WO2018030143A1 - Drive device and electric motor drive device - Google Patents
Drive device and electric motor drive device Download PDFInfo
- Publication number
- WO2018030143A1 WO2018030143A1 PCT/JP2017/026808 JP2017026808W WO2018030143A1 WO 2018030143 A1 WO2018030143 A1 WO 2018030143A1 JP 2017026808 W JP2017026808 W JP 2017026808W WO 2018030143 A1 WO2018030143 A1 WO 2018030143A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- field
- switching element
- winding
- neutral point
- control unit
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/42—Conversion of dc power input into ac power output without possibility of reversal
- H02M7/44—Conversion of dc power input into ac power output without possibility of reversal by static converters
- H02M7/48—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P27/00—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
- H02P27/04—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
- H02P27/06—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
Definitions
- the present invention relates to a drive device and an electric motor drive device.
- Patent Document 1 discloses a field winding type electric motor having a three-phase armature winding and a field winding.
- the inverter circuit has a three-phase arm, the three-phase arm has an upper arm switching element and a lower arm switching element, respectively, and by switching each switching element, The point which converts direct-current power into alternating current power is indicated.
- Patent Document 1 discloses that the drive device has a boost converter as a field circuit and two field wirings that connect both ends of the field winding and the boost converter. Yes.
- a ripple current may be generated in the inverter circuit due to switching of the switching element of the inverter circuit.
- AC power including the ripple current is supplied to the armature winding, the controllability of the electric motor may be reduced.
- An object of the present invention is to provide a driving device and an electric motor driving device capable of reducing the ripple current while reducing the number of field wirings connecting the field circuit and the field winding of the electric motor. It is to be.
- the first mode for achieving the above object provides a drive device.
- the drive device includes an electric motor, an inverter circuit, and a multi-phase armature wiring.
- the electric motor has three or more phases of armature windings and field windings that are star-connected.
- the inverter circuit is configured to convert DC power from a DC power source into AC power, and includes a plurality of phase arms provided for each of the plurality of armature windings.
- the multi-phase armature wiring connects the multi-phase arm and the multi-phase armature winding.
- Each of the arms of the plurality of phases is connected to the upper arm switching element connected to the high voltage side of the DC power source via a high voltage bus, and connected to the upper arm switching element in series and the DC connected via the low voltage bus And a lower arm switching element connected to the low voltage side of the power supply.
- the field winding has a first end connected to a neutral point of the multi-phase armature winding and a second end connected to a field wiring.
- the driving device includes a field circuit, an inverter control unit, and a field control unit.
- the field circuit is connected to the second end of the field winding via the field wiring, and is used to flow a field current through the field winding.
- the inverter control unit is configured to control switching of the upper arm switching element and the lower arm switching element in the plurality of phase arms.
- the field control unit controls the field circuit so that the field current flows through the field winding when a neutral point voltage, which is a neutral point voltage of the multi-phase armature winding, is positive. Is configured to do.
- the second mode for achieving the above object provides an electric motor drive device.
- the electric motor drive device is connected to a star-connected multi-phase armature winding of three or more phases, a first end connected to a neutral point of the multi-phase armature winding, and a field wiring And an electric motor having a field winding having a second end.
- the electric motor drive device includes an inverter circuit configured to convert DC power from a DC power source into AC power.
- the inverter circuit has a multi-phase arm provided for each of the multi-phase armature windings.
- Each of the arms of the plurality of phases is connected to the upper arm switching element connected to the high voltage side of the DC power source via a high voltage bus, and connected to the upper arm switching element in series and the DC connected via the low voltage bus And a lower arm switching element connected to the low voltage side of the power supply.
- the electric motor driving device includes a field circuit, an inverter control unit, and a field control unit.
- the field circuit is connected to the second end of the field winding via the field wiring and is used to flow a field current through the field winding.
- the inverter control unit is configured to switch the upper arm switching element and the lower arm switching element in the plurality of phase arms.
- the field control unit controls the field circuit so that the field current flows through the field winding when a neutral point voltage, which is a neutral point voltage of the multi-phase armature winding, is positive. Is configured to do.
- the block diagram which shows the outline
- the schematic diagram which shows the relationship between a switching pattern and the state of a field switching element.
- (A) is a waveform of a neutral point voltage
- (b) is a time chart which shows the ON / OFF aspect of a field switching element.
- (A) is the waveform of the ripple current generated in the inverter circuit
- (b) is the waveform of the amplitude current generated in the field winding
- (c) is supplied to the armature winding of a plurality of phases. Waveform of ripple current included in AC power.
- the drive device 10 is for in-vehicle use.
- the following description will be made on the drive device 10 mounted on a vehicle.
- the drive device 10 includes an electric motor (rotary electric machine) 11 and an electric motor drive device 12 that drives the electric motor 11.
- the electric motor 11 may be any motor as long as it is a vehicle-mounted motor mounted on a vehicle.
- the electric motor 11 is an arbitrary motor such as a traveling motor or a compressor motor.
- the electric motor 11 may be a motor that drives a pump that supplies hydrogen to the fuel cell.
- the electric motor 11 includes a rotating shaft 21, a rotor 22, a stator core 23, a plurality of armature windings 24 u to 24 w, and a field winding 25.
- the rotating shaft 21 is connected to the driving object 100.
- the driving object 100 is arbitrary as long as it is driven by the rotating shaft 21.
- the driving object 100 is a compression mechanism that compresses fluid in, for example, a shaft connected to wheels or a compressor.
- the rotor 22 is fixed to the rotating shaft 21, and the rotor 22 and the rotating shaft 21 rotate integrally.
- the rotor 22 has a plurality of field winding slots.
- the specific shape and material of the rotor 22 are arbitrary.
- the stator core 23 has a hollow cylindrical shape, for example, and is provided on the outer side in the radial direction of the rotor 22.
- the stator core 23 has a plurality of armature winding slots arranged in the circumferential direction.
- the multi-phase armature windings 24 u to 24 w are wound around the armature winding slot of the stator core 23.
- the multi-phase armature windings 24u to 24w are constituted by a u-phase armature winding 24u, a v-phase armature winding 24v, and a w-phase armature winding 24w. That is, the electric motor 11 in the present embodiment is a three-phase motor.
- AC power more specifically, three-phase AC power
- the multi-phase armature windings 24u to 24w have a star connection structure connected to each other at a neutral point N. Note that the winding mode of the multi-phase armature windings 24u to 24w with respect to the stator core 23 may be arbitrarily changed, such as concentrated winding or distributed winding.
- the field winding 25 is wound around the field winding slot of the rotor 22.
- the field winding 25 is a magnetic field that interacts with the magnetic field formed by the multi-phase armature windings 24u to 24w when a field current Im that is a direct current in a certain direction flows through the field winding 25.
- the field winding 25 is wound so as to generate a magnetic field that strengthens the magnetic field formed by the armature windings 24u to 24w of the plurality of phases when the field current Im flows through the field winding 25.
- the configuration including the position of the field winding slot and the specific winding mode of the field winding 25 are arbitrary.
- the field winding 25 has a first end 25a and a second end 25b. It can be said that the first end 25a and the second end 25b are a winding start portion and a winding end portion of the field winding 25, respectively.
- the first end 25a is connected to a neutral point N of the multiple-phase armature windings 24u to 24w.
- the electric motor drive device 12 includes an inverter circuit 30 configured to drive the electric motor 11 and a field circuit for causing a field current Im to flow through the field winding 25. 40.
- the inverter circuit 30 and the field circuit 40 are connected to the in-vehicle power storage device 101, and receive DC power from the in-vehicle power storage device 101.
- drive device 10 includes a positive electrode bus LN1 connected to the positive electrode of in-vehicle power storage device 101, and a negative electrode bus LN2 connected to the negative electrode of in-vehicle power storage device 101.
- the inverter circuit 30 and the field circuit 40 are connected to the in-vehicle power storage device 101 via the positive electrode bus LN1 and the negative electrode bus LN2. Then, the DC power of the in-vehicle power storage device 101 is supplied to the inverter circuit 30 and the field circuit 40 through the positive bus LN1 and the negative bus LN2.
- the in-vehicle power storage device 101 is arbitrary as long as it can charge and discharge DC power, and is, for example, a secondary battery or an electric double layer capacitor.
- the in-vehicle power storage device 101 corresponds to a DC power source.
- the positive bus LN1 corresponds to the high voltage bus (first bus) connected to the high voltage side of the DC power supply
- the negative bus LN2 corresponds to the low voltage bus (second bus) connected to the low voltage side of the DC power supply.
- the vehicle is provided with a smoothing capacitor C0 connected in parallel with the in-vehicle power storage device 101.
- the smoothing capacitor C0 is provided outside the driving device 10.
- the drive device 10 may have the smoothing capacitor C0.
- the in-vehicle power storage device 101 is shared by the driving device 10 and other in-vehicle devices mounted on the vehicle. Specifically, the driving device 10 and other in-vehicle devices are connected to the in-vehicle power storage device 101 in parallel with each other. For this reason, if a ripple current Ir is generated in the inverter circuit 30, the ripple current Ir can be transmitted to the other in-vehicle devices through the positive electrode bus LN1 and the negative electrode bus LN2.
- the inverter circuit 30 is configured to convert DC power from the in-vehicle power storage device 101 into AC power (three-phase AC power in the present embodiment). As shown in FIG. 2, the inverter circuit 30 has a plurality of phase arms 31u to 31w provided for each of the plurality of phase armature windings 24u to 24w. Specifically, inverter circuit 30 corresponds to u-phase arm 31u corresponding to u-phase armature winding 24u, v-phase arm 31v corresponding to v-phase armature winding 24v, and w-phase armature winding 24w. W-phase arm 31w. The multiple-phase arms 31u to 31w have the same configuration.
- the u-phase arm 31u has a u-phase upper arm switching element Qu1 and a u-phase lower arm switching element Qu2 that are connected in series with each other via a u-phase arm connection line 32u.
- the u-phase upper arm switching element Qu1 is connected to the positive electrode bus LN1, and is connected to the positive electrode of the in-vehicle power storage device 101 via the positive electrode bus LN1.
- the u-phase lower arm switching element Qu2 is connected to the negative electrode bus LN2, and is connected to the negative electrode of the in-vehicle power storage device 101 via the negative electrode bus LN2.
- the v-phase arm 31v has a v-phase upper arm switching element Qv1 and a v-phase lower arm switching element Qv2 connected in series with each other via a v-phase arm connection line 32v.
- the w-phase arm 31w has a w-phase upper arm switching element Qw1 and a w-phase lower arm switching element Qw2 connected in series with each other via a w-phase arm connection line 32w.
- the v-phase arm 31v and the w-phase arm 31w are connected to the positive bus LN1 and the negative bus LN2, and are supplied with DC power from the in-vehicle power storage device 101.
- Each switching element Qu1, Qu2, Qv1, Qv2, Qw1, Qw2 is a power switching element such as an insulated gate bipolar transistor (IGBT: Insulated Gate Bipolar Transistor).
- IGBT Insulated Gate Bipolar Transistor
- each of the switching elements Qu1 to Qw2 is not limited to the IGBT, and may be any switching element. Note that the switching elements Qu1 to Qw2 have freewheeling diodes (body diodes) Du1 to Dw2.
- the driving apparatus 10 includes a plurality of armature wirings LNu to LNw for connecting a plurality of arms 31u to 31w and a plurality of armature windings 24u to 24w. Yes.
- the armature wirings LNu to LNw connect the arm connection lines 32u to 32w and the armature windings 24u to 24w.
- the number of armature wirings LNu to LNw is the same as the number of phases of the armature windings 24u to 24w, and is three in this embodiment.
- the multiple-phase armature wirings LNu to LNw are configured by a u-phase armature wiring LNu, a v-phase armature wiring LNv, and a w-phase armature wiring LNw.
- the field circuit 40 is used to flow a field current Im through the field winding 25.
- the field circuit 40 includes a field diode Dm and a field switching element Qm connected to each other via a field connection line 41.
- the anode of the field diode Dm is connected to the field connection line 41, and the cathode of the field diode Dm is connected to the positive electrode bus LN1.
- the field switching element Qm is composed of, for example, an IGBT.
- the collector of field switching element Qm is connected to field connection line 41, and the emitter of field switching element Qm is connected to negative electrode bus LN2. That is, the field connection line 41 connects the field diode Dm and the field switching element Qm, more specifically, the anode of the field diode Dm and the collector of the field switching element Qm.
- the driving device 10 includes a field wiring LNm that connects the field winding 25 and the field circuit 40.
- the field wiring LNm connects the second end 25 b of the field winding 25 and the field connection line 41 of the field circuit 40.
- the drive device 10 includes a control device 50 that controls the inverter circuit 30 and the field circuit 40.
- the control device 50 can be realized by, for example, one or more dedicated hardware circuits and / or one or more processors (control circuits) that operate according to a computer program (software).
- the processor includes a CPU and memories such as a RAM and a ROM, and the memory stores program codes or instructions configured to cause the processor to execute various processes, for example.
- Memory or computer readable media includes any available media that can be accessed by a general purpose or special purpose computer.
- an inverter control unit 51 and a field control unit 52 which will be described later, as well as the control device 50 are one or more dedicated hardware circuits and / or one or more processors (control circuits) that operate according to a computer program (software). ) Can be realized.
