WO2018028094A1 - 一种用于高铁机车的碳化硅锑锡锌铜复合材料及制备方法 - Google Patents
一种用于高铁机车的碳化硅锑锡锌铜复合材料及制备方法 Download PDFInfo
- Publication number
- WO2018028094A1 WO2018028094A1 PCT/CN2016/108099 CN2016108099W WO2018028094A1 WO 2018028094 A1 WO2018028094 A1 WO 2018028094A1 CN 2016108099 W CN2016108099 W CN 2016108099W WO 2018028094 A1 WO2018028094 A1 WO 2018028094A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- zinc
- silicon carbide
- tin
- composite material
- copper
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/02—Making non-ferrous alloys by melting
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/10—Alloys containing non-metals
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/10—Alloys containing non-metals
- C22C1/1036—Alloys containing non-metals starting from a melt
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C32/00—Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
- C22C32/0047—Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents
- C22C32/0052—Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents only carbides
- C22C32/0063—Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents only carbides based on SiC
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C9/00—Alloys based on copper
- C22C9/04—Alloys based on copper with zinc as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/08—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
Definitions
- the invention relates to the field of alloy materials, in particular to a silicon carbide bismuth-tin-zinc-copper composite material for a high-speed railway locomotive and a preparation method thereof.
- Tin bronze is the non-ferrous metal alloy with the smallest casting shrinkage. It is used to produce castings with complex shapes, clear outlines and low air tightness. Tin bronze is in the atmosphere, sea water, fresh water and It is very resistant to corrosion in steam and is widely used in various types of wear-resistant bushings, bushings, flanges and gears, especially for high-speed railway equipment.
- lead element is often added to the bar material, and the lead-added tin bronze alloy rod has high wear resistance and is easy to be cut and is widely used.
- lead-containing tin bronze alloy rods will have an impact on the environment.
- the bronze alloy rods containing lead elements can no longer meet the requirements of high-end markets at home and abroad, especially the rapid development of high-speed railways in China. Requirements for locomotive parts.
- the hardness of tin bronze alloy needs to be further improved.
- the present invention provides a silicon carbide bismuth-zinc-zinc-copper composite material for a high-iron locomotive that has both environmentally-friendly performance and a large degree of hardness.
- a silicon carbide bismuth-zinc-zinc copper composite material for a high-speed railway locomotive comprising the following components by mass percentage: silicon carbide having a particle diameter of more than 100 ⁇ m and less than 200 ⁇ m: 1-2%, ⁇ : 0.5-1% Tin: 3 to 4.5%, zinc: 4 to 5.5%, electrolytic copper: balance.
- composition is contained in the following percentage by mass: silicon carbide having a particle diameter of more than 100 ⁇ m and less than 200 ⁇ m: 1.2%, ⁇ : 0.8%, tin: 3.5%, zinc: 4.5%, electrolytic copper: balance.
- the invention also provides a method for preparing a silicon carbide bismuth-zinc-zinc-copper composite material for a high-speed railway locomotive, characterized in that the method comprises the following steps:
- the bismuth, tin, zinc and electrolytic copper are placed in an intermediate frequency electric furnace, heated to 1100 to 1200 degrees, and the melting time is 2 to 2.5 hours; at the same time, the fully melted alloy liquid is fully filled with the high temperature resistant graphite rod. Stirring, the alloy is completely melted and then kept to 1080 degrees, and the heat retention time is 20 to 25 minutes;
- the completed alloy bar is cooled by a continuous annealing furnace, and the annealing time is 30 to 40 minutes;
- the annealed alloy rod is cooled at room temperature for 10 to 15 minutes, and then placed in brine for further cooling to further increase the hardness;
- the diameter tolerance is +/-0.03 mm, the length is 1000 mm, and the tolerance is +1/-0 mm;
- the package is incorporated into the library.
- the graphite powder has a cover thickness of 10 to 15 cm.
- the frequency of the vibration is 2 times/second.
- the annealing temperature is 200 to 250 degrees.
- the concentration of the brine is 5%.
- the invention has the advantages and beneficial effects that the composite material of silicon carbide, antimony, zinc and copper has high purity, small particle size, uniform distribution, large specific surface area, high surface activity, low bulk density, excellent mechanical and thermal properties, Electrical and chemical properties, that is, high hardness, high wear resistance and good self-lubrication, high thermal conductivity, low thermal expansion coefficient and high temperature strength.
