Nothing Special   »   [go: up one dir, main page]

WO2018028066A1 - 滤波馈电网络及基站天线 - Google Patents

滤波馈电网络及基站天线 Download PDF

Info

Publication number
WO2018028066A1
WO2018028066A1 PCT/CN2016/105460 CN2016105460W WO2018028066A1 WO 2018028066 A1 WO2018028066 A1 WO 2018028066A1 CN 2016105460 W CN2016105460 W CN 2016105460W WO 2018028066 A1 WO2018028066 A1 WO 2018028066A1
Authority
WO
WIPO (PCT)
Prior art keywords
filter
pass filter
circuit
dividing circuit
power dividing
Prior art date
Application number
PCT/CN2016/105460
Other languages
English (en)
French (fr)
Inventor
赵伟
高卓锋
姚想喜
王文兰
刘木林
杜杜⋅萨姆布
褚庆臣
王斌
Original Assignee
广东通宇通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东通宇通讯股份有限公司 filed Critical 广东通宇通讯股份有限公司
Priority to EP16912520.0A priority Critical patent/EP3439110B1/en
Priority to CN201690000367.6U priority patent/CN209183756U/zh
Priority to PL16912520.0T priority patent/PL3439110T3/pl
Priority to HRP20220601TT priority patent/HRP20220601T1/hr
Priority to US16/093,346 priority patent/US10886634B2/en
Priority to ES16912520T priority patent/ES2913284T3/es
Publication of WO2018028066A1 publication Critical patent/WO2018028066A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/201Filters for transverse electromagnetic waves
    • H01P1/203Strip line filters
    • H01P1/2039Galvanic coupling between Input/Output
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q23/00Antennas with active circuits or circuit elements integrated within them or attached to them
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/201Filters for transverse electromagnetic waves
    • H01P1/203Strip line filters
    • H01P1/20327Electromagnetic interstage coupling
    • H01P1/20354Non-comb or non-interdigital filters
    • H01P1/20381Special shape resonators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/12Coupling devices having more than two ports
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/246Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for base stations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • H01Q21/0075Stripline fed arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction

