration of the adhesive or adhesive is suppressed. The pores derived from the internal porous structure are maintained, and the heat insulating property does not deteriorate.
- the total thickness of each layer is used for calculation.
- the film only needs to have the above-described configuration, and may further include other layers.
- Resin film A resin film constituting a laminated film according to an example of the embodiment of the present invention includes a porous layer (I) containing a propylene-based resin (A) as a main component and at least one surface of the porous layer (I) with a propylene-based resin. It is a resin film which has layer (II) which has resin (B) as a main component.
- Air permeability of the resin film is 1000 seconds / dL or more, preferably 5000 seconds / dL or more, and more preferably 10,000 seconds / dL or more.
- the air permeability of the resin film is 1000 seconds / dL or more, preferably 5000 seconds / dL or more, and more preferably 10,000 seconds / dL or more.
- the air permeability (seconds / 100 ml) can be measured according to JIS P8117, and specifically can be measured by the method described in the examples.
- the porosity of the resin film is an important factor for defining the porous structure, and is a numerical value indicating the ratio of the space portion of the porous layer in the film. In general, it is known that the higher the porosity, the better the heat insulating property.
- the porosity of the resin film is 50% or more, preferably 55% or more, more preferably 60%. That's it. If the porosity is 50% or more, a resin film having excellent heat insulation can be obtained.
- the upper limit is not particularly defined but is usually 75% or less.
- the method for measuring the porosity of the resin film is as follows.
- the adhesive or adhesive layer on the surface of the laminated film is wiped off with an organic solvent, etc., and the laminated film is immersed in an organic solvent, etc.
- the porosity can be calculated by calculating the porosity of the resin film obtained by completely removing the adhesive layer and then drying.
- Pore abundance ratio of porous layer (I) The porosity of the resin film is 50% or more, and the resin film has a large number of pore structures. Most of the pore structure is present in the porous layer. Porous layer constituting the resin film Film (I), the porous layer (I) abundance ratio of the open area 3 [mu] m 2 or more at a hole in the cross section of the (N A, pieces / 100 [mu] m 2) is able to satisfy the equation (1) preferable.
- the presence ratio of pores having a pore area of 3 ⁇ m 2 or more in the cross section of the porous layer (I) is 1 piece / 100 ⁇ m 2 or less, thereby suppressing generation of a coarse pore diameter that causes deterioration of pore heat transfer, It can have excellent heat insulation.
- the abundance ratio of pores having a pore area of 3 ⁇ m 2 or more in the cross section of the porous layer (I) is measured by the following method. Using a scanning electron microscope (SEM) (“S-4500 manufactured by Hitachi High-Technologies Corporation”), it was visually confirmed that the porous layer (I) and the layer (II) were formed from the cross-sectional image of the porous film. The porous layer (I) is confirmed, and image processing is performed using image analysis software “SPIP (version 6.6.4)” manufactured by Image Metrology.
- SPIP version 6.6.4
- the detection method is set as a threshold, the detection is set as a hole, the threshold type is set as a fixed level, the hole threshold level is set as 80 Arbitrary, and the area is selected in the output without defining the hole range by a filter. After measuring the area of each hole, the ratio of holes having a hole area of 3 ⁇ m 2 or more in the cross section of the porous layer (I) is calculated.
- the thickness of the resin film is not particularly limited, but is preferably 1 ⁇ m or more, more preferably 10 ⁇ m or more, and further preferably 20 ⁇ m or more.
- the upper limit is preferably 300 ⁇ m or less, more preferably 200 ⁇ m or less, and particularly preferably 150 ⁇ m or less. If thickness is 1 micrometer or more, Preferably it is 10 micrometers or more, it has a sufficient air layer in a porous layer, and can ensure heat insulation. Further, if the thickness is 300 ⁇ m or less, it can be used easily for applications that are used in a limited space where the installation place is narrow.
- Thermal conductivity is an important factor for defining a heat insulating material, and is one of the indexes of heat insulating performance in a resin film.
- the thermal conductivity is preferably less than 0.025 (W / mK), more preferably less than 0.023 (W / mK), still more preferably less than 0.021 (W / mK). is there.
- the thermal conductivity is less than 0.025 (W / mK)
- the resin film has excellent heat insulation. If the film satisfies the above “abundance ratio of pores in the porous layer” and the “porosity”, it is easy to obtain a film having a thermal conductivity in the above range.
- the measurement method of thermal conductivity is as follows.
- the film is cut into 10 mm squares, and the thickness is measured with a micrometer.
- the thermal diffusivity is evaluated using a xenon flash method (manufactured by NETZSCH, model: LFA447 nanoflash).
- the thermal conductivity is obtained from the product of the bulk density calculated from this value and the mass and the specific heat measured by a differential scanning calorimeter (DSC Pyris 1 manufactured by Perkin Elmer).
- the adhesive or adhesive layer on the surface of the laminated film is wiped off with an organic solvent or the like, and the laminated film is immersed in the organic solvent, etc.
- the porosity can be calculated by calculating the thermal conductivity of the resin film for the resin film obtained by completely removing the adhesive layer and then drying.
- the resin film of the present invention includes a porous layer (I) mainly composed of a propylene-based resin (A), and a layer (II) mainly composed of a propylene-based resin (B) on at least one surface of the porous layer (I). Is a laminated structure.
- the layer (II) is provided on at least one surface of the porous layer (I)
- the adhesive layer or the pressure-sensitive adhesive layer is applied to the surface of the layer (II) to form the adhesive layer or the pressure-sensitive adhesive layer. Since it does not block the pore structure, a decrease in heat insulation can be suppressed, so that the resin film has excellent processability. So to speak, the layer (II) functions as a protective layer for protecting the pores of the porous layer (I) from being blocked.
- the layer structure of the resin film of the present invention is not particularly limited, and the porous layer (I) mainly composed of the propylene-based resin (A) and the layer (II) mainly composed of the propylene-based resin (B).
- the porous layer (I) mainly composed of the propylene-based resin (A) and the layer (II) mainly composed of the propylene-based resin (B).
- a multi-layer structure of three layers, four layers, five layers, or more may be used.
- the resin film is excellent in heat insulation and processability.
- the porous layer (I) is arranged in the intermediate layer, and the layer (II) is arranged in the front and back layers of the porous layer (I).
- the ratio of the thickness of each layer (lamination ratio) of the resin film of the present invention is not particularly limited.
- the thickness ratio between the porous layer (I) and the layer (II) in the resin film of the present invention can be appropriately adjusted according to the application and purpose. From the viewpoint of obtaining the effect of the present invention, the thickness ratio [(I) :( II)] between the porous layer (I) and the layer (II) is preferably 1: 1 to 1: 0.025, more preferably. Is from 1: 0.5 to 1: 0.05.
- the thickness ratio between the porous layer (I) and the layer (II) is in the above range, the balance between the heat insulating properties and the mechanical properties is good, and it is particularly suitable for use as a heat insulating film.
- the “thickness of the porous layer (I)” refers to the total thickness of the plurality of porous layers (I).
- layer (II) Adjustment of the thickness and thickness ratio of the porous layer (I) and the layer (II) in the resin film can be controlled by adjusting the thickness of the nonporous film-like material before stretching, stretching conditions, and the like.
- the lamination ratio of the porous layer (I) with respect to the total thickness is preferably 50% or more and 97% or less, more preferably 55% or more and 96% or less, and further preferably 60% or more and 95% or less.
- the thickness of the porous layer (I) layer in the resin film is preferably 5 to 290 ⁇ m, more preferably 10 ⁇ m to 280 ⁇ m. When the thickness ratio of the porous layer (I) and the thickness in the film are within this range, the resin film can have excellent heat insulation properties. Further, the lamination ratio of the layer (II) with respect to the total thickness is preferably 3% or more and 50% or less, more preferably 4% or more and 45% or less, and further preferably 5% or more and 40% or less. The thickness of the layer (II) in the resin film is preferably 1 to 100 ⁇ m, and more preferably 2 to 95 ⁇ m.
- the thickness ratio of the layer (II) and the thickness in the film are within this range, when the adhesive or adhesive is applied onto the layer (II), the penetration of the adhesive or adhesive is suppressed. The pores derived from the internal porous structure are maintained, and the heat insulating property does not deteriorate.
- the total thickness of each layer is used for calculation.
- porous layer (I), layer (II) (protective layer) and layer (III) (adhesive layer or adhesive layer) constituting the laminated film of the present invention will be described. Then, the formation method of this film as a manufacturing method is demonstrated.
- Porous layer (I) The porous layer (I) constituting the laminated film of the present invention contains a propylene-based resin (A).
- A propylene-based resin
- Propylene resin (A) As the propylene-based resin (A) in the present invention, homopolypropylene (propylene homopolymer), or propylene and ethylene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 1-nonene or Examples thereof include a random copolymer or a block copolymer with an ⁇ -olefin such as 1-decene. Among these, homopolypropylene is more preferably used from the viewpoint of mechanical strength.
- the propylene resin (A) preferably has a stereotactic regular isotactic pentad fraction of 80 to 99%, more preferably 83 to 98%, and still more preferably 85 to 97%. . If the isotactic pentad fraction is 80% or more, the mechanical strength is good. On the other hand, the upper limit of the isotactic pentad fraction is defined by the upper limit that can be obtained industrially at the present time, but this is not the case when a more regular resin is developed at the industrial level in the future. is not.
- the isotactic pentad fraction is a three-dimensional structure in which all five methyl groups as side chains are located in the same direction with respect to the main chain of carbon-carbon bonds composed of arbitrary five propylene units. Or the ratio is meant.
- Signal assignment of the methyl group region is as follows. Zambelli et al. (Macromol. 8, 687 (1975)).
- the propylene-based resin (A) preferably has a Mw / Mn, which is a parameter indicating a molecular weight distribution, of 1.5 to 10.0. More preferably, it is 2.0 to 8.0, and still more preferably 2.0 to 6.0. This means that the smaller the Mw / Mn, the narrower the molecular weight distribution.
- Mw / Mn is measured by a GPC (gel per emission chromatography) method.
- the melt flow rate (MFR) of the propylene-based resin (A) is not particularly limited, but usually the MFR is preferably 0.5 to 15 g / 10 minutes, and preferably 1.0 to 10 g / 10. More preferably, it is minutes.
- the MFR is preferably 0.5 to 15 g / 10 minutes, and preferably 1.0 to 10 g / 10. More preferably, it is minutes.
- the MFR is measured under the conditions of a temperature of 230 ° C. and a load of 2.16 kg according to JIS K7210-1 (2014).
- the manufacturing method of propylene-type resin (A) is not specifically limited,
- the well-known polymerization method using the well-known polymerization catalyst for example, the multisite catalyst represented by the Ziegler-Natta type
- propylene-based resin (A) examples include, for example, trade names “Novatech PP” “WINTEC” (manufactured by Nippon Polypro), “Versify” “Notio” “Toughmer XR” (manufactured by Mitsui Chemicals), “Zeras”, “Thermo Run”.
- the porous layer (I) can be obtained, for example, by stretching a nonporous film-like material made of a resin composition containing as a main component a propylene-based resin (A) containing a large amount of ⁇ crystals, which is one of crystal forms.
- a porous structure using ⁇ crystals since the ⁇ crystals in the propylene-based resin are converted into ⁇ crystals during the stretching process, the porous structure is dense and the conventionally known inorganic filler, non- Compared to pore formation by adding a compatible organic substance or the like, it is advantageous for the preparation of a porous structure because it does not depend on the particle diameter and dispersion diameter.
- the ⁇ crystal activity of the porous layer (I) can be regarded as an index indicating that the propylene-based resin was generating ⁇ crystals in the non-porous film-like material before stretching. If the propylene-based resin in the non-porous film-like material before stretching produces ⁇ -crystals, many fine and uniform pores are formed by subsequent stretching, so it has excellent mechanical properties and is fine and uniform. Excellent heat insulation can be obtained by forming the holes.
- the presence or absence of ⁇ crystal activity in the porous layer (I) is determined by performing differential thermal analysis of the porous layer (I) using a differential scanning calorimeter and detecting the crystal melting peak temperature derived from the ⁇ crystal of the propylene resin. It is judged by whether or not it is done. Specifically, the laminated film is heated from 25 ° C. to 240 ° C. at a heating rate of 10 ° C./min for 1 minute, and then cooled from 240 ° C. to 25 ° C. at a cooling rate of 10 ° C./min. When the temperature is lowered for 1 minute and then heated again from 25 ° C. to 240 ° C. at a heating rate of 10 ° C./min, the crystal melting peak temperature (Tm ⁇ ) derived from the ⁇ crystal of the propylene resin at the time of reheating is If detected, it is determined to have ⁇ crystal activity.
- Tm ⁇ crystal melting peak temperature
- Patent No. A method of adding a propylene-based resin that has been treated to generate peroxide radicals as described in Japanese Patent No. 3739481, and a ⁇ -crystal nucleating agent is added to the resin composition constituting the porous layer (I)
- the method etc. are mentioned.
- a ⁇ crystal nucleating agent By adding a ⁇ crystal nucleating agent, the production of ⁇ crystals of a propylene resin can be promoted more uniformly and efficiently, and a laminated film having a porous layer (I) having ⁇ crystal activity can be obtained. it can.
- the porous layer (I) contains the propylene resin (A) as a main component, and the content thereof is 50% by mass or more, preferably 70 to 99.9999% by mass, more preferably 80 to 99.999% by mass, and still more preferably. 90 to 99.99% by mass.
- the porous layer (I) preferably has the ⁇ -crystal activity in order to obtain a fine porous structure, and among them, it preferably includes a ⁇ -crystal nucleating agent.
- the ⁇ crystal nucleating agent used in the present invention include the following, but are not particularly limited as long as they increase the generation and growth of ⁇ crystals of the propylene resin, and two or more types are mixed and used. May be.
- ⁇ crystal nucleating agent examples include amide compounds; tetraoxaspiro compounds; quinacridones; iron oxides having a nanoscale size; potassium 1,2-hydroxystearate, magnesium benzoate or magnesium succinate, magnesium phthalate, etc.
- Alkali metal salts or alkaline earth metal salts of carboxylic acids represented by: aromatic sulfonic acid compounds represented by sodium benzenesulfonate or sodium naphthalenesulfonate; di- or triesters of dibasic or tribasic carboxylic acids; Phthalocyanine pigments typified by phthalocyanine blue, etc .; two-component compounds consisting of component A, which is an organic dibasic acid, and component B, which is an oxide, hydroxide or salt of a Group 2 metal in the periodic table; cyclic phosphorus compounds And magnesium compound Such as the formation thereof.
- one or more selected from the group consisting of amide compounds, tetraoxaspiro compounds, and quinacridones are preferable.
- ⁇ crystal nucleating agents include the ⁇ crystal nucleating agent “NJESTER NU-100” manufactured by Shin Nippon Rika Co., Ltd., and specific examples of propylene resins to which ⁇ crystal nucleating agents are added include Aristech. Examples thereof include polypropylene “Bepol B-022SP”, polypropylene manufactured by Borealis “Beta ( ⁇ ) -PP BE60-7032,” polypropylene manufactured by Mayzo “BNX BETAP-LN”, and the like.
- the content of the ⁇ -crystal nucleating agent in the porous layer (I) can be appropriately adjusted depending on the type of the ⁇ -crystal nucleating agent or the composition of the propylene-based resin, but 100 mass of the propylene-based resin in the porous layer (I). 0.0001 to 5.0 parts by mass with respect to parts, preferably 0.001 to 3.0 parts by mass, and more preferably 0.01 to 1.0 parts by mass. If it is 0.0001 part by mass or more, ⁇ -crystals of propylene resin can be generated and grown sufficiently at the time of production, sufficient ⁇ -crystal activity can be secured, and sufficient ⁇ -crystal activity can be secured even when a laminated film is formed. The desired heat insulating properties can be obtained. On the other hand, addition of 5.0 parts by mass or less is preferable because it is economically advantageous and there is no bleeding of the ⁇ crystal nucleating agent on the film surface.
- the layer (II) (protective layer) in the laminated film of the present invention is a layer that does not soak when a solvent is dropped on its surface.
- the protective layer (II) is observed with a scanning electron microscope (SEM) (“S-4500, manufactured by Hitachi High-Technologies Corporation), and image analysis software“ SPIP (version 6.6. 4) ”as the image processing method, the detection method is set as a threshold, the detection is set as a hole, the threshold type is set as a fixed level, the hole threshold level is set as 80 Arbitrary, and the output is performed without defining the hole range by a filter.
- the layer (II) has no pores of 1 ⁇ m 2 or more.
- Propylene resin (B) The propylene-based resin (B) in the present invention is preferably a propylene-based resin described in the above-mentioned propylene-based resin (A), and is particularly preferably a random propylene-based resin from the viewpoint of hardly generating a porous structure.
- a random propylene-based resin for the layer (II) it is possible to make it difficult to form voids (holes) during stretching that occur when a homopropylene-based resin, a block propylene-based resin, or the like is selected.
- coating an adhesive the penetration
- the layer (II) is mainly composed of the propylene-based resin (B), and the content thereof is 50% by mass or more, preferably 70 to 99.9999% by mass, more preferably 80 to 99.999% by mass, and still more preferably 90%. To 99.99 mass%.
- Layer (III) adheresive layer or adhesive layer
- the laminated film of the present invention can easily impart heat insulation to various members bonded through the layer (III).
- it is used as an interior member of various vehicles, a member of a mobile electronic device or the like.
- the layer thickness of the layer (III) varies depending on the mass of the adherend, the material, etc., but is preferably 0.1 to 100 ⁇ m from the viewpoint of the adhesive strength to the adherend.
- Examples of the base polymer (or base elastomer) used in the composition containing at least one of an adhesive and a pressure-sensitive adhesive applied to one side of the layer (II) include natural rubber, synthetic isoprene, styrene-isoprene-styrene block copolymer (SIS), styrene-butadiene-styrene block copolymer (SBS), styrene-ethylene / butylene-styrene triblock copolymer (SEBS) hydrogenated with SBS, styrene-ethylene / propylene block copolymer hydrogenated with SI Rubber adhesives mainly composed of styrene-ethylene / propylene-styrene block copolymer (SEPS) hydrogenated with SIS (hydrogenated SIS), acrylic acid ester such as 2-ethylhexyl acrylate or butyl acrylate, or methacrylic acid Mainly ester It is appropriately selected from an
- the pressure-sensitive adhesive is alicyclic petroleum resin, aliphatic petroleum resin, terpene resin, ester resin, coumarone-indene resin, rosin resin, An epoxy resin, a phenol resin, an acrylic resin, a butyral resin, an olefin resin, a chlorinated olefin resin, a vinyl acetate resin, and a tackifier mainly composed of these modified resins or hydrogenated resins, liquid isoprene, liquid butadiene, Liquid butadiene / isoprene, liquid styrene / butadiene, liquid styrene / isoprene, polybutene, polyisobutylene, liquid terpene, liquid rosin, paraffin oil, plasticizers, isocyanate crosslinkers, epoxy crosslinkers, amine crosslinks Agent, melamine crosslinking agent, aziridine crosslinking agent, hydrazi A crosslinking
- Solvents used for preparing the adhesive include aromatic hydrocarbon solvents such as benzene and toluene; ester solvents such as ethyl acetate and butyl acetate; ketone solvents such as acetone, methyl ethyl ketone, and methyl isobutyl ketone; n-pentane, n -Aliphatic hydrocarbon solvents such as hexane and n-heptane; and alicyclic hydrocarbon solvents such as cyclopentane and cyclohexane. These solvents can be used alone or in combination of two or more.
- Each layer constituting this film has additives that do not impair its properties, such as heat stabilizers, antioxidants, ultraviolet absorbers, light stabilizers, crystal nucleating agents, colorants, antistatic agents, and hydrolysis inhibitors.
- additives such as an agent, a lubricant, a flame retardant, and an elastomer may be appropriately included.
- other resin compositions may be contained to such an extent that the property is not impaired.
- Manufacturing method of laminated film The manufacturing method of the laminated film of the present invention will be described. The following description is an example of a method of manufacturing the laminated film of the present invention, and the laminated film of the present invention is manufactured by such a manufacturing method. It is not limited to a laminated film.
- a method for producing a laminated film according to an example of an embodiment of the present invention includes a layer containing a propylene resin (A) as a main component and a ⁇ crystal nucleating agent (C).
- A propylene resin
- C ⁇ crystal nucleating agent
- the film production method may include the above-described steps, and may further include other steps, treatments, and the like.
- resins include polystyrene resins, polyvinyl chloride resins, polyvinylidene chloride resins, chlorinated polyethylene resins, polyester resins, polycarbonate resins, polyamide resins, polyacetal resins, acrylic resins, ethylene acetate Vinyl copolymer, polymethylpentene resin, polyvinyl alcohol resin, cyclic olefin resin, polylactic acid resin, polybutylene succinate resin, polyacrylonitrile resin, polyethylene oxide resin, cellulose resin, polyimide resin , Polyurethane resin, polyphenylene sulfide resin, polyphenylene ether resin, polyvinyl acetal resin, polybutadiene resin, polybutene resin, polyamideimide resin, polyamide bismaleimide resin, Arylate resins, polyether imide resins, polyether ether ketone resin, polyether ketone resin, polyether sulfone resin, polyketone resin, polysulfone resin, aramid-based resin, flu
- additives that are generally blended can be added as appropriate within a range that does not significantly impair the effects of the present invention.
- the additive include recycled resin generated from trimming loss of ears and the like, silica, talc, kaolin, carbonic acid, which are added for the purpose of improving or adjusting molding processability, productivity and various physical properties of the porous film.
- Inorganic particles such as calcium, pigments such as titanium oxide and carbon black, flame retardants, weathering stabilizers, heat stabilizers, antistatic agents, melt viscosity improvers, crosslinking agents, lubricants, nucleating agents, plasticizers, anti-aging agents , Antioxidants, light stabilizers, ultraviolet absorbers, neutralizers, antifogging agents, antiblocking agents, slip agents, colorants and the like.
- the machine to be used is not particularly limited.
- a known extruder such as a single screw extruder, a twin screw extruder, or a multi-screw extruder can be used.
- a pressure reducer may be connected to the vent port to remove moisture and low molecular weight substances.
- Film-forming process examples of a method for heating and melting the material resin include a T-die method and an inflation method. Among these, the T-die method is preferably employed. Practically, it is preferable that the material resin is melt-extruded from a T-die and cast by a cast roll.
- a sheet-like molten resin extruded from the T-die is laminated and adhered onto a rotating cast roll (chill roll, cast drum).
- a rotating cast roll chill roll, cast drum.
- molding in a take-off sheet-like material can be mentioned.
- a touch roll, an air knife, an electric contact device or the like may be attached to the cast roll in order to bring the film-like material into close contact with the cast roll.
- the temperature of the cast roll is preferably 100 ° C. or higher. More preferably, it is 110 degreeC or more, More preferably, it is 120 degreeC or more.
- the porosity of the cast roll can be increased by 100 ° C. or higher because the porosity can be increased by the opening of the crystalline portion and the amorphous portion of the propylene-based resin in the porous layer (I) by the stretching step.
- the thickness of the effective portion excluding both ends is preferably 50 ⁇ m to 1000 ⁇ m, more preferably 80 ⁇ m or more and 800 ⁇ m or less, and particularly preferably 100 ⁇ m or more or 600 ⁇ m or less. If the unstretched film thickness is 50 ⁇ m or more, the film is too thin to prevent breakage during stretching. If the unstretched film thickness is 1000 ⁇ m or less, the film becomes too rigid. It is possible to prevent the stretching from becoming difficult.
- the layer structure of the laminated film of the present invention in the original fabric may be not only the above layer structure but also a structure in which other layers are combined.
- the ratio (T2 / T1) of the thickness (T2) of the layer (II) to the thickness (T1) of the porous layer (I) preferably satisfies the relationship of 0.05 to 1.0.
- the thickness ratio is within this range, a film excellent in heat insulation even in the case of a thin film and excellent in workability that does not cause deterioration in heat insulation even when an adhesive or a pressure-sensitive adhesive is applied can be obtained. It is done.
- the total thickness of each layer is used for calculation.
- the unstretched film preferably has a layer (I) having a thickness of 50 to 600 ⁇ m.
- the lower limit of this thickness is more preferably 55 ⁇ m, still more preferably 60 ⁇ m.
- the upper limit is more preferably 580 ⁇ m, still more preferably 550 ⁇ m.
- the laminated film which has favorable heat insulation is obtained because the thickness of layer (I) is 50 micrometers or more.
- the thickness of the layer (I) is 600 ⁇ m or less, a stretched film having a thickness of 300 ⁇ m or less after stretching can be obtained.
- the unstretched film preferably has a layer (II) of 5 to 300 ⁇ m.
- the lower limit of this thickness is more preferably 10 ⁇ m and even more preferably 20 ⁇ m.
- the upper limit is more preferably 250 ⁇ m, and still more preferably 200 ⁇ m.
- Uniaxial stretching may be longitudinal uniaxial stretching or transverse uniaxial stretching.
- Biaxial stretching may be simultaneous biaxial stretching or sequential biaxial stretching.
- sequential biaxial stretching is more preferred because the stretching conditions can be selected in each stretching step and the porous structure can be easily controlled.
- stretching to the flow direction (MD) of a film-like thing is called “longitudinal stretching”
- vertical direction (TD) with respect to a flow direction is called "lateral stretching.”
- the stretching temperature needs to be selected in a timely manner according to the composition of the resin composition to be used, the crystal melting peak temperature, the crystallinity, etc., but the control of the porous structure is relatively easy, the mechanical strength, It is easy to balance with other physical properties such as shrinkage.
- the longitudinal stretching temperature is preferably 60 to 140 ° C, more preferably 80 to 120 ° C. It is preferable to set the longitudinal stretching temperature to 140 ° C. or lower because stretching can be performed without breaking below the melting point of the main component propylene resin. On the other hand, since it can suppress the fracture
- the longitudinal stretching ratio can be arbitrarily selected, but the stretching ratio per uniaxial stretching is preferably 1.1 to 10 times, more preferably 1.5 to 8.0 times, and further preferably 1.5 to 6. 0 times.
- the stretch ratio per uniaxial stretching is 1.1 times or more, whitening proceeds and sufficient porosity is achieved by stretching.
- the transverse stretching temperature is preferably 100 to 160 ° C, more preferably 110 to 150 ° C.
- the pores generated during the longitudinal stretching can be expanded to increase the porosity of the porous layer, and thus sufficient heat insulation can be achieved.
- the transverse draw ratio can be arbitrarily selected, but is preferably 1.1 to 10 times, more preferably 1.5 to 9.0 times, and still more preferably 1.5 to 8.0 times.
- an adhesive or a pressure-sensitive adhesive is applied to the surface of the layer (ii) of the resin film prepared by the stretching process to form the layer (iii).
- the method of applying the adhesive or pressure-sensitive adhesive layer (ii) on the surface is not particularly limited, and is a spin coater, roll coater, slit coater, air knife coater, bar coater, spray coating, curtain coater, dip coater, die coater, gravure roll. A known method such as the above can be used.
- the laminated film of the present invention can be subjected to surface treatment such as corona treatment, plasma treatment, printing, coating, vapor deposition, and further perforation as necessary within the range not impairing the present invention. Depending on the situation, it is possible to stack several laminated films of the present invention.
- Laminated body for image display apparatus, image display apparatus has a touch panel, an image display panel, a surface protection panel, a retardation film, a polarizing film, a color filter on at least one side of the laminated film of the present invention. And any one or more selected from the group consisting of flexible substrates.
- the image display device of the present invention is provided with the laminate for an image display device of the present invention.
- An image display device including members for an image display device such as a touch panel, an image display panel, a surface protection panel, a retardation film, a polarizing film, a color filter, and a flexible substrate is generally easily heated and functions by heat generation. May decrease.
- the laminated film of the present invention is excellent in heat insulation and processability even if it is a thin film. Therefore, it is easy to be bonded to a member for an image display device and an image display device, and the weight of the member for an image display device and the image display device. It is possible to perform heat insulation while suppressing the reduction of the function, and it is possible to suppress the functional deterioration of the image display device member and the image display device.
- styrene-based elastomer styrene-ethylene / butylene-sty
- Example 1 100 parts by mass of propylene resin (A-1), 0.2 part by mass of ⁇ -crystal nucleating agent (C-1) and 0.1 part by mass of antioxidant (D-1) were mixed and mixed in a twin screw extruder.
- the mixture 1 was obtained by melt extrusion at 280 ° C.
- the thickness of the surface layer [layer (II)] / intermediate layer [layer (I)] / back layer [layer (II)] of the laminated non-porous film (unstretched film) is “unstretched film” in Table 1.
- the laminated non-porous film-like material was longitudinally stretched by using a longitudinal stretching machine between rolls set at 105 ° C. with a draw ratio of 65% multiplied by 3 stages (longitudinal stretching ratio: 4.5 times).
- the film after longitudinal stretching was preheated at a preheating temperature of 150 ° C.
- the adhesive (F-1) for application was applied to the measurement sample using a 50th bar coater, dried at 80 ° C. for 1 minute, and the adhesive layer (III) A laminated film provided with
- Comparative Example 1 Molding was performed using the mixture 1 with a T die having a lip opening of 1 mm, and the film was guided to a cast roll to obtain a nonporous film-like material. Thereafter, longitudinal stretching and lateral stretching were performed in the same manner as in Example 1 to obtain a resin film. On one side of the obtained resin film, a coating adhesive (F-1) was applied to obtain a laminated film provided with an adhesive layer (III). The evaluation results of the obtained resin film are summarized in Table 1.
- Comparative Example 2 Using a T-die with a lip opening of 1 mm, molding was performed using propylene-based resin (A-1) in an extruder to obtain a nonporous film. Then, the resin film was obtained by performing longitudinal stretch and lateral stretch by the method similar to Example 1. FIG. On one side of the obtained resin film, a coating adhesive (F-1) was applied to obtain a laminated film provided with an adhesive layer (III). The evaluation results of the obtained resin film are summarized in Table 1.
- the film thickness, porosity, abundance of holes (N A), an air permeability, thermal conductivity, solvent penetration, the porosity after the adhesive coating It measured by the following method.
- the porosity, the abundance ratio, the air permeability, the thermal conductivity, and the film thickness were measured on the resin film before forming the adhesive layer (III).
- Example 1 the film provided with the adhesive layer (III) was also measured.
- Porosity (i) Porosity P1 The substantial amount W1 of the resin film was measured, the mass W0 when the porosity was 0% was calculated based on the density of the resin composition, and the porosity was calculated based on the following formula from these values.
- Porosity (%) ⁇ (W0 ⁇ W1) / W0 ⁇ ⁇ 100
- Porosity of laminated film A substantial amount W1 of the laminated film is measured, and a mass W0 when the porosity is 0% is calculated based on the density of the resin composition. The porosity was calculated.
- Porosity (%) ⁇ (W0 ⁇ W1) / W0 ⁇ ⁇ 100
- the abundance ratio (N A ) of pores having a pore area of 3 ⁇ m 2 or more in the porous layer (I) was calculated.
- Table 1 shows that the abundance ratio (N A ) satisfies the formula (1) (N A ⁇ 1) as Y, and that the abundance ratio does not satisfy N as N.
- Air permeability at 25 ° C. In the air atmosphere at 25 ° C., the air permeability was measured according to JIS P8117. As a measuring instrument, a digital type Oken type air permeability dedicated machine (Asahi Seiko Co., Ltd.) was used.
- Porosity of resin film after application of adhesive P2
- the prepared pressure-sensitive adhesive was applied on a PET film and dried to obtain a comparative sample.
- the substantial amount W2 of the resin film was calculated by subtracting the mass of the comparative sample from the mass of the measurement sample.
