Nothing Special   »   [go: up one dir, main page]

WO2018142536A1 - Compressor - Google Patents

Compressor Download PDF

Info

Publication number
WO2018142536A1
WO2018142536A1 PCT/JP2017/003778 JP2017003778W WO2018142536A1 WO 2018142536 A1 WO2018142536 A1 WO 2018142536A1 JP 2017003778 W JP2017003778 W JP 2017003778W WO 2018142536 A1 WO2018142536 A1 WO 2018142536A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
compressor
suction
pipe connection
connection portion
Prior art date
Application number
PCT/JP2017/003778
Other languages
French (fr)
Japanese (ja)
Inventor
亮 濱田
幹一朗 杉浦
貴也 木本
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2017/003778 priority Critical patent/WO2018142536A1/en
Priority to JP2018565162A priority patent/JP6840173B2/en
Priority to CN201780084682.0A priority patent/CN110249134B/en
Priority to KR1020197015390A priority patent/KR102388016B1/en
Priority to CZ2019480A priority patent/CZ309050B6/en
Publication of WO2018142536A1 publication Critical patent/WO2018142536A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/06Silencing
    • F04C29/065Noise dampening volumes, e.g. muffler chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/12Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2210/00Fluid
    • F04C2210/26Refrigerants with particular properties, e.g. HFC-134a
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/96Preventing, counteracting or reducing vibration or noise