Definitions

  • the present invention relates to the field of mobile communication base station technologies, and in particular, to a filter feed network and a base station antenna.
  • a distributed base station antenna is a passive antenna, and a remote radio unit (RRU) is connected to an antenna by using a cable, wherein the RRU includes a duplexer, a transmit/receive filter, a low noise amplifier, and a power amplifier. , multi-mode multi-frequency RF module, digital intermediate frequency and other passive modules and active modules.
  • the development trend of 4.5G and 5G mobile base stations is to use active antennas of large-scale MIMO.
  • the active antennas combine the entire RRU and the antenna organically, that is, the radio frequency unit uses a large number of distributed radio frequency chips integrated in the antenna.
  • the traditional base station has a fixed downtilt angle, and the active antenna base station can implement flexible 3D MIMO beamforming to achieve different downtilt angles of different users and fine network optimization, improve system capacity and increase coverage.
  • the RRU of the distributed base station is large in size and heavy in weight, and is attached to the back of the antenna.
  • the large-scale MIMO active antenna has high integration, small size, and is easy to install and maintain.
  • the function of the transmit/receive filter of one of the passive modules in the RRU is to avoid interference between adjacent channels, improve communication capacity, and improve channel signal to noise ratio.
  • the filters used in RRU mainly include coaxial line filters and air cavity filters. This type of filter is large in size and heavy in weight, making it difficult to integrate with antennas.
  • the present invention provides a filter feed network and a base station antenna for solving the above technical problems.
  • the filter feed network has high integration, light weight, small size, and is suitable for mass production.
  • the present invention provides a filter feed network, including: a dielectric substrate; a surface of one side of the dielectric substrate is provided with a microstrip line, and a surface of the other side of the dielectric substrate is provided with a metal ground
  • the microstrip line includes first and second power dividing circuits and first and second filter circuits;
  • the input end and the output end of the filter circuit are respectively connected to the input end and the output end of the first power dividing circuit, and the input end and the output end of the second filter circuit respectively correspond to the input of the second power dividing circuit
  • the input end of the first filter circuit and the input end of the second filter circuit are respectively electrically connected to the metal ground;
  • the output end of the first power split circuit is at least two array antennas
  • the -4 5° polarization of the unit is fed, and the output of the second power dividing circuit is a +45° polarization feed of at least two array antenna elements.
  • the first filter circuit includes a first low pass filter and a first band pass filter
  • the second filter circuit includes a second low pass filter and a second band pass filter
  • An output end of the first band pass filter is connected to an input end of the first low pass filter, and an input end of the first band pass filter is connected to an input end of the first power dividing circuit,
  • An output of a low pass filter is coupled to an output of the first power dividing circuit
  • an output of the second band pass filter is coupled to an input of the second low pass filter
  • the second An input end of the band pass filter is connected to an input end of the second power dividing circuit
  • an output end of the second low pass filter is connected to an output end of the second power dividing circuit.
  • the first low pass filter and the second low pass filter are both high and low impedance microstrip low pass filters.
  • the first low pass filter and the second low pass filter are both seventh-order high-low impedance microstrip low-pass filters.
  • first band pass filter and the second band pass filter are both nested by two mouth-shaped hexagonal microstrip lines and connected at the mouth end.
  • a port end of the hexagonal hexagon is connected to the input end of the first power dividing circuit through the impedance transforming segment, and another port end is passed through another impedance transform.
  • a segment is connected to an input end of the first low-pass filter;
  • a port end of the hexagonal hexagon of the second band-pass filter is connected to an input end of the second power dividing circuit through an impedance conversion section, and
  • a port end is connected to the input of the second low pass filter through another impedance transform section.
  • a cutoff frequency of the first low pass filter and the second low pass filter is 3.5 GHz
  • the passband center frequencies of the first band pass filter and the second band pass filter are both 2.6 GHz.
  • the dielectric substrate has a dielectric constant ranging from 2.2 to 10.2; and the dielectric substrate has a thickness ranging from 0.254 mm to 1.016 mm.
  • an input end of the first filter circuit is connected to the metal ground through a metallized via
  • an input end of the second filter circuit is connected to the metal ground through another metallization via
  • first power dividing circuit and the second power dividing circuit are respectively configured by a one-two power splitter; or, the first power dividing circuit and the second power dividing circuit respectively Cascaded by multiple power dividers
  • the present invention further provides a base station antenna, comprising the filter feed network according to any of the above embodiments.
  • the base station antenna is a base station antenna using a MIM0 system.
  • the filter feed network of the present invention has the following beneficial effects:
  • the RRU cavity filter is replaced by a microstrip filter, and integrated with the microstrip power splitter to implement a filtering feed network with filtering function, which simplifies the structure of the radio frequency unit, improves system integration, and filters feeds.
  • the electrical network is highly integrated, lightweight, small and suitable for mass production.
  • the microstrip low-pass filter replaces the metal rod-shaped low-pass filter in the cavity filter to filter out the high-order harmonics of the band-pass filter; the same uses the microstrip low-pass filter and the microstrip
  • the bandpass filter is connected in series and integrated with the microstrip splitter to implement a filtered filter feed network that reduces the need for out-of-band rejection of the cavity filter and reduces filter volume and weight.
  • FIG. 1 is a cross-sectional structural diagram of an embodiment of a filter feed network of the present invention.
  • FIG. 2 is a schematic structural view of an embodiment of a microstrip line in the filter feed network of FIG. 1.
  • FIG. 3 is a schematic structural view of a band pass filter in the microstrip line shown in FIG. 2.
  • FIG. 4 is a schematic structural view of a low pass filter in the microstrip line shown in FIG. 2.
  • FIG. 5 is a graph showing a transmission frequency response curve of a band pass filter in the microstrip line shown in FIG.
  • FIG. 6 is a graph showing a transmission frequency response of a low-pass filter in the microstrip line shown in FIG. 4.
  • 7 is a graph showing a transmission frequency response curve of a low pass filter and a band pass filter in the microstrip line shown in FIG. 2.
  • FIG. 8 is a schematic structural view of another embodiment of a microstrip line in the filter feed network shown in FIG. 1.
  • FIG. 9 is a cross-sectional structural diagram of another embodiment of a filter feed network of the present invention.
  • FIG. 10 is a schematic structural view of a strip line in the filter feed network shown in FIG. 9.
  • the present invention provides a filter feed network, which includes: a first dielectric substrate 1; a surface of a first dielectric substrate 1 is provided with a microstrip line 2, a first dielectric substrate The other side surface is provided with a metal ground 3.
  • the microstrip line 2 includes a first power split circuit 21, a second power split circuit 2, and a first filter circuit 220 and a second filter circuit 220' having the same structure.
  • the input end of the first filter circuit 220 is connected to the input end 211 of the first power split circuit 21, and the output end is connected to the output end 212 of the first power split circuit 21; the input end and the second end of the second filter circuit 220'
  • the input terminal 21 of the power dividing circuit 21' is connected and the output terminal is connected to the output terminal 212' of the second power dividing circuit 21'.
  • the input end of the first filter circuit 220 and the input end of the second filter circuit 220' are respectively electrically connected to the metal ground 3.
  • the input end of the first filter circuit 220 passes through the first metallized via 4 and the metal ground 3 Connected, the input of the second filter circuit 220' is connected to the metal ground 3 via the second metallization via 4'.
  • the first filter circuit 220 includes a first low pass filter 22 and a first band pass filter 23 arranged in series, and the second filter circuit 220' includes a series connection.
  • a second low pass filter 22' and a second band pass filter 23' are provided.
  • the first low pass filter 22 has the same structure as the second low pass filter 22', and the first band pass filter 23 and the second band pass filter 23' have the same structure.
  • the output end 232 of the first band pass filter 23 and the input end 221 of the first low pass filter 22 may be connected by a microstrip line, and the input end 231 of the first band pass filter 23
  • the input end 211 of the power dividing circuit 21 can be connected by a microstrip line, and the output end 222 of the first low pass filter 22 and the output end 212 of the first power dividing circuit 21 can be connected by a microstrip line;
  • the second band pass filter The output end 232' of the device 23' and the input end 221' of the second low pass filter 22' may be connected by a microstrip line, the input end 231' of the second band pass filter 23' and the second power dividing circuit 2
  • the input terminal 21 ⁇ can be connected by a microstrip line, and the output of the second low pass filter 22'
  • the end 222' and the output 212' of the second power dividing circuit 21' may be connected by a microstrip line.
  • the first band pass filter 23 is formed by two microstrip lines 233, 234 of hexagonal hexagonal shape and connected at the mouth end.
  • a port end of the first hexagonal pass filter 23 is connected to the input end 211 of the first power dividing circuit 21 through the impedance transforming section 2351, and the other port end is connected.