- ⁇ crystal activity The presence or absence of ⁇ crystal activity in each of the resin films of Examples and Comparative Examples was analyzed using a differential scanning calorimeter. Specifically, a differential scanning calorimeter (DSC Pyris 1 manufactured by Perkin Elmer) was used as follows. The resin film was heated from 25 ° C. to 240 ° C. at a heating rate of 10 ° C./min, held for 1 minute, then cooled from 240 ° C. to 25 ° C. at a cooling rate of 10 ° C./min, and then held for 1 minute. ⁇ crystals were produced and grown.
- DSC Pyris 1 manufactured by Perkin Elmer DSC Pyris 1 manufactured by Perkin Elmer
- the crystal melting peak temperature (145 to 160 ° C) derived from the ⁇ crystal of the propylene-based resin is detected when the temperature is raised again.
- Table 1 shows the resin film having ⁇ crystal activity as Y and the resin film not having ⁇ crystal activity as N.
- Table 1 shows the evaluation results regarding the examples and comparative examples.
- Y in the “Presence / absence of adhesive layer” column means that the laminated film of Examples or Comparative Examples has an adhesive layer.
- Example 1 satisfies Formula (1), and there are few coarse pores in the porous layer (I), so that the thermal conductivity is reduced and the heat insulation is excellent. Furthermore, by having the layer (II), it is possible to suppress the change in porosity and to reduce the heat insulation property even when the adhesive is applied in combination with other members. On the other hand, in Comparative Example 1 having no layer (II) (protective layer), uniform application is difficult at the time of application of the pressure-sensitive adhesive, and there is a concern that the heat insulating property is lowered. In the film having no porous layer (I) and layer (II) (protective layer) of Comparative Example 2, no decrease in thermal conductivity is observed.
- Example 1 the thickness, porosity, air permeability, and pore abundance ratio (N A ) in the state provided with the adhesive layer were 80 ⁇ m in thickness, 57% in porosity, air permeability abundance of 99999 sec / dL, the porous layer hole (N a) was 0/100 [mu] m 2.
- the laminated film of the present invention can be widely used for various products such as precision equipment, home appliances, interiors of various vehicles, housing walls, ceilings, etc., which are greatly affected by temperature changes, and in particular, it can be thinned. Therefore, it can be expected to be used in the interior of various vehicles, where the installation space is limited, and in the field of mobile electronic devices.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Laminated Bodies (AREA)
- Thermal Insulation (AREA)
Abstract
The present invention relates to: a laminated film which includes a porous layer (I) having a propylene-based resin (A) as a main component, a layer (II) formed on at least one surface of the porous layer (I) and having a propylene-based resin (B) as a main component, and a bonding layer or an adhesive layer on the layer (II), and which has an air permeability of 1000 sec/dL or greater and a porosity of 50% or greater; a laminate which is for an image display device and is provided with the laminated film; and an image display device provided with the laminate for an image display device. Although the laminated film is thin, the laminated film has excellent heat insulation and processability.
Description
本出願は、積層フィルム、画像表示装置用積層体及び画像表示装置に関するものである。
The present application relates to a laminated film, a laminate for an image display device, and an image display device.
断熱材は、温度変化が大きな影響を及ぼす精密機器、家電製品、各種車輌の内装、住宅の壁、天井等、様々な製品に広く適用されている。近年、スマートフォン、タブレット端末をはじめとするモバイル電子機器にて、発熱に伴う使用者、及び内部部品への影響が問題となっており、限られた設置スペースにて高い断熱効果を有する断熱材が強く求められている。
従来、断熱材として、ウレタン樹脂をフロンガスで発泡させたウレタンフォーム又は、フロンガスに代わる発泡ガスとして炭化水素を用いた断熱材が使用されているが、これら断熱材は高い断熱性を有する一方で、薄膜化が困難であるため、設置スペースが十分に確保できる用途に使用が限られている。
薄膜化と断熱性を両立する手法として、ガラス繊維を用いたガラスマット(特許文献1)、繊維中にキセロゲル及び/またはエアロゲル粒子を分散させた断熱材(特許文献2、3)、プロピレン系樹脂を延伸することにより多孔化させた断熱材(特許文献4)がある。
このような断熱材は、薄膜化が容易であり、複雑な形状にも追随しやすいため、各種車輌の内装、モバイル電子機器等のような限られたスペースにおいても、使用しやすい。 Thermal insulation materials are widely applied to various products such as precision instruments, home appliances, interiors of various vehicles, residential walls, ceilings, etc., which are greatly affected by temperature changes. In recent years, in mobile electronic devices such as smartphones and tablet terminals, the influence on users and internal components due to heat generation has become a problem, and a heat insulating material having a high heat insulating effect in a limited installation space has become a problem. There is a strong demand.
Conventionally, as a heat insulating material, a urethane foam obtained by foaming urethane resin with Freon gas, or a heat insulating material using hydrocarbons as a foaming gas instead of Freon gas, is used, while these heat insulating materials have high heat insulating properties, Since it is difficult to reduce the thickness of the film, its use is limited to applications that can secure a sufficient installation space.
Glass mats using glass fibers (Patent Document 1), heat insulating materials in which xerogel and / or airgel particles are dispersed in the fibers (Patent Documents 2 and 3), propylene-based resins There is a heat insulating material (Patent Document 4) made porous by stretching.
Such a heat insulating material can be easily made into a thin film and can easily follow a complicated shape. Therefore, it is easy to use even in a limited space such as the interior of various vehicles and mobile electronic devices.
従来、断熱材として、ウレタン樹脂をフロンガスで発泡させたウレタンフォーム又は、フロンガスに代わる発泡ガスとして炭化水素を用いた断熱材が使用されているが、これら断熱材は高い断熱性を有する一方で、薄膜化が困難であるため、設置スペースが十分に確保できる用途に使用が限られている。
薄膜化と断熱性を両立する手法として、ガラス繊維を用いたガラスマット(特許文献1)、繊維中にキセロゲル及び/またはエアロゲル粒子を分散させた断熱材(特許文献2、3)、プロピレン系樹脂を延伸することにより多孔化させた断熱材(特許文献4)がある。
このような断熱材は、薄膜化が容易であり、複雑な形状にも追随しやすいため、各種車輌の内装、モバイル電子機器等のような限られたスペースにおいても、使用しやすい。 Thermal insulation materials are widely applied to various products such as precision instruments, home appliances, interiors of various vehicles, residential walls, ceilings, etc., which are greatly affected by temperature changes. In recent years, in mobile electronic devices such as smartphones and tablet terminals, the influence on users and internal components due to heat generation has become a problem, and a heat insulating material having a high heat insulating effect in a limited installation space has become a problem. There is a strong demand.
Conventionally, as a heat insulating material, a urethane foam obtained by foaming urethane resin with Freon gas, or a heat insulating material using hydrocarbons as a foaming gas instead of Freon gas, is used, while these heat insulating materials have high heat insulating properties, Since it is difficult to reduce the thickness of the film, its use is limited to applications that can secure a sufficient installation space.
Glass mats using glass fibers (Patent Document 1), heat insulating materials in which xerogel and / or airgel particles are dispersed in the fibers (Patent Documents 2 and 3), propylene-based resins There is a heat insulating material (Patent Document 4) made porous by stretching.
Such a heat insulating material can be easily made into a thin film and can easily follow a complicated shape. Therefore, it is easy to use even in a limited space such as the interior of various vehicles and mobile electronic devices.
しかしながら、上記の断熱材を他の電子材料部材と組み合わせて使用する際、断熱シート加工時に溶剤からなる接着剤または粘着剤を塗布した場合、多孔構造内部に接着剤または粘着剤が染込んでしまい、均一な接着性への懸念、並びに多孔構造内の空孔を埋めてしまい、断熱性が低下する虞がある。
However, when using the above heat-insulating material in combination with other electronic material members, if an adhesive or pressure-sensitive adhesive made of a solvent is applied during the heat-insulating sheet processing, the adhesive or pressure-sensitive adhesive penetrates into the porous structure. In addition, there is a concern about uniform adhesiveness, as well as filling pores in the porous structure, which may reduce the heat insulation.
一方、特許文献5には、無多孔層、並びに、プロピレン系樹脂及びエラストマーからなる多孔層より構成される積層断熱シートが開示されている。このシートの表裏層は無多孔層であるので、接着剤または粘着剤が染み込む虞は軽減されると考えられる。しかし、モバイル電子機器のような限られたスペースで使用する際には薄くて高性能な断熱材が求められるが、特許文献5に開示される製造方法により得られる積層断熱シートは、要求される高い断熱性が得られないことが、発明者によって見出された。
On the other hand, Patent Document 5 discloses a laminated heat insulating sheet composed of a non-porous layer and a porous layer made of a propylene-based resin and an elastomer. Since the front and back layers of this sheet are non-porous layers, it is considered that the risk of the adhesive or pressure-sensitive adhesive soaking in is reduced. However, a thin and high-performance heat insulating material is required when used in a limited space such as a mobile electronic device, but a laminated heat insulating sheet obtained by the manufacturing method disclosed in Patent Document 5 is required. It has been found by the inventors that high heat insulation properties cannot be obtained.
本発明は、上記問題を鑑みてなされたものであり、薄膜であっても断熱性に優れ、かつ、加工性に優れた積層フィルム、該積層フィルムを備えた画像表示装置用積層体、及び該画像表示装置用積層体が設けられた画像表示装置を提供することを課題とする。
The present invention has been made in view of the above problems, and is a laminated film excellent in heat insulation and processability even in a thin film, a laminate for an image display device provided with the laminated film, and the It is an object to provide an image display device provided with a laminate for an image display device.
[1] プロピレン系樹脂(A)を主成分とする多孔層(I)と、
前記多孔層(I)の少なくとも片面に、プロピレン系樹脂(B)を主成分とする層(II)と、
前記層(II)の上に接着層又は粘着層と
を有し、
透気度が1000秒/dL以上、かつ、空孔率が50%以上である積層フィルム。
[2]
前記多孔層(I)と前記層(II)とを有する樹脂フィルムの熱伝導率が0.025W/mK未満である[1]に記載の積層フィルム。
[3] 厚みが1μm以上300μm以下である[1]又は[2]に記載の積層フィルム。
[4] 式(1)を満たす[1]~[3]のいずれか1つに記載の積層フィルム。
式(1): NA≦1
〔NAは、前記多孔層(I)の断面における孔面積3μm2以上である孔の存在比(個/100μm2)を表す。〕
[5] 前記多孔層(I)と前記層(II)とを有する樹脂フィルムの空孔率P1(%)と、積層フィルムにおける樹脂フィルムの空孔率P2(%)が下式(2)を満たす[1]~[4]のいずれか1つに記載の積層フィルム。
式(2): P1-P2<3
[6] [1]~[5]のいずれか1つに記載の積層フィルムの少なくとも片面に、
タッチパネル、画像表示パネル、表面保護パネル、位相差フィルム、偏光フィルム、カラーフィルター、及びフレキシブル基板からなる群より選択されるいずれか1種類以上を備えた画像表示装置用積層体。
[7] [6]に記載の画像表示装置用積層体が設けられた画像表示装置。 [1] A porous layer (I) mainly composed of a propylene-based resin (A);
A layer (II) mainly composed of a propylene-based resin (B) on at least one surface of the porous layer (I);
Having an adhesive layer or an adhesive layer on the layer (II);
A laminated film having an air permeability of 1000 seconds / dL or more and a porosity of 50% or more.
[2]
The laminated film according to [1], wherein the resin film having the porous layer (I) and the layer (II) has a thermal conductivity of less than 0.025 W / mK.
[3] The laminated film according to [1] or [2], wherein the thickness is 1 μm or more and 300 μm or less.
[4] The laminated film according to any one of [1] to [3], which satisfies formula (1).
Formula (1): N A ≦ 1
[N A represents the abundance ratio of the porous layer (I) of at open area 3 [mu] m 2 or more in a cross section hole (pieces / 100 [mu] m 2). ]
[5] The porosity P1 (%) of the resin film having the porous layer (I) and the layer (II) and the porosity P2 (%) of the resin film in the laminated film are expressed by the following formula (2). The laminated film according to any one of [1] to [4], which is satisfied.
Formula (2): P1-P2 <3
[6] On at least one side of the laminated film according to any one of [1] to [5],
A laminate for an image display device, comprising at least one selected from the group consisting of a touch panel, an image display panel, a surface protection panel, a retardation film, a polarizing film, a color filter, and a flexible substrate.
[7] An image display device provided with the laminate for an image display device according to [6].
前記多孔層(I)の少なくとも片面に、プロピレン系樹脂(B)を主成分とする層(II)と、
前記層(II)の上に接着層又は粘着層と
を有し、
透気度が1000秒/dL以上、かつ、空孔率が50%以上である積層フィルム。
[2]
前記多孔層(I)と前記層(II)とを有する樹脂フィルムの熱伝導率が0.025W/mK未満である[1]に記載の積層フィルム。
[3] 厚みが1μm以上300μm以下である[1]又は[2]に記載の積層フィルム。
[4] 式(1)を満たす[1]~[3]のいずれか1つに記載の積層フィルム。
式(1): NA≦1
〔NAは、前記多孔層(I)の断面における孔面積3μm2以上である孔の存在比(個/100μm2)を表す。〕
[5] 前記多孔層(I)と前記層(II)とを有する樹脂フィルムの空孔率P1(%)と、積層フィルムにおける樹脂フィルムの空孔率P2(%)が下式(2)を満たす[1]~[4]のいずれか1つに記載の積層フィルム。
式(2): P1-P2<3
[6] [1]~[5]のいずれか1つに記載の積層フィルムの少なくとも片面に、
タッチパネル、画像表示パネル、表面保護パネル、位相差フィルム、偏光フィルム、カラーフィルター、及びフレキシブル基板からなる群より選択されるいずれか1種類以上を備えた画像表示装置用積層体。
[7] [6]に記載の画像表示装置用積層体が設けられた画像表示装置。 [1] A porous layer (I) mainly composed of a propylene-based resin (A);
A layer (II) mainly composed of a propylene-based resin (B) on at least one surface of the porous layer (I);
Having an adhesive layer or an adhesive layer on the layer (II);
A laminated film having an air permeability of 1000 seconds / dL or more and a porosity of 50% or more.
[2]
The laminated film according to [1], wherein the resin film having the porous layer (I) and the layer (II) has a thermal conductivity of less than 0.025 W / mK.
[3] The laminated film according to [1] or [2], wherein the thickness is 1 μm or more and 300 μm or less.
[4] The laminated film according to any one of [1] to [3], which satisfies formula (1).
Formula (1): N A ≦ 1
[N A represents the abundance ratio of the porous layer (I) of at open area 3 [mu] m 2 or more in a cross section hole (pieces / 100 [mu] m 2). ]
[5] The porosity P1 (%) of the resin film having the porous layer (I) and the layer (II) and the porosity P2 (%) of the resin film in the laminated film are expressed by the following formula (2). The laminated film according to any one of [1] to [4], which is satisfied.
Formula (2): P1-P2 <3
[6] On at least one side of the laminated film according to any one of [1] to [5],
A laminate for an image display device, comprising at least one selected from the group consisting of a touch panel, an image display panel, a surface protection panel, a retardation film, a polarizing film, a color filter, and a flexible substrate.
[7] An image display device provided with the laminate for an image display device according to [6].
本発明の積層フィルムは、薄膜であっても十分な断熱性に優れ、加工性に優れる。
詳細には、本発明の積層フィルムは、多孔層(I)を有し、空孔伝熱を低減する。さらに、透気度が1000秒/dL以上、かつフィルムの空孔率が50%以上であるため、材料伝熱を低減し、優れた断熱性を有する。
また、本発明の積層フィルムは層(II)を有するため、層(II)上に接着層又は粘着層を設けるときに、粘着剤又は接着材を塗布した際に、粘着剤又は接着材の染込みを抑制し、内部の多孔構造に由来する空孔が維持され、断熱性の低下を生じない。
さらに、本発明の積層フィルムは、延伸に伴う多孔化により多孔層を形成しているため、ガス等の発泡剤を用いず、環境適合性が高い。また、発泡剤を用いていないため、薄膜化が容易であり、各種車輌の内装、モバイル電子機器等のような限られた設置スペース内にも利用が可能である。 Even if it is a thin film, the laminated | multilayer film of this invention is excellent in sufficient heat insulation, and excellent in workability.
Specifically, the laminated film of the present invention has a porous layer (I) and reduces pore heat transfer. Furthermore, since the air permeability is 1000 seconds / dL or more and the porosity of the film is 50% or more, material heat transfer is reduced and excellent heat insulation is provided.
Moreover, since the laminated film of the present invention has the layer (II), when the adhesive layer or the adhesive layer is provided on the layer (II), the adhesive or adhesive material is dyed when the adhesive or adhesive is applied. The pores derived from the internal porous structure are maintained, and the heat insulating property does not deteriorate.
Furthermore, since the laminated film of the present invention forms a porous layer by making it porous upon stretching, it does not use a foaming agent such as gas and has high environmental compatibility. In addition, since no foaming agent is used, it is easy to make a thin film, and it can be used in limited installation spaces such as interiors of various vehicles and mobile electronic devices.
詳細には、本発明の積層フィルムは、多孔層(I)を有し、空孔伝熱を低減する。さらに、透気度が1000秒/dL以上、かつフィルムの空孔率が50%以上であるため、材料伝熱を低減し、優れた断熱性を有する。
また、本発明の積層フィルムは層(II)を有するため、層(II)上に接着層又は粘着層を設けるときに、粘着剤又は接着材を塗布した際に、粘着剤又は接着材の染込みを抑制し、内部の多孔構造に由来する空孔が維持され、断熱性の低下を生じない。
さらに、本発明の積層フィルムは、延伸に伴う多孔化により多孔層を形成しているため、ガス等の発泡剤を用いず、環境適合性が高い。また、発泡剤を用いていないため、薄膜化が容易であり、各種車輌の内装、モバイル電子機器等のような限られた設置スペース内にも利用が可能である。 Even if it is a thin film, the laminated | multilayer film of this invention is excellent in sufficient heat insulation, and excellent in workability.
Specifically, the laminated film of the present invention has a porous layer (I) and reduces pore heat transfer. Furthermore, since the air permeability is 1000 seconds / dL or more and the porosity of the film is 50% or more, material heat transfer is reduced and excellent heat insulation is provided.
Moreover, since the laminated film of the present invention has the layer (II), when the adhesive layer or the adhesive layer is provided on the layer (II), the adhesive or adhesive material is dyed when the adhesive or adhesive is applied. The pores derived from the internal porous structure are maintained, and the heat insulating property does not deteriorate.
Furthermore, since the laminated film of the present invention forms a porous layer by making it porous upon stretching, it does not use a foaming agent such as gas and has high environmental compatibility. In addition, since no foaming agent is used, it is easy to make a thin film, and it can be used in limited installation spaces such as interiors of various vehicles and mobile electronic devices.
以下、本発明を詳しく説明する。ただし、本発明の内容が以下に説明する実施形態に限定されるものではない。
Hereinafter, the present invention will be described in detail. However, the contents of the present invention are not limited to the embodiments described below.
1.積層フィルム
本発明の実施形態の一例に係る積層フィルム(以下、「本フィルム」と称することがある)は、プロピレン系樹脂(A)を主成分とする多孔層(I)と、多孔層(I)の少なくとも片面に、プロピレン系樹脂(B)を主成分とする層(II)と、前記層(II)の上に接着層又は粘着層とを有し、透気度が1000秒/dL以上、かつ、空孔率が50%以上である積層フィルムである。
なお、以下「接着層又は粘着層」を「層(III)」と称することがある。 1. Laminated film A laminated film according to an embodiment of the present invention (hereinafter sometimes referred to as “the present film”) includes a porous layer (I) mainly composed of a propylene-based resin (A) and a porous layer (I ) At least on one side of the layer (II) mainly composed of the propylene-based resin (B), and an adhesive layer or an adhesive layer on the layer (II), and the air permeability is 1000 seconds / dL or more. And a laminated film having a porosity of 50% or more.
Hereinafter, the “adhesive layer or adhesive layer” may be referred to as “layer (III)”.
本発明の実施形態の一例に係る積層フィルム(以下、「本フィルム」と称することがある)は、プロピレン系樹脂(A)を主成分とする多孔層(I)と、多孔層(I)の少なくとも片面に、プロピレン系樹脂(B)を主成分とする層(II)と、前記層(II)の上に接着層又は粘着層とを有し、透気度が1000秒/dL以上、かつ、空孔率が50%以上である積層フィルムである。
なお、以下「接着層又は粘着層」を「層(III)」と称することがある。 1. Laminated film A laminated film according to an embodiment of the present invention (hereinafter sometimes referred to as “the present film”) includes a porous layer (I) mainly composed of a propylene-based resin (A) and a porous layer (I ) At least on one side of the layer (II) mainly composed of the propylene-based resin (B), and an adhesive layer or an adhesive layer on the layer (II), and the air permeability is 1000 seconds / dL or more. And a laminated film having a porosity of 50% or more.
Hereinafter, the “adhesive layer or adhesive layer” may be referred to as “layer (III)”.
(1)透気度
本フィルムの透気度は、1000秒/dL以上であり、5000秒/dL以上であることが好ましく、10000秒/dL以上であることがより好ましい。
透気度は積層フィルムの厚み方向の空気の通り抜け難さを表し、具体的には100mlの空気が当該積層フィルムを通過するのに必要な秒数で表現されている。そのため、数値が小さい方が通り抜け易く、数値が大きい方が通り抜け難いことを意味する。すなわち、その数値が小さい方が積層フィルムの厚み方向の連通性が良いことを意味し、その数値が大きい方が当該積層フィルムの厚み方向の連通性が悪いことを意味する。連通性とは積層フィルムの厚み方向の孔のつながり度合いである。
積層フィルムの透気度を1000秒/dL以上とすることで、フィルムの厚み方向の空気の連通性が低くなるため、積層フィルムは断熱性に優れる。後に説明する層(II)を有することにより上記の範囲の透気度を有するフィルムとすることが容易となる。積層フィルムが層(II)を有することで、層(II)の上に接着層又は粘着層を形成するために、接着剤又は粘着剤を塗布する際に、多孔層(I)部分への接着剤又は粘着剤の侵入を防ぐことができ、断熱性の低下を抑制することができる。
なお、透気度(秒/100ml)は、JIS P8117に準拠して測定でき、具体的には実施例に記載の方法で測定できる。 (1) Air permeability The air permeability of this film is 1000 seconds / dL or more, preferably 5000 seconds / dL or more, and more preferably 10,000 seconds / dL or more.
The air permeability represents the difficulty in passing through the air in the thickness direction of the laminated film, and is specifically expressed in the number of seconds required for 100 ml of air to pass through the laminated film. Therefore, it means that the smaller the numerical value is, the easier it is to pass through, and the higher numerical value is, the more difficult it is to pass. That is, the smaller the value means that the communication in the thickness direction of the laminated film is better, and the larger the value means that the communication in the thickness direction of the laminated film is worse. Communication is the degree of connection of holes in the thickness direction of the laminated film.
By setting the air permeability of the laminated film to 1000 seconds / dL or more, air communication in the thickness direction of the film is lowered, so that the laminated film is excellent in heat insulation. By having a layer (II) described later, it becomes easy to obtain a film having an air permeability in the above range. When the adhesive film or adhesive is applied to form the adhesive layer or the adhesive layer on the layer (II) because the laminated film has the layer (II), adhesion to the porous layer (I) portion Intrusion of the adhesive or the pressure-sensitive adhesive can be prevented, and a decrease in heat insulation can be suppressed.
The air permeability (seconds / 100 ml) can be measured according to JIS P8117, and specifically can be measured by the method described in the examples.
本フィルムの透気度は、1000秒/dL以上であり、5000秒/dL以上であることが好ましく、10000秒/dL以上であることがより好ましい。
透気度は積層フィルムの厚み方向の空気の通り抜け難さを表し、具体的には100mlの空気が当該積層フィルムを通過するのに必要な秒数で表現されている。そのため、数値が小さい方が通り抜け易く、数値が大きい方が通り抜け難いことを意味する。すなわち、その数値が小さい方が積層フィルムの厚み方向の連通性が良いことを意味し、その数値が大きい方が当該積層フィルムの厚み方向の連通性が悪いことを意味する。連通性とは積層フィルムの厚み方向の孔のつながり度合いである。
積層フィルムの透気度を1000秒/dL以上とすることで、フィルムの厚み方向の空気の連通性が低くなるため、積層フィルムは断熱性に優れる。後に説明する層(II)を有することにより上記の範囲の透気度を有するフィルムとすることが容易となる。積層フィルムが層(II)を有することで、層(II)の上に接着層又は粘着層を形成するために、接着剤又は粘着剤を塗布する際に、多孔層(I)部分への接着剤又は粘着剤の侵入を防ぐことができ、断熱性の低下を抑制することができる。
なお、透気度(秒/100ml)は、JIS P8117に準拠して測定でき、具体的には実施例に記載の方法で測定できる。 (1) Air permeability The air permeability of this film is 1000 seconds / dL or more, preferably 5000 seconds / dL or more, and more preferably 10,000 seconds / dL or more.
The air permeability represents the difficulty in passing through the air in the thickness direction of the laminated film, and is specifically expressed in the number of seconds required for 100 ml of air to pass through the laminated film. Therefore, it means that the smaller the numerical value is, the easier it is to pass through, and the higher numerical value is, the more difficult it is to pass. That is, the smaller the value means that the communication in the thickness direction of the laminated film is better, and the larger the value means that the communication in the thickness direction of the laminated film is worse. Communication is the degree of connection of holes in the thickness direction of the laminated film.
By setting the air permeability of the laminated film to 1000 seconds / dL or more, air communication in the thickness direction of the film is lowered, so that the laminated film is excellent in heat insulation. By having a layer (II) described later, it becomes easy to obtain a film having an air permeability in the above range. When the adhesive film or adhesive is applied to form the adhesive layer or the adhesive layer on the layer (II) because the laminated film has the layer (II), adhesion to the porous layer (I) portion Intrusion of the adhesive or the pressure-sensitive adhesive can be prevented, and a decrease in heat insulation can be suppressed.
The air permeability (seconds / 100 ml) can be measured according to JIS P8117, and specifically can be measured by the method described in the examples.
(2)空孔率
本フィルムの空孔率は多孔構造を規定する為の重要な要素であり、本フィルムにおける多孔層の空間部分の割合を示す数値である。一般に空孔率が高いほど、優れた断熱性を有することが知られており、本フィルムにおいては、本フィルムの空孔率が50%以上であり、好ましくは55%以上、より好ましくは60%以上である。空孔率が50%以上であれば、優れた断熱性を有する積層フィルムとすることができる。
また上限については特に定めないが通常は75%以下である。
空孔率の測定方法は以下のとおりである。
測定試料の実質量W1を測定し、樹脂組成物の密度に基づいて空孔率が0%の場合の質量W0を計算し、これらの値から下記式に基づいて空孔率を算出する。
空孔率(%)={(W0-W1)/W0}×100 (2) Porosity The porosity of the film is an important factor for defining the porous structure, and is a numerical value indicating the ratio of the space portion of the porous layer in the film. In general, it is known that the higher the porosity, the better the heat insulating properties. In this film, the porosity of the film is 50% or more, preferably 55% or more, more preferably 60%. That's it. If the porosity is 50% or more, a laminated film having excellent heat insulation can be obtained.
The upper limit is not particularly defined but is usually 75% or less.
The method for measuring the porosity is as follows.
The substantial amount W1 of the measurement sample is measured, the mass W0 when the porosity is 0% is calculated based on the density of the resin composition, and the porosity is calculated based on the following formula from these values.
Porosity (%) = {(W0−W1) / W0} × 100
本フィルムの空孔率は多孔構造を規定する為の重要な要素であり、本フィルムにおける多孔層の空間部分の割合を示す数値である。一般に空孔率が高いほど、優れた断熱性を有することが知られており、本フィルムにおいては、本フィルムの空孔率が50%以上であり、好ましくは55%以上、より好ましくは60%以上である。空孔率が50%以上であれば、優れた断熱性を有する積層フィルムとすることができる。
また上限については特に定めないが通常は75%以下である。
空孔率の測定方法は以下のとおりである。
測定試料の実質量W1を測定し、樹脂組成物の密度に基づいて空孔率が0%の場合の質量W0を計算し、これらの値から下記式に基づいて空孔率を算出する。
空孔率(%)={(W0-W1)/W0}×100 (2) Porosity The porosity of the film is an important factor for defining the porous structure, and is a numerical value indicating the ratio of the space portion of the porous layer in the film. In general, it is known that the higher the porosity, the better the heat insulating properties. In this film, the porosity of the film is 50% or more, preferably 55% or more, more preferably 60%. That's it. If the porosity is 50% or more, a laminated film having excellent heat insulation can be obtained.
The upper limit is not particularly defined but is usually 75% or less.
The method for measuring the porosity is as follows.
The substantial amount W1 of the measurement sample is measured, the mass W0 when the porosity is 0% is calculated based on the density of the resin composition, and the porosity is calculated based on the following formula from these values.
Porosity (%) = {(W0−W1) / W0} × 100
ここで樹脂組成物の密度は、積層フィルムを融点以上に加熱することでフィルムを融解し空孔を消失させた後、プレスサンプルを作製し、該プレスサンプルの体積と質量を測定することで算出する。
Here, the density of the resin composition is calculated by heating the laminated film to the melting point or higher to melt the film and eliminating the voids, and then producing a press sample and measuring the volume and mass of the press sample. To do.
本フィルムにおいて、接着層又は粘着層を除いた多孔層(I)と層(II)とを有する樹脂フィルム部分の空孔率が50%以上であることが好ましい。好ましくは55%以上、より好ましくは60%以上である。空孔率が50%以上であれば、優れた断熱性を有する積層フィルムとすることができる。
なお、本フィルムにおいて、「樹脂フィルム」とは、多孔層(I)と層(II)とを有し、接着層及び粘着層を有しないフィルムを指し、延伸フィルムであるか、未延伸フィルムであるかは問わない。 In the present film, it is preferable that the porosity of the resin film portion having the porous layer (I) and the layer (II) excluding the adhesive layer or the adhesive layer is 50% or more. Preferably it is 55% or more, more preferably 60% or more. If the porosity is 50% or more, a laminated film having excellent heat insulation can be obtained.
In this film, the “resin film” refers to a film having a porous layer (I) and a layer (II) and not having an adhesive layer and an adhesive layer, and is a stretched film or an unstretched film. It doesn't matter if it exists.
なお、本フィルムにおいて、「樹脂フィルム」とは、多孔層(I)と層(II)とを有し、接着層及び粘着層を有しないフィルムを指し、延伸フィルムであるか、未延伸フィルムであるかは問わない。 In the present film, it is preferable that the porosity of the resin film portion having the porous layer (I) and the layer (II) excluding the adhesive layer or the adhesive layer is 50% or more. Preferably it is 55% or more, more preferably 60% or more. If the porosity is 50% or more, a laminated film having excellent heat insulation can be obtained.
In this film, the “resin film” refers to a film having a porous layer (I) and a layer (II) and not having an adhesive layer and an adhesive layer, and is a stretched film or an unstretched film. It doesn't matter if it exists.