- the control device 50 is connected to the gates of the switching elements Qu1 to Qw2 of the inverter circuit 30 and the gate of the field switching element Qm of the field circuit 40, and the switching elements Qu1 to Qw2 and the field switching element Qm are individually connected. It is configured to be controllable.
- the control device 50 includes an inverter control unit 51 configured to control switching of each of the switching elements Qu1 to Qw2, and a field control unit 52 configured to perform switching control of the field switching element Qm of the field circuit 40. I have.
- the inverter control unit 51 sequentially switches the switching pattern that is a combination of ON / OFF of the upper arm switching elements Qu1 to Qw1 and the lower arm switching elements Qu2 to Qw2 in the multiple-phase arms 31u to 31w, so that the in-vehicle power storage device 101
- the direct current power is converted into alternating current power.
- the switching pattern will be described in detail below.
- a plurality (eight in this embodiment) of patterns P1 to P8 are set as switching patterns of the switching elements Qu1 to Qw2 that are sequentially switched.
- the first pattern P1 is a switching pattern in which the upper arm switching elements Qu1 to Qw1 are turned off and the lower arm switching elements Qu2 to Qw2 are turned on.
- the second pattern P2 the u-phase upper arm switching element Qu1, the v-phase lower arm switching element Qv2 and the w-phase lower arm switching element Qw2 are in the ON state, and the u-phase lower arm switching element Qu2 and the v-phase upper arm switching element Qv1.
- a switching pattern in which the w-phase upper arm switching element Qw1 is in the OFF state.
- the inverter control unit 51 switches the DC power (DC voltage) to AC power (three-phase AC voltage) by sequentially switching the switching patterns of the switching elements Qu1 to Qw2 while appropriately selecting from the plurality of patterns P1 to P8. ).
- the inverter control unit 51 is configured such that a target current value is input from the outside. Based on the input of the target current value from the outside, the inverter control unit 51 controls each of the switching elements Qu1 to Qw2 so that the AC power of the target current value is input to the plurality of armature windings 24u to 24w. PWM control is performed. Specifically, the inverter control unit 51 adjusts the execution period and the duty ratio of each switching pattern that is sequentially switched based on parameters such as a target current value and a DC voltage of the in-vehicle power storage device 101.
- the switching pattern includes a positive pattern in which the neutral point voltage Ve, which is a voltage at the neutral point N, is positive (+), and a neutral point voltage Ve.
- the positive patterns are the third pattern P3, the fifth pattern P5, the seventh pattern P7, and the eighth pattern P8.
- the neutral point voltage Ve is maximum when the pattern is the eighth pattern P8, and the neutral point voltage Ve when the pattern is the eighth pattern P8 is the DC voltage of the in-vehicle power storage device 101. 1/2 of this.
- the neutral point voltages Ve in the case of the third pattern P3, the fifth pattern P5, and the seventh pattern P7 are the same.
- the negative patterns are the first pattern P1, the second pattern P2, the fourth pattern P4, and the sixth pattern P6.
- the neutral point voltage Ve is minimum when the pattern is the first pattern P1
- the absolute value of the neutral point voltage Ve when the pattern is the first pattern P1 is the in-vehicle power storage device 101. 1 ⁇ 2 of the direct current voltage.
- the neutral point voltages Ve in the second pattern P2, the fourth pattern P4, and the sixth pattern P6 are the same.
- the neutral point voltage Ve periodically changes. Specifically, a period in which the neutral point voltage Ve is positive and a period in which the neutral point voltage Ve is negative are alternately switched.
- the neutral point voltage Ve being positive means that the neutral point voltage Ve is higher than the ground
- the neutral point voltage Ve being negative means that the neutral point voltage Ve is lower than the ground. Means.
- the field controller 52 controls the field circuit 40 (specifically, the field switching element Qm) so that the field current Im flows through the field winding 25 when the neutral point voltage Ve is positive. It is configured. Specifically, the field control unit 52 turns on the field switching element Qm when the switching pattern is a positive pattern.
- the field control unit 52 maintains the field switching element Qm in the ON state over a period in which the neutral point voltage Ve is positive, and the neutral point voltage Ve.
- the field switching element Qm is maintained in the OFF state over a period in which is negative.
- the positive / negative of the neutral point voltage Ve and ON / OFF of the field switching element Qm are synchronizing. In other words, the period during which the neutral point voltage Ve is positive coincides with the period during which the field switching element Qm is in the ON state.
- the field switching element Qm is periodically turned ON / OFF.
- the switching frequency of the field switching element Qm corresponds to the switching frequency of each of the switching elements Qu1 to Qw2.
- the inverter control unit 51 sets a dead time when switching the switching pattern. That is, the inverter control unit 51 switches the switching pattern from the current pattern to another pattern through the dead time.
- the field control unit 52 turns off the field switching element Qm during the dead time.
- FIGS. 5 (a) to 5 (c) show the waveform of the ripple current Ir generated in the inverter circuit 30, and FIG. 5B shows the waveform of the amplitude current Ia generated in the field winding 25.
- FIG. c) is a waveform of the ripple current Ir included in the AC power supplied to the multi-phase armature windings 24u to 24w.
- the field current Im which is a unidirectional current, flows through the field winding 25 when the field switching element Qm is turned on under the condition that the neutral point voltage Ve is positive.
- a magnetic field is formed in the field winding 25, and the magnetic field generated from the multiple-phase armature windings 24u to 24w is strengthened by the magnetic field.
- the torque of the electric motor 11 can be increased.
- a back electromotive force is generated in the field winding 25 immediately after the field switching element Qm is turned OFF.
- the field current Im resulting from the back electromotive force flows through the field diode Dm.
- a ripple current Ir corresponding to the switching frequency of each of the switching elements Qu1 to Qw2 is generated in the inverter circuit 30.
- the frequency of the ripple current Ir is higher than the frequency of the AC power supplied to the multiple-phase armature windings 24u to 24w.
- the ripple current Ir is It is superimposed on the output current of the inverter circuit 30 as it is.
- the superimposed ripple current Ir is propagated to the plural-phase armature windings 24u to 24w. That is, when the field winding 25 is not provided, or when the switching control of the field switching element Qm as described above is not performed even if the field winding 25 is provided, the inverter circuit 30 includes The amplitude of the ripple current Ir generated in this way is equal to the amplitude of the ripple current Ir flowing through the multiple-phase armature windings 24u to 24w.
- the field switching element Qm since the field switching element Qm is turned on when the neutral point voltage Ve is positive, in synchronization with the periodic positive / negative switching of the neutral point voltage Ve, The field switching element Qm is periodically turned ON / OFF (switching). Therefore, as shown in FIG. 5B, an amplitude current Ia is also generated in the field winding 25. That is, the field current Im includes a direct current component and an alternating current component (amplitude current Ia). The amplitude current Ia has a phase opposite to that of the ripple current Ir. For this reason, the ripple current Ir and the amplitude current Ia cancel each other. Thereby, as shown in FIG.5 (c), the ripple current Ir is reduced. Specifically, the amplitude of the ripple current Ir becomes small, and preferably “0”.
- the driving device 10 includes a field winding type electric motor 11 having a plurality of armature windings 24u to 24w and field windings 25 connected in a star shape, and an in-vehicle power storage device 101 as a DC power source. And an inverter circuit 30 for converting DC power from the AC power into AC power.
- the inverter circuit 30 has a plurality of phase arms 31u to 31w provided for each of the plurality of phase armature windings 24u to 24w.
- the multiple-phase arms 31u to 31w are connected to the positive electrode of the in-vehicle power storage device 101 via the positive electrode bus LN1 and the upper arm switching elements Qu1 to Qw1 connected to the positive electrode of the in-vehicle power storage device 101, and the in-vehicle power storage device 101 via the negative electrode bus LN2.
- the field winding 25 has a first end 25a connected to the neutral point N of the multi-phase armature windings 24u to 24w, and a second end 25b connected to the field wiring LNm. Yes.
- the driving device 10 is connected to the second end 25b of the field winding 25 via the field wiring LNm, and is used for flowing a field current Im through the field winding 25. 40.
- the drive apparatus 10 is configured so that the field current Im flows in the field winding 25 when the neutral point voltage Ve is positive and the inverter control unit 51 configured to perform switching control of the switching elements Qu1 to Qw2. And a field control unit 52 configured to control the field circuit 40.
- the first end 25a of the field winding 25 is connected to the neutral point N, it is not necessary to connect the first end 25a and the field circuit 40.
- the field wiring LNm it is only necessary to connect both the first end 25a and the second end 25b of the field winding 25 to the field circuit 40 instead of both the first end 25a and the second end 25b.
- the number of wirings LNm can be reduced.
- the field current Im flows through the field winding 25, so that an amplitude current Ia is generated in the field winding 25.
- the amplitude current Ia is a current having an opposite phase to the ripple current Ir generated in the inverter circuit 30.
- the ripple current Ir and the amplitude current Ia cancel each other, so that the ripple current Ir is reduced. Therefore, the ripple current Ir can be reduced while reducing the number of the field wirings LNm.
- the effect of the drive device 10 will be described in further detail.
- a field winding type is adopted as the electric motor 11.
- the field winding type electric motor 11 can realize both a reduction in size and an improvement in torque as compared with a normal electric motor having no field winding 25.
- the field wiring LNm is required separately from the multi-phase armature wirings LNu to LNw, and therefore the number of wirings for connecting the electric motor 11 and various circuits.
- the inconvenience of an increase in In particular, the field wiring LNm tends to be more expensive than the field connection line 41 in the field circuit 40 or the multi-phase arm connection lines 32u to 32w in the inverter circuit 30, and is routed. Tends to be cumbersome.
- the field circuit 40 includes a field diode Dm having a cathode connected to the positive bus LN1, a field switching element Qm connected to the negative bus LN2, an anode of the field diode Dm, and a field switching element. And a field connection line 41 for connecting Qm.
- the field wiring LNm is connected to the field connection line 41.
- the field control unit 52 controls the field switching element Qm so that the field current Im flows through the field winding 25 when the neutral point voltage Ve is positive.
- the field current Im can be supplied to or stopped from the field winding 25 by the control of the field switching element Qm. Thereby, control of the field current Im can be performed suitably.
- the inverter control unit 51 sequentially switches the switching pattern that is a combination of ON / OFF of the upper arm switching elements Qu1 to Qw1 and the lower arm switching elements Qu2 to Qw2 in the multi-phase arms 31u to 31w.
- the switching pattern includes a positive pattern in which the neutral point voltage Ve is positive and a negative pattern in which the neutral point voltage Ve is negative.
- the field controller 52 controls the field circuit 40 (field switching element Qm) so that the field current Im flows through the field winding 25 when the switching pattern is a positive pattern.
- the neutral point voltage Ve is positive without providing a voltage sensor for detecting the neutral point voltage Ve or calculating the neutral point voltage Ve based on the three-phase AC voltage.
- the field current Im can flow through the field winding 25. Thereby, the effect (1) can be obtained relatively easily.
- the drive device 10 is for in-vehicle use, and the inverter circuit 30 is configured to convert DC power of the in-vehicle power storage device 101 into AC power. According to such a configuration, the ripple current Ir can be reduced while reducing the number of field wirings LNm in the in-vehicle drive device 10. Thereby, the drive target object 100 mounted in the vehicle can be suitably driven using the drive device 10.
- the in-vehicle power storage device 101 may be shared by the driving device 10 and other in-vehicle devices.
- the ripple current Ir generated in the inverter circuit 30 can flow out of the drive device 10 and propagate to the other on-vehicle equipment. Then, in the other in-vehicle devices, there may be a problem that malfunction occurs or a filter circuit is necessary.
- the ripple current Ir can be reduced, so that the above inconvenience can be suppressed.
- the field circuit 40 is not limited to that of the embodiment and is arbitrary.
- an IGBT or MOSFET having a body diode as the field diode Dm may be provided.
- the field control unit 52 is configured to determine whether the neutral point voltage Ve is positive from the switching pattern, but is not limited thereto.
- the field control unit 52 may periodically calculate the neutral point voltage Ve from the three-phase AC voltage and determine whether or not the calculated neutral point voltage Ve is positive.
- the drive device 10 includes a voltage sensor that detects the neutral point voltage Ve, and the field control unit 52 determines whether the neutral point voltage Ve is positive based on the detection result of the voltage sensor. Also good.
- the field control unit 52 may turn on the field switching element Qm for a part of the period in which the neutral point voltage Ve is positive. In other words, the field control unit 52 may control the field circuit 40 so that the field current Im flows in at least a part of the period in which the neutral point voltage Ve is positive.
- the field control unit 52 sets the field switching element Qm so that the field current Im flows only when a predetermined specific pattern (for example, the eighth pattern P8) among the plurality of positive patterns is set as the switching pattern. It may be turned on. In this case, when the switching pattern is other than the specific pattern, the field control unit 52 may turn off the field switching element Qm so that the field current Im does not flow.
- a predetermined specific pattern for example, the eighth pattern P8 among the plurality of positive patterns
- the field control unit 52 calculates the target value in consideration of the operation status of the electric motor 11 and the neutral point voltage Ve is set so that the field current Im approaches (preferably matches) the target value.
- the ON period of the field switching element Qm during the positive period may be adjusted. That is, the field controller 52 may be configured to control the field current Im by adjusting the ON period of the field switching element Qm during the period in which the neutral point voltage Ve is positive.
