Nothing Special   »   [go: up one dir, main page]

WO2018143734A1 - 이차전지용 양극활물질 및 이의 제조방법 - Google Patents

이차전지용 양극활물질 및 이의 제조방법 Download PDF

Info

Publication number
WO2018143734A1
WO2018143734A1 PCT/KR2018/001470 KR2018001470W WO2018143734A1 WO 2018143734 A1 WO2018143734 A1 WO 2018143734A1 KR 2018001470 W KR2018001470 W KR 2018001470W WO 2018143734 A1 WO2018143734 A1 WO 2018143734A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
lithium
oxide
positive electrode
aluminum
Prior art date
Application number
PCT/KR2018/001470
Other languages
English (en)
French (fr)
Inventor
백소라
김지혜
유태구
정왕모
박병천
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to EP18747131.3A priority Critical patent/EP3486979B1/en
Priority to US16/320,859 priority patent/US11121357B2/en
Priority to PL18747131T priority patent/PL3486979T3/pl
Priority to CN201880003376.4A priority patent/CN109643794B/zh
Priority claimed from KR1020180013454A external-priority patent/KR102187969B1/ko
Publication of WO2018143734A1 publication Critical patent/WO2018143734A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B35/00Boron; Compounds thereof
    • C01B35/08Compounds containing boron and nitrogen, phosphorus, oxygen, sulfur, selenium or tellurium
    • C01B35/10Compounds containing boron and oxygen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a cathode active material for a secondary battery and a method of manufacturing the same, in which resistance is reduced and gas generation in the secondary battery is reduced.
  • lithium secondary batteries having high energy density and voltage, long cycle life, and low self discharge rate have been commercialized and widely used.
  • a lithium secondary battery has a problem in that its life is rapidly decreased as charging and discharging are repeated. In particular, this problem is more serious in long life or high voltage cells. This is due to a phenomenon in which the electrolyte is decomposed or the active material is deteriorated due to moisture or other effects inside the battery, and the internal resistance of the battery is increased. In particular, in the case of the cathode material, when the cathode material itself deteriorates, the dissolution of the cathode active material constituents increases, and as a result, the battery life is rapidly deteriorated or cannot be used at high voltage.
  • An object of the present invention is to provide a positive electrode active material and a method of manufacturing the same, which has excellent resistance to output due to reduced resistance and reduced gas generation in a secondary battery.
  • the present invention is a core containing a lithium composite metal oxide; And a surface treatment layer disposed on the core and including an amorphous oxide including lithium (Li), boron (B), and aluminum (Al), wherein the surface treatment layer includes lithium oxide, boron oxide, and aluminum oxide.
  • Amorphous oxides chemically bonded to each other, the amorphous oxide in the surface treatment layer, the content of aluminum oxide is more than the content of boron oxide, the lithium by-product content present on the surface is less than 0.55% by weight relative to the total weight It provides a cathode active material for a secondary battery.
  • the present invention comprises a first step of preparing a mixture by mixing a lithium composite metal oxide, a boron-containing raw material and an aluminum-containing raw material; And a second step of forming the surface treatment layer including an amorphous oxide on a core including the lithium composite metal oxide by heat treating the mixture under an oxygen atmosphere.
  • the forming of the amorphous oxide includes: Lithium by-products present on the surface of the oxide and the boron-containing raw material and aluminum-containing raw material react to form an amorphous oxide containing lithium, boron and aluminum, and contain the aluminum more than the content of the boron-containing raw material.
  • the content of the raw material is more than 1 times less than 2.5 times more, and the heat treatment is to be carried out at 500 °C to 800 °C, to provide a method for producing a cathode active material for secondary batteries.
  • the present invention provides a secondary battery positive electrode and a secondary battery comprising the positive electrode active material.
  • the cathode active material of the present invention has excellent lithium ion conductivity even when a surface treatment layer including an amorphous oxide is positioned on a core including a lithium composite metal oxide, and thus may have excellent output characteristics due to a low resistance increase rate even though the number of charge / discharge increases. have.
  • a surface treatment layer containing an amorphous oxide on a core including a lithium composite metal oxide prevents direct contact between the core and the lithium composite metal oxide, thereby preventing a lithium composite metal from an electrolyte and an electrolyte-derived hydrogen fluoride. Damage to the oxide can be prevented. It is also possible to prevent the gas generated from the contact.
  • the positive electrode active material of the present invention can reduce the amount of lithium by-products in the positive electrode active material because LiOH and Li 2 CO 3 present on the surface of the positive electrode active material are removed by reaction with boron and / or aluminum-containing materials when forming the surface treatment layer. .
  • FIG. 2 is a graph showing a DC resistance increase rate according to the number of cycles compared to the DC resistance of the initial cycle of the lithium secondary batteries manufactured in Examples 1 to 2 and Comparative Examples 1 to 7.
  • the cathode active material for a secondary battery according to an embodiment of the present invention may include a core including a lithium composite metal oxide.
  • the lithium composite metal oxide is a compound (lithiated intercalation compound) capable of reversible intercalation and deintercalation of lithium.
  • the lithium composite metal compound may be a layered lithium composite metal oxide that can be used at high capacity and high voltage.
  • the lithium composite metal compound may be represented by the following Chemical Formula 1.
  • M1 is at least one element selected from the group consisting of Mn and Al
  • Li may be included in an amount corresponding to a, that is, 1 ⁇ a ⁇ 1.5, specifically 1 ⁇ a ⁇ 1.2.
  • a the capacity of the cathode active material according to the Li content control
  • the sinterability at the time of manufacturing the active material can be balanced. If a is less than 1, the capacity may be lowered. If a is more than 1.5, the particles may be sintered in the firing process, and thus production of the active material may be difficult.
  • Ni may be included in an amount corresponding to x, that is, 0.6 ⁇ x ⁇ 1, specifically, 0.7 ⁇ x ⁇ 0.95.
  • Ni may be included in an amount corresponding to x, that is, 0.6 ⁇ x ⁇ 1, specifically, 0.7 ⁇ x ⁇ 0.95.
  • Co is included in a content corresponding to y, that is, 0 ⁇ y ⁇ 0.4, specifically 0 ⁇ y ⁇ 0.2, more specifically 0.04 ⁇ y ⁇ 0.15. Can be.
  • the capacity characteristic can be improved. If y is 0, there is a fear that the capacity characteristics are lowered. If the above range is exceeded, there is a fear of increased cost.
  • M1 may be at least one selected from the group consisting of Mn and Al.
  • Mn which is M1
  • the secondary battery which is a final product, may realize high capacity, and output characteristics may be improved.
  • M1 is Al, output characteristics of the active material may be improved.
  • M1 may be included in an amount corresponding to z, 0 ⁇ z ⁇ 0.4, specifically 0 ⁇ z ⁇ 0.2, and more specifically 0.02 ⁇ z ⁇ 0.15. If z is 0, the improvement effect of the inclusion of M1 cannot be obtained. If it exceeds the above-mentioned range, there is a fear that the output characteristics and capacity characteristics of the secondary battery rather deteriorate.
  • M2 may be included in an amount corresponding to c, that is, 0 ⁇ c ⁇ 0.1, preferably 0 ⁇ c ⁇ 0.05.
  • M2 may be at least one element selected from the group consisting of Ba, Ca, Zr, Ti, Mg, Ta, Nb, and Mo, and preferably, one kind selected from the group consisting of Zr, Ti, and Mg. It may be abnormal.
  • a is a molar ratio of Li in the lithium composite metal oxide
  • b is a molar ratio of Ni, Co, and M1 in the lithium composite metal oxide
  • c is a molar ratio of M2 in the lithium composite metal oxide.
  • b + c may be 1.
  • the lithium composite metal oxide may be primary particles or secondary particles in which primary particles are aggregated.
  • the primary particles may be uniform or nonuniform.
  • the lithium composite metal oxide may further include having a segregated phase of the Zr oxide at the surface of the secondary particles or grain boundaries between the primary particles.
  • the cathode active material may have an average particle diameter (D 50 ) of 1 ⁇ m to 20 ⁇ m. If the average particle diameter of the positive electrode active material is less than 1 ⁇ m, there is a fear of dispersibility in the positive electrode mixture due to aggregation between the positive electrode active materials. If the average particle diameter exceeds 20 ⁇ m, the mechanical strength and the specific surface area of the positive electrode active material may be reduced. In addition, considering the remarkable effect of improving the rate characteristics and initial capacity characteristics of the battery according to the positive electrode active material particle size control may have an average particle diameter (D 50 ) of 3 ⁇ m 18 ⁇ m. In addition, when the cathode active material is secondary particles, the average particle diameter (D 50 ) of the primary particles constituting the cathode active material may be 50 nm to 1,000 nm.
  • the average particle diameter (D 50 ) of the positive electrode active material may be defined as the particle diameter at 50% of the particle diameter distribution.
  • the average particle diameter (D 50 ) of the positive electrode active material can be measured using, for example, a laser diffraction method. Specifically, the average particle diameter (D 50 ) of the positive electrode active material is dispersed in the positive electrode active material in the dispersion medium, and then introduced into a commercially available laser diffraction particle size measuring device (for example, Microtrac MT 3000) to output ultrasonic waves of about 28 kHz irradiated with 60 W, and it is possible to calculate the mean particle size (D 50) of from 50% based on the particle size distribution of the measuring device.
  • a laser diffraction particle size measuring device for example, Microtrac MT 3000
  • the cathode active material according to an embodiment of the present invention may include a surface treatment layer disposed on the core and including an amorphous oxide including lithium (Li), boron (B), and aluminum (Al).
  • the amorphous oxide is located on the core without reacting with the electrolyte and the hydrogen fluoride derived from the electrolyte, it is possible to prevent or minimize the direct contact between the core and the electrolyte and the hydrogen fluoride derived from the electrolyte. Accordingly, damage to the core due to the electrolyte solution and the hydrogen fluoride derived from the electrolyte solution can be minimized, and thus the life characteristics of the lithium secondary battery that is the final product can be improved.
  • the positive electrode active material may be less than 0.55% by weight, preferably 0.4% to 0.55% by weight based on the total weight of lithium by-products present on the surface.
  • a lithium composite metal compound having a nickel content of 60 mol% or more with respect to the total number of moles of the lithium composite metal compound is used as a core, an excessive amount of lithium byproduct may be generated on the surface of the positive electrode active material while exhibiting high capacity characteristics. There is a disadvantage.
  • the amorphous oxide is a lithium by-products such as LiOH and Li 2 CO 3 present on the surface of the core reacts with the boron and / or aluminum-containing material Since it is formed of amorphous oxide, it is possible to reduce the amount of lithium by-products in the positive electrode active material. For example, when the amount of lithium by-products present on the surface of the positive electrode active material exceeds the above range, the reaction between the lithium salts contained in the electrolyte and the lithium by-products continues to occur, resulting in oxygen, HF, H 2 O and other gases. Generation of the lithium secondary battery may adversely affect the performance of the lithium secondary battery. Specifically, the reaction may be represented by the following Scheme 1.
  • the surface treatment layer may include lithium oxide, boron oxide, and aluminum oxide, and the amorphous oxide in the surface treatment layer may include more aluminum oxide than boron oxide.
  • the surface treatment layer may include an amorphous oxide containing Li 2 O, B 2 O 3 and Al 2 O 3, said Li 2 O, B 2 O 3 and Al 2 O 3 are each chemical Can be combined.
  • the amorphous oxide may be present in a chemical bond in the form of Li 2 OB 2 O 3 -Al 2 O 3 .
  • the amorphous oxide is 2LiAl 7 B 4 O 5, 2LiAlB 2 O 5 , or 2Li 2 AlB 2 O may be present in the form of 5, wherein the amorphous oxide is B and the 1 Al: 1 in excess and less than 2.5, preferably Preferably it may be included in a molar ratio of greater than 1: 1 to less than 2.
  • the amorphous oxides include B and Al in the above ranges and are chemically bonded to each other, the reduction effect of lithium by-products present on the surface is large, thereby improving gas generation by reaction with the electrolyte solution. Can be.
  • the amorphous oxide included in the surface treatment layer is present in the form of a mixture of one of Li 2 O, B 2 O 3 and Al 2 O 3 , or two of them are chemically bonded to each other and the other one alone
  • Al 2 O 3 , Li 2 O-Al 2 O 3 , Li 2 OB 2 O 3 , Li 2 0-B 4 O 5 When present in, for example, the effect of reducing the lithium by-products present on the surface is small, it can generate a large amount of gas when reacting with the electrolyte.
  • the Li 2 O can lower the high temperature viscosity of the amorphous oxide to improve meltability and formability.
  • Li 2 O is excellent in lithium ion conductivity and does not react with the electrolyte solution and the hydrogen fluoride derived from the electrolyte solution during charging / discharging. Accordingly, the core can be effectively protected to improve life and cycle characteristics of the positive electrode active material.
  • the Li 2 O may be derived from LiOH and Li 2 CO 3 which are lithium by-products present on the surface of the core.
  • the B 2 O 3 is a main component constituting the glass composition, forms a three-dimensional network in the glass and serves to increase the thermal chemical stability. However, since the B 2 O 3 reacts with water, it may reduce the chemical stability of the surface treatment layer when included in a large amount in the amorphous oxide.
  • Al 2 O 3 is a material having high lithium ion conductivity and may function as a network forming agent in an amorphous oxide.
  • the Al 2 O 3 may affect the thermal expansion coefficient and the high temperature viscosity of the amorphous oxide.