- a method for preparing a composite material of silicon carbide, antimony, tin, zinc and copper for high-speed railway locomotive comprises the following steps:
- the raw materials are placed, and placed in an intermediate frequency electric furnace, heated to 1100 degrees to 1200 degrees, the melting time is 2 ⁇ 2.5 hours; at the same time, the fully melted alloy liquid is fully stirred with a high temperature resistant graphite rod, the alloy is completely melted and then kept to 1080 degrees, and the heat retention time is 20 to 25 minutes.
- the transfer time is 25 to 30 minutes.
- the high-purity flaky graphite powder is covered on the stirred solution to prevent oxidation thereof.
- the thickness is about 10 to 15 cm and the insulation is continued.
- the vibration frequency is 2 times/second. It is cast into a diameter of 15 to 200 mm and a length of 2000 mm by horizontal continuous casting. Solid alloy bar.
- the finished alloy bar is subjected to a cooling annealing process of 200 to 250 degrees in a continuous annealing furnace, and the annealing time is 30 to 40 minutes.
- the finished alloy rod is surface treated with a high-precision lathe with a diameter tolerance of +/-0.03 mm, a length of 1000 mm and a tolerance of +1/-0 mm.
- the package is incorporated into the library.
- Example 2 and Example 1 differ only in the raw material ratio, and the other aspects are the same. Therefore, only the differences will be explained below.
- the second embodiment differs from the first embodiment only in that: in step 1), according to ⁇ : 0.8%, tin: 3.5%, zinc: 4.5%, electrolytic copper: the mass percentage of the balance, the raw materials are disposed and placed In the intermediate frequency electric furnace.
- step 2) the silicon carbide having a particle diameter of more than 100 ⁇ m and less than 200 ⁇ m after the completion of the screening is 1.2%, and is added to the alloy solution in which the heat preservation is completed in mass percentage.
- Example 3 and Example 1 differ only in the raw material ratio, and the other aspects are the same. Therefore, only the differences will be explained below.
- This embodiment 3 differs from the embodiment 2 only in that: in step 1), according to: ⁇ : 0.9%, tin: 4.3%, zinc: 5.3%, electrolytic copper: the mass percentage of the balance, the raw materials are arranged, and Placed in an intermediate frequency electric furnace.