- the field winding 25 may be wound around the stator core 23 instead of the rotor 22.
- a permanent magnet may be provided on the rotor 22 or the stator core 23, or there may be no permanent magnet.
- the number of phases of the armature winding may be three or more, for example, four or five phases.
- the switching elements Qu1 to Qw2 and the field switching element Qm are not limited to IGBTs but may be MOSFETs or the like.
- the field switching element Qm and each of the switching elements Qu1 to Qw2 may be different types of switching elements.
- the drive device 10 is not restricted to vehicle-mounted use, You may be used for another use. O You may combine embodiment and each other example suitably.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Inverter Devices (AREA)
- Control Of Ac Motors In General (AREA)
Abstract
The drive device comprises an electric motor, an inverter circuit, wiring for a multi-phase armature, a field circuit, an inverter control unit, and a field control unit. The field circuit is connected to a second end of a field winding via field wiring and is used to apply a field current to the field winding. The inverter control unit performs switching control with respect to upper arm switching components and lower arm switching components in respective arms for the multiple phases. The field control unit controls the field circuit such that the field current flows into the field winding when a neutral-point voltage, that is, a voltage at a neutral point of armature windings for the multiple phases, has a positive value.
Description
本発明は、駆動装置及び電動モータ駆動装置に関する。
The present invention relates to a drive device and an electric motor drive device.
例えば特許文献1に示すように、電動モータと当該電動モータを駆動させるインバータ回路とを備えた駆動装置が知られている。特許文献1は、三相の電機子巻線と界磁巻線とを有する界磁巻線型の電動モータを開示している。特許文献1は、インバータ回路が三相のアームを有し、当該三相のアームがそれぞれ上アームスイッチング素子及び下アームスイッチング素子を有している点、及び、各スイッチング素子をスイッチングすることにより、直流電力を交流電力に変換する点を開示している。更に特許文献1は、駆動装置が、界磁回路としての昇圧コンバータと、界磁巻線の両端と昇圧コンバータとを接続する2本の界磁用配線とを有している点を開示している。
For example, as shown in Patent Document 1, a driving device including an electric motor and an inverter circuit that drives the electric motor is known. Patent Document 1 discloses a field winding type electric motor having a three-phase armature winding and a field winding. In Patent Document 1, the inverter circuit has a three-phase arm, the three-phase arm has an upper arm switching element and a lower arm switching element, respectively, and by switching each switching element, The point which converts direct-current power into alternating current power is indicated. Further, Patent Document 1 discloses that the drive device has a boost converter as a field circuit and two field wirings that connect both ends of the field winding and the boost converter. Yes.
ここで、インバータ回路のスイッチング素子がスイッチングすることに起因して、インバータ回路内にてリップル電流が発生し得る。当該リップル電流を含む交流電力が電機子巻線に供給されると、電動モータの制御性が低下し得る。
Here, a ripple current may be generated in the inverter circuit due to switching of the switching element of the inverter circuit. When AC power including the ripple current is supplied to the armature winding, the controllability of the electric motor may be reduced.
また、電動モータとして、界磁巻線型の電動モータが採用される構成においては、インバータ回路と電機子巻線とを接続する電機子用配線とは別に、界磁回路と界磁巻線とを接続する界磁用配線が別途必要となる。このため、配線の引き回しが複雑化したり製造コストが増加したりすることが懸念される。
In addition, in a configuration in which a field winding type electric motor is adopted as the electric motor, a field circuit and a field winding are provided separately from the armature wiring connecting the inverter circuit and the armature winding. A separate field wiring is required. For this reason, there is a concern that the routing of wiring becomes complicated or the manufacturing cost increases.
本発明の目的は、界磁回路と電動モータの界磁巻線とを接続する界磁用配線の本数の削減を図りつつリップル電流の低減を図ることができる駆動装置及び電動モータ駆動装置を提供することである。
An object of the present invention is to provide a driving device and an electric motor driving device capable of reducing the ripple current while reducing the number of field wirings connecting the field circuit and the field winding of the electric motor. It is to be.
上記目的を達成する第1の態様は、駆動装置を提供する。駆動装置は、電動モータ、インバータ回路、及び複数相の電機子用配線を備える。電動モータは、星形結線された3相以上の複数相の電機子巻線及び界磁巻線を有する。インバータ回路は、直流電源からの直流電力を交流電力に変換するように構成され、前記複数相の電機子巻線ごとに設けられた複数相のアームを有する。複数相の電機子用配線は、前記複数相のアームと前記複数相の電機子巻線とを接続する。前記複数相のアームの各々は、高圧母線を介して前記直流電源の高圧側に接続される上アームスイッチング素子と、前記上アームスイッチング素子に対して直列に接続され且つ低圧母線を介して前記直流電源の低圧側に接続される下アームスイッチング素子とを含む。前記界磁巻線は、前記複数相の電機子巻線の中性点に接続された第1端と、界磁用配線に接続された第2端とを有する。前記駆動装置は、界磁回路、インバータ制御部及び界磁制御部を備える。界磁回路は、前記界磁用配線を介して前記界磁巻線の前記第2端と接続され、前記界磁巻線に界磁電流を流すのに用いられる。インバータ制御部は、前記複数相のアームにおける前記上アームスイッチング素子及び前記下アームスイッチング素子をスイッチング制御するように構成されている。界磁制御部は、前記複数相の電機子巻線の中性点の電圧である中性点電圧が正である場合に前記界磁巻線に前記界磁電流が流れるように前記界磁回路を制御するように構成されている。
The first mode for achieving the above object provides a drive device. The drive device includes an electric motor, an inverter circuit, and a multi-phase armature wiring. The electric motor has three or more phases of armature windings and field windings that are star-connected. The inverter circuit is configured to convert DC power from a DC power source into AC power, and includes a plurality of phase arms provided for each of the plurality of armature windings. The multi-phase armature wiring connects the multi-phase arm and the multi-phase armature winding. Each of the arms of the plurality of phases is connected to the upper arm switching element connected to the high voltage side of the DC power source via a high voltage bus, and connected to the upper arm switching element in series and the DC connected via the low voltage bus And a lower arm switching element connected to the low voltage side of the power supply. The field winding has a first end connected to a neutral point of the multi-phase armature winding and a second end connected to a field wiring. The driving device includes a field circuit, an inverter control unit, and a field control unit. The field circuit is connected to the second end of the field winding via the field wiring, and is used to flow a field current through the field winding. The inverter control unit is configured to control switching of the upper arm switching element and the lower arm switching element in the plurality of phase arms. The field control unit controls the field circuit so that the field current flows through the field winding when a neutral point voltage, which is a neutral point voltage of the multi-phase armature winding, is positive. Is configured to do.
上記目的を達成する第2の態様は、電動モータ駆動装置を提供する。電動モータ駆動装置は、星形結線された3相以上の複数相の電機子巻線と、前記複数相の電機子巻線の中性点に接続された第1端及び界磁用配線に接続された第2端を有する界磁巻線とを備えた電動モータを駆動させるように構成されている。電動モータ駆動装置は、直流電源からの直流電力を交流電力に変換するように構成されたインバータ回路を備える。該インバータ回路は、前記複数相の電機子巻線ごとに設けられた複数相のアームを有する。前記複数相のアームの各々は、高圧母線を介して前記直流電源の高圧側に接続される上アームスイッチング素子と、前記上アームスイッチング素子に対して直列に接続され且つ低圧母線を介して前記直流電源の低圧側に接続される下アームスイッチング素子とを含む。前記電動モータ駆動装置は、界磁回路、インバータ制御部、及び界磁制御部を備える。界磁回路は、前記界磁用配線を介して前記界磁巻線の前記第2端に接続されて前記界磁巻線に界磁電流を流すのに用いられる。インバータ制御部は、前記複数相のアームにおける前記上アームスイッチング素子及び前記下アームスイッチング素子をスイッチングさせるように構成されている。界磁制御部は、前記複数相の電機子巻線の中性点の電圧である中性点電圧が正である場合に前記界磁巻線に前記界磁電流が流れるように前記界磁回路を制御するように構成されている。
The second mode for achieving the above object provides an electric motor drive device. The electric motor drive device is connected to a star-connected multi-phase armature winding of three or more phases, a first end connected to a neutral point of the multi-phase armature winding, and a field wiring And an electric motor having a field winding having a second end. The electric motor drive device includes an inverter circuit configured to convert DC power from a DC power source into AC power. The inverter circuit has a multi-phase arm provided for each of the multi-phase armature windings. Each of the arms of the plurality of phases is connected to the upper arm switching element connected to the high voltage side of the DC power source via a high voltage bus, and connected to the upper arm switching element in series and the DC connected via the low voltage bus And a lower arm switching element connected to the low voltage side of the power supply. The electric motor driving device includes a field circuit, an inverter control unit, and a field control unit. The field circuit is connected to the second end of the field winding via the field wiring and is used to flow a field current through the field winding. The inverter control unit is configured to switch the upper arm switching element and the lower arm switching element in the plurality of phase arms. The field control unit controls the field circuit so that the field current flows through the field winding when a neutral point voltage, which is a neutral point voltage of the multi-phase armature winding, is positive. Is configured to do.
以下、本発明の一実施形態について説明する。本実施形態では、駆動装置10は車載用であり、説明の便宜上、以下の説明では車両に搭載されている状態の駆動装置10について説明する。
Hereinafter, an embodiment of the present invention will be described. In the present embodiment, the drive device 10 is for in-vehicle use. For convenience of explanation, the following description will be made on the drive device 10 mounted on a vehicle.
図1に示すように、駆動装置10は、電動モータ(回転電機)11と、当該電動モータ11を駆動させる電動モータ駆動装置12とを備えている。
電動モータ11は、車両に搭載される車載用モータであれば任意のモータであってもよい。電動モータ11は、例えば走行用モータやコンプレッサモータ等の任意のモータである。また、車両が燃料電池車両である場合には、電動モータ11は、燃料電池に水素を供給するポンプを駆動させるモータであってもよい。 As shown in FIG. 1, thedrive device 10 includes an electric motor (rotary electric machine) 11 and an electric motor drive device 12 that drives the electric motor 11.
Theelectric motor 11 may be any motor as long as it is a vehicle-mounted motor mounted on a vehicle. The electric motor 11 is an arbitrary motor such as a traveling motor or a compressor motor. When the vehicle is a fuel cell vehicle, the electric motor 11 may be a motor that drives a pump that supplies hydrogen to the fuel cell.
電動モータ11は、車両に搭載される車載用モータであれば任意のモータであってもよい。電動モータ11は、例えば走行用モータやコンプレッサモータ等の任意のモータである。また、車両が燃料電池車両である場合には、電動モータ11は、燃料電池に水素を供給するポンプを駆動させるモータであってもよい。 As shown in FIG. 1, the
The
電動モータ11は、回転軸21と、ロータ22と、ステータコア23と、複数相の電機子巻線24u~24wと、界磁巻線25とを備えている。
回転軸21は、駆動対象物100に連結されている。回転軸21が回転することによって車両に搭載された駆動対象物100が駆動される。駆動対象物100は、回転軸21によって駆動されるものであれば任意である。駆動対象物100は、例えば車輪が連結されたシャフトや、コンプレッサにおける流体を圧縮する圧縮機構である。 Theelectric motor 11 includes a rotating shaft 21, a rotor 22, a stator core 23, a plurality of armature windings 24 u to 24 w, and a field winding 25.
Therotating shaft 21 is connected to the driving object 100. As the rotating shaft 21 rotates, the driving object 100 mounted on the vehicle is driven. The driving object 100 is arbitrary as long as it is driven by the rotating shaft 21. The driving object 100 is a compression mechanism that compresses fluid in, for example, a shaft connected to wheels or a compressor.
回転軸21は、駆動対象物100に連結されている。回転軸21が回転することによって車両に搭載された駆動対象物100が駆動される。駆動対象物100は、回転軸21によって駆動されるものであれば任意である。駆動対象物100は、例えば車輪が連結されたシャフトや、コンプレッサにおける流体を圧縮する圧縮機構である。 The
The
ロータ22は、回転軸21に固定されており、ロータ22と回転軸21とは一体回転する。本実施形態では、ロータ22には、複数の界磁巻線用スロットが形成されている。なお、ロータ22の具体的な形状及び材料は任意である。
The rotor 22 is fixed to the rotating shaft 21, and the rotor 22 and the rotating shaft 21 rotate integrally. In the present embodiment, the rotor 22 has a plurality of field winding slots. In addition, the specific shape and material of the rotor 22 are arbitrary.
ステータコア23は、例えば中空筒状であり、ロータ22の径方向外側に設けられている。ステータコア23は、周方向に配列された複数の電機子巻線用スロットを有する。
複数相の電機子巻線24u~24wは、ステータコア23の電機子巻線用スロットに捲回されている。本実施形態では、複数相の電機子巻線24u~24wは、u相電機子巻線24uと、v相電機子巻線24vと、w相電機子巻線24wとにより構成されている。すなわち、本実施形態における電動モータ11は三相モータである。複数相の電機子巻線24u~24wに対して交流電力、詳細には三相交流電力が入力されることにより、磁界が発生し、当該磁界によってロータ22が回転する。これにより、回転軸21が回転する。 Thestator core 23 has a hollow cylindrical shape, for example, and is provided on the outer side in the radial direction of the rotor 22. The stator core 23 has a plurality of armature winding slots arranged in the circumferential direction.