  • the reaction between the electrolyte and the hydrogen fluoride derived from the electrolyte during charging and discharging may be suppressed due to the excellent lithium ion conductivity, thereby improving life characteristics.
  • the surface treatment layer containing the amorphous oxide as described above may be uniformly formed on the entire surface of the core.
  • the surface treatment layer is preferably formed uniformly in an appropriate thickness in consideration of the particle diameter of the core to determine the capacity of the positive electrode active material.
  • the surface treatment layer may have an average thickness of 20 nm to 100 nm, preferably 50 nm to 100 nm, with respect to a semi-diameter of the core. If it is less than the above-mentioned range, the improvement effect of forming the surface treatment layer may be insignificant, and if it exceeds the above-mentioned range, the resistance of the positive electrode active material may increase.
  • the particle diameter of the core and the thickness of the surface treatment layer may be measured through particle cross-sectional analysis using a focused ion beam (fib).
  • the method for producing a positive electrode active material comprises a first step of preparing a mixture by mixing a lithium composite metal oxide, boron-containing raw material and aluminum-containing raw material; And heat treating the mixture under an oxygen atmosphere to form a surface treatment layer including an amorphous oxide on the core including the lithium composite metal oxide, wherein forming the amorphous oxide comprises forming the lithium composite metal oxide.
  • Lithium by-products present on the surface of the boron-containing raw material and aluminum-containing raw material react to form an amorphous oxide containing lithium, boron, and aluminum, and the aluminum-containing raw material rather than the content of the boron-containing raw material.
  • the content of the material is more than 1 times and less than 2.5 times more, the heat treatment is to be carried out at 500 °C to 800 °C.
  • the lithium composite metal oxide may be any compound capable of reversible intercalation and deintercalation of lithium used in the art (lithiated intercalation compound), and the kind thereof is not particularly limited.
  • the lithium composite metal oxide may be represented by Chemical Formula 1.
  • the lithium composite metal oxide may be prepared through a general method used in the art, or a commercially available lithium composite metal oxide may be purchased and used.
  • the positive electrode active material when the nickel content is more than 60 mol%, the positive electrode active material exhibits high capacity characteristics, while the excessive amount of lithium by-products on the surface due to the low reactivity of the lithium source and the precursor during firing could be generated as As described above, when an excessive amount of lithium byproducts is present on the surface of the lithium composite metal oxide, lithium salts included in the electrolyte react with the lithium byproducts, thereby generating gas, which may adversely affect the performance of the secondary battery. have.
  • the lithium composite metal oxide by mixing and heat treating the lithium composite metal oxide, the boron-containing raw material and the aluminum-containing raw material, the lithium by-product present on the surface of the lithium composite metal oxide, the boron-containing raw material and the aluminum-containing raw material react. Accordingly, it was found that not only the content of lithium by-products present on the surface of the lithium composite metal oxide can be reduced, but also a cathode active material having excellent output characteristics can be prepared according to the formation of an amorphous oxide having excellent lithium ion conductivity. The present invention has been completed.
  • the boron-containing raw material may be at least one selected from the group consisting of H 3 BO 3 , HBPO 4 , B 2 O 3 , B 2 O 5 , Li 2 B 4 O 7 and (NH 4 ) 2 B 4 O 7 . And specifically, H 3 BO 3 .
  • the aluminum-containing raw material may be at least one selected from the group consisting of Al (OH) 3 , Al 2 (SO 4 ) 3 , AlCl 3 and Al (NO 3 ) 3 , specifically, Al (OH) 3 days Can be.
  • the first step based on 100 parts by weight of the lithium composite metal oxide, 0.1 to 0.8 parts by weight, preferably 0.1 to 0.5 parts by weight, more preferably 0.1 to 0.2 parts by weight of the boron-containing raw material and the aluminum
  • the containing raw material may be mixed in an amount of 0.1 to 1 parts by weight, preferably 0.1 to 0.5 parts by weight, more preferably 0.3 to 0.5 parts by weight.
  • the content of the aluminum-containing raw material than the boron-containing raw material may include more than 1 times less than 2.5 times, preferably 1.1 times to 2 times more.
  • the content of the aluminum-containing raw material when the content of the aluminum-containing raw material is higher than the boron-containing raw material, Li 2 O, B 2 O 3 and Al 2 O 3 may be present in a chemical bond with each other.
  • the content of the boron-containing raw material than the content of the aluminum-containing raw material in the range of the content of the aluminum-containing raw material and the content of the boron-containing raw material is the same, or the content of the aluminum-containing raw material is more than the above range.
  • the amorphous oxide may be present in the form of a mixture of one of Li 2 O, B 2 O 3 and Al 2 O 3 , or two of them may be chemically bonded to each other and the other one may be present alone.
  • the content of the aluminum-containing raw material than the boron-containing raw material may include more than 1 times less than 2.5 times, preferably 1.1 times to 2 times more.
  • the content of the aluminum-containing raw material is higher than that of the boron-containing raw material, the formation of lithium boron aluminum oxide in which Li 2 O, B 2 O 3 and Al 2 O 3 chemically bond with each other is advantageous.
  • Li 2 O, B 2 O 3 and Al 2 O 3 is unlikely to exist alone in the surface treatment layer, respectively, is effective in reducing lithium by-products, and the output and resistance characteristics may be improved.
  • the content of the boron-containing raw material than the content of the aluminum-containing raw material in the range of the content of the aluminum-containing raw material and the content of the boron-containing raw material is the same, or the content of the aluminum-containing raw material is more than the above range.
  • Li 2 O, B 2 O 3 and Al 2 O 3 in the surface treatment layer are each present alone, the effect of reducing lithium by-products is insignificant and gas may be generated.
  • the surface treatment layer acts as a resistance layer, which may cause an increase in resistance.
  • the said mixing is solid mixing. This is because, when the solid phase mixing method is used, there is no fear of formation of a side reaction product by a solvent or the like used in the liquid phase mixing, and a more uniform surface treatment layer can be formed.
  • the average particle diameter of the boron-containing raw material may be more than 5 ⁇ m, 50 ⁇ m or less, so as to be suitable for solid phase mixing.
  • the average particle diameter of the aluminum-containing raw material may be more than 0 to 1 ⁇ m or less, suitable for solid phase mixing.
  • the average particle diameter is preferably smaller than the boron-containing raw material.
  • the boron and aluminum raw materials may be subjected to a separate grinding process to have the above average particle diameter.
  • the grinding may be a conventional grinding process such as a ball mill.
  • the heat treatment in the second step may be performed at 500 °C to 800 °C, specifically 500 °C to 700 °C.
  • Li 2 O, B 2 O 3 and Al 2 O 3 in the amorphous oxide may be present in a chemical bond with each other. If it is below the above-mentioned temperature, one of Li 2 O, B 2 O 3 and Al 2 O 3 is present in the form of a mixture in the amorphous oxide, or two of them are physically or chemically bonded to each other and the other one alone exist.
  • the effect of the surface treatment layer of the present invention can not be realized.
  • Exceeding the above temperature may cause denaturation of the positive electrode active material.
  • the heat treatment process may be performed for 3 hours to 40 hours, specifically 5 hours to 10 hours under the above conditions.
  • the heat treatment process may be carried out in a multi-step within the above temperature range, in this case it may be performed by varying the temperature in accordance with the progress of each step.
  • a positive electrode including the positive electrode active material.
  • the positive electrode is formed on the positive electrode current collector and the positive electrode current collector, and comprises a positive electrode active material layer containing a positive electrode active material according to the present invention.
  • the positive electrode current collector is not particularly limited as long as it has conductivity without causing chemical change in the battery.
  • carbon, nickel, titanium on the surface of stainless steel, aluminum, nickel, titanium, calcined carbon, or aluminum or stainless steel Surface treated with silver, silver or the like can be used.
  • the positive electrode current collector may have a thickness of about 3 to 500 ⁇ m, and may form fine irregularities on the surface of the current collector to increase adhesion of the positive electrode active material.
  • it can be used in various forms, such as a film, a sheet, a foil, a net, a porous body, a foam, a nonwoven body.
  • the cathode active material layer may include a conductive material and a binder together with the cathode active material described above.
  • the conductive material is used to impart conductivity to the electrode.
  • the conductive material may be used without particular limitation as long as it has electronic conductivity without causing chemical change. Specific examples thereof include graphite such as natural graphite and artificial graphite; Carbon-based materials such as carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, summer black and carbon fiber; Metal powder or metal fibers such as copper, nickel, aluminum, and silver; Conductive whiskeys such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Or conductive polymers such as polyphenylene derivatives, and the like, or a mixture of two or more kinds thereof may be used.
  • the conductive material may typically be included in an amount of 1 to 30% by weight based on the total weight of the positive electrode active material layer.
  • the binder serves to improve adhesion between the cathode active material particles and adhesion between the cathode active material and the current collector.
  • specific examples include polyvinylidene fluoride (PVDF), vinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HFP), polyvinyl alcohol, polyacrylonitrile, carboxymethyl cellulose (CMC).
  • the binder may be included in an amount of 1 to 30% by weight based on the total weight of the positive electrode active material layer.
  • the positive electrode may be manufactured according to a conventional positive electrode manufacturing method except for using the positive electrode active material.
  • the above positive electrode active material and optionally, a binder and a conductive material are dissolved or dispersed in a solvent to form a slurry for forming a positive electrode active material layer, and the slurry is coated on a positive electrode current collector, followed by drying and rolling.
  • the type and content of the cathode active material, the binder, and the conductive material are as described above.
  • the solvent may be a solvent generally used in the art, for example, dimethyl sulfoxide (DMSO), isopropyl alcohol, N-methylpyrrolidone (NMP), acetone ( acetone) or water, but is not limited thereto.
  • DMSO dimethyl sulfoxide
  • NMP N-methylpyrrolidone
  • acetone acetone
  • water but is not limited thereto.
  • the said solvent may be used individually by 1 type of solvent, and may mix and use 2 or more types of solvent.
  • the amount of the solvent is sufficient to dissolve or disperse the positive electrode active material, the conductive material, and the binder in consideration of the coating thickness of the slurry and the production yield, and to have a viscosity that can exhibit excellent thickness uniformity during application for the production of the positive electrode. Do.
  • the positive electrode may be prepared by casting the slurry for forming the positive electrode active material layer on a separate support, and then laminating the film obtained by peeling from the support onto a positive electrode current collector.
  • an electrochemical device including the anode is provided.
  • the electrochemical device may be specifically a battery, a capacitor, or the like, and more specifically, a lithium secondary battery.
  • the lithium secondary battery specifically includes a positive electrode, a negative electrode positioned to face the positive electrode, a separator and an electrolyte interposed between the positive electrode and the negative electrode, and the positive electrode is as described above.
  • the lithium secondary battery may further include a battery container for accommodating the electrode assembly of the positive electrode, the negative electrode, and the separator, and a sealing member for sealing the battery container.
  • the negative electrode includes a negative electrode current collector and a negative electrode active material layer positioned on the negative electrode current collector.
  • the negative electrode current collector is not particularly limited as long as it has high conductivity without causing chemical change in the battery.
  • the negative electrode current collector may be formed on a surface of copper, stainless steel, aluminum, nickel, titanium, calcined carbon, copper, or stainless steel. Surface-treated with carbon, nickel, titanium, silver, and the like, aluminum-cadmium alloy and the like can be used.
  • the negative electrode current collector may have a thickness of about 3 to 500 ⁇ m, and like the positive electrode current collector, fine concavities and convexities may be formed on the surface of the current collector to enhance the bonding force of the negative electrode active material.
  • it can be used in various forms, such as a film, a sheet, a foil, a net, a porous body, a foam, a nonwoven body.
  • the negative electrode active material layer optionally includes a binder and a conductive material together with the negative electrode active material.
  • the negative electrode active material layer is, for example, by dissolving or dispersing a negative electrode active material, and optionally a binder and a conductive material in a solvent to form a slurry for forming a negative electrode, and applying the slurry onto a negative electrode current collector and drying, or for forming the negative electrode
  • the slurry may be cast on a separate support, and then the film obtained by peeling from the support is laminated on a negative electrode current collector.