また、接着層又は粘着層の形成前後での空孔率について、多孔層(I)と層(II)とを有する樹脂フィルムの空孔率P1(%)と、積層フィルムにおける樹脂フィルムの空孔率P2(%)が以下式(2)を満たすことが好ましい。
式(2): P1-P2<3
空孔率変化が3%未満であれば、樹脂フィルム内部への接着剤又は粘着剤の染込みが抑制されており、断熱性低下を低減できる。
なお、空孔率P1は、多孔層(I)と層(II)とを有し、層(II)の上に、接着層及び粘着層を有しない樹脂フィルムの空孔率である。また、空孔率P2は、多孔層(I)と層(II)とを有し、層(II)の上に、接着層又は粘着層を有するフィルム、すなわち、積層フィルムの、樹脂フィルム部分の空孔率である。接着層又は粘着層を、例えば、樹脂フィルムの片面に、接着剤又は粘着剤を塗布して形成する場合は、樹脂フィルムの片面に、接着剤又は粘着剤を塗布する前の樹脂フィルムの空孔率が空孔率P1であり、接着剤又は粘着剤を塗布した後の樹脂フィルムの空孔率が空孔率P2である。 Further, regarding the porosity before and after the formation of the adhesive layer or the adhesive layer, the porosity P1 (%) of the resin film having the porous layer (I) and the layer (II), and the porosity of the resin film in the laminated film It is preferable that the rate P2 (%) satisfies the following formula (2).
Formula (2): P1-P2 <3
If the porosity change is less than 3%, the penetration of the adhesive or the pressure-sensitive adhesive into the resin film is suppressed, and a decrease in heat insulation can be reduced.
In addition, the porosity P1 is a porosity of the resin film which has a porous layer (I) and a layer (II) and does not have an adhesive layer and an adhesive layer on the layer (II). The porosity P2 has a porous layer (I) and a layer (II), and a film having an adhesive layer or an adhesive layer on the layer (II), that is, a resin film portion of a laminated film. It is porosity. For example, when the adhesive layer or the pressure-sensitive adhesive layer is formed on one side of the resin film by applying an adhesive or the pressure-sensitive adhesive, the resin film has a hole before the adhesive or the pressure-sensitive adhesive is applied on one side of the resin film. The rate is the porosity P1, and the porosity of the resin film after applying the adhesive or pressure-sensitive adhesive is the porosity P2.
式(2): P1-P2<3
空孔率変化が3%未満であれば、樹脂フィルム内部への接着剤又は粘着剤の染込みが抑制されており、断熱性低下を低減できる。
なお、空孔率P1は、多孔層(I)と層(II)とを有し、層(II)の上に、接着層及び粘着層を有しない樹脂フィルムの空孔率である。また、空孔率P2は、多孔層(I)と層(II)とを有し、層(II)の上に、接着層又は粘着層を有するフィルム、すなわち、積層フィルムの、樹脂フィルム部分の空孔率である。接着層又は粘着層を、例えば、樹脂フィルムの片面に、接着剤又は粘着剤を塗布して形成する場合は、樹脂フィルムの片面に、接着剤又は粘着剤を塗布する前の樹脂フィルムの空孔率が空孔率P1であり、接着剤又は粘着剤を塗布した後の樹脂フィルムの空孔率が空孔率P2である。 Further, regarding the porosity before and after the formation of the adhesive layer or the adhesive layer, the porosity P1 (%) of the resin film having the porous layer (I) and the layer (II), and the porosity of the resin film in the laminated film It is preferable that the rate P2 (%) satisfies the following formula (2).
Formula (2): P1-P2 <3
If the porosity change is less than 3%, the penetration of the adhesive or the pressure-sensitive adhesive into the resin film is suppressed, and a decrease in heat insulation can be reduced.
In addition, the porosity P1 is a porosity of the resin film which has a porous layer (I) and a layer (II) and does not have an adhesive layer and an adhesive layer on the layer (II). The porosity P2 has a porous layer (I) and a layer (II), and a film having an adhesive layer or an adhesive layer on the layer (II), that is, a resin film portion of a laminated film. It is porosity. For example, when the adhesive layer or the pressure-sensitive adhesive layer is formed on one side of the resin film by applying an adhesive or the pressure-sensitive adhesive, the resin film has a hole before the adhesive or the pressure-sensitive adhesive is applied on one side of the resin film. The rate is the porosity P1, and the porosity of the resin film after applying the adhesive or pressure-sensitive adhesive is the porosity P2.
なお、本発明が規定する空孔率P1、P2を得るには、以下の方法がある。
多孔層(I)の少なくとも片面に層(II)を有する樹脂フィルムを製造し、このフィルムについて空孔率P1を算出する。その後、この樹脂フィルムに対し、バーコーター等の塗工機器を使用して接着剤又は粘着剤を塗布し乾燥後、PETフィルムを貼り測定サンプルとする。一方、同様の方法でPETフィルム上に、測定サンプル作成時と同様の方法で接着剤又は粘着剤を塗布し乾燥し比較サンプルとする。比較サンプルと測定サンプルとの質量の差を計算することで、樹脂フィルム部分の実質量W2を算出する。樹脂フィルムを構成する樹脂組成物の密度に基づいて空孔率が0%の場合の質量W0を計算し、これらの値から下記式に基づいて、空孔率P2を算出する。
空孔率(%)={(W0-W2)/W0}×100
ただし、積層フィルムに対し、有機溶剤等を用いて表面の接着層又は粘着層を拭き取り、さらに有機溶剤に浸すことで接着層又は粘着層を取り除き乾燥させて得られる樹脂フィルムについて空孔率P1を算出し、さらにこの樹脂フィルムに対して接着剤又は粘着剤を塗布して得られる積層フィルムに対して、上述したPETフィルムを用いた方法によって、空孔率P2を算出することができる。
本発明においては、いずれの測定方法でも空孔率の変化を測定することができる。 In order to obtain the porosity P1, P2 defined by the present invention, there are the following methods.
A resin film having the layer (II) on at least one surface of the porous layer (I) is produced, and the porosity P1 is calculated for this film. Thereafter, an adhesive or pressure-sensitive adhesive is applied to the resin film using a coating device such as a bar coater and dried, and then a PET film is pasted to obtain a measurement sample. On the other hand, an adhesive or a pressure-sensitive adhesive is applied on a PET film by the same method as in the measurement sample preparation and dried to obtain a comparative sample. The substantial amount W2 of the resin film part is calculated by calculating the difference in mass between the comparative sample and the measurement sample. The mass W0 when the porosity is 0% is calculated based on the density of the resin composition constituting the resin film, and the porosity P2 is calculated based on the following formula from these values.
Porosity (%) = {(W0−W2) / W0} × 100
However, the porosity P1 of the resin film obtained by wiping off the adhesive layer or the adhesive layer on the surface using an organic solvent or the like and further removing the adhesive layer or the adhesive layer by immersing in an organic solvent and drying the laminated film. The porosity P2 can be calculated by the method using the PET film described above for the laminated film obtained by calculating and applying an adhesive or a pressure-sensitive adhesive to the resin film.
In the present invention, the change in porosity can be measured by any measurement method.
多孔層(I)の少なくとも片面に層(II)を有する樹脂フィルムを製造し、このフィルムについて空孔率P1を算出する。その後、この樹脂フィルムに対し、バーコーター等の塗工機器を使用して接着剤又は粘着剤を塗布し乾燥後、PETフィルムを貼り測定サンプルとする。一方、同様の方法でPETフィルム上に、測定サンプル作成時と同様の方法で接着剤又は粘着剤を塗布し乾燥し比較サンプルとする。比較サンプルと測定サンプルとの質量の差を計算することで、樹脂フィルム部分の実質量W2を算出する。樹脂フィルムを構成する樹脂組成物の密度に基づいて空孔率が0%の場合の質量W0を計算し、これらの値から下記式に基づいて、空孔率P2を算出する。
空孔率(%)={(W0-W2)/W0}×100
ただし、積層フィルムに対し、有機溶剤等を用いて表面の接着層又は粘着層を拭き取り、さらに有機溶剤に浸すことで接着層又は粘着層を取り除き乾燥させて得られる樹脂フィルムについて空孔率P1を算出し、さらにこの樹脂フィルムに対して接着剤又は粘着剤を塗布して得られる積層フィルムに対して、上述したPETフィルムを用いた方法によって、空孔率P2を算出することができる。
本発明においては、いずれの測定方法でも空孔率の変化を測定することができる。 In order to obtain the porosity P1, P2 defined by the present invention, there are the following methods.
A resin film having the layer (II) on at least one surface of the porous layer (I) is produced, and the porosity P1 is calculated for this film. Thereafter, an adhesive or pressure-sensitive adhesive is applied to the resin film using a coating device such as a bar coater and dried, and then a PET film is pasted to obtain a measurement sample. On the other hand, an adhesive or a pressure-sensitive adhesive is applied on a PET film by the same method as in the measurement sample preparation and dried to obtain a comparative sample. The substantial amount W2 of the resin film part is calculated by calculating the difference in mass between the comparative sample and the measurement sample. The mass W0 when the porosity is 0% is calculated based on the density of the resin composition constituting the resin film, and the porosity P2 is calculated based on the following formula from these values.
Porosity (%) = {(W0−W2) / W0} × 100
However, the porosity P1 of the resin film obtained by wiping off the adhesive layer or the adhesive layer on the surface using an organic solvent or the like and further removing the adhesive layer or the adhesive layer by immersing in an organic solvent and drying the laminated film. The porosity P2 can be calculated by the method using the PET film described above for the laminated film obtained by calculating and applying an adhesive or a pressure-sensitive adhesive to the resin film.
In the present invention, the change in porosity can be measured by any measurement method.
(3)多孔層(I)の孔の存在比
本フィルムの空孔率は50%以上であり、本フィルムは多数の孔構造を有する。その孔構造の大部分は多孔層に存在するものである。
本フィルムを構成する多孔層(I)は、多孔層(I)の断面における孔面積3μm2以上である孔の存在比(NA、個/100μm2)が式(1)を満たすことが好ましい。
式(1): NA≦1
NAは0.5個/100μm2以下(NA≦0.5)であるのがより好ましく、0.25個/100μm2以下(NA≦0.25)であるのが更に好ましく、0個/100μm2(NA=0)であるのが特に好ましい。
多孔層(I)の断面における孔面積3μm2以上である孔の存在比が1個/100μm2以下であることで、空孔伝熱の悪化を招く粗大な孔径の発生を抑え、本フィルムは優れた断熱性を有することができる。 (3) Pore abundance ratio of porous layer (I) The porosity of this film is 50% or more, and this film has a number of pore structures. Most of the pore structure is present in the porous layer.
Porous layer of the present film (I) is preferably present ratio of the porous layer (I) hole is pore area 3 [mu] m 2 or more in the cross section of the (N A, pieces / 100 [mu] m 2) satisfies the formula (1) .
Formula (1): N A ≦ 1
N A is more preferably 0.5 pieces / 100 μm 2 or less (N A ≦ 0.5), further preferably 0.25 pieces / 100 μm 2 or less (N A ≦ 0.25), and 0 particularly preferably from pieces / 100μm 2 (N a = 0 ).
By abundance ratio of the porous layer (I) of at open area 3 [mu] m 2 or more in the cross section hole is one / 100 [mu] m 2 or less, to suppress the generation of coarse pore size leading to deterioration of holes heat transfer, the film It can have excellent heat insulation.
本フィルムの空孔率は50%以上であり、本フィルムは多数の孔構造を有する。その孔構造の大部分は多孔層に存在するものである。
本フィルムを構成する多孔層(I)は、多孔層(I)の断面における孔面積3μm2以上である孔の存在比(NA、個/100μm2)が式(1)を満たすことが好ましい。
式(1): NA≦1
NAは0.5個/100μm2以下(NA≦0.5)であるのがより好ましく、0.25個/100μm2以下(NA≦0.25)であるのが更に好ましく、0個/100μm2(NA=0)であるのが特に好ましい。
多孔層(I)の断面における孔面積3μm2以上である孔の存在比が1個/100μm2以下であることで、空孔伝熱の悪化を招く粗大な孔径の発生を抑え、本フィルムは優れた断熱性を有することができる。 (3) Pore abundance ratio of porous layer (I) The porosity of this film is 50% or more, and this film has a number of pore structures. Most of the pore structure is present in the porous layer.
Porous layer of the present film (I) is preferably present ratio of the porous layer (I) hole is pore area 3 [mu] m 2 or more in the cross section of the (N A, pieces / 100 [mu] m 2) satisfies the formula (1) .
Formula (1): N A ≦ 1
N A is more preferably 0.5 pieces / 100 μm 2 or less (N A ≦ 0.5), further preferably 0.25 pieces / 100 μm 2 or less (N A ≦ 0.25), and 0 particularly preferably from pieces / 100μm 2 (N a = 0 ).
By abundance ratio of the porous layer (I) of at open area 3 [mu] m 2 or more in the cross section hole is one / 100 [mu] m 2 or less, to suppress the generation of coarse pore size leading to deterioration of holes heat transfer, the film It can have excellent heat insulation.
多孔層(I)の断面における孔面積が3μm2以上である孔の存在比は、以下の方法により測定される。
走査型電子顕微鏡(SEM)(「株式会社日立ハイテクノロジーズ社製 S-4500」)にて、多孔質フィルム断面像から、多孔層(I)と層(II)が形成されていることを目視で確認し、多孔層(I)に関して、Image Metorology社製イメージ解析ソフトウェア「SPIP(バージョン6.6.4)」を用いて画像処理を行う。画像処理方法として、検出方法を閾値とし、検出を孔とし、閾値タイプを固定レベルとし、孔閾値レベルを80Arbitaryとし、フィルターによる孔範囲の規定を行わずに、出力において面積を選択することで、それぞれの孔の面積を計測した後、多孔層(I)の断面における孔面積3μm2以上である孔の存在比を算出する。 The abundance ratio of pores having a pore area of 3 μm 2 or more in the cross section of the porous layer (I) is measured by the following method.
Using a scanning electron microscope (SEM) (“S-4500 manufactured by Hitachi High-Technologies Corporation”), it was visually confirmed that the porous layer (I) and the layer (II) were formed from the cross-sectional image of the porous film. The porous layer (I) is confirmed, and image processing is performed using image analysis software “SPIP (version 6.6.4)” manufactured by Image Metrology. As an image processing method, the detection method is set as a threshold, the detection is set as a hole, the threshold type is set as a fixed level, the hole threshold level is set as 80 Arbitrary, and the area is selected in the output without defining the hole range by a filter. After measuring the area of each hole, the ratio of holes having a hole area of 3 μm 2 or more in the cross section of the porous layer (I) is calculated.
走査型電子顕微鏡(SEM)(「株式会社日立ハイテクノロジーズ社製 S-4500」)にて、多孔質フィルム断面像から、多孔層(I)と層(II)が形成されていることを目視で確認し、多孔層(I)に関して、Image Metorology社製イメージ解析ソフトウェア「SPIP(バージョン6.6.4)」を用いて画像処理を行う。画像処理方法として、検出方法を閾値とし、検出を孔とし、閾値タイプを固定レベルとし、孔閾値レベルを80Arbitaryとし、フィルターによる孔範囲の規定を行わずに、出力において面積を選択することで、それぞれの孔の面積を計測した後、多孔層(I)の断面における孔面積3μm2以上である孔の存在比を算出する。 The abundance ratio of pores having a pore area of 3 μm 2 or more in the cross section of the porous layer (I) is measured by the following method.
Using a scanning electron microscope (SEM) (“S-4500 manufactured by Hitachi High-Technologies Corporation”), it was visually confirmed that the porous layer (I) and the layer (II) were formed from the cross-sectional image of the porous film. The porous layer (I) is confirmed, and image processing is performed using image analysis software “SPIP (version 6.6.4)” manufactured by Image Metrology. As an image processing method, the detection method is set as a threshold, the detection is set as a hole, the threshold type is set as a fixed level, the hole threshold level is set as 80 Arbitrary, and the area is selected in the output without defining the hole range by a filter. After measuring the area of each hole, the ratio of holes having a hole area of 3 μm 2 or more in the cross section of the porous layer (I) is calculated.
(4)厚み
本フィルムの厚みは特に制限されるものではないが、1.1μm以上が好ましく、10μm以上がより好ましく、20μm以上が更に好ましい。一方で上限として、400μm以下が好ましく、300μm以下がより好ましく、200μm以下が特に好ましい。厚みが1.1μm以上、好ましくは10μm以上であれば、多孔層に充分な空気層を有し、断熱性を確保できる。また、厚みが400μm以下であれば、設置場所が狭い限られたスペースに使用する用途に対しても、使用が容易である。 (4) Thickness The thickness of the film is not particularly limited, but is preferably 1.1 μm or more, more preferably 10 μm or more, and further preferably 20 μm or more. On the other hand, the upper limit is preferably 400 μm or less, more preferably 300 μm or less, and particularly preferably 200 μm or less. If thickness is 1.1 micrometers or more, Preferably it is 10 micrometers or more, it has a sufficient air layer in a porous layer, and can ensure heat insulation. Moreover, if thickness is 400 micrometers or less, use is easy also for the use used for the limited space where an installation place is narrow.
本フィルムの厚みは特に制限されるものではないが、1.1μm以上が好ましく、10μm以上がより好ましく、20μm以上が更に好ましい。一方で上限として、400μm以下が好ましく、300μm以下がより好ましく、200μm以下が特に好ましい。厚みが1.1μm以上、好ましくは10μm以上であれば、多孔層に充分な空気層を有し、断熱性を確保できる。また、厚みが400μm以下であれば、設置場所が狭い限られたスペースに使用する用途に対しても、使用が容易である。 (4) Thickness The thickness of the film is not particularly limited, but is preferably 1.1 μm or more, more preferably 10 μm or more, and further preferably 20 μm or more. On the other hand, the upper limit is preferably 400 μm or less, more preferably 300 μm or less, and particularly preferably 200 μm or less. If thickness is 1.1 micrometers or more, Preferably it is 10 micrometers or more, it has a sufficient air layer in a porous layer, and can ensure heat insulation. Moreover, if thickness is 400 micrometers or less, use is easy also for the use used for the limited space where an installation place is narrow.
(5)熱伝導率
熱伝導率は断熱材を規定する為の重要な要素であり、本フィルムにおける断熱性能の指標の一つである。本フィルムにおいては、熱伝導率が0.025(W/mK)未満であることが好ましく、より好ましくは0.023(W/mK)未満、更に好ましくは0.021(W/mK)未満である。熱伝導率が0.025(W/mK)未満であれば、優れた断熱性を有する積層フィルムとなる。
上記の「多孔層の孔の存在比」及び「空孔率」をみたすフィルムであれば、上記の範囲の熱伝導率を有するフィルムとすることが容易となる。
ここで熱伝導率の測定方法は以下のとおりである。
フィルムを10mm角に切り出して厚みをマイクロメータで測定した後、グラファイトスプレーにて黒化処理した後、キセノンフラッシュ法(NETZSCH社製、型式:LFA447 nanoflash)を用いて熱拡散率を評価する。この値を寸法および質量から計算したかさ密度、および、示差走査型熱量計(Perkin Elmer製DSC Pyris1)で測定した比熱との積から熱伝導率を求める。 (5) Thermal conductivity The thermal conductivity is an important factor for defining the heat insulating material, and is one of the indexes of the heat insulating performance in this film. In this film, the thermal conductivity is preferably less than 0.025 (W / mK), more preferably less than 0.023 (W / mK), still more preferably less than 0.021 (W / mK). is there. When the thermal conductivity is less than 0.025 (W / mK), a laminated film having excellent heat insulation is obtained.
If the film satisfies the above “abundance ratio of pores in the porous layer” and the “porosity”, it is easy to obtain a film having a thermal conductivity in the above range.
Here, the measurement method of thermal conductivity is as follows.
The film is cut into 10 mm squares, and the thickness is measured with a micrometer. After blackening with a graphite spray, the thermal diffusivity is evaluated using a xenon flash method (manufactured by NETZSCH, model: LFA447 nanoflash). The thermal conductivity is obtained from the product of the bulk density calculated from this value and the mass and the specific heat measured by a differential scanning calorimeter (DSC Pyris 1 manufactured by Perkin Elmer).
熱伝導率は断熱材を規定する為の重要な要素であり、本フィルムにおける断熱性能の指標の一つである。本フィルムにおいては、熱伝導率が0.025(W/mK)未満であることが好ましく、より好ましくは0.023(W/mK)未満、更に好ましくは0.021(W/mK)未満である。熱伝導率が0.025(W/mK)未満であれば、優れた断熱性を有する積層フィルムとなる。
上記の「多孔層の孔の存在比」及び「空孔率」をみたすフィルムであれば、上記の範囲の熱伝導率を有するフィルムとすることが容易となる。
ここで熱伝導率の測定方法は以下のとおりである。
フィルムを10mm角に切り出して厚みをマイクロメータで測定した後、グラファイトスプレーにて黒化処理した後、キセノンフラッシュ法(NETZSCH社製、型式:LFA447 nanoflash)を用いて熱拡散率を評価する。この値を寸法および質量から計算したかさ密度、および、示差走査型熱量計(Perkin Elmer製DSC Pyris1)で測定した比熱との積から熱伝導率を求める。 (5) Thermal conductivity The thermal conductivity is an important factor for defining the heat insulating material, and is one of the indexes of the heat insulating performance in this film. In this film, the thermal conductivity is preferably less than 0.025 (W / mK), more preferably less than 0.023 (W / mK), still more preferably less than 0.021 (W / mK). is there. When the thermal conductivity is less than 0.025 (W / mK), a laminated film having excellent heat insulation is obtained.
If the film satisfies the above “abundance ratio of pores in the porous layer” and the “porosity”, it is easy to obtain a film having a thermal conductivity in the above range.
Here, the measurement method of thermal conductivity is as follows.
The film is cut into 10 mm squares, and the thickness is measured with a micrometer. After blackening with a graphite spray, the thermal diffusivity is evaluated using a xenon flash method (manufactured by NETZSCH, model: LFA447 nanoflash). The thermal conductivity is obtained from the product of the bulk density calculated from this value and the mass and the specific heat measured by a differential scanning calorimeter (DSC Pyris 1 manufactured by Perkin Elmer).
本発明の積層フィルムは、プロピレン系樹脂(A)を主成分とする多孔層(I)と、多孔層(I)の少なくとも片面に、プロピレン系樹脂(B)を主成分とする層(II)と、層(II)の上に層(III)(接着層又は粘着層)とを有する積層構造である。
層(II)を、多孔層(I)の少なくとも片面に備えることにより、層(II)表面に接着剤または粘着剤を塗布して接着層又は粘着層を形成した際、多孔層(I)の孔構造を塞ぐことがないため断熱性の低下を抑えられるので、加工性に優れた積層フィルムとなる。層(II)は、いわば、多孔層(I)が有する空孔の閉塞を保護する保護層として機能する。 The laminated film of the present invention comprises a porous layer (I) containing propylene resin (A) as a main component and a layer (II) containing propylene resin (B) as a main component on at least one surface of the porous layer (I). And a layered structure having the layer (III) (adhesive layer or adhesive layer) on the layer (II).
When the layer (II) is provided on at least one surface of the porous layer (I), the adhesive layer or the pressure-sensitive adhesive layer is applied to the surface of the layer (II) to form the adhesive layer or the pressure-sensitive adhesive layer. Since the pore structure is not blocked, the heat insulation can be prevented from lowering, so that the laminated film has excellent workability. So to speak, the layer (II) functions as a protective layer for protecting the pores of the porous layer (I) from being blocked.
層(II)を、多孔層(I)の少なくとも片面に備えることにより、層(II)表面に接着剤または粘着剤を塗布して接着層又は粘着層を形成した際、多孔層(I)の孔構造を塞ぐことがないため断熱性の低下を抑えられるので、加工性に優れた積層フィルムとなる。層(II)は、いわば、多孔層(I)が有する空孔の閉塞を保護する保護層として機能する。 The laminated film of the present invention comprises a porous layer (I) containing propylene resin (A) as a main component and a layer (II) containing propylene resin (B) as a main component on at least one surface of the porous layer (I). And a layered structure having the layer (III) (adhesive layer or adhesive layer) on the layer (II).
When the layer (II) is provided on at least one surface of the porous layer (I), the adhesive layer or the pressure-sensitive adhesive layer is applied to the surface of the layer (II) to form the adhesive layer or the pressure-sensitive adhesive layer. Since the pore structure is not blocked, the heat insulation can be prevented from lowering, so that the laminated film has excellent workability. So to speak, the layer (II) functions as a protective layer for protecting the pores of the porous layer (I) from being blocked.
本発明の積層フィルムの層構成は特に制限されるものではなく、プロピレン系樹脂(A)を主成分とする多孔層(I)と、プロピレン系樹脂(B)を主成分とする層(II)と、層(III)(接着層又は粘着層)とを有する3層構成だけでなく、4層、5層、それ以上の多層構成であっても構わない。いずれの層構成であっても、多孔層(I)の少なくとも片面に層(II)を有し、層(II)の上に接着層又は粘着層を有していれば、断熱性に優れ、加工性にも優れた積層フィルムとなる。
特に、(II)/(I)/(II)のように、中間層に多孔層(I)を、多孔層(I)の表裏層に層(II)を配置することで、多孔層(I)を疑似的な独立孔とできるため、多孔層(I)への液体の染込みが生じず、気体の対流を妨げ、優れた断熱性を有する。従って、本発明の積層フィルムは積層断熱フィルムといえる。
本発明の積層フィルムの製造方法は、後述するが、層(II)上に形成する接着層又は粘着層は、多孔層(I)と層(II)とを備える樹脂フィルムを延伸した後、樹脂フィルムの層(II)表面に接着剤または粘着剤を塗布して接着層又は粘着層を形成することが好ましい。 The layer structure of the laminated film of the present invention is not particularly limited, and the porous layer (I) mainly composed of the propylene resin (A) and the layer (II) mainly composed of the propylene resin (B). In addition to the three-layer structure having the layer (III) (adhesive layer or adhesive layer), a multilayer structure of four layers, five layers, or more may be used. In any layer configuration, if it has a layer (II) on at least one side of the porous layer (I), and has an adhesive layer or an adhesive layer on the layer (II), it has excellent heat insulation, It becomes a laminated film excellent in workability.
In particular, as shown in (II) / (I) / (II), the porous layer (I) is arranged in the intermediate layer, and the layer (II) is arranged in the front and back layers of the porous layer (I). ) Can be formed as pseudo independent pores, so that liquid permeation into the porous layer (I) does not occur, gas convection is prevented, and excellent heat insulating properties are obtained. Therefore, it can be said that the laminated film of the present invention is a laminated heat insulating film.
Although the manufacturing method of the laminated film of the present invention will be described later, the adhesive layer or the pressure-sensitive adhesive layer formed on the layer (II) is a resin after stretching a resin film including the porous layer (I) and the layer (II). It is preferable to form an adhesive layer or an adhesive layer by applying an adhesive or an adhesive to the surface of the layer (II) of the film.
特に、(II)/(I)/(II)のように、中間層に多孔層(I)を、多孔層(I)の表裏層に層(II)を配置することで、多孔層(I)を疑似的な独立孔とできるため、多孔層(I)への液体の染込みが生じず、気体の対流を妨げ、優れた断熱性を有する。従って、本発明の積層フィルムは積層断熱フィルムといえる。
本発明の積層フィルムの製造方法は、後述するが、層(II)上に形成する接着層又は粘着層は、多孔層(I)と層(II)とを備える樹脂フィルムを延伸した後、樹脂フィルムの層(II)表面に接着剤または粘着剤を塗布して接着層又は粘着層を形成することが好ましい。 The layer structure of the laminated film of the present invention is not particularly limited, and the porous layer (I) mainly composed of the propylene resin (A) and the layer (II) mainly composed of the propylene resin (B). In addition to the three-layer structure having the layer (III) (adhesive layer or adhesive layer), a multilayer structure of four layers, five layers, or more may be used. In any layer configuration, if it has a layer (II) on at least one side of the porous layer (I), and has an adhesive layer or an adhesive layer on the layer (II), it has excellent heat insulation, It becomes a laminated film excellent in workability.
In particular, as shown in (II) / (I) / (II), the porous layer (I) is arranged in the intermediate layer, and the layer (II) is arranged in the front and back layers of the porous layer (I). ) Can be formed as pseudo independent pores, so that liquid permeation into the porous layer (I) does not occur, gas convection is prevented, and excellent heat insulating properties are obtained. Therefore, it can be said that the laminated film of the present invention is a laminated heat insulating film.
Although the manufacturing method of the laminated film of the present invention will be described later, the adhesive layer or the pressure-sensitive adhesive layer formed on the layer (II) is a resin after stretching a resin film including the porous layer (I) and the layer (II). It is preferable to form an adhesive layer or an adhesive layer by applying an adhesive or an adhesive to the surface of the layer (II) of the film.
本発明の積層フィルムの、それぞれの層の厚みの割合(積層比)については特に、制限されるものではない。
本発明の積層フィルムにおける多孔層(I)と層(II)との厚み比は、用途、目的に応じて適宜調整することができる。層(III)(接着層又は粘着層)の層厚については後述する。
本発明の効果を得る観点からは、多孔層(I)と層(II)との厚み比[(I):(II)]は、好ましくは、1:1~1:0.025、より好ましくは、1:0.5~1:0.05である。多孔層(I)と層(II)との厚み比が上記範囲にある場合、断熱性と機械特性とのバランスが良好であり、断熱フィルムとしての使用に特に適する。なお、多孔層(I)が2層以上ある場合、「多孔層(I)の厚み」とは、複数の多孔層(I)の合計の厚みをいう。層(II)についても同じである。
積層フィルムにおける多孔層(I)と層(II)の厚みおよび厚み比の調整は、延伸前の無孔膜状物の厚み、延伸条件などを調整することにより制御できる。
その総厚みに対する多孔層(I)の積層比は、50%以上97%以下が好ましく、また、55%以上96%以下がより好ましく、60%以上95%以下がさらに好ましい。積層フィルム中の多孔層(I)層の厚みは、5~290μmであるのが好ましく、10μm~280μmであるのがより好ましい。多孔層(I)の厚み割合、及び、フィルム中の厚みがこの範囲であれば、本フィルムは優れた断熱性を有することができる。
また、その総厚みに対する層(II)の積層比は、3%以上50%以下が好ましく、4%以上45%以下がより好ましく、5%以上40%以下がさらに好ましい。積層フィルム中の層(II)の厚みは、1~100μmであるのが好ましく、2~95μmであるのがより好ましい。層(II)の厚み割合、及び、フィルム中の厚みがこの範囲内であれば、層(II)上に粘着剤又は接着材を塗布した際に、粘着剤又は接着材の染込みを抑制し、内部の多孔構造に由来する空孔が維持され、断熱性の低下を生じない。
ここで、多孔層(I)及び層(II)が複数配される場合は、各層の合計厚みを用いて算出する。 The ratio of the thickness of each layer (laminate ratio) of the laminated film of the present invention is not particularly limited.
The thickness ratio between the porous layer (I) and the layer (II) in the laminated film of the present invention can be appropriately adjusted according to the application and purpose. The layer thickness of the layer (III) (adhesive layer or adhesive layer) will be described later.
From the viewpoint of obtaining the effect of the present invention, the thickness ratio [(I) :( II)] between the porous layer (I) and the layer (II) is preferably 1: 1 to 1: 0.025, more preferably. Is from 1: 0.5 to 1: 0.05. When the thickness ratio between the porous layer (I) and the layer (II) is in the above range, the balance between the heat insulating properties and the mechanical properties is good, and it is particularly suitable for use as a heat insulating film. In addition, when there are two or more porous layers (I), the “thickness of the porous layer (I)” refers to the total thickness of the plurality of porous layers (I). The same applies to layer (II).
Adjustment of the thickness and thickness ratio of the porous layer (I) and the layer (II) in the laminated film can be controlled by adjusting the thickness of the nonporous film-like material before stretching, stretching conditions, and the like.
The lamination ratio of the porous layer (I) with respect to the total thickness is preferably 50% or more and 97% or less, more preferably 55% or more and 96% or less, and further preferably 60% or more and 95% or less. The thickness of the porous layer (I) layer in the laminated film is preferably 5 to 290 μm, more preferably 10 μm to 280 μm. If the thickness ratio of the porous layer (I) and the thickness in the film are within this range, the film can have excellent heat insulation properties.