Themulti-phase armature windings 24 u to 24 w are wound around the armature winding slot of the stator core 23. In the present embodiment, the multi-phase armature windings 24u to 24w are constituted by a u-phase armature winding 24u, a v-phase armature winding 24v, and a w-phase armature winding 24w. That is, the electric motor 11 in the present embodiment is a three-phase motor. When AC power, more specifically, three-phase AC power, is input to the multi-phase armature windings 24u to 24w, a magnetic field is generated, and the rotor 22 is rotated by the magnetic field. Thereby, the rotating shaft 21 rotates.
複数相の電機子巻線24u~24wは、ステータコア23の電機子巻線用スロットに捲回されている。本実施形態では、複数相の電機子巻線24u~24wは、u相電機子巻線24uと、v相電機子巻線24vと、w相電機子巻線24wとにより構成されている。すなわち、本実施形態における電動モータ11は三相モータである。複数相の電機子巻線24u~24wに対して交流電力、詳細には三相交流電力が入力されることにより、磁界が発生し、当該磁界によってロータ22が回転する。これにより、回転軸21が回転する。 The
The
図1及び図2に示すように、複数相の電機子巻線24u~24wは、中性点Nにて互いに接続された星形結線構造を有する。なお、複数相の電機子巻線24u~24wのステータコア23に対する捲回態様は、例えば集中巻きや分布巻き等のように任意に変更されてもよい。
As shown in FIGS. 1 and 2, the multi-phase armature windings 24u to 24w have a star connection structure connected to each other at a neutral point N. Note that the winding mode of the multi-phase armature windings 24u to 24w with respect to the stator core 23 may be arbitrarily changed, such as concentrated winding or distributed winding.
界磁巻線25は、ロータ22の界磁巻線用スロットに捲回されている。界磁巻線25は、当該界磁巻線25に一定方向の直流電流である界磁電流Imが流れた場合に複数相の電機子巻線24u~24wが形成する磁界と相互作用を及ぼす磁界を発生させるように構成されている。例えば、界磁巻線25は、当該界磁巻線25に界磁電流Imが流れた場合に複数相の電機子巻線24u~24wが形成する磁界を強める磁界を発生させるように捲回されている。なお、界磁巻線用スロットの位置や界磁巻線25の具体的な捲回態様を含む構成については任意である。
The field winding 25 is wound around the field winding slot of the rotor 22. The field winding 25 is a magnetic field that interacts with the magnetic field formed by the multi-phase armature windings 24u to 24w when a field current Im that is a direct current in a certain direction flows through the field winding 25. Is configured to generate. For example, the field winding 25 is wound so as to generate a magnetic field that strengthens the magnetic field formed by the armature windings 24u to 24w of the plurality of phases when the field current Im flows through the field winding 25. ing. The configuration including the position of the field winding slot and the specific winding mode of the field winding 25 are arbitrary.
界磁巻線25は、第1端25aと第2端25bとを有する。第1端25a及び第2端25bは、界磁巻線25の巻き始めの部分及び巻き終わりの部分とも言える。第1端25aは、複数相の電機子巻線24u~24wの中性点Nに接続されている。
The field winding 25 has a first end 25a and a second end 25b. It can be said that the first end 25a and the second end 25b are a winding start portion and a winding end portion of the field winding 25, respectively. The first end 25a is connected to a neutral point N of the multiple-phase armature windings 24u to 24w.
図1及び図2に示すように、電動モータ駆動装置12は、電動モータ11を駆動させるように構成されたインバータ回路30と、界磁巻線25に界磁電流Imを流すための界磁回路40とを備えている。
As shown in FIGS. 1 and 2, the electric motor drive device 12 includes an inverter circuit 30 configured to drive the electric motor 11 and a field circuit for causing a field current Im to flow through the field winding 25. 40.
インバータ回路30及び界磁回路40は、車載用蓄電装置101と接続されており、当該車載用蓄電装置101から直流電力の電力供給を受ける。詳細には、駆動装置10は、車載用蓄電装置101の正極に接続される正極母線LN1と、車載用蓄電装置101の負極に接続される負極母線LN2とを備えている。インバータ回路30及び界磁回路40と、車載用蓄電装置101とは、正極母線LN1及び負極母線LN2を介して接続されている。そして、車載用蓄電装置101の直流電力は、正極母線LN1及び負極母線LN2を通って、インバータ回路30及び界磁回路40に供給される。
The inverter circuit 30 and the field circuit 40 are connected to the in-vehicle power storage device 101, and receive DC power from the in-vehicle power storage device 101. Specifically, drive device 10 includes a positive electrode bus LN1 connected to the positive electrode of in-vehicle power storage device 101, and a negative electrode bus LN2 connected to the negative electrode of in-vehicle power storage device 101. The inverter circuit 30 and the field circuit 40 are connected to the in-vehicle power storage device 101 via the positive electrode bus LN1 and the negative electrode bus LN2. Then, the DC power of the in-vehicle power storage device 101 is supplied to the inverter circuit 30 and the field circuit 40 through the positive bus LN1 and the negative bus LN2.
車載用蓄電装置101は、直流電力の充放電が可能なものであれば任意であり、例えば二次電池や電気二重層キャパシタである。本実施形態では、車載用蓄電装置101が直流電源に対応する。換言すれば、正極母線LN1は、直流電源の高圧側に接続される高圧母線(第1母線)に対応し、負極母線LN2は、直流電源の低圧側に接続される低圧母線(第2母線)に対応する。
The in-vehicle power storage device 101 is arbitrary as long as it can charge and discharge DC power, and is, for example, a secondary battery or an electric double layer capacitor. In the present embodiment, the in-vehicle power storage device 101 corresponds to a DC power source. In other words, the positive bus LN1 corresponds to the high voltage bus (first bus) connected to the high voltage side of the DC power supply, and the negative bus LN2 corresponds to the low voltage bus (second bus) connected to the low voltage side of the DC power supply. Corresponding to
図2に示すように、車両には、車載用蓄電装置101と並列に接続された平滑コンデンサC0が設けられている。本実施形態では、平滑コンデンサC0は、駆動装置10の外部に設けられている。但し、これに限られず、駆動装置10が平滑コンデンサC0を有してもよい。
As shown in FIG. 2, the vehicle is provided with a smoothing capacitor C0 connected in parallel with the in-vehicle power storage device 101. In the present embodiment, the smoothing capacitor C0 is provided outside the driving device 10. However, it is not restricted to this, The drive device 10 may have the smoothing capacitor C0.
ちなみに、図示は省略するが、車載用蓄電装置101は、駆動装置10と、車両に搭載されている他の車載用機器とで共用されている。詳細には、駆動装置10と他の車載用機器とは、車載用蓄電装置101に対して互いに並列に接続されている。このため、仮にインバータ回路30内にてリップル電流Irが生じると、当該リップル電流Irが正極母線LN1及び負極母線LN2を通って上記他の車載用機器に伝達され得る。
Incidentally, although illustration is omitted, the in-vehicle power storage device 101 is shared by the driving device 10 and other in-vehicle devices mounted on the vehicle. Specifically, the driving device 10 and other in-vehicle devices are connected to the in-vehicle power storage device 101 in parallel with each other. For this reason, if a ripple current Ir is generated in the inverter circuit 30, the ripple current Ir can be transmitted to the other in-vehicle devices through the positive electrode bus LN1 and the negative electrode bus LN2.
インバータ回路30は、車載用蓄電装置101からの直流電力を交流電力(本実施形態では三相交流電力)に変換するように構成されている。
図2に示すように、インバータ回路30は、複数相の電機子巻線24u~24wごとに設けられた複数相のアーム31u~31wを有している。詳細には、インバータ回路30は、u相電機子巻線24uに対応するu相アーム31uと、v相電機子巻線24vに対応するv相アーム31vと、w相電機子巻線24wに対応するw相アーム31wとを有する。複数相のアーム31u~31wはそれぞれ同一の構成である。 Theinverter circuit 30 is configured to convert DC power from the in-vehicle power storage device 101 into AC power (three-phase AC power in the present embodiment).
As shown in FIG. 2, theinverter circuit 30 has a plurality of phase arms 31u to 31w provided for each of the plurality of phase armature windings 24u to 24w. Specifically, inverter circuit 30 corresponds to u-phase arm 31u corresponding to u-phase armature winding 24u, v-phase arm 31v corresponding to v-phase armature winding 24v, and w-phase armature winding 24w. W-phase arm 31w. The multiple-phase arms 31u to 31w have the same configuration.
図2に示すように、インバータ回路30は、複数相の電機子巻線24u~24wごとに設けられた複数相のアーム31u~31wを有している。詳細には、インバータ回路30は、u相電機子巻線24uに対応するu相アーム31uと、v相電機子巻線24vに対応するv相アーム31vと、w相電機子巻線24wに対応するw相アーム31wとを有する。複数相のアーム31u~31wはそれぞれ同一の構成である。 The
As shown in FIG. 2, the
u相アーム31uは、u相アーム接続線32uを介して互いに直列に接続されたu相上アームスイッチング素子Qu1及びu相下アームスイッチング素子Qu2を有している。u相上アームスイッチング素子Qu1は、正極母線LN1に接続されており、当該正極母線LN1を介して車載用蓄電装置101の正極に接続されている。u相下アームスイッチング素子Qu2は、負極母線LN2に接続されており、当該負極母線LN2を介して車載用蓄電装置101の負極に接続されている。
The u-phase arm 31u has a u-phase upper arm switching element Qu1 and a u-phase lower arm switching element Qu2 that are connected in series with each other via a u-phase arm connection line 32u. The u-phase upper arm switching element Qu1 is connected to the positive electrode bus LN1, and is connected to the positive electrode of the in-vehicle power storage device 101 via the positive electrode bus LN1. The u-phase lower arm switching element Qu2 is connected to the negative electrode bus LN2, and is connected to the negative electrode of the in-vehicle power storage device 101 via the negative electrode bus LN2.
同様に、v相アーム31vは、v相アーム接続線32vを介して互いに直列に接続されたv相上アームスイッチング素子Qv1及びv相下アームスイッチング素子Qv2を有している。w相アーム31wは、w相アーム接続線32wを介して互いに直列に接続されたw相上アームスイッチング素子Qw1及びw相下アームスイッチング素子Qw2を有している。これらv相アーム31v及びw相アーム31wは、u相アーム31uと同様に、正極母線LN1及び負極母線LN2に接続され、車載用蓄電装置101から直流電力の供給を受ける。
Similarly, the v-phase arm 31v has a v-phase upper arm switching element Qv1 and a v-phase lower arm switching element Qv2 connected in series with each other via a v-phase arm connection line 32v. The w-phase arm 31w has a w-phase upper arm switching element Qw1 and a w-phase lower arm switching element Qw2 connected in series with each other via a w-phase arm connection line 32w. Similar to the u-phase arm 31u, the v-phase arm 31v and the w-phase arm 31w are connected to the positive bus LN1 and the negative bus LN2, and are supplied with DC power from the in-vehicle power storage device 101.
各スイッチング素子Qu1,Qu2,Qv1,Qv2,Qw1,Qw2は、例えば絶縁ゲートバイポーラトランジスタ(IGBT:Insulated Gate Bipolar Transistor)等のパワースイッチング素子である。但し、各スイッチング素子Qu1~Qw2は、IGBTに限られず、任意のスイッチング素子であってもよい。なお、スイッチング素子Qu1~Qw2は、還流ダイオード(ボディダイオード)Du1~Dw2を有している。
Each switching element Qu1, Qu2, Qv1, Qv2, Qw1, Qw2 is a power switching element such as an insulated gate bipolar transistor (IGBT: Insulated Gate Bipolar Transistor). However, each of the switching elements Qu1 to Qw2 is not limited to the IGBT, and may be any switching element. Note that the switching elements Qu1 to Qw2 have freewheeling diodes (body diodes) Du1 to Dw2.
図1及び図2に示すように、駆動装置10は、複数相のアーム31u~31wと複数相の電機子巻線24u~24wとを接続する複数相の電機子用配線LNu~LNwを備えている。電機子用配線LNu~LNwは、アーム接続線32u~32wと電機子巻線24u~24wとを接続している。電機子用配線LNu~LNwの本数は、電機子巻線24u~24wの相数と同一数であり、本実施形態では3本である。本実施形態では、複数相の電機子用配線LNu~LNwは、u相電機子用配線LNuと、v相電機子用配線LNvと、w相電機子用配線LNwとにより構成されている。
As shown in FIGS. 1 and 2, the driving apparatus 10 includes a plurality of armature wirings LNu to LNw for connecting a plurality of arms 31u to 31w and a plurality of armature windings 24u to 24w. Yes. The armature wirings LNu to LNw connect the arm connection lines 32u to 32w and the armature windings 24u to 24w. The number of armature wirings LNu to LNw is the same as the number of phases of the armature windings 24u to 24w, and is three in this embodiment. In the present embodiment, the multiple-phase armature wirings LNu to LNw are configured by a u-phase armature wiring LNu, a v-phase armature wiring LNv, and a w-phase armature wiring LNw.