  • a compound capable of reversible intercalation and deintercalation of lithium may be used.
  • Specific examples include carbonaceous materials such as artificial graphite, natural graphite, graphitized carbon fibers, and amorphous carbon;
  • Metallic compounds capable of alloying with lithium such as Si, Al, Sn, Pb, Zn, Bi, In, Mg, Ga, Cd, Si alloys, Sn alloys or Al alloys;
  • Metal oxides capable of doping and undoping lithium such as SiO x (0 ⁇ x ⁇ 2), SnO 2 , vanadium oxide, lithium vanadium oxide;
  • a composite including the metallic compound and the carbonaceous material such as a Si-C composite or a Sn-C composite, and any one or a mixture of two or more thereof may be used.
  • a metal lithium thin film may be used as the anode active material.
  • the carbon material both low crystalline carbon and high crystalline carbon can be used. Soft crystalline carbon and hard carbon are typical low crystalline carbon, and high crystalline carbon is amorphous, plate, scaly, spherical or fibrous natural graphite or artificial graphite, Kish graphite (Kish) graphite, pyrolytic carbon, mesophase pitch based carbon fiber, meso-carbon microbeads, mesophase pitches and petroleum or coal tar pitch High-temperature calcined carbon such as derived cokes is typical.
  • the binder, the conductive material and the solvent may be the same as described above in the positive electrode.
  • the separator is to separate the negative electrode and the positive electrode and to provide a passage for the movement of lithium ions, if it is usually used as a separator in a lithium secondary battery can be used without particular limitation, in particular in the ion transfer of the electrolyte It is desirable to have a low resistance against the electrolyte and excellent electrolytic solution-moisture capability.
  • a porous polymer film for example, a porous polymer film made of a polyolefin-based polymer such as ethylene homopolymer, propylene homopolymer, ethylene / butene copolymer, ethylene / hexene copolymer and ethylene / methacrylate copolymer or the like Laminate structures of two or more layers may be used.
  • a porous nonwoven fabrics such as nonwoven fabrics made of high melting point glass fibers, polyethylene terephthalate fibers and the like may be used.
  • a coated separator including a ceramic component or a polymer material may be used to secure heat resistance or mechanical strength, and may be optionally used as a single layer or a multilayer structure.
  • examples of the electrolyte used in the present invention include an organic liquid electrolyte, an inorganic liquid electrolyte, a solid polymer electrolyte, a gel polymer electrolyte, a solid inorganic electrolyte, a molten inorganic electrolyte, and the like, which can be used in manufacturing a lithium secondary battery. It doesn't happen.
  • the electrolyte may include an organic solvent and a lithium salt.
  • the organic solvent may be used without particular limitation as long as it can serve as a medium through which ions involved in the electrochemical reaction of the battery can move.
  • the organic solvent may be an ester solvent such as methyl acetate, ethyl acetate, ⁇ -butyrolactone or ⁇ -caprolactone; Ether solvents such as dibutyl ether or tetrahydrofuran; Ketone solvents such as cyclohexanone; Aromatic hydrocarbon solvents such as benzene and fluorobenzene; Dimethyl carbonate (DMC), diethyl carbonate (DEC), methyl ethyl carbonate (MEC), ethyl methyl carbonate (EMC), ethylene carbonate (EC), propylene carbonate, Carbonate solvents such as PC); Alcohol solvents such as ethyl alcohol and isopropyl alcohol; Nitriles such as R-CN (R is a C2 to C20 linear, branched or cyclic hydrocarbon group, which may include
  • carbonate-based solvents are preferable, and cyclic carbonates having high ionic conductivity and high dielectric constant (for example, ethylene carbonate or propylene carbonate) that can improve the charge and discharge performance of a battery, and low viscosity linear carbonate compounds (for example, a mixture of ethyl methyl carbonate, dimethyl carbonate or diethyl carbonate and the like is more preferable.
  • the cyclic carbonate and the chain carbonate may be mixed and used in a volume ratio of about 1: 1 to about 1: 9, so that the performance of the electrolyte may be excellent.
  • the lithium salt may be used without particular limitation as long as it is a compound capable of providing lithium ions used in a lithium secondary battery.
  • the lithium salt is LiPF 6 , LiClO 4 , LiAsF 6 , LiBF 4 , LiSbF 6 , LiAl0 4 , LiAlCl 4 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 , LiN (C 2 F 5 SO 3 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) 2 .
  • LiCl, LiI, or LiB (C 2 O 4 ) 2 and the like can be used.
  • the concentration of the lithium salt is preferably used within the range of 0.1 to 2.0M. When the concentration of the lithium salt is included in the above range, since the electrolyte has an appropriate conductivity and viscosity, it can exhibit excellent electrolyte performance, and lithium ions can move effectively.
  • the electrolyte includes, for example, haloalkylene carbonate-based compounds such as difluoro ethylene carbonate, pyridine, tri Ethyl phosphite, triethanolamine, cyclic ether, ethylene diamine, n-glyme, hexaphosphate triamide, nitrobenzene derivative, sulfur, quinone imine dye, N-substituted oxazolidinone, N, N-substituted imida
  • One or more additives such as zolidine, ethylene glycol dialkyl ether, ammonium salt, pyrrole, 2-methoxy ethanol or aluminum trichloride may be included. In this case, the additive may be included in 0.1 to 5% by weight based on the total weight of the electrolyte.
  • the lithium secondary battery including the cathode active material according to the present invention stably exhibits excellent discharge capacity, output characteristics, and capacity retention rate
  • portable devices such as mobile phones, notebook computers, digital cameras, and hybrid electric vehicles ( It is useful for electric vehicle fields such as hybrid electric vehicle (HEV).
  • HEV hybrid electric vehicle
  • a battery module including the lithium secondary battery as a unit cell and a battery pack including the same are provided.
  • the battery module or the battery pack is a power tool (Power Tool); Electric vehicles including electric vehicles (EVs), hybrid electric vehicles, and plug-in hybrid electric vehicles (PHEVs); Or it can be used as a power source for any one or more of the system for power storage.
  • Power Tool Electric vehicles including electric vehicles (EVs), hybrid electric vehicles, and plug-in hybrid electric vehicles (PHEVs); Or it can be used as a power source for any one or more of the system for power storage.
  • the lithium composite metal oxide (Li (Ni 0.83 Co 0.11 Mn 0.06) 0. 97 Zr 0. 03 O 2) in an amount as described in, the following Table 1 based on 100 parts by weight of H 3 BO 3, and Al (OH) 3
  • a dry mixer CYCLOMIX, HOSOKAWA Micron Coorporation
  • heat treatment for 5 hours at the temperature shown in Table 1 under an oxygen atmosphere to prepare a cathode active material having a surface treatment layer comprising an amorphous oxide shown in Table 1.
  • the cathode active material, carbon black as a conductive material, and PVDF as a binder were mixed in a weight ratio of 95: 2.5: 2.5 in a solvent of N-methylpyrrolidone to prepare a composition for forming a cathode (viscosity: 5,000 mPa ⁇ s). .
  • the composition for forming a positive electrode was applied to an aluminum current collector, dried at 130 ° C., and then rolled to prepare a positive electrode.
  • a negative electrode active material As a negative electrode active material, a natural graphite, a carbon black conductive material, and a polyvinylidene fluoride (PVDF) binder were mixed in a weight ratio of 85: 10: 5 in a solvent of N-methylpyrrolidone to prepare a composition for forming a negative electrode, and the copper It was applied to the current collector to prepare a negative electrode.
  • PVDF polyvinylidene fluoride
  • An electrode assembly was manufactured by interposing a porous polyethylene as a separator between the positive electrode and the negative electrode, and the electrode assembly was placed in a case, and an electrolyte solution was injected into the case to prepare a lithium secondary battery.
  • the lithium composite metal oxide (Li (Ni 0.83 Co 0.11 Mn 0.06) 0. 97 Zr 0. 03 O 2) in an amount as described in, the following Table 1 based on 100 parts by weight of H 3 BO 3, and Al (OH) 3 to a dry mixer After mixing, heat treatment at 500 °C to prepare a cathode active material having a surface treatment layer comprising an amorphous oxide of the composition shown in Table 1. Except for using this, a positive electrode and a lithium secondary battery was prepared in the same manner as in Example 1.
  • Example 1 Except for using a lithium composite metal oxide (Li (Ni 0.83 Co 0.11 Mn 0.06 ) 0.97 Zr 0.03 O 2 ) without a surface treatment layer as a positive electrode active material, the positive electrode and the lithium secondary in the same manner as in Example 1 The battery was prepared.
  • a lithium composite metal oxide Li (Ni 0.83 Co 0.11 Mn 0.06 ) 0.97 Zr 0.03 O 2 ) without a surface treatment layer as a positive electrode active material
  • the lithium composite metal oxide (Li (Ni 0.83 Co 0.11 Mn 0.06) 0. 97 Zr 0. 03 O 2) After a mixture of H 3 BO 3 in an amount as described in, the following Table 1 based on 100 parts by weight of a dry mixer, 300 Heat treatment at ⁇ ⁇ produced a cathode active material having a surface treatment layer including an amorphous oxide having the composition shown in Table 1. Except for using this, a positive electrode and a lithium secondary battery was prepared in the same manner as in Example 1.
  • the lithium composite metal oxide (Li (Ni 0.83 Co 0.11 Mn 0.06) 0. 97 Zr 0. 03 O 2) After a mixture of Al (OH) 3 in an amount as described in, the following Table 1 based on 100 parts by weight of a dry mixer, Heat treatment at 300 °C to prepare a cathode active material having a surface treatment layer comprising an amorphous oxide of the composition shown in Table 1. Except for using this, a positive electrode and a lithium secondary battery was prepared in the same manner as in Example 1.
  • the lithium composite metal oxide (Li (Ni 0.83 Co 0.11 Mn 0.06) 0. 97 Zr 0. 03 O 2) in an amount as described in, the following Table 1 based on 100 parts by weight of H 3 BO 3, and Al (OH) 3 to a dry mixer After mixing, heat treatment at 700 °C to prepare a cathode active material having a surface treatment layer comprising an amorphous oxide of the composition shown in Table 1. Except for using this, a positive electrode and a lithium secondary battery was prepared in the same manner as in Example 1.
  • the lithium composite metal oxide (Li (Ni 0.83 Co 0.11 Mn 0.06) 0. 97 Zr 0. 03 O 2) in an amount as described in, the following Table 1 based on 100 parts by weight of H 3 BO 3, and Al (OH) 3 to a dry mixer After mixing, heat treatment at 700 °C to prepare a cathode active material having a surface treatment layer comprising an amorphous oxide of the composition shown in Table 1. Except for using this, a positive electrode and a lithium secondary battery was prepared in the same manner as in Example 1.
  • the lithium composite metal oxide (Li (Ni 0.83 Co 0.11 Mn 0.06) 0. 97 Zr 0. 03 O 2) in an amount as described in, the following Table 1 based on 100 parts by weight of H 3 BO 3, and Al (OH) 3 to a dry mixer After mixing, heat treatment at 300 °C to prepare a cathode active material having a surface treatment layer comprising an amorphous oxide of the composition shown in Table 1. Except for using this, a positive electrode and a lithium secondary battery was prepared in the same manner as in Example 1.
  • the lithium composite metal oxide (Li (Ni 0.83 Co 0.11 Mn 0.06) 0. 97 Zr 0. 03 O 2) in an amount as described in, the following Table 1 based on 100 parts by weight of H 3 BO 3, and Al (OH) 3 to a dry mixer After mixing, heat treatment at 700 °C to prepare a cathode active material having a surface treatment layer comprising an amorphous oxide of the composition shown in Table 1. Except for using this, a positive electrode and a lithium secondary battery was prepared in the same manner as in Example 1.
  • Example 1 0.2 0.3 700 Li 2 OB 2 O 3 -Al 2 O 3 70
  • Example 2 0.2 0.3 500 Li 2 OB 2 O 3 -Al 2 O 3 70 Comparative Example 1 0 0 0 - - Comparative Example 2 0.2 0 300 Li 2 OB 2 O 3 70 Comparative Example 3 0 0.3 300 Li 2 O-Al 2 O 3 70 Comparative Example 4 0.2 0.2 700 Li 2 OB 2 O 3 -Al 2 O 3 70 Comparative Example 5 0.3 0.2 700 Li 2 OB 2 O 3 -Al 2 O 3 70 Comparative Example 6 0.2 0.3 300 Li 2 OB 2 O 3 -Al 2 O 3 70 Comparative Example 7 0.2 0.5 700 Li 2 OB 2 O 3 -Al 2 O 3 70
  • the amount of lithium by-products remaining on the surfaces of the cathode active materials prepared in Examples 1 to 2 and Comparative Examples 1 to 7 was measured using a pH titration method.
  • 10 g of positive electrode active material was poured into distilled water to dissolve lithium by-products remaining on the surface of the positive electrode active material, and then the solution was filtered and 0.1M HCl was injected at a rate of 0.3-0.5 mL / min. At this time, the residual lithium byproduct content was calculated from the amount of HCl injected up to pH 5.
  • the instrument used for pH titration is Metrohm's instrument. The results are shown in Table 2 below. In the following Table 2, the content of LiOH and Li 2 CO 3 is described in weight percent based on the total weight of the positive electrode active material.
  • the lithium by-product content was less than 0.55% by weight based on the total weight of the cathode active material, compared to the cathode active materials prepared in Comparative Examples 1-7. It was confirmed that the amount of by-products is small.
  • the lithium secondary batteries prepared in Examples 1 to 2 and Comparative Examples 1 to 7 were charged / discharged 30 times at a temperature of 0.3 C / 0.3 C at 45 ° C. within a 2.5 V to 4.25 V driving voltage range.
  • the discharge capacity retention ratio which is the ratio of the discharge capacity according to the number of cycles to the discharge capacity of one cycle, was measured. The results are shown in FIG.
  • the change in capacity retention ratio of the lithium secondary batteries of Examples 1 to 2 was smaller than that of Comparative Examples 1 to 7 even if the number of cycles increased.
  • the lithium secondary battery of Example 1 there was almost no change in the discharge capacity according to the number of cycles compared to the discharge capacity of one cycle.
  • initial stage DC resistance DCIR was 10.6 m (ohm) at 45 degreeC.
  • the lithium secondary batteries prepared in Examples 1 to 2 have a lower DC resistance increase rate than the lithium secondary batteries prepared in Comparative Examples 1 to 7, it can be expected to exhibit excellent output density therefrom.
  • the lithium secondary batteries prepared in Examples 1 to 2 and Comparative Examples 1 to 3 and 6 were charged to 4.25V with a constant current of 0.3C, respectively, and then stored at 60 ° C. for 6 weeks.
  • the amount of gas generated inside the lithium secondary battery over time was measured and shown in FIG. 3.
  • the amount of gas generated in the lithium secondary battery was measured by the volume change of the lithium secondary battery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