Further, the lamination ratio of the layer (II) with respect to the total thickness is preferably 3% or more and 50% or less, more preferably 4% or more and 45% or less, and further preferably 5% or more and 40% or less. The thickness of the layer (II) in the laminated film is preferably 1 to 100 μm, and more preferably 2 to 95 μm. If the thickness ratio of the layer (II) and the thickness in the film are within this range, when the adhesive or adhesive is applied onto the layer (II), the penetration of the adhesive or adhesive is suppressed. The pores derived from the internal porous structure are maintained, and the heat insulating property does not deteriorate.
Here, when a plurality of porous layers (I) and (II) are arranged, the total thickness of each layer is used for calculation.
本発明の積層フィルムにおける多孔層(I)と層(II)との厚み比は、用途、目的に応じて適宜調整することができる。層(III)(接着層又は粘着層)の層厚については後述する。
本発明の効果を得る観点からは、多孔層(I)と層(II)との厚み比[(I):(II)]は、好ましくは、1:1~1:0.025、より好ましくは、1:0.5~1:0.05である。多孔層(I)と層(II)との厚み比が上記範囲にある場合、断熱性と機械特性とのバランスが良好であり、断熱フィルムとしての使用に特に適する。なお、多孔層(I)が2層以上ある場合、「多孔層(I)の厚み」とは、複数の多孔層(I)の合計の厚みをいう。層(II)についても同じである。
積層フィルムにおける多孔層(I)と層(II)の厚みおよび厚み比の調整は、延伸前の無孔膜状物の厚み、延伸条件などを調整することにより制御できる。
その総厚みに対する多孔層(I)の積層比は、50%以上97%以下が好ましく、また、55%以上96%以下がより好ましく、60%以上95%以下がさらに好ましい。積層フィルム中の多孔層(I)層の厚みは、5~290μmであるのが好ましく、10μm~280μmであるのがより好ましい。多孔層(I)の厚み割合、及び、フィルム中の厚みがこの範囲であれば、本フィルムは優れた断熱性を有することができる。
また、その総厚みに対する層(II)の積層比は、3%以上50%以下が好ましく、4%以上45%以下がより好ましく、5%以上40%以下がさらに好ましい。積層フィルム中の層(II)の厚みは、1~100μmであるのが好ましく、2~95μmであるのがより好ましい。層(II)の厚み割合、及び、フィルム中の厚みがこの範囲内であれば、層(II)上に粘着剤又は接着材を塗布した際に、粘着剤又は接着材の染込みを抑制し、内部の多孔構造に由来する空孔が維持され、断熱性の低下を生じない。
ここで、多孔層(I)及び層(II)が複数配される場合は、各層の合計厚みを用いて算出する。 The ratio of the thickness of each layer (laminate ratio) of the laminated film of the present invention is not particularly limited.
The thickness ratio between the porous layer (I) and the layer (II) in the laminated film of the present invention can be appropriately adjusted according to the application and purpose. The layer thickness of the layer (III) (adhesive layer or adhesive layer) will be described later.
From the viewpoint of obtaining the effect of the present invention, the thickness ratio [(I) :( II)] between the porous layer (I) and the layer (II) is preferably 1: 1 to 1: 0.025, more preferably. Is from 1: 0.5 to 1: 0.05. When the thickness ratio between the porous layer (I) and the layer (II) is in the above range, the balance between the heat insulating properties and the mechanical properties is good, and it is particularly suitable for use as a heat insulating film. In addition, when there are two or more porous layers (I), the “thickness of the porous layer (I)” refers to the total thickness of the plurality of porous layers (I). The same applies to layer (II).
Adjustment of the thickness and thickness ratio of the porous layer (I) and the layer (II) in the laminated film can be controlled by adjusting the thickness of the nonporous film-like material before stretching, stretching conditions, and the like.
The lamination ratio of the porous layer (I) with respect to the total thickness is preferably 50% or more and 97% or less, more preferably 55% or more and 96% or less, and further preferably 60% or more and 95% or less. The thickness of the porous layer (I) layer in the laminated film is preferably 5 to 290 μm, more preferably 10 μm to 280 μm. If the thickness ratio of the porous layer (I) and the thickness in the film are within this range, the film can have excellent heat insulation properties.
Further, the lamination ratio of the layer (II) with respect to the total thickness is preferably 3% or more and 50% or less, more preferably 4% or more and 45% or less, and further preferably 5% or more and 40% or less. The thickness of the layer (II) in the laminated film is preferably 1 to 100 μm, and more preferably 2 to 95 μm. If the thickness ratio of the layer (II) and the thickness in the film are within this range, when the adhesive or adhesive is applied onto the layer (II), the penetration of the adhesive or adhesive is suppressed. The pores derived from the internal porous structure are maintained, and the heat insulating property does not deteriorate.
Here, when a plurality of porous layers (I) and (II) are arranged, the total thickness of each layer is used for calculation.
本フィルムは上記構成を備えていればよく、他の層をさらに備えていてもよい。
The film only needs to have the above-described configuration, and may further include other layers.
以下、本フィルムを構成する多孔層(I)、層(II)を有する樹脂フィルムについて説明する。
Hereinafter, the resin film having the porous layer (I) and the layer (II) constituting the film will be described.
2.樹脂フィルム
本発明の実施形態の一例に係る積層フィルムを構成する樹脂フィルムは、プロピレン系樹脂(A)を主成分とする多孔層(I)と、多孔層(I)の少なくとも片面に、プロピレン系樹脂(B)を主成分とする層(II)とを有する樹脂フィルムである。 2. Resin film A resin film constituting a laminated film according to an example of the embodiment of the present invention includes a porous layer (I) containing a propylene-based resin (A) as a main component and at least one surface of the porous layer (I) with a propylene-based resin. It is a resin film which has layer (II) which has resin (B) as a main component.
本発明の実施形態の一例に係る積層フィルムを構成する樹脂フィルムは、プロピレン系樹脂(A)を主成分とする多孔層(I)と、多孔層(I)の少なくとも片面に、プロピレン系樹脂(B)を主成分とする層(II)とを有する樹脂フィルムである。 2. Resin film A resin film constituting a laminated film according to an example of the embodiment of the present invention includes a porous layer (I) containing a propylene-based resin (A) as a main component and at least one surface of the porous layer (I) with a propylene-based resin. It is a resin film which has layer (II) which has resin (B) as a main component.
(1)透気度
樹脂フィルムの透気度は、1000秒/dL以上であり、5000秒/dL以上であることが好ましく、10000秒/dL以上であることがより好ましい。
樹脂フィルムの透気度を1000秒/dL以上とすることで、フィルムの厚み方向の空気の連通性が低くなるため、樹脂フィルムは断熱性に優れる。層(II)を有することにより上記の範囲の透気度を有するフィルムとすることが容易となる。積層フィルムが層(II)を有することで、層(II)の上に接着層又は粘着層を形成しても、接着剤又は粘着剤を塗布する際に、多孔層(I)部分への接着剤又は粘着剤の侵入を防ぐことができ、断熱性の低下を抑制することができる。
なお、透気度(秒/100ml)は、JIS P8117に準拠して測定でき、具体的には実施例に記載の方法で測定できる。 (1) Air permeability The air permeability of the resin film is 1000 seconds / dL or more, preferably 5000 seconds / dL or more, and more preferably 10,000 seconds / dL or more.
By setting the air permeability of the resin film to 1000 seconds / dL or more, air communication in the thickness direction of the film is reduced, and thus the resin film is excellent in heat insulation. By having the layer (II), it becomes easy to obtain a film having an air permeability in the above range. Even if an adhesive layer or an adhesive layer is formed on the layer (II) because the laminated film has the layer (II), the adhesive to the porous layer (I) is applied when the adhesive or adhesive is applied. Intrusion of the adhesive or the pressure-sensitive adhesive can be prevented, and a decrease in heat insulation can be suppressed.
The air permeability (seconds / 100 ml) can be measured according to JIS P8117, and specifically can be measured by the method described in the examples.
樹脂フィルムの透気度は、1000秒/dL以上であり、5000秒/dL以上であることが好ましく、10000秒/dL以上であることがより好ましい。
樹脂フィルムの透気度を1000秒/dL以上とすることで、フィルムの厚み方向の空気の連通性が低くなるため、樹脂フィルムは断熱性に優れる。層(II)を有することにより上記の範囲の透気度を有するフィルムとすることが容易となる。積層フィルムが層(II)を有することで、層(II)の上に接着層又は粘着層を形成しても、接着剤又は粘着剤を塗布する際に、多孔層(I)部分への接着剤又は粘着剤の侵入を防ぐことができ、断熱性の低下を抑制することができる。
なお、透気度(秒/100ml)は、JIS P8117に準拠して測定でき、具体的には実施例に記載の方法で測定できる。 (1) Air permeability The air permeability of the resin film is 1000 seconds / dL or more, preferably 5000 seconds / dL or more, and more preferably 10,000 seconds / dL or more.
By setting the air permeability of the resin film to 1000 seconds / dL or more, air communication in the thickness direction of the film is reduced, and thus the resin film is excellent in heat insulation. By having the layer (II), it becomes easy to obtain a film having an air permeability in the above range. Even if an adhesive layer or an adhesive layer is formed on the layer (II) because the laminated film has the layer (II), the adhesive to the porous layer (I) is applied when the adhesive or adhesive is applied. Intrusion of the adhesive or the pressure-sensitive adhesive can be prevented, and a decrease in heat insulation can be suppressed.
The air permeability (seconds / 100 ml) can be measured according to JIS P8117, and specifically can be measured by the method described in the examples.
(2)空孔率
樹脂フィルムの空孔率は多孔構造を規定する為の重要な要素であり、本フィルムにおける多孔層の空間部分の割合を示す数値である。一般に空孔率が高いほど、優れた断熱性を有することが知られており、樹脂フィルムにおいては、樹脂フィルムの空孔率が50%以上であり、好ましくは55%以上、より好ましくは60%以上である。空孔率が50%以上であれば、優れた断熱性を有する樹脂フィルムとすることができる。
また上限については特に定めないが通常は75%以下である。
樹脂フィルムの空孔率の測定方法は以下のとおりである。
測定試料の実質量W1を測定し、樹脂組成物の密度に基づいて空孔率が0%の場合の質量W0を計算し、これらの値から下記式に基づいて空孔率を算出する。
空孔率(%)={(W0-W1)/W0}×100 (2) Porosity The porosity of the resin film is an important factor for defining the porous structure, and is a numerical value indicating the ratio of the space portion of the porous layer in the film. In general, it is known that the higher the porosity, the better the heat insulating property. In the resin film, the porosity of the resin film is 50% or more, preferably 55% or more, more preferably 60%. That's it. If the porosity is 50% or more, a resin film having excellent heat insulation can be obtained.
The upper limit is not particularly defined but is usually 75% or less.
The method for measuring the porosity of the resin film is as follows.
The substantial amount W1 of the measurement sample is measured, the mass W0 when the porosity is 0% is calculated based on the density of the resin composition, and the porosity is calculated based on the following formula from these values.
Porosity (%) = {(W0−W1) / W0} × 100
樹脂フィルムの空孔率は多孔構造を規定する為の重要な要素であり、本フィルムにおける多孔層の空間部分の割合を示す数値である。一般に空孔率が高いほど、優れた断熱性を有することが知られており、樹脂フィルムにおいては、樹脂フィルムの空孔率が50%以上であり、好ましくは55%以上、より好ましくは60%以上である。空孔率が50%以上であれば、優れた断熱性を有する樹脂フィルムとすることができる。
また上限については特に定めないが通常は75%以下である。
樹脂フィルムの空孔率の測定方法は以下のとおりである。
測定試料の実質量W1を測定し、樹脂組成物の密度に基づいて空孔率が0%の場合の質量W0を計算し、これらの値から下記式に基づいて空孔率を算出する。
空孔率(%)={(W0-W1)/W0}×100 (2) Porosity The porosity of the resin film is an important factor for defining the porous structure, and is a numerical value indicating the ratio of the space portion of the porous layer in the film. In general, it is known that the higher the porosity, the better the heat insulating property. In the resin film, the porosity of the resin film is 50% or more, preferably 55% or more, more preferably 60%. That's it. If the porosity is 50% or more, a resin film having excellent heat insulation can be obtained.
The upper limit is not particularly defined but is usually 75% or less.
The method for measuring the porosity of the resin film is as follows.
The substantial amount W1 of the measurement sample is measured, the mass W0 when the porosity is 0% is calculated based on the density of the resin composition, and the porosity is calculated based on the following formula from these values.
Porosity (%) = {(W0−W1) / W0} × 100
上記積層フィルムを用いて、樹脂フィルムの空孔率を求めるためには、積層フィルムの表面の接着剤又は粘着層を、有機溶剤等を用いて拭き取り、積層フィルムを有機溶剤で浸す等によって接着剤又は粘着層を完全に取り除いた後、乾燥して得られる樹脂フィルムについて空孔率を算出することによって、空孔率を算出することができる。
In order to obtain the porosity of the resin film using the above laminated film, the adhesive or adhesive layer on the surface of the laminated film is wiped off with an organic solvent, etc., and the laminated film is immersed in an organic solvent, etc. Alternatively, the porosity can be calculated by calculating the porosity of the resin film obtained by completely removing the adhesive layer and then drying.
(3)多孔層(I)の孔の存在比
樹脂フィルムの空孔率は50%以上であり、樹脂フィルムは多数の孔構造を有する。その孔構造の大部分は多孔層に存在するものである。
樹脂フィルムフィルムを構成する多孔層(I)は、多孔層(I)の断面における孔面積3μm2以上である孔の存在比(NA、個/100μm2)が式(1)を満たすことが好ましい。
式(1): NA≦1
NAは0.5個/100μm2以下(NA≦0.5)であるのがより好ましく、0.25個/100μm2以下(NA≦0.25)であるのが更に好ましく、0個/100μm2(NA=0)であるのが特に好ましい。
多孔層(I)の断面における孔面積3μm2以上である孔の存在比が1個/100μm2以下であることで、空孔伝熱の悪化を招く粗大な孔径の発生を抑え、樹脂フィルムは優れた断熱性を有することができる。 (3) Pore abundance ratio of porous layer (I) The porosity of the resin film is 50% or more, and the resin film has a large number of pore structures. Most of the pore structure is present in the porous layer.
Porous layer constituting the resin film Film (I), the porous layer (I) abundance ratio of the open area 3 [mu] m 2 or more at a hole in the cross section of the (N A, pieces / 100 [mu] m 2) is able to satisfy the equation (1) preferable.
Formula (1): N A ≦ 1
N A is more preferably 0.5 pieces / 100 μm 2 or less (N A ≦ 0.5), further preferably 0.25 pieces / 100 μm 2 or less (N A ≦ 0.25), and 0 particularly preferably from pieces / 100μm 2 (N a = 0 ).
The presence ratio of pores having a pore area of 3 μm 2 or more in the cross section of the porous layer (I) is 1 piece / 100 μm 2 or less, thereby suppressing generation of a coarse pore diameter that causes deterioration of pore heat transfer, It can have excellent heat insulation.
樹脂フィルムの空孔率は50%以上であり、樹脂フィルムは多数の孔構造を有する。その孔構造の大部分は多孔層に存在するものである。
樹脂フィルムフィルムを構成する多孔層(I)は、多孔層(I)の断面における孔面積3μm2以上である孔の存在比(NA、個/100μm2)が式(1)を満たすことが好ましい。
式(1): NA≦1
NAは0.5個/100μm2以下(NA≦0.5)であるのがより好ましく、0.25個/100μm2以下(NA≦0.25)であるのが更に好ましく、0個/100μm2(NA=0)であるのが特に好ましい。
多孔層(I)の断面における孔面積3μm2以上である孔の存在比が1個/100μm2以下であることで、空孔伝熱の悪化を招く粗大な孔径の発生を抑え、樹脂フィルムは優れた断熱性を有することができる。 (3) Pore abundance ratio of porous layer (I) The porosity of the resin film is 50% or more, and the resin film has a large number of pore structures. Most of the pore structure is present in the porous layer.
Porous layer constituting the resin film Film (I), the porous layer (I) abundance ratio of the open area 3 [mu] m 2 or more at a hole in the cross section of the (N A, pieces / 100 [mu] m 2) is able to satisfy the equation (1) preferable.
Formula (1): N A ≦ 1
N A is more preferably 0.5 pieces / 100 μm 2 or less (N A ≦ 0.5), further preferably 0.25 pieces / 100 μm 2 or less (N A ≦ 0.25), and 0 particularly preferably from pieces / 100μm 2 (N a = 0 ).
The presence ratio of pores having a pore area of 3 μm 2 or more in the cross section of the porous layer (I) is 1 piece / 100 μm 2 or less, thereby suppressing generation of a coarse pore diameter that causes deterioration of pore heat transfer, It can have excellent heat insulation.
多孔層(I)の断面における孔面積が3μm2以上である孔の存在比は、以下の方法により測定される。
走査型電子顕微鏡(SEM)(「株式会社日立ハイテクノロジーズ社製 S-4500」)にて、多孔質フィルム断面像から、多孔層(I)と層(II)が形成されていることを目視で確認し、多孔層(I)に関して、Image Metorology社製イメージ解析ソフトウェア「SPIP(バージョン6.6.4)」を用いて画像処理を行う。画像処理方法として、検出方法を閾値とし、検出を孔とし、閾値タイプを固定レベルとし、孔閾値レベルを80Arbitaryとし、フィルターによる孔範囲の規定を行わずに、出力において面積を選択することで、それぞれの孔の面積を計測した後、多孔層(I)の断面における孔面積3μm2以上である孔の存在比を算出する。 The abundance ratio of pores having a pore area of 3 μm 2 or more in the cross section of the porous layer (I) is measured by the following method.
Using a scanning electron microscope (SEM) (“S-4500 manufactured by Hitachi High-Technologies Corporation”), it was visually confirmed that the porous layer (I) and the layer (II) were formed from the cross-sectional image of the porous film. The porous layer (I) is confirmed, and image processing is performed using image analysis software “SPIP (version 6.6.4)” manufactured by Image Metrology. As an image processing method, the detection method is set as a threshold, the detection is set as a hole, the threshold type is set as a fixed level, the hole threshold level is set as 80 Arbitrary, and the area is selected in the output without defining the hole range by a filter. After measuring the area of each hole, the ratio of holes having a hole area of 3 μm 2 or more in the cross section of the porous layer (I) is calculated.
走査型電子顕微鏡(SEM)(「株式会社日立ハイテクノロジーズ社製 S-4500」)にて、多孔質フィルム断面像から、多孔層(I)と層(II)が形成されていることを目視で確認し、多孔層(I)に関して、Image Metorology社製イメージ解析ソフトウェア「SPIP(バージョン6.6.4)」を用いて画像処理を行う。画像処理方法として、検出方法を閾値とし、検出を孔とし、閾値タイプを固定レベルとし、孔閾値レベルを80Arbitaryとし、フィルターによる孔範囲の規定を行わずに、出力において面積を選択することで、それぞれの孔の面積を計測した後、多孔層(I)の断面における孔面積3μm2以上である孔の存在比を算出する。 The abundance ratio of pores having a pore area of 3 μm 2 or more in the cross section of the porous layer (I) is measured by the following method.
Using a scanning electron microscope (SEM) (“S-4500 manufactured by Hitachi High-Technologies Corporation”), it was visually confirmed that the porous layer (I) and the layer (II) were formed from the cross-sectional image of the porous film. The porous layer (I) is confirmed, and image processing is performed using image analysis software “SPIP (version 6.6.4)” manufactured by Image Metrology. As an image processing method, the detection method is set as a threshold, the detection is set as a hole, the threshold type is set as a fixed level, the hole threshold level is set as 80 Arbitrary, and the area is selected in the output without defining the hole range by a filter. After measuring the area of each hole, the ratio of holes having a hole area of 3 μm 2 or more in the cross section of the porous layer (I) is calculated.
(4)厚み
樹脂フィルムの厚みは特に制限されるものではないが、1μm以上が好ましく、10μm以上がより好ましく、20μm以上が更に好ましい。一方で上限として、300μm以下が好ましく、200μm以下がより好ましく、150μm以下が特に好ましい。厚みが1μm以上、好ましくは10μm以上であれば、多孔層に充分な空気層を有し、断熱性を確保できる。また、厚みが300μm以下であれば、設置場所が狭い限られたスペースに使用する用途に対しても、使用が容易である。 (4) Thickness The thickness of the resin film is not particularly limited, but is preferably 1 μm or more, more preferably 10 μm or more, and further preferably 20 μm or more. On the other hand, the upper limit is preferably 300 μm or less, more preferably 200 μm or less, and particularly preferably 150 μm or less. If thickness is 1 micrometer or more, Preferably it is 10 micrometers or more, it has a sufficient air layer in a porous layer, and can ensure heat insulation. Further, if the thickness is 300 μm or less, it can be used easily for applications that are used in a limited space where the installation place is narrow.
樹脂フィルムの厚みは特に制限されるものではないが、1μm以上が好ましく、10μm以上がより好ましく、20μm以上が更に好ましい。一方で上限として、300μm以下が好ましく、200μm以下がより好ましく、150μm以下が特に好ましい。厚みが1μm以上、好ましくは10μm以上であれば、多孔層に充分な空気層を有し、断熱性を確保できる。また、厚みが300μm以下であれば、設置場所が狭い限られたスペースに使用する用途に対しても、使用が容易である。 (4) Thickness The thickness of the resin film is not particularly limited, but is preferably 1 μm or more, more preferably 10 μm or more, and further preferably 20 μm or more. On the other hand, the upper limit is preferably 300 μm or less, more preferably 200 μm or less, and particularly preferably 150 μm or less. If thickness is 1 micrometer or more, Preferably it is 10 micrometers or more, it has a sufficient air layer in a porous layer, and can ensure heat insulation. Further, if the thickness is 300 μm or less, it can be used easily for applications that are used in a limited space where the installation place is narrow.
(5)熱伝導率
熱伝導率は断熱材を規定する為の重要な要素であり、樹脂フィルムにおける断熱性能の指標の一つである。樹脂フィルムにおいては、熱伝導率が0.025(W/mK)未満であることが好ましく、より好ましくは0.023(W/mK)未満、更に好ましくは0.021(W/mK)未満である。熱伝導率が0.025(W/mK)未満であれば、優れた断熱性を有する樹脂フィルムとなる。
上記の「多孔層の孔の存在比」及び「空孔率」をみたすフィルムであれば、上記の範囲の熱伝導率を有するフィルムとすることが容易となる。
ここで熱伝導率の測定方法は以下のとおりである。
フィルムを10mm角に切り出して厚みをマイクロメータで測定した後、グラファイトスプレーにて黒化処理した後、キセノンフラッシュ法(NETZSCH社製、型式:LFA447 nanoflash)を用いて熱拡散率を評価する。この値を寸法および質量から計算したかさ密度、および、示差走査型熱量計(Perkin Elmer製DSC Pyris1)で測定した比熱との積から熱伝導率を求める。 (5) Thermal conductivity
Thermal conductivity is an important factor for defining a heat insulating material, and is one of the indexes of heat insulating performance in a resin film. In the resin film, the thermal conductivity is preferably less than 0.025 (W / mK), more preferably less than 0.023 (W / mK), still more preferably less than 0.021 (W / mK). is there. When the thermal conductivity is less than 0.025 (W / mK), the resin film has excellent heat insulation.
If the film satisfies the above “abundance ratio of pores in the porous layer” and the “porosity”, it is easy to obtain a film having a thermal conductivity in the above range.
Here, the measurement method of thermal conductivity is as follows.
The film is cut into 10 mm squares, and the thickness is measured with a micrometer. After blackening with a graphite spray, the thermal diffusivity is evaluated using a xenon flash method (manufactured by NETZSCH, model: LFA447 nanoflash). The thermal conductivity is obtained from the product of the bulk density calculated from this value and the mass and the specific heat measured by a differential scanning calorimeter (DSC Pyris 1 manufactured by Perkin Elmer).
熱伝導率は断熱材を規定する為の重要な要素であり、樹脂フィルムにおける断熱性能の指標の一つである。樹脂フィルムにおいては、熱伝導率が0.025(W/mK)未満であることが好ましく、より好ましくは0.023(W/mK)未満、更に好ましくは0.021(W/mK)未満である。熱伝導率が0.025(W/mK)未満であれば、優れた断熱性を有する樹脂フィルムとなる。
上記の「多孔層の孔の存在比」及び「空孔率」をみたすフィルムであれば、上記の範囲の熱伝導率を有するフィルムとすることが容易となる。
ここで熱伝導率の測定方法は以下のとおりである。
フィルムを10mm角に切り出して厚みをマイクロメータで測定した後、グラファイトスプレーにて黒化処理した後、キセノンフラッシュ法(NETZSCH社製、型式:LFA447 nanoflash)を用いて熱拡散率を評価する。この値を寸法および質量から計算したかさ密度、および、示差走査型熱量計(Perkin Elmer製DSC Pyris1)で測定した比熱との積から熱伝導率を求める。 (5) Thermal conductivity
Thermal conductivity is an important factor for defining a heat insulating material, and is one of the indexes of heat insulating performance in a resin film. In the resin film, the thermal conductivity is preferably less than 0.025 (W / mK), more preferably less than 0.023 (W / mK), still more preferably less than 0.021 (W / mK). is there. When the thermal conductivity is less than 0.025 (W / mK), the resin film has excellent heat insulation.
If the film satisfies the above “abundance ratio of pores in the porous layer” and the “porosity”, it is easy to obtain a film having a thermal conductivity in the above range.
Here, the measurement method of thermal conductivity is as follows.
The film is cut into 10 mm squares, and the thickness is measured with a micrometer. After blackening with a graphite spray, the thermal diffusivity is evaluated using a xenon flash method (manufactured by NETZSCH, model: LFA447 nanoflash). The thermal conductivity is obtained from the product of the bulk density calculated from this value and the mass and the specific heat measured by a differential scanning calorimeter (DSC Pyris 1 manufactured by Perkin Elmer).
上記積層フィルムを用いて、樹脂フィルムの熱伝導率を求めるためには、積層フィルムの表面の接着剤又は粘着層を、有機溶剤等を用いて拭き取り、積層フィルムを有機溶剤で浸す等によって接着剤又は粘着層を完全に取り除いた後、乾燥して得られる樹脂フィルムについて樹脂フィルムの熱伝導率を算出することによって、空孔率を算出することができる。
In order to obtain the thermal conductivity of the resin film using the above laminated film, the adhesive or adhesive layer on the surface of the laminated film is wiped off with an organic solvent or the like, and the laminated film is immersed in the organic solvent, etc. Alternatively, the porosity can be calculated by calculating the thermal conductivity of the resin film for the resin film obtained by completely removing the adhesive layer and then drying.
本発明の樹脂フィルムは、プロピレン系樹脂(A)を主成分とする多孔層(I)と、多孔層(I)の少なくとも片面に、プロピレン系樹脂(B)を主成分とする層(II)とを有する積層構造である。
層(II)を、多孔層(I)の少なくとも片面に備えることにより、層(II)表面に接着剤または粘着剤を塗布して接着層又は粘着層を形成した際、多孔層(I)の孔構造を塞ぐことがないため断熱性の低下を抑えられるので、加工性に優れた樹脂フィルムとなる。層(II)は、いわば、多孔層(I)が有する空孔の閉塞を保護する保護層として機能する。 The resin film of the present invention includes a porous layer (I) mainly composed of a propylene-based resin (A), and a layer (II) mainly composed of a propylene-based resin (B) on at least one surface of the porous layer (I). Is a laminated structure.
When the layer (II) is provided on at least one surface of the porous layer (I), the adhesive layer or the pressure-sensitive adhesive layer is applied to the surface of the layer (II) to form the adhesive layer or the pressure-sensitive adhesive layer. Since it does not block the pore structure, a decrease in heat insulation can be suppressed, so that the resin film has excellent processability. So to speak, the layer (II) functions as a protective layer for protecting the pores of the porous layer (I) from being blocked.
層(II)を、多孔層(I)の少なくとも片面に備えることにより、層(II)表面に接着剤または粘着剤を塗布して接着層又は粘着層を形成した際、多孔層(I)の孔構造を塞ぐことがないため断熱性の低下を抑えられるので、加工性に優れた樹脂フィルムとなる。層(II)は、いわば、多孔層(I)が有する空孔の閉塞を保護する保護層として機能する。 The resin film of the present invention includes a porous layer (I) mainly composed of a propylene-based resin (A), and a layer (II) mainly composed of a propylene-based resin (B) on at least one surface of the porous layer (I). Is a laminated structure.
When the layer (II) is provided on at least one surface of the porous layer (I), the adhesive layer or the pressure-sensitive adhesive layer is applied to the surface of the layer (II) to form the adhesive layer or the pressure-sensitive adhesive layer. Since it does not block the pore structure, a decrease in heat insulation can be suppressed, so that the resin film has excellent processability. So to speak, the layer (II) functions as a protective layer for protecting the pores of the porous layer (I) from being blocked.
本発明の樹脂フィルムの層構成は特に制限されるものではなく、プロピレン系樹脂(A)を主成分とする多孔層(I)と、プロピレン系樹脂(B)を主成分とする層(II)と、層を有する2層構成だけでなく、3層、4層、5層、それ以上の多層構成であっても構わない。いずれの層構成であっても、多孔層(I)の少なくとも片面に層(II)を有していれば、断熱性に優れ、加工性にも優れた樹脂フィルムとなる。
特に、(II)/(I)/(II)のように、中間層に多孔層(I)を、多孔層(I)の表裏層に層(II)を配置することで、多孔層(I)を疑似的な独立孔とできるため、多孔層(I)への液体の染込みが生じず、気体の対流を妨げる優れた断熱性を有する。
本発明の樹脂フィルムの製造方法は、後述するが、多孔層(I)と層(II)とを備えるフィルムを延伸することが好ましい。 The layer structure of the resin film of the present invention is not particularly limited, and the porous layer (I) mainly composed of the propylene-based resin (A) and the layer (II) mainly composed of the propylene-based resin (B). In addition to a two-layer structure having layers, a multi-layer structure of three layers, four layers, five layers, or more may be used. In any layer configuration, if the porous layer (I) has the layer (II) on at least one side, the resin film is excellent in heat insulation and processability.
In particular, as shown in (II) / (I) / (II), the porous layer (I) is arranged in the intermediate layer, and the layer (II) is arranged in the front and back layers of the porous layer (I). ) Can be formed as pseudo independent pores, so that liquid permeation into the porous layer (I) does not occur, and excellent heat insulation is provided to prevent gas convection.
Although the manufacturing method of the resin film of this invention is mentioned later, it is preferable to extend | stretch the film provided with porous layer (I) and layer (II).
特に、(II)/(I)/(II)のように、中間層に多孔層(I)を、多孔層(I)の表裏層に層(II)を配置することで、多孔層(I)を疑似的な独立孔とできるため、多孔層(I)への液体の染込みが生じず、気体の対流を妨げる優れた断熱性を有する。
本発明の樹脂フィルムの製造方法は、後述するが、多孔層(I)と層(II)とを備えるフィルムを延伸することが好ましい。 The layer structure of the resin film of the present invention is not particularly limited, and the porous layer (I) mainly composed of the propylene-based resin (A) and the layer (II) mainly composed of the propylene-based resin (B). In addition to a two-layer structure having layers, a multi-layer structure of three layers, four layers, five layers, or more may be used. In any layer configuration, if the porous layer (I) has the layer (II) on at least one side, the resin film is excellent in heat insulation and processability.