図2に示すように、界磁回路40は、界磁巻線25に界磁電流Imを流すのに用いられる。界磁回路40は、界磁接続線41を介して互いに接続された界磁ダイオードDmと界磁スイッチング素子Qmとを有する。
As shown in FIG. 2, the field circuit 40 is used to flow a field current Im through the field winding 25. The field circuit 40 includes a field diode Dm and a field switching element Qm connected to each other via a field connection line 41.
界磁ダイオードDmのアノードは界磁接続線41に接続され、界磁ダイオードDmのカソードは正極母線LN1に接続されている。
界磁スイッチング素子Qmは、例えばIGBTで構成されている。界磁スイッチング素子Qmのコレクタは界磁接続線41に接続され、界磁スイッチング素子Qmのエミッタは負極母線LN2に接続されている。すなわち、界磁接続線41は、界磁ダイオードDmと界磁スイッチング素子Qm、詳細には界磁ダイオードDmのアノードと界磁スイッチング素子Qmのコレクタとを接続している。 The anode of the field diode Dm is connected to thefield connection line 41, and the cathode of the field diode Dm is connected to the positive electrode bus LN1.
The field switching element Qm is composed of, for example, an IGBT. The collector of field switching element Qm is connected to fieldconnection line 41, and the emitter of field switching element Qm is connected to negative electrode bus LN2. That is, the field connection line 41 connects the field diode Dm and the field switching element Qm, more specifically, the anode of the field diode Dm and the collector of the field switching element Qm.
界磁スイッチング素子Qmは、例えばIGBTで構成されている。界磁スイッチング素子Qmのコレクタは界磁接続線41に接続され、界磁スイッチング素子Qmのエミッタは負極母線LN2に接続されている。すなわち、界磁接続線41は、界磁ダイオードDmと界磁スイッチング素子Qm、詳細には界磁ダイオードDmのアノードと界磁スイッチング素子Qmのコレクタとを接続している。 The anode of the field diode Dm is connected to the
The field switching element Qm is composed of, for example, an IGBT. The collector of field switching element Qm is connected to field
駆動装置10は、界磁巻線25と界磁回路40とを接続する界磁用配線LNmを備えている。界磁用配線LNmは、界磁巻線25の第2端25bと界磁回路40の界磁接続線41とを接続している。本実施形態では、界磁用配線LNmは1本である。
The driving device 10 includes a field wiring LNm that connects the field winding 25 and the field circuit 40. The field wiring LNm connects the second end 25 b of the field winding 25 and the field connection line 41 of the field circuit 40. In the present embodiment, there is one field wiring LNm.
かかる構成によれば、界磁巻線25の第1端25aと中性点Nとが接続されているため、第1端25aと界磁回路40とを接続する配線が省略されている。これにより、界磁用配線LNmの本数が削減される。
According to such a configuration, since the first end 25a of the field winding 25 and the neutral point N are connected, the wiring for connecting the first end 25a and the field circuit 40 is omitted. As a result, the number of field wirings LNm is reduced.
図1及び図2に示すように、駆動装置10は、インバータ回路30及び界磁回路40を制御する制御装置50を備えている。制御装置50は、例えば、1つ以上の専用のハードウェア回路、及び/又は、コンピュータプログラム(ソフトウェア)に従って動作する1つ以上のプロセッサ(制御回路)によって実現することができる。プロセッサは、CPU並びに、RAM及びROM等のメモリを含み、メモリは、例えば各種処理をプロセッサに実行させるように構成されたプログラムコードまたは指令を格納している。メモリすなわちコンピュータ可読媒体は、汎用または専用のコンピュータでアクセスできるあらゆる利用可能な媒体を含む。なお、後述するインバータ制御部51及び界磁制御部52も制御装置50と同様に、1つ以上の専用のハードウェア回路、及び/又は、コンピュータプログラム(ソフトウェア)に従って動作する1つ以上のプロセッサ(制御回路)によって実現することができる。
As shown in FIGS. 1 and 2, the drive device 10 includes a control device 50 that controls the inverter circuit 30 and the field circuit 40. The control device 50 can be realized by, for example, one or more dedicated hardware circuits and / or one or more processors (control circuits) that operate according to a computer program (software). The processor includes a CPU and memories such as a RAM and a ROM, and the memory stores program codes or instructions configured to cause the processor to execute various processes, for example. Memory or computer readable media includes any available media that can be accessed by a general purpose or special purpose computer. Note that an inverter control unit 51 and a field control unit 52, which will be described later, as well as the control device 50 are one or more dedicated hardware circuits and / or one or more processors (control circuits) that operate according to a computer program (software). ) Can be realized.
制御装置50は、インバータ回路30の各スイッチング素子Qu1~Qw2のゲートと、界磁回路40の界磁スイッチング素子Qmのゲートと接続されており、スイッチング素子Qu1~Qw2及び界磁スイッチング素子Qmを個別に制御可能に構成されている。
The control device 50 is connected to the gates of the switching elements Qu1 to Qw2 of the inverter circuit 30 and the gate of the field switching element Qm of the field circuit 40, and the switching elements Qu1 to Qw2 and the field switching element Qm are individually connected. It is configured to be controllable.
制御装置50は、各スイッチング素子Qu1~Qw2をスイッチング制御するように構成されたインバータ制御部51と、界磁回路40の界磁スイッチング素子Qmをスイッチング制御するように構成された界磁制御部52とを備えている。
The control device 50 includes an inverter control unit 51 configured to control switching of each of the switching elements Qu1 to Qw2, and a field control unit 52 configured to perform switching control of the field switching element Qm of the field circuit 40. I have.
インバータ制御部51は、複数相のアーム31u~31wにおける上アームスイッチング素子Qu1~Qw1及び下アームスイッチング素子Qu2~Qw2のON/OFFの組み合わせであるスイッチングパターンを順次切り替えることにより、車載用蓄電装置101の直流電力を交流電力に変換する。
The inverter control unit 51 sequentially switches the switching pattern that is a combination of ON / OFF of the upper arm switching elements Qu1 to Qw1 and the lower arm switching elements Qu2 to Qw2 in the multiple-phase arms 31u to 31w, so that the in-vehicle power storage device 101 The direct current power is converted into alternating current power.
スイッチングパターンについて、以下に詳細に説明する。
図3に示すように、順次切り替わる各スイッチング素子Qu1~Qw2のスイッチングパターンとして、複数(本実施形態では8つ)のパターンP1~P8が設定されている。例えば、第1パターンP1は、各上アームスイッチング素子Qu1~Qw1がOFF状態となり、各下アームスイッチング素子Qu2~Qw2がON状態となるスイッチングパターンである。第2パターンP2は、u相上アームスイッチング素子Qu1、v相下アームスイッチング素子Qv2及びw相下アームスイッチング素子Qw2がON状態であり、u相下アームスイッチング素子Qu2、v相上アームスイッチング素子Qv1及びw相上アームスイッチング素子Qw1がOFF状態であるスイッチングパターンである。 The switching pattern will be described in detail below.
As shown in FIG. 3, a plurality (eight in this embodiment) of patterns P1 to P8 are set as switching patterns of the switching elements Qu1 to Qw2 that are sequentially switched. For example, the first pattern P1 is a switching pattern in which the upper arm switching elements Qu1 to Qw1 are turned off and the lower arm switching elements Qu2 to Qw2 are turned on. In the second pattern P2, the u-phase upper arm switching element Qu1, the v-phase lower arm switching element Qv2 and the w-phase lower arm switching element Qw2 are in the ON state, and the u-phase lower arm switching element Qu2 and the v-phase upper arm switching element Qv1. And a switching pattern in which the w-phase upper arm switching element Qw1 is in the OFF state.
図3に示すように、順次切り替わる各スイッチング素子Qu1~Qw2のスイッチングパターンとして、複数(本実施形態では8つ)のパターンP1~P8が設定されている。例えば、第1パターンP1は、各上アームスイッチング素子Qu1~Qw1がOFF状態となり、各下アームスイッチング素子Qu2~Qw2がON状態となるスイッチングパターンである。第2パターンP2は、u相上アームスイッチング素子Qu1、v相下アームスイッチング素子Qv2及びw相下アームスイッチング素子Qw2がON状態であり、u相下アームスイッチング素子Qu2、v相上アームスイッチング素子Qv1及びw相上アームスイッチング素子Qw1がOFF状態であるスイッチングパターンである。 The switching pattern will be described in detail below.
As shown in FIG. 3, a plurality (eight in this embodiment) of patterns P1 to P8 are set as switching patterns of the switching elements Qu1 to Qw2 that are sequentially switched. For example, the first pattern P1 is a switching pattern in which the upper arm switching elements Qu1 to Qw1 are turned off and the lower arm switching elements Qu2 to Qw2 are turned on. In the second pattern P2, the u-phase upper arm switching element Qu1, the v-phase lower arm switching element Qv2 and the w-phase lower arm switching element Qw2 are in the ON state, and the u-phase lower arm switching element Qu2 and the v-phase upper arm switching element Qv1. And a switching pattern in which the w-phase upper arm switching element Qw1 is in the OFF state.
インバータ制御部51は、各スイッチング素子Qu1~Qw2のスイッチングパターンを、上記複数のパターンP1~P8の中から適宜選択しながら順次切り替えることにより、直流電力(直流電圧)を交流電力(三相交流電圧)に変換するように構成されている。
The inverter control unit 51 switches the DC power (DC voltage) to AC power (three-phase AC voltage) by sequentially switching the switching patterns of the switching elements Qu1 to Qw2 while appropriately selecting from the plurality of patterns P1 to P8. ).
また、インバータ制御部51は、外部から目標電流値が入力されるように構成されている。インバータ制御部51は、外部から目標電流値が入力されたことに基づいて、複数相の電機子巻線24u~24wに目標電流値の交流電力が入力されるように各スイッチング素子Qu1~Qw2をPWM制御する。詳細には、インバータ制御部51は、目標電流値や車載用蓄電装置101の直流電圧等のパラメータに基づいて、順次切り替わる各スイッチングパターンの実行期間及びデューティ比を調整する。
Further, the inverter control unit 51 is configured such that a target current value is input from the outside. Based on the input of the target current value from the outside, the inverter control unit 51 controls each of the switching elements Qu1 to Qw2 so that the AC power of the target current value is input to the plurality of armature windings 24u to 24w. PWM control is performed. Specifically, the inverter control unit 51 adjusts the execution period and the duty ratio of each switching pattern that is sequentially switched based on parameters such as a target current value and a DC voltage of the in-vehicle power storage device 101.
ここで、図3及び図4(a)に示すように、スイッチングパターンは、中性点Nの電圧である中性点電圧Veが正(+)である正パターンと、中性点電圧Veが負(-)である負パターンとを含む。詳細には、正パターンは、第3パターンP3、第5パターンP5、第7パターンP7及び第8パターンP8である。図4(a)に示すように、中性点電圧Veは、第8パターンP8である場合に最大となり、第8パターンP8である場合の中性点電圧Veは車載用蓄電装置101の直流電圧の1/2である。第3パターンP3、第5パターンP5及び第7パターンP7である場合の中性点電圧Veはそれぞれ同一である。
Here, as shown in FIGS. 3 and 4A, the switching pattern includes a positive pattern in which the neutral point voltage Ve, which is a voltage at the neutral point N, is positive (+), and a neutral point voltage Ve. Negative patterns that are negative (-). Specifically, the positive patterns are the third pattern P3, the fifth pattern P5, the seventh pattern P7, and the eighth pattern P8. As shown in FIG. 4A, the neutral point voltage Ve is maximum when the pattern is the eighth pattern P8, and the neutral point voltage Ve when the pattern is the eighth pattern P8 is the DC voltage of the in-vehicle power storage device 101. 1/2 of this. The neutral point voltages Ve in the case of the third pattern P3, the fifth pattern P5, and the seventh pattern P7 are the same.
負パターンは、第1パターンP1、第2パターンP2、第4パターンP4及び第6パターンP6である。図4(a)に示すように、中性点電圧Veは、第1パターンP1である場合に最小となり、第1パターンP1である場合の中性点電圧Veの絶対値は車載用蓄電装置101の直流電圧の1/2である。第2パターンP2、第4パターンP4及び第6パターンP6である場合の中性点電圧Veはそれぞれ同一である。
The negative patterns are the first pattern P1, the second pattern P2, the fourth pattern P4, and the sixth pattern P6. As shown in FIG. 4A, the neutral point voltage Ve is minimum when the pattern is the first pattern P1, and the absolute value of the neutral point voltage Ve when the pattern is the first pattern P1 is the in-vehicle power storage device 101. ½ of the direct current voltage. The neutral point voltages Ve in the second pattern P2, the fourth pattern P4, and the sixth pattern P6 are the same.
かかる構成によれば、スイッチングパターンが複数のパターンP1~P8内で順次切り替わることにより、図4(a)に示すように、中性点電圧Veが周期的に変化する。詳細には、中性点電圧Veが正の期間と、中性点電圧Veが負の期間とが交互に切り替わっている。なお、中性点電圧Veが正とは、中性点電圧Veがグランドに対して高いことを意味し、中性点電圧Veが負とは、中性点電圧Veがグランドに対して低いことを意味する。
According to such a configuration, as the switching pattern is sequentially switched among the plurality of patterns P1 to P8, as shown in FIG. 4A, the neutral point voltage Ve periodically changes. Specifically, a period in which the neutral point voltage Ve is positive and a period in which the neutral point voltage Ve is negative are alternately switched. The neutral point voltage Ve being positive means that the neutral point voltage Ve is higher than the ground, and the neutral point voltage Ve being negative means that the neutral point voltage Ve is lower than the ground. Means.