Definitions

  • the present invention relates to a compressor that compresses and discharges a refrigerant.
  • Hydrofluoroolefin has a lower GWP (global warming potential) than R410A refrigerant or R32 refrigerant conventionally used as a refrigerant, and is a promising refrigerant as a refrigerant used for measures against global warming.
  • GWP global warming potential
  • hydrofluoroolefin is a promising refrigerant as a refrigerant used for countermeasures against global warming because it has a smaller GWP than the conventional refrigerant R410 or R32.
  • hydrofluoroolefin when hydrofluoroolefin is used as the operating refrigerant of the compressor, hydrofluoroolefin has a lower sound velocity than R32 refrigerant. Therefore, when the hydrofluoroolefin is operated with a conventional compressor, the resonance frequency due to the resonance between the suction muffler and the refrigerant operating sound transitions to a low frequency band.
  • the operation sound in the low frequency band has a problem that the effect of the sound insulating material attached around the compressor is thin and the quietness of the compressor is deteriorated.
  • the present invention has been made to solve the above-described problems, and provides a compressor that suppresses deterioration of silence due to resonance between a suction muffler and refrigerant operating sound even when hydrofluoroolefin is used as an operating refrigerant. Is.
  • the compressor according to the present invention includes a sealed container having a compression mechanism part, a suction pipe connected to the compression mechanism part, a suction muffler connected to the suction pipe, and a suction muffler connected to the suction muffler.
  • the ratio ⁇ [wt%] of the R1234yf refrigerant to the entire operating refrigerant and the distance L “mm” between the suction pipe connection portion and the suction pipe connection portion in the internal space of the suction muffler are as described above.
  • the resonance point can be arranged at a frequency where the noise of the compressor is small or a frequency at which the effect of the sound insulating material is easily exhibited. Therefore, the compressor can effectively suppress noise due to resonance between the suction muffler and the refrigerant operation sound. As a result, the quietness of the compressor using hydrofluoroolefin as the operating refrigerant can be improved.
  • FIG. 3 is a sectional view taken along line AA in FIG. 2.
  • FIG. 3 is a sectional view taken along line BB in FIG.
  • It is a line graph which shows the noise of the common single compressor in a frequency band.
  • It is a broken line figure which shows the effect of the sound insulating material in a frequency band.
  • It is a broken line figure which shows the noise of the common compressor single-piece
  • FIG. 2 is a schematic side view of an inhalation muffler. It is the schematic top view of an inhalation muffler.
  • FIG. 6 is a schematic plan view of a modification of the suction muffler.
  • FIG. 10 is a schematic plan view of another modification of the suction muffler.
  • FIG. 1 is an internal configuration diagram showing the inside of the compressor according to Embodiment 1 of the present invention.
  • the compressor 100 includes a sealed container 1 in which a compression mechanism unit 3 is built.
  • the compressor 100 includes an electric motor unit 2 inside the sealed container 1.
  • the compressor 100 is connected to the suction pipe 15 connected to the compression mechanism unit 3, the suction muffler 14 connected to the suction pipe 15, and the supply for supplying the refrigerant to the suction muffler 14.
  • a tube 19 19.
  • the sealed container 1 includes a bottomed cylindrical lower sealed container 13 and an upper sealed container 12 that closes an upper opening of the lower sealed container 13.
  • the connecting portion between the lower sealed container 13 and the upper sealed container 12 is fixed by welding, and the sealed state is maintained.
  • a suction pipe 15 is connected to the lower sealed container 13, and a suction muffler 14 described later is attached to the suction pipe 15.
  • the suction pipe 15 is connected to the compression mechanism unit 3 and is a connection pipe for sending the gas refrigerant flowing in via the suction muffler 14 into the compression mechanism unit 3.
  • the lower airtight container 13 may be provided with an oil supply mechanism in which lubricating oil supplied to the compression mechanism unit 3 is stored.
  • the discharge pipe 4 is connected to the upper sealed container 12 on the axis extension line of the rotating shaft 31.
  • the discharge pipe 4 is a pipe that is attached to the sealed container 1 and discharges the refrigerant compressed by the compression mechanism unit 3 to the outside of the sealed container 1.
  • the inner diameter of the discharge pipe is always formed at a constant size.
  • the discharge pipe 4 should just be provided in the airtight container 1, and does not necessarily need to be arrange
  • the upper sealed container 12 is further provided with an airtight terminal 16 for electrical connection with the electric motor unit 2 in the sealed container 1 and a rod 17 to which a cover for protecting the airtight terminal 16 is attached.
  • the electric motor unit 2 includes a stator 21 fixed to the lower hermetic container 13 and a rotor 22 provided rotatably on the inner peripheral side of the stator 21.
  • a rotation shaft 31 is fixed to the center of the rotor 22.
  • the stator 21 is fixed to the lower sealed container 13 of the sealed container 1 by various fixing methods such as shrink fitting and welding.
  • the stator 21 is electrically connected to the hermetic terminal 16 by a lead wire 18.
  • FIG. 2 is a longitudinal sectional view showing a compression mechanism portion of the compressor according to Embodiment 1 of the present invention.
  • 3 is a cross-sectional view taken along line AA in FIG. 4 is a cross-sectional view taken along line BB in FIG.
  • the configuration of the compression mechanism unit 3 will be described with reference to FIGS. 3 and 4, the illustration of the eccentric shaft portion 31c and the eccentric shaft portion 31d is omitted.
  • the compression mechanism section 3 is accommodated in the sealed container 1 and compresses the refrigerant flowing into the sealed container 1.
  • the compression mechanism unit 3 is a twin rotary type compression mechanism having two cylindrical cylinders.
  • the compression mechanism unit 3 is disposed below the electric motor unit 2 in the sealed container 1 and fixed to the lower sealed container 13. Yes.
  • the compression mechanism unit 3 includes a rotary shaft 31, a main bearing 32, a sub bearing 33, a first cylindrical cylinder 34a, a first rolling piston 35a, a second cylindrical cylinder 34b, and a second rolling piston. 35b and a partition plate 36.
  • the rotary shaft 31 is connected to the rotor 22 of the electric motor unit 2 and transmits the rotational force of the electric motor unit 2 to the compression mechanism unit 3.
  • the rotating shaft 31 includes a main shaft portion 31a fixed to the rotor 22 of the electric motor unit 2, and a sub shaft portion 31b provided on the opposite side of the main shaft portion 31a in the axial direction.
  • the rotating shaft 31 is provided between the main shaft portion 31a and the subshaft portion 31b, and an eccentric shaft portion 31c inserted into the first rolling piston 35a and an eccentric shaft inserted into the second rolling piston 35b. Part 31d.
  • the eccentric shaft portion 31c and the eccentric shaft portion 31d are arranged with a predetermined phase difference (for example, 180 °).
  • the rotary shaft 31 has a main shaft portion 31 a that is rotatably supported by a main bearing 32 and a sub shaft portion 31 b that is rotatably supported by a sub bearing 33.
  • the main bearing 32 is a closing member that closes one end face (on the motor part 2 side) of both ends of the first cylindrical cylinder 34a.
  • the main bearing 32 and the first cylindrical cylinder 34a are molded and assembled as separate articles.
  • the sub-bearing 33 is a closing member that closes one end face of the both ends of the second cylindrical cylinder 34b (on the opposite side to the electric motor part 2 in the axial direction).
  • the sub bearing 33 and the second cylindrical cylinder 34b are molded and assembled as separate articles.
  • the first cylindrical cylinder 34a is formed in a substantially cylindrical shape, and both end surfaces of the substantially cylindrical shape are closed by the main bearing 32 and the partition plate 36 in the axial direction of the rotary shaft 31, as shown in FIG.
  • a chamber 40a sealed in the internal space of the first cylindrical cylinder 34a is formed.
  • the chamber 40a accommodates an eccentric shaft portion 31c of the rotating shaft 31 shown in FIG. 2 and a first rolling piston 35a that is rotatably fitted to the eccentric shaft portion 31c.
  • the first cylindrical cylinder 34a is formed with a first vane sliding groove 41a in the radial direction.
  • a first vane 37a is provided in the first vane sliding groove 41a.
  • the first cylindrical cylinder 34a of the compression mechanism unit 3 is provided with a first suction port 42a for sucking the refrigerant.
  • the first suction port 42a is formed in the radial direction of the first cylindrical cylinder 34a.
  • the first suction port 42a is connected to the suction pipe 15 described above and serves as a path for guiding the refrigerant into the chamber 40a of the first cylindrical cylinder 34a.
  • the first rolling piston 35a is mounted on the eccentric shaft portion 31c of the rotary shaft 31 shown in FIG. 2, and the first vane 37a that rotates eccentrically in the chamber 40a as the rotary shaft 31 rotates and is pressed against the outer periphery.
  • a compression chamber is configured to perform a suction operation and a compression operation.
  • the first vane 37a is pressed against the first rolling piston 35a by an urging means (not shown).
  • the first vane 37a reciprocates in the first vane sliding groove 41a while contacting the first rolling piston 35a.
  • the first vane 37a reciprocates in the first vane sliding groove 41a, and a space formed between the first cylindrical cylinder 34a and the first rolling piston 35a is defined as a suction chamber and a compression chamber. It is divided into.
  • the second cylindrical cylinder 34b is formed in a substantially cylindrical shape, and both end surfaces of the substantially cylindrical shape are closed by the auxiliary bearing 33 and the partition plate 36 in the axial direction of the rotary shaft 31, as shown in FIG.
  • a sealed chamber 40b is formed in the internal space of the second cylindrical cylinder 34b.
  • the chamber 40b accommodates an eccentric shaft portion 31d of the rotary shaft 31 shown in FIG. 2 and a second rolling piston 35b that is rotatably fitted to the eccentric shaft portion 31d.
  • the second cylindrical cylinder 34b has a second vane sliding groove 41b formed in the radial direction.
  • a second vane 37b is provided in the second vane sliding groove 41b.
  • the second cylindrical cylinder 34b of the compression mechanism unit 3 is provided with a second suction port 42b for sucking the refrigerant.
  • the second suction port 42b is formed in the radial direction of the second cylindrical cylinder 34b.
  • the second suction port 42b is connected to the suction pipe 15 described above and serves as a path for guiding the refrigerant into the chamber 40b of the second cylindrical cylinder 34b.
  • the second rolling piston 35b is attached to the eccentric shaft portion 31d of the rotary shaft 31 shown in FIG. 2, and the second vane 37b is rotated eccentrically in the chamber 40b by the rotation of the rotary shaft 31 and pressed against the outer periphery.
  • a compression chamber is configured to perform a suction operation and a compression operation.
  • the second vane 37 b is pressed against the second rolling piston 35 b by urging means (not shown).
  • the second vane 37b reciprocates in the second vane sliding groove 41b while being in contact with the second rolling piston 35b as the eccentric shaft portion 31d rotates.
  • the second vane 37b reciprocates in the second vane sliding groove 41b, and a space formed between the second cylindrical cylinder 34b and the second rolling piston 35b is defined as a suction chamber and a compression chamber. It is divided into.
  • the partition plate 36 is provided between the first cylindrical cylinder 34a and the second cylindrical cylinder 34b.
  • the partition plate 36 has one end face (opposite to the electric motor section 2) of one end of the first cylindrical cylinder 34a and one end (electric motor section) of the second cylindrical cylinder 34b.
  • 2 is a closing member that closes the end surface on the second side.
  • the suction muffler 14 reduces the flow noise of the refrigerant sucked into the compression mechanism unit 3.
  • the suction muffler 14 is connected to the suction pipe 15 and is connected to the compression mechanism unit 3 through the suction pipe 15.
  • a supply pipe 19 for supplying a refrigerant to the inner space M ⁇ b> 1 of the suction muffler 14 is connected to a top part 14 a of the suction muffler 14, and a suction pipe 15 is connected to a bottom part 14 b of the suction muffler 14. ing.
  • a connection portion between the suction muffler 14 provided on the top portion 14 a of the suction muffler 14 and the supply pipe 19 is referred to as a supply pipe connection portion 14 a 1, and the connection between the suction muffler 14 provided on the bottom portion 14 b of the suction muffler 14 and the suction pipe 15.
  • This part is referred to as a suction pipe connecting part 14b1.
  • the distance between the supply pipe connection portion 14a1 and the suction pipe connection portion 14b1 is referred to as a distance L.
  • the rotating shaft 31 rotates when the electric motor unit 2 is driven.
  • the eccentric shaft portion 31c and the eccentric shaft portion 31d of the rotating shaft 31 rotate.
  • the first rolling piston 35a attached to the eccentric shaft portion 31c rotates eccentrically in the first cylindrical cylinder 34a
  • the second rolling piston 35b attached to the eccentric shaft portion 31d serves as the second cylindrical cylinder. It rotates eccentrically within 34b.
  • the low-pressure refrigerant supplied from the refrigerant circuit outside the compressor 100 to the suction muffler 14 through the supply pipe 19 is supplied from the suction pipe 15 to the first cylindrical cylinder. 34a is supplied.
  • the second rolling piston 35b rotates in the second cylindrical cylinder 34b the low-pressure refrigerant supplied from the refrigerant circuit outside the compressor 100 to the suction muffler 14 through the supply pipe 19 is supplied from the suction pipe 15 to the second cylinder. It is supplied into the cylindrical cylinder 34b.
  • the first rolling piston 35a covering the eccentric shaft portion 31c of the rotating shaft 31 is eccentrically rotated in the first cylindrical cylinder 34a by the rotation of the rotating shaft 31, and is delimited by the first vane 37a.
  • the compression chamber capacity in the first cylindrical cylinder 34a changes continuously. That is, as the first rolling piston 35a rotates, the volume of the space surrounded by the first cylindrical cylinder 34a, the first rolling piston 35a, and the first vane 37a is reduced in the chamber 40a. The refrigerant is compressed.
  • the second rolling piston 35b covering the eccentric shaft portion 31d of the rotating shaft 31 is eccentrically rotated in the second cylindrical cylinder 34b by the rotation of the rotating shaft 31, thereby being separated by the second vane 37b.
  • the compression chamber capacity in the second cylindrical cylinder 34b is continuously changed. That is, the rotation of the second rolling piston 35b reduces the volume of the space surrounded by the second cylindrical cylinder 34b, the second rolling piston 35b, and the second vane 37b in the chamber 40b.
  • the refrigerant is compressed.
  • the compression chamber is provided with a discharge valve (not shown) that is released when the pressure exceeds a predetermined pressure, and high-pressure refrigerant gas is discharged from the chamber 40a and the chamber 40b into the sealed container 1 when the pressure exceeds the predetermined pressure.
  • the compressed refrigerant gas passes through the clearance of the electric motor unit 2 and is discharged from the discharge pipe 4 into the refrigerant circuit outside the compressor 100.
  • Refrigerating machine oil is stored in the lower part of the hermetic container 1, and the oil is supplied to each part by an oil supply mechanism (not shown) of the rotating shaft 31 to keep the compression mechanism part 3 lubricated.
  • An extreme pressure additive of 0.5 to 2 [wt%] may be added to the refrigerating machine oil enclosed in the compressor with respect to the total weight of the refrigerating machine oil. Thereby, seizure of the rotating shaft and the bearing during the operation of the R1123 refrigerant can be further suppressed.
  • the operating refrigerant used in the compressor 100 described above As the operating refrigerant of the compressor 100, a mixed refrigerant obtained by mixing an R32 refrigerant and an R1234yf refrigerant which is one type of hydrofluoroolefin is used. Note that the GWP of the mixed refrigerant is desirably less than 500, and more desirably less than 100. Table 1 shows physical property values of the R1234yf refrigerant and the R32 refrigerant used as a conventional refrigerant.
  • the R1234yf refrigerant has a lower sound speed than the conventional refrigerant R32.
  • the resonance frequency f [Hz] of the suction muffler 14 transitions to a low frequency band.
  • the operation noise in the low frequency band has a small effect of the sound insulating material attached around the compressor, and the quietness of the compressor is deteriorated.
  • the compressor using the R1234yf refrigerant as the operating refrigerant may deteriorate the quietness of the compressor as compared with the R32 refrigerant that is a conventional refrigerant.
  • the noise of the compressor as a whole can be reduced by arranging the resonance point at a frequency where the noise of the compressor other than resonance occurs. Moreover, the noise of the whole compressor can be reduced by arranging the resonance point at a frequency at which the effect of the sound insulating material is easily exhibited.
  • FIG. 5 is a line diagram showing noise of a general compressor alone in the frequency band.
  • the operating conditions of the compressor shown in FIG. 5 are as follows: the single refrigerant of the R32 refrigerant is the working refrigerant, the condensation temperature is 52 [° C.], the evaporation temperature is 5 [° C.], and the rotation speed of the compressor is 60 [rps]. It is.
  • the noise [dB] of the compressor alone generally increases almost monotonically below 900 [Hz] and becomes flat at 900 [Hz] or higher. Therefore, the noise of the whole compressor 100 can be reduced by setting the resonance frequency f [Hz] of the compressor 100 to less than 900 [Hz].
  • FIG. 6 is a line diagram showing the effect of the sound insulating material in the frequency band.
  • the effect [dB] of the sound insulating material is generally greater at 1000 [Hz] or more. Therefore, by making the resonance frequency f [Hz] larger than 1000 [Hz], the effect of the sound insulating material can be applied, and the noise of the entire compressor 100 can be reduced.
  • FIG. 7 is a line diagram showing the noise of a general compressor having a sound insulating material in the frequency band.
  • the noise [dB] of the compressor alone is generally maximum in the range of 900 [Hz] to 1000 [Hz]. Therefore, the noise of the compressor 100 as a whole can be reduced by making the resonance frequency f [Hz] of the compressor 100 less than 900 [Hz] or greater than 1000 [Hz].
  • the muffler effect E [dB] of the suction muffler 14 is that the distance between the supply pipe connection portion 14a1 and the suction pipe connection portion 14b1 in the inner space M1 of the suction muffler 14 is the distance L “mm”, and the suction frequency is f.
  • [Hz] and the sound speed are c [mm / s], they are expressed by the following formula 1.
  • the resonance frequency f [Hz] at which the muffler effect E [dB] of the inhalation muffler 14 becomes small is when * of sin (*) is ⁇ , 2 ⁇ , 3 ⁇ . Therefore, the resonance frequency f [Hz] at which the muffler effect E [dB] of the suction muffler 14 is reduced is expressed by the following equation 2.
  • Equation 2 n represents n-th order resonance.
  • FIG. 8 is a line diagram showing the muffler effect E [dB] in the frequency band.
  • the operating conditions of the compressor shown in FIG. 8 are as follows: the condensation temperature CT is 52 [° C.], the evaporation temperature ET is ⁇ 10 [° C.], the subcool SC is 5 [deg], the superheat SH is 0 [deg], and the suction muffler 14
  • the distance L “mm” between the supply pipe connection portion 14a1 and the suction pipe connection portion 14b1 in the internal space M1 is set to 300 [mm].
  • the solid line shown in FIG. 8 represents the muffler effect E [dB] of the R1234yf refrigerant.
  • the sound velocity c [m / s] of the R1234yf refrigerant is 135.8 [m / s].
  • the broken line shown in FIG. 8 represents the muffler effect E [dB] of the R32 refrigerant.
  • the sound speed c [m / s] of the R32 refrigerant is 211.5 [m / s].
  • the general suction muffler is formed such that the distance L “mm” between the supply pipe connection portion and the suction pipe connection portion in the inner space of the suction muffler is in the range of 100 [mm] ⁇ L ⁇ 300 [mm].
  • the distance L “mm” between the supply pipe connection portion and the suction pipe connection portion in the internal space of the suction muffler is 100 [ mm] ⁇ L ⁇ 300 [mm] may be considered.
  • the resonance frequency f [ For [Hz], a secondary, tertiary, or quartic resonance frequency that affects the generation of noise may be considered.
  • FIG. 9 is a graph showing the relationship between the ratio ⁇ [wt%] of R1234yf to the entire refrigerant and the sound velocity c [mm / s].
  • the speed of sound c1 [mm / s] represented by the solid line is the speed of sound based on the operating conditions of the compressor when the sound speed of the refrigerant shown in Table 1 is maximum.
  • the sound speed c2 [mm / s] represented by the broken line is a sound speed based on the operating condition of the compressor when the sound speed of the refrigerant shown in Table 1 is minimum.
  • a distance L “mm” between the supply pipe connection portion 14a1 and the suction pipe connection portion 14b1 in the internal space M1 of the suction muffler 14 is formed in a range of 100 [mm] ⁇ L ⁇ 300 [mm].
  • the mixed refrigerant containing R1234yf refrigerant and R32 refrigerant as main components is the working refrigerant and the ratio of R1234yf to the whole working refrigerant is ⁇ [wt%]
  • Equation 3 represents that the secondary resonance frequency f [Hz] is located in a range larger than 1000 [Hz] when the sound speed of the refrigerant is the sound speed c2.
  • Equation 4 indicates that the secondary resonance frequency f [Hz] is in a range less than 900 [Hz] when the sound speed of the refrigerant is the sound speed c1, and the third order when the sound speed of the refrigerant is the sound speed c2.
  • the resonance frequency f [Hz] is located in a range larger than 1000 [Hz].
  • Equation 5 is quaternary when the third-order resonance frequency f [Hz] is in a range less than 900 [Hz] when the sound speed of the refrigerant is the sound speed c1 and the sound speed of the refrigerant is the sound speed c2.
  • the resonance frequency f [Hz] is located in a range larger than 1000 [Hz].
  • Formula 6 represents that the resonance frequency f [Hz] is located in the range below 900 [Hz] when the sound speed of the refrigerant is the sound speed c1.
  • the ratio ⁇ [wt%] of the R1234yf refrigerant and the distance L “mm” between the supply pipe connection portion 14a1 and the suction pipe connection portion 14b1 in the internal space M1 of the suction muffler 14 are expressed by the above equation 3
  • the resonance point can be arranged at a frequency at which the compressor noise is low or a frequency at which the effect of the sound insulating material is easily exhibited. Therefore, the compressor can effectively suppress noise due to resonance between the suction muffler and the refrigerant operation sound. As a result, the quietness of the compressor using hydrofluoroolefin as the operating refrigerant can be improved.
  • FIG. 10 is a schematic side view of the inhalation muffler.
  • FIG. 11 is a schematic plan view of the suction muffler. Parts having the same configuration as those of the compressors of FIGS. 1 to 9 are denoted by the same reference numerals and description thereof is omitted.
  • a second embodiment in which the arrangement positions of the supply pipe connection portion 14a1 and the suction pipe connection portion 14b1 are specified will be described. As shown in FIGS. 10 and 11, at least one of the supply pipe connection portion 14 a 1 and the suction pipe connection portion 14 b 1 is disposed so as to be eccentric with respect to the longitudinal axis Y of the suction muffler 14.
  • FIG. 12 is a schematic plan view of a modified example of the inhalation muffler.
  • FIG. 12 shows a case where a plurality of supply pipe connection portions 14a1 or suction pipe connection portions 14b1 are provided.
  • the center point P1 of the line segment P is arranged eccentrically in the normal direction N of the line segment P connecting the centers of the supply pipe connection portions 14a1.
  • the center point Q1 of the line segment Q is decentered in the normal direction N of the line segment Q connecting the centers of the suction pipe connection portions 14b1. To do.
  • the compressor 100 increases the length of the bottom portion 14b and the top portion 14a of the suction muffler 14 depending on the ratio ⁇ [wt%] of the R1234yf refrigerant in order to effectively suppress noise due to resonance between the suction muffler and the refrigerant operation sound. By doing so, the distance L “mm” may be secured.
  • the lengths of the bottom portion 14b and the top portion 14a of the suction muffler 14 may be substantially restricted by the internal space of the refrigeration cycle apparatus in which the compressor 100 is mounted. Therefore, at least one of the supply pipe connection portion 14a1 and the suction pipe connection portion 14b1 is disposed so as to be eccentric with respect to the longitudinal axis Y of the suction muffler 14. At least one of the supply pipe connection portion 14a1 and the suction pipe connection portion 14b1 is decentered with respect to the longitudinal axis Y of the suction muffler 14 so that an appropriate distance L “mm” can be ensured.
  • the compressor 100 is configured so that the ratio ⁇ [wt%] of the R1234yf refrigerant and the distance L “mm” between the supply pipe connection portion 14a1 and the suction pipe connection portion 14b1 in the internal space M1 of the suction muffler 14 are as described above.
  • the resonance point can be arranged at a frequency where the noise of the compressor is low or a frequency where the effect of the sound insulating material is easily exhibited. Therefore, the compressor can effectively suppress noise due to resonance between the suction muffler and the refrigerant operation sound. As a result, the quietness of the compressor using hydrofluoroolefin as the operating refrigerant can be improved.
  • FIG. 13 is a schematic plan view of another modification of the suction muffler.
  • the suction muffler 14 is formed in an oval shape in a plan view, and the suction pipe muffler 14 and the suction pipe muffler 14 are connected to the supply pipe connecting portion 14 a 1 along the long axis J. At least one of the pipe connection portions 14b1 is disposed.
  • the suction muffler 14 is formed in an oval shape in plan view, and the supply pipe connection portion 14a1 and the suction pipe connection portion 14b1 are arranged along the long axis J of the oval shape. It has been established.
  • the compressor 100 increases the length of the bottom portion 14b and the top portion 14a of the suction muffler 14 depending on the ratio ⁇ [wt%] of the R1234yf refrigerant in order to effectively suppress noise due to resonance between the suction muffler and the refrigerant operation sound. By doing so, the distance L “mm” may be secured. However, the lengths of the bottom portion 14b and the top portion 14a of the suction muffler 14 may be substantially restricted by the internal space of the refrigeration cycle apparatus in which the compressor 100 is mounted.
  • the suction muffler 14 is formed in an oval shape in plan view, and at least one of the supply pipe connection portion 14 a 1 and the suction pipe connection portion 14 b 1 along the long axis J of the suction muffler 14. Is provided.
  • the compressor 100 ensures an appropriate distance L “mm” by arranging the oval shape of the suction muffler 14 and at least one of the supply pipe connection part 14a1 and the suction pipe connection part 14b1 eccentrically. Can do.
  • the suction muffler 14 is formed in an oval shape in plan view, and the supply pipe connection portion 14a1 and the suction pipe connection portion 14b1 are arranged along the long axis J of the oval shape. It has been established.
  • the supply pipe connection portion 14a1 and the suction pipe connection portion 14b1 are arranged side by side along the oval shape of the suction muffler 14 and the long axis J of the oval shape. A length of “mm” can be ensured.
  • the compressor 100 is configured so that the ratio ⁇ [wt%] of the R1234yf refrigerant and the distance L “mm” between the supply pipe connection portion 14a1 and the suction pipe connection portion 14b1 in the internal space M1 of the suction muffler 14 are as described above.
  • the resonance point can be arranged at a frequency where the noise of the compressor is low or a frequency where the effect of the sound insulating material is easily exhibited. Therefore, the compressor can effectively suppress noise due to resonance between the suction muffler and the refrigerant operation sound. As a result, the quietness of the compressor using hydrofluoroolefin as the operating refrigerant can be improved.
  • the suction muffler 14 is formed in an oval shape in plan view.
  • the compressor 100 can secure the volume of the suction muffler 14 by forming the shape of the upper wall of the suction muffler 14 in an oval shape in plan view. As a result, the amount of liquid refrigerant that can be stored in the suction muffler 14 can be increased, and liquid refrigerant can be prevented from flowing into the compression mechanism section 3.
  • the compressor 100 according to the embodiment of the present invention is a twin rotary type compressor having two cylindrical cylinders in the compression mechanism unit 3, but may be a single rotary type compressor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Compressor (AREA)