- step 2) the silicon carbide having a particle diameter of more than 100 ⁇ m and less than 200 ⁇ m after the completion of the screening is 1.8%, and is added to the alloy solution which is completed by the mass percentage.
- the alloy rods described above have not been environmentally friendly, and their alloy hardness and tensile strength have been greatly improved.
- the alloy hardness of the conventional lead-added high-tin bronze alloy rod is 70-80HBS (Brinell hardness), and the resistance strength is 250 MPa.
- the alloy hardness of the composite material of the silicon carbide bismuth-zinc-copper copper of the present invention can be greatly increased. Increased to 130-160HBS (Brinell hardness), the resistance strength is 390 MPa.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Manufacture Of Alloys Or Alloy Compounds (AREA)
- Conductive Materials (AREA)
Abstract
一种用于高速铁路机车的碳化硅锑锡锌铜的复合材料,包含如下按质量百分比计的组分:粒径大于100微米而小于200微米的碳化硅:1~2%,锑:0.5~1%,锡:3~4.5%,锌:4~5.5%,电解铜:余量,高速铁路机车的碳化硅锑锡锌铜的复合材料,具有纯度高,粒径小,分布均匀,比表面积大,高表面活性,松装密度低,极好的力学,热学,电学和化学性能,即具有高硬度,高耐磨性和良好的自润滑,高热传导率,低热膨胀系数及高温强度大等特点。
Description
本发明涉及合金材料领域,尤其涉及一种用于高速铁路机车的碳化硅锑锡锌铜复合材料及制备方法。
高速铁路机车主要是以锡青铜为原料,锡青铜是铸造收缩率最小的有色金属合金,用来生产形状复杂、轮廓清晰、气密性要求不高的铸件,锡青铜在大气、海水、淡水和蒸汽中十分耐蚀,广泛应用于各类耐磨轴瓦、轴套、法兰及齿轮等方面,尤其是用于高速铁路装备。为了提升锡青铜合金棒的易切削性能,往往在棒料中添加铅元素,加铅后的锡青铜合金棒具有高的耐磨性并易切削加工,被广泛使用。然而,含铅的锡青铜合金棒会对环境造成影响,随着人们环保意识的不断提高,含铅元素的青铜合金棒已不能满足国内外高端市场的要求,尤其不能满足我国快速发展的高速铁路机车零部件的要求。另外,随着工业的发展,锡青铜的合金硬度需进一步提高。
发明内容
为了解决上述问题,本发明提供了一种既具有环保性能,又能在较大程度上提高硬度的高铁机车用碳化硅锑锡锌铜复合材料。
为了达到上述目的,本发明采用的技术方案如下:
一种用于高铁机车的碳化硅锑锡锌铜复合材料,包含如下按质量百分比计的组分:粒径大于100微米而小于200微米的碳化硅:1~2%,锑:0.5~1%,锡:3~4.5%,锌:4~5.5%,电解铜:余量。
进一步,包含如下按质量百分比计的组分:粒径大于100微米而小于200微米的碳化硅:1.5%,锑:0.6%,锡:4%,锌:5%,电解铜:余量。
进一步,包含如下按质量百分比计的组分:粒径大于100微米而小于200微米的碳化硅:1.2%,锑:0.8%,锡:3.5%,锌:4.5%,电解铜:余量。
进一步,包含如下按质量百分比计的组分:粒径大于100微米而小于200微米的碳化硅:1.8%,锑:0.9%,锡:4.3%,锌:5.3%,电解铜:余量。
本发明还提供一种制备用于高铁机车的碳化硅锑锡锌铜复合材料的方法,其特征在于:包含如下步骤:
1)、按照配比将锑、锡﹑锌、电解铜置于中频电炉内,加热至1100度~1200度,熔炼时间为2~2.5小时;同时用耐高温石墨棒将完全熔化的合金液体充分搅拌,合金完全熔化后保温至1080度,保温静置时间为20~25分钟;
2)、将筛选完成后的粒径大于100微米而小于200微米的碳化硅颗粒添加到保温完成的合金溶液当中,并开启搅拌装置,搅拌速率为350~400转/分钟,搅拌时间为25~30分钟;
3)、在搅拌完成的溶液上面覆盖高纯度鳞片状石墨粉以防止其氧化,并继续保温;
4)、保温时间10~15分钟后,重新升温至1200度,并开启中频电炉的振动装置,用水平连铸方法铸造成直径15~200毫米,长度为2000毫米的实心合金棒材;
5)、完成的合金棒材采用连续式退火炉进行降温退火,退火时间为30~40分钟;
6)、将退火好的合金棒在常温下冷却10~15分钟后,放入盐水中进行进一步冷却,使其硬度进一步提升;
7)、按照相应需求,采用高精度车床对完成冷却的合金棒进行表面处
理,直径公差为+/-0.03毫米,长度定尺为1000毫米,公差为+1/-0毫米;
8)、包装并入库。
进一步,所述步骤3)中,石墨粉的覆盖厚度为10~15厘米。