본 발명은 리튬 복합금속 산화물을 포함하는 코어; 및 상기 코어 상에 위치하고, 리튬(Li), 붕소(B) 및 알루미늄(Al)을 포함하는 비정질 산화물을 포함하는 표면처리층을 포함하며, 표면에 존재하는 리튬 부산물의 함량이 전체 중량에 대하여 0.55 중량% 미만인, 이차전지용 양극활물질 및 이의 제조방법에 관한 것이다.

Description

이차전지용 양극활물질 및 이의 제조방법
관련출원과의 상호인용
본 출원은 2017년 2월 2일자 한국특허출원 제2017-0015158호 및 2018년 2월 2일자 한국특허출원 제2018-0013454호에 기초한 우선권의 이익을 주장하며, 해당 한국특허출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
기술분야
본 발명은 저항이 감소되고, 이차전지 내 가스 발생이 감소된 이차전지용 양극활물질 및 이의 제조방법에 관한 것이다.
모바일 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서 이차전지의 수요가 급격히 증가하고 있다. 이러한 이차전지 중 높은 에너지 밀도와 전압을 가지며, 사이클 수명이 길고, 자기방전율이 낮은 리튬 이차전지가 상용화되어 널리 사용되고 있다.
그러나, 리튬 이차전지는 충방전을 거듭함에 따라서 수명이 급속하게 떨어지는 문제가 있다. 특히, 장수명 또는 고전압 전지에서 이러한 문제가 더욱 심각하다. 이는 전지 내부의 수분이나 기타 다른 영향으로 인해 전해질이 분해되거나 활물질이 열화되고, 또한 전지의 내부저항이 증가되어 생기는 현상 때문이다. 특히 양극재의 경우, 양극재 자체의 퇴화가 심화되면 양극활물질 구성 원소의 용출이 증가하고 그 결과 전지 수명이 빠르게 퇴화되거나 고전압에서 사용이 불가능하다.
이 같은 문제점을 해결하기 위해 양극활물질 표면에 표면처리층을 형성하는 방법들이 제안되었다. 이중 고전압과 전해액에서의 안정성을 인정받고 있는 알루미늄계 표면처리층의 경우, 결정 상태로 입자 표면에 코팅되기 때문에 활물질 전체에 균일하게 코팅되기 어렵다. 또, 알루미늄계 화합물 자체의 결정성으로 인한 저항 증가의 문제가 있다. 또한, 붕소(B)계 코팅물의 경우 비정질 상태로 균일하게 코팅됨으로써 양극재에서 전해액으로 이동하는 리튬 이온의 이동을 방해하지는 않는다. 그러나, 붕소(B)계 코팅물은 수분과 반응하기 때문에 전해액과의 반응이 장기화되면 코팅층으로서의 역할을 하지 못하는 문제가 있다.
이에 따라, 상기 문제를 해결하면서 리튬 이차전지의 성능을 향상시킬 수 있는 양극 활물질의 개발이 절실히 요구되고 있는 실정이다.
본 발명의 목적은 저항이 감소되어 출력특성이 우수하고, 이차전지 내 가스발생이 감소된 양극활물질 및 이의 제조방법을 제공하는 것이다.
상기 과제를 해결하기 위하여, 본 발명은 리튬 복합금속 산화물을 포함하는 코어; 및 상기 코어 상에 위치하고, 리튬(Li), 붕소(B) 및 알루미늄(Al)을 포함하는 비정질 산화물을 포함하는 표면처리층을 포함하며, 상기 표면처리층은 리튬 산화물, 붕소 산화물 및 알루미늄 산화물이 서로 화학적으로 결합된 비정질 산화물을 포함하고, 상기 표면처리층 내 비정질 산화물은, 붕소 산화물의 함량보다 알루미늄 산화물의 함량이 더 많으며, 표면에 존재하는 리튬 부산물의 함량이 전체 중량에 대하여 0.55 중량% 미만인 이차전지용 양극활물질을 제공한다.
또한, 본 발명은 리튬 복합금속 산화물, 붕소 함유 원료물질 및 알루미늄 함유 원료물질을 혼합하여 혼합물을 제조하는 제1 단계; 및 상기 혼합물을 산소분위기 하에서 열처리하여 리튬 복합금속 산화물을 포함하는 코어 상에 비정질 산화물을 포함하는 표면처리층을 형성하는 제2 단계;를 포함하며, 상기 비정질 산화물을 형성하는 것은, 상기 리튬 복합금속 산화물의 표면에 존재하는 리튬 부산물과, 상기 붕소 함유 원료물질 및 알루미늄 함유 원료 물질이 반응하여, 리튬, 붕소 및 알루미늄을 포함하는 비정질 산화물을 형성하는 것이고, 상기 붕소 함유 원료물질의 함량보다 상기 알루미늄 함유 원료 물질의 함량이 1배 초과 2.5배 미만으로 더 많이 포함되는 것이고, 상기 열처리는 500℃ 내지 800℃에서 수행되는 것인,이차전지용 양극활물질의 제조방법을 제공한다.
또한, 본 발명은 상기 양극활물질을 포함하는 이차전지용 양극 및 이차전지를 제공한다.
본 발명의 양극활물질은 리튬 복합금속 산화물을 포함하는 코어 상에 비정질 산화물을 포함하는 표면처리층이 위치하여도 리튬 이온전도도가 우수하여 충방전 횟수가 증가하더라도 저항증가율이 낮아 출력특성이 우수할 수 있다.
본 발명의 양극활물질은 리튬 복합금속 산화물을 포함하는 코어 상에 비정질 산화물을 포함하는 표면처리층이 상기 코어와 리튬 복합금속 산화물의 직접적인 접촉을 방지하여, 전해액 및 전해액 유래 불화수소로 인한 리튬 복합금속 산화물의 손상을 방지할 수 있다. 또한 상기 접촉에서 유래된 가스 발생을 방지할 수 있다.
본 발명의 양극활물질은 표면처리층 형성시 양극활물질 표면에 존재하는 LiOH 및 Li2CO3이 붕소 및/또는 알루미늄 함유 물질과 반응하여 제거되기 때문에, 양극활물질 내의 리튬 부산물의 양을 감소시킬 수 있다.
도 1은 실시예 1 내지 2, 비교예 1 내지 7에서 제조한 리튬 이차전지의 초기 사이클 대비 방전용량 유지율을 나타낸 그래프이다.
도 2는 실시예 1 내지 2, 비교예 1 내지 7에서 제조한 리튬 이차전지의 초기 사이클의 직류저항 대비 사이클 수에 따른 직류저항 증가율을 나타낸 그래프이다.
도 3은 실시예 1 내지 2, 비교예 1 내지 3, 6에서 제조한 리튬 이차전지의 초기 가스 발생량 대비 시간이 경과함에 따른 가스 발생 증가량을 측정한 그래프이다.
이하, 본 발명에 대한 이해를 돕기 위하여 본 발명을 더욱 상세하게 설명한다.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 발명의 일 실시예에 따른 이차전지용 양극활물질은, 리튬 복합금속 산화물을 포함하는 코어를 포함할 수 있다.
상기 리튬 복합금속 산화물은 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물(리티에이티드 인터칼레이션 화합물)이다. 예를 들면, 상기 리튬 복합금속 화합물은 고용량 및 고전압에서 사용 가능한 층상형 리튬 복합금속 산화물일 수 있다.
상기 리튬 복합금속 화합물은 하기 화학식 1로 표시될 수 있다.
<화학식 1>
Lia(NixCoyM1z)bM2cO2
상기 화학식 1에서, M1은 Mn 및 Al로 이루어진 군에서 선택되는 1종 이상의 원소이고, M2는 Ba, Ca, Zr, Ti, Mg, Ta, Nb 및 Mo로 이루어진 군에서 선택되는 1종 이상의 원소이고, 1≤a≤1.5, 0.9≤b≤1, 0≤c≤0.1, 0.6≤x<1, 0<y<0.4, 0<z≤0.4, b+c=1이다.
상기 화학식 1로 표시되는 리튬 복합금속 산화물에 있어서, Li은 a에 해당하는 함량, 즉 1≤a≤1.5, 구체적으로는 1≤a≤1.2로 포함될 수 있다. 상술한 범위를 만족할 경우, Li 함량 제어에 따른 양극활물질의 용량 특성 개선 효과가 현저하고, 활물질 제조시의 소결성의 균형을 맞출 수 있다. a가 1 미만이면 용량이 저하될 수 있고, 1.5를 초과하면 소성 공정에서 입자가 소결되어 버려, 활물질의 제조가 어려울 수 있다.
상기 화학식 1로 표시되는 리튬 복합금속 산화물에 있어서, Ni은 x에 해당하는 함량, 즉 0.6≤x<1, 구체적으로는 0.7≤x<0.95의 함량으로 포함될 수 있다. Ni의 함량이 상기 범위를 만족할 때, 고용량의 양극활물질을 구현할 수 있다.
상기 화학식 1로 표시되는 리튬 복합금속 산화물에 있어서, Co는 y에 해당하는 함량, 즉 0<y<0.4, 구체적으로는 0<y≤0.2, 보다 구체적으로는 0.04<y≤0.15의 함량으로 포함될 수 있다. 상술한 범위를 만족하면, 용량 특성을 향상시킬 수 있다. y가 0일 경우 용량 특성이 저하될 우려가 있다. 상술한 범위를 초과할 경우 비용 증가의 우려가 있다.
또, 상기 화학식 1의 리튬 복합금속 산화물에 있어서, M1은 Mn 및 Al 으로 이루어진 군에서 선택되는 적어도 어느 하나일 수 있다. 상기 M1인 Mn인 경우 양극활물질의 용량 특성 및 구조 안정성이 개선되므로, 최종 생산품인 이차전지가 고용량을 구현할 수 있고, 출력 특성이 향상될 수 있다. 상기 M1이 Al인 경우 활물질의 출력 특성이 개선시킬 수 있다.
상기 M1은 z에 해당하는 함량, 0<z≤0.4, 구체적으로는 0<z≤0.2, 보다 구체적으로는 0.02<z≤0.15의 함량으로 포함될 수 있다. z가 0이면 M1 포함에 따른 개선효과를 얻을 수 없다. 상술한 범위를 초과할 경우 오히려 이차전지의 출력 특성 및 용량 특성이 저하될 우려가 있다.
또, 상기 화학식 1의 리튬 복합금속 산화물에 있어서, M2는 c에 해당하는 함량, 즉 0≤c≤0.1, 바람직하게는 0≤c≤0.05의 함량으로 포함될 수 있다. 상술한 범위를 만족하면, 양극활물질의 구조 안정성을 개선시키고 그 결과로 이차전지의 출력특성을 향상시킬 수 있다. 구체적으로 M2는 Ba, Ca, Zr, Ti, Mg, Ta, Nb 및 Mo로 이루어진 군에서 선택되는 1종 이상의 원소일 수 있으며, 바람직하게는, Zr, Ti 및 Mg으로 이루어진 군에서 선택되는 1종 이상일 수 있다.
한편, 상기 a 는 리튬 복합금속 산화물 중 Li의 몰비율이고, b는 리튬 복합금속 산화물 중 Ni, Co 및 M1의 몰비율이며, c는 리튬 복합금속 산화물 중 M2의 몰비율이다. 이때, b+c는 1일 수 있다.
상기 리튬 복합금속 산화물은 1차 입자 또는 1차 입자들이 응집된 2차 입자일 수 있다. 이때 1차 입자들은 균일 또는 불균일할 수 있다. 또한, 상기 리튬 복합금속 산화물은 2차 입자의 표면 또는 1차 입자 간의 입계에 Zr 산화물의 편석상을 가지는 것을 더 포함할 수 있다.
또, 상기 양극 활물질은 1㎛ 내지 20㎛의 평균 입자 직경(D50)을 가질 수 있다. 상기 양극활물질의 평균 입자 직경이 1㎛ 미만이면 양극활물질 간 응집으로 인해 양극 합제 내 분산성 저하의 우려가 있고, 20㎛를 초과할 경우 양극활물질의 기계적 강도 저하 및 비표면적 감소의 우려가 있다. 또 양극활물질 입자 크기 제어에 따른 전지의 율특성 및 초기용량 특성의 개선 효과의 현저함을 고려할 때 3㎛ 내지 18㎛의 평균입자 직경(D50)을 갖는 것일 수 있다. 또 상기 양극 활물질이 2차 입자일 경우, 이를 구성하는 1차 입자의 평균입자 직경(D50)은 50nm 내지 1,000nm일 수 있다.
본 발명에 있어서, 상기 양극활물질의 평균 입자 직경(D50)은 입자 직경 분포의 50% 기준에서의 입자 직경으로 정의할 수 있다. 본 발명에 있어서, 상기 양극활물질의 평균 입자 직경(D50)은 예를 들어, 레이저 회절법(laser diffraction method)을 이용하여 측정할 수 있다. 구체적으로 상기 양극활물질의 평균 입자 직경(D50)은 양극활물질의 입자를 분산매 중에 분산시킨 후, 시판되는 레이저 회절 입도 측정 장치(예를 들어 Microtrac MT 3000)에 도입하여 약 28 kHz의 초음파를 출력 60 W로 조사하고, 측정 장치에 있어서의 입자 직경 분포의 50% 기준에서의 평균 입자 직경(D50)을 산출할 수 있다.
본 발명의 일실시예를 따른 양극활물질은 상기 코어 상에 위치하고, 리튬(Li), 붕소(B) 및 알루미늄(Al)을 포함하는 비정질 산화물을 포함하는 표면처리층을 포함할 수 있다.
상기 비정질 산화물은 전해액 및 전해액 유래 불화수소와 반응하지 않고 상기 코어 상에 위치하므로, 상기 코어와 상기 전해액 및 전해액 유래 불화수소와의 직접적인 접촉을 방지하거나, 최소화할 수 있다. 이에 따라, 전해액 및 전해액 유래 불화수소로 인한 코어의 손상을 최소화할 수 있으므로, 최종 생산품인 리튬 이차전지의 수명특성이 개선될 수 있다.