  • the input terminal 211' of the second power dividing circuit 21' is connected, and the other port end is connected to the input terminal 22' of the second low-pass filter 22' via another impedance converting section (not shown).
  • the passband center frequencies of the first band pass filter 23 and the second band pass filter 23' are both 2.6 GHz.
  • the first low pass filter 22 and the second low pass filter 22' are both high and low impedance microstrip low pass filters.
  • the first low pass filter 22 and the second low pass filter 22' are both seventh-order high-low impedance microstrip low-pass filters. Since the first low-pass filter 22 has the same structure as the second low-pass filter, the specific structure is described by taking the first low-pass filter 22 as an example. As shown in FIG. 4, it adopts four low-impedance lines. 223 and three high impedance lines 224 are connected in series and staggered.
  • the cutoff frequency of the first low pass filter 22 and the second low pass filter 22' is preferably 3.5 GHz.
  • the frequency response curve of the bandpass filter is transmitted, and the passband frequency is 2.575 GHz to 2.635 GHz.
  • the frequency response curve of the low pass filter is transmitted, and the frequency is up to 3.5 GHz.
  • Figure 7 Low-pass and band-pass filter transmission frequency response curves. High-frequency harmonics in 4.0 GHz to 10 GHz are suppressed.
  • the filter feed network of the present invention has the following beneficial effects:
  • the RRU cavity filter is replaced by a microstrip filter, and integrated with the microstrip power splitter to realize a filter feed network with filtering function, which simplifies the structure of the radio frequency unit, improves system integration, and filters feeds.
  • the electrical network is highly integrated, lightweight, small and suitable for mass production.
  • the microstrip low-pass filter replaces the metal rod-shaped low-pass filter in the conventional cavity filter to filter out the higher harmonics of the band-pass filter; the same uses a microstrip low-pass filter and
  • the microstrip bandpass filter is connected in series and integrated with the microstrip splitter to implement a filtered filter feed network that reduces the need for out-of-band rejection of the low cavity filter and reduces filter volume and weight.
  • the first filter circuit 220 may be composed of only one band pass filter, and the second filter circuit 220' may be composed of only one band pass filter.
  • the two band pass filters have the same structure.
  • the input end 2201 of the band pass filter in the first filter circuit 220 and the input end 211 of the first power dividing circuit 21 are connected by a microstrip line, the output end 2202 and the output end 212 of the first power dividing circuit 21 pass through the microstrip line.
  • the input terminal 220 of the band pass filter in the second filter circuit 220' and the input end 211' of the second power dividing circuit 2' are connected by a microstrip line
  • the output end 2202' and the second power dividing circuit 21' The output terminal 212' is connected by a microstrip line.
  • the band pass filter in the first filter circuit 220 and the second filter circuit 220' may allow waves of at least one frequency to pass. In the present invention, waves of two frequencies may be allowed to pass, and preferably, 2.54 GHz and 5.40 are allowed. The GHz wave passes.
  • the filter feed network of the present invention further includes a second dielectric substrate 5 and a third dielectric substrate 8.
  • the second dielectric substrate 5 and the third dielectric substrate 8 are sequentially stacked on one side of the first dielectric substrate 1 on which the metal ground 3 is provided. Further, a strip line 7 is provided between the second dielectric substrate 5 and the third dielectric substrate 8.
  • the arrangement of the metal ground 3 on the first dielectric substrate 1 is for ensuring the configuration of the microstrip line 2 and the strip line 7.
  • a metal ground 6 may be disposed on the surface of the second dielectric substrate 5 adjacent to the first dielectric substrate 1.
  • the metal ground 3 on the first dielectric substrate 1 and the metal ground 6 on the second dielectric substrate 5 pass through the solidified sheet.
  • the metal ground 3, 6 is disposed on the first dielectric substrate 1 and the second dielectric substrate 5, respectively, and the metal ground 3 is provided on the first dielectric substrate 1, respectively, which is more advantageous for improving the filtering.
  • the electrical performance of the feed network is for ensuring the configuration of the microstrip line 2 and the strip line 7.
  • the strip line line 7 includes a first directional coupler 71 and a second directional coupler 71' having the same structure, and the output end 711 of the first directional coupler 71 and the first work
  • the input end 211 of the sub-circuit 21 is turned on by the first metallization via 4, and the output end 711' of the second directional coupler 71' and the input end 21 of the second splitter circuit 21' pass through the second metallization via 4' conduction.
  • the first directional coupler 71 and the second directional coupler 7 ⁇ are parallel coupled line directional couplers
  • the input end 713 of the first directional coupler 71 and the input end 713 of the second directional coupler 71' are respectively connected to an SMP (sub-miniature push-on) radio frequency connector;
  • SMP sub-miniature push-on
  • the coupling end 712 and the second set of all the first directional couplers 71 in each of the feed lines The coupling end 712' of the coupler 71' is connected by a combiner 72 or a plurality of cascaded power combiners to form a total output 721, a total of 72 or a cascade of power combiners.
  • the output 721 is also connected to the SMP RF connector, respectively, wherein the total output 721 can be used for calibration or monitoring purposes.
  • the surface of the third dielectric substrate 8 away from the second dielectric substrate 5 is provided with a metal ground 9 which can replace the reflector in the conventional antenna, which reduces the number of antenna components and greatly reduces the number of antenna components.
  • the size and weight of the antenna is provided with a metal ground 9 which can replace the reflector in the conventional antenna, which reduces the number of antenna components and greatly reduces the number of antenna components. The size and weight of the antenna.
  • the dielectric constant ranges of the first dielectric substrate 1, the second dielectric substrate 5, and the third dielectric substrate 8 are respectively 2.2 to 10.2; the thickness of the first dielectric substrate 1 ranges from 0.254 mm to 1.016. Mm, and the total thickness of the first dielectric substrate 1, the second dielectric substrate 5, and the third dielectric substrate 8 ranges from 0.76 mm to 2.70 mm.
  • the plates of the first dielectric substrate 1, the second dielectric substrate 5, and the third dielectric substrate 8 may all be Rogers R04730JXR.
  • the dielectric constant of each of the first dielectric substrate 1, the second dielectric substrate 5, and the third dielectric substrate 8 may be 3.00, and the thickness of each of the first dielectric substrate 1, the second dielectric substrate 5, and the third dielectric substrate 8 is 0.78mm.
  • the apertures of the first metallization via 4 and the second metallization via 4' may be set to 1.0 mm.
  • the microstrip line 2 and the strip line 7 are both set to N (N>1), and a microstrip line 2 and a strip line 7 are electrically connected to form a feeder.
  • N N>1
  • a microstrip line 2 and a strip line 7 are electrically connected to form a feeder.
  • 1 and 9 are merely examples: the microstrip line 2 and the strip line 7 are respectively arranged as one basic feeder line.
  • the output 212 of the first power dividing circuit 21 and the output 212' of the second power dividing circuit 21' may perform a ⁇ 45° polarization feed for at least one array antenna unit. Electricity. Specifically, the output end 212 of the first power dividing circuit 21 can perform at least -45° polarization feeding for the two array antenna units, and the output end 212' of the second power dividing circuit 21 ′ can be at least two array antenna units. Perform a +45° polarization feed.
  • the first power dividing circuit 21 and the second power dividing circuit 21' may be respectively configured by one power splitter, or may be configured by a plurality of power splitters.
  • the first power dividing circuit 21 and the second power dividing circuit 2 perform ⁇ 45° polarization feeding for the two array antenna units, and the first power dividing circuit 21 and the second power dividing unit
  • the circuit 21' is preferably a two-way splitter; and when the first power split circuit 21 and the second power split circuit 21' are to perform a 45° polarization feed for the three array antenna units, the first The power dividing circuit 21 and the second power dividing circuit 21' may respectively be a three-point splitter Alternatively, a one-two splitter can be cascaded at two outputs of a one-two splitter, that is, as long as the first power split circuit 21 and the second power split circuit 21' are respectively formed into four Output, the structure can perform polarization feeding for ⁇ 45° for four (including four) array antenna units, such as M
  • (M ⁇ 4) array antenna units perform polarization feed ⁇ 45°, and arbitrarily select M output terminals in the first power dividing circuit 21 to perform -45° polarization feeding for M array antenna units, and In the second power dividing circuit 21', the M output terminals are arbitrarily selected to perform +45° polarization feeding for the M array antenna units.
  • M ⁇ 4 array antenna units perform polarization feed ⁇ 45°, and arbitrarily select M output terminals in the first power dividing circuit 21 to perform -45° polarization feeding for M array antenna units, and In the second power dividing circuit 21', the M output terminals are arbitrarily selected to perform +45° polarization feeding for the M array antenna units.
  • the first power dividing circuit 21 and the second power dividing circuit 21' in the same feeding line may perform ⁇ 45° polarization feeding for two or more array antenna units that are completely different or partially identical, preferably , ⁇ 45° polarization feed can be performed for two identical array antenna units for wiring and control.
  • the present invention further provides a base station antenna, comprising the filter feed network according to any of the above embodiments.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Waveguide Aerials (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Input Circuits Of Receivers And Coupling Of Receivers And Audio Equipment (AREA)