进一步,所述步骤4)中,振动的频率为2次/秒。
进一步,所述步骤5)中,退火的温度为200~250度。
进一步,所述步骤6)中,盐水的浓度为5%。
本发明的优点及有益效果为:碳化硅锑锡锌铜的复合材料具有纯度高、粒径小、分布均匀、比表面积大、表面活性高、松装密度低、具有极好的力学、热学、电学和化学性能,即具有高硬度、高耐磨性和良好的自润滑、高热传导率、低热膨胀系数及高温强度大等特点。
下面将对本发明实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
一种用于高速铁路机车的碳化硅锑锡锌铜的复合材料的制备方法,包括如下步骤:
1)、按照锑:0.6%,锡:4%,锌:5%,电解铜:余量的质量百分比,配置原料,并置于中频电炉内,加热至1100度~1200度,熔炼时间为2~2.5小时;同时用耐高温石墨棒将完全熔化的合金液体充分搅拌,合金完全熔化后保温至1080度,保温静置时间为20~25分钟。
2)、将筛选完成后的粒径大于100微米而小于200微米的碳化硅颗粒:1.5%,以质量百分比计,添加到保温完成的合金溶液当中,并开启搅拌装置,搅拌速率为350~400转/分钟,搅拌时间为25~30分钟。
3)、在搅拌完成的溶液上面覆盖高纯度鳞片状石墨粉以防止其氧化,
厚度约为10~15厘米,并继续保温。
4)、保温时间10~15分钟后,重新升温至1200度,并开启中频电炉的振动装置,振动频率为2次/秒,用水平连铸方法铸造成直径15~200毫米,长度为2000毫米的实心合金棒材。
5)、完成的合金棒材采用连续式退火炉进行200~250度的降温退火,退火时间为30~40分钟。
6)、将退火好的合金棒在常温下冷却10~15分钟后,放入浓度为5%的盐水中进行进一步冷却,使其硬度进一步提升。
7)、按照相应需求,采用高精度车床对完成冷却的合金棒进行表面处理,直径公差为+/-0.03毫米,长度定尺为1000毫米,公差为+1/-0毫米。
8)、包装并入库。
实施例2
实施例2与实施例1仅仅在原料配比方面是不同的,其他方面是相同的。因此,以下将仅就不同之处进行说明。
本实施例2不同于实施例1之处仅在于:步骤1)中按照锑:0.8%,锡:3.5%,锌:4.5%,电解铜:余量的质量百分比,配置原料,并将其置于中频电炉内。
步骤2)中将筛选完成后的粒径大于100微米而小于200微米的碳化硅:1.2%,以质量百分比计,添加到保温完成的合金溶液当中。
实施例3
实施例3与实施例1仅仅在原料配比方面是不同的,其他方面是相同的。因此,以下将仅就不同之处进行说明。
本实施例3不同于实施例2之处仅在于:步骤1)中按照:锑:0.9%,锡:4.3%,锌:5.3%,电解铜:余量的质量百分比,配置原料,并将其置于中频电炉内。
步骤2)中将筛选完成后的粒径大于100微米而小于200微米的碳化硅:1.8%,以质量百分比计,添加到保温完成的合金溶液当中。
表1:本发明复合材料材料性能与传统锡青铜性能对比表
基于上述实施例,经过试验,以上所述合金棒不仅环保,其合金硬度和抗拉强度都得到大幅提高。如表1所示,传统加铅高锡青铜合金棒的合金硬度为70~80HBS(布氏硬度),抗力强度为250兆帕,本发明碳化硅锑锡锌铜的复合材料的合金硬度可以大幅提升至130~160HBS(布氏硬度),抗力强度为390兆帕。
以上所举实施例为本发明的较佳实施方式,仅用来方便说明本发明,并非对本发明作任何形式上的限制,任何所属技术领域中具有通常知识者,若在不脱离本发明所提技术特征的范围内,利用本发明所揭示技术内容所作出局部更动或修饰的等效实施例,并且未脱离本发明的技术特征内容,均仍属于本发明技术特征的范围内。
Claims (9)
- 一种用于高铁机车的碳化硅锑锡锌铜复合材料,其特征在于:包含如下按质量百分比计的组分:粒径大于100微米而小于200微米的碳化硅:1~2%,锑:0.5~1%,锡:3~4.5%,锌:4~5.5%,电解铜:余量。
- 根据权利要求1所述的用于高铁机车的碳化硅锑锡锌铜复合材料,其特征在于:包含如下按质量百分比计的组分:粒径大于100微米而小于200微米的碳化硅:1.5%,锑:0.6%,锡:4%,锌:5%,电解铜:余量。
- 根据权利要求1所述的用于高铁机车的碳化硅锑锡锌铜复合材料,其特征在于:包含如下按质量百分比计的组分:粒径大于100微米而小于200微米的碳化硅:1.2%,锑:0.8%,锡:3.5%,锌:4.5%,电解铜:余量。
- 根据权利要求1所述的用于高铁机车的碳化硅锑锡锌铜复合材料,其特征在于:包含如下按质量百分比计的组分:粒径大于100微米而小于200微米的碳化硅:1.8%,锑:0.9%,锡:4.3%,锌:5.3%,电解铜:余量。
- 一种制备如权利要求1~4中任一项所述的用于高铁机车的碳化硅锑锡锌铜复合材料的方法,其特征在于:包含如下步骤:1)、按照配比将锑、锡﹑锌、电解铜置于中频电炉内,加热至1100度~1200度,熔炼时间为2~2.5小时;同时用耐高温石墨棒将完全熔化的合金液体充分搅拌,合金完全熔化后保温至1080度,保温静置时间为20~25分钟;2)、将筛选完成后的粒径大于100微米而小于200微米的碳化硅颗粒添加到保温完成的合金溶液当中,并开启搅拌装置,搅拌速率为350~400转/分钟,搅拌时间为25~30分钟;3)、在搅拌完成的溶液上面覆盖高纯度鳞片状石墨粉以防止其氧化,并继续保温;4)、保温时间10~15分钟后,重新升温至1200度,并开启中频电炉的振动装置,用水平连铸方法铸造成直径15~200毫米,长度为2000毫米的实心合金棒材;5)、完成的合金棒材采用连续式退火炉进行降温退火,退火时间为30~40分钟;6)、将退火好的合金棒在常温下冷却10~15分钟后,放入盐水中进行进一步冷却,使其硬度进一步提升;7)、按照相应需求,采用高精度车床对完成冷却的合金棒进行表面处理,直径公差为+/-0.03毫米,长度定尺为1000毫米,公差为+1/-0毫米;8)、包装并入库。