界磁制御部52は、中性点電圧Veが正である場合に、界磁巻線25に界磁電流Imが流れるように界磁回路40(詳細には界磁スイッチング素子Qm)を制御するように構成されている。詳細には、界磁制御部52は、スイッチングパターンが正パターンである場合に、界磁スイッチング素子QmをON状態にする。
The field controller 52 controls the field circuit 40 (specifically, the field switching element Qm) so that the field current Im flows through the field winding 25 when the neutral point voltage Ve is positive. It is configured. Specifically, the field control unit 52 turns on the field switching element Qm when the switching pattern is a positive pattern.
本実施形態では、図4(b)に示すように、界磁制御部52は、中性点電圧Veが正である期間に亘って界磁スイッチング素子QmをON状態に維持し、中性点電圧Veが負である期間に亘って界磁スイッチング素子QmをOFF状態に維持する。これにより、中性点電圧Veの正負と、界磁スイッチング素子QmのON/OFFとが同期している。換言すれば、中性点電圧Veが正の期間と、界磁スイッチング素子QmがON状態となる期間とが一致している。
In the present embodiment, as shown in FIG. 4B, the field control unit 52 maintains the field switching element Qm in the ON state over a period in which the neutral point voltage Ve is positive, and the neutral point voltage Ve. The field switching element Qm is maintained in the OFF state over a period in which is negative. Thereby, the positive / negative of the neutral point voltage Ve and ON / OFF of the field switching element Qm are synchronizing. In other words, the period during which the neutral point voltage Ve is positive coincides with the period during which the field switching element Qm is in the ON state.
既に説明した通り、中性点電圧Veの正負は周期的に切り替わっている。このため、界磁スイッチング素子Qmは、周期的にON/OFFすることとなる。界磁スイッチング素子Qmのスイッチング周波数と、各スイッチング素子Qu1~Qw2のスイッチング周波数とは対応している。
As already explained, the polarity of the neutral point voltage Ve is periodically switched. For this reason, the field switching element Qm is periodically turned ON / OFF. The switching frequency of the field switching element Qm corresponds to the switching frequency of each of the switching elements Qu1 to Qw2.
なお、実際には、インバータ制御部51は、スイッチングパターンの切替時にはデッドタイムを設定する。すなわち、インバータ制御部51は、デッドタイムを介して、現状のパターンから別のパターンにスイッチングパターンを切り替える。界磁制御部52は、デッドタイム中は、界磁スイッチング素子QmをOFF状態にする。
In practice, the inverter control unit 51 sets a dead time when switching the switching pattern. That is, the inverter control unit 51 switches the switching pattern from the current pattern to another pattern through the dead time. The field control unit 52 turns off the field switching element Qm during the dead time.
次に図5(a)~図5(c)を用いて本実施形態の作用について説明する。図5(a)は、インバータ回路30内にて発生するリップル電流Irの波形であり、図5(b)は、界磁巻線25にて発生する振幅電流Iaの波形であり、図5(c)は複数相の電機子巻線24u~24wに供給される交流電力に含まれるリップル電流Irの波形である。
Next, the operation of the present embodiment will be described with reference to FIGS. 5 (a) to 5 (c). 5A shows the waveform of the ripple current Ir generated in the inverter circuit 30, and FIG. 5B shows the waveform of the amplitude current Ia generated in the field winding 25. FIG. c) is a waveform of the ripple current Ir included in the AC power supplied to the multi-phase armature windings 24u to 24w.
中性点電圧Veが正である状況下で界磁スイッチング素子QmがON状態となることにより、界磁巻線25に一方向電流である界磁電流Imが流れる。これにより、界磁巻線25にて磁界が形成され、当該磁界によって、複数相の電機子巻線24u~24wから生じる磁界が強められる。これにより、電動モータ11のトルクを高めることができる。
The field current Im, which is a unidirectional current, flows through the field winding 25 when the field switching element Qm is turned on under the condition that the neutral point voltage Ve is positive. As a result, a magnetic field is formed in the field winding 25, and the magnetic field generated from the multiple-phase armature windings 24u to 24w is strengthened by the magnetic field. Thereby, the torque of the electric motor 11 can be increased.
ちなみに、界磁スイッチング素子QmがターンOFFした直後、界磁巻線25にて逆起電力が発生する。この場合、逆起電力に起因する界磁電流Imが界磁ダイオードDmを通って流れる。これにより、逆起電力が過度に高くなること、例えば逆起電力が界磁スイッチング素子Qmの耐圧以上になる事態が生じにくい。
Incidentally, a back electromotive force is generated in the field winding 25 immediately after the field switching element Qm is turned OFF. In this case, the field current Im resulting from the back electromotive force flows through the field diode Dm. As a result, it is difficult for the back electromotive force to become excessively high, for example, a situation where the back electromotive force exceeds the withstand voltage of the field switching element Qm.
ここで、各スイッチング素子Qu1~Qw2では、スイッチングパターンが順次切り替わるスイッチング制御が行われている。このため、図5(a)に示すように、インバータ回路30内では、各スイッチング素子Qu1~Qw2のスイッチング周波数に対応したリップル電流Irが発生する。リップル電流Irの周波数は、複数相の電機子巻線24u~24wに供給される交流電力の周波数よりも高い。
Here, in each of the switching elements Qu1 to Qw2, switching control in which switching patterns are sequentially switched is performed. Therefore, as shown in FIG. 5A, a ripple current Ir corresponding to the switching frequency of each of the switching elements Qu1 to Qw2 is generated in the inverter circuit 30. The frequency of the ripple current Ir is higher than the frequency of the AC power supplied to the multiple-phase armature windings 24u to 24w.
ちなみに、界磁巻線25が設けられていない場合、又は、界磁巻線25があっても上記のような界磁スイッチング素子Qmのスイッチング制御が行われない場合には、リップル電流Irが、そのままインバータ回路30の出力電流に重畳される。重畳されたリップル電流Irは、複数相の電機子巻線24u~24wに伝搬される。すなわち、界磁巻線25が設けられていない場合、又は、界磁巻線25があっても上記のような界磁スイッチング素子Qmのスイッチング制御が行われない場合には、インバータ回路30内にて発生したリップル電流Irの振幅と、複数相の電機子巻線24u~24wを流れるリップル電流Irの振幅とは同等である。
Incidentally, when the field winding 25 is not provided or when the switching control of the field switching element Qm is not performed even if the field winding 25 is provided, the ripple current Ir is It is superimposed on the output current of the inverter circuit 30 as it is. The superimposed ripple current Ir is propagated to the plural-phase armature windings 24u to 24w. That is, when the field winding 25 is not provided, or when the switching control of the field switching element Qm as described above is not performed even if the field winding 25 is provided, the inverter circuit 30 includes The amplitude of the ripple current Ir generated in this way is equal to the amplitude of the ripple current Ir flowing through the multiple-phase armature windings 24u to 24w.
これに対して、本実施形態では、中性点電圧Veが正である場合に界磁スイッチング素子QmがON状態となるため、中性点電圧Veの周期的な正負の切り替わりに同期して、界磁スイッチング素子Qmが周期的にON/OFF(スイッチング)することになる。このため、図5(b)に示すように、界磁巻線25においても振幅電流Iaが発生する。すなわち、界磁電流Imは、直流成分と交流成分(振幅電流Ia)とを含む。振幅電流Iaは、リップル電流Irとは逆位相の電流となる。このため、リップル電流Irと振幅電流Iaとが互いに打ち消し合う。これにより、図5(c)に示すように、リップル電流Irが低減される。詳細には、リップル電流Irの振幅は小さくなり、好ましくは「0」となる。
On the other hand, in this embodiment, since the field switching element Qm is turned on when the neutral point voltage Ve is positive, in synchronization with the periodic positive / negative switching of the neutral point voltage Ve, The field switching element Qm is periodically turned ON / OFF (switching). Therefore, as shown in FIG. 5B, an amplitude current Ia is also generated in the field winding 25. That is, the field current Im includes a direct current component and an alternating current component (amplitude current Ia). The amplitude current Ia has a phase opposite to that of the ripple current Ir. For this reason, the ripple current Ir and the amplitude current Ia cancel each other. Thereby, as shown in FIG.5 (c), the ripple current Ir is reduced. Specifically, the amplitude of the ripple current Ir becomes small, and preferably “0”.
以上詳述した本実施形態によれば以下の効果を奏する。
(1)駆動装置10は、星形結線された複数相の電機子巻線24u~24w及び界磁巻線25を有する界磁巻線型の電動モータ11と、直流電源としての車載用蓄電装置101からの直流電力を交流電力に変換するインバータ回路30とを備えている。インバータ回路30は、複数相の電機子巻線24u~24wごとに設けられた複数相のアーム31u~31wを有している。複数相のアーム31u~31wは、正極母線LN1を介して車載用蓄電装置101の正極に接続される複数相の上アームスイッチング素子Qu1~Qw1と、負極母線LN2を介して車載用蓄電装置101の負極に接続される複数相の下アームスイッチング素子Qu2~Qw2とを含む。界磁巻線25は、複数相の電機子巻線24u~24wの中性点Nに接続された第1端25aと、界磁用配線LNmに接続された第2端25bとを有している。 According to the embodiment described above in detail, the following effects are obtained.
(1) The drivingdevice 10 includes a field winding type electric motor 11 having a plurality of armature windings 24u to 24w and field windings 25 connected in a star shape, and an in-vehicle power storage device 101 as a DC power source. And an inverter circuit 30 for converting DC power from the AC power into AC power. The inverter circuit 30 has a plurality of phase arms 31u to 31w provided for each of the plurality of phase armature windings 24u to 24w. The multiple-phase arms 31u to 31w are connected to the positive electrode of the in-vehicle power storage device 101 via the positive electrode bus LN1 and the upper arm switching elements Qu1 to Qw1 connected to the positive electrode of the in-vehicle power storage device 101, and the in-vehicle power storage device 101 via the negative electrode bus LN2. A plurality of lower arm switching elements Qu2-Qw2 connected to the negative electrode. The field winding 25 has a first end 25a connected to the neutral point N of the multi-phase armature windings 24u to 24w, and a second end 25b connected to the field wiring LNm. Yes.
(1)駆動装置10は、星形結線された複数相の電機子巻線24u~24w及び界磁巻線25を有する界磁巻線型の電動モータ11と、直流電源としての車載用蓄電装置101からの直流電力を交流電力に変換するインバータ回路30とを備えている。インバータ回路30は、複数相の電機子巻線24u~24wごとに設けられた複数相のアーム31u~31wを有している。複数相のアーム31u~31wは、正極母線LN1を介して車載用蓄電装置101の正極に接続される複数相の上アームスイッチング素子Qu1~Qw1と、負極母線LN2を介して車載用蓄電装置101の負極に接続される複数相の下アームスイッチング素子Qu2~Qw2とを含む。界磁巻線25は、複数相の電機子巻線24u~24wの中性点Nに接続された第1端25aと、界磁用配線LNmに接続された第2端25bとを有している。 According to the embodiment described above in detail, the following effects are obtained.
(1) The driving
かかる構成において、駆動装置10は、界磁用配線LNmを介して界磁巻線25の第2端25bに接続され、界磁巻線25に界磁電流Imを流すのに用いられる界磁回路40を備えている。駆動装置10は、各スイッチング素子Qu1~Qw2をスイッチング制御するように構成されたインバータ制御部51と、中性点電圧Veが正である場合に界磁巻線25に界磁電流Imが流れるように界磁回路40を制御するように構成された界磁制御部52とを備えている。
In such a configuration, the driving device 10 is connected to the second end 25b of the field winding 25 via the field wiring LNm, and is used for flowing a field current Im through the field winding 25. 40. The drive apparatus 10 is configured so that the field current Im flows in the field winding 25 when the neutral point voltage Ve is positive and the inverter control unit 51 configured to perform switching control of the switching elements Qu1 to Qw2. And a field control unit 52 configured to control the field circuit 40.
かかる構成によれば、界磁巻線25の第1端25aが中性点Nに接続されているため、第1端25aと界磁回路40とを接続する必要がない。これにより、界磁用配線LNmとしては、界磁巻線25の第1端25a及び第2端25bの双方ではなく第2端25bのみを界磁回路40に接続すればよいため、界磁用配線LNmの本数を削減できる。
According to this configuration, since the first end 25a of the field winding 25 is connected to the neutral point N, it is not necessary to connect the first end 25a and the field circuit 40. Thereby, as the field wiring LNm, it is only necessary to connect both the first end 25a and the second end 25b of the field winding 25 to the field circuit 40 instead of both the first end 25a and the second end 25b. The number of wirings LNm can be reduced.