Abstract

This compressor is provided with a sealed container having a built-in compression mechanism, an intake pipe connected to the compression mechanism, an intake muffler connected to the intake pipe, and a supply pipe for supplying a refrigerant to the intake muffler and connected to the intake muffler. The internal space of the intake muffler is formed such that the distance L [mm] between the supply pipe connection section and the intake pipe connection section of the intake muffler is within the range 100 [mm] < L < 300 [mm]. Setting as the operating refrigerant a mixed refrigerant containing R1234yf refrigerant and R32 refrigerant as main components, and defining α [wt%] as the ratio of R1234yf to the total operating refrigerant, one of expression 3 to expression 6 is satisfied.

Description

圧縮機Compressor
 本発明は、冷媒を圧縮して吐出する圧縮機に関するものである。 The present invention relates to a compressor that compresses and discharges a refrigerant.
 ハイドロフルオロオレフィンは、従来冷媒として用いられているR410A冷媒又はR32冷媒と比較してGWP(地球温暖化係数)が小さく、地球温暖化への対策に用いる冷媒として有望な冷媒である。そこで、ハイドロフルオロオレフィンを主体とした動作冷媒を用いた圧縮機が提案されている(例えば、特許文献1参照)。 Hydrofluoroolefin has a lower GWP (global warming potential) than R410A refrigerant or R32 refrigerant conventionally used as a refrigerant, and is a promising refrigerant as a refrigerant used for measures against global warming. Thus, a compressor using an operating refrigerant mainly composed of hydrofluoroolefin has been proposed (see, for example, Patent Document 1).
特開2012-57503号公報JP 2012-57503 A
 上述したように、ハイドロフルオロオレフィンは、従来の冷媒であるR410又はR32冷媒と比較してGWPが小さく、地球温暖化への対策に用いる冷媒として有望な冷媒である。しかし、ハイドロフルオロオレフィンを圧縮機の動作冷媒とした場合、ハイドロフルオロオレフィンはR32冷媒と比較して音速が小さい。そのため、従来の圧縮機でハイドロフルオロオレフィンを動作させた場合、吸入マフラーと冷媒動作音との共鳴による共鳴周波数が低周波数帯に遷移する。低周波数帯の動作音は、圧縮機の周囲に取り付ける遮音材の効果が薄く、圧縮機の静音性が悪化するという問題点がある。 As described above, hydrofluoroolefin is a promising refrigerant as a refrigerant used for countermeasures against global warming because it has a smaller GWP than the conventional refrigerant R410 or R32. However, when hydrofluoroolefin is used as the operating refrigerant of the compressor, hydrofluoroolefin has a lower sound velocity than R32 refrigerant. Therefore, when the hydrofluoroolefin is operated with a conventional compressor, the resonance frequency due to the resonance between the suction muffler and the refrigerant operating sound transitions to a low frequency band. The operation sound in the low frequency band has a problem that the effect of the sound insulating material attached around the compressor is thin and the quietness of the compressor is deteriorated.
 本発明は、上記のよう課題を解決するためになされたもので、ハイドロフルオロオレフィンを動作冷媒として用いても吸入マフラーと冷媒動作音との共鳴による静音性の悪化を抑制する圧縮機を提供するものである。 The present invention has been made to solve the above-described problems, and provides a compressor that suppresses deterioration of silence due to resonance between a suction muffler and refrigerant operating sound even when hydrofluoroolefin is used as an operating refrigerant. Is.
 本発明に係る圧縮機は、圧縮機構部を内蔵した密閉容器と、圧縮機構部に接続された吸入管と、吸入管に接続された吸入マフラーと、前記吸入マフラーに接続され、冷媒を前記吸入マフラーに供給するための供給管と、を備え、前記吸入マフラーの内部空間において、前記吸入マフラーの供給管接続部と吸入管接続部との間の距離L「mm」が、100[mm]<L<300[mm]の範囲に形成されており、R1234yf冷媒とR32冷媒とを主成分として含む混合冷媒を動作冷媒とし、動作冷媒全体に対するR1234yfの割合をα[wt%]としたとき、下記の式3~式6のいずれか1つの式を満足するものである。
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000008
The compressor according to the present invention includes a sealed container having a compression mechanism part, a suction pipe connected to the compression mechanism part, a suction muffler connected to the suction pipe, and a suction muffler connected to the suction muffler. A supply pipe for supplying to the muffler, and in the internal space of the suction muffler, a distance L “mm” between the supply pipe connection portion and the suction pipe connection portion of the suction muffler is 100 [mm] < L <300 [mm] is formed, and when a mixed refrigerant containing R1234yf refrigerant and R32 refrigerant as main components is used as an operating refrigerant, and the ratio of R1234yf to the entire operating refrigerant is α [wt%], Any one of the following formulas 3 to 6 is satisfied.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000008
 圧縮機は、動作冷媒全体に対するR1234yf冷媒の割合α[wt%]と、吸入マフラーの内部空間における吸入マフラーの供給管接続部と吸入管接続部との間の距離L「mm」とが、上記の式3~式6のいずれか1つの式を満足することにより、圧縮機の騒音が小さい周波数又は遮音材の効果が発揮されやすい周波数に共鳴点を配置させることができる。そのため、圧縮機は、吸入マフラーと冷媒動作音との共鳴による騒音を効果的に抑制することができる。その結果、ハイドロフルオロオレフィンを動作冷媒とした圧縮機の静音性を向上させることができる。 In the compressor, the ratio α [wt%] of the R1234yf refrigerant to the entire operating refrigerant and the distance L “mm” between the suction pipe connection portion and the suction pipe connection portion in the internal space of the suction muffler are as described above. By satisfying any one of the formulas 3 to 6, the resonance point can be arranged at a frequency where the noise of the compressor is small or a frequency at which the effect of the sound insulating material is easily exhibited. Therefore, the compressor can effectively suppress noise due to resonance between the suction muffler and the refrigerant operation sound. As a result, the quietness of the compressor using hydrofluoroolefin as the operating refrigerant can be improved.
本発明の実施の形態1に係る圧縮機の内部を示す内部構成図である。It is an internal block diagram which shows the inside of the compressor which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る圧縮機の圧縮機構部を示す縦断面図である。It is a longitudinal cross-sectional view which shows the compression mechanism part of the compressor which concerns on Embodiment 1 of this invention. 図2のA-A線断面図である。FIG. 3 is a sectional view taken along line AA in FIG. 2. 図2のB-B線断面図である。FIG. 3 is a sectional view taken along line BB in FIG. 周波数帯域における一般的な圧縮機単体の騒音を示す折れ線図である。It is a line graph which shows the noise of the common single compressor in a frequency band. 周波数帯域における遮音材の効果を示す折れ線図である。It is a broken line figure which shows the effect of the sound insulating material in a frequency band. 周波数帯域における遮音材を備えた一般的な圧縮機単体の騒音を示す折れ線図である。It is a broken line figure which shows the noise of the common compressor single-piece | unit provided with the sound insulation material in a frequency band. 周波数帯域におけるマフラー効果E[dB]を示す折れ線図である。It is a broken line figure which shows the muffler effect E [dB] in a frequency band. 冷媒全体に対するR1234yfの割合α[wt%]と、音速c[mm/s]との関係を表す図である。It is a figure showing the relationship between ratio (alpha) [wt%] of R1234yf with respect to the whole refrigerant | coolant, and sound velocity c [mm / s]. 吸入マフラーの概略化した側面図である。FIG. 2 is a schematic side view of an inhalation muffler. 吸入マフラーの概略化した平面図である。It is the schematic top view of an inhalation muffler. 吸入マフラーの変形例の概略化した平面図である。FIG. 6 is a schematic plan view of a modification of the suction muffler. 吸入マフラーの他の変形例の概略化した平面図である。FIG. 10 is a schematic plan view of another modification of the suction muffler.
実施の形態1.
 図1は、本発明の実施の形態1に係る圧縮機の内部を示す内部構成図である。以下の説明において、圧縮機として、圧縮機構部に2つの円筒シリンダを有するツインロータリー式の圧縮機100を例に説明する。図1に示すように、圧縮機100は、圧縮機構部3を内蔵した密閉容器1を備える。また、圧縮機100は、密閉容器1の内部に、電動機部2を備える。さらに、圧縮機100は、圧縮機構部3に接続された吸入管15と、吸入管15に接続された吸入マフラー14と、吸入マフラー14に接続され、冷媒を吸入マフラー14に供給するための供給管19とを備える。
Embodiment 1 FIG.
FIG. 1 is an internal configuration diagram showing the inside of the compressor according to Embodiment 1 of the present invention. In the following description, a twin rotary type compressor 100 having two cylindrical cylinders in the compression mechanism section will be described as an example of the compressor. As shown in FIG. 1, the compressor 100 includes a sealed container 1 in which a compression mechanism unit 3 is built. The compressor 100 includes an electric motor unit 2 inside the sealed container 1. Further, the compressor 100 is connected to the suction pipe 15 connected to the compression mechanism unit 3, the suction muffler 14 connected to the suction pipe 15, and the supply for supplying the refrigerant to the suction muffler 14. A tube 19.
 密閉容器1は、有底円筒形状の下部密閉容器13と、下部密閉容器13の上部の開口を塞ぐ上部密閉容器12とで構成されている。密閉容器1は、下部密閉容器13と上部密閉容器12との接続部分が溶接により固定され、密閉状態が保たれている。 The sealed container 1 includes a bottomed cylindrical lower sealed container 13 and an upper sealed container 12 that closes an upper opening of the lower sealed container 13. In the sealed container 1, the connecting portion between the lower sealed container 13 and the upper sealed container 12 is fixed by welding, and the sealed state is maintained.
 下部密閉容器13には、吸入管15が接続されており、吸入管15には、後述する吸入マフラー14が取り付けられている。吸入管15は、圧縮機構部3に接続され、吸入マフラー14を介して流入するガス冷媒を圧縮機構部3内に送り込むための接続管である。なお、下部密閉容器13には、圧縮機構部3に供給される潤滑油が貯留される給油機構が設けられていてもよい。 A suction pipe 15 is connected to the lower sealed container 13, and a suction muffler 14 described later is attached to the suction pipe 15. The suction pipe 15 is connected to the compression mechanism unit 3 and is a connection pipe for sending the gas refrigerant flowing in via the suction muffler 14 into the compression mechanism unit 3. In addition, the lower airtight container 13 may be provided with an oil supply mechanism in which lubricating oil supplied to the compression mechanism unit 3 is stored.
 上部密閉容器12には、回転軸31の軸延長線上に吐出管4が接続されている。吐出管4は、密閉容器1に取り付けられ、圧縮機構部3によって圧縮された冷媒を密閉容器1の外部に吐出するための管である。なお、吐出管の内径は常に一定の大きさに形成されている。また、吐出管4は、密閉容器1に設けられていればよく、必ずしも回転軸31の軸延長線上に配設されていなくてもよい。上部密閉容器12には、さらに密閉容器1内の電動機部2と電気的に接続するための気密端子16と、気密端子16を保護するためのカバーが取り付けられるロッド17とが設けられている。 The discharge pipe 4 is connected to the upper sealed container 12 on the axis extension line of the rotating shaft 31. The discharge pipe 4 is a pipe that is attached to the sealed container 1 and discharges the refrigerant compressed by the compression mechanism unit 3 to the outside of the sealed container 1. The inner diameter of the discharge pipe is always formed at a constant size. Moreover, the discharge pipe 4 should just be provided in the airtight container 1, and does not necessarily need to be arrange | positioned on the axis extension line of the rotating shaft 31. FIG. The upper sealed container 12 is further provided with an airtight terminal 16 for electrical connection with the electric motor unit 2 in the sealed container 1 and a rod 17 to which a cover for protecting the airtight terminal 16 is attached.
 電動機部2は、下部密閉容器13に固定された固定子21と、固定子21の内周側に回転自在に設けられた回転子22とを備えている。回転子22の中心部には回転軸31が固定されている。固定子21は、例えば、焼き嵌め、溶接など各種固定法により密閉容器1の下部密閉容器13に固定されている。固定子21は、リード線18により気密端子16と電気的に接続されている。 The electric motor unit 2 includes a stator 21 fixed to the lower hermetic container 13 and a rotor 22 provided rotatably on the inner peripheral side of the stator 21. A rotation shaft 31 is fixed to the center of the rotor 22. The stator 21 is fixed to the lower sealed container 13 of the sealed container 1 by various fixing methods such as shrink fitting and welding. The stator 21 is electrically connected to the hermetic terminal 16 by a lead wire 18.
 図2は、本発明の実施の形態1に係る圧縮機の圧縮機構部を示す縦断面図である。図3は、図2のA-A線断面図である。図4は、図2のB-B線断面図である。図2~図4を用いて、圧縮機構部3の構成について説明する。なお、図3及び図4では、偏心軸部31cと偏心軸部31dとの図示を省略している。 FIG. 2 is a longitudinal sectional view showing a compression mechanism portion of the compressor according to Embodiment 1 of the present invention. 3 is a cross-sectional view taken along line AA in FIG. 4 is a cross-sectional view taken along line BB in FIG. The configuration of the compression mechanism unit 3 will be described with reference to FIGS. 3 and 4, the illustration of the eccentric shaft portion 31c and the eccentric shaft portion 31d is omitted.
 圧縮機構部3は、密閉容器1に収容され、密閉容器1内に流入する冷媒を圧縮するものである。圧縮機構部3は、2つの円筒シリンダを有するツインロータリー式の圧縮機構であり、圧縮機構部3は、密閉容器1内において、電動機部2の下方に配置され、下部密閉容器13に固定されている。圧縮機構部3は、回転軸31と、主軸受32と、副軸受33と、第1の円筒シリンダ34aと、第1のローリングピストン35aと、第2の円筒シリンダ34bと、第2のローリングピストン35bと、仕切板36と、を備えている。 The compression mechanism section 3 is accommodated in the sealed container 1 and compresses the refrigerant flowing into the sealed container 1. The compression mechanism unit 3 is a twin rotary type compression mechanism having two cylindrical cylinders. The compression mechanism unit 3 is disposed below the electric motor unit 2 in the sealed container 1 and fixed to the lower sealed container 13. Yes. The compression mechanism unit 3 includes a rotary shaft 31, a main bearing 32, a sub bearing 33, a first cylindrical cylinder 34a, a first rolling piston 35a, a second cylindrical cylinder 34b, and a second rolling piston. 35b and a partition plate 36.