Abstract

一种滤波馈电网络,包括介质基板(1);介质基板(1)一侧表面设置有微带线线路(2),介质基板(1)另一侧表面设置有金属地(3);微带线线路(2)包括第一、第二功分电路(21、21')及第一、第二滤波电路(220、220');第一滤波电路(220)的输入端、输出端分别对应与第一功分电路(21)的输入端、输出端连接,第二滤波电路(220')的输入端、输出端分别对应与第二功分电路(21')的输入端、输出端连接,第一滤波电路(220)的输入端及第二滤波电路(220')的输入端分别与金属地(3)导通;第一功分电路(21)的输出端(212)为至少两个阵列天线单元的-45°极化馈电,第二功分电路(21')的输出端(212')为至少两个阵列天线单元的+45°极化馈电。本发明还提供一种基站天线。该滤波馈电网络集成度高、重量轻、体积小且适合大规模生产。

Description

滤波馈电网络及基站天线
技术领域
[0001] 本发明涉及移动通信基站技术领域, 特别是涉及滤波馈电网络及基站天线。
背景技术
[0002] 分布式基站天线是无源天线, 采用电缆将远端射频单元 (Remote Radio Unit, 简称 RRU) 与天线连接, 其中 RRU包含双工器、 发射 /接收滤波器、 低噪声放大 器、 功率放大器、 多模多频 RF模块、 数字中频等无源模块和有源模块。
[0003] 4.5G、 5G移动基站的发展趋势是采用大规模 MIMO的有源天线, 有源天线将整 个 RRU和天线有机的结合起来, 即射频单元大量使用分布式的射频芯片集成在 天线内部。 性能上, 传统基站是固定下倾角度, 而有源天线基站可以实现灵活 的 3D MIMO波束赋形, 实现不同用户不同的下倾角以及精细的网络优化, 提高 系统容量和增大覆盖范围。 结构上, 分布式基站的 RRU体积较大, 重量重, 贴 在天线背部安装; 而大规模 MIMO有源天线集成度高, 尺寸小, 容易安装和维护
[0004] RRU中无源模块之一的发射 /接收滤波器的功能是避免相邻信道间的干扰、 提 高通信容量和信道信噪比。 目前, RRU所用滤波器主要有同轴线滤波器、 空气 腔体滤波器, 该类型滤波器尺寸较大, 重量较重, 难以与天线实现一体化设计 技术问题
[0005] 本发明为解决上述技术问题提供一种滤波馈电网络及基站天线, 该滤波馈电网 络集成度高、 重量轻、 体积小且适合大规模生产。
问题的解决方案
技术解决方案
[0006] 为解决上述技术问题, 本发明提供一种滤波馈电网络, 包括: 介质基板; 所述 介质基板一侧表面设置有微带线线路, 所述介质基板另一侧表面设置有金属地
; 所述微带线线路包括第一、 第二功分电路及第一、 第二滤波电路; 所述第一 滤波电路的输入端、 输出端分别对应与所述第一功分电路的输入端、 输出端连 接, 所述第二滤波电路的输入端、 输出端分别对应与所述第二功分电路的输入 端、 输出端连接, 所述第一滤波电路的输入端及所述第二滤波电路的输入端分 别与所述金属地导通; 所述第一功分电路的输出端为至少两个阵列天线单元的 -4 5°极化馈电, 所述第二功分电路的输出端为至少两个阵列天线单元的 +45°极化馈 电。
[0007] 进一步地, 所述第一滤波电路包括第一低通滤波器和第一带通滤波器, 所述第 二滤波电路包括第二低通滤波器和第二带通滤波器; 所述第一带通滤波器的输 出端与所述第一低通滤波器的输入端连接, 所述第一带通滤波器的输入端与所 述第一功分电路的输入端连接, 所述第一低通滤波器的输出端与所述第一功分 电路的输出端连接; 所述第二带通滤波器的输出端与所述第二低通滤波器的输 入端连接, 所述第二带通滤波器的输入端与所述第二功分电路的输入端连接, 所述第二低通滤波器的输出端与所述第二功分电路的输出端连接。
[0008] 进一步地, 所述第一低通滤波器以及所述第二低通滤波器均为高低阻抗微带低 通滤波器。
[0009] 进一步地, 所述第一低通滤波器以及所述第二低通滤波器均为七阶高低阻抗微 带低通滤波器。
[0010] 进一步地, 所述第一带通滤波器及所述第二带通滤波器均由两个幵口六边形的 微带线嵌套且在幵口端连接构成。
[0011] 进一步地, 所述第一带通滤波器中幵口六边形的一幵口端通过阻抗变换段与第 一功分电路的输入端连接、 另一幵口端通过另一阻抗变换段与所述第一低通滤 波器的输入端连接; 所述第二带通滤波器中幵口六边形的一幵口端通过阻抗变 换段与第二功分电路的输入端连接、 另一幵口端通过另一阻抗变换段与所述第 二低通滤波器的输入端连接。
[0012] 进一步地, 所述第一低通滤波器以及所述第二低通滤波器的截止频率为 3.5GHz
[0013] 进一步地, 所述第一带通滤波器及所述第二带通滤波器的通带中心频率均为 2.6 GHz。 [0014] 进一步地, 所述介质基板的介电常数范围分别为 2.2〜10.2; 所述介质基板的厚 度范围为 0.254mm〜1.016mm。
[0015] 进一步地, 所述第一滤波电路的输入端通过一金属化过孔与所述金属地连接, 所述第二滤波电路的输入端通过另一金属化过孔与所述金属地连接。
[0016] 进一步地, 所述第一功分电路和所述第二功分电路分别由一个一分二功分器构 成; 或者, 所述第一功分电路和所述第二功分电路分别由多个功分器级联构成
[0017] 为解决上述技术问题, 本发明还提供一种基站天线, 包括如上述任一项实施例 所述的滤波馈电网络。
[0018] 进一步地, 所述基站天线是采用 MIM0系统的基站天线。
发明的有益效果
有益效果
[0019] 本发明的滤波馈电网络具有如下有益效果:
[0020] 采用微带滤波器取代 RRU腔体滤波器, 且与微带功分器集成在一起, 实现有滤 波功能的滤波馈电网络, 简化了射频单元结构, 提高了系统集成度, 滤波馈电 网络集成度高、 重量轻、 体积小且适合大规模生产。
[0021] 另外, 微带低通滤波器取代腔体滤波器内的金属杆状低通滤波器, 滤除带通滤 波器的高次谐波; 同吋采用微带低通滤波器和微带带通滤波器串联并与微带功 分器集成在一起实现有滤波功能的滤波馈电网络, 能够降低腔体滤波器的带外 抑制的要求, 并能够降低滤波器体积和重量。