또한, 상기 양극활물질은 표면에 존재하는 리튬 부산물의 함량이 전체 중량에 대하여 0.55 중량% 미만, 바람직하게는 0.4 중량% 내지 0.55 중량% 미만일 수 있다. 상술한 바와 같이, 코어로서 리튬 복합금속 화합물 전체 몰수에 대하여 니켈의 함량이 60몰% 이상인 리튬 복합금속 화합물을 사용할 경우, 고용량 특성을 나타내는 반면, 양극활물질의 표면에 과량의 리튬 부산물이 생성될 수 있다는 단점이 있다. 이에, 상기 코어 상에 비정질 산화물을 포함하는 표면처리층을 형성할 경우, 상기 비정질 산화물은 코어의 표면에 존재하는 LiOH 및 Li2CO3 등의 리튬 부산물이 붕소 및/또는 알루미늄 함유 물질과 반응하여 비정질 산화물로 형성되기 때문에, 양극활물질 내의 리튬 부산물의 양을 감소시킬 수 있다. 예를 들면, 양극활물질 표면에 존재하는 리튬 부산물의 함량이 상기 범위를 초과할 경우, 전해액 내 포함되는 리튬염과, 상기 리튬 부산물과의 반응이 지속적으로 일어나 산소, HF, H2O 및 기타 가스 발생을 초래하고 이로 인해 리튬 이차전지의 성능에 악영향을 미칠 수 있다. 구체적으로, 상기 반응은 하기 반응식 1로 표시될 수 있다.
<반응식 1>
LiPF6 → LiF + PF5
PF5 + 2LiOH → 2LiF + H2O + POF3
PF5 + H2O → POF3 + 2HF
4PF5 + 2Li2CO3 → 3LiPF6 + 2CO2 + LiPO2F2
2HF + Li2CO3 → 2LiF + H2O + CO2
구체적으로는, 상기 표면처리층은 리튬 산화물, 붕소 산화물 및 알루미늄 산화물을 포함할 수 있고, 상기 표면처리층 내 비정질 산화물은, 붕소 산화물의 함량보다 알루미늄 산화물의 함량이 더 많은 것일 수 있다. 예를 들면, 표면처리층은 Li2O, B2O3 및 Al2O3를 포함하는 비정질 산화물을 포함할 수 있고, 상기 Li2O, B2O3 및 Al2O3는 서로 화학적으로 결합될 수 있다. 바람직하게는 상기 비정질 산화물은 Li2O-B2O3-Al2O3의 형태로 화학적으로 결합되어 존재할 수 있다. 예를 들면, 상기 비정질 산화물은 2LiAl7B4O5, 2LiAlB2O5 또는 2Li2AlB2O5의 형태로 존재할 수 있고, 상기 비정질 산화물은 B 및 Al을 1:1 초과 ~ 2.5 미만, 바람직하게는 1:1 초과 ~ 2 미만의 몰비로 포함하는 것일 수 있다. 본 발명에서와 같이, 상기 비정질 산화물이 상기 범위로 B 및 Al을 포함하면서, 서로 화학적으로 결합되어 존재할 경우, 표면에 존재하는 리튬 부산물의 저감 효과가 커서 전해액과의 반응에 의한 가스 발생을 개선할 수 있다.
예를 들면, 상기 표면처리층 내에 포함되는 비정질 산화물이 Li2O, B2O3 및 Al2O3 중 1종이 혼합물의 형태로 존재하거나, 또는 이들 중 2종이 서로 화학적 결합되고 나머지 1종이 단독으로 존재할 경우, 구체적으로, Al2O3, Li2O-Al2O3, Li2O-B2O3, Li20-B4O5 등으로 존재할 경우, 표면에 존재하는 리튬 부산물 저감 효과가 작아, 전해액과 반응 시 가스를 다량 발생시킬 수 있다.
상기 Li2O는 비정질 산화물의 고온점도를 저하시켜서 용융성이나 성형성을 향상시킬 수 있다. Li2O는 리튬 이온전도도가 우수하고, 충/방전시 전해액 및 전해액 유래의 불화수소와 반응하지 않는다. 이에 따라, 상기 코어를 효과적으로 보호하여 양극활물질의 수명특성 및 사이클 특성을 향상시킬 수 있다. 상기 Li2O는 상기 코어의 표면에 존재하는 리튬 부산물인 LiOH 및 Li2CO3로부터 유래된 것일 수 있다.
상기 B2O3는 유리 조성물을 구성하는 주 성분으로서, 유리 내 3차원 네트워크를 형성하여 열적 화학적 안정성을 높이는 역할을 한다. 그러나, 상기 B2O3는 수분과 반응하므로, 비정질 산화물 내 다량으로 포함될 경우 표면처리층의 화학적 안정성을 저하시킬 수 있다.
상기 Al2O3는 리튬 이온전도도가 높은 물질이고, 비정질 산화물 내에서 네트워크 형성제로서 작용할 수 있다. 상기 Al2O3는 비정질 산화물의 열팽창 계수 및 고온 점도에 영향을 미칠 수 있다.
상기 코어 상에 상기 비정질 산화물을 포함하는 표면처리층이 형성될 경우, 우수한 리튬 이온전도도로 인해 충/방전시 전해액 및 전해액 유래의 불화수소와의 반응이 억제되어, 수명 특성이 개선될 수 있고, 또한 열 안정성이 향상된 양극활물질을 제공할 수 있다.
또, 상기와 같은 비정질 산화물을 포함하는 표면처리층은 코어의 표면 전체에 균일하게 형성될 수 있다.
상기 표면처리층은 양극활물질의 용량을 결정하는 코어의 입자 직경을 고려하여 적절한 두께로 균일하게 형성되는 것이 바람직하다. 구체적으로는 상기 표면처리층은 코어의 반직경에 대해, 상기 표면처리층의 평균 두께는 20㎚ 내지 100㎚, 바람직하게는 50nm 내지 100nm일 수 있다. 상술한 범위 미만이면 표면처리층 형성에 따른 개선효과가 미미할 수 있고, 또한 상술한 범위를 초과하면, 양극 활물질의 저항이 증가될 수 있다.
본 발명에 있어서, 코어의 입자 직경 및 표면처리층의 두께는 집속 이온빔(forced ion beam, fib)를 이용한 입자 단면 분석을 통해 측정할 수 있다.
한편, 본 발명의 다른 일 실시예에 따른 양극활물질의 제조방법은 리튬 복합금속 산화물, 붕소 함유 원료물질 및 알루미늄 함유 원료물질을 혼합하여 혼합물을 제조하는 제1 단계; 및 상기 혼합물을 산소분위기 하에서 열처리하여 상기 리튬 복합금속 산화물을 포함하는 코어 상에 비정질 산화물을 포함하는 표면처리층을 형성하는 제2 단계를 포함하며, 상기 비정질 산화물을 형성하는 것은 상기 리튬 복합금속 산화물의 표면에 존재하는 리튬 부산물과, 상기 붕소 함유 원료물질 및 알루미늄 함유 원료 물질이 반응하여, 리튬, 붕소 및 알루미늄을 포함하는 비정질 산화물을 형성하는 것이고, 상기 붕소 함유 원료물질의 함량보다 상기 알루미늄 함유 원료 물질의 함량이 1배 초과 2.5배 미만으로 더 많이 포함되는 것이고, 상기 열처리는 500℃ 내지 800℃에서 수행되는 것이다.
상기 리튬 복합금속 산화물은 당해 기술 분야에서 사용되는 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물(리티에이티드 인터칼레이션 화합물)이면 되고, 그 종류가 특별히 제한되는 것은 아니다. 예를 들면, 상기 리튬 복합금속 산화물은 상기 화학식 1로 표시되는 것일 수 있다. 또한, 리튬 복합금속 산화물은 당해 기술 분야에 사용되는 일반적인 방법을 통해 제조되거나, 또는 시판되는 리튬 복합금속 산화물을 구입하여 사용할 수 있다.
한편, 상기 리튬 복합금속 산화물 전체 몰수에 대하여, 니켈의 함량이 60몰% 이상일 경우, 상기 양극활물질은 고용량 특성을 나타내는 반면, 소성 시 리튬 소스와 전구체와의 낮은 반응성으로 인해 표면에 리튬 부산물이 과량으로 생성될 수 있었다. 상기와 같이, 리튬 복합금속 산화물의 표면에 과량의 리튬 부산물이 존재할 경우, 전해액 내 포함되는 리튬염과, 리튬 부산물과의 반응이 일어나 가스가 발생하고, 이로 인해 이차전지의 성능에 악영향을 미칠 수 있다.
이에, 상기 리튬 복합금속 산화물과 붕소 함유 원료물질 및 알루미늄 함유 원료물질을 혼합하고 열처리함으로써, 상기 리튬 복합금속 산화물의 표면에 존재하는 리튬 부산물과, 상기 붕소 함유 원료물질 및 알루미늄 함유 원료 물질이 반응하고, 이에 따라, 상기 리튬 복합금속 산화물의 표면에 존재하는 리튬 부산물의 함량을 줄일 수 있을 뿐만 아니라, 리튬 이온전도도가 우수한 비정질 산화물의 형성에 따라 출력 특성이 우수한 양극활물질을 제조할 수 있음을 발견하고 본 발명을 완성하였다.
상기 붕소 함유 원료물질은 H3BO3, HBPO4, B2O3, B2O5, Li2B4O7 및(NH4)2B4O7로 이루어진 군에서 선택되는 1종 이상일 수 있고, 구체적으로는 H3BO3일 수 있다.
상기 알루미늄 함유 원료물질은 Al(OH)3, Al2(SO4)3, AlCl3 및 Al(NO3)3로 이루어진 군에서 선택되는 1종 이상일 수 있고, 구체적으로는 Al(OH)3일 수 있다.
상기 제1 단계에서, 상기 리튬 복합금속 산화물 100중량부에 대하여, 상기 붕소 함유 원료물질을 0.1 내지 0.8중량부, 바람직하게는 0.1 내지 0.5 중량부, 더욱 바람직하게는 0.1 내지 0.2 중량부 및 상기 알루미늄 함유 원료물질을 0.1 내지 1중량부, 바람직하게는 0.1 중량부 내지 0.5 중량부, 더욱 바람직하게는 0.3 중량부 내지 0.5 중량부로 혼합될 수 있다. 이때, 상기 붕소 함유 원료물질보다 상기 알루미늄 함유 원료물질의 함량을 1배 초과 2.5배 미만, 바람직하게는 1.1배 내지 2배로 더 많이 포함할 수 있다.
상기와 같이, 붕소 함유 원료물질보다 상기 알루미늄 함유 원료물질의 함량이 더 많을 경우, Li2O, B2O3 및 Al2O3이 서로 화학적 결합을 이룬 상태로 존재할 수 있다. 반면, 알루미늄 함유 원료물질의 함량과 붕소 함유 원료물질의 함량이 동일하거나, 알루미늄 함유 원료물질의 함량이 더 많거나, 또는 상기 범위를 초과하는 범위로 알루미늄 함유 원료물질의 함량보다 붕소 함유 원료물질의 함량이 많을 경우, 상기 비정질 산화물이 Li2O, B2O3 및 Al2O3 중 1종이 혼합물의 형태로 존재하거나, 또는 이들 중 2종이 서로 화학적 결합되고 나머지 1종이 단독으로 존재할 수 있다.
또한, 상기 제1단계에서 혼합 시, 붕소 함유 원료물질보다 상기 알루미늄 함유 원료물질의 함량을 1배 초과 2.5배 미만, 바람직하게는 1.1배 내지 2배로 더 많이 포함할 수 있다.
상기와 같이, 붕소 함유 원료물질보다 상기 알루미늄 함유 원료물질의 함량이 더 많을 경우, Li2O, B2O3 및 Al2O3가 서로 화학적으로 결합을 이룬 리튬 붕소 알루미늄 산화물의 형성이 유리하고, Li2O, B2O3 및 Al2O3가 표면처리층 내 각각 단독으로 존재할 확률이 낮아 리튬 부산물 저감에 효과적이고, 출력 및 저항 특성이 개선될 수 있다. 반면, 알루미늄 함유 원료물질의 함량과 붕소 함유 원료물질의 함량이 동일하거나, 알루미늄 함유 원료물질의 함량이 더 많거나, 또는 상기 범위를 초과하는 범위로 알루미늄 함유 원료물질의 함량보다 붕소 함유 원료물질의 함량이 많을 경우, 표면처리층 내 Li2O, B2O3 및 Al2O3가 각각 단독으로 존재하여, 리튬 부산물 저감 효과가 미미하여 가스가 발생할 수 있다. 또한, 표면처리층 내 Li2O, B2O3 및 Al2O3가 각각 단독으로 존재할 경우 상기 표면처리층이 저항층으로 작용하게 되어, 저항 증가를 유발할 수 있다.
한편, 상기 혼합은 고상 혼합인 것이 바람직하다. 고상 혼합법을 이용할 경우, 액상 혼합시 사용되는 용매 등에 의한 부반응물 생성의 우려가 없고, 또 보다 균일한 표면처리층의 형성이 가능하기 때문이다.
상기 붕소 함유 원료물질의 평균 입자 직경은 고상 혼합에 적합하도록, 5㎛ 초과, 50㎛이하일 수 있다. 상기 알루미늄 함유 원료물질의 평균 입자 직경은 고상 혼합에 적합하도록, 0 초과 내지 1㎛이하일 수 있다. 상술한 범위를 만족하면, 상기 코어에 균일하게 코팅되고, 원료물질끼리 응집현상을 방지할 수 있다.
상기 알루미늄 함유 원료물질은 상기 붕소 함유 원료물질보다 반응성이 좋지 않으므로, 평균 입자 직경이 상기 붕소 함유 원료물질보다 작은 것이 바람직하다.
상기 붕소 및 알루미늄 원료물질들은 상술한 평균 입자 직경을 갖기 위하여, 별도의 분쇄 공정을 수행할 수 있다. 상기 분쇄는 볼밀 등 통상의 분쇄 공정일 수 있다.
다음으로, 상기 제2단계에서 열처리는 500℃ 내지 800℃, 구체적으로는 500℃ 내지 700℃에서 수행될 수 있다. 상술한 온도를 만족하면, 상기 비정질 산화물 내 Li2O, B2O3 및 Al2O3가 서로 화학적 결합을 이룬 상태로 존재할 수 있다. 상술한 온도 미만이면, 상기 비정질 산화물 내에서 Li2O, B2O3 및 Al2O3 중 1종이 혼합물의 형태로 존재하거나, 또는 이들 중 2종이 서로 물리적 또는 화학적 결합되고 나머지 1종이 단독으로 존재한다. 구체적으로는 Al2O3, Li2O-Al2O3, Li2O-B2O3, Li20-B4O5 등이 비정질 산화물 내에 혼합물 형태로 존재하여, 본 발명의 표면처리층으로 인한 효과가 구현될 수 없다. 상술한 온도를 초과하면 양극활물질의 변성을 초래할 수 있다.