 回転軸31は、電動機部2の回転子22と連結されて電動機部2の回転力を圧縮機構部3に伝達する。回転軸31は、電動機部2の回転子22に固定される主軸部31aと、軸方向において主軸部31aと反対側に設けられている副軸部31bと、を備える。また、回転軸31は、主軸部31aと副軸部31bとの間に設けられ、第1のローリングピストン35aに挿入される偏心軸部31cと、第2のローリングピストン35bに挿入される偏心軸部31dと、を備える。偏心軸部31cと偏心軸部31dとは、所定の位相差(例えば、180°)を設けて配置されている。回転軸31は、主軸部31aが主軸受32により回転自在に支持され、副軸部31bが副軸受33により回転自在に支持されている。 The rotary shaft 31 is connected to the rotor 22 of the electric motor unit 2 and transmits the rotational force of the electric motor unit 2 to the compression mechanism unit 3. The rotating shaft 31 includes a main shaft portion 31a fixed to the rotor 22 of the electric motor unit 2, and a sub shaft portion 31b provided on the opposite side of the main shaft portion 31a in the axial direction. The rotating shaft 31 is provided between the main shaft portion 31a and the subshaft portion 31b, and an eccentric shaft portion 31c inserted into the first rolling piston 35a and an eccentric shaft inserted into the second rolling piston 35b. Part 31d. The eccentric shaft portion 31c and the eccentric shaft portion 31d are arranged with a predetermined phase difference (for example, 180 °). The rotary shaft 31 has a main shaft portion 31 a that is rotatably supported by a main bearing 32 and a sub shaft portion 31 b that is rotatably supported by a sub bearing 33.
 主軸受32は、第1の円筒シリンダ34aの両端部の一方(電動機部2側)の端面を閉塞する閉塞部材である。主軸受32と、第1の円筒シリンダ34aとは別物品として成形され、組み立てられている。副軸受33は、第2の円筒シリンダ34bの両端部の一方(軸方向において電動機部2と反対側)の端面を閉塞する閉塞部材である。副軸受33と、第2の円筒シリンダ34bとは別物品として成形され、組み立てられている。 The main bearing 32 is a closing member that closes one end face (on the motor part 2 side) of both ends of the first cylindrical cylinder 34a. The main bearing 32 and the first cylindrical cylinder 34a are molded and assembled as separate articles. The sub-bearing 33 is a closing member that closes one end face of the both ends of the second cylindrical cylinder 34b (on the opposite side to the electric motor part 2 in the axial direction). The sub bearing 33 and the second cylindrical cylinder 34b are molded and assembled as separate articles.
 第1の円筒シリンダ34aは、略円筒形状に形成され、回転軸31の軸方向において、その略円筒形状の両端面が主軸受32と仕切板36とで閉塞されており、図3に示すように第1の円筒シリンダ34aの内部空間に密閉された室40aが形成されている。この室40aには、図2に示す回転軸31の偏心軸部31cと、偏心軸部31cに回転自在に嵌合する第1のローリングピストン35aとが収容されている。また、図3に示すように第1の円筒シリンダ34aには、第1のベーン摺動溝41aが径方向に形成されている。この第1のベーン摺動溝41a内に、第1のベーン37aが設けられている。また、圧縮機構部3の第1の円筒シリンダ34aには、冷媒を吸入するための第1の吸入ポート42aが設けられている。第1の吸入ポート42aは、第1の円筒シリンダ34aの径方向に形成されている。第1の吸入ポート42aは、前述した吸入管15が接続されて、第1の円筒シリンダ34aの室40a内に冷媒を導く経路となる。 The first cylindrical cylinder 34a is formed in a substantially cylindrical shape, and both end surfaces of the substantially cylindrical shape are closed by the main bearing 32 and the partition plate 36 in the axial direction of the rotary shaft 31, as shown in FIG. A chamber 40a sealed in the internal space of the first cylindrical cylinder 34a is formed. The chamber 40a accommodates an eccentric shaft portion 31c of the rotating shaft 31 shown in FIG. 2 and a first rolling piston 35a that is rotatably fitted to the eccentric shaft portion 31c. Further, as shown in FIG. 3, the first cylindrical cylinder 34a is formed with a first vane sliding groove 41a in the radial direction. A first vane 37a is provided in the first vane sliding groove 41a. The first cylindrical cylinder 34a of the compression mechanism unit 3 is provided with a first suction port 42a for sucking the refrigerant. The first suction port 42a is formed in the radial direction of the first cylindrical cylinder 34a. The first suction port 42a is connected to the suction pipe 15 described above and serves as a path for guiding the refrigerant into the chamber 40a of the first cylindrical cylinder 34a.
 第1のローリングピストン35aは、図2に示す回転軸31の偏心軸部31cに装着され、回転軸31が回転することによって室40a内を偏心回転し、外周に押圧された第1のベーン37aと共に圧縮室を構成して、吸入動作と圧縮動作を行う。図3に戻り、第1のベーン37aは、付勢手段(図示せず)によって第1のローリングピストン35aに押接されている。第1のベーン37aは、偏心軸部31cの回転に伴い、第1のローリングピストン35aに当接しながら、第1のベーン摺動溝41a内を往復運動する。第1のベーン37aは、第1のベーン摺動溝41a内を往復運動して、第1の円筒シリンダ34aと第1のローリングピストン35aとの間に形成される空間を吸入室と圧縮室とに仕切っている。 The first rolling piston 35a is mounted on the eccentric shaft portion 31c of the rotary shaft 31 shown in FIG. 2, and the first vane 37a that rotates eccentrically in the chamber 40a as the rotary shaft 31 rotates and is pressed against the outer periphery. At the same time, a compression chamber is configured to perform a suction operation and a compression operation. Returning to FIG. 3, the first vane 37a is pressed against the first rolling piston 35a by an urging means (not shown). As the eccentric shaft portion 31c rotates, the first vane 37a reciprocates in the first vane sliding groove 41a while contacting the first rolling piston 35a. The first vane 37a reciprocates in the first vane sliding groove 41a, and a space formed between the first cylindrical cylinder 34a and the first rolling piston 35a is defined as a suction chamber and a compression chamber. It is divided into.
 第2の円筒シリンダ34bは、略円筒形状に形成され、回転軸31の軸方向において、その略円筒形状の両端面が副軸受33と仕切板36とで閉塞されており、図4に示すように第2の円筒シリンダ34bの内部空間に密閉された室40bが形成されている。この室40bには、図2に示す回転軸31の偏心軸部31dと、偏心軸部31dに回転自在に嵌合する第2のローリングピストン35bとが収容されている。また、図4に示すように第2の円筒シリンダ34bには、第2のベーン摺動溝41bが径方向に形成されている。この第2のベーン摺動溝41b内に、第2のベーン37bが設けられている。また、圧縮機構部3の第2の円筒シリンダ34bには、冷媒を吸入するための第2の吸入ポート42bが設けられている。第2の吸入ポート42bは、第2の円筒シリンダ34bの径方向に形成されている。第2の吸入ポート42bは、前述した吸入管15が接続されて、第2の円筒シリンダ34bの室40b内に冷媒を導く経路となる。 The second cylindrical cylinder 34b is formed in a substantially cylindrical shape, and both end surfaces of the substantially cylindrical shape are closed by the auxiliary bearing 33 and the partition plate 36 in the axial direction of the rotary shaft 31, as shown in FIG. In addition, a sealed chamber 40b is formed in the internal space of the second cylindrical cylinder 34b. The chamber 40b accommodates an eccentric shaft portion 31d of the rotary shaft 31 shown in FIG. 2 and a second rolling piston 35b that is rotatably fitted to the eccentric shaft portion 31d. As shown in FIG. 4, the second cylindrical cylinder 34b has a second vane sliding groove 41b formed in the radial direction. A second vane 37b is provided in the second vane sliding groove 41b. The second cylindrical cylinder 34b of the compression mechanism unit 3 is provided with a second suction port 42b for sucking the refrigerant. The second suction port 42b is formed in the radial direction of the second cylindrical cylinder 34b. The second suction port 42b is connected to the suction pipe 15 described above and serves as a path for guiding the refrigerant into the chamber 40b of the second cylindrical cylinder 34b.
 第2のローリングピストン35bは、図2に示す回転軸31の偏心軸部31dに装着され、回転軸31が回転することによって室40b内を偏心回転し、外周に押圧された第2のベーン37bと共に圧縮室を構成して、吸入動作と圧縮動作を行う。図4に戻り、第2のベーン37bは、付勢手段(図示せず)によって第2のローリングピストン35bに押接されている。第2のベーン37bは、偏心軸部31dの回転に伴い、第2のローリングピストン35bに当接しながら、第2のベーン摺動溝41b内を往復運動する。第2のベーン37bは、第2のベーン摺動溝41b内を往復運動して、第2の円筒シリンダ34bと第2のローリングピストン35bとの間に形成される空間を吸入室と圧縮室とに仕切っている。 The second rolling piston 35b is attached to the eccentric shaft portion 31d of the rotary shaft 31 shown in FIG. 2, and the second vane 37b is rotated eccentrically in the chamber 40b by the rotation of the rotary shaft 31 and pressed against the outer periphery. At the same time, a compression chamber is configured to perform a suction operation and a compression operation. Returning to FIG. 4, the second vane 37 b is pressed against the second rolling piston 35 b by urging means (not shown). The second vane 37b reciprocates in the second vane sliding groove 41b while being in contact with the second rolling piston 35b as the eccentric shaft portion 31d rotates. The second vane 37b reciprocates in the second vane sliding groove 41b, and a space formed between the second cylindrical cylinder 34b and the second rolling piston 35b is defined as a suction chamber and a compression chamber. It is divided into.
 仕切板36は、図2に示すように、第1の円筒シリンダ34aと第2の円筒シリンダ34bとの間に設けられている。仕切板36は、回転軸31の軸方向において、第1の円筒シリンダ34aの両端部の一方(電動機部2と反対側)の端面と、第2の円筒シリンダ34bの両端部の一方(電動機部2側)の端面とを閉塞する閉塞部材である。 As shown in FIG. 2, the partition plate 36 is provided between the first cylindrical cylinder 34a and the second cylindrical cylinder 34b. In the axial direction of the rotating shaft 31, the partition plate 36 has one end face (opposite to the electric motor section 2) of one end of the first cylindrical cylinder 34a and one end (electric motor section) of the second cylindrical cylinder 34b. 2 is a closing member that closes the end surface on the second side.
 吸入マフラー14は、圧縮機構部3に吸入される冷媒の流動騷音を減少させるものである。図1に示すように、吸入マフラー14は、吸入管15に接続され、吸入管15を介して圧縮機構部3に接続されている。吸入マフラー14は、吸入マフラー14の頂部14aに、吸入マフラー14の内部空間M1に冷媒を供給するための供給管19が接続されており、吸入マフラー14の底部14bに、吸入管15が接続されている。吸入マフラー14の頂部14aに設けられた吸入マフラー14と供給管19との接続部を供給管接続部14a1と称し、吸入マフラー14の底部14bに設けられた吸入マフラー14と吸入管15との接続部を吸入管接続部14b1と称する。吸入マフラー14の内部空間M1において、供給管接続部14a1と、吸入管接続部14b1との間の距離を距離Lと称する。 The suction muffler 14 reduces the flow noise of the refrigerant sucked into the compression mechanism unit 3. As shown in FIG. 1, the suction muffler 14 is connected to the suction pipe 15 and is connected to the compression mechanism unit 3 through the suction pipe 15. In the suction muffler 14, a supply pipe 19 for supplying a refrigerant to the inner space M <b> 1 of the suction muffler 14 is connected to a top part 14 a of the suction muffler 14, and a suction pipe 15 is connected to a bottom part 14 b of the suction muffler 14. ing. A connection portion between the suction muffler 14 provided on the top portion 14 a of the suction muffler 14 and the supply pipe 19 is referred to as a supply pipe connection portion 14 a 1, and the connection between the suction muffler 14 provided on the bottom portion 14 b of the suction muffler 14 and the suction pipe 15. This part is referred to as a suction pipe connecting part 14b1. In the internal space M1 of the suction muffler 14, the distance between the supply pipe connection portion 14a1 and the suction pipe connection portion 14b1 is referred to as a distance L.
 次に、上記のように構成された圧縮機100の動作について説明する。圧縮機100は、電動機部2が駆動することによって、回転軸31が回転する。回転軸31が回転することにより、回転軸31の偏心軸部31c及び偏心軸部31dが回転する。偏心軸部31cに取り付けられた第1のローリングピストン35aは、第1の円筒シリンダ34a内で偏芯回転し、偏心軸部31dに取り付けられた第2のローリングピストン35bは、第2の円筒シリンダ34b内で偏芯回転する。 Next, the operation of the compressor 100 configured as described above will be described. In the compressor 100, the rotating shaft 31 rotates when the electric motor unit 2 is driven. As the rotating shaft 31 rotates, the eccentric shaft portion 31c and the eccentric shaft portion 31d of the rotating shaft 31 rotate. The first rolling piston 35a attached to the eccentric shaft portion 31c rotates eccentrically in the first cylindrical cylinder 34a, and the second rolling piston 35b attached to the eccentric shaft portion 31d serves as the second cylindrical cylinder. It rotates eccentrically within 34b.
 第1のローリングピストン35aが第1の円筒シリンダ34a内で回転すると、圧縮機100外の冷媒回路から供給管19を通じて吸入マフラー14に供給された低圧の冷媒が吸入管15から第1の円筒シリンダ34a内に供給される。また、第2のローリングピストン35bが第2の円筒シリンダ34b内で回転すると、圧縮機100外の冷媒回路から供給管19を通じて吸入マフラー14に供給された低圧の冷媒が吸入管15から第2の円筒シリンダ34b内に供給される。 When the first rolling piston 35a rotates in the first cylindrical cylinder 34a, the low-pressure refrigerant supplied from the refrigerant circuit outside the compressor 100 to the suction muffler 14 through the supply pipe 19 is supplied from the suction pipe 15 to the first cylindrical cylinder. 34a is supplied. When the second rolling piston 35b rotates in the second cylindrical cylinder 34b, the low-pressure refrigerant supplied from the refrigerant circuit outside the compressor 100 to the suction muffler 14 through the supply pipe 19 is supplied from the suction pipe 15 to the second cylinder. It is supplied into the cylindrical cylinder 34b.
 回転軸31の回転により、回転軸31の偏心軸部31cを覆う第1のローリングピストン35aが、第1の円筒シリンダ34a内にて偏芯回転することで、第1のベーン37aにより区切られた第1の円筒シリンダ34a内の圧縮室容量が連続的に変化する。すなわち、第1のローリングピストン35aが回転することによって、室40aにおいて、第1の円筒シリンダ34aと、第1のローリングピストン35aと、第1のベーン37aとで囲まれた空間の体積が小さくなって冷媒が圧縮される。 The first rolling piston 35a covering the eccentric shaft portion 31c of the rotating shaft 31 is eccentrically rotated in the first cylindrical cylinder 34a by the rotation of the rotating shaft 31, and is delimited by the first vane 37a. The compression chamber capacity in the first cylindrical cylinder 34a changes continuously. That is, as the first rolling piston 35a rotates, the volume of the space surrounded by the first cylindrical cylinder 34a, the first rolling piston 35a, and the first vane 37a is reduced in the chamber 40a. The refrigerant is compressed.
 また、回転軸31の回転により、回転軸31の偏心軸部31dを覆う第2のローリングピストン35bが、第2の円筒シリンダ34b内にて偏芯回転することで、第2のベーン37bにより区切られた第2の円筒シリンダ34b内の圧縮室容量が連続的に変化する。すなわち、第2のローリングピストン35bが回転することによって、室40bにおいて、第2の円筒シリンダ34bと、第2のローリングピストン35bと、第2のベーン37bとで囲まれた空間の体積が小さくなって冷媒が圧縮される。 The second rolling piston 35b covering the eccentric shaft portion 31d of the rotating shaft 31 is eccentrically rotated in the second cylindrical cylinder 34b by the rotation of the rotating shaft 31, thereby being separated by the second vane 37b. The compression chamber capacity in the second cylindrical cylinder 34b is continuously changed. That is, the rotation of the second rolling piston 35b reduces the volume of the space surrounded by the second cylindrical cylinder 34b, the second rolling piston 35b, and the second vane 37b in the chamber 40b. The refrigerant is compressed.