また、中性点電圧Veが正である場合に界磁巻線25に界磁電流Imが流れることにより、界磁巻線25にて振幅電流Iaが発生する。当該振幅電流Iaは、インバータ回路30内にて発生するリップル電流Irとは逆位相の電流である。これにより、リップル電流Irと振幅電流Iaとが打ち消し合うため、リップル電流Irが低減される。よって、界磁用配線LNmの本数の削減を図りつつ、リップル電流Irの低減を図ることができる。
In addition, when the neutral point voltage Ve is positive, the field current Im flows through the field winding 25, so that an amplitude current Ia is generated in the field winding 25. The amplitude current Ia is a current having an opposite phase to the ripple current Ir generated in the inverter circuit 30. As a result, the ripple current Ir and the amplitude current Ia cancel each other, so that the ripple current Ir is reduced. Therefore, the ripple current Ir can be reduced while reducing the number of the field wirings LNm.
本駆動装置10の効果について更に詳述すると、本駆動装置10では、電動モータ11として界磁巻線型が採用されている。界磁巻線型の電動モータ11は、界磁巻線25を有しない通常の電動モータと比較して、小型化とトルク向上との両立を実現できる。しかしながら、界磁巻線型の電動モータ11の特性上、複数相の電機子用配線LNu~LNwとは別に界磁用配線LNmが必要となるため、電動モータ11と各種回路とを接続する配線数の増加という不都合が生じ得る。特に、界磁用配線LNmは、界磁回路40内にある界磁接続線41又はインバータ回路30内にある複数相のアーム接続線32u~32wと比較して、高価なものとなり易いとともに、引き回しが煩雑なものとなり易い。
The effect of the drive device 10 will be described in further detail. In the drive device 10, a field winding type is adopted as the electric motor 11. The field winding type electric motor 11 can realize both a reduction in size and an improvement in torque as compared with a normal electric motor having no field winding 25. However, because of the characteristics of the field winding type electric motor 11, the field wiring LNm is required separately from the multi-phase armature wirings LNu to LNw, and therefore the number of wirings for connecting the electric motor 11 and various circuits. The inconvenience of an increase in In particular, the field wiring LNm tends to be more expensive than the field connection line 41 in the field circuit 40 or the multi-phase arm connection lines 32u to 32w in the inverter circuit 30, and is routed. Tends to be cumbersome.
これに対して、本実施形態によれば、中性点Nと界磁巻線25とを接続することにより、界磁巻線型の電動モータ11において特有の不都合である配線数の増加を抑制できる。そして、上記のように界磁回路40を制御することにより、配線数の増加を抑制するための構成を用いてリップル電流Irを低減できるという、界磁用配線LNmの本数の削減とは別種の効果を得ることができる。
In contrast, according to the present embodiment, by connecting the neutral point N and the field winding 25, an increase in the number of wires, which is a peculiar inconvenience in the field winding type electric motor 11, can be suppressed. . And, by controlling the field circuit 40 as described above, the ripple current Ir can be reduced by using the configuration for suppressing the increase in the number of wirings, which is different from the reduction in the number of field wirings LNm. An effect can be obtained.
(2)界磁回路40は、正極母線LN1に接続されたカソードを有する界磁ダイオードDmと、負極母線LN2に接続された界磁スイッチング素子Qmと、界磁ダイオードDmのアノードと界磁スイッチング素子Qmとを接続する界磁接続線41と、を有している。界磁用配線LNmは、界磁接続線41に接続されている。
(2) The field circuit 40 includes a field diode Dm having a cathode connected to the positive bus LN1, a field switching element Qm connected to the negative bus LN2, an anode of the field diode Dm, and a field switching element. And a field connection line 41 for connecting Qm. The field wiring LNm is connected to the field connection line 41.
かかる構成において、界磁制御部52は、中性点電圧Veが正である場合に、界磁巻線25に界磁電流Imが流れるように界磁スイッチング素子Qmを制御する。かかる構成によれば、界磁スイッチング素子Qmの制御によって、界磁巻線25に界磁電流Imを流したり、止めたりすることができる。これにより、界磁電流Imの制御を好適に行うことができる。
In such a configuration, the field control unit 52 controls the field switching element Qm so that the field current Im flows through the field winding 25 when the neutral point voltage Ve is positive. According to such a configuration, the field current Im can be supplied to or stopped from the field winding 25 by the control of the field switching element Qm. Thereby, control of the field current Im can be performed suitably.
また、界磁電流Imが流れている状況において当該界磁電流Imを止めようとすると、界磁巻線25に逆起電力が生じる。この点、本実施形態によれば、逆起電力に起因する界磁電流Imが界磁ダイオードDmを通って流れるため、逆起電力が過度に高くなることを抑制できる。
In addition, if the field current Im is stopped in a situation where the field current Im flows, a counter electromotive force is generated in the field winding 25. In this regard, according to the present embodiment, since the field current Im caused by the counter electromotive force flows through the field diode Dm, it is possible to suppress the counter electromotive force from becoming excessively high.
(3)インバータ制御部51は、複数相のアーム31u~31wにおける上アームスイッチング素子Qu1~Qw1と下アームスイッチング素子Qu2~Qw2とのON/OFFの組み合わせであるスイッチングパターンを順次切り替える。スイッチングパターンは、中性点電圧Veが正となる正パターンと、中性点電圧Veが負となる負パターンとを含む。
(3) The inverter control unit 51 sequentially switches the switching pattern that is a combination of ON / OFF of the upper arm switching elements Qu1 to Qw1 and the lower arm switching elements Qu2 to Qw2 in the multi-phase arms 31u to 31w. The switching pattern includes a positive pattern in which the neutral point voltage Ve is positive and a negative pattern in which the neutral point voltage Ve is negative.
かかる構成において、界磁制御部52は、スイッチングパターンが正パターンである場合に界磁巻線25に界磁電流Imが流れるように界磁回路40(界磁スイッチング素子Qm)を制御する。かかる構成によれば、中性点電圧Veを検出する電圧センサを設けたり、三相の交流電圧に基づいて中性点電圧Veを算出したりすることなく、中性点電圧Veが正である場合に界磁巻線25に界磁電流Imを流すことができる。これにより、比較的容易に(1)の効果を得ることができる。
In such a configuration, the field controller 52 controls the field circuit 40 (field switching element Qm) so that the field current Im flows through the field winding 25 when the switching pattern is a positive pattern. According to such a configuration, the neutral point voltage Ve is positive without providing a voltage sensor for detecting the neutral point voltage Ve or calculating the neutral point voltage Ve based on the three-phase AC voltage. In this case, the field current Im can flow through the field winding 25. Thereby, the effect (1) can be obtained relatively easily.
(4)駆動装置10は車載用であり、インバータ回路30は、車載用蓄電装置101の直流電力を交流電力に変換するように構成されている。
かかる構成によれば、車載用の駆動装置10において、界磁用配線LNmの本数の削減を図りつつ、リップル電流Irの低減を図ることができる。これにより、本駆動装置10を用いて、車両に搭載されている駆動対象物100を好適に駆動させることができる。 (4) Thedrive device 10 is for in-vehicle use, and the inverter circuit 30 is configured to convert DC power of the in-vehicle power storage device 101 into AC power.
According to such a configuration, the ripple current Ir can be reduced while reducing the number of field wirings LNm in the in-vehicle drive device 10. Thereby, the drive target object 100 mounted in the vehicle can be suitably driven using the drive device 10.
かかる構成によれば、車載用の駆動装置10において、界磁用配線LNmの本数の削減を図りつつ、リップル電流Irの低減を図ることができる。これにより、本駆動装置10を用いて、車両に搭載されている駆動対象物100を好適に駆動させることができる。 (4) The
According to such a configuration, the ripple current Ir can be reduced while reducing the number of field wirings LNm in the in-
特に、車載用蓄電装置101は、駆動装置10と他の車載用機器とによって共用されている場合があり得る。この場合、インバータ回路30内にて発生したリップル電流Irが駆動装置10の外部に流出し、上記他の車載用機器に伝搬し得る。すると、上記他の車載用機器において、誤動作が生じたりフィルタ回路が必要となったりするといった不都合が生じ得る。これに対して、本実施形態では、上述した通り、リップル電流Irを低減できるため、上記不都合を抑制できる。
In particular, the in-vehicle power storage device 101 may be shared by the driving device 10 and other in-vehicle devices. In this case, the ripple current Ir generated in the inverter circuit 30 can flow out of the drive device 10 and propagate to the other on-vehicle equipment. Then, in the other in-vehicle devices, there may be a problem that malfunction occurs or a filter circuit is necessary. On the other hand, in the present embodiment, as described above, the ripple current Ir can be reduced, so that the above inconvenience can be suppressed.
なお、上記実施形態は以下のように変更してもよい。
○ 界磁回路40は、実施形態のものに限られず任意である。例えば、界磁ダイオードDmとしてのボディダイオードを有するIGBTやMOSFETが設けられていてもよい。 In addition, you may change the said embodiment as follows.
Thefield circuit 40 is not limited to that of the embodiment and is arbitrary. For example, an IGBT or MOSFET having a body diode as the field diode Dm may be provided.
○ 界磁回路40は、実施形態のものに限られず任意である。例えば、界磁ダイオードDmとしてのボディダイオードを有するIGBTやMOSFETが設けられていてもよい。 In addition, you may change the said embodiment as follows.
The
○ 実施形態では、界磁制御部52は、スイッチングパターンから中性点電圧Veが正であるか否かを判定する構成であったが、これに限られない。例えば、界磁制御部52は、定期的に三相交流電圧から中性点電圧Veを算出し、算出された中性点電圧Veが正であるか否かを判定してもよい。また、駆動装置10は、中性点電圧Veを検出する電圧センサを備え、界磁制御部52は、電圧センサの検出結果に基づいて、中性点電圧Veが正であるか否かを判定してもよい。
In the embodiment, the field control unit 52 is configured to determine whether the neutral point voltage Ve is positive from the switching pattern, but is not limited thereto. For example, the field control unit 52 may periodically calculate the neutral point voltage Ve from the three-phase AC voltage and determine whether or not the calculated neutral point voltage Ve is positive. The drive device 10 includes a voltage sensor that detects the neutral point voltage Ve, and the field control unit 52 determines whether the neutral point voltage Ve is positive based on the detection result of the voltage sensor. Also good.
○ 中性点電圧Veが正である期間と、界磁スイッチング素子QmがON状態となっている期間とは完全に一致していなくてもよい。界磁制御部52は、中性点電圧Veが正である期間のうち一部の期間に亘って界磁スイッチング素子QmをON状態にしてもよい。換言すれば、界磁制御部52は、中性点電圧Veが正である期間中の少なくとも一部の期間において界磁電流Imが流れるように界磁回路40を制御すればよい。
○ The period in which the neutral point voltage Ve is positive and the period in which the field switching element Qm is in the ON state may not completely match. The field control unit 52 may turn on the field switching element Qm for a part of the period in which the neutral point voltage Ve is positive. In other words, the field control unit 52 may control the field circuit 40 so that the field current Im flows in at least a part of the period in which the neutral point voltage Ve is positive.
例えば、界磁制御部52は、複数の正パターンのうち予め定められた特定パターン(例えば第8パターンP8)がスイッチングパターンとして設定された場合にのみ界磁電流Imが流れるように界磁スイッチング素子QmをON状態にしてもよい。この場合、界磁制御部52は、スイッチングパターンが上記特定パターン以外の場合には、界磁電流Imが流れないように界磁スイッチング素子QmをOFF状態にしてもよい。
For example, the field control unit 52 sets the field switching element Qm so that the field current Im flows only when a predetermined specific pattern (for example, the eighth pattern P8) among the plurality of positive patterns is set as the switching pattern. It may be turned on. In this case, when the switching pattern is other than the specific pattern, the field control unit 52 may turn off the field switching element Qm so that the field current Im does not flow.
また、例えば、界磁制御部52は、電動モータ11の運転状況等を考慮して目標値を算出し、界磁電流Imが目標値に近づく(好ましくは一致する)ように、中性点電圧Veが正である期間中における界磁スイッチング素子QmのON期間を調整してもよい。すなわち、界磁制御部52は、中性点電圧Veが正である期間中における界磁スイッチング素子QmのON期間を調整することにより界磁電流Imを制御する構成でもよい。
In addition, for example, the field control unit 52 calculates the target value in consideration of the operation status of the electric motor 11 and the neutral point voltage Ve is set so that the field current Im approaches (preferably matches) the target value. The ON period of the field switching element Qm during the positive period may be adjusted. That is, the field controller 52 may be configured to control the field current Im by adjusting the ON period of the field switching element Qm during the period in which the neutral point voltage Ve is positive.
○ 界磁巻線25は、ロータ22ではなくステータコア23に捲回されていてもよい。
○ ロータ22又はステータコア23に永久磁石が設けられていてもよいし、永久磁石がなくてもよい。 The field winding 25 may be wound around thestator core 23 instead of the rotor 22.
A permanent magnet may be provided on therotor 22 or the stator core 23, or there may be no permanent magnet.
○ ロータ22又はステータコア23に永久磁石が設けられていてもよいし、永久磁石がなくてもよい。 The field winding 25 may be wound around the
A permanent magnet may be provided on the
○ 電機子巻線の相数は、3相以上であればよく、例えば4相や5相でもよい。
○ 各スイッチング素子Qu1~Qw2及び界磁スイッチング素子Qmは、IGBTに限られず、MOSFET等でもよい。また、界磁スイッチング素子Qmと各スイッチング素子Qu1~Qw2とは種類の異なるスイッチング素子でもよい。 ○ The number of phases of the armature winding may be three or more, for example, four or five phases.