상기 열처리 공정은 상기한 조건에서 3시간 내지 40시간, 구체적으로는 5시간 내지 10시간 실시될 수 있다.
또, 상기 열처리 공정은 상기한 온도 범위 내에서 다단계로 수행될 수도 있으며, 이때 각 단계 진행에 따라 온도를 다양하게 변화시키며 수행될 수 있다.
또, 본 발명의 다른 일 실시예에 따르면 상기한 양극활물질을 포함하는 양극을 제공할 수 있다.
구체적으로, 상기 양극은 양극집전체 및 상기 양극집전체 위에 형성되며, 본 발명에 따른 양극활물질을 포함하는 양극활물질층을 포함한다.
상기 양극 집전체는 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소 또는 알루미늄이나 스테인레스 스틸 표면에 탄소, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다. 또, 상기 양극 집전체는 통상적으로 3 내지 500㎛의 두께를 가질 수 있으며, 상기 집전체 표면 상에 미세한 요철을 형성하여 양극활물질의 접착력을 높일 수도 있다. 예를 들어 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
또, 상기 양극활물질층은 앞서 설명한 양극활물질과 함께, 도전재 및 바인더를 포함할 수 있다.
이때, 상기 도전재는 전극에 도전성을 부여하기 위해 사용되는 것으로서, 구성되는 전지에 있어서, 화학변화를 야기하지 않고 전자 전도성을 갖는 것이면 특별한 제한없이 사용가능하다. 구체적인 예로는 천연 흑연이나 인조 흑연 등의 흑연; 카본 블랙, 아세틸렌블랙, 케첸블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙, 탄소섬유 등의 탄소계 물질; 구리, 니켈, 알루미늄, 은 등의 금속 분말 또는 금속 섬유; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화 티탄 등의 도전성 금속 산화물; 또는 폴리페닐렌 유도체 등의 전도성 고분자 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 도전재는 통상적으로 양극활물질층 총 중량에 대하여 1 내지 30 중량%로 포함될 수 있다.
또, 상기 바인더는 양극활물질 입자들 간의 부착 및 양극활물질과 집전체와의 접착력을 향상시키는 역할을 한다. 구체적인 예로는 폴리비닐리덴플로라이드(PVDF), 비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HFP), 폴리비닐알코올, 폴리아크릴로니트릴(polyacrylonitrile), 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 폴리머(EPDM), 술폰화-EPDM, 스티렌 부타디엔 고무(SBR), 불소 고무, 또는 이들의 다양한 공중합체 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 바인더는 양극활물질층 총 중량에 대하여 1 내지 30 중량%로 포함될 수 있다.
상기 양극은 상기 양극활물질을 이용하는 것을 제외하고는 통상의 양극 제조방법에 따라 제조될 수 있다. 예를 들면, 상기한 양극활물질 및 선택적으로, 바인더 및 도전재를 용매에 용해 또는 분산시켜 양극활물질층 형성용 슬러리를 형성하고, 상기 슬러리를 양극집전체 상에 도포한 후, 건조 및 압연함으로써 제조될 수 있다. 이때 상기 양극활물질, 바인더, 도전재의 종류 및 함량은 앞서 설명한 바와 같다.
상기 용매는 당해 기술분야에서 일반적으로 사용되는 용매일 수 있으며, 예를 들면, 디메틸설폭사이드(dimethyl sulfoxide, DMSO), 이소프로필 알코올(isopropyl alcohol), N-메틸피롤리돈(NMP), 아세톤(acetone) 또는 물 등을 들 수 있으나, 이에 한정되는 것은 아니다. 상기 용매는 1종의 용매를 단독으로 사용할 수도 있고, 2종 이상의 용매를 혼합하여 사용할 수도 있다. 상기 용매의 사용량은 슬러리의 도포 두께, 제조 수율을 고려하여 상기 양극활물질, 도전재 및 바인더를 용해 또는 분산시키고, 이후 양극제조를 위한 도포시 우수한 두께 균일도를 나타낼 수 있는 점도를 갖도록 하는 정도면 충분하다.
또, 다른 방법으로, 상기 양극은 상기 양극활물질층 형성용 슬러리를 별도의 지지체 상에 캐스팅한 다음, 이 지지체로부터 박리하여 얻은 필름을 양극 집전체 상에 라미네이션함으로써 제조될 수도 있다.
본 발명의 또 다른 일 실시예에 따르면, 상기 양극을 포함하는 전기화학소자가 제공된다. 상기 전기화학소자는 구체적으로 전지, 커패시터 등일 수 있으며, 보다 구체적으로는 리튬 이차전지일 수 있다.
상기 리튬 이차전지는 구체적으로 양극, 상기 양극과 대향하여 위치하는 음극, 상기 양극과 음극 사이에 개재되는 분리막 및 전해질을 포함하며, 상기 양극은 앞서 설명한 바와 같다. 또, 상기 리튬 이차전지는 상기 양극, 음극, 분리막의 전극 조립체를 수납하는 전지용기, 및 상기 전지용기를 밀봉하는 밀봉 부재를 선택적으로 더 포함할 수 있다.
상기 리튬 이차전지에 있어서, 상기 음극은 음극집전체 및 상기 음극집전체 상에 위치하는 음극활물질층을 포함한다.
상기 음극집전체는 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인레스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인레스 스틸의 표면에 탄소, 니켈, 티탄, 은 등으로 표면처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 또, 상기 음극 집전체는 통상적으로 3 내지 500㎛의 두께를 가질 수 있으며, 양극 집전체와 마찬가지로, 상기 집전체 표면에 미세한 요철을 형성하여 음극활물질의 결합력을 강화시킬 수도 있다. 예를 들어, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
상기 음극활물질층은 음극활물질과 함께 선택적으로 바인더 및 도전재를 포함한다. 상기 음극활물질층은 일례로서 음극활물질, 및 선택적으로 바인더 및 도전재를 용매에 용해 또는 분산시켜 음극 형성용 슬러리를 형성하고, 상기 슬러리를 음극집전체 상에 도포하고 건조하거나, 또는 상기 음극 형성용 슬러리를 별도의 지지체 상에 캐스팅한 다음, 이 지지체로부터 박리하여 얻은 필름을 음극집전체 상에 라미네이션함으로써 제조될 수도 있다.
상기 음극활물질로는 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물이 사용될 수 있다. 구체적인 예로는 인조흑연, 천연흑연, 흑연화 탄소섬유, 비정질탄소 등의 탄소질 재료; Si, Al, Sn, Pb, Zn, Bi, In, Mg, Ga, Cd, Si합금, Sn합금 또는 Al합금 등 리튬과 합금화가 가능한 금속질 화합물; SiOx(0 < x < 2), SnO2, 바나듐 산화물, 리튬 바나듐 산화물과 같이 리튬을 도프 및 탈도프할 수 있는 금속산화물; 또는 Si-C 복합체 또는 Sn-C 복합체과 같이 상기 금속질 화합물과 탄소질 재료를 포함하는 복합물 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다. 또한, 상기 음극활물질로서 금속 리튬 박막이 사용될 수도 있다. 또, 탄소재료는 저결정 탄소 및 고결정성 탄소 등이 모두 사용될 수 있다. 저결정성 탄소로는 연화탄소 (soft carbon) 및 경화탄소 (hard carbon)가 대표적이며, 고결정성 탄소로는 무정형, 판상, 인편상, 구형 또는 섬유형의 천연 흑연 또는 인조 흑연, 키시흑연 (Kish graphite), 열분해 탄소 (pyrolytic carbon), 액정피치계 탄소섬유 (mesophase pitch based carbon fiber), 탄소 미소구체 (meso-carbon microbeads), 액정피치 (Mesophase pitches) 및 석유와 석탄계 코크스 (petroleum or coal tar pitch derived cokes) 등의 고온 소성탄소가 대표적이다.
또, 상기 바인더, 도전재 및 용매는 앞서 양극에서 설명한 바와 동일한 것일 수 있다.
한편, 상기 리튬 이차전지에 있어서, 분리막은 음극과 양극을 분리하고 리튬 이온의 이동 통로를 제공하는 것으로, 통상 리튬 이차전지에서 분리막으로 사용되는 것이라면 특별한 제한없이 사용가능하며, 특히 전해질의 이온 이동에 대하여 저저항이면서 전해액 함습 능력이 우수한 것이 바람직하다. 구체적으로는 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름 또는 이들의 2층 이상의 적층 구조체가 사용될 수 있다. 또 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포가 사용될 수도 있다. 또, 내열성 또는 기계적 강도 확보를 위해 세라믹 성분 또는 고분자 물질이 포함된 코팅된 분리막이 사용될 수도 있으며, 선택적으로 단층 또는 다층 구조로 사용될 수 있다.
또, 본 발명에서 사용되는 전해질로는 리튬 이차전지 제조 시 사용 가능한 유기계 액체 전해질, 무기계 액체 전해질, 고체 고분자 전해질, 겔형 고분자 전해질, 고체 무기 전해질, 용융형 무기 전해질 등을 들 수 있으며, 이들로 한정되는 것은 아니다.
구체적으로, 상기 전해질은 유기 용매 및 리튬염을 포함할 수 있다.
상기 유기 용매로는 전지의 전기 화학적 반응에 관여하는 이온들이 이동할 수 있는 매질 역할을 할 수 있는 것이라면 특별한 제한없이 사용될 수 있다. 구체적으로 상기 유기 용매로는, 메틸 아세테이트(methyl acetate), 에틸 아세테이트(ethyl acetate), γ-부티로락톤(γ-butyrolactone), ε-카프로락톤(ε-caprolactone) 등의 에스테르계 용매; 디부틸 에테르(dibutyl ether) 또는 테트라히드로퓨란(tetrahydrofuran) 등의 에테르계 용매; 시클로헥사논(cyclohexanone) 등의 케톤계 용매; 벤젠(benzene), 플루오로벤젠(fluorobenzene) 등의 방향족 탄화수소계 용매; 디메틸카보네이트(dimethylcarbonate, DMC), 디에틸카보네이트(diethylcarbonate, DEC), 메틸에틸카보네이트(methylethylcarbonate, MEC), 에틸메틸카보네이트(ethylmethylcarbonate, EMC), 에틸렌카보네이트(ethylene carbonate, EC), 프로필렌카보네이트(propylene carbonate, PC) 등의 카보네이트계 용매; 에틸알코올, 이소프로필 알코올 등의 알코올계 용매; R-CN(R은 C2 내지 C20의 직쇄상, 분지상 또는 환 구조의 탄화수소기이며, 이중결합 방향 환 또는 에테르 결합을 포함할 수 있다) 등의 니트릴류; 디메틸포름아미드 등의 아미드류; 1,3-디옥솔란 등의 디옥솔란류; 또는 설포란(sulfolane)류 등이 사용될 수 있다. 이중에서도 카보네이트계 용매가 바람직하고, 전지의 충방전 성능을 높일 수 있는 높은 이온전도도 및 고유전율을 갖는 환형 카보네이트(예를 들면, 에틸렌카보네이트 또는 프로필렌카보네이트 등)와, 저점도의 선형 카보네이트계 화합물(예를 들면, 에틸메틸카보네이트, 디메틸카보네이트 또는 디에틸카보네이트 등)의 혼합물이 보다 바람직하다. 이 경우 환형 카보네이트와 사슬형 카보네이트는 약 1:1 내지 약 1:9의 부피비로 혼합하여 사용하는 것이 전해액의 성능이 우수하게 나타날 수 있다.
상기 리튬염은 리튬 이차전지에서 사용되는 리튬 이온을 제공할 수 있는 화합물이라면 특별한 제한없이 사용될 수 있다. 구체적으로 상기 리튬염은, LiPF6, LiClO4, LiAsF6, LiBF4, LiSbF6, LiAl04, LiAlCl4, LiCF3SO3, LiC4F9SO3, LiN(C2F5SO3)2, LiN(C2F5SO2)2, LiN(CF3SO2)2. LiCl, LiI, 또는 LiB(C2O4)2 등이 사용될 수 있다. 상기 리튬염의 농도는 0.1 내지 2.0M 범위 내에서 사용하는 것이 좋다. 리튬염의 농도가 상기 범위에 포함되면, 전해질이 적절한 전도도 및 점도를 가지므로 우수한 전해질 성능을 나타낼 수 있고, 리튬 이온이 효과적으로 이동할 수 있다.