- 根据权利要求5所述的方法,其特征在于:所述步骤3)中,石墨粉的覆盖厚度为10~15厘米。
- 根据权利要求5所述的方法,其特征在于:所述步骤4)中,振动的频率为2次/秒。
- 根据权利要求5所述的一种用于高速铁路机车的碳化硅锑锡锌铜的复合材料的制备方法,其特征在于:所述步骤5)中,退火的温度为200~250度。
- 根据权利要求5所述的一种用于高速铁路机车的碳化硅锑锡锌铜的复合材料的制备方法,其特征在于:所述步骤6)中,盐水的浓度为5%。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610647175.0 | 2016-08-09 | ||
CN201610647175.0A CN106191518B (zh) | 2016-08-09 | 2016-08-09 | 一种用于高铁机车的碳化硅锑锡锌铜复合材料及制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018028094A1 true WO2018028094A1 (zh) | 2018-02-15 |
Family
ID=57513844
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2016/108099 WO2018028094A1 (zh) | 2016-08-09 | 2016-11-30 | 一种用于高铁机车的碳化硅锑锡锌铜复合材料及制备方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN106191518B (zh) |
WO (1) | WO2018028094A1 (zh) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106756220A (zh) * | 2016-12-14 | 2017-05-31 | 苏州金仓合金新材料有限公司 | 一种用于高速机车变速箱的铜基合金棒及其制备方法 |
CN107675016A (zh) * | 2017-10-09 | 2018-02-09 | 常州帝君金属构件厂 | 一种低膨胀改性铜基复合材料的制备方法 |
CN108559868A (zh) * | 2018-05-30 | 2018-09-21 | 苏州金仓合金新材料有限公司 | 一种用于电力机械耐磨件的铸造合金材料及其制备方法 |
CN108517439A (zh) * | 2018-05-30 | 2018-09-11 | 苏州金仓合金新材料有限公司 | 一种机车零部件用青铜合金材料及其制备方法 |
CN108642319A (zh) * | 2018-05-30 | 2018-10-12 | 苏州列治埃盟新材料技术转移有限公司 | 一种用于耐磨齿轮的连续铸造铜合金材料及其制造方法 |
CN112030035A (zh) * | 2020-07-31 | 2020-12-04 | 苏州金仓合金新材料有限公司 | 一种机车零件用青铜合金材料及其制备方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1150172A (ja) * | 1997-07-29 | 1999-02-23 | Yazaki Corp | 炭化物分散強化銅合金材 |
CN103060606A (zh) * | 2013-01-16 | 2013-04-24 | 苏州金仓合金新材料有限公司 | 新型环保加锑合金棒及其制备方法 |
CN103589902A (zh) * | 2013-11-08 | 2014-02-19 | 苏州天兼金属新材料有限公司 | 一种无铅环保铜基合金新材料及其制造方法 |
CN103589901A (zh) * | 2013-11-08 | 2014-02-19 | 苏州天兼金属新材料有限公司 | 一种无铅环保铜基合金管及其制造方法 |
CN105238947A (zh) * | 2015-11-02 | 2016-01-13 | 苏州金仓合金新材料有限公司 | 一种重型装备零部件用高强度纳米级碳化硅铜基复合合金新材料 |
CN105256169A (zh) * | 2015-10-30 | 2016-01-20 | 苏州列治埃盟新材料技术转移有限公司 | 一种高强度纳米碳化硅增强铜基复合材料及其制备方法 |
CN105349827A (zh) * | 2015-10-30 | 2016-02-24 | 苏州列治埃盟新材料技术转移有限公司 | 一种碳化硅增强无铅锡铜合金棒及其制备方法 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5126665A (en) * | 1974-08-29 | 1976-03-05 | Kinzoku Giken Kk | Tetsu oyobi tetsugokintodotono tantsukigokin |
CN101591743A (zh) * | 2008-05-28 | 2009-12-02 | 北京人和路通科技有限公司 | 缓行器制动材料 |
CN104630553A (zh) * | 2015-01-27 | 2015-05-20 | 苏州金仓合金新材料有限公司 | 一种环保无铅新型合金材料管及其制备方法 |