 圧縮室には所定の圧力以上になると解放される吐出弁(図示せず)が設けられており、高圧の冷媒ガスは所定の圧力以上になると室40a及び室40bから密閉容器1内へ吐出される。圧縮された冷媒ガスは電動機部2のすきまを通り、吐出管4から圧縮機100外の冷媒回路内に吐出される。密閉容器1の下部には冷凍機油が蓄えられ、回転軸31の給油機構(図示せず)により各部に油を供給することで圧縮機構部3の潤滑を保っている。なお、圧縮機に封入する冷凍機油に、冷凍機油全体の重量に対して0.5~2[wt%]の極圧添加剤を添加してもよい。これにより、R1123冷媒動作時の回転軸と軸受の焼き付きをさらに抑制することができる。 The compression chamber is provided with a discharge valve (not shown) that is released when the pressure exceeds a predetermined pressure, and high-pressure refrigerant gas is discharged from the chamber 40a and the chamber 40b into the sealed container 1 when the pressure exceeds the predetermined pressure. The The compressed refrigerant gas passes through the clearance of the electric motor unit 2 and is discharged from the discharge pipe 4 into the refrigerant circuit outside the compressor 100. Refrigerating machine oil is stored in the lower part of the hermetic container 1, and the oil is supplied to each part by an oil supply mechanism (not shown) of the rotating shaft 31 to keep the compression mechanism part 3 lubricated. An extreme pressure additive of 0.5 to 2 [wt%] may be added to the refrigerating machine oil enclosed in the compressor with respect to the total weight of the refrigerating machine oil. Thereby, seizure of the rotating shaft and the bearing during the operation of the R1123 refrigerant can be further suppressed.
 次に、上述し圧縮機100に用いられる動作冷媒の特性について述べる。圧縮機100の動作冷媒は、R32冷媒とハイドロフルオロオレフィンの1種であるR1234yf冷媒とを混合した混合冷媒を用いる。なお、混合冷媒のGWPは500未満であることが望ましく、100未満であることがさらに望ましい。表1に、R1234yf冷媒と従来の冷媒として用いられているR32冷媒の物性値について示す。圧縮機の運転条件は、一般的な圧縮機の吸入条件の内、冷媒の音速が最小のときの条件(凝縮温度CT=-10[℃]、スーパーヒートSH=0[deg])と、冷媒の音速が最大のときの条件(凝縮温度CT=15[℃]、スーパーヒートSH=10[deg])とを考慮したものである。 Next, the characteristics of the operating refrigerant used in the compressor 100 described above will be described. As the operating refrigerant of the compressor 100, a mixed refrigerant obtained by mixing an R32 refrigerant and an R1234yf refrigerant which is one type of hydrofluoroolefin is used. Note that the GWP of the mixed refrigerant is desirably less than 500, and more desirably less than 100. Table 1 shows physical property values of the R1234yf refrigerant and the R32 refrigerant used as a conventional refrigerant. The operating conditions of the compressor include the conditions when the sound speed of the refrigerant is minimum (condensation temperature CT = −10 [° C.], superheat SH = 0 [deg]) among the general compressor suction conditions, and the refrigerant Are taken into consideration when the sound speed is maximum (condensation temperature CT = 15 [° C.], superheat SH = 10 [deg]).
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 表1から、R1234yf冷媒は、従来の冷媒であるR32冷媒と比較して音速が小さい事がわかる。冷媒の音速c[m/s]が小さくなると、吸入マフラー14の共鳴周波数f[Hz]が、低周波数帯に遷移することになる。低周波数帯の動作音は、圧縮機の周囲に取り付ける遮音材の効果が薄く、圧縮機の静音性が悪化する。そのため、R1234yf冷媒を動作冷媒として用いる圧縮機は、従来の冷媒であるR32冷媒と比較して圧縮機の静音性が悪化する場合がある。 From Table 1, it can be seen that the R1234yf refrigerant has a lower sound speed than the conventional refrigerant R32. When the sound speed c [m / s] of the refrigerant decreases, the resonance frequency f [Hz] of the suction muffler 14 transitions to a low frequency band. The operation noise in the low frequency band has a small effect of the sound insulating material attached around the compressor, and the quietness of the compressor is deteriorated. For this reason, the compressor using the R1234yf refrigerant as the operating refrigerant may deteriorate the quietness of the compressor as compared with the R32 refrigerant that is a conventional refrigerant.
 一般的に、音の共鳴点では大きな騒音が発生する。そこで、共鳴以外の圧縮機の騒音が生じている圧縮機の騒音が小さい周波数に共鳴点を配置させることで圧縮機全体の騒音を低減させることができる。また、遮音材の効果が発揮されやすい周波数に共鳴点を配置させることで圧縮機全体の騒音を低減させることができる。 Generally, loud noise is generated at the resonance point of sound. Therefore, the noise of the compressor as a whole can be reduced by arranging the resonance point at a frequency where the noise of the compressor other than resonance occurs. Moreover, the noise of the whole compressor can be reduced by arranging the resonance point at a frequency at which the effect of the sound insulating material is easily exhibited.
 図5は、周波数帯域における一般的な圧縮機単体の騒音を示す折れ線図である。図5で示す圧縮機の運転条件は、R32冷媒の単体冷媒を動作冷媒とし、凝縮温度を52[℃]、蒸発温度を5[℃]、圧縮機の回転数を60[rps]としたものである。図5に示すように、圧縮機単体の騒音[dB]は、一般に、900[Hz]未満ではほぼ単調増加し、900[Hz]以上で横ばいとなる。したがって、圧縮機100の共鳴周波数f[Hz]を900[Hz]未満にすることで、圧縮機100全体の騒音を低減することができる。 FIG. 5 is a line diagram showing noise of a general compressor alone in the frequency band. The operating conditions of the compressor shown in FIG. 5 are as follows: the single refrigerant of the R32 refrigerant is the working refrigerant, the condensation temperature is 52 [° C.], the evaporation temperature is 5 [° C.], and the rotation speed of the compressor is 60 [rps]. It is. As shown in FIG. 5, the noise [dB] of the compressor alone generally increases almost monotonically below 900 [Hz] and becomes flat at 900 [Hz] or higher. Therefore, the noise of the whole compressor 100 can be reduced by setting the resonance frequency f [Hz] of the compressor 100 to less than 900 [Hz].
 図6は、周波数帯域における遮音材の効果を示す折れ線図である。図6に示すように、遮音材の効果[dB]は、一般に、1000[Hz]以上で効果が大きくなる。したがって、共鳴周波数f[Hz]を1000[Hz]より大きくすることで、遮音材の効果を適用することができ、圧縮機100全体の騒音を低減することができる。 FIG. 6 is a line diagram showing the effect of the sound insulating material in the frequency band. As shown in FIG. 6, the effect [dB] of the sound insulating material is generally greater at 1000 [Hz] or more. Therefore, by making the resonance frequency f [Hz] larger than 1000 [Hz], the effect of the sound insulating material can be applied, and the noise of the entire compressor 100 can be reduced.
 図7は、周波数帯域における遮音材を備えた一般的な圧縮機単体の騒音を示す折れ線図である。図7に示すように、圧縮機単体の騒音[dB]は、一般に、900[Hz]以上1000[Hz]以下の範囲で最大となる。したがって、圧縮機100の共鳴周波数f[Hz]を900[Hz]未満にするか、あるいは、1000[Hz]より大きくすることで圧縮機100全体の騒音を低減することができる。 FIG. 7 is a line diagram showing the noise of a general compressor having a sound insulating material in the frequency band. As shown in FIG. 7, the noise [dB] of the compressor alone is generally maximum in the range of 900 [Hz] to 1000 [Hz]. Therefore, the noise of the compressor 100 as a whole can be reduced by making the resonance frequency f [Hz] of the compressor 100 less than 900 [Hz] or greater than 1000 [Hz].
 ここで、吸入マフラー14のマフラー効果E[dB]は、吸入マフラー14の内部空間M1における供給管接続部14a1と吸入管接続部14b1との間の距離を距離L「mm」、吸入周波数をf[Hz]、音速をc[mm/s]とすると下記式1で表される。
Figure JPOXMLDOC01-appb-M000010
Here, the muffler effect E [dB] of the suction muffler 14 is that the distance between the supply pipe connection portion 14a1 and the suction pipe connection portion 14b1 in the inner space M1 of the suction muffler 14 is the distance L “mm”, and the suction frequency is f. When [Hz] and the sound speed are c [mm / s], they are expressed by the following formula 1.
Figure JPOXMLDOC01-appb-M000010
 吸入マフラー14のマフラー効果E[dB]が小さくなる共鳴周波数f[Hz]は、sin(*)の*がπ、2π、3π・・・のときである。そこで、吸入マフラー14のマフラー効果E[dB]が小さくなる共鳴周波数f[Hz]は下記式2で表される。なお、式2において、nはn次の共鳴を表す。
Figure JPOXMLDOC01-appb-M000011
The resonance frequency f [Hz] at which the muffler effect E [dB] of the inhalation muffler 14 becomes small is when * of sin (*) is π, 2π, 3π. Therefore, the resonance frequency f [Hz] at which the muffler effect E [dB] of the suction muffler 14 is reduced is expressed by the following equation 2. In Equation 2, n represents n-th order resonance.
Figure JPOXMLDOC01-appb-M000011
 図8は、周波数帯域におけるマフラー効果E[dB]を示す折れ線図である。図8で示す圧縮機の運転条件は、凝縮温度CTを52[℃]、蒸発温度ETを-10[℃]、サブクールSCを5[deg]、スーパーヒートSHを0[deg]、吸入マフラー14の内部空間M1における供給管接続部14a1と吸入管接続部14b1との間の距離L「mm」を300[mm]としたものである。図8に示す実線は、R1234yf冷媒のマフラー効果E[dB]を表すものである。なお、R1234yf冷媒の音速c[m/s]は、135.8[m/s]である。図8に示す破線は、R32冷媒のマフラー効果E[dB]を表すものである。なお、R32冷媒の音速c[m/s]は、211.5[m/s]である。 FIG. 8 is a line diagram showing the muffler effect E [dB] in the frequency band. The operating conditions of the compressor shown in FIG. 8 are as follows: the condensation temperature CT is 52 [° C.], the evaporation temperature ET is −10 [° C.], the subcool SC is 5 [deg], the superheat SH is 0 [deg], and the suction muffler 14 The distance L “mm” between the supply pipe connection portion 14a1 and the suction pipe connection portion 14b1 in the internal space M1 is set to 300 [mm]. The solid line shown in FIG. 8 represents the muffler effect E [dB] of the R1234yf refrigerant. The sound velocity c [m / s] of the R1234yf refrigerant is 135.8 [m / s]. The broken line shown in FIG. 8 represents the muffler effect E [dB] of the R32 refrigerant. The sound speed c [m / s] of the R32 refrigerant is 211.5 [m / s].
 一般の吸入マフラーは、吸入マフラーの内部空間における供給管接続部と吸入管接続部との間の距離L「mm」が、100[mm]<L<300[mm]の範囲にあるように形成されている。そこで、R1234yf冷媒とR32冷媒との混合冷媒を圧縮機の動作冷媒として使用するときには、吸入マフラーの内部空間における供給管接続部と吸入管接続部との間の距離L「mm」が、100[mm]<L<300[mm]にあることを考慮すればよい。そして、吸入マフラーの内部空間における供給管接続部と吸入管接続部との間の距離L「mm」が、100[mm]<L<300[mm]にあることを考慮すると、共鳴周波数f[Hz]は、騒音の生成に影響を与える2次又は3次又は4次の共鳴周波数を考慮すればよい。 The general suction muffler is formed such that the distance L “mm” between the supply pipe connection portion and the suction pipe connection portion in the inner space of the suction muffler is in the range of 100 [mm] <L <300 [mm]. Has been. Therefore, when a mixed refrigerant of R1234yf refrigerant and R32 refrigerant is used as the operating refrigerant of the compressor, the distance L “mm” between the supply pipe connection portion and the suction pipe connection portion in the internal space of the suction muffler is 100 [ mm] <L <300 [mm] may be considered. Considering that the distance L “mm” between the supply pipe connection portion and the suction pipe connection portion in the internal space of the suction muffler is 100 [mm] <L <300 [mm], the resonance frequency f [ For [Hz], a secondary, tertiary, or quartic resonance frequency that affects the generation of noise may be considered.
 図9は、冷媒全体に対するR1234yfの割合α[wt%]と、音速c[mm/s]との関係を表す図である。図9において、実線はc1=-776α+215700を表す。また、破線はc2=-757α+211500を表す。実線で表されている音速c1[mm/s]は、上記の表1に表す冷媒の音速が最大のときの圧縮機の運転条件に基づく音速である。また、破線で表されている音速c2[mm/s]は、上記の表1に表す冷媒の音速が最小のときの圧縮機の運転条件に基づく音速である。 FIG. 9 is a graph showing the relationship between the ratio α [wt%] of R1234yf to the entire refrigerant and the sound velocity c [mm / s]. In FIG. 9, the solid line represents c1 = −776α + 215700. The broken line represents c2 = −757α + 211500. The speed of sound c1 [mm / s] represented by the solid line is the speed of sound based on the operating conditions of the compressor when the sound speed of the refrigerant shown in Table 1 is maximum. Moreover, the sound speed c2 [mm / s] represented by the broken line is a sound speed based on the operating condition of the compressor when the sound speed of the refrigerant shown in Table 1 is minimum.
 上記の記載に基づき、2次又は3次又は4次(n=2、3、4)の共鳴周波数f「Hz」が、f<900[Hz]又は1000[Hz]<fとなる条件式は以下のように定められる。 Based on the above description, the conditional expression where the resonance frequency f “Hz” of the second order, the third order, or the fourth order (n = 2, 3, 4) becomes f <900 [Hz] or 1000 [Hz] <f is It is determined as follows.
 圧縮機100は、吸入マフラー14の内部空間M1における供給管接続部14a1と吸入管接続部14b1との間の距離L「mm」が、100[mm]<L<300[mm]の範囲に形成されており、R1234yf冷媒とR32冷媒とを主成分として含む混合冷媒を動作冷媒とし、動作冷媒全体に対するR1234yfの割合をα[wt%]としたとき、下記の式3~式6のいずれか1つの式を満足する。
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000015
In the compressor 100, a distance L “mm” between the supply pipe connection portion 14a1 and the suction pipe connection portion 14b1 in the internal space M1 of the suction muffler 14 is formed in a range of 100 [mm] <L <300 [mm]. When the mixed refrigerant containing R1234yf refrigerant and R32 refrigerant as main components is the working refrigerant and the ratio of R1234yf to the whole working refrigerant is α [wt%], any one of the following formulas 3 to 6 Satisfies one expression.
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000015
 式3は、冷媒の音速が音速c2の場合に、2次の共鳴周波数f[Hz]が、1000[Hz]より大きい範囲に位置していることを表している。式4は、冷媒の音速が音速c1の場合に、2次の共鳴周波数f[Hz]が、900[Hz]未満の範囲に位置し、かつ、冷媒の音速が音速c2の場合に、3次の共鳴周波数f[Hz]が、1000[Hz]より大きい範囲に位置していることを表している。式5は、冷媒の音速が音速c1の場合に、3次の共鳴周波数f[Hz]が、900[Hz]未満の範囲に位置し、かつ、冷媒の音速が音速c2の場合に、4次の共鳴周波数f[Hz]が、1000[Hz]より大きい範囲に位置していることを表している。式6は、冷媒の音速が音速c1の場合に、共鳴周波数f[Hz]が、900[Hz]未満の範囲に位置することを表している。 Equation 3 represents that the secondary resonance frequency f [Hz] is located in a range larger than 1000 [Hz] when the sound speed of the refrigerant is the sound speed c2. Equation 4 indicates that the secondary resonance frequency f [Hz] is in a range less than 900 [Hz] when the sound speed of the refrigerant is the sound speed c1, and the third order when the sound speed of the refrigerant is the sound speed c2. The resonance frequency f [Hz] is located in a range larger than 1000 [Hz]. Equation 5 is quaternary when the third-order resonance frequency f [Hz] is in a range less than 900 [Hz] when the sound speed of the refrigerant is the sound speed c1 and the sound speed of the refrigerant is the sound speed c2. The resonance frequency f [Hz] is located in a range larger than 1000 [Hz]. Formula 6 represents that the resonance frequency f [Hz] is located in the range below 900 [Hz] when the sound speed of the refrigerant is the sound speed c1.