상기 전해질에는 상기 전해질 구성 성분들 외에도 전지의 수명특성 향상, 전지 용량 감소 억제, 전지의 방전 용량 향상 등을 목적으로 예를 들어, 디플루오로 에틸렌카보네이트 등과 같은 할로알킬렌카보네이트계 화합물, 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임(glyme), 헥사인산 트리아미드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환 옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌 글리콜 디알킬 에테르, 암모늄염, 피롤, 2-메톡시 에탄올 또는 삼염화 알루미늄 등의 첨가제가 1종 이상 더 포함될 수도 있다. 이때 상기 첨가제는 전해질 총 중량에 대하여 0.1 내지 5 중량%로 포함될 수 있다.
상기와 같이 본 발명에 따른 양극활물질을 포함하는 리튬 이차전지는 우수한 방전 용량, 출력 특성 및 용량 유지율을 안정적으로 나타내기 때문에, 휴대전화, 노트북 컴퓨터, 디지털 카메라 등의 휴대용 기기, 및 하이브리드 전기자동차(hybrid electric vehicle, HEV) 등의 전기 자동차 분야 등에 유용하다.
이에 따라, 본 발명의 다른 일 구현예에 따르면, 상기 리튬 이차전지를 단위 셀로 포함하는 전지 모듈 및 이를 포함하는 전지팩이 제공된다.
상기 전지모듈 또는 전지팩은 파워 툴(Power Tool); 전기자동차(Electric Vehicle, EV), 하이브리드 전기자동차, 및 플러그인 하이브리드 전기자동차(Plug-in Hybrid Electric Vehicle, PHEV)를 포함하는 전기차; 또는 전력 저장용 시스템 중 어느 하나 이상의 중대형 디바이스 전원으로 이용될 수 있다.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
실시예 1
(양극활물질의 제조)
리튬 복합금속 산화물(Li(Ni0.83Co0.11Mn0.06)0 . 97Zr0 . 03O2) 100 중량부에 대해, 하기 표 1에 기재된 함량으로 H3BO3 및 Al(OH)3 건식 혼합기(CYCLOMIX, HOSOKAWA Micron Coorporation)로 혼합한 후 산소 분위기 하에 하기 표 1에 기재된 온도로 5시간 동안 열처리하여 표 1에 기재된 비정질 산화물을 포함하는 표면처리층이 형성된 양극활물질을 제조하였다.
(양극의 제조)
상기에서 제조한 양극활물질, 도전재인 카본블랙 및 바인더인 PVDF를 용매인 N-메틸피롤리돈 중에서 95:2.5:2.5의 중량비로 혼합하여 양극 형성용 조성물(점도: 5,000mPa·s)을 제조하였다. 양극 형성용 조성물을 알루미늄 집전체에 도포한 후, 130℃에서 건조 후, 압연하여 양극을 제조하였다.
(음극의 제조)
음극활물질로서 천연흑연, 카본블랙 도전재 및 폴리비닐리덴 플루오라이드(PVDF) 바인더를 용매인 N-메틸피롤리돈 중에서 85:10:5의 중량비로 혼합하여 음극 형성용 조성물을 제조하고, 이를 구리 집전체에 도포하여 음극을 제조하였다.
(리튬 이차전지의 제조)
상기 양극과 음극 사이에 분리막인 다공성 폴리에틸렌을 개재하여 전극 조립체를 제조하고, 상기 전극 조립체를 케이스 내부에 위치시킨 후, 케이스 내부로 전해액을 주입하여 리튬 이차전지를 제조하였다. 이때 전해액은 에틸렌카보네이트/디메틸카보네이트/에틸메틸카보네이트(EC/EMC/DEC의 혼합 부피비=3/4/3)로 이루어진 유기 용매에 1.0M 농도의 리튬헥사플루오로포스페이트(LiPF6)를 용해시켜 제조하였다.
실시예 2
리튬 복합금속 산화물(Li(Ni0.83Co0.11Mn0.06)0 . 97Zr0 . 03O2) 100 중량부에 대해, 하기 표 1에 기재된 함량으로 H3BO3 및 Al(OH)3를 건식 혼합기로 혼합한 후, 500℃에서 열처리하여 표 1에 기재된 조성의 비정질 산화물을 포함하는 표면처리층이 형성된 양극활물질을 제조하였다. 이를 사용하는 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 양극 및 리튬 이차전지를 제조하였다.
비교예 1
양극활물질로서 표면처리층이 형성되지 않은 리튬 복합금속 산화물(Li(Ni0.83Co0.11Mn0.06)0.97Zr0.03O2)을 사용하는 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 양극 및 리튬 이차전지를 제조하였다.
비교예 2
리튬 복합금속 산화물(Li(Ni0.83Co0.11Mn0.06)0 . 97Zr0 . 03O2) 100 중량부에 대해, 하기 표 1에 기재된 함량으로 H3BO3를 건식 혼합기로 혼합한 후, 300℃에서 열처리하여 표 1에 기재된 조성의 비정질 산화물을 포함하는 표면처리층이 형성된 양극활물질을 제조하였다. 이를 사용하는 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 양극 및 리튬 이차전지를 제조하였다.
비교예 3
리튬 복합금속 산화물(Li(Ni0.83Co0.11Mn0.06)0 . 97Zr0 . 03O2) 100 중량부에 대해, 하기 표 1에 기재된 함량으로 Al(OH)3를 건식 혼합기로 혼합한 후, 300℃에서 열처리하여 표 1에 기재된 조성의 비정질 산화물을 포함하는 표면처리층이 형성된 양극활물질을 제조하였다. 이를 사용하는 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 양극 및 리튬 이차전지를 제조하였다.
비교예 4
리튬 복합금속 산화물(Li(Ni0.83Co0.11Mn0.06)0 . 97Zr0 . 03O2) 100 중량부에 대해, 하기 표 1에 기재된 함량으로 H3BO3 및 Al(OH)3를 건식 혼합기로 혼합한 후, 700℃에서 열처리하여 표 1에 기재된 조성의 비정질 산화물을 포함하는 표면처리층이 형성된 양극활물질을 제조하였다. 이를 사용하는 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 양극 및 리튬 이차전지를 제조하였다.
비교예 5
리튬 복합금속 산화물(Li(Ni0.83Co0.11Mn0.06)0 . 97Zr0 . 03O2) 100 중량부에 대해, 하기 표 1에 기재된 함량으로 H3BO3 및 Al(OH)3를 건식 혼합기로 혼합한 후, 700℃에서 열처리하여 표 1에 기재된 조성의 비정질 산화물을 포함하는 표면처리층이 형성된 양극활물질을 제조하였다. 이를 사용하는 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 양극 및 리튬 이차전지를 제조하였다.
비교예 6
리튬 복합금속 산화물(Li(Ni0.83Co0.11Mn0.06)0 . 97Zr0 . 03O2) 100 중량부에 대해, 하기 표 1에 기재된 함량으로 H3BO3 및 Al(OH)3를 건식 혼합기로 혼합한 후, 300℃에서 열처리하여 표 1에 기재된 조성의 비정질 산화물을 포함하는 표면처리층이 형성된 양극활물질을 제조하였다. 이를 사용하는 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 양극 및 리튬 이차전지를 제조하였다.
비교예 7
리튬 복합금속 산화물(Li(Ni0.83Co0.11Mn0.06)0 . 97Zr0 . 03O2) 100 중량부에 대해, 하기 표 1에 기재된 함량으로 H3BO3 및 Al(OH)3를 건식 혼합기로 혼합한 후, 700℃에서 열처리하여 표 1에 기재된 조성의 비정질 산화물을 포함하는 표면처리층이 형성된 양극활물질을 제조하였다. 이를 사용하는 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 양극 및 리튬 이차전지를 제조하였다.
구분 H3BO3(중량부) Al(OH)3(중량부) 열처리 온도(℃) 비정질 산화물
조성 평균 두께 (㎚)
실시예 1 0.2 0.3 700 Li2O-B2O3-Al2O3 70
실시예 2 0.2 0.3 500 Li2O-B2O3-Al2O3 70
비교예 1 0 0 0 - -
비교예 2 0.2 0 300 Li2O-B2O3 70
비교예 3 0 0.3 300 Li2O-Al2O3 70
비교예 4 0.2 0.2 700 Li2O-B2O3-Al2O3 70
비교예 5 0.3 0.2 700 Li2O-B2O3-Al2O3 70
비교예 6 0.2 0.3 300 Li2O-B2O3-Al2O3 70
비교예 7 0.2 0.5 700 Li2O-B2O3-Al2O3 70
실험예 1: 양극활물질의 특성 평가
실시예 1 내지 실시예 2, 비교예 1 내지 비교예 7에서 제조한 양극활물질의 표면에 잔류하는 리튬 부산물의 양을 pH 적정(pH titration)방법을 이용하여 측정하였다. 측정방법은 10g의 양극활물질을 증류수에 부어 양극활물질 표면에 잔류하는 리튬 부산물을 용해 시킨 후 그 용액만 걸러내어 0.1M HCl을 0.3~0.5mL/min의 속도로 주입하면서 적정하였다. 이 때 pH 5까지 주입된 HCl 양으로 잔류 리튬 부산물 함량을 계산하였다. pH 적정을 위해 사용된 장비는 Metrohm사 장비이다. 그 결과를 하기 표 2에 기재하였다. 하기 표 2에서 LiOH 및 Li2CO3의 함량은 양극활물질 총 중량에 대한 중량%를 기재한 것이다.
구분 LiOH(중량%) Li2CO3(중량%) 총합(중량%)
실시예 1 0.424 0.057 0.481
실시예 2 0.428 0.115 0.543
비교예 1 0.480 0.730 1.210
비교예 2 0.422 0.135 0.557
비교예 3 0.465 0.564 1.029
비교예 4 0.433 0.125 0.558
비교예 5 0.438 0.127 0.565
비교예 6 0.452 0.157 0.609
비교예 7 0.44 0.131 0.571
표 2를 참조하면, 실시예 1 내지 실시예 2에서 제조한 양극활물질의 경우, 리튬 부산물의 함량이 양극 활물질 총 중량에 대하여 0.55 중량% 미만 정도로 비교예 1 내지 7에서 제조한 양극활물질에 비하여 리튬 부산물의 양이 적음을 확인할 수 있었다.
실험예 2: 리튬 이차전지의 특성평가(1)
실시예 1 내지 2, 비교예 1 내지 7에서 제조한 리튬 이차전지를 45℃에서 2.5V 내지 4.25V 구동전압 범위 내에서 0.3C/0.3C의 조건으로 충/방전을 30회 실시하였다. 그리고 1회 사이클의 방전용량 대비 사이클 수에 따른 방전용량의 비율인 방전용량 유지율을 측정하였다. 그 결과를 도 1에 나타내었다.
도 1을 참조하면, 실시예 1 내지 2의 리튬 이차전지는 사이클 수가 증가하여도 용량유지율의 변화는 비교예 1 내지 7에 비하여 적었다. 특히 실시예 1의 리튬 이차전지의 경우 1회 사이클의 방전 용량 대비 사이클 수에 따른 방전 용량의 변화가 거의 없었다.
실험예 3: 리튬 이차전지의 특성평가(2)
리튬 이차전지를 45℃에서 수명 특성 평가를 수행할 때, 5 사이클 마다 방전 초기 전압강하를 0초 내지 60초 동안 측정하여 전류(0.3C)로 나눠서 저항을 계산하였다. 이 결과 실시예 1에서는 45℃에서 초기 직류저항(DCIR)은 10.6mΩ이었다.
도 2를 참조하면, 실시예 1 내지 2에서 제조한 리튬 이차전지는 비교예 1 내지 7에서 제조한 리튬 이차전지보다 직류저항증가율이 낮으므로, 이로부터 우수한 출력 밀도를 나타냄을 예상할 수 있다.
실험예 4: 리튬 이차전지의 특성평가(3)
실시예 1 내지 2, 비교예 1 내지 3, 6에서 제조한 리튬 이차전지를 각각 정전류 0.3C로 4.25V까지 충전한 후, 60℃에서 6주 동안 보관하였다. 시간의 경과에 따라 리튬 이차전지의 내부에서 발생한 가스량을 측정하여 도 3에 나타내었다. 리튬 이차전지에서 발생한 가스량은 리튬 이차전지의 부피변화로 측정하였다.
도 3을 참조하면, 실시예 1~2에서 제조한 리튬 이차전지의 가스량이 비교예 1 내지 3, 6에서 제조한 리튬 이차전지와 비교하여 현저하게 낮음을 확인할 수 있었다.