In particular, as shown in (II) / (I) / (II), the porous layer (I) is arranged in the intermediate layer, and the layer (II) is arranged in the front and back layers of the porous layer (I). ) Can be formed as pseudo independent pores, so that liquid permeation into the porous layer (I) does not occur, and excellent heat insulation is provided to prevent gas convection.
Although the manufacturing method of the resin film of this invention is mentioned later, it is preferable to extend | stretch the film provided with porous layer (I) and layer (II).
本発明の樹脂フィルムの、それぞれの層の厚みの割合(積層比)については特に、制限されるものではない。
本発明の樹脂フィルムにおける多孔層(I)と層(II)との厚み比は、用途、目的に応じて適宜調整することができる。
本発明の効果を得る観点からは、多孔層(I)と層(II)との厚み比[(I):(II)]は、好ましくは、1:1~1:0.025、より好ましくは、1:0.5~1:0.05である。多孔層(I)と層(II)との厚み比が上記範囲にある場合、断熱性と機械特性とのバランスが良好であり、断熱フィルムとしての使用に特に適する。なお、多孔層(I)が2層以上ある場合、「多孔層(I)の厚み」とは、複数の多孔層(I)の合計の厚みをいう。層(II)についても同じである。
樹脂フィルムにおける多孔層(I)と層(II)の厚みおよび厚み比の調整は、延伸前の無孔膜状物の厚み、延伸条件などを調整することにより制御できる。
その総厚みに対する多孔層(I)の積層比は、50%以上97%以下が好ましく、また、55%以上96%以下がより好ましく、60%以上95%以下がさらに好ましい。樹脂フィルム中の多孔層(I)層の厚みは、5~290μmであるのが好ましく、10μm~280μmであるのがより好ましい。多孔層(I)の厚み割合、及び、フィルム中の厚みがこの範囲であれば、樹脂フィルムは優れた断熱性を有することができる。
また、その総厚みに対する層(II)の積層比は、3%以上50%以下が好ましく、4%以上45%以下がより好ましく、5%以上40%以下がさらに好ましい。樹脂フィルム中の層(II)の厚みは、1~100μmであるのが好ましく、2~95μmであるのがより好ましい。層(II)の厚み割合、及び、フィルム中の厚みがこの範囲内であれば、層(II)上に粘着剤又は接着材を塗布した際に、粘着剤又は接着材の染込みを抑制し、内部の多孔構造に由来する空孔が維持され、断熱性の低下を生じない。
ここで、多孔層(I)及び層(II)が複数配される場合は、各層の合計厚みを用いて算出する。 The ratio of the thickness of each layer (lamination ratio) of the resin film of the present invention is not particularly limited.
The thickness ratio between the porous layer (I) and the layer (II) in the resin film of the present invention can be appropriately adjusted according to the application and purpose.
From the viewpoint of obtaining the effect of the present invention, the thickness ratio [(I) :( II)] between the porous layer (I) and the layer (II) is preferably 1: 1 to 1: 0.025, more preferably. Is from 1: 0.5 to 1: 0.05. When the thickness ratio between the porous layer (I) and the layer (II) is in the above range, the balance between the heat insulating properties and the mechanical properties is good, and it is particularly suitable for use as a heat insulating film. In addition, when there are two or more porous layers (I), the “thickness of the porous layer (I)” refers to the total thickness of the plurality of porous layers (I). The same applies to layer (II).
Adjustment of the thickness and thickness ratio of the porous layer (I) and the layer (II) in the resin film can be controlled by adjusting the thickness of the nonporous film-like material before stretching, stretching conditions, and the like.
The lamination ratio of the porous layer (I) with respect to the total thickness is preferably 50% or more and 97% or less, more preferably 55% or more and 96% or less, and further preferably 60% or more and 95% or less. The thickness of the porous layer (I) layer in the resin film is preferably 5 to 290 μm, more preferably 10 μm to 280 μm. When the thickness ratio of the porous layer (I) and the thickness in the film are within this range, the resin film can have excellent heat insulation properties.
Further, the lamination ratio of the layer (II) with respect to the total thickness is preferably 3% or more and 50% or less, more preferably 4% or more and 45% or less, and further preferably 5% or more and 40% or less. The thickness of the layer (II) in the resin film is preferably 1 to 100 μm, and more preferably 2 to 95 μm. If the thickness ratio of the layer (II) and the thickness in the film are within this range, when the adhesive or adhesive is applied onto the layer (II), the penetration of the adhesive or adhesive is suppressed. The pores derived from the internal porous structure are maintained, and the heat insulating property does not deteriorate.
Here, when a plurality of porous layers (I) and (II) are arranged, the total thickness of each layer is used for calculation.
本発明の樹脂フィルムにおける多孔層(I)と層(II)との厚み比は、用途、目的に応じて適宜調整することができる。
本発明の効果を得る観点からは、多孔層(I)と層(II)との厚み比[(I):(II)]は、好ましくは、1:1~1:0.025、より好ましくは、1:0.5~1:0.05である。多孔層(I)と層(II)との厚み比が上記範囲にある場合、断熱性と機械特性とのバランスが良好であり、断熱フィルムとしての使用に特に適する。なお、多孔層(I)が2層以上ある場合、「多孔層(I)の厚み」とは、複数の多孔層(I)の合計の厚みをいう。層(II)についても同じである。
樹脂フィルムにおける多孔層(I)と層(II)の厚みおよび厚み比の調整は、延伸前の無孔膜状物の厚み、延伸条件などを調整することにより制御できる。
その総厚みに対する多孔層(I)の積層比は、50%以上97%以下が好ましく、また、55%以上96%以下がより好ましく、60%以上95%以下がさらに好ましい。樹脂フィルム中の多孔層(I)層の厚みは、5~290μmであるのが好ましく、10μm~280μmであるのがより好ましい。多孔層(I)の厚み割合、及び、フィルム中の厚みがこの範囲であれば、樹脂フィルムは優れた断熱性を有することができる。
また、その総厚みに対する層(II)の積層比は、3%以上50%以下が好ましく、4%以上45%以下がより好ましく、5%以上40%以下がさらに好ましい。樹脂フィルム中の層(II)の厚みは、1~100μmであるのが好ましく、2~95μmであるのがより好ましい。層(II)の厚み割合、及び、フィルム中の厚みがこの範囲内であれば、層(II)上に粘着剤又は接着材を塗布した際に、粘着剤又は接着材の染込みを抑制し、内部の多孔構造に由来する空孔が維持され、断熱性の低下を生じない。
ここで、多孔層(I)及び層(II)が複数配される場合は、各層の合計厚みを用いて算出する。 The ratio of the thickness of each layer (lamination ratio) of the resin film of the present invention is not particularly limited.
The thickness ratio between the porous layer (I) and the layer (II) in the resin film of the present invention can be appropriately adjusted according to the application and purpose.
From the viewpoint of obtaining the effect of the present invention, the thickness ratio [(I) :( II)] between the porous layer (I) and the layer (II) is preferably 1: 1 to 1: 0.025, more preferably. Is from 1: 0.5 to 1: 0.05. When the thickness ratio between the porous layer (I) and the layer (II) is in the above range, the balance between the heat insulating properties and the mechanical properties is good, and it is particularly suitable for use as a heat insulating film. In addition, when there are two or more porous layers (I), the “thickness of the porous layer (I)” refers to the total thickness of the plurality of porous layers (I). The same applies to layer (II).
Adjustment of the thickness and thickness ratio of the porous layer (I) and the layer (II) in the resin film can be controlled by adjusting the thickness of the nonporous film-like material before stretching, stretching conditions, and the like.
The lamination ratio of the porous layer (I) with respect to the total thickness is preferably 50% or more and 97% or less, more preferably 55% or more and 96% or less, and further preferably 60% or more and 95% or less. The thickness of the porous layer (I) layer in the resin film is preferably 5 to 290 μm, more preferably 10 μm to 280 μm. When the thickness ratio of the porous layer (I) and the thickness in the film are within this range, the resin film can have excellent heat insulation properties.
Further, the lamination ratio of the layer (II) with respect to the total thickness is preferably 3% or more and 50% or less, more preferably 4% or more and 45% or less, and further preferably 5% or more and 40% or less. The thickness of the layer (II) in the resin film is preferably 1 to 100 μm, and more preferably 2 to 95 μm. If the thickness ratio of the layer (II) and the thickness in the film are within this range, when the adhesive or adhesive is applied onto the layer (II), the penetration of the adhesive or adhesive is suppressed. The pores derived from the internal porous structure are maintained, and the heat insulating property does not deteriorate.
Here, when a plurality of porous layers (I) and (II) are arranged, the total thickness of each layer is used for calculation.
以下、本発明の積層フィルムを構成する多孔層(I)、層(II)(保護層)及び層(III)(接着層又は粘着層)について説明する。その後、製造方法としての本フィルムの成形方法について説明する。
Hereinafter, the porous layer (I), layer (II) (protective layer) and layer (III) (adhesive layer or adhesive layer) constituting the laminated film of the present invention will be described. Then, the formation method of this film as a manufacturing method is demonstrated.
以下に、積層フィルムを構成する各成分について説明する。
Hereinafter, each component constituting the laminated film will be described.
3.多孔層(I)
本発明の積層フィルムを構成する多孔層(I)は、プロピレン系樹脂(A)を含む。
以下、多孔層を構成するそれぞれの成分について説明する。 3. Porous layer (I)
The porous layer (I) constituting the laminated film of the present invention contains a propylene-based resin (A).
Hereinafter, each component which comprises a porous layer is demonstrated.
本発明の積層フィルムを構成する多孔層(I)は、プロピレン系樹脂(A)を含む。
以下、多孔層を構成するそれぞれの成分について説明する。 3. Porous layer (I)
The porous layer (I) constituting the laminated film of the present invention contains a propylene-based resin (A).
Hereinafter, each component which comprises a porous layer is demonstrated.
3-1.プロピレン系樹脂(A)
本発明におけるプロピレン系樹脂(A)としては、ホモポリプロピレン(プロピレン単独重合体)、またはプロピレンとエチレン、1-ブテン、1-ペンテン、1-ヘキセン、1-ヘプテン、1-オクテン、1-ノネンもしくは1-デセンなどのα-オレフィンとのランダム共重合体またはブロック共重合体などが挙げられる。この中でも、機械的強度の観点からホモポリプロピレンがより好適に使用される。 3-1. Propylene resin (A)
As the propylene-based resin (A) in the present invention, homopolypropylene (propylene homopolymer), or propylene and ethylene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 1-nonene or Examples thereof include a random copolymer or a block copolymer with an α-olefin such as 1-decene. Among these, homopolypropylene is more preferably used from the viewpoint of mechanical strength.
本発明におけるプロピレン系樹脂(A)としては、ホモポリプロピレン(プロピレン単独重合体)、またはプロピレンとエチレン、1-ブテン、1-ペンテン、1-ヘキセン、1-ヘプテン、1-オクテン、1-ノネンもしくは1-デセンなどのα-オレフィンとのランダム共重合体またはブロック共重合体などが挙げられる。この中でも、機械的強度の観点からホモポリプロピレンがより好適に使用される。 3-1. Propylene resin (A)
As the propylene-based resin (A) in the present invention, homopolypropylene (propylene homopolymer), or propylene and ethylene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 1-nonene or Examples thereof include a random copolymer or a block copolymer with an α-olefin such as 1-decene. Among these, homopolypropylene is more preferably used from the viewpoint of mechanical strength.
また、プロピレン系樹脂(A)は、立体規則性を示すアイソタクチックペンタッド分率が80~99%であることが好ましく、より好ましくは83~98%、さらに好ましくは85~97%である。アイソタクチックペンタッド分率が80%以上であれば、機械的強度が良好である。一方、アイソタクチックペンタッド分率の上限については現時点において工業的に得られる上限値で規定しているが、将来的に工業レベルでさらに規則性の高い樹脂が開発された場合においてはこの限りではない。アイソタクチックペンタッド分率とは、任意の連続する5つのプロピレン単位で構成される炭素-炭素結合による主鎖に対して側鎖である5つのメチル基がいずれも同方向に位置する立体構造あるいはその割合を意味する。メチル基領域のシグナルの帰属は、A.Zambelli et al.(Macromol.8,687(1975))に準拠する。
The propylene resin (A) preferably has a stereotactic regular isotactic pentad fraction of 80 to 99%, more preferably 83 to 98%, and still more preferably 85 to 97%. . If the isotactic pentad fraction is 80% or more, the mechanical strength is good. On the other hand, the upper limit of the isotactic pentad fraction is defined by the upper limit that can be obtained industrially at the present time, but this is not the case when a more regular resin is developed at the industrial level in the future. is not. The isotactic pentad fraction is a three-dimensional structure in which all five methyl groups as side chains are located in the same direction with respect to the main chain of carbon-carbon bonds composed of arbitrary five propylene units. Or the ratio is meant. Signal assignment of the methyl group region is as follows. Zambelli et al. (Macromol. 8, 687 (1975)).
また、プロピレン系樹脂(A)は、分子量分布を示すパラメータであるMw/Mnが1.5~10.0であることが好ましい。より好ましくは2.0~8.0、さらに好ましくは2.0~6.0である。Mw/Mnが小さいほど分子量分布が狭いことを意味するが、Mw/Mnを1.5以上とすることで、十分な押出成形性が得られ、工業的に大量生産が可能である。一方、Mw/Mnを10.0以下とすることで、十分な機械的強度を確保することができる。Mw/MnはGPC(ゲルパーエミッションクロマトグラフィー)法によって測定される。
The propylene-based resin (A) preferably has a Mw / Mn, which is a parameter indicating a molecular weight distribution, of 1.5 to 10.0. More preferably, it is 2.0 to 8.0, and still more preferably 2.0 to 6.0. This means that the smaller the Mw / Mn, the narrower the molecular weight distribution. By setting the Mw / Mn to 1.5 or more, sufficient extrudability can be obtained, and industrial mass production is possible. On the other hand, by setting Mw / Mn to 10.0 or less, sufficient mechanical strength can be ensured. Mw / Mn is measured by a GPC (gel per emission chromatography) method.
また、プロピレン系樹脂(A)のメルトフローレート(MFR)は特に制限されるものではないが、通常、MFRは0.5~15g/10分であることが好ましく、1.0~10g/10分であることがより好ましい。MFRを0.5g/10分以上とすることで、成形加工時において十分な溶融粘度を有し、高い生産性を確保することができる。一方、MFRを15g/10分以下とすることで、十分な強度を確保することができる。なお、MFRはJIS K7210-1(2014年)に準拠して温度230℃、荷重2.16kgの条件で測定される。
Further, the melt flow rate (MFR) of the propylene-based resin (A) is not particularly limited, but usually the MFR is preferably 0.5 to 15 g / 10 minutes, and preferably 1.0 to 10 g / 10. More preferably, it is minutes. By setting the MFR to 0.5 g / 10 min or more, it has a sufficient melt viscosity at the time of molding and can ensure high productivity. On the other hand, by setting the MFR to 15 g / 10 min or less, sufficient strength can be ensured. The MFR is measured under the conditions of a temperature of 230 ° C. and a load of 2.16 kg according to JIS K7210-1 (2014).
なお、プロピレン系樹脂(A)の製造方法は特に限定されるものではなく、公知の重合用触媒を用いた公知の重合方法、例えばチーグラー・ナッタ型触媒に代表されるマルチサイト触媒、メタロセン系触媒等に代表されるシングルサイト触媒を用いた重合方法等が挙げられる。
In addition, the manufacturing method of propylene-type resin (A) is not specifically limited, The well-known polymerization method using the well-known polymerization catalyst, for example, the multisite catalyst represented by the Ziegler-Natta type | mold catalyst, a metallocene catalyst Examples thereof include a polymerization method using a single site catalyst typified by the above.
プロピレン系樹脂(A)としては、例えば、商品名「ノバテックPP」「WINTEC」(日本ポリプロ社製)、「バーシファイ」「ノティオ」「タフマーXR」(三井化学社製)、「ゼラス」「サーモラン」(三菱ケミカル社製)、「住友ノーブレン」「タフセレン」(住友化学社製)、「プライムポリプロ」「プライム TPO」(プライムポリマー社製)、「Adflex」「Adsyl」「HMS-PP(PF814)」(サンアロマー社製)、「インスパイア」(ダウケミカル)など市販されている商品を使用できる。
Examples of the propylene-based resin (A) include, for example, trade names “Novatech PP” “WINTEC” (manufactured by Nippon Polypro), “Versify” “Notio” “Toughmer XR” (manufactured by Mitsui Chemicals), “Zeras”, “Thermo Run”. (Mitsubishi Chemical Co., Ltd.), “Sumitomo Noblen” “Tough Selenium” (manufactured by Sumitomo Chemical Co., Ltd.), “Prime Polypro” “Prime TPO” (manufactured by Prime Polymer Co., Ltd.), “Adflex” “Adsyl” “HMS-PP (PF814)” Commercially available products such as “Sun Aroma” and “Inspire” (Dow Chemical) can be used.
多孔層(I)は、例えば、結晶形態の一つであるβ晶を多く含むプロピレン系樹脂(A)を主成分とする樹脂組成物からなる無孔膜状物を延伸することで得られる。β晶を利用した多孔構造形成は、延伸過程においてプロピレン系樹脂中のβ晶が、α晶に転移する過程で多孔化が生じるため、多孔構造は緻密であり、従来公知である無機フィラー、非相溶性有機物等の添加による多孔化と比較し、粒径、分散径に依存しないことから、多孔構造の調製に有利である。
The porous layer (I) can be obtained, for example, by stretching a nonporous film-like material made of a resin composition containing as a main component a propylene-based resin (A) containing a large amount of β crystals, which is one of crystal forms. In the formation of a porous structure using β crystals, since the β crystals in the propylene-based resin are converted into α crystals during the stretching process, the porous structure is dense and the conventionally known inorganic filler, non- Compared to pore formation by adding a compatible organic substance or the like, it is advantageous for the preparation of a porous structure because it does not depend on the particle diameter and dispersion diameter.
前記多孔層(I)のβ晶活性は、延伸前の無孔膜状物においてプロピレン系樹脂がβ晶を生成していたことを示す一指標と捉えることができる。延伸前の無孔膜状物中のプロピレン系樹脂がβ晶を生成していれば、その後延伸を施すことで微細かつ均一な孔が多く形成されるため、機械特性に優れ、微細かつ均一な孔形成により優れた断熱性を得ることができる。
The β crystal activity of the porous layer (I) can be regarded as an index indicating that the propylene-based resin was generating β crystals in the non-porous film-like material before stretching. If the propylene-based resin in the non-porous film-like material before stretching produces β-crystals, many fine and uniform pores are formed by subsequent stretching, so it has excellent mechanical properties and is fine and uniform. Excellent heat insulation can be obtained by forming the holes.
前記多孔層(I)のβ晶活性の有無は、示差走査型熱量計を用いて、多孔層(I)の示差熱分析を行い、プロピレン系樹脂のβ晶に由来する結晶融解ピーク温度が検出されるか否かで判断される。具体的には、示差走査型熱量計で積層フィルムを25℃から240℃まで加熱速度10℃/分で昇温後1分間保持し、次に240℃から25℃まで冷却速度10℃/分で降温後1分間保持し、さらに25℃から240℃まで加熱速度10℃/分で再昇温させた際に、再昇温時にプロピレン系樹脂のβ晶に由来する結晶融解ピーク温度(Tmβ)が検出された場合、β晶活性を有すると判断される。
The presence or absence of β crystal activity in the porous layer (I) is determined by performing differential thermal analysis of the porous layer (I) using a differential scanning calorimeter and detecting the crystal melting peak temperature derived from the β crystal of the propylene resin. It is judged by whether or not it is done. Specifically, the laminated film is heated from 25 ° C. to 240 ° C. at a heating rate of 10 ° C./min for 1 minute, and then cooled from 240 ° C. to 25 ° C. at a cooling rate of 10 ° C./min. When the temperature is lowered for 1 minute and then heated again from 25 ° C. to 240 ° C. at a heating rate of 10 ° C./min, the crystal melting peak temperature (Tmβ) derived from the β crystal of the propylene resin at the time of reheating is If detected, it is determined to have β crystal activity.
前記β晶活性の有無は、特定の熱処理を施した積層フィルムのX線回折測定により得られる回折プロファイルでも判断することができる。詳細には、プロピレン系樹脂の結晶融解ピーク温度を超える温度である170~190℃の熱処理を施し、徐冷してβ晶を生成し、成長させた積層フィルムの多孔層(I)についてX線回折測定を行い、プロピレン系樹脂のβ晶の(300)面に由来する回折ピークが2θ=16.0°~16.5°の範囲に検出された場合、β晶活性があると判断される。プロピレン系樹脂のβ晶構造とX線回折測定に関する詳細は、Macromol.Chem.187,643-652(1986)、Prog.Polym.Sci.Vol.16,361-404(1991)、Macromol.Symp.89,499-511(1995)、Macromol.Chem.75,134(1964)、及びこれらの文献中に挙げられた参考文献を参照することができる。
The presence or absence of the β crystal activity can also be determined by a diffraction profile obtained by X-ray diffraction measurement of a laminated film subjected to a specific heat treatment. Specifically, the heat treatment at 170 to 190 ° C., which exceeds the crystal melting peak temperature of the propylene-based resin, is performed, slowly cooled to form β crystals, and the grown porous film (I) of the laminated film is subjected to X-ray When diffraction measurement is performed and a diffraction peak derived from the (300) plane of the β crystal of the propylene-based resin is detected in the range of 2θ = 16.0 ° to 16.5 °, it is determined that there is β crystal activity. . For details on the β crystal structure and X-ray diffraction measurement of the propylene resin, see Macromol. Chem. 187, 643-652 (1986), Prog. Polym. Sci. Vol. 16, 361-404 (1991), Macromol. Symp. 89, 499-511 (1995), Macromol. Chem. 75, 134 (1964), and references cited therein.
前述した多孔層(I)のβ晶活性を得る方法としては、前記多孔層(I)を構成する樹脂組成物中にプロピレン系樹脂のα晶の生成を促進させる物質を添加しない方法、特許第3739481号公報に記載されているように過酸化ラジカルを発生させる処理を施したプロピレン系樹脂を添加する方法、及び前記多孔層(I)を構成する樹脂組成物中にβ晶核剤を添加する方法などが挙げられる。中でも、前記多孔層(I)を構成する樹脂組成物にβ晶核剤を添加してβ晶活性を得ることが特に好ましい。β晶核剤を添加することで、より均質に効率的にプロピレン系樹脂のβ晶の生成を促進させることができ、β晶活性を有する多孔層(I)を備えた積層フィルムを得ることができる。
As a method for obtaining the β crystal activity of the porous layer (I) described above, a method in which a substance that promotes the formation of α crystal of the propylene resin is not added to the resin composition constituting the porous layer (I), Patent No. A method of adding a propylene-based resin that has been treated to generate peroxide radicals as described in Japanese Patent No. 3739481, and a β-crystal nucleating agent is added to the resin composition constituting the porous layer (I) The method etc. are mentioned. Among them, it is particularly preferable to obtain a β crystal activity by adding a β crystal nucleating agent to the resin composition constituting the porous layer (I). By adding a β crystal nucleating agent, the production of β crystals of a propylene resin can be promoted more uniformly and efficiently, and a laminated film having a porous layer (I) having β crystal activity can be obtained. it can.
多孔層(I)はプロピレン系樹脂(A)を主成分とし、その含有量は50質量%以上、好ましくは70~99.9999質量%、より好ましくは80~99.999質量%、さらに好ましくは90~99.99質量%である。
The porous layer (I) contains the propylene resin (A) as a main component, and the content thereof is 50% by mass or more, preferably 70 to 99.9999% by mass, more preferably 80 to 99.999% by mass, and still more preferably. 90 to 99.99% by mass.
2-2.β晶核剤
多孔層(I)は微細な多孔質構造を得るために、前記β晶活性を有することが好ましく、中でも、β晶核剤を含むことが好ましい。本発明で用いるβ晶核剤としては以下に示すものが挙げられるが、プロピレン系樹脂のβ晶の生成、成長を増加させるものであれば特に限定されず、また2種類以上を混合して用いてもよい。 2-2. β-crystal nucleating agent The porous layer (I) preferably has the β-crystal activity in order to obtain a fine porous structure, and among them, it preferably includes a β-crystal nucleating agent. Examples of the β crystal nucleating agent used in the present invention include the following, but are not particularly limited as long as they increase the generation and growth of β crystals of the propylene resin, and two or more types are mixed and used. May be.
多孔層(I)は微細な多孔質構造を得るために、前記β晶活性を有することが好ましく、中でも、β晶核剤を含むことが好ましい。本発明で用いるβ晶核剤としては以下に示すものが挙げられるが、プロピレン系樹脂のβ晶の生成、成長を増加させるものであれば特に限定されず、また2種類以上を混合して用いてもよい。 2-2. β-crystal nucleating agent The porous layer (I) preferably has the β-crystal activity in order to obtain a fine porous structure, and among them, it preferably includes a β-crystal nucleating agent. Examples of the β crystal nucleating agent used in the present invention include the following, but are not particularly limited as long as they increase the generation and growth of β crystals of the propylene resin, and two or more types are mixed and used. May be.
β晶核剤としては、例えば、アミド化合物;テトラオキサスピロ化合物;キナクリドン類;ナノスケールのサイズを有する酸化鉄;1,2-ヒドロキシステアリン酸カリウム、安息香酸マグネシウムもしくはコハク酸マグネシウム、フタル酸マグネシウムなどに代表されるカルボン酸のアルカリ金属塩もしくはアルカリ土類金属塩;ベンゼンスルホン酸ナトリウムもしくはナフタレンスルホン酸ナトリウムなどに代表される芳香族スルホン酸化合物;二もしくは三塩基カルボン酸のジもしくはトリエステル類;フタロシアニンブルーなどに代表されるフタロシアニン系顔料;有機二塩基酸である成分Aと周期表第2族金属の酸化物、水酸化物もしくは塩である成分Bとからなる二成分系化合物;環状リン化合物とマグネシウム化合物からなる組成物などが挙げられる。
これらの中でも、アミド化合物、テトラオキサスピロ化合物、及びキナクリドン類からなる群から選ばれる1種以上が好ましい。 Examples of the β crystal nucleating agent include amide compounds; tetraoxaspiro compounds; quinacridones; iron oxides having a nanoscale size; potassium 1,2-hydroxystearate, magnesium benzoate or magnesium succinate, magnesium phthalate, etc. Alkali metal salts or alkaline earth metal salts of carboxylic acids represented by: aromatic sulfonic acid compounds represented by sodium benzenesulfonate or sodium naphthalenesulfonate; di- or triesters of dibasic or tribasic carboxylic acids; Phthalocyanine pigments typified by phthalocyanine blue, etc .; two-component compounds consisting of component A, which is an organic dibasic acid, and component B, which is an oxide, hydroxide or salt of a Group 2 metal in the periodic table; cyclic phosphorus compounds And magnesium compound Such as the formation thereof.
Among these, one or more selected from the group consisting of amide compounds, tetraoxaspiro compounds, and quinacridones are preferable.
これらの中でも、アミド化合物、テトラオキサスピロ化合物、及びキナクリドン類からなる群から選ばれる1種以上が好ましい。 Examples of the β crystal nucleating agent include amide compounds; tetraoxaspiro compounds; quinacridones; iron oxides having a nanoscale size; potassium 1,2-hydroxystearate, magnesium benzoate or magnesium succinate, magnesium phthalate, etc. Alkali metal salts or alkaline earth metal salts of carboxylic acids represented by: aromatic sulfonic acid compounds represented by sodium benzenesulfonate or sodium naphthalenesulfonate; di- or triesters of dibasic or tribasic carboxylic acids; Phthalocyanine pigments typified by phthalocyanine blue, etc .; two-component compounds consisting of component A, which is an organic dibasic acid, and component B, which is an oxide, hydroxide or salt of a Group 2 metal in the periodic table; cyclic phosphorus compounds And magnesium compound Such as the formation thereof.
Among these, one or more selected from the group consisting of amide compounds, tetraoxaspiro compounds, and quinacridones are preferable.
市販されているβ晶核剤の具体例としては、新日本理化社製β晶核剤「エヌジェスターNU-100」、β晶核剤の添加されたプロピレン系樹脂の具体例としては、Aristech社製ポリプロピレン「Bepol B-022SP」、Borealis社製ポリプロピレン「Beta(β)-PP BE60-7032」、mayzo社製ポリプロピレン「BNX BETAPP-LN」などが挙げられる。
Specific examples of commercially available β crystal nucleating agents include the β crystal nucleating agent “NJESTER NU-100” manufactured by Shin Nippon Rika Co., Ltd., and specific examples of propylene resins to which β crystal nucleating agents are added include Aristech. Examples thereof include polypropylene “Bepol B-022SP”, polypropylene manufactured by Borealis “Beta (β) -PP BE60-7032,” polypropylene manufactured by Mayzo “BNX BETAP-LN”, and the like.
多孔層(I)中のβ晶核剤の含有量は、β晶核剤の種類またはプロピレン系樹脂の組成などにより適宜調整することができるが、多孔層(I)中のプロピレン系樹脂100質量部に対し0.0001~5.0質量部が好ましく、0.001~3.0質量部がより好ましく、0.01~1.0質量部がさらに好ましい。0.0001質量部以上であれば、製造時において十分にプロピレン系樹脂のβ晶を生成成長させ、十分なβ晶活性が確保でき、積層フィルムとした際にも十分なβ晶活性が確保でき、所望の断熱性が得られる。一方、5.0質量部以下の添加であれば、経済的にも有利になるほか、フィルム表面へのβ晶核剤のブリードなどがなく好ましい。
The content of the β-crystal nucleating agent in the porous layer (I) can be appropriately adjusted depending on the type of the β-crystal nucleating agent or the composition of the propylene-based resin, but 100 mass of the propylene-based resin in the porous layer (I). 0.0001 to 5.0 parts by mass with respect to parts, preferably 0.001 to 3.0 parts by mass, and more preferably 0.01 to 1.0 parts by mass. If it is 0.0001 part by mass or more, β-crystals of propylene resin can be generated and grown sufficiently at the time of production, sufficient β-crystal activity can be secured, and sufficient β-crystal activity can be secured even when a laminated film is formed. The desired heat insulating properties can be obtained. On the other hand, addition of 5.0 parts by mass or less is preferable because it is economically advantageous and there is no bleeding of the β crystal nucleating agent on the film surface.
4.層(II)(保護層)
本発明の積層フィルムにおける層(II)(保護層)は、その表面に溶剤を滴下した際に染み込みを生じない層である。
好ましくは、走査型電子顕微鏡(SEM)(「株式会社日立ハイテクノロジーズ社製 S-4500」)にて保護層(II)を観察し、Image Metorology社製イメージ解析ソフトウェア「SPIP(バージョン6.6.4)」を用いて画像処理方法として、検出方法を閾値とし、検出を孔とし、閾値タイプを固定レベルとし、孔閾値レベルを80Arbitaryとし、フィルターによる孔範囲の規定を行わずに、出力を行った際に1μm2以上の孔がない層(II)であることが好ましい。このような層(II)であることにより、粘着剤の染込みを抑制し、内部の多孔構造に由来する空孔が維持され、断熱性の低下を生じない。 4). Layer (II) (Protective layer)
The layer (II) (protective layer) in the laminated film of the present invention is a layer that does not soak when a solvent is dropped on its surface.
Preferably, the protective layer (II) is observed with a scanning electron microscope (SEM) (“S-4500, manufactured by Hitachi High-Technologies Corporation), and image analysis software“ SPIP (version 6.6. 4) ”as the image processing method, the detection method is set as a threshold, the detection is set as a hole, the threshold type is set as a fixed level, the hole threshold level is set as 80 Arbitrary, and the output is performed without defining the hole range by a filter. It is preferable that the layer (II) has no pores of 1 μm 2 or more. By being such a layer (II), the penetration of the pressure-sensitive adhesive is suppressed, the pores derived from the internal porous structure are maintained, and the heat insulating property does not deteriorate.