对附图的简要说明
附图说明
[0022] 图 1是本发明滤波馈电网络一实施例的剖面结构示意图。
[0023] 图 2是图 1所示滤波馈电网络中微带线线路一实施例的结构示意图。
[0024] 图 3是图 2所示微带线线路中带通滤波器的结构示意图。
[0025] 图 4是图 2所示微带线线路中低通滤波器的结构示意图。
[0026] 图 5是图 3所示微带线线路中带通滤波器传输频率响应曲线图。
[0027] 图 6是图 4所示微带线线路中低通滤波器传输频率响应曲线图。 [0028] 图 7是图 2所示微带线线路中低通滤波器和带通滤波器传输频率响应曲线图。
[0029] 图 8是图 1所示滤波馈电网络中微带线线路另一实施例的结构示意图。
[0030] 图 9是本发明滤波馈电网络另一实施例的剖面结构示意图。
[0031] 图 10是图 9所示滤波馈电网络中带状线路的结构示意图。
本发明的实施方式
[0032] 下面结合附图和实施方式对本发明进行详细说明。
[0033] 参阅图 1, 本发明提供一种滤波馈电网络, 该滤波馈电网络包括: 第一介质基 板 1 ; 第一介质基板 1一侧表面设置有微带线线路 2, 第一介质基板 1另一侧表面 设置有金属地 3。
[0034] 该微带线线路 2包括结构相同的第一功分电路 21、 第二功分电路 2Γ, 以及包括 结构相同的第一滤波电路 220、 第二滤波电路 220'。 该第一滤波电路 220的输入端 与第一功分电路 21的输入端 211连接、 输出端与第一功分电路 21的输出端 212连 接; 该第二滤波电路 220'的输入端与第二功分电路 21 '的输入端 21 Γ连接、 输出 端与第二功分电路 21 '的输出端 212'连接。 第一滤波电路 220的输入端及第二滤波 电路 220'的输入端分别与金属地 3导通, 优选地, 该第一滤波电路 220的输入端通 过第一金属化过孔 4与金属地 3连接, 第二滤波电路 220'的输入端通过第二金属化 过孔 4'与金属地 3连接。
[0035] 在一应用实施例中, 请参阅图 2, 该第一滤波电路 220包括串联设置的第一低通 滤波器 22和第一带通滤波器 23, 该第二滤波电路 220'包括串联设置的第二低通滤 波器 22'和第二带通滤波器 23'。 该第一低通滤波器 22与第二低通滤波器 22'结构 相同, 该第一带通滤波器 23与第二带通滤波器 23'结构也相同。
[0036] 具体而言, 第一带通滤波器 23的输出端 232与第一低通滤波器 22的输入端 221可 以通过微带线连接, 第一带通滤波器 23的输入端 231与第一功分电路 21的输入端 211可以通过微带线连接, 第一低通滤波器 22的输出端 222与第一功分电路 21的 输出端 212可以通过微带线连接; 第二带通滤波器 23'的输出端 232'与第二低通滤 波器 22'的输入端 221 '可以通过微带线连接, 第二带通滤波器 23 '的输入端 231 '与 第二功分电路 2 Γ的输入端 21 Γ可以通过微带线连接, 第二低通滤波器 22'的输出 端 222'与第二功分电路 21 '的输出端 212'可以通过微带线连接。
[0037] 如图 3所示, 由于第一带通滤波器 23与第二带通滤波器 23'结构相同, 故以第一 带通滤波器 23为例对其结构进行说明。 该第一带通滤波器 23由两个幵口六边形 的微带线 233、 234嵌套且在幵口端连接构成。
[0038] 继续参阅图 3, 第一带通滤波器 23中幵口六边形的一幵口端通过阻抗变换段 235 1与第一功分电路 21的输入端 211连接、 另一幵口端通过另一阻抗变换段 2351 '与 第一低通滤波器 22的输入端 221连接; 第二带通滤波器 23'中幵口六边形的一幵口 端通过阻抗变换段 (未标示) 与第二功分电路 21 '的输入端 211'连接、 另一幵口 端通过另一阻抗变换段 (未标示) 与第二低通滤波器 22'的输入端 22Γ连接。 其 中, 第一带通滤波器 23及第二带通滤波器 23'的通带中心频率均为 2.6GHz。
[0039] 请参阅图 4, 第一低通滤波器 22以及第二低通滤波器 22'均为高低阻抗微带低通 滤波器。 第一低通滤波器 22以及第二低通滤波器 22'均为七阶高低阻抗微带低通 滤波器。 由于第一低通滤波器 22与第二地低通滤波器结构相同, 故以第一低通 滤波器 22为例对其具体结构进行说明, 如图 4所示, 其采用 4个低阻抗线 223和 3 个高阻抗线 224串联且交错排列而构成。 其中, 第一低通滤波器 22以及第二低通 滤波器 22'的截止频率优选为 3.5GHz。
[0040] 请参阅图 5, 为前述带通滤波器传输频率响应曲线, 通带频率为 2.575GHz〜2.6 35GHz; 参阅图 6, 为前述低通滤波器传输频率响应曲线, 截至频率 3.5GHz; 参 阅图 7, 低通和带通滤波器传输频率响应曲线, 4.0GHz〜10GHz内的高频谐波被 抑制。
[0041] 本发明的滤波馈电网络具有如下有益效果:
[0042] 采用微带滤波器取代 RRU腔体滤波器, 且与微带功分器集成在一起, 实现有滤 波功能的滤波馈电网络, 简化了射频单元结构, 提高了系统集成度, 滤波馈电 网络集成度高、 重量轻、 体积小且适合大规模生产。
[0043] 并且, 微带低通滤波器取代传统的腔体滤波器内的金属杆状低通滤波器, 滤除 带通滤波器的高次谐波; 同吋采用微带低通滤波器和微带带通滤波器串联并与 微带功分器集成在一起实现有滤波功能的滤波馈电网络, 降能够低腔体滤波器 的带外抑制的要求, 并能够降低滤波器体积和重量。 [0044] 在一实施例中, 简易示意如图 8所示, 第一滤波电路 220可以仅由一个带通滤波 器构成, 而第二滤波电路 220'也可以仅由一个带通滤波器构成, 该两个带通滤波 器结构相同。 第一滤波电路 220中的带通滤波器的输入端 2201与第一功分电路 21 的输入端 211通过微带线连接、 输出端 2202与第一功分电路 21的输出端 212通过 微带线连接, 第二滤波电路 220'中的带通滤波器的输入端 220Γ与第二功分电路 2 Γ的输入端 211 '通过微带线连接、 输出端 2202'与第二功分电路 21 '的输出端 212' 通过微带线连接。 并且, 第一滤波电路 220及第二滤波电路 220'中的带通滤波器 可以允许至少一个频率的波通过, 本发明中可允许两个频率的波通过, 优选地 , 可允许 2.54GHz和 5.40GHz的波通过。