 圧縮機100は、R1234yf冷媒の割合α[wt%]と、吸入マフラー14の内部空間M1における供給管接続部14a1と吸入管接続部14b1との間の距離L「mm」が、上記の式3~式6のいずれか1つの式を満足することにより、圧縮機の騒音が小さい周波数又は遮音材の効果が発揮されやすい周波数に共鳴点を配置させることができる。そのため、圧縮機は、吸入マフラーと冷媒動作音との共鳴による騒音を効果的に抑制することができる。その結果、ハイドロフルオロオレフィンを動作冷媒とした圧縮機の静音性を向上させることができる。 In the compressor 100, the ratio α [wt%] of the R1234yf refrigerant and the distance L “mm” between the supply pipe connection portion 14a1 and the suction pipe connection portion 14b1 in the internal space M1 of the suction muffler 14 are expressed by the above equation 3 By satisfying any one of the formulas (6) to (6), the resonance point can be arranged at a frequency at which the compressor noise is low or a frequency at which the effect of the sound insulating material is easily exhibited. Therefore, the compressor can effectively suppress noise due to resonance between the suction muffler and the refrigerant operation sound. As a result, the quietness of the compressor using hydrofluoroolefin as the operating refrigerant can be improved.
実施の形態2.
 図10は、吸入マフラーの概略化した側面図である。図11は、吸入マフラーの概略化した平面図である。図1~図9の圧縮機と同一の構成を有する部位には同一の符号を付してその説明を省略する。供給管接続部14a1と吸入管接続部14b1との配設位置について特定する実施の形態2を説明する。図10及び図11に示すように、供給管接続部14a1と吸入管接続部14b1の少なくとも一方が、吸入マフラー14の長手方向軸Yに対して偏心するように配設されている。
Embodiment 2.
FIG. 10 is a schematic side view of the inhalation muffler. FIG. 11 is a schematic plan view of the suction muffler. Parts having the same configuration as those of the compressors of FIGS. 1 to 9 are denoted by the same reference numerals and description thereof is omitted. A second embodiment in which the arrangement positions of the supply pipe connection portion 14a1 and the suction pipe connection portion 14b1 are specified will be described. As shown in FIGS. 10 and 11, at least one of the supply pipe connection portion 14 a 1 and the suction pipe connection portion 14 b 1 is disposed so as to be eccentric with respect to the longitudinal axis Y of the suction muffler 14.
 図12は、吸入マフラーの変形例の概略化した平面図である。図12は、供給管接続部14a1又は吸入管接続部14b1が複数配設されている場合を示すものである。供給管接続部14a1が複数配設されている場合には、各供給管接続部14a1の中心を結ぶ線分Pの法線方向Nに、線分Pの中心点P1を偏心させて配置する。また、吸入管接続部14b1が複数配設されている場合には、各吸入管接続部14b1の中心を結ぶ線分Qの法線方向Nに、線分Qの中心点Q1を偏心させて配置する。 FIG. 12 is a schematic plan view of a modified example of the inhalation muffler. FIG. 12 shows a case where a plurality of supply pipe connection portions 14a1 or suction pipe connection portions 14b1 are provided. When a plurality of supply pipe connection portions 14a1 are provided, the center point P1 of the line segment P is arranged eccentrically in the normal direction N of the line segment P connecting the centers of the supply pipe connection portions 14a1. When a plurality of suction pipe connection portions 14b1 are provided, the center point Q1 of the line segment Q is decentered in the normal direction N of the line segment Q connecting the centers of the suction pipe connection portions 14b1. To do.
 圧縮機100は、吸入マフラーと冷媒動作音との共鳴による騒音を効果的に抑制するために、R1234yf冷媒の割合α[wt%]によっては吸入マフラー14の底部14bと頂部14aの長さを大きくすることで距離L「mm」を確保する場合がある。しかし、吸入マフラー14の底部14bと頂部14aの長さは、実質的には圧縮機100を搭載する冷凍サイクル装置の内部空間等によって制約を受ける場合がある。そこで、供給管接続部14a1と吸入管接続部14b1の少なくとも一方が、吸入マフラー14の長手方向軸Yに対して偏心するように配設するものである。供給管接続部14a1と吸入管接続部14b1の少なくとも一方が、吸入マフラー14の長手方向軸Yに対して偏心することで適切な距離L「mm」の長さを確保することができる。 The compressor 100 increases the length of the bottom portion 14b and the top portion 14a of the suction muffler 14 depending on the ratio α [wt%] of the R1234yf refrigerant in order to effectively suppress noise due to resonance between the suction muffler and the refrigerant operation sound. By doing so, the distance L “mm” may be secured. However, the lengths of the bottom portion 14b and the top portion 14a of the suction muffler 14 may be substantially restricted by the internal space of the refrigeration cycle apparatus in which the compressor 100 is mounted. Therefore, at least one of the supply pipe connection portion 14a1 and the suction pipe connection portion 14b1 is disposed so as to be eccentric with respect to the longitudinal axis Y of the suction muffler 14. At least one of the supply pipe connection portion 14a1 and the suction pipe connection portion 14b1 is decentered with respect to the longitudinal axis Y of the suction muffler 14 so that an appropriate distance L “mm” can be ensured.
 また、圧縮機100は、R1234yf冷媒の割合α[wt%]と、吸入マフラー14の内部空間M1における供給管接続部14a1と吸入管接続部14b1との間の距離L「mm」が、上記の式3~式6のいずれか1つの式を満足することにより、圧縮機の騒音が小さい周波数又は遮音材の効果が発揮されやすい周波数に共鳴点を配置させることができる。そのため、圧縮機は、吸入マフラーと冷媒動作音との共鳴による騒音を効果的に抑制することができる。その結果、ハイドロフルオロオレフィンを動作冷媒とした圧縮機の静音性を向上させることができる。 Further, the compressor 100 is configured so that the ratio α [wt%] of the R1234yf refrigerant and the distance L “mm” between the supply pipe connection portion 14a1 and the suction pipe connection portion 14b1 in the internal space M1 of the suction muffler 14 are as described above. By satisfying any one of the expressions 3 to 6, the resonance point can be arranged at a frequency where the noise of the compressor is low or a frequency where the effect of the sound insulating material is easily exhibited. Therefore, the compressor can effectively suppress noise due to resonance between the suction muffler and the refrigerant operation sound. As a result, the quietness of the compressor using hydrofluoroolefin as the operating refrigerant can be improved.
 図13は、吸入マフラーの他の変形例の概略化した平面図である。図13に示すように、圧縮機100は、吸入マフラー14が平面視で長円形状に形成されており、吸入マフラー14の長円形状の長軸Jに沿って、供給管接続部14a1と吸入管接続部14b1の少なくとも一方が配設されているものである。あるいは、圧縮機100は、吸入マフラー14が平面視で長円形状に形成されており、長円形状の長軸Jに沿って、供給管接続部14a1と吸入管接続部14b1とが並んで配設されているものである。 FIG. 13 is a schematic plan view of another modification of the suction muffler. As shown in FIG. 13, in the compressor 100, the suction muffler 14 is formed in an oval shape in a plan view, and the suction pipe muffler 14 and the suction pipe muffler 14 are connected to the supply pipe connecting portion 14 a 1 along the long axis J. At least one of the pipe connection portions 14b1 is disposed. Alternatively, in the compressor 100, the suction muffler 14 is formed in an oval shape in plan view, and the supply pipe connection portion 14a1 and the suction pipe connection portion 14b1 are arranged along the long axis J of the oval shape. It has been established.
 圧縮機100は、吸入マフラーと冷媒動作音との共鳴による騒音を効果的に抑制するために、R1234yf冷媒の割合α[wt%]によっては吸入マフラー14の底部14bと頂部14aの長さを大きくすることで距離L「mm」を確保する場合がある。しかし、吸入マフラー14の底部14bと頂部14aの長さは、実質的には圧縮機100を搭載する冷凍サイクル装置の内部空間等によって制約を受ける場合がある。圧縮機100は、吸入マフラー14が平面視で長円形状に形成されており、吸入マフラー14の長円形状の長軸Jに沿って、供給管接続部14a1と吸入管接続部14b1の少なくとも一方が配設されているものである。圧縮機100は、吸入マフラー14の長円形状と、供給管接続部14a1と吸入管接続部14b1の少なくとも一方を偏心して配設することで適切な距離L「mm」の長さを確保することができる。あるいは、圧縮機100は、吸入マフラー14が平面視で長円形状に形成されており、長円形状の長軸Jに沿って、供給管接続部14a1と吸入管接続部14b1とが並んで配設されているものである。圧縮機100は、吸入マフラー14の長円形状と、長円形状の長軸Jに沿って、供給管接続部14a1と吸入管接続部14b1とが並んで配設することで適切な距離L「mm」の長さを確保することができる。 The compressor 100 increases the length of the bottom portion 14b and the top portion 14a of the suction muffler 14 depending on the ratio α [wt%] of the R1234yf refrigerant in order to effectively suppress noise due to resonance between the suction muffler and the refrigerant operation sound. By doing so, the distance L “mm” may be secured. However, the lengths of the bottom portion 14b and the top portion 14a of the suction muffler 14 may be substantially restricted by the internal space of the refrigeration cycle apparatus in which the compressor 100 is mounted. In the compressor 100, the suction muffler 14 is formed in an oval shape in plan view, and at least one of the supply pipe connection portion 14 a 1 and the suction pipe connection portion 14 b 1 along the long axis J of the suction muffler 14. Is provided. The compressor 100 ensures an appropriate distance L “mm” by arranging the oval shape of the suction muffler 14 and at least one of the supply pipe connection part 14a1 and the suction pipe connection part 14b1 eccentrically. Can do. Alternatively, in the compressor 100, the suction muffler 14 is formed in an oval shape in plan view, and the supply pipe connection portion 14a1 and the suction pipe connection portion 14b1 are arranged along the long axis J of the oval shape. It has been established. In the compressor 100, the supply pipe connection portion 14a1 and the suction pipe connection portion 14b1 are arranged side by side along the oval shape of the suction muffler 14 and the long axis J of the oval shape. A length of “mm” can be ensured.
 また、圧縮機100は、R1234yf冷媒の割合α[wt%]と、吸入マフラー14の内部空間M1における供給管接続部14a1と吸入管接続部14b1との間の距離L「mm」が、上記の式3~式6のいずれか1つの式を満足することにより、圧縮機の騒音が小さい周波数又は遮音材の効果が発揮されやすい周波数に共鳴点を配置させることができる。そのため、圧縮機は、吸入マフラーと冷媒動作音との共鳴による騒音を効果的に抑制することができる。その結果、ハイドロフルオロオレフィンを動作冷媒とした圧縮機の静音性を向上させることができる。 Further, the compressor 100 is configured so that the ratio α [wt%] of the R1234yf refrigerant and the distance L “mm” between the supply pipe connection portion 14a1 and the suction pipe connection portion 14b1 in the internal space M1 of the suction muffler 14 are as described above. By satisfying any one of the expressions 3 to 6, the resonance point can be arranged at a frequency where the noise of the compressor is low or a frequency where the effect of the sound insulating material is easily exhibited. Therefore, the compressor can effectively suppress noise due to resonance between the suction muffler and the refrigerant operation sound. As a result, the quietness of the compressor using hydrofluoroolefin as the operating refrigerant can be improved.
 また、R1234yf冷媒は、圧縮機100を動作させるための流量が多いため、吸入マフラー14から圧縮機構部3に流れる液冷媒の量が増加する場合がある。また、圧縮機構部3に液冷媒が流入すると、液圧縮状態となることから圧縮機の故障の原因となる場合がある。そこで、吸入マフラー14を平面視で長円形状に形成する。圧縮機100は、吸入マフラー14の上壁の形状を平面視で長円形状に形成することで吸入マフラー14の容積を確保することができる。その結果、吸入マフラー14に貯留できる液冷媒の量を増加することができ、圧縮機構部3に液冷媒が流入することを防ぐことができる。 Further, since the R1234yf refrigerant has a large flow rate for operating the compressor 100, the amount of liquid refrigerant flowing from the suction muffler 14 to the compression mechanism unit 3 may increase. In addition, when the liquid refrigerant flows into the compression mechanism unit 3, a liquid compression state occurs, which may cause a compressor failure. Therefore, the suction muffler 14 is formed in an oval shape in plan view. The compressor 100 can secure the volume of the suction muffler 14 by forming the shape of the upper wall of the suction muffler 14 in an oval shape in plan view. As a result, the amount of liquid refrigerant that can be stored in the suction muffler 14 can be increased, and liquid refrigerant can be prevented from flowing into the compression mechanism section 3.
 なお、本発明の実施の形態は、上記実施の形態1~2に限定されず、種々の変更を加えることができる。例えば、本発明の実施の形態に係る圧縮機100は、圧縮機構部3に2つの円筒シリンダを有するツインロータリー式の圧縮機であるが、シングルロータリー式の圧縮機であってもよい。 The embodiment of the present invention is not limited to the above-described Embodiments 1 and 2, and various modifications can be added. For example, the compressor 100 according to the embodiment of the present invention is a twin rotary type compressor having two cylindrical cylinders in the compression mechanism unit 3, but may be a single rotary type compressor.
1 密閉容器、2 電動機部、3 圧縮機構部、4 吐出管、12 上部密閉容器、13 下部密閉容器、14 吸入マフラー、14a 頂部、14a1 供給管接続部、14b 底部、14b1 吸入管接続部、15 吸入管、16 気密端子、17 ロッド、18 リード線、19 供給管、21 固定子、22 回転子、31 回転軸、31a 主軸部、31b 副軸部、31c 偏心軸部、31d 偏心軸部、32 主軸受、33 副軸受、34a 第1の円筒シリンダ、34b 第2の円筒シリンダ、35a 第1のローリングピストン、35b 第2のローリングピストン、36 仕切板、37a 第1のベーン、37b 第2のベーン、40a 室、40b 室、41a 第1のベーン摺動溝、41b 第2のベーン摺動溝、42a 第1の吸入ポート、42b 第2の吸入ポート、100 圧縮機。 DESCRIPTION OF SYMBOLS 1 Airtight container, 2 Electric motor part, 3 Compression mechanism part, 4 Discharge pipe, 12 Upper airtight container, 13 Lower airtight container, 14 Inhalation muffler, 14a Top part, 14a1 Supply pipe connection part, 14b Bottom part, 14b1 Intake pipe connection part, 15 Suction tube, 16 airtight terminal, 17 rod, 18 lead wire, 19 supply tube, 21 stator, 22 rotor, 31 rotating shaft, 31a main shaft portion, 31b sub shaft portion, 31c eccentric shaft portion, 31d eccentric shaft portion, 32 Main bearing, 33 secondary bearing, 34a first cylindrical cylinder, 34b second cylindrical cylinder, 35a first rolling piston, 35b second rolling piston, 36 partition plate, 37a first vane, 37b second vane , 40a chamber, 40b chamber, 41a first vane sliding groove, 41b second vane sliding groove, 2a first suction port, 42b second suction port, 100 compressor.