本発明の積層フィルムにおける層(II)(保護層)は、その表面に溶剤を滴下した際に染み込みを生じない層である。
好ましくは、走査型電子顕微鏡(SEM)(「株式会社日立ハイテクノロジーズ社製 S-4500」)にて保護層(II)を観察し、Image Metorology社製イメージ解析ソフトウェア「SPIP(バージョン6.6.4)」を用いて画像処理方法として、検出方法を閾値とし、検出を孔とし、閾値タイプを固定レベルとし、孔閾値レベルを80Arbitaryとし、フィルターによる孔範囲の規定を行わずに、出力を行った際に1μm2以上の孔がない層(II)であることが好ましい。このような層(II)であることにより、粘着剤の染込みを抑制し、内部の多孔構造に由来する空孔が維持され、断熱性の低下を生じない。 4). Layer (II) (Protective layer)
The layer (II) (protective layer) in the laminated film of the present invention is a layer that does not soak when a solvent is dropped on its surface.
Preferably, the protective layer (II) is observed with a scanning electron microscope (SEM) (“S-4500, manufactured by Hitachi High-Technologies Corporation), and image analysis software“ SPIP (version 6.6. 4) ”as the image processing method, the detection method is set as a threshold, the detection is set as a hole, the threshold type is set as a fixed level, the hole threshold level is set as 80 Arbitrary, and the output is performed without defining the hole range by a filter. It is preferable that the layer (II) has no pores of 1 μm 2 or more. By being such a layer (II), the penetration of the pressure-sensitive adhesive is suppressed, the pores derived from the internal porous structure are maintained, and the heat insulating property does not deteriorate.
4-1.プロピレン系樹脂(B)
本発明におけるプロピレン系樹脂(B)は、上記プロピレン系樹脂(A)で記載したプロピレン系樹脂であることが好ましく、特に多孔構造を生じにくいという観点より、ランダムプロピレン系樹脂であることが好ましい。層(II)にランダムプロピレン系樹脂を選択することで、ホモプロピレン系樹脂、またはブロックプロピレン系樹脂などを選択した際に生じる延伸時のボイド(空孔)形成を、生じにくくすることができる。また、粘着剤を塗布する際に、多孔層への粘着剤の侵入を抑制することができ、断熱性の低下を防ぐことができる。 4-1. Propylene resin (B)
The propylene-based resin (B) in the present invention is preferably a propylene-based resin described in the above-mentioned propylene-based resin (A), and is particularly preferably a random propylene-based resin from the viewpoint of hardly generating a porous structure. By selecting a random propylene-based resin for the layer (II), it is possible to make it difficult to form voids (holes) during stretching that occur when a homopropylene-based resin, a block propylene-based resin, or the like is selected. Moreover, when apply | coating an adhesive, the penetration | invasion of the adhesive to a porous layer can be suppressed and a heat insulation fall can be prevented.
本発明におけるプロピレン系樹脂(B)は、上記プロピレン系樹脂(A)で記載したプロピレン系樹脂であることが好ましく、特に多孔構造を生じにくいという観点より、ランダムプロピレン系樹脂であることが好ましい。層(II)にランダムプロピレン系樹脂を選択することで、ホモプロピレン系樹脂、またはブロックプロピレン系樹脂などを選択した際に生じる延伸時のボイド(空孔)形成を、生じにくくすることができる。また、粘着剤を塗布する際に、多孔層への粘着剤の侵入を抑制することができ、断熱性の低下を防ぐことができる。 4-1. Propylene resin (B)
The propylene-based resin (B) in the present invention is preferably a propylene-based resin described in the above-mentioned propylene-based resin (A), and is particularly preferably a random propylene-based resin from the viewpoint of hardly generating a porous structure. By selecting a random propylene-based resin for the layer (II), it is possible to make it difficult to form voids (holes) during stretching that occur when a homopropylene-based resin, a block propylene-based resin, or the like is selected. Moreover, when apply | coating an adhesive, the penetration | invasion of the adhesive to a porous layer can be suppressed and a heat insulation fall can be prevented.
層(II)はプロピレン系樹脂(B)を主成分とし、その含有量は50質量%以上、好ましくは70~99.9999質量%、より好ましくは80~99.999質量%、さらに好ましくは90~99.99質量%である。
The layer (II) is mainly composed of the propylene-based resin (B), and the content thereof is 50% by mass or more, preferably 70 to 99.9999% by mass, more preferably 80 to 99.999% by mass, and still more preferably 90%. To 99.99 mass%.
5.層(III)(接着層又は粘着層)
本発明の積層フィルムは、層(II)に層(III)(接着層又は粘着層)を備えることで、層(III)を介して貼り合わされた各種部材への断熱性付与が容易に可能であり、特に各種車輌の内装部材、モバイル電子機器等の部材として利用される。
層(III)の層厚は、被着体の質量、素材等により異なるが、被着体に対する接着強度の観点から、0.1~100μmであることが好ましい。 5). Layer (III) (adhesive layer or adhesive layer)
By providing the layer (II) with the layer (III) (adhesive layer or adhesive layer), the laminated film of the present invention can easily impart heat insulation to various members bonded through the layer (III). In particular, it is used as an interior member of various vehicles, a member of a mobile electronic device or the like.
The layer thickness of the layer (III) varies depending on the mass of the adherend, the material, etc., but is preferably 0.1 to 100 μm from the viewpoint of the adhesive strength to the adherend.
本発明の積層フィルムは、層(II)に層(III)(接着層又は粘着層)を備えることで、層(III)を介して貼り合わされた各種部材への断熱性付与が容易に可能であり、特に各種車輌の内装部材、モバイル電子機器等の部材として利用される。
層(III)の層厚は、被着体の質量、素材等により異なるが、被着体に対する接着強度の観点から、0.1~100μmであることが好ましい。 5). Layer (III) (adhesive layer or adhesive layer)
By providing the layer (II) with the layer (III) (adhesive layer or adhesive layer), the laminated film of the present invention can easily impart heat insulation to various members bonded through the layer (III). In particular, it is used as an interior member of various vehicles, a member of a mobile electronic device or the like.
The layer thickness of the layer (III) varies depending on the mass of the adherend, the material, etc., but is preferably 0.1 to 100 μm from the viewpoint of the adhesive strength to the adherend.
層(II)の片面に塗布する接着剤及び粘着剤の少なくとも一方を含む組成物に用いられるベースポリマー(もしくはベースエラストマー)としては、天然ゴム、合成イソプレン、スチレン-イソプレン-スチレンブロック共重合体(SIS)、スチレン-ブタジエン-スチレンブロック共重合体(SBS)、SBSを水添したスチレン-エチレン/ブチレン-スチレントリブロック共重合体(SEBS)、SIを水添したスチレン-エチレン/プロピレンブロック共重合体(SEP)、SISを水添したスチレン-エチレン/プロピレン-スチレンブロック共重合体(SEPS)等を主体とするゴム系粘着剤、2-エチルヘキシルアクリレートまたはブチルアクリレートなどのアクリル酸エステル、またはメタクリル酸エステルなどを主体として共重合させたアクリル系粘着剤などから適宜選択される。
Examples of the base polymer (or base elastomer) used in the composition containing at least one of an adhesive and a pressure-sensitive adhesive applied to one side of the layer (II) include natural rubber, synthetic isoprene, styrene-isoprene-styrene block copolymer ( SIS), styrene-butadiene-styrene block copolymer (SBS), styrene-ethylene / butylene-styrene triblock copolymer (SEBS) hydrogenated with SBS, styrene-ethylene / propylene block copolymer hydrogenated with SI Rubber adhesives mainly composed of styrene-ethylene / propylene-styrene block copolymer (SEPS) hydrogenated with SIS (hydrogenated SIS), acrylic acid ester such as 2-ethylhexyl acrylate or butyl acrylate, or methacrylic acid Mainly ester It is appropriately selected from an acrylic pressure-sensitive adhesive obtained by copolymerizing with.
前記粘着剤は、さらに高い粘着力を得るために、上記粘着剤に対して、脂環族系石油樹脂、脂肪族系石油樹脂、テルペン樹脂、エステル系樹脂、クマロン-インデン樹脂、ロジン系樹脂、エポキシ樹脂、フェノール樹脂、アクリル樹脂、ブチラール樹脂、オレフィン樹脂、塩素化オレフィン樹脂、酢酸ビニル樹脂、およびこれらの変性樹脂又は水素添加された樹脂等を主体とする粘着付与剤、液状イソプレン、液状ブタジエン、液状ブタジエン・イソプレン、液状スチレン・ブタジエン、液状スチレン・イソプレン、ポリブテン、ポリイソブチレン、液状テルペン、液状ロジン、パラフィン系オイル等を主体とする可塑剤、イソシアネート系架橋剤、エポキシ系架橋剤、アミン系架橋剤、メラミン系架橋剤、アジリジン系架橋剤、ヒドラジン系架橋剤、アルデヒド系架橋剤、オキサゾリン系架橋剤、金属アルコキシド系架橋剤、金属キレート系架橋剤、金属塩系架橋剤、アンモニウム塩系架橋剤等を主体とする架橋剤を添加してもよい。これら他成分は、1種単独で、あるいは2種以上を組み合わせて用いることができる。
In order to obtain higher adhesive strength, the pressure-sensitive adhesive is alicyclic petroleum resin, aliphatic petroleum resin, terpene resin, ester resin, coumarone-indene resin, rosin resin, An epoxy resin, a phenol resin, an acrylic resin, a butyral resin, an olefin resin, a chlorinated olefin resin, a vinyl acetate resin, and a tackifier mainly composed of these modified resins or hydrogenated resins, liquid isoprene, liquid butadiene, Liquid butadiene / isoprene, liquid styrene / butadiene, liquid styrene / isoprene, polybutene, polyisobutylene, liquid terpene, liquid rosin, paraffin oil, plasticizers, isocyanate crosslinkers, epoxy crosslinkers, amine crosslinks Agent, melamine crosslinking agent, aziridine crosslinking agent, hydrazi A crosslinking agent mainly composed of a crosslinking agent, an aldehyde crosslinking agent, an oxazoline crosslinking agent, a metal alkoxide crosslinking agent, a metal chelate crosslinking agent, a metal salt crosslinking agent, an ammonium salt crosslinking agent, or the like may be added. . These other components can be used alone or in combination of two or more.
粘着剤調製時の溶媒としては、ベンゼン、トルエンなどの芳香族炭化水素系溶媒;酢酸エチル、酢酸ブチルなどのエステル系溶媒;アセトン、メチルエチルケトン、メチルイソブチルケトンなどのケトン系溶媒;n-ペンタン、n-ヘキサン、n-ヘプタンなどの脂肪族炭化水素系溶媒;シクロペンタン、シクロヘキサンなどの脂環式炭化水素系溶媒;等が挙げられる。これらの溶媒は、1種単独で、あるいは2種以上を組み合わせて用いることができる。
Solvents used for preparing the adhesive include aromatic hydrocarbon solvents such as benzene and toluene; ester solvents such as ethyl acetate and butyl acetate; ketone solvents such as acetone, methyl ethyl ketone, and methyl isobutyl ketone; n-pentane, n -Aliphatic hydrocarbon solvents such as hexane and n-heptane; and alicyclic hydrocarbon solvents such as cyclopentane and cyclohexane. These solvents can be used alone or in combination of two or more.
本フィルムを構成する各層は、その性質を損なわない程度に添加剤、例えば、熱安定剤、酸化防止剤、紫外線吸収剤、光安定剤、結晶核剤、着色剤、帯電防止剤、加水分解防止剤、滑剤、難燃剤、エラストマーなどの各種添加剤が適宜含まれていてもよい。またその性質を損なわない程度に他の樹脂組成物が含まれていてもよい。
Each layer constituting this film has additives that do not impair its properties, such as heat stabilizers, antioxidants, ultraviolet absorbers, light stabilizers, crystal nucleating agents, colorants, antistatic agents, and hydrolysis inhibitors. Various additives such as an agent, a lubricant, a flame retardant, and an elastomer may be appropriately included. Moreover, other resin compositions may be contained to such an extent that the property is not impaired.
6.積層フィルムの製造方法
本発明の積層フィルムの製造方法について説明するが、以下の説明は、本発明の積層フィルムを製造する方法の一例であり、本発明の積層フィルムはかかる製造方法により製造される積層フィルムに限定されるものではない。 6). Manufacturing method of laminated film The manufacturing method of the laminated film of the present invention will be described. The following description is an example of a method of manufacturing the laminated film of the present invention, and the laminated film of the present invention is manufactured by such a manufacturing method. It is not limited to a laminated film.
本発明の積層フィルムの製造方法について説明するが、以下の説明は、本発明の積層フィルムを製造する方法の一例であり、本発明の積層フィルムはかかる製造方法により製造される積層フィルムに限定されるものではない。 6). Manufacturing method of laminated film The manufacturing method of the laminated film of the present invention will be described. The following description is an example of a method of manufacturing the laminated film of the present invention, and the laminated film of the present invention is manufactured by such a manufacturing method. It is not limited to a laminated film.
本発明の実施形態の一例に係る積層フィルムの製造方法(以下、本フィルム製造方法)と称することがある)は、プロピレン系樹脂(A)を主成分としβ晶核剤(C)を含む層(i)と、プロピレン系樹脂(B)を主成分とする層(ii)を、層(i)の少なくとも片面に有する未延伸フィルムを作成する製膜工程と、該未延伸フィルムを延伸して樹脂フィルムを作成する延伸工程と、更に、該樹脂フィルムの前記層(ii)表面に、接着剤又は粘着剤を塗布して層(iii)を形成する塗布工程とを有する。
A method for producing a laminated film according to an example of an embodiment of the present invention (hereinafter sometimes referred to as “the film production method”) includes a layer containing a propylene resin (A) as a main component and a β crystal nucleating agent (C). Forming a non-stretched film having (i) and a layer (ii) mainly composed of the propylene-based resin (B) on at least one side of the layer (i), and stretching the unstretched film It has the extending process which creates a resin film, and also the application | coating process which apply | coats an adhesive agent or an adhesive to the surface of the said layer (ii) of this resin film, and forms a layer (iii).
本フィルム製造方法は上記工程を備えていればよく、他の工程、処理等をさらに備えていてもよい。
The film production method may include the above-described steps, and may further include other steps, treatments, and the like.
また、本発明においては、本発明の効果を損なわない範囲において、プロピレン系樹脂(A)、プロピレン系樹脂(B)、及び、β晶核剤(C)以外の成分、例えばプロピレン重合体(A)以外の他の樹脂を混合することを許容することができる。
他の樹脂としては、ポリスチレン系樹脂、ポリ塩化ビニル系樹脂、ポリ塩化ビニリデン系樹脂、塩素化ポリエチレン系樹脂、ポリエステル系樹脂、ポリカーボネート系樹脂、ポリアミド系樹脂、ポリアセタール系樹脂、アクリル系樹脂、エチレン酢酸ビニル共重合体、ポリメチルペンテン系樹脂、ポリビニルアルコール系樹脂、環状オレフィン系樹脂、ポリ乳酸系樹脂、ポリブチレンサクシネート系樹脂、ポリアクリロニトリル系樹脂、ポリエチレンオキサイド系樹脂、セルロース系樹脂、ポリイミド系樹脂、ポリウレタン系樹脂、ポリフェニレンスルフィド系樹脂、ポリフェニレンエーテル系樹脂、ポリビニルアセタール系樹脂、ポリブタジエン系樹脂、ポリブテン系樹脂、ポリアミドイミド系樹脂、ポリアミドビスマレイミド系樹脂、ポリアリレート系樹脂、ポリエーテルイミド系樹脂、ポリエーテルエーテルケトン系樹脂、ポリエーテルケトン系樹脂、ポリエーテルスルホン系樹脂、ポリケトン系樹脂、ポリサルフォン系樹脂、アラミド系樹脂、フッ素系樹脂等が挙げられる。 Moreover, in this invention, in the range which does not impair the effect of this invention, components other than propylene resin (A), propylene resin (B), and (beta) crystal nucleating agent (C), for example, propylene polymer (A It is permissible to mix other resins other than).
Other resins include polystyrene resins, polyvinyl chloride resins, polyvinylidene chloride resins, chlorinated polyethylene resins, polyester resins, polycarbonate resins, polyamide resins, polyacetal resins, acrylic resins, ethylene acetate Vinyl copolymer, polymethylpentene resin, polyvinyl alcohol resin, cyclic olefin resin, polylactic acid resin, polybutylene succinate resin, polyacrylonitrile resin, polyethylene oxide resin, cellulose resin, polyimide resin , Polyurethane resin, polyphenylene sulfide resin, polyphenylene ether resin, polyvinyl acetal resin, polybutadiene resin, polybutene resin, polyamideimide resin, polyamide bismaleimide resin, Arylate resins, polyether imide resins, polyether ether ketone resin, polyether ketone resin, polyether sulfone resin, polyketone resin, polysulfone resin, aramid-based resin, fluorine-based resins.
他の樹脂としては、ポリスチレン系樹脂、ポリ塩化ビニル系樹脂、ポリ塩化ビニリデン系樹脂、塩素化ポリエチレン系樹脂、ポリエステル系樹脂、ポリカーボネート系樹脂、ポリアミド系樹脂、ポリアセタール系樹脂、アクリル系樹脂、エチレン酢酸ビニル共重合体、ポリメチルペンテン系樹脂、ポリビニルアルコール系樹脂、環状オレフィン系樹脂、ポリ乳酸系樹脂、ポリブチレンサクシネート系樹脂、ポリアクリロニトリル系樹脂、ポリエチレンオキサイド系樹脂、セルロース系樹脂、ポリイミド系樹脂、ポリウレタン系樹脂、ポリフェニレンスルフィド系樹脂、ポリフェニレンエーテル系樹脂、ポリビニルアセタール系樹脂、ポリブタジエン系樹脂、ポリブテン系樹脂、ポリアミドイミド系樹脂、ポリアミドビスマレイミド系樹脂、ポリアリレート系樹脂、ポリエーテルイミド系樹脂、ポリエーテルエーテルケトン系樹脂、ポリエーテルケトン系樹脂、ポリエーテルスルホン系樹脂、ポリケトン系樹脂、ポリサルフォン系樹脂、アラミド系樹脂、フッ素系樹脂等が挙げられる。 Moreover, in this invention, in the range which does not impair the effect of this invention, components other than propylene resin (A), propylene resin (B), and (beta) crystal nucleating agent (C), for example, propylene polymer (A It is permissible to mix other resins other than).
Other resins include polystyrene resins, polyvinyl chloride resins, polyvinylidene chloride resins, chlorinated polyethylene resins, polyester resins, polycarbonate resins, polyamide resins, polyacetal resins, acrylic resins, ethylene acetate Vinyl copolymer, polymethylpentene resin, polyvinyl alcohol resin, cyclic olefin resin, polylactic acid resin, polybutylene succinate resin, polyacrylonitrile resin, polyethylene oxide resin, cellulose resin, polyimide resin , Polyurethane resin, polyphenylene sulfide resin, polyphenylene ether resin, polyvinyl acetal resin, polybutadiene resin, polybutene resin, polyamideimide resin, polyamide bismaleimide resin, Arylate resins, polyether imide resins, polyether ether ketone resin, polyether ketone resin, polyether sulfone resin, polyketone resin, polysulfone resin, aramid-based resin, fluorine-based resins.
また、本発明においては、前述した成分のほか、本発明の効果を著しく阻害しない範囲内で、一般的に配合される添加剤を適宜添加できる。前記添加剤としては、成形加工性、生産性および多孔フィルムの諸物性を改良し、又は調整する目的で添加される、耳などのトリミングロス等から発生するリサイクル樹脂、シリカ、タルク、カオリン、炭酸カルシウム等の無機粒子、酸化チタン、カーボンブラック等の顔料、難燃剤、耐候性安定剤、耐熱安定剤、帯電防止剤、溶融粘度改良剤、架橋剤、滑剤、核剤、可塑剤、老化防止剤、酸化防止剤、光安定剤、紫外線吸収剤、中和剤、防曇剤、アンチブロッキング剤、スリップ剤、着色剤などの添加剤が挙げられる。
In addition, in the present invention, in addition to the components described above, additives that are generally blended can be added as appropriate within a range that does not significantly impair the effects of the present invention. Examples of the additive include recycled resin generated from trimming loss of ears and the like, silica, talc, kaolin, carbonic acid, which are added for the purpose of improving or adjusting molding processability, productivity and various physical properties of the porous film. Inorganic particles such as calcium, pigments such as titanium oxide and carbon black, flame retardants, weathering stabilizers, heat stabilizers, antistatic agents, melt viscosity improvers, crosslinking agents, lubricants, nucleating agents, plasticizers, anti-aging agents , Antioxidants, light stabilizers, ultraviolet absorbers, neutralizers, antifogging agents, antiblocking agents, slip agents, colorants and the like.
混錬する際、用いる機械を特に限定するものではない。例えば単軸押出機、二軸押出機、多軸押出機など、公知の押出機を用いることができる。また、設備構造および必要性に応じて、ベント口に減圧機を接続し、水分及び低分子量物質を除去してもよい。
When kneading, the machine to be used is not particularly limited. For example, a known extruder such as a single screw extruder, a twin screw extruder, or a multi-screw extruder can be used. Further, depending on the equipment structure and necessity, a pressure reducer may be connected to the vent port to remove moisture and low molecular weight substances.
以下、製膜工程、延伸工程について順次説明する。
Hereinafter, the film forming process and the stretching process will be described sequentially.
(1)製膜工程
材料樹脂を加熱溶融する方法として、例えばTダイ法、インフレーション法などを挙げることができ、中でもTダイ法を採用するのが好ましい。実用的には、Tダイから材料樹脂を溶融押出してキャストロールによりキャスト成形するのが好ましい。 (1) Film-forming process Examples of a method for heating and melting the material resin include a T-die method and an inflation method. Among these, the T-die method is preferably employed. Practically, it is preferable that the material resin is melt-extruded from a T-die and cast by a cast roll.
材料樹脂を加熱溶融する方法として、例えばTダイ法、インフレーション法などを挙げることができ、中でもTダイ法を採用するのが好ましい。実用的には、Tダイから材料樹脂を溶融押出してキャストロールによりキャスト成形するのが好ましい。 (1) Film-forming process Examples of a method for heating and melting the material resin include a T-die method and an inflation method. Among these, the T-die method is preferably employed. Practically, it is preferable that the material resin is melt-extruded from a T-die and cast by a cast roll.
フィルム状に製膜する具体的方法として、Tダイ法を採用する場合、Tダイからそれぞれ押出されたシート状の溶融樹脂を積層し、回転するキャストロール(チルロール、キャストドラム)上に密着させながら引き取りシート状物に成形する方法を挙げることができる。
When adopting the T-die method as a specific method for forming a film, a sheet-like molten resin extruded from the T-die is laminated and adhered onto a rotating cast roll (chill roll, cast drum). The method of shape | molding in a take-off sheet-like material can be mentioned.
キャストロールにフィルム状物を密着させるために、タッチロール、エアナイフ、電気密着装置などをキャストロールに付けてもよい。
混練物を冷却しながらフィルムに成形する際、キャストロールの温度は100℃以上が好ましい。より好ましくは110℃以上で、更に好ましくは120℃以上である。本発明では多孔層(I)中のプロピレン系樹脂の結晶部分と非晶部分での延伸工程時による開孔によっても、空孔率の増加が可能であるため、キャストロールの温度を100℃以上とし、高い結晶化度の積層無孔膜状物を得ることが好ましい。 A touch roll, an air knife, an electric contact device or the like may be attached to the cast roll in order to bring the film-like material into close contact with the cast roll.
When forming the film while cooling the kneaded product, the temperature of the cast roll is preferably 100 ° C. or higher. More preferably, it is 110 degreeC or more, More preferably, it is 120 degreeC or more. In the present invention, the porosity of the cast roll can be increased by 100 ° C. or higher because the porosity can be increased by the opening of the crystalline portion and the amorphous portion of the propylene-based resin in the porous layer (I) by the stretching step. Thus, it is preferable to obtain a laminated non-porous film having a high crystallinity.
混練物を冷却しながらフィルムに成形する際、キャストロールの温度は100℃以上が好ましい。より好ましくは110℃以上で、更に好ましくは120℃以上である。本発明では多孔層(I)中のプロピレン系樹脂の結晶部分と非晶部分での延伸工程時による開孔によっても、空孔率の増加が可能であるため、キャストロールの温度を100℃以上とし、高い結晶化度の積層無孔膜状物を得ることが好ましい。 A touch roll, an air knife, an electric contact device or the like may be attached to the cast roll in order to bring the film-like material into close contact with the cast roll.
When forming the film while cooling the kneaded product, the temperature of the cast roll is preferably 100 ° C. or higher. More preferably, it is 110 degreeC or more, More preferably, it is 120 degreeC or more. In the present invention, the porosity of the cast roll can be increased by 100 ° C. or higher because the porosity can be increased by the opening of the crystalline portion and the amorphous portion of the propylene-based resin in the porous layer (I) by the stretching step. Thus, it is preferable to obtain a laminated non-porous film having a high crystallinity.
得られる未延伸フィルムにおいて、両端部を除いた有効部分の厚みは50μm~1000μmであるのが好ましく、中でも80μm以上或いは800μm以下、その中でも100μm以上或いは600μm以下であるのがさらに好ましい。
未延伸フィルム厚さが50μm以上であれば、フィルムが薄すぎるために延伸時に破断を起こすのを防ぐことができ、未延伸フィルムの厚さが1000μm以下であれば、フィルムが剛直になり過ぎて延伸を行い難くなるのを防ぐことができる。 In the unstretched film to be obtained, the thickness of the effective portion excluding both ends is preferably 50 μm to 1000 μm, more preferably 80 μm or more and 800 μm or less, and particularly preferably 100 μm or more or 600 μm or less.
If the unstretched film thickness is 50 μm or more, the film is too thin to prevent breakage during stretching. If the unstretched film thickness is 1000 μm or less, the film becomes too rigid. It is possible to prevent the stretching from becoming difficult.
未延伸フィルム厚さが50μm以上であれば、フィルムが薄すぎるために延伸時に破断を起こすのを防ぐことができ、未延伸フィルムの厚さが1000μm以下であれば、フィルムが剛直になり過ぎて延伸を行い難くなるのを防ぐことができる。 In the unstretched film to be obtained, the thickness of the effective portion excluding both ends is preferably 50 μm to 1000 μm, more preferably 80 μm or more and 800 μm or less, and particularly preferably 100 μm or more or 600 μm or less.
If the unstretched film thickness is 50 μm or more, the film is too thin to prevent breakage during stretching. If the unstretched film thickness is 1000 μm or less, the film becomes too rigid. It is possible to prevent the stretching from becoming difficult.
本発明の積層フィルムの原反での層構成に関しては、上記の層構成のみだけでなく、他の層を組み合わせた構成であってもよい。
The layer structure of the laminated film of the present invention in the original fabric may be not only the above layer structure but also a structure in which other layers are combined.
未延伸フィルムにおいて、多孔層(I)の厚み(T1)に対する層(II)の厚み(T2)の比(T2/T1)が0.05~1.0である関係を満たすことが好ましい。厚み比がこの範囲であることにより、薄膜であっても断熱性に優れ、かつ、接着剤または粘着剤を塗布した場合であっても断熱性の低下を及ぼさない加工性に優れたフィルムが得られる。
ここで、層(I)及び層(II)が複数配される場合は、各層の合計厚みを用いて算出する。 In the unstretched film, the ratio (T2 / T1) of the thickness (T2) of the layer (II) to the thickness (T1) of the porous layer (I) preferably satisfies the relationship of 0.05 to 1.0. When the thickness ratio is within this range, a film excellent in heat insulation even in the case of a thin film and excellent in workability that does not cause deterioration in heat insulation even when an adhesive or a pressure-sensitive adhesive is applied can be obtained. It is done.
Here, when a plurality of layers (I) and (II) are arranged, the total thickness of each layer is used for calculation.
ここで、層(I)及び層(II)が複数配される場合は、各層の合計厚みを用いて算出する。 In the unstretched film, the ratio (T2 / T1) of the thickness (T2) of the layer (II) to the thickness (T1) of the porous layer (I) preferably satisfies the relationship of 0.05 to 1.0. When the thickness ratio is within this range, a film excellent in heat insulation even in the case of a thin film and excellent in workability that does not cause deterioration in heat insulation even when an adhesive or a pressure-sensitive adhesive is applied can be obtained. It is done.
Here, when a plurality of layers (I) and (II) are arranged, the total thickness of each layer is used for calculation.
未延伸フィルムにおいて、厚みが50~600μmである層(I)を有しているのが好ましい。この厚みの下限は、より好ましくは55μmであり、さらに好ましくは60μmである。一方、上限は、より好ましくは580μmであり、更に好ましくは550μmである。層(I)の厚みが50μm以上であることで、良好な断熱性を有する積層フィルムが得られる。一方、層(I)の厚みが600μm以下であることで、延伸後に300μm以下の薄さを有する延伸フィルムが得られる。
The unstretched film preferably has a layer (I) having a thickness of 50 to 600 μm. The lower limit of this thickness is more preferably 55 μm, still more preferably 60 μm. On the other hand, the upper limit is more preferably 580 μm, still more preferably 550 μm. The laminated film which has favorable heat insulation is obtained because the thickness of layer (I) is 50 micrometers or more. On the other hand, when the thickness of the layer (I) is 600 μm or less, a stretched film having a thickness of 300 μm or less after stretching can be obtained.
未延伸フィルムにおいて、5~300μmである層(II)を有しているのが好ましい。この厚みの下限は、より好ましくは10μmであり、さらに好ましくは20μmである。一方、上限は、より好ましくは250μmであり、更に好ましくは、200μmである。5μm以上の層(II)を有することで、延伸後に多孔層を塞ぐことができ、保護層を有する積層フィルムが得られる。一方、300μm以下の層(II)であることで、断熱性の低下を抑制した積層フィルムが得られる。
The unstretched film preferably has a layer (II) of 5 to 300 μm. The lower limit of this thickness is more preferably 10 μm and even more preferably 20 μm. On the other hand, the upper limit is more preferably 250 μm, and still more preferably 200 μm. By having the layer (II) of 5 μm or more, the porous layer can be closed after stretching, and a laminated film having a protective layer is obtained. On the other hand, the laminated film which suppressed the heat insulation fall is obtained because it is 300 micrometers or less layer (II).
(2)延伸工程
ついで、得られた無孔膜状物を一軸延伸あるいは二軸延伸を行う。一軸延伸は縦一軸延伸であってもよいし、横一軸延伸であってもよい。二軸延伸は同時二軸延伸であってもよいし、逐次二軸延伸であってもよい。本発明の目的である保護層を有する積層フィルムを作製する場合には、各延伸工程で延伸条件を選択でき、多孔構造を制御し易い逐次二軸延伸がより好ましい。なお、膜状物の流れ方向(MD)への延伸を「縦延伸」といい、流れ方向に対して垂直方向(TD)への延伸を「横延伸」という。 (2) Stretching process Next, the obtained nonporous film-like material is subjected to uniaxial stretching or biaxial stretching. Uniaxial stretching may be longitudinal uniaxial stretching or transverse uniaxial stretching. Biaxial stretching may be simultaneous biaxial stretching or sequential biaxial stretching. In the case of producing a laminated film having a protective layer, which is the object of the present invention, sequential biaxial stretching is more preferred because the stretching conditions can be selected in each stretching step and the porous structure can be easily controlled. In addition, extending | stretching to the flow direction (MD) of a film-like thing is called "longitudinal stretching", and extending | stretching to the orthogonal | vertical direction (TD) with respect to a flow direction is called "lateral stretching."