The switching elements Qu1 to Qw2 and the field switching element Qm are not limited to IGBTs but may be MOSFETs or the like. The field switching element Qm and each of the switching elements Qu1 to Qw2 may be different types of switching elements.
○ 各スイッチング素子Qu1~Qw2及び界磁スイッチング素子Qmは、IGBTに限られず、MOSFET等でもよい。また、界磁スイッチング素子Qmと各スイッチング素子Qu1~Qw2とは種類の異なるスイッチング素子でもよい。 ○ The number of phases of the armature winding may be three or more, for example, four or five phases.
The switching elements Qu1 to Qw2 and the field switching element Qm are not limited to IGBTs but may be MOSFETs or the like. The field switching element Qm and each of the switching elements Qu1 to Qw2 may be different types of switching elements.
○ 駆動装置10は車載用に限られず、他の用途に用いられてもよい。
○ 実施形態と各別例とを適宜組み合わせてもよい。 (Circle) thedrive device 10 is not restricted to vehicle-mounted use, You may be used for another use.
O You may combine embodiment and each other example suitably.
○ 実施形態と各別例とを適宜組み合わせてもよい。 (Circle) the
O You may combine embodiment and each other example suitably.
Claims (6)
- 星形結線された3相以上の複数相の電機子巻線及び界磁巻線を有する電動モータと、
直流電源からの直流電力を交流電力に変換するように構成されたインバータ回路であって、前記複数相の電機子巻線ごとに設けられた複数相のアームを有するインバータ回路と、
前記複数相のアームと前記複数相の電機子巻線とを接続する複数相の電機子用配線と、を備えた駆動装置であって、
前記複数相のアームの各々は、高圧母線を介して前記直流電源の高圧側に接続される上アームスイッチング素子と、前記上アームスイッチング素子に対して直列に接続され且つ低圧母線を介して前記直流電源の低圧側に接続される下アームスイッチング素子とを含み、
前記界磁巻線は、前記複数相の電機子巻線の中性点に接続された第1端と、界磁用配線に接続された第2端とを有し、
前記駆動装置は、
前記界磁用配線を介して前記界磁巻線の前記第2端と接続され、前記界磁巻線に界磁電流を流すのに用いられる界磁回路と、
前記複数相のアームにおける前記上アームスイッチング素子及び前記下アームスイッチング素子をスイッチング制御するように構成されたインバータ制御部と、
前記複数相の電機子巻線の中性点の電圧である中性点電圧が正である場合に前記界磁巻線に前記界磁電流が流れるように前記界磁回路を制御するように構成された界磁制御部と、
を備えている駆動装置。 An electric motor having three or more phases of armature windings and field windings connected in a star shape;
An inverter circuit configured to convert DC power from a DC power source into AC power, the inverter circuit having a plurality of arm provided for each of the plurality of armature windings;
A driving device comprising: a plurality of armature wirings connecting the plurality of phase arm and the plurality of armature windings;
Each of the arms of the plurality of phases is connected to the upper arm switching element connected to the high voltage side of the DC power source via a high voltage bus, and connected to the upper arm switching element in series and the DC connected via the low voltage bus A lower arm switching element connected to the low voltage side of the power source,
The field winding has a first end connected to a neutral point of the armature winding of the plurality of phases, and a second end connected to a field wiring,
The driving device includes:
A field circuit connected to the second end of the field winding via the field wiring and used to flow a field current through the field winding;
An inverter control unit configured to control switching of the upper arm switching element and the lower arm switching element in the arms of the plurality of phases;
The field circuit is configured to control the field current so that the field current flows through the field winding when a neutral point voltage that is a neutral point voltage of the multi-phase armature winding is positive. Field control unit,
A drive device comprising: - 前記界磁回路は、
前記高圧母線に接続されたカソードを有する界磁ダイオードと、
前記低圧母線に接続された界磁スイッチング素子と、
前記界磁ダイオードのアノードと前記界磁スイッチング素子とを接続する界磁接続線と、
を有し、
前記界磁用配線は、前記界磁接続線に接続されており、
前記界磁制御部は、前記中性点電圧が正である場合に前記界磁巻線に前記界磁電流が流れるように前記界磁スイッチング素子を制御するように構成されている、請求項1に記載の駆動装置。 The field circuit is
A field diode having a cathode connected to the high-voltage bus;
A field switching element connected to the low-voltage bus;
A field connection line connecting the anode of the field diode and the field switching element;
Have
The field wiring is connected to the field connection line,
The field control unit is configured to control the field switching element such that the field current flows through the field winding when the neutral point voltage is positive. Drive device. - 前記インバータ制御部は、前記複数相のアームにおける前記上アームスイッチング素子及び前記下アームスイッチング素子のON/OFFの組み合わせであるスイッチングパターンを順次切り替えるように構成され、
前記スイッチングパターンは、
前記中性点電圧が正である正パターンと、
前記中性点電圧が負である負パターンと、
を含み、
前記界磁制御部は、前記スイッチングパターンが前記正パターンである場合に前記界磁巻線に前記界磁電流が流れるように前記界磁回路を制御するように構成されている、請求項1又は請求項2に記載の駆動装置。 The inverter control unit is configured to sequentially switch a switching pattern that is a combination of ON / OFF of the upper arm switching element and the lower arm switching element in the multi-phase arm,
The switching pattern is:
A positive pattern in which the neutral point voltage is positive;
A negative pattern in which the neutral point voltage is negative;
Including
The field control unit is configured to control the field circuit so that the field current flows through the field winding when the switching pattern is the positive pattern. 2. The drive device according to 2. - 前記駆動装置は車載用であり、
前記直流電源は、車載用蓄電装置であり、
前記高圧母線は、前記車載用蓄電装置の正極に接続される正極母線であり、
前記低圧母線は、前記車載用蓄電装置の負極に接続される負極母線である請求項1~3のうちいずれか一項に記載の駆動装置。 The drive device is for in-vehicle use,
The DC power supply is an in-vehicle power storage device,
The high-voltage bus is a positive bus connected to the positive electrode of the in-vehicle power storage device,
The drive device according to any one of claims 1 to 3, wherein the low-voltage bus is a negative bus connected to a negative electrode of the in-vehicle power storage device. - 前記界磁制御部は、前記中性点電圧が正である期間中における界磁スイッチング素子のON期間を調整することにより界磁電流を制御するように構成されている、請求項1~4のうちいずれか一項に記載の駆動装置。 5. The field control unit according to claim 1, wherein the field control unit is configured to control a field current by adjusting an ON period of a field switching element during a period in which the neutral point voltage is positive. The driving device according to claim 1.
- 星形結線された3相以上の複数相の電機子巻線と、前記複数相の電機子巻線の中性点に接続された第1端及び界磁用配線に接続された第2端を有する界磁巻線とを備えた電動モータを駆動させるように構成された電動モータ駆動装置であって、
直流電源からの直流電力を交流電力に変換するように構成されたインバータ回路を備え、該インバータ回路は、前記複数相の電機子巻線ごとに設けられた複数相のアームを有し、
前記複数相のアームの各々は、高圧母線を介して前記直流電源の高圧側に接続される上アームスイッチング素子と、前記上アームスイッチング素子に対して直列に接続され且つ低圧母線を介して前記直流電源の低圧側に接続される下アームスイッチング素子とを含み、
前記電動モータ駆動装置は、
前記界磁用配線を介して前記界磁巻線の前記第2端に接続されて前記界磁巻線に界磁電流を流すのに用いられる界磁回路と、
前記複数相のアームにおける前記上アームスイッチング素子及び前記下アームスイッチング素子をスイッチングさせるように構成されたインバータ制御部と、
前記複数相の電機子巻線の中性点の電圧である中性点電圧が正である場合に前記界磁巻線に前記界磁電流が流れるように前記界磁回路を制御するように構成された界磁制御部と、を備えている電動モータ駆動装置。 A star-connected multi-phase armature winding of three or more phases, a first end connected to the neutral point of the multi-phase armature winding, and a second end connected to the field wiring An electric motor driving device configured to drive an electric motor including a field winding having:
Comprising an inverter circuit configured to convert DC power from a DC power source into AC power, the inverter circuit having a plurality of arms provided for each of the plurality of armature windings;
Each of the arms of the plurality of phases is connected to the upper arm switching element connected to the high voltage side of the DC power source via a high voltage bus, and connected to the upper arm switching element in series and the DC connected via the low voltage bus A lower arm switching element connected to the low voltage side of the power source,
The electric motor driving device is:
A field circuit connected to the second end of the field winding via the field wiring and used to pass a field current through the field winding;
An inverter control unit configured to switch the upper arm switching element and the lower arm switching element in the arms of the plurality of phases;
The field circuit is configured to control the field current so that the field current flows through the field winding when a neutral point voltage that is a neutral point voltage of the multi-phase armature winding is positive. And an electric field motor control unit.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016155475A JP2018026897A (en) | 2016-08-08 | 2016-08-08 | Driver |
JP2016-155475 | 2016-08-08 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018030143A1 true WO2018030143A1 (en) | 2018-02-15 |
Family
ID=61162962
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/026808 WO2018030143A1 (en) | 2016-08-08 | 2017-07-25 | Drive device and electric motor drive device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2018026897A (en) |
WO (1) | WO2018030143A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114523854A (en) * | 2022-03-17 | 2022-05-24 | 上海小至科技有限公司 | Vehicle motor system for low-temperature heating of battery, electric vehicle and storage medium |
WO2023010894A1 (en) * | 2021-08-05 | 2023-02-09 | 宁德时代新能源科技股份有限公司 | Charging and discharging circuit, charging and discharging system, and charging and discharging control method |
WO2023087331A1 (en) * | 2021-11-22 | 2023-05-25 | 宁德时代新能源科技股份有限公司 | Charging and discharging circuit and system, and control method therefor |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112550079B (en) * | 2019-09-25 | 2022-09-06 | 比亚迪股份有限公司 | Energy conversion device and vehicle |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040227486A1 (en) * | 2002-10-18 | 2004-11-18 | Raser Technologies, Inc. | Resonant motor system |
JP2014501482A (en) * | 2010-12-27 | 2014-01-20 | ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング | Method and apparatus for operating an externally or hybrid excited electric machine |
JP2016039679A (en) * | 2014-08-06 | 2016-03-22 | 株式会社ジェイテクト | Controller for rotary electric machine |
-
2016
- 2016-08-08 JP JP2016155475A patent/JP2018026897A/en active Pending
-
2017
- 2017-07-25 WO PCT/JP2017/026808 patent/WO2018030143A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040227486A1 (en) * | 2002-10-18 | 2004-11-18 | Raser Technologies, Inc. | Resonant motor system |
JP2014501482A (en) * | 2010-12-27 | 2014-01-20 | ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング | Method and apparatus for operating an externally or hybrid excited electric machine |
JP2016039679A (en) * | 2014-08-06 | 2016-03-22 | 株式会社ジェイテクト | Controller for rotary electric machine |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023010894A1 (en) * | 2021-08-05 | 2023-02-09 | 宁德时代新能源科技股份有限公司 | Charging and discharging circuit, charging and discharging system, and charging and discharging control method |
EP4212384A4 (en) * | 2021-08-05 | 2024-06-05 | Contemporary Amperex Technology Co., Limited | Charging and discharging circuit, charging and discharging system, and charging and discharging control method |
WO2023087331A1 (en) * | 2021-11-22 | 2023-05-25 | 宁德时代新能源科技股份有限公司 | Charging and discharging circuit and system, and control method therefor |
CN114523854A (en) * | 2022-03-17 | 2022-05-24 | 上海小至科技有限公司 | Vehicle motor system for low-temperature heating of battery, electric vehicle and storage medium |
Also Published As
Publication number | Publication date |
---|---|
JP2018026897A (en) | 2018-02-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9231513B2 (en) | Electric motor system | |
JP6087666B2 (en) | Power converter | |
WO2018030143A1 (en) | Drive device and electric motor drive device | |
JP4363481B2 (en) | Rotating electrical machine control device | |
EP2595303A1 (en) | Power conversion system | |
KR20070074855A (en) | Hybrid motor and controlling apparatus and method controlling thereof | |
US20170117834A1 (en) | Control apparatus for rotating electric machine | |
US20140103650A1 (en) | Dual-dc bus starter/generator | |
JP6669532B2 (en) | Power converter | |
US10797631B2 (en) | Power output device | |
JP2003174790A (en) | Synchronous motor device for vehicle | |
JP6626973B2 (en) | 6-wire three-phase motor and motor system | |
WO2019070067A1 (en) | Motor module and electric power steering device | |
WO2018012592A1 (en) | Rotary electric machine device | |
WO2019070068A1 (en) | Motor module and electric power steering device | |
US10027252B2 (en) | Rotating electric machine system | |
KR101857781B1 (en) | Power converting apparatus performing function of inverter | |
JP2015227079A (en) | Drive system | |
WO2017051758A1 (en) | Rotating electric machine device | |
JP5696438B2 (en) | Permanent magnet type motor | |
JP2011130525A (en) | Electric motor drive system | |
JP2000324891A (en) | Inverter drive motor | |
JP2017063593A (en) | Dynamo-electric machine | |
JP6590457B2 (en) | Vehicle drive control device and vehicle drive control method | |
WO2019070065A1 (en) | Motor module and electric power steering device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17839216 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17839216 Country of ref document: EP Kind code of ref document: A1 |