-
2016
- 2016-08-09 CN CN201610647175.0A patent/CN106191518B/zh active Active
- 2016-11-30 WO PCT/CN2016/108099 patent/WO2018028094A1/zh active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1150172A (ja) * | 1997-07-29 | 1999-02-23 | Yazaki Corp | 炭化物分散強化銅合金材 |
CN103060606A (zh) * | 2013-01-16 | 2013-04-24 | 苏州金仓合金新材料有限公司 | 新型环保加锑合金棒及其制备方法 |
CN103589902A (zh) * | 2013-11-08 | 2014-02-19 | 苏州天兼金属新材料有限公司 | 一种无铅环保铜基合金新材料及其制造方法 |
CN103589901A (zh) * | 2013-11-08 | 2014-02-19 | 苏州天兼金属新材料有限公司 | 一种无铅环保铜基合金管及其制造方法 |
CN105256169A (zh) * | 2015-10-30 | 2016-01-20 | 苏州列治埃盟新材料技术转移有限公司 | 一种高强度纳米碳化硅增强铜基复合材料及其制备方法 |
CN105349827A (zh) * | 2015-10-30 | 2016-02-24 | 苏州列治埃盟新材料技术转移有限公司 | 一种碳化硅增强无铅锡铜合金棒及其制备方法 |
CN105238947A (zh) * | 2015-11-02 | 2016-01-13 | 苏州金仓合金新材料有限公司 | 一种重型装备零部件用高强度纳米级碳化硅铜基复合合金新材料 |
Also Published As
Publication number | Publication date |
---|---|
CN106191518B (zh) | 2018-05-18 |
CN106191518A (zh) | 2016-12-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018028094A1 (zh) | 一种用于高铁机车的碳化硅锑锡锌铜复合材料及制备方法 | |
CN109022896B (zh) | 一种具有电磁波屏蔽性能的高强高导耐热Cu-Fe-Y-Mg合金材料及其制备方法 | |
CN102925746B (zh) | 高性能Cu-Ni-Si系铜合金及其制备和加工方法 | |
CN108526422A (zh) | 一种高强高导耐热铜合金的生产方法 | |
WO2018107847A1 (zh) | 一种碳化硅增强锑锡铜合金棒及其制造方法 | |
WO2013159265A1 (zh) | 高速铁路装备用加锑高锡青铜合金棒及其制作方法 | |
WO2017198127A1 (zh) | 高强高导铜合金及其作为时速400公里以上高速铁路接触线材料的应用 | |
CN114134364B (zh) | 一种铜合金材料及其制备方法 | |
WO2018107848A1 (zh) | 一种用于高速机车变速箱的铜基合金棒及其制备方法 | |
WO2016179731A1 (zh) | 新型多组分环保无铅合金新材料合金棒及其制备方法 | |
WO2017070806A1 (zh) | 一种高强度碳化钛颗粒增强铜基复合材料及其制备方法 | |
CN104946925A (zh) | 一种母线槽用铜铝合金材料的处理工艺 | |
WO2018028091A1 (zh) | 一种用于机械零部件的铜基复合材料及其制备方法 | |
WO2013159266A1 (zh) | 船舶及海洋工程用耐磨高磷铜合金棒及其制作方法 | |
CN101525731B (zh) | Cu-Fe原位复合铜基材料及其制备方法 | |
CN111500904A (zh) | 中强超硬铝合金及其制造工艺 | |
WO2018028097A1 (zh) | 一种用于高速铁路装备的锑锡锌青铜合金棒及其制备方法 | |
WO2018028088A1 (zh) | 一种应用于机车引擎部件的铜基复合材料及其制备方法 | |
CN115198133A (zh) | 一种高强耐热导电铜合金管材及其制备方法 | |
CN106191555A (zh) | 一种耐磨抗腐蚀的高硅铝合金及其制备方法 | |
RU2696797C2 (ru) | Алюминиево-циркониевый сплав | |
CN108517439A (zh) | 一种机车零部件用青铜合金材料及其制备方法 | |
CN114959354B (zh) | 一种钢-黄铜双金属材料及其制作工艺、模具 | |
CN112030035A (zh) | 一种机车零件用青铜合金材料及其制备方法 | |
Wu et al. | Preparation of Al2O3/Cu composites by internal oxidation in Cu-Al alloy sheet processing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16912548 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16912548 Country of ref document: EP Kind code of ref document: A1 |