[0045] 在另一应用实施例中, 请参阅图 9, 本发明的滤波馈电网络还包括第二介质基 板 5和第三介质基板 8。 其中, 第二介质基板 5及第三介质基板 8依次层叠设置于 第一介质基板 1设有金属地 3的一侧。 进一步地, 第二介质基板 5与第三介质基板 8之间设置有带状线线路 7。
[0046] 具体的, 第一介质基板 1上金属地 3的设置用于保证微带线线路 2和带状线线路 7 的构成。 当然, 可以在第二介质基板 5邻近第一介质基板 1的表面也设置一金属 地 6, 第一介质基板 1上的金属地 3与第二介质基板 5上的金属地 6通过固化片 (图 未示) 连接, 分别在第一介质基板 1与第二介质基板 5上设置金属地 3、 6相较于 仅在第一介质基板 1上设置金属地 3而言, 更有助于提高该滤波馈电网络的电气 性能。
[0047] 如图 10所示, 该带状线线路 7包括结构相同的第一定向耦合器 71及第二定向耦 合器 71', 第一定向耦合器 71的输出端 711与第一功分电路 21的输入端 211通过第 一金属化过孔 4导通, 第二定向耦合器 71 '的输出端 711 '与第二功分电路 21 '的输 入端 21 Γ通过第二金属化过孔 4'导通。
[0048] 优选地, 第一定向耦合器 71及第二定向耦合器 7Γ均为平行耦合线定向耦合器
[0049] 进一步地, 第一定向耦合器 71的输入端 713、 第二定向耦合器 71 '的输入端 713 分别连接 SMP (sub-miniature push-on, 超小型推入式) 射频连接器; 如后述的 多个馈电线路中, 各馈电线路中全部的第一定向耦合器 71的耦合端 712和第二定 向耦合器 71 '的耦合端 712'通过一功合器 72或多个级联的功合器连接形成一个总 输出端 721, 一个功合器 72或多个级联的功合器形成的总输出端 721也分别连接 至 SMP射频连接器, 其中, 利用该总输出端 721可以方便进行校准或监测作用。
[0050] 第三介质基板 8远离第二介质基板 5的表面设置有金属地 9, 该金属地 9的设置能 够代替传统天线中的反射板, 减少了天线零部件的数量, 并极大减少了天线的 体积和重量。
[0051] 上述各实施例中, 第一介质基板 1、 第二介质基板 5以及第三介质基板 8的介电 常数范围分别为 2.2〜10.2; 该第一介质基板 1的厚度范围 0.254mm〜1.016mm, 而第一介质基板 1、 第二介质基板 5以及第三介质基板 8的总厚度范围为 0.76mm〜 2.70mm。 举例而言, 第一介质基板 1、 第二介质基板 5以及第三介质基板 8的板材 均可以选用 Rogers R04730JXR。 优选地, 第一介质基板 1、 第二介质基板 5以及 第三介质基板 8各自的介电常数可以为 3.00, 第一介质基板 1、 第二介质基板 5以 及第三介质基板 8各自的厚度为 0.78mm。 另外, 该第一金属化过孔 4及第二金属 化过孔 4'的孔径可以设置为 1.0mm。
[0052] 实际使用吋, 微带线线路 2和带状线线路 7都设置为 N (N>1) 个, 一微带线线 路 2与一带状线线路 7导通构成一馈电线路。 文中图 1及图 9所示仅为举例说明: 该微带线线路 2和带状线线路 7分别仅设置成一个所构成的一个基本的馈电线路
[0053] 在结合基站天线如 MIM0天线使用吋, 第一功分电路 21的输出端 212和第二功 分电路 21 '的输出端 212'可以为至少一个阵列天线单元进行 ±45°极化馈电。 具体 的, 第一功分电路 21的输出端 212至少可以为两个阵列天线单元进行 -45°极化馈 电, 第二功分电路 21 '的输出端 212'至少可以为两个阵列天线单元进行 +45°极化 馈电。 其中, 该第一功分电路 21及该第二功分电路 21 '分别可以由一个功分器构 成, 或者分别可以由多个功分器级联而构成。
[0054] 进一步举例说明, 该第一功分电路 21和第二功分电路 2Γ要为两个阵列天线单 元进行 ±45°极化馈电吋, 该第一功分电路 21和第二功分电路 21 '均优选为一分二 功分器; 而当该第一功分电路 21和第二功分电路 21 '要为三个阵列天线单元进行土 45°极化馈电吋, 该第一功分电路 21和第二功分电路 21 '分别可以是一分三功分器 ; 或者, 可以通过在一个一分二功分器的两个输出端分别级联一个一分二功分 器, 即最终只要第一功分电路 21和第二功分电路 21 '分别形成有四个输出端, 该 结构可以为四个以内 (包括四个) 阵列天线单元进行 ±45°进行极化馈电, 如为 M
(M<4) 个阵列天线单元进行 ±45°进行极化馈电吋, 在第一功分电路 21中任意 选择 M个输出端为 M个阵列天线单元进行 -45°极化馈电, 并在第二功分电路 21 '中 任意选择 M个输出端为 M个阵列天线单元进行 +45°极化馈电即可。 当需要为更多 阵列天线单元进行 ±45°极化馈电, 可以依此类推, 只要能够形成相应多个输出 端即可。
[0055] 其中, 同一馈电线路中的第一功分电路 21和第二功分电路 21 '可以为完全不同 或部分相同的两个以上阵列天线单元进行 ±45°极化馈电, 优选为, 可以为完全 相同的两个以上阵列天线单元进行 ±45°极化馈电, 以便于布线和控制。
[0056] 另外, 本发明还提供一种基站天线, 包括如上述任一项实施例所述的滤波馈电 网络。
[0057] 以上仅为本发明的实施方式, 并非因此限制本发明的专利范围, 凡是利用本发 明说明书及附图内容所作的等效结构或等效流程变换, 或直接或间接运用在其 他相关的技术领域, 均同理包括在本发明的专利保护范围内。