ついで、得られた無孔膜状物を一軸延伸あるいは二軸延伸を行う。一軸延伸は縦一軸延伸であってもよいし、横一軸延伸であってもよい。二軸延伸は同時二軸延伸であってもよいし、逐次二軸延伸であってもよい。本発明の目的である保護層を有する積層フィルムを作製する場合には、各延伸工程で延伸条件を選択でき、多孔構造を制御し易い逐次二軸延伸がより好ましい。なお、膜状物の流れ方向(MD)への延伸を「縦延伸」といい、流れ方向に対して垂直方向(TD)への延伸を「横延伸」という。 (2) Stretching process Next, the obtained nonporous film-like material is subjected to uniaxial stretching or biaxial stretching. Uniaxial stretching may be longitudinal uniaxial stretching or transverse uniaxial stretching. Biaxial stretching may be simultaneous biaxial stretching or sequential biaxial stretching. In the case of producing a laminated film having a protective layer, which is the object of the present invention, sequential biaxial stretching is more preferred because the stretching conditions can be selected in each stretching step and the porous structure can be easily controlled. In addition, extending | stretching to the flow direction (MD) of a film-like thing is called "longitudinal stretching", and extending | stretching to the orthogonal | vertical direction (TD) with respect to a flow direction is called "lateral stretching."
逐次二軸延伸を用いる場合、延伸温度は用いる樹脂組成物の組成、結晶融解ピーク温度、結晶化度等によって適時選択する必要があるが、多孔構造の制御が比較的容易であり、機械強度、収縮率など他の諸物性とのバランスがとりやすい。
When using sequential biaxial stretching, the stretching temperature needs to be selected in a timely manner according to the composition of the resin composition to be used, the crystal melting peak temperature, the crystallinity, etc., but the control of the porous structure is relatively easy, the mechanical strength, It is easy to balance with other physical properties such as shrinkage.
縦延伸温度は、好ましくは60~140℃であり、より好ましくは80~120℃である。縦延伸温度を140℃以下とすることで、主成分であるプロピレン系樹脂の融点以下で破断なく延伸が可能となるため好ましい。一方で、60℃以上とすることで、延伸時の破断が抑制できるため、好ましい。
The longitudinal stretching temperature is preferably 60 to 140 ° C, more preferably 80 to 120 ° C. It is preferable to set the longitudinal stretching temperature to 140 ° C. or lower because stretching can be performed without breaking below the melting point of the main component propylene resin. On the other hand, since it can suppress the fracture | rupture at the time of extending | stretching by setting it as 60 degreeC or more, it is preferable.
縦延伸倍率は、任意に選択できるが、一軸延伸あたりの延伸倍率は1.1~10倍が好ましく、より好ましくは1.5~8.0倍であり、さらに好ましくは1.5~6.0倍である。一軸延伸あたりの延伸倍率が1.1倍以上とすることで白化が進行して、延伸による多孔化が十分に生じる。また、10倍以下とすることで、空孔の変形は抑制され、十分に白化した積層フィルムを得ることができる。
The longitudinal stretching ratio can be arbitrarily selected, but the stretching ratio per uniaxial stretching is preferably 1.1 to 10 times, more preferably 1.5 to 8.0 times, and further preferably 1.5 to 6. 0 times. When the stretch ratio per uniaxial stretching is 1.1 times or more, whitening proceeds and sufficient porosity is achieved by stretching. Moreover, by setting it as 10 times or less, the deformation | transformation of a void | hole is suppressed and the laminated | multilayer film fully whitened can be obtained.
横延伸温度は、好ましくは100~160℃であり、より好ましくは110~150℃である。前記横延伸温度が規定された範囲内であることによって、縦延伸時に生じた空孔が拡大されて多孔層の空孔率を増加することができ、十分な断熱性を有することができる。
The transverse stretching temperature is preferably 100 to 160 ° C, more preferably 110 to 150 ° C. When the transverse stretching temperature is within the specified range, the pores generated during the longitudinal stretching can be expanded to increase the porosity of the porous layer, and thus sufficient heat insulation can be achieved.
横延伸倍率は、任意に選択できるが、好ましくは1.1~10倍であり、より好ましくは1.5~9.0倍、更に好ましくは1.5~8.0倍である。規定した横延伸倍率で延伸することによって、縦延伸時に生じた空孔を変形することなく、十分な空孔率を有することができる。
The transverse draw ratio can be arbitrarily selected, but is preferably 1.1 to 10 times, more preferably 1.5 to 9.0 times, and still more preferably 1.5 to 8.0 times. By stretching at a prescribed transverse stretching ratio, it is possible to have a sufficient porosity without deforming pores generated during longitudinal stretching.
(3)塗布工程
塗布工程では、延伸工程により作成された樹脂フィルムの層(ii)表面に接着剤又は粘着剤を塗布して層(iii)を形成する。
接着剤又は粘着剤の層(ii)表面への塗布方法は特に制限されず、スピンコーター、ロールコーター、スリットコーター、エアナイフコーター、バーコーター、スプレーコーティング、カーテンコーター、ディップコーター、ダイコーター、グラビアロール等の公知の方法を用いることができる。 (3) Application process In the application process, an adhesive or a pressure-sensitive adhesive is applied to the surface of the layer (ii) of the resin film prepared by the stretching process to form the layer (iii).
The method of applying the adhesive or pressure-sensitive adhesive layer (ii) on the surface is not particularly limited, and is a spin coater, roll coater, slit coater, air knife coater, bar coater, spray coating, curtain coater, dip coater, die coater, gravure roll. A known method such as the above can be used.
塗布工程では、延伸工程により作成された樹脂フィルムの層(ii)表面に接着剤又は粘着剤を塗布して層(iii)を形成する。
接着剤又は粘着剤の層(ii)表面への塗布方法は特に制限されず、スピンコーター、ロールコーター、スリットコーター、エアナイフコーター、バーコーター、スプレーコーティング、カーテンコーター、ディップコーター、ダイコーター、グラビアロール等の公知の方法を用いることができる。 (3) Application process In the application process, an adhesive or a pressure-sensitive adhesive is applied to the surface of the layer (ii) of the resin film prepared by the stretching process to form the layer (iii).
The method of applying the adhesive or pressure-sensitive adhesive layer (ii) on the surface is not particularly limited, and is a spin coater, roll coater, slit coater, air knife coater, bar coater, spray coating, curtain coater, dip coater, die coater, gravure roll. A known method such as the above can be used.
さらに、本発明の積層フィルムには、本発明を損なわない範囲で必要に応じてコロナ処理、プラズマ処理、印刷、コーティング、蒸着等の表面加工、更にはミシン目加工などを施すことができ、用途に応じて本発明の積層フィルムを数枚重ねることも可能である。
Furthermore, the laminated film of the present invention can be subjected to surface treatment such as corona treatment, plasma treatment, printing, coating, vapor deposition, and further perforation as necessary within the range not impairing the present invention. Depending on the situation, it is possible to stack several laminated films of the present invention.
6.画像表示装置用積層体、画像表示装置
本発明の画像表示装置用積層体は、本発明の積層フィルムの少なくとも片面に、タッチパネル、画像表示パネル、表面保護パネル、位相差フィルム、偏光フィルム、カラーフィルター、及びフレキシブル基板からなる群より選択されるいずれか1種類以上を備える。
また、本発明の画像表示装置は、本発明の画像表示装置用積層体が設けられてなる。
タッチパネル、画像表示パネル、表面保護パネル、位相差フィルム、偏光フィルム、カラーフィルター、及びフレキシブル基板等の画像表示装置用部材を備える画像表示装置は、一般に、局所的に熱を帯び易く、発熱により機能が低下することがある。
本発明の積層フィルムは、薄膜であっても断熱性に優れ、かつ、加工性に優れるため、画像表示装置用部材及び画像表示装置に貼り合せ易く、画像表示装置用部材及び画像表示装置の重量化を抑制しながら、断熱することができ、画像表示装置用部材及び画像表示装置の機能低下を抑制することができる。 6). Laminated body for image display apparatus, image display apparatus The laminated body for image display apparatus of the present invention has a touch panel, an image display panel, a surface protection panel, a retardation film, a polarizing film, a color filter on at least one side of the laminated film of the present invention. And any one or more selected from the group consisting of flexible substrates.
The image display device of the present invention is provided with the laminate for an image display device of the present invention.
An image display device including members for an image display device such as a touch panel, an image display panel, a surface protection panel, a retardation film, a polarizing film, a color filter, and a flexible substrate is generally easily heated and functions by heat generation. May decrease.
The laminated film of the present invention is excellent in heat insulation and processability even if it is a thin film. Therefore, it is easy to be bonded to a member for an image display device and an image display device, and the weight of the member for an image display device and the image display device. It is possible to perform heat insulation while suppressing the reduction of the function, and it is possible to suppress the functional deterioration of the image display device member and the image display device.
本発明の画像表示装置用積層体は、本発明の積層フィルムの少なくとも片面に、タッチパネル、画像表示パネル、表面保護パネル、位相差フィルム、偏光フィルム、カラーフィルター、及びフレキシブル基板からなる群より選択されるいずれか1種類以上を備える。
また、本発明の画像表示装置は、本発明の画像表示装置用積層体が設けられてなる。
タッチパネル、画像表示パネル、表面保護パネル、位相差フィルム、偏光フィルム、カラーフィルター、及びフレキシブル基板等の画像表示装置用部材を備える画像表示装置は、一般に、局所的に熱を帯び易く、発熱により機能が低下することがある。
本発明の積層フィルムは、薄膜であっても断熱性に優れ、かつ、加工性に優れるため、画像表示装置用部材及び画像表示装置に貼り合せ易く、画像表示装置用部材及び画像表示装置の重量化を抑制しながら、断熱することができ、画像表示装置用部材及び画像表示装置の機能低下を抑制することができる。 6). Laminated body for image display apparatus, image display apparatus The laminated body for image display apparatus of the present invention has a touch panel, an image display panel, a surface protection panel, a retardation film, a polarizing film, a color filter on at least one side of the laminated film of the present invention. And any one or more selected from the group consisting of flexible substrates.
The image display device of the present invention is provided with the laminate for an image display device of the present invention.
An image display device including members for an image display device such as a touch panel, an image display panel, a surface protection panel, a retardation film, a polarizing film, a color filter, and a flexible substrate is generally easily heated and functions by heat generation. May decrease.
The laminated film of the present invention is excellent in heat insulation and processability even if it is a thin film. Therefore, it is easy to be bonded to a member for an image display device and an image display device, and the weight of the member for an image display device and the image display device. It is possible to perform heat insulation while suppressing the reduction of the function, and it is possible to suppress the functional deterioration of the image display device member and the image display device.
以下に実施例および比較例を示し、本発明の積層フィルムについてさらに詳しく説明するが、本発明は何ら制限を受けるものではない。
Examples and Comparative Examples are shown below, and the laminated film of the present invention will be described in more detail. However, the present invention is not limited at all.
<多孔層(I)>
(プロピレン系樹脂(A))
・A-1;ホモポリプロピレン(ノバテックPP FY6HA、MFR:2.4g/10分[230℃、2.16kg荷重]、Mw/Mn=3.2、日本ポリプロ社製)
(β晶核剤)
・C-1;3,9-ビス[4-(N-シクロヘキシルカルバモイル)フェニル]-2,4,8,10-テトラオキサスピロ[5,5]ウンデカン
(酸化防止剤)
・D-1;トリス(2,4-ジ-t-ブチルフェニル)ホスファイトとテトラキス[3-(3’,5’-ジ-t-ブチル-4’-ヒドロキシフェニル)プロピオン酸]ペンタエリスリトールとの1:1混合物(IRGANOX-B225、BASF社製)
(エラストマー)
・E-1;スチレン-エチレン/プロピレン-スチレンブロック共重合体(SEPS、SEPTON2005、MFR:流動せず、クラレ社製) <Porous layer (I)>
(Propylene resin (A))
A-1: Homopolypropylene (Novatech PP FY6HA, MFR: 2.4 g / 10 min [230 ° C., 2.16 kg load], Mw / Mn = 3.2, manufactured by Nippon Polypro Co., Ltd.)
(Β crystal nucleating agent)
C-1; 3,9-bis [4- (N-cyclohexylcarbamoyl) phenyl] -2,4,8,10-tetraoxaspiro [5,5] undecane
(Antioxidant)
D-1; tris (2,4-di-t-butylphenyl) phosphite and tetrakis [3- (3 ′, 5′-di-t-butyl-4′-hydroxyphenyl) propionic acid] pentaerythritol 1: 1 mixture (IRGANOX-B225, manufactured by BASF)
(Elastomer)
E-1: Styrene-ethylene / propylene-styrene block copolymer (SEPS, SEPTON 2005, MFR: not flowing, manufactured by Kuraray Co., Ltd.)
(プロピレン系樹脂(A))
・A-1;ホモポリプロピレン(ノバテックPP FY6HA、MFR:2.4g/10分[230℃、2.16kg荷重]、Mw/Mn=3.2、日本ポリプロ社製)
(β晶核剤)
・C-1;3,9-ビス[4-(N-シクロヘキシルカルバモイル)フェニル]-2,4,8,10-テトラオキサスピロ[5,5]ウンデカン
(酸化防止剤)
・D-1;トリス(2,4-ジ-t-ブチルフェニル)ホスファイトとテトラキス[3-(3’,5’-ジ-t-ブチル-4’-ヒドロキシフェニル)プロピオン酸]ペンタエリスリトールとの1:1混合物(IRGANOX-B225、BASF社製)
(エラストマー)
・E-1;スチレン-エチレン/プロピレン-スチレンブロック共重合体(SEPS、SEPTON2005、MFR:流動せず、クラレ社製) <Porous layer (I)>
(Propylene resin (A))
A-1: Homopolypropylene (Novatech PP FY6HA, MFR: 2.4 g / 10 min [230 ° C., 2.16 kg load], Mw / Mn = 3.2, manufactured by Nippon Polypro Co., Ltd.)
(Β crystal nucleating agent)
C-1; 3,9-bis [4- (N-cyclohexylcarbamoyl) phenyl] -2,4,8,10-tetraoxaspiro [5,5] undecane
(Antioxidant)
D-1; tris (2,4-di-t-butylphenyl) phosphite and tetrakis [3- (3 ′, 5′-di-t-butyl-4′-hydroxyphenyl) propionic acid] pentaerythritol 1: 1 mixture (IRGANOX-B225, manufactured by BASF)
(Elastomer)
E-1: Styrene-ethylene / propylene-styrene block copolymer (SEPS, SEPTON 2005, MFR: not flowing, manufactured by Kuraray Co., Ltd.)
<層(II)>
(プロピレン系樹脂(B))
・B-1;ランダムポリプロピレン(プライムTPO F3910、MFR:4.5g/10分、プライムポリマー社製) <Layer (II)>
(Propylene resin (B))
B-1: random polypropylene (Prime TPO F3910, MFR: 4.5 g / 10 min, manufactured by Prime Polymer Co., Ltd.)
(プロピレン系樹脂(B))
・B-1;ランダムポリプロピレン(プライムTPO F3910、MFR:4.5g/10分、プライムポリマー社製) <Layer (II)>
(Propylene resin (B))
B-1: random polypropylene (Prime TPO F3910, MFR: 4.5 g / 10 min, manufactured by Prime Polymer Co., Ltd.)
<粘着層(III)>
粘着剤のゴム成分として、スチレン系エラストマー(スチレン‐エチレン/ブチレン‐スチレンブロック共重合体、グレード名;SEPTON8006、スチレン含有量=33%、MFR=流動せず、クラレ社製)100質量%と、可塑剤に液状イソプレン樹脂(水素添加液状イソプレンゴム、クラプレンLIR-290、数平均分子量31,000)100質量%と、希釈溶剤としてトルエン(ナカライテスク株式会社製、濃度:99.0%以上、SP値:18.2)を固形分濃度12%となるように添加し、混合して、粘着層(III)形成用の塗布用粘着剤(F-1)を調製した。 <Adhesive layer (III)>
As a rubber component of the pressure-sensitive adhesive, 100% by mass of a styrene-based elastomer (styrene-ethylene / butylene-styrene block copolymer, grade name: SEPTON 8006, styrene content = 33%, MFR = non-flowing, manufactured by Kuraray Co., Ltd.) Liquid plastic isoprene resin (hydrogenated liquid isoprene rubber, Claprene LIR-290, number average molecular weight 31,000) as plasticizer and toluene (manufactured by Nacalai Tesque, concentration: 99.0% or more, SP) Value: 18.2) was added to a solid content concentration of 12% and mixed to prepare a coating pressure-sensitive adhesive (F-1) for forming a pressure-sensitive adhesive layer (III).
粘着剤のゴム成分として、スチレン系エラストマー(スチレン‐エチレン/ブチレン‐スチレンブロック共重合体、グレード名;SEPTON8006、スチレン含有量=33%、MFR=流動せず、クラレ社製)100質量%と、可塑剤に液状イソプレン樹脂(水素添加液状イソプレンゴム、クラプレンLIR-290、数平均分子量31,000)100質量%と、希釈溶剤としてトルエン(ナカライテスク株式会社製、濃度:99.0%以上、SP値:18.2)を固形分濃度12%となるように添加し、混合して、粘着層(III)形成用の塗布用粘着剤(F-1)を調製した。 <Adhesive layer (III)>
As a rubber component of the pressure-sensitive adhesive, 100% by mass of a styrene-based elastomer (styrene-ethylene / butylene-styrene block copolymer, grade name: SEPTON 8006, styrene content = 33%, MFR = non-flowing, manufactured by Kuraray Co., Ltd.) Liquid plastic isoprene resin (hydrogenated liquid isoprene rubber, Claprene LIR-290, number average molecular weight 31,000) as plasticizer and toluene (manufactured by Nacalai Tesque, concentration: 99.0% or more, SP) Value: 18.2) was added to a solid content concentration of 12% and mixed to prepare a coating pressure-sensitive adhesive (F-1) for forming a pressure-sensitive adhesive layer (III).
(実施例1)
プロピレン系樹脂(A-1)100質量部、β晶核剤(C-1)0.2質量部、酸化防止剤(D-1)0.1質量部を混合して、二軸押出機にて280℃で溶融押出することで混合物1を得た。リップ開度1mmのTダイで表裏層側押出機にプロピレン系樹脂(B-1)、中層側押出機に前記混合物1を用いて成形を行い、キャストロールに導かれて積層無孔膜状物(未延伸フィルム)を得た。なお、積層無孔膜状物(未延伸フィルム)の表層[層(II)]/中層[層(I)]/裏層[層(II)]の厚みは、表1の「未延伸フィルム」欄の「層(II)/層(I)/層(II) 厚み比」に示す厚みとした。その後、積層無孔膜状物は縦延伸機を用いて、105℃に設定したロール間において、ドロー比65%を3段(縦延伸倍率4.5倍)掛けて縦延伸を行った。縦延伸後のフィルムは、フィルムテンター設備(京都機械社製)にて、予熱温度150℃、予熱時間12秒間で予熱した後、延伸温度150℃で横方向に3.5倍延伸した後、155℃で熱処理を行い、樹脂フィルム(延伸フィルム)を得た。得られた樹脂フィルムの評価結果を表1に纏める。また、得られた樹脂フィルムをTD方向に切断した断面を走査型電子顕微鏡(SEM)にて撮影した断面像を図1に示す。 Example 1
100 parts by mass of propylene resin (A-1), 0.2 part by mass of β-crystal nucleating agent (C-1) and 0.1 part by mass of antioxidant (D-1) were mixed and mixed in a twin screw extruder. The mixture 1 was obtained by melt extrusion at 280 ° C. Formed with a T-die with a lip opening of 1 mm using propylene resin (B-1) for the front and back layer side extruder and the mixture 1 for the middle layer side extruder, led to the cast roll and laminated non-porous film-like material (Unstretched film) was obtained. The thickness of the surface layer [layer (II)] / intermediate layer [layer (I)] / back layer [layer (II)] of the laminated non-porous film (unstretched film) is “unstretched film” in Table 1. The thickness shown in the column “Layer (II) / Layer (I) / Layer (II) Thickness Ratio”. Thereafter, the laminated non-porous film-like material was longitudinally stretched by using a longitudinal stretching machine between rolls set at 105 ° C. with a draw ratio of 65% multiplied by 3 stages (longitudinal stretching ratio: 4.5 times). The film after longitudinal stretching was preheated at a preheating temperature of 150 ° C. and a preheating time of 12 seconds in a film tenter facility (manufactured by Kyoto Machine Co., Ltd.), and then stretched 3.5 times in the transverse direction at a stretching temperature of 150 ° C. Heat treatment was performed at 0 ° C. to obtain a resin film (stretched film). The evaluation results of the obtained resin film are summarized in Table 1. Moreover, the cross-sectional image which image | photographed the cross section which cut | disconnected the obtained resin film in TD direction with the scanning electron microscope (SEM) is shown in FIG.
プロピレン系樹脂(A-1)100質量部、β晶核剤(C-1)0.2質量部、酸化防止剤(D-1)0.1質量部を混合して、二軸押出機にて280℃で溶融押出することで混合物1を得た。リップ開度1mmのTダイで表裏層側押出機にプロピレン系樹脂(B-1)、中層側押出機に前記混合物1を用いて成形を行い、キャストロールに導かれて積層無孔膜状物(未延伸フィルム)を得た。なお、積層無孔膜状物(未延伸フィルム)の表層[層(II)]/中層[層(I)]/裏層[層(II)]の厚みは、表1の「未延伸フィルム」欄の「層(II)/層(I)/層(II) 厚み比」に示す厚みとした。その後、積層無孔膜状物は縦延伸機を用いて、105℃に設定したロール間において、ドロー比65%を3段(縦延伸倍率4.5倍)掛けて縦延伸を行った。縦延伸後のフィルムは、フィルムテンター設備(京都機械社製)にて、予熱温度150℃、予熱時間12秒間で予熱した後、延伸温度150℃で横方向に3.5倍延伸した後、155℃で熱処理を行い、樹脂フィルム(延伸フィルム)を得た。得られた樹脂フィルムの評価結果を表1に纏める。また、得られた樹脂フィルムをTD方向に切断した断面を走査型電子顕微鏡(SEM)にて撮影した断面像を図1に示す。 Example 1
100 parts by mass of propylene resin (A-1), 0.2 part by mass of β-crystal nucleating agent (C-1) and 0.1 part by mass of antioxidant (D-1) were mixed and mixed in a twin screw extruder. The mixture 1 was obtained by melt extrusion at 280 ° C. Formed with a T-die with a lip opening of 1 mm using propylene resin (B-1) for the front and back layer side extruder and the mixture 1 for the middle layer side extruder, led to the cast roll and laminated non-porous film-like material (Unstretched film) was obtained. The thickness of the surface layer [layer (II)] / intermediate layer [layer (I)] / back layer [layer (II)] of the laminated non-porous film (unstretched film) is “unstretched film” in Table 1. The thickness shown in the column “Layer (II) / Layer (I) / Layer (II) Thickness Ratio”. Thereafter, the laminated non-porous film-like material was longitudinally stretched by using a longitudinal stretching machine between rolls set at 105 ° C. with a draw ratio of 65% multiplied by 3 stages (longitudinal stretching ratio: 4.5 times). The film after longitudinal stretching was preheated at a preheating temperature of 150 ° C. and a preheating time of 12 seconds in a film tenter facility (manufactured by Kyoto Machine Co., Ltd.), and then stretched 3.5 times in the transverse direction at a stretching temperature of 150 ° C. Heat treatment was performed at 0 ° C. to obtain a resin film (stretched film). The evaluation results of the obtained resin film are summarized in Table 1. Moreover, the cross-sectional image which image | photographed the cross section which cut | disconnected the obtained resin film in TD direction with the scanning electron microscope (SEM) is shown in FIG.
得られた樹脂フィルムの片面に、塗布用粘着剤(F-1)を測定試料に対して、50番手のバーコーターを用いて塗布し、80℃にて1分乾燥し、粘着層(III)を備えた積層フィルムを製造した。
On one side of the obtained resin film, the adhesive (F-1) for application was applied to the measurement sample using a 50th bar coater, dried at 80 ° C. for 1 minute, and the adhesive layer (III) A laminated film provided with
(比較例1)
リップ開度1mmのTダイで混合物1を用いて成形を行い、キャストロールに導かれて無孔膜状物を得た。その後、実施例1と同様の方法で縦延伸、横延伸を行い、樹脂フィルムを得た。得られた樹脂フィルムの片面に、塗布用粘着剤(F-1)を塗布して粘着層(III)を備えた積層フィルムを得た。得られた樹脂フィルムの評価結果を表1に纏める。 (Comparative Example 1)
Molding was performed using the mixture 1 with a T die having a lip opening of 1 mm, and the film was guided to a cast roll to obtain a nonporous film-like material. Thereafter, longitudinal stretching and lateral stretching were performed in the same manner as in Example 1 to obtain a resin film. On one side of the obtained resin film, a coating adhesive (F-1) was applied to obtain a laminated film provided with an adhesive layer (III). The evaluation results of the obtained resin film are summarized in Table 1.
リップ開度1mmのTダイで混合物1を用いて成形を行い、キャストロールに導かれて無孔膜状物を得た。その後、実施例1と同様の方法で縦延伸、横延伸を行い、樹脂フィルムを得た。得られた樹脂フィルムの片面に、塗布用粘着剤(F-1)を塗布して粘着層(III)を備えた積層フィルムを得た。得られた樹脂フィルムの評価結果を表1に纏める。 (Comparative Example 1)
Molding was performed using the mixture 1 with a T die having a lip opening of 1 mm, and the film was guided to a cast roll to obtain a nonporous film-like material. Thereafter, longitudinal stretching and lateral stretching were performed in the same manner as in Example 1 to obtain a resin film. On one side of the obtained resin film, a coating adhesive (F-1) was applied to obtain a laminated film provided with an adhesive layer (III). The evaluation results of the obtained resin film are summarized in Table 1.
(比較例2)
リップ開度1mmのTダイで押出機にプロピレン系樹脂(A-1)を用いて成形を行い、無孔膜状物を得た。その後、実施例1と同様の方法で縦延伸、横延伸を行うことによって樹脂フィルムを得た。得られた樹脂フィルムの片面に、塗布用粘着剤(F-1)を塗布して粘着層(III)を備えた積層フィルムを得た。得られた樹脂フィルムの評価結果を表1に纏める。 (Comparative Example 2)
Using a T-die with a lip opening of 1 mm, molding was performed using propylene-based resin (A-1) in an extruder to obtain a nonporous film. Then, the resin film was obtained by performing longitudinal stretch and lateral stretch by the method similar to Example 1. FIG. On one side of the obtained resin film, a coating adhesive (F-1) was applied to obtain a laminated film provided with an adhesive layer (III). The evaluation results of the obtained resin film are summarized in Table 1.
リップ開度1mmのTダイで押出機にプロピレン系樹脂(A-1)を用いて成形を行い、無孔膜状物を得た。その後、実施例1と同様の方法で縦延伸、横延伸を行うことによって樹脂フィルムを得た。得られた樹脂フィルムの片面に、塗布用粘着剤(F-1)を塗布して粘着層(III)を備えた積層フィルムを得た。得られた樹脂フィルムの評価結果を表1に纏める。 (Comparative Example 2)
Using a T-die with a lip opening of 1 mm, molding was performed using propylene-based resin (A-1) in an extruder to obtain a nonporous film. Then, the resin film was obtained by performing longitudinal stretch and lateral stretch by the method similar to Example 1. FIG. On one side of the obtained resin film, a coating adhesive (F-1) was applied to obtain a laminated film provided with an adhesive layer (III). The evaluation results of the obtained resin film are summarized in Table 1.
実施例および比較例で得られたフィルムに関して、フィルム厚み、空孔率、孔の存在比(NA)、透気度、熱伝導率、溶剤の染込み、粘着剤塗布後の空孔率について以下の方法で測定した。
なお、空孔率、孔の存在比、透気度、熱伝導率、及びフィルム厚みは、粘着層(III)を形成する前の樹脂フィルムについて測定した。更に、実施例1に関しては、粘着層(III)を備えたフィルムについても測定した。 Regard the films obtained in Examples and Comparative Examples, the film thickness, porosity, abundance of holes (N A), an air permeability, thermal conductivity, solvent penetration, the porosity after the adhesive coating It measured by the following method.
In addition, the porosity, the abundance ratio, the air permeability, the thermal conductivity, and the film thickness were measured on the resin film before forming the adhesive layer (III). Furthermore, regarding Example 1, the film provided with the adhesive layer (III) was also measured.
なお、空孔率、孔の存在比、透気度、熱伝導率、及びフィルム厚みは、粘着層(III)を形成する前の樹脂フィルムについて測定した。更に、実施例1に関しては、粘着層(III)を備えたフィルムについても測定した。 Regard the films obtained in Examples and Comparative Examples, the film thickness, porosity, abundance of holes (N A), an air permeability, thermal conductivity, solvent penetration, the porosity after the adhesive coating It measured by the following method.
In addition, the porosity, the abundance ratio, the air permeability, the thermal conductivity, and the film thickness were measured on the resin film before forming the adhesive layer (III). Furthermore, regarding Example 1, the film provided with the adhesive layer (III) was also measured.
(1)フィルム厚み
実施例及び比較例の未延伸フィルム(積層無孔膜状物)及び樹脂フィルムについて、1/1000mmのダイアルゲージを用いて無作為に10点測定して、その平均値を厚みとした。 (1) Film thickness For the unstretched film (laminated non-porous film-like material) and resin film of Examples and Comparative Examples, 10 points were randomly measured using a dial gauge of 1/1000 mm, and the average value was measured. It was.
実施例及び比較例の未延伸フィルム(積層無孔膜状物)及び樹脂フィルムについて、1/1000mmのダイアルゲージを用いて無作為に10点測定して、その平均値を厚みとした。 (1) Film thickness For the unstretched film (laminated non-porous film-like material) and resin film of Examples and Comparative Examples, 10 points were randomly measured using a dial gauge of 1/1000 mm, and the average value was measured. It was.
(2)空孔率
(i)空孔率P1
樹脂フィルムの実質量W1を測定し、樹脂組成物の密度に基づいて空孔率が0%の場合の質量W0を計算し、これらの値から下記式に基づいて空孔率を算出した。
空孔率(%)={(W0-W1)/W0}×100
(ii)積層フィルムの空孔率
積層フィルムの実質量W1を測定し、樹脂組成物の密度に基づいて空孔率が0%の場合の質量W0を計算し、これらの値から下記式に基づいて空孔率を算出した。
空孔率(%)={(W0-W1)/W0}×100 (2) Porosity (i) Porosity P1
The substantial amount W1 of the resin film was measured, the mass W0 when the porosity was 0% was calculated based on the density of the resin composition, and the porosity was calculated based on the following formula from these values.
Porosity (%) = {(W0−W1) / W0} × 100
(Ii) Porosity of laminated film A substantial amount W1 of the laminated film is measured, and a mass W0 when the porosity is 0% is calculated based on the density of the resin composition. The porosity was calculated.
Porosity (%) = {(W0−W1) / W0} × 100
(i)空孔率P1
樹脂フィルムの実質量W1を測定し、樹脂組成物の密度に基づいて空孔率が0%の場合の質量W0を計算し、これらの値から下記式に基づいて空孔率を算出した。
空孔率(%)={(W0-W1)/W0}×100
(ii)積層フィルムの空孔率
積層フィルムの実質量W1を測定し、樹脂組成物の密度に基づいて空孔率が0%の場合の質量W0を計算し、これらの値から下記式に基づいて空孔率を算出した。
空孔率(%)={(W0-W1)/W0}×100 (2) Porosity (i) Porosity P1
The substantial amount W1 of the resin film was measured, the mass W0 when the porosity was 0% was calculated based on the density of the resin composition, and the porosity was calculated based on the following formula from these values.