Claims (6)

  1.  圧縮機構部を内蔵した密閉容器と、
     前記圧縮機構部に接続された吸入管と、
     前記吸入管に接続された吸入マフラーと、
     前記吸入マフラーに接続され、冷媒を前記吸入マフラーに供給するための供給管と、
    を備え、
     前記吸入マフラーの内部空間において、前記吸入マフラーの供給管接続部と吸入管接続部との間の距離L「mm」が、100[mm]<L<300[mm]の範囲に形成されており、
     R1234yf冷媒とR32冷媒とを主成分として含む混合冷媒を動作冷媒とし、動作冷媒全体に対するR1234yfの割合をα[wt%]としたとき、下記の式3~式6のいずれか1つの式を満足する圧縮機。
    Figure JPOXMLDOC01-appb-M000001
    Figure JPOXMLDOC01-appb-M000002
    Figure JPOXMLDOC01-appb-M000003
    Figure JPOXMLDOC01-appb-M000004
    A sealed container with a built-in compression mechanism,
    A suction pipe connected to the compression mechanism;
    A suction muffler connected to the suction pipe;
    A supply pipe connected to the suction muffler for supplying refrigerant to the suction muffler;
    With
    In the inner space of the suction muffler, a distance L “mm” between the supply pipe connection portion and the suction pipe connection portion of the suction muffler is formed in a range of 100 [mm] <L <300 [mm]. ,
    When a mixed refrigerant containing R1234yf refrigerant and R32 refrigerant as main components is an operating refrigerant and the ratio of R1234yf to the entire operating refrigerant is α [wt%], one of the following formulas 3 to 6 is satisfied. Compressor.
    Figure JPOXMLDOC01-appb-M000001
    Figure JPOXMLDOC01-appb-M000002
    Figure JPOXMLDOC01-appb-M000003
    Figure JPOXMLDOC01-appb-M000004
  2.  前記供給管接続部と前記吸入管接続部の少なくとも一方が、前記吸入マフラーの長手方向軸に対して偏心するように配設されている請求項1に記載の圧縮機。 2. The compressor according to claim 1, wherein at least one of the supply pipe connection portion and the suction pipe connection portion is arranged to be eccentric with respect to a longitudinal axis of the suction muffler.
  3.  前記吸入マフラーが平面視で長円形状に形成されており、長円形状の長軸に沿って、前記供給管接続部と前記吸入管接続部の少なくとも一方が配設されている請求項2に記載の圧縮機。 3. The suction muffler is formed in an oval shape in a plan view, and at least one of the supply pipe connection portion and the suction pipe connection portion is disposed along a long axis of the oval shape. The compressor described.
  4.  前記吸入マフラーが平面視で長円形状に形成されており、長円形状の長軸に沿って、前記供給管接続部と前記吸入管接続部とが並んで配設されている請求項2に記載の圧縮機。 3. The suction muffler is formed in an oval shape in a plan view, and the supply pipe connection portion and the suction pipe connection portion are arranged side by side along a long axis of the oval shape. The compressor described.
  5.  前記動作冷媒のGWPが500未満である請求項1~4のいずれか1項に記載の圧縮機。 The compressor according to any one of claims 1 to 4, wherein the working refrigerant has a GWP of less than 500.
  6.  前記動作冷媒のGWPが100未満である請求項1~5のいずれか1項に記載の圧縮機。 The compressor according to any one of claims 1 to 5, wherein the working refrigerant has a GWP of less than 100.
PCT/JP2017/003778 2017-02-02 2017-02-02 Compressor WO2018142536A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2017/003778 WO2018142536A1 (en) 2017-02-02 2017-02-02 Compressor
JP2018565162A JP6840173B2 (en) 2017-02-02 2017-02-02 Compressor
CN201780084682.0A CN110249134B (en) 2017-02-02 2017-02-02 Compressor
KR1020197015390A KR102388016B1 (en) 2017-02-02 2017-02-02 compressor
CZ2019480A CZ309050B6 (en) 2017-02-02 2017-02-02 Compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/003778 WO2018142536A1 (en) 2017-02-02 2017-02-02 Compressor