Claims

权利要求书
[权利要求 1] 一种滤波馈电网络, 其特征在于, 包括:
介质基板;
所述介质基板一侧表面设置有微带线线路, 所述介质基板另一侧表面 设置有金属地;
所述微带线线路包括第一、 第二功分电路及第一、 第二滤波电路; 所 述第一滤波电路的输入端、 输出端分别对应与所述第一功分电路的输 入端、 输出端连接, 所述第二滤波电路的输入端、 输出端分别对应与 所述第二功分电路的输入端、 输出端连接, 所述第一滤波电路的输入 端及所述第二滤波电路的输入端分别与所述金属地导通;
所述第一功分电路的输出端为至少两个阵列天线单元的 -45°极化馈电 , 所述第二功分电路的输出端为至少两个阵列天线单元的 +45°极化馈 电。
[权利要求 2] 根据权利要求 1所述的滤波馈电网络, 其特征在于:
所述第一滤波电路包括第一低通滤波器和第一带通滤波器, 所述第二 滤波电路包括第二低通滤波器和第二带通滤波器; 所述第一带通滤波器的输出端与所述第一低通滤波器的输入端连接, 所述第一带通滤波器的输入端与所述第一功分电路的输入端连接, 所 述第一低通滤波器的输出端与所述第一功分电路的输出端连接; 所述第二带通滤波器的输出端与所述第二低通滤波器的输入端连接, 所述第二带通滤波器的输入端与所述第二功分电路的输入端连接, 所 述第二低通滤波器的输出端与所述第二功分电路的输出端连接。
[权利要求 3] 根据权利要求 2所述的滤波馈电网络, 其特征在于:
所述第一低通滤波器以及所述第二低通滤波器均为高低阻抗微带低通 滤波器。
[权利要求 4] 根据权利要求 3所述的滤波馈电网络, 其特征在于:
所述第一低通滤波器以及所述第二低通滤波器均为七阶高低阻抗微带 低通滤波器。
[权利要求 5] 根据权利要求 2所述的滤波馈电网络, 其特征在于:
所述第一带通滤波器及所述第二带通滤波器均由两个幵口六边形的微 带线嵌套且在幵口端连接构成。
[权利要求 6] 根据权利要求 5所述的滤波馈电网络, 其特征在于:
所述第一带通滤波器中幵口六边形的一幵口端通过阻抗变换段与第一 功分电路的输入端连接、 另一幵口端通过另一阻抗变换段与所述第一 低通滤波器的输入端连接; 所述第二带通滤波器中幵口六边形的一幵 口端通过阻抗变换段与第二功分电路的输入端连接、 另一幵口端通过 另一阻抗变换段与所述第二低通滤波器的输入端连接。
[权利要求 7] 根据权利要求 2所述的滤波馈电网络, 其特征在于:
所述第一低通滤波器以及所述第二低通滤波器的截止频率为 3.5GHz
[权利要求 8] 根据权利要求 2所述的滤波馈电网络, 其特征在于:
所述第一带通滤波器及所述第二带通滤波器的通带中心频率均为 2.6G Hz。
[权利要求 9] 根据权利要求 1所述的滤波馈电网络, 其特征在于:
所述介质基板的介电常数范围分别为 2.2〜10.2; 所述介质基板的厚度 范围为 0.254mn!〜 1.016mm。
[权利要求 10] 根据权利要求 1所述的滤波馈电网络, 其特征在于:
所述第一滤波电路的输入端通过一金属化过孔与所述金属地连接, 所 述第二滤波电路的输入端通过另一金属化过孔与所述金属地连接。
[权利要求 11] 根据权利要求 1所述的滤波馈电网络, 其特征在于:
所述第一功分电路和所述第二功分电路分别由一个一分二功分器构成 ; 或者, 所述第一功分电路和所述第二功分电路分别由多个功分器级 联构成。
[权利要求 12] —种基站天线, 其特征在于, 包括如上述 1〜11任一项所述的滤波馈 电网络。
[权利要求 13] 根据权利要求 12所述的基站天线, 其特征在于: 所述基站天线是采用 MIMO系统的基站天线。
PCT/CN2016/105460 2016-08-09 2016-11-11 滤波馈电网络及基站天线 WO2018028066A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP16912520.0A EP3439110B1 (en) 2016-08-09 2016-11-11 Filter feed network and base-station antenna
CN201690000367.6U CN209183756U (zh) 2016-08-09 2016-11-11 滤波馈电网络及基站天线
PL16912520.0T PL3439110T3 (pl) 2016-08-09 2016-11-11 Sieć zasilająca filtr i antena stacji bazowej
HRP20220601TT HRP20220601T1 (hr) 2016-08-09 2016-11-11 Mreža za napajanje filtra i antena bazne postaje
US16/093,346 US10886634B2 (en) 2016-08-09 2016-11-11 Filter feeding network and base station antenna
ES16912520T ES2913284T3 (es) 2016-08-09 2016-11-11 Red de alimentación de filtro y antena de estación base