Porosity (%) = {(W0−W1) / W0} × 100
(Ii) Porosity of laminated film A substantial amount W1 of the laminated film is measured, and a mass W0 when the porosity is 0% is calculated based on the density of the resin composition. The porosity was calculated.
Porosity (%) = {(W0−W1) / W0} × 100
(3)孔の存在比
測定試料をTD方向に切断した断面を、走査型電子顕微鏡(SEM)(「株式会社日立ハイテクノロジーズ社製 S-4500」)にて多孔層(I)と層(II)が形成されていることを目視で確認した。多孔層(I)に関して、Image Metorology社製イメージ解析ソフトウェア「SPIP(バージョン6.6.4)」を用いて画像処理を行った。画像処理方法として、検出方法を閾値とし、検出を孔とし、閾値タイプを固定レベルとし、孔閾値レベルを80Arbitaryとし、フィルターによる孔範囲の規定を行わずに、出力において面積を選択することで、それぞれの孔の面積を計測した後、多孔層(I)における孔面積3μm2以上である孔の存在比(NA)を算出した。
存在比(NA)が式(1)(NA≦1)を満たすものをY、満たさないものをNとして表1に示した。 (3) Abundance ratio of pores A cross section of the measurement sample cut in the TD direction was measured with a scanning electron microscope (SEM) ("S-4500 manufactured by Hitachi High-Technologies Corporation") and the porous layers (I) and (II) ) Was visually confirmed. Regarding the porous layer (I), image processing was performed using image analysis software “SPIP (version 6.6.4)” manufactured by Image Metrology. As an image processing method, the detection method is set as a threshold, the detection is set as a hole, the threshold type is set as a fixed level, the hole threshold level is set as 80 Arbitrary, and the area is selected in the output without defining the hole range by a filter. After measuring the area of each pore, the abundance ratio (N A ) of pores having a pore area of 3 μm 2 or more in the porous layer (I) was calculated.
Table 1 shows that the abundance ratio (N A ) satisfies the formula (1) (N A ≦ 1) as Y, and that the abundance ratio does not satisfy N as N.
測定試料をTD方向に切断した断面を、走査型電子顕微鏡(SEM)(「株式会社日立ハイテクノロジーズ社製 S-4500」)にて多孔層(I)と層(II)が形成されていることを目視で確認した。多孔層(I)に関して、Image Metorology社製イメージ解析ソフトウェア「SPIP(バージョン6.6.4)」を用いて画像処理を行った。画像処理方法として、検出方法を閾値とし、検出を孔とし、閾値タイプを固定レベルとし、孔閾値レベルを80Arbitaryとし、フィルターによる孔範囲の規定を行わずに、出力において面積を選択することで、それぞれの孔の面積を計測した後、多孔層(I)における孔面積3μm2以上である孔の存在比(NA)を算出した。
存在比(NA)が式(1)(NA≦1)を満たすものをY、満たさないものをNとして表1に示した。 (3) Abundance ratio of pores A cross section of the measurement sample cut in the TD direction was measured with a scanning electron microscope (SEM) ("S-4500 manufactured by Hitachi High-Technologies Corporation") and the porous layers (I) and (II) ) Was visually confirmed. Regarding the porous layer (I), image processing was performed using image analysis software “SPIP (version 6.6.4)” manufactured by Image Metrology. As an image processing method, the detection method is set as a threshold, the detection is set as a hole, the threshold type is set as a fixed level, the hole threshold level is set as 80 Arbitrary, and the area is selected in the output without defining the hole range by a filter. After measuring the area of each pore, the abundance ratio (N A ) of pores having a pore area of 3 μm 2 or more in the porous layer (I) was calculated.
Table 1 shows that the abundance ratio (N A ) satisfies the formula (1) (N A ≦ 1) as Y, and that the abundance ratio does not satisfy N as N.
(4)25℃での透気度
25℃の空気雰囲気下にて、JIS P8117に準拠して透気度を測定した。測定機器として、デジタル型王研式透気度専用機(旭精工社製)を用いた。 (4) Air permeability at 25 ° C. In the air atmosphere at 25 ° C., the air permeability was measured according to JIS P8117. As a measuring instrument, a digital type Oken type air permeability dedicated machine (Asahi Seiko Co., Ltd.) was used.
25℃の空気雰囲気下にて、JIS P8117に準拠して透気度を測定した。測定機器として、デジタル型王研式透気度専用機(旭精工社製)を用いた。 (4) Air permeability at 25 ° C. In the air atmosphere at 25 ° C., the air permeability was measured according to JIS P8117. As a measuring instrument, a digital type Oken type air permeability dedicated machine (Asahi Seiko Co., Ltd.) was used.
(5)熱伝導率
測定試料を10mm角に切り出して厚みをマイクロメータで測定した後、グラファイトスプレーにて黒化処理した後、キセノンフラッシュ法(NETZSCH社製、型式:LFA447 nanoflash)を用いて熱拡散率を評価した。この値を寸法、質量から計算した、かさ密度、示差走査型熱量計(Perkin Elmer製DSC Pyris1)で測定した比熱との積から熱伝導率を求めた。 (5) Thermal conductivity After cutting a measurement sample into 10 mm square and measuring the thickness with a micrometer, the sample was blackened with graphite spray, and then heated using a xenon flash method (manufactured by NETZSCH, model: LFA447 nanoflash). The diffusion rate was evaluated. The thermal conductivity was determined from the product of this value calculated from the size and mass, the bulk density, and the specific heat measured with a differential scanning calorimeter (DSC Pyris 1 manufactured by Perkin Elmer).
測定試料を10mm角に切り出して厚みをマイクロメータで測定した後、グラファイトスプレーにて黒化処理した後、キセノンフラッシュ法(NETZSCH社製、型式:LFA447 nanoflash)を用いて熱拡散率を評価した。この値を寸法、質量から計算した、かさ密度、示差走査型熱量計(Perkin Elmer製DSC Pyris1)で測定した比熱との積から熱伝導率を求めた。 (5) Thermal conductivity After cutting a measurement sample into 10 mm square and measuring the thickness with a micrometer, the sample was blackened with graphite spray, and then heated using a xenon flash method (manufactured by NETZSCH, model: LFA447 nanoflash). The diffusion rate was evaluated. The thermal conductivity was determined from the product of this value calculated from the size and mass, the bulk density, and the specific heat measured with a differential scanning calorimeter (DSC Pyris 1 manufactured by Perkin Elmer).
(6)溶剤の染込み
測定試料に対する溶剤の染込みを、溶解度パラメータ(SP値)の異なる溶剤である以下3種を測定試料に滴下し、目視にて評価した。以下に評価基準を明記する。なお、SP値に関する詳細は、高分子材料の耐久性(工業調査会、1993)などに明記された値を参考として使用した。
(1)ノルマルヘキサン(ナカライテスク社製、濃度:95.0%以上、SP値:14.7)
(2)アセトン(ナカライテスク社製、濃度:99.0%以上、SP値:20.1)
(3)エタノール(ナカライテスク社製、濃度:99.5%以上、SP値:26.2)
A:溶剤が表面上に残り、フィルムに染込みを生じない
C:溶剤が表面上に残らず、フィルムに染込みを生じる
SP値の異なる溶剤を測定試料に滴下し、染込みを確認することで、上記3種のSP値範囲内の溶剤に関して、測定試料に対する染込みの有無を簡易に確認できる。 (6) Solvent soaking The following 3 types of solvents having different solubility parameters (SP values) were dripped into the measuring sample, and the solvent soaking into the measuring sample was visually evaluated. The evaluation criteria are specified below. For details regarding the SP value, values specified in the durability of the polymer material (Industry Research Committee, 1993) and the like were used as a reference.
(1) Normal hexane (Nacalai Tesque, concentration: 95.0% or more, SP value: 14.7)
(2) Acetone (Nacalai Tesque, concentration: 99.0% or more, SP value: 20.1)
(3) Ethanol (Nacalai Tesque, concentration: 99.5% or more, SP value: 26.2)
A: Solvent remains on the surface and does not cause stain on the film C: Solvent does not remain on the surface and causes stain on the film Dropping a solvent with a different SP value on the measurement sample and confirming the penetration Thus, with respect to the solvents within the above three SP value ranges, it is possible to easily confirm the presence or absence of permeation into the measurement sample.
測定試料に対する溶剤の染込みを、溶解度パラメータ(SP値)の異なる溶剤である以下3種を測定試料に滴下し、目視にて評価した。以下に評価基準を明記する。なお、SP値に関する詳細は、高分子材料の耐久性(工業調査会、1993)などに明記された値を参考として使用した。
(1)ノルマルヘキサン(ナカライテスク社製、濃度:95.0%以上、SP値:14.7)
(2)アセトン(ナカライテスク社製、濃度:99.0%以上、SP値:20.1)
(3)エタノール(ナカライテスク社製、濃度:99.5%以上、SP値:26.2)
A:溶剤が表面上に残り、フィルムに染込みを生じない
C:溶剤が表面上に残らず、フィルムに染込みを生じる
SP値の異なる溶剤を測定試料に滴下し、染込みを確認することで、上記3種のSP値範囲内の溶剤に関して、測定試料に対する染込みの有無を簡易に確認できる。 (6) Solvent soaking The following 3 types of solvents having different solubility parameters (SP values) were dripped into the measuring sample, and the solvent soaking into the measuring sample was visually evaluated. The evaluation criteria are specified below. For details regarding the SP value, values specified in the durability of the polymer material (Industry Research Committee, 1993) and the like were used as a reference.
(1) Normal hexane (Nacalai Tesque, concentration: 95.0% or more, SP value: 14.7)
(2) Acetone (Nacalai Tesque, concentration: 99.0% or more, SP value: 20.1)
(3) Ethanol (Nacalai Tesque, concentration: 99.5% or more, SP value: 26.2)
A: Solvent remains on the surface and does not cause stain on the film C: Solvent does not remain on the surface and causes stain on the film Dropping a solvent with a different SP value on the measurement sample and confirming the penetration Thus, with respect to the solvents within the above three SP value ranges, it is possible to easily confirm the presence or absence of permeation into the measurement sample.
(7)粘着剤塗布後の樹脂フィルムの空孔率(P2)
各樹脂フィルムに、調製した粘着剤(F-1)を測定試料に対して、50番手のバーコーターを用いて塗布し、80℃にて1分乾燥後、PETフィルム(三菱樹脂社製、ダイアホイル S100-50、厚み=50μm)を貼りつけ測定サンプルとした。同様の方法でPETフィルム上に、調製した粘着剤を塗布、乾燥し比較サンプルとした。測定サンプルの質量から比較サンプルの質量を引くことで、樹脂フィルムの実質量W2を算出した。樹脂フィルムを構成する樹脂組成物の密度に基づいて空孔率が0%の場合の質量W0を計算し、これらの値から下記式に基づいて、空孔率P2を算出した。
空孔率(%)={(W0-W2)/W0}×100
樹脂フィルムの空孔率P1(%)と、積層フィルムの片面に粘着剤を塗布した際の樹脂フィルムの空孔率P2(%)より、以下式(2)に従って比較することで、測定試料に対する粘着剤の染込みを評価した。
式(2): P1-P2<3
Y:式(2)を満たす。
N:式(2)を満たさない。 (7) Porosity of resin film after application of adhesive (P2)
The prepared pressure sensitive adhesive (F-1) was applied to each resin film using a 50th bar coater on the measurement sample, dried at 80 ° C. for 1 minute, and then a PET film (manufactured by Mitsubishi Plastics, Dia. Foil S100-50, thickness = 50 μm) was applied as a measurement sample. In the same manner, the prepared pressure-sensitive adhesive was applied on a PET film and dried to obtain a comparative sample. The substantial amount W2 of the resin film was calculated by subtracting the mass of the comparative sample from the mass of the measurement sample. Based on the density of the resin composition constituting the resin film, the mass W0 when the porosity was 0% was calculated, and the porosity P2 was calculated from these values based on the following formula.
Porosity (%) = {(W0−W2) / W0} × 100
From the porosity P1 (%) of the resin film and the porosity P2 (%) of the resin film when a pressure-sensitive adhesive is applied to one side of the laminated film, by comparing according to the following formula (2), The penetration of the adhesive was evaluated.
Formula (2): P1-P2 <3
Y: Formula (2) is satisfy | filled.
N: Expression (2) is not satisfied.
各樹脂フィルムに、調製した粘着剤(F-1)を測定試料に対して、50番手のバーコーターを用いて塗布し、80℃にて1分乾燥後、PETフィルム(三菱樹脂社製、ダイアホイル S100-50、厚み=50μm)を貼りつけ測定サンプルとした。同様の方法でPETフィルム上に、調製した粘着剤を塗布、乾燥し比較サンプルとした。測定サンプルの質量から比較サンプルの質量を引くことで、樹脂フィルムの実質量W2を算出した。樹脂フィルムを構成する樹脂組成物の密度に基づいて空孔率が0%の場合の質量W0を計算し、これらの値から下記式に基づいて、空孔率P2を算出した。
空孔率(%)={(W0-W2)/W0}×100
樹脂フィルムの空孔率P1(%)と、積層フィルムの片面に粘着剤を塗布した際の樹脂フィルムの空孔率P2(%)より、以下式(2)に従って比較することで、測定試料に対する粘着剤の染込みを評価した。
式(2): P1-P2<3
Y:式(2)を満たす。
N:式(2)を満たさない。 (7) Porosity of resin film after application of adhesive (P2)
The prepared pressure sensitive adhesive (F-1) was applied to each resin film using a 50th bar coater on the measurement sample, dried at 80 ° C. for 1 minute, and then a PET film (manufactured by Mitsubishi Plastics, Dia. Foil S100-50, thickness = 50 μm) was applied as a measurement sample. In the same manner, the prepared pressure-sensitive adhesive was applied on a PET film and dried to obtain a comparative sample. The substantial amount W2 of the resin film was calculated by subtracting the mass of the comparative sample from the mass of the measurement sample. Based on the density of the resin composition constituting the resin film, the mass W0 when the porosity was 0% was calculated, and the porosity P2 was calculated from these values based on the following formula.
Porosity (%) = {(W0−W2) / W0} × 100
From the porosity P1 (%) of the resin film and the porosity P2 (%) of the resin film when a pressure-sensitive adhesive is applied to one side of the laminated film, by comparing according to the following formula (2), The penetration of the adhesive was evaluated.
Formula (2): P1-P2 <3
Y: Formula (2) is satisfy | filled.
N: Expression (2) is not satisfied.
(8)β晶活性
実施例及び比較例の各樹脂フィルムのβ晶活性の有無について、示差走査型熱量計を用いて分析した。
具体的には、示差走査型熱量計(Perkin Elmer製DSC Pyris1)を用いて次のように行った。樹脂フィルムを25℃から240℃まで加熱速度10℃/分で昇温した後、1分間保持し、次に240℃から25℃まで冷却速度10℃/分で降温した後1分間保持することでβ晶を生成し、成長させた。さらに樹脂フィルムを25℃から240℃まで加熱速度10℃/分で再昇温させた際に、再昇温時にプロピレン系樹脂のβ晶に由来する結晶融解ピーク温度(145~160℃)が検出されたとき、β晶活性を有すると判断した。
β晶活性を有する樹脂フィルムをY、β晶活性を有しない樹脂フィルムをNとして表1に示した。 (8) β crystal activity The presence or absence of β crystal activity in each of the resin films of Examples and Comparative Examples was analyzed using a differential scanning calorimeter.
Specifically, a differential scanning calorimeter (DSC Pyris 1 manufactured by Perkin Elmer) was used as follows. The resin film was heated from 25 ° C. to 240 ° C. at a heating rate of 10 ° C./min, held for 1 minute, then cooled from 240 ° C. to 25 ° C. at a cooling rate of 10 ° C./min, and then held for 1 minute. β crystals were produced and grown. Furthermore, when the temperature of the resin film is raised again from 25 ° C to 240 ° C at a heating rate of 10 ° C / min, the crystal melting peak temperature (145 to 160 ° C) derived from the β crystal of the propylene-based resin is detected when the temperature is raised again. Was determined to have β crystal activity.
Table 1 shows the resin film having β crystal activity as Y and the resin film not having β crystal activity as N.
実施例及び比較例の各樹脂フィルムのβ晶活性の有無について、示差走査型熱量計を用いて分析した。
具体的には、示差走査型熱量計(Perkin Elmer製DSC Pyris1)を用いて次のように行った。樹脂フィルムを25℃から240℃まで加熱速度10℃/分で昇温した後、1分間保持し、次に240℃から25℃まで冷却速度10℃/分で降温した後1分間保持することでβ晶を生成し、成長させた。さらに樹脂フィルムを25℃から240℃まで加熱速度10℃/分で再昇温させた際に、再昇温時にプロピレン系樹脂のβ晶に由来する結晶融解ピーク温度(145~160℃)が検出されたとき、β晶活性を有すると判断した。
β晶活性を有する樹脂フィルムをY、β晶活性を有しない樹脂フィルムをNとして表1に示した。 (8) β crystal activity The presence or absence of β crystal activity in each of the resin films of Examples and Comparative Examples was analyzed using a differential scanning calorimeter.
Specifically, a differential scanning calorimeter (DSC Pyris 1 manufactured by Perkin Elmer) was used as follows. The resin film was heated from 25 ° C. to 240 ° C. at a heating rate of 10 ° C./min, held for 1 minute, then cooled from 240 ° C. to 25 ° C. at a cooling rate of 10 ° C./min, and then held for 1 minute. β crystals were produced and grown. Furthermore, when the temperature of the resin film is raised again from 25 ° C to 240 ° C at a heating rate of 10 ° C / min, the crystal melting peak temperature (145 to 160 ° C) derived from the β crystal of the propylene-based resin is detected when the temperature is raised again. Was determined to have β crystal activity.
Table 1 shows the resin film having β crystal activity as Y and the resin film not having β crystal activity as N.
表1に実施例、比較例に関する評価結果を示した。なお、表1中、「粘着層の有無」欄のYは、実施例又は比較例の積層フィルムが粘着層を有していることを意味する。
Table 1 shows the evaluation results regarding the examples and comparative examples. In Table 1, Y in the “Presence / absence of adhesive layer” column means that the laminated film of Examples or Comparative Examples has an adhesive layer.
実施例1は式(1)を満たし、多孔層(I)中に粗大な孔が少ないことで、熱伝導率を低減し、断熱性に優れる。さらに層(II)を有することで、他部材との組み合わせに伴う粘着剤塗布時も、空孔率変化を抑制し、断熱性低下を低減できる。
一方、層(II)(保護層)を有しない比較例1では、粘着剤塗布時に均一塗布が難しく、断熱性の低下が懸念される。
比較例2の多孔層(I)と層(II)(保護層)を有しないフィルムでは、熱伝導率の低下は見られない。
なお、実施例1において、粘着層を備えた状態での厚み、空孔率、透気度、多孔層の孔の存在比(NA)はそれぞれ、厚みは80μm、空孔率は57%、透気度は99999秒/dL、多孔層の孔の存在比(NA)は0個/100μm2であった。 Example 1 satisfies Formula (1), and there are few coarse pores in the porous layer (I), so that the thermal conductivity is reduced and the heat insulation is excellent. Furthermore, by having the layer (II), it is possible to suppress the change in porosity and to reduce the heat insulation property even when the adhesive is applied in combination with other members.
On the other hand, in Comparative Example 1 having no layer (II) (protective layer), uniform application is difficult at the time of application of the pressure-sensitive adhesive, and there is a concern that the heat insulating property is lowered.
In the film having no porous layer (I) and layer (II) (protective layer) of Comparative Example 2, no decrease in thermal conductivity is observed.
In Example 1, the thickness, porosity, air permeability, and pore abundance ratio (N A ) in the state provided with the adhesive layer were 80 μm in thickness, 57% in porosity, air permeability abundance of 99999 sec / dL, the porous layer hole (N a) was 0/100 [mu] m 2.
一方、層(II)(保護層)を有しない比較例1では、粘着剤塗布時に均一塗布が難しく、断熱性の低下が懸念される。
比較例2の多孔層(I)と層(II)(保護層)を有しないフィルムでは、熱伝導率の低下は見られない。
なお、実施例1において、粘着層を備えた状態での厚み、空孔率、透気度、多孔層の孔の存在比(NA)はそれぞれ、厚みは80μm、空孔率は57%、透気度は99999秒/dL、多孔層の孔の存在比(NA)は0個/100μm2であった。 Example 1 satisfies Formula (1), and there are few coarse pores in the porous layer (I), so that the thermal conductivity is reduced and the heat insulation is excellent. Furthermore, by having the layer (II), it is possible to suppress the change in porosity and to reduce the heat insulation property even when the adhesive is applied in combination with other members.
On the other hand, in Comparative Example 1 having no layer (II) (protective layer), uniform application is difficult at the time of application of the pressure-sensitive adhesive, and there is a concern that the heat insulating property is lowered.
In the film having no porous layer (I) and layer (II) (protective layer) of Comparative Example 2, no decrease in thermal conductivity is observed.
In Example 1, the thickness, porosity, air permeability, and pore abundance ratio (N A ) in the state provided with the adhesive layer were 80 μm in thickness, 57% in porosity, air permeability abundance of 99999 sec / dL, the porous layer hole (N a) was 0/100 [mu] m 2.
本発明の積層フィルムは、温度変化が大きな影響を及ぼす精密機器、家電製品、各種車輌の内装、住宅の壁、天井等、様々な製品に幅広く利用が期待でき、なかでも、薄膜化が可能なことから、設置スペースが限られる各種車輌の内装、モバイル電子機器分野にて、その利用が大いに期待できる。
The laminated film of the present invention can be widely used for various products such as precision equipment, home appliances, interiors of various vehicles, housing walls, ceilings, etc., which are greatly affected by temperature changes, and in particular, it can be thinned. Therefore, it can be expected to be used in the interior of various vehicles, where the installation space is limited, and in the field of mobile electronic devices.
Claims (7)
- プロピレン系樹脂(A)を主成分とする多孔層(I)と、
前記多孔層(I)の少なくとも片面に、プロピレン系樹脂(B)を主成分とする層(II)と、
前記層(II)の上に接着層又は粘着層と
を有し、
透気度が1000秒/dL以上、かつ、空孔率が50%以上である積層フィルム。 A porous layer (I) mainly composed of a propylene-based resin (A);
A layer (II) mainly composed of a propylene-based resin (B) on at least one surface of the porous layer (I);
Having an adhesive layer or an adhesive layer on the layer (II);
A laminated film having an air permeability of 1000 seconds / dL or more and a porosity of 50% or more. - 前記多孔層(I)と前記層(II)とを有する樹脂フィルムの熱伝導率が0.025W/mK未満である請求項1に記載の積層フィルム。 The laminated film according to claim 1, wherein the resin film having the porous layer (I) and the layer (II) has a thermal conductivity of less than 0.025 W / mK.
- 厚みが1μm以上300μm以下である請求項1又は2に記載の積層フィルム。 The laminated film according to claim 1 or 2, wherein the thickness is from 1 µm to 300 µm.
- 式(1)を満たす請求項1~3のいずれか1項に記載の積層フィルム。
式(1): NA≦1
〔NAは、前記多孔層(I)の断面における孔面積3μm2以上である孔の存在比(個/100μm2)を表す。〕 The laminated film according to any one of claims 1 to 3, which satisfies the formula (1).
Formula (1): N A ≦ 1
[N A represents the abundance ratio of the porous layer (I) of at open area 3 [mu] m 2 or more in a cross section hole (pieces / 100 [mu] m 2). ] - 前記多孔層(I)と前記層(II)とを有する樹脂フィルムの空孔率P1(%)と、積層フィルムにおける樹脂フィルムの空孔率P2(%)が下式(2)を満たす請求項1~4のいずれか1項に記載の積層フィルム。
式(2): P1-P2<3 The porosity P1 (%) of the resin film having the porous layer (I) and the layer (II) and the porosity P2 (%) of the resin film in the laminated film satisfy the following formula (2). 5. The laminated film according to any one of 1 to 4.
Formula (2): P1-P2 <3 - 請求項1~5のいずれか1項に記載の積層フィルムの少なくとも片面に、
タッチパネル、画像表示パネル、表面保護パネル、位相差フィルム、偏光フィルム、カラーフィルター、及びフレキシブル基板からなる群より選択されるいずれか1種類以上を備えた画像表示装置用積層体。 At least one surface of the laminated film according to any one of claims 1 to 5,
A laminate for an image display device, comprising at least one selected from the group consisting of a touch panel, an image display panel, a surface protection panel, a retardation film, a polarizing film, a color filter, and a flexible substrate. - 請求項6に記載の画像表示装置用積層体が設けられた画像表示装置。
An image display device provided with the laminate for an image display device according to claim 6.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020197025436A KR20190120228A (en) | 2017-03-02 | 2018-03-02 | Laminated film, laminated body for image display apparatus, and image display apparatus |
CN201880015327.2A CN110382647A (en) | 2017-03-02 | 2018-03-02 | Stacked film, device used for image display laminated body and image display device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-039834 | 2017-03-02 | ||
JP2017039834 | 2017-03-02 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018159812A1 true WO2018159812A1 (en) | 2018-09-07 |
Family
ID=63370086
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/008012 WO2018159812A1 (en) | 2017-03-02 | 2018-03-02 | Laminated film, laminate for image display device, and image display device |
Country Status (5)
Country | Link |
---|---|
JP (2) | JP7283032B2 (en) |
KR (1) | KR20190120228A (en) |
CN (1) | CN110382647A (en) |
TW (1) | TW201842109A (en) |
WO (1) | WO2018159812A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7215034B2 (en) * | 2018-09-19 | 2023-01-31 | 三菱ケミカル株式会社 | Laminated porous film |
JP7428044B2 (en) * | 2020-03-26 | 2024-02-06 | 三菱ケミカル株式会社 | piezoelectric sheet |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1060396A (en) * | 1996-08-26 | 1998-03-03 | Nippon Foil Mfg Co Ltd | Pressure-sensitive adhesive sheet for filling sleeve hole |
JP2010510368A (en) * | 2006-11-24 | 2010-04-02 | テーザ・ソシエタス・ヨーロピア | Joining means with high impact resistance |
WO2016047272A1 (en) * | 2014-09-25 | 2016-03-31 | 積水化学工業株式会社 | Foam composite sheet |
JP2016117249A (en) * | 2014-12-22 | 2016-06-30 | 三菱樹脂株式会社 | Laminate thermal insulation sheet |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004292800A (en) | 2003-03-13 | 2004-10-21 | Toray Ind Inc | White polypropylene film |
JP2005009566A (en) | 2003-06-18 | 2005-01-13 | Yazawa Sangyo Kk | Heat insulating material |
JP2005321593A (en) | 2004-05-10 | 2005-11-17 | Nitto Denko Corp | Liquid crystal display device and heat insulation sheet |
JP4940808B2 (en) | 2005-07-28 | 2012-05-30 | 東レ株式会社 | Porous polypropylene film for heat insulation panel and vehicle heat insulation panel using the same |
JP5151017B2 (en) | 2005-09-22 | 2013-02-27 | 東レ株式会社 | Laminated polypropylene film |
US20080000581A1 (en) | 2006-06-28 | 2008-01-03 | Gilles Leon Nison | Preparation of laminated composite substrates using coated oriented polymeric film |
JP4924324B2 (en) | 2006-09-27 | 2012-04-25 | 東レ株式会社 | Metallized porous film |
JP2009235232A (en) | 2008-03-27 | 2009-10-15 | Toray Ind Inc | Porous polypropylene film |
CA2765274C (en) | 2009-06-20 | 2018-01-30 | Treofan Germany Gmbh & Co. Kg | Microporous foil for batteries having shutdown function |
JP2014237910A (en) | 2013-06-10 | 2014-12-18 | パナソニック株式会社 | Fiber sheet |
WO2015115289A1 (en) | 2014-01-28 | 2015-08-06 | 東レ株式会社 | Porous film, moisture-permeable waterproof sheet, complex, and protective clothing |
JP6188245B2 (en) | 2014-01-30 | 2017-08-30 | オゾンセーブ株式会社 | Insulating material and method of manufacturing the insulating material |
JP6672633B2 (en) | 2015-08-12 | 2020-03-25 | 三菱ケミカル株式会社 | Reflective sheet and reflector |
JP6194938B2 (en) | 2015-10-21 | 2017-09-13 | 三菱ケミカル株式会社 | Laminated porous stretched film, battery separator and battery using the same |
-
2018
- 2018-03-02 WO PCT/JP2018/008012 patent/WO2018159812A1/en active Application Filing
- 2018-03-02 TW TW107107112A patent/TW201842109A/en unknown
- 2018-03-02 JP JP2018037880A patent/JP7283032B2/en active Active
- 2018-03-02 CN CN201880015327.2A patent/CN110382647A/en active Pending
- 2018-03-02 KR KR1020197025436A patent/KR20190120228A/en unknown
- 2018-03-02 JP JP2018037882A patent/JP7283033B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1060396A (en) * | 1996-08-26 | 1998-03-03 | Nippon Foil Mfg Co Ltd | Pressure-sensitive adhesive sheet for filling sleeve hole |
JP2010510368A (en) * | 2006-11-24 | 2010-04-02 | テーザ・ソシエタス・ヨーロピア | Joining means with high impact resistance |
WO2016047272A1 (en) * | 2014-09-25 | 2016-03-31 | 積水化学工業株式会社 | Foam composite sheet |
JP2016117249A (en) * | 2014-12-22 | 2016-06-30 | 三菱樹脂株式会社 | Laminate thermal insulation sheet |
Also Published As
Publication number | Publication date |
---|---|
JP2018144490A (en) | 2018-09-20 |
JP2018144489A (en) | 2018-09-20 |
TW201842109A (en) | 2018-12-01 |
CN110382647A (en) | 2019-10-25 |
JP7283032B2 (en) | 2023-05-30 |
JP7283033B2 (en) | 2023-05-30 |
KR20190120228A (en) | 2019-10-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8680169B2 (en) | Porous polypropylene film | |
WO2017170244A1 (en) | Biaxially oriented polypropylene film | |
TWI781149B (en) | Biaxially oriented polypropylene film | |
JP6047964B2 (en) | Resin composition for release film and release film | |
WO2018159812A1 (en) | Laminated film, laminate for image display device, and image display device | |
JP6500699B2 (en) | Stretched film | |
JP2024112877A (en) | Electret, electret filter, and method for producing electret film | |
JP2004142238A (en) | Laminated film | |
JP2020007443A (en) | Packaging film for food product, and package for food product | |
JP6561857B2 (en) | Stretched film | |
JP7567176B2 (en) | Piezoelectric Film | |
JP7215034B2 (en) | Laminated porous film | |
JP6617426B2 (en) | Gas permeable film | |
JP2020131545A (en) | Laminate piezoelectric film, piezoelectric element, and method for producing laminate piezoelectric film | |
KR101624334B1 (en) | Protective film for an insulating material and method for manufacturing the same | |
JP6672633B2 (en) | Reflective sheet and reflector | |
JP7172498B2 (en) | porous film | |
WO2021132521A1 (en) | Porous heat-insulating film and method for manufacturing same | |
JP7135709B2 (en) | porous film | |
JP7480550B2 (en) | Perforated Film | |
JP2023151346A (en) | Resin sheet and method for producing resin sheet | |
JP2022157234A (en) | Resin sheet and method for producing resin sheet | |
WO2024005115A1 (en) | Porous film | |
JP2022133991A (en) | Electret film manufacturing method and manufacturing device | |
TW201510033A (en) | Porous polypropylene film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18761144 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20197025436 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18761144 Country of ref document: EP Kind code of ref document: A1 |