Publications (1)

Publication Number Publication Date
WO2018142536A1 true WO2018142536A1 (en) 2018-08-09

Family

ID=63040410

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/003778 WO2018142536A1 (en) 2017-02-02 2017-02-02 Compressor

Country Status (5)

Country Link
JP (1) JP6840173B2 (en)
KR (1) KR102388016B1 (en)
CN (1) CN110249134B (en)
CZ (1) CZ309050B6 (en)
WO (1) WO2018142536A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001221046A (en) * 2000-02-07 2001-08-17 Nissan Motor Co Ltd Exhaust muffler for automobile
JP2006233890A (en) * 2005-02-25 2006-09-07 Futaba Industrial Co Ltd Muffler for internal combustion engine
WO2009078355A1 (en) * 2007-12-14 2009-06-25 Daikin Industries, Ltd. Enclosed compressor
JP2011185123A (en) * 2010-03-05 2011-09-22 Daikin Industries Ltd Compressor unit, air conditioner, and water heater
WO2011135817A1 (en) * 2010-04-28 2011-11-03 パナソニック株式会社 Rotary compressor
JP2016121607A (en) * 2014-12-24 2016-07-07 オイレス工業株式会社 Vehicular exhaust pipe muffler and process of manufacture thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0631629B2 (en) * 1987-03-09 1994-04-27 三菱電機株式会社 Rotary compressor
KR100677515B1 (en) * 2005-05-09 2007-02-02 엘지전자 주식회사 Modulation type multi-stage rotary compressor and airconditioner using this
JP4609583B2 (en) * 2009-03-25 2011-01-12 ダイキン工業株式会社 Discharge muffler and two-stage compressor equipped with a discharge muffler
JP2012057503A (en) * 2010-09-07 2012-03-22 Panasonic Corp Rotary compressor
JP5818731B2 (en) * 2012-03-29 2015-11-18 三菱電機株式会社 Hermetic compressor and refrigeration cycle apparatus provided with the same
KR20140142802A (en) * 2013-06-04 2014-12-15 삼성전자주식회사 Outdoor heat exchanger and air conditioner
KR20160051289A (en) * 2014-11-03 2016-05-11 이상목 Silencer with Asymmetry Structure
JP6466219B2 (en) * 2015-03-20 2019-02-06 日立ジョンソンコントロールズ空調株式会社 Air conditioner indoor unit

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001221046A (en) * 2000-02-07 2001-08-17 Nissan Motor Co Ltd Exhaust muffler for automobile
JP2006233890A (en) * 2005-02-25 2006-09-07 Futaba Industrial Co Ltd Muffler for internal combustion engine
WO2009078355A1 (en) * 2007-12-14 2009-06-25 Daikin Industries, Ltd. Enclosed compressor
JP2011185123A (en) * 2010-03-05 2011-09-22 Daikin Industries Ltd Compressor unit, air conditioner, and water heater
WO2011135817A1 (en) * 2010-04-28 2011-11-03 パナソニック株式会社 Rotary compressor
JP2016121607A (en) * 2014-12-24 2016-07-07 オイレス工業株式会社 Vehicular exhaust pipe muffler and process of manufacture thereof

Also Published As

Publication number Publication date
CN110249134A (en) 2019-09-17
CN110249134B (en) 2021-10-29
CZ2019480A3 (en) 2019-09-18
JP6840173B2 (en) 2021-03-10
KR102388016B1 (en) 2022-04-19
KR20190070979A (en) 2019-06-21
CZ309050B6 (en) 2021-12-29
JPWO2018142536A1 (en) 2019-11-07

Similar Documents

Publication Publication Date Title
JP5786030B2 (en) Hermetic rotary compressor and refrigeration cycle equipment
JP2008240667A (en) Rotary compressor
WO2008035690A1 (en) Rotation preventing member and scroll compressor
US20070065324A1 (en) Rotary compressor
US9145890B2 (en) Rotary compressor with dual eccentric portion
WO2018163233A1 (en) Scroll compressor and refrigeration cycle device
JP2005307764A (en) Rotary compressor
US11585343B2 (en) Muffler for a compression mechanism of a rotary compressor
JP6404142B2 (en) Compressor and refrigeration cycle apparatus
WO2018142536A1 (en) Compressor
WO2018150494A1 (en) Compressor
WO2018142505A1 (en) Compressor
KR101380987B1 (en) Rotary compressor
WO2018142564A1 (en) Compressor
JP2014070619A (en) Rotary compressor
JP2016037906A (en) High-pressure doom type compressor
JP2020070748A (en) Rotatable compressor
JP4792947B2 (en) Compressor
JP2017008819A (en) Rotary compressor
KR102163622B1 (en) A Rotary Compressor Reduced Eccentric Friction
JP2006170213A5 (en)
JP2012127199A (en) Compressor
AU2023244064A1 (en) Compressor and refrigeration device
JP6464583B2 (en) Rotary compressor
JP2014152621A (en) Vane type compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17894988

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018565162

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197015390

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17894988

Country of ref document: EP

Kind code of ref document: A1