Claims (15)

  1. 리튬 복합금속 산화물을 포함하는 코어; 및
    상기 코어 상에 위치하고, 리튬(Li), 붕소(B) 및 알루미늄(Al)을 포함하는 비정질 산화물을 포함하는 표면처리층을 포함하며,
    상기 표면처리층은 리튬 산화물, 붕소 산화물 및 알루미늄 산화물이 서로 화학적으로 결합된 비정질 산화물을 포함하고,
    상기 표면처리층 내 비정질 산화물은, 붕소 산화물의 함량보다 알루미늄 산화물의 함량이 더 많으며, 표면에 존재하는 리튬 부산물의 함량이 전체 중량에 대하여 0.55 중량% 미만인, 이차전지용 양극활물질.
  2. 청구항 1에 있어서,
    상기 리튬 복합금속 산화물은 하기 화학식 1로 표시되는 이차전지용 양극활물질:
    <화학식 1>
    Lia(NixCoyM1z)bM2cO2
    상기 화학식 1에서,
    M1은 Mn 및 Al로 이루어진 군에서 선택되는 1종 이상의 원소이고,
    M2는 Ba, Ca, Zr, Ti, Mg, Ta, Nb 및 Mo로 이루어진 군에서 선택되는 1종 이상의 원소이고,
    1≤a≤1.5, 0.9≤b≤1, 0≤c≤0.1, 0.6≤x<1, 0<y<0.4, 0<z≤0.4, b+c=1이다.
  3. 청구항 1에 있어서,
    상기 붕소 산화물 및 알루미늄 산화물의 몰비는 1:1 초과 ~ 2.5 미만인 이차전지용 양극활물질.
  4. 청구항 1에 있어서,
    상기 표면처리층은 Li2O, B2O3 및 Al2O3를 포함하는 비정질 산화물을 포함하는 이차전지용 양극활물질.
  5. 청구항 4에 있어서,
    상기 Li2O, B2O3 및 Al2O3는 서로 화학적으로 결합되는 것인 이차전지용 양극활물질.
  6. 청구항 1에 있어서,
    상기 표면처리층의 평균 두께는 20 내지 100㎚인 이차전지용 양극활물질.
  7. 청구항 1에 있어서,
    상기 양극활물질은 평균 입자 직경(D50)이 1㎛ 내지 20㎛인 것인 이차전지용 양극활물질.
  8. 청구항 1에 있어서,
    상기 리튬 복합금속 산화물은 1차 입자가 응집되어 이루어진 2차 입자이고,
    2차 입자의 표면 또는 1차 입자 간의 입계에 Zr 산화물의 편석상을 가지는 것을 더 포함하는, 양극활물질.
  9. 리튬 복합금속 산화물, 붕소 함유 원료물질 및 알루미늄 함유 원료물질을 혼합하여 혼합물을 제조하는 제1 단계; 및
    상기 혼합물을 산소분위기 하에서 열처리하여 상기 리튬 복합금속 산화물을 포함하는 코어 상에 비정질 산화물을 포함하는 표면처리층을 형성하는 제2 단계;를 포함하며,
    상기 비정질 산화물을 형성하는 것은, 상기 리튬 복합금속 산화물의 표면에 존재하는 리튬 부산물과, 상기 붕소 함유 원료물질 및 알루미늄 함유 원료 물질이 반응하여, 리튬, 붕소 및 알루미늄을 포함하는 비정질 산화물을 형성하는 것이고,
    상기 붕소 함유 원료물질의 함량보다 상기 알루미늄 함유 원료 물질의 함량이 1배 초과 2.5배 미만으로 더 많이 포함되는 것이고, 상기 열처리는 500℃ 내지 800℃에서 수행되는 것인, 이차전지용 양극활물질의 제조방법.
  10. 청구항 9에 있어서,
    상기 리튬 복합금속 산화물 100 중량부에 대하여, 상기 붕소 함유 원료 물질을 0.1 내지 0.8 중량부, 알루미늄 원료 물질을 0.1 내지 1 중량부로 혼합하는 것인, 이차전지용 양극활물질의 제조방법.
  11. 청구항 9에 있어서,
    상기 붕소 함유 원료물질은 H3BO3, HBPO4, B2O3, B2O5, Li2B4O7 및(NH4)2B4O7로 이루어진 군에서 선택되는 1종 이상인 이차전지용 양극활물질의 제조방법.
  12. 청구항 9에 있어서,
    상기 알루미늄 함유 원료물질은 Al(OH)3, Al2(SO4)3, AlCl3 및 Al(NO3)3로 이루어진 군에서 선택되는 1종 이상인 이차전지용 양극활물질의 제조방법.
  13. 청구항 9에 있어서,
    상기 리튬 부산물은 LiOH 및 Li2CO3로 이루어진 군에서 선택되는 1종 이상인 이차전지용 양극활물질의 제조방법.
  14. 청구항 1에 따른 양극활물질을 포함하는 이차전지용 양극.
  15. 청구항 14에 따른 양극활물질을 포함하는 이차전지.
PCT/KR2018/001470 2017-02-02 2018-02-02 이차전지용 양극활물질 및 이의 제조방법 WO2018143734A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP18747131.3A EP3486979B1 (en) 2017-02-02 2018-02-02 Cathode active material for secondary battery, and preparation method therefor
US16/320,859 US11121357B2 (en) 2017-02-02 2018-02-02 Positive electrode active material for secondary battery and method of preparing the same
PL18747131T PL3486979T3 (pl) 2017-02-02 2018-02-02 Materiał czynny elektrody dodatniej dla akumulatora i sposób jego wytwarzania
CN201880003376.4A CN109643794B (zh) 2017-02-02 2018-02-02 二次电池用正极活性材料及其制备方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20170015158 2017-02-02
KR10-2017-0015158 2017-02-02
KR1020180013454A KR102187969B1 (ko) 2017-02-02 2018-02-02 이차전지용 양극활물질 및 이의 제조방법
KR10-2018-0013454 2018-02-02

Publications (1)

Publication Number Publication Date
WO2018143734A1 true WO2018143734A1 (ko) 2018-08-09

Family

ID=63040893

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/001470 WO2018143734A1 (ko) 2017-02-02 2018-02-02 이차전지용 양극활물질 및 이의 제조방법

Country Status (1)

Country Link
WO (1) WO2018143734A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112751018A (zh) * 2019-10-31 2021-05-04 艾可普罗 Bm 有限公司 锂复合氧化物及包括其的锂二次电池

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002164053A (ja) * 2000-09-25 2002-06-07 Samsung Sdi Co Ltd リチウム二次電池用正極活物質及びその製造方法
KR20040049811A (ko) * 2002-12-06 2004-06-12 가와테쓰 고교 가부시키가이샤 리튬이차전지용 양극재료, 그 제조방법 및 리튬이차전지
JP2009152214A (ja) * 2000-09-25 2009-07-09 Samsung Sdi Co Ltd リチウム二次電池用正極活物質及びその製造方法
JP2009218217A (ja) * 2000-10-09 2009-09-24 Samsung Sdi Co Ltd リチウム二次電池用正極活物質及びその製造方法
KR20160049995A (ko) * 2014-10-28 2016-05-10 주식회사 엘지화학 리튬 이차전지용 양극활물질, 이의 제조방법 및 이를 포함하는 리튬 이차전지

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002164053A (ja) * 2000-09-25 2002-06-07 Samsung Sdi Co Ltd リチウム二次電池用正極活物質及びその製造方法
JP2009152214A (ja) * 2000-09-25 2009-07-09 Samsung Sdi Co Ltd リチウム二次電池用正極活物質及びその製造方法
JP2009218217A (ja) * 2000-10-09 2009-09-24 Samsung Sdi Co Ltd リチウム二次電池用正極活物質及びその製造方法
KR20040049811A (ko) * 2002-12-06 2004-06-12 가와테쓰 고교 가부시키가이샤 리튬이차전지용 양극재료, 그 제조방법 및 리튬이차전지
KR20160049995A (ko) * 2014-10-28 2016-05-10 주식회사 엘지화학 리튬 이차전지용 양극활물질, 이의 제조방법 및 이를 포함하는 리튬 이차전지

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112751018A (zh) * 2019-10-31 2021-05-04 艾可普罗 Bm 有限公司 锂复合氧化物及包括其的锂二次电池

Similar Documents

Publication Publication Date Title
KR102187969B1 (ko) 이차전지용 양극활물질 및 이의 제조방법
WO2019151834A1 (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2019164313A1 (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2019103460A1 (ko) 이차전지용 양극재 및 이를 포함하는 리튬 이차전지
WO2018097562A1 (ko) 이차전지용 양극 및 이를 포함하는 리튬 이차전지
WO2019147017A1 (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2019225969A1 (ko) 리튬 이차전지용 양극재, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
WO2021187961A1 (ko) 이차전지용 양극 활물질 및 이를 포함하는 리튬 이차전지
WO2017095081A1 (ko) 이차전지용 양극활물질, 이를 포함하는 이차전지용 양극 및 이차전지
WO2019098541A1 (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2021107586A1 (ko) 인편상 흑연을 포함하는 이차전지용 양극 및 이를 포함하는 이차전지
WO2018217071A1 (ko) 이차전지용 양극의 제조방법, 이와 같이 제조된 이차전지용 양극 및 이를 포함하는 리튬 이차전지
WO2021145647A1 (ko) 이차전지용 양극 활물질의 제조방법
WO2022164281A1 (ko) 양극 및 이를 포함하는 리튬 이차전지
WO2019212321A1 (ko) 양극 활물질의 세정 방법, 이를 포함하는 양극 활물질의 제조 방법 및 이에 의해 제조된 양극 활물질
WO2019013511A2 (ko) 리튬 이차전지용 양극, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2018174616A1 (ko) 양극 활물질 선분산체 조성물, 이차전지용 양극 및 이를 포함하는 리튬 이차전지
WO2019017643A9 (ko) 리튬 이차전지용 양극, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2020122511A1 (ko) 이차전지용 양극, 이의 제조 방법 및 이를 포함하는 리튬 이차전지
WO2018174619A1 (ko) 이차전지 양극용 슬러리 조성물의 제조방법, 이를 이용하여 제조된 이차전지용 양극 및 이를 포함하는 리튬 이차전지
WO2016053051A1 (ko) 리튬 이차전지용 양극활물질, 이의 제조방법 및 이를 포함하는 리튬 이차전지
WO2020067830A1 (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2021153936A1 (ko) 이차전지용 양극 활물질 및 이를 포함하는 리튬 이차전지
WO2021112607A1 (ko) 이차전지용 양극재의 제조방법
WO2021225316A1 (ko) 수분과의 반응성이 완화된 고-니켈 전극 시트 및 이의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18747131

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018747131

Country of ref document: EP

Effective date: 20190214

NENP Non-entry into the national phase

Ref country code: DE