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CNPCT/CN2016/094132 2016-08-09
PCT/CN2016/094132 WO2018027539A1 (zh) 2016-08-09 2016-08-09 馈电网络

Publications (1)

Publication Number Publication Date
WO2018028066A1 true WO2018028066A1 (zh) 2018-02-15

Family

ID=58591324

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2016/094132 WO2018027539A1 (zh) 2016-08-09 2016-08-09 馈电网络
PCT/CN2016/105460 WO2018028066A1 (zh) 2016-08-09 2016-11-11 滤波馈电网络及基站天线

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/094132 WO2018027539A1 (zh) 2016-08-09 2016-08-09 馈电网络

Country Status (8)

Country Link
US (1) US10886634B2 (zh)
EP (1) EP3439110B1 (zh)
CN (3) CN209183755U (zh)
ES (1) ES2913284T3 (zh)
HR (1) HRP20220601T1 (zh)
PL (1) PL3439110T3 (zh)
PT (1) PT3439110T (zh)
WO (2) WO2018027539A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111710968A (zh) * 2020-07-16 2020-09-25 北京邮电大学 基于耦合功分器馈电的毫米波差分滤波双贴片天线
CN117691351A (zh) * 2024-02-01 2024-03-12 西南科技大学 一种加载串行配置滤波条带的宽带滤波圆极化天线

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018027539A1 (zh) * 2016-08-09 2018-02-15 广东通宇通讯股份有限公司 馈电网络
CN107342827B (zh) * 2017-07-27 2023-06-23 广东通宇通讯股份有限公司 天线阵列校准网络
EP3680986A4 (en) * 2017-09-07 2021-04-07 Tongyu Communication Inc. BASE STATION ANTENNA AND ITS ANTENNA NETWORK MODULE
US11387572B2 (en) * 2018-06-26 2022-07-12 Kyocera Corporation Antenna element, array antenna, communication unit, mobile object, and base station
CN109193181A (zh) * 2018-09-06 2019-01-11 南京信息工程大学 与滤波器和功分器集成的四单元微带天线阵列
CN110112572B (zh) * 2019-05-10 2024-01-23 华南理工大学 一种滤波功分移相一体化的天线阵列馈电网络
CN110783679B (zh) * 2019-11-01 2021-06-01 中国电子科技集团公司第三十八研究所 一种硅基单通道传输结构、同轴阵列传输结构及加工方法
JP7209314B2 (ja) * 2019-11-13 2023-01-20 国立大学法人埼玉大学 アンテナモジュールおよびそれを搭載した通信装置
CN110957567A (zh) * 2019-12-27 2020-04-03 京信通信技术(广州)有限公司 一种双极化双工振子和天线
RU2748864C1 (ru) * 2020-06-16 2021-06-01 Федеральное государственное бюджетное образовательное учреждение высшего образования "Сибирский государственный университет науки и технологий имени академика М.Ф. Решетнева" (СибГУ им. М.Ф. Решетнева) Микрополосковый полосно-пропускающий фильтр
CN112531307A (zh) * 2020-12-01 2021-03-19 中国科学院上海微系统与信息技术研究所 一种带滤波功能的低温传输线
CN112768936B (zh) * 2020-12-30 2024-03-29 深圳市信丰伟业科技有限公司 一种离散式5g天线隔离系统
CN112994734B (zh) * 2021-02-10 2022-04-12 西南电子技术研究所(中国电子科技集团公司第十研究所) K频段射频前端四通道天线接口单元板
CN115566382B (zh) * 2022-11-14 2023-03-24 四川斯艾普电子科技有限公司 基于厚膜集成的小尺寸多通带/阻带滤波器组及实现方法
CN116668235B (zh) * 2023-08-01 2023-12-22 北京国科天迅科技股份有限公司 实现串行数据传输的装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101621337A (zh) * 2008-06-30 2010-01-06 华为技术有限公司 一种时延调节装置与方法
CN201812911U (zh) * 2010-09-30 2011-04-27 佛山市健博通电讯实业有限公司 一种用于基站天线的内置微带合路器
US20120169561A1 (en) * 2010-12-30 2012-07-05 Telekom Malaysia Berhad 450 MHz DONOR ANTENNA
CN204732538U (zh) * 2015-03-27 2015-10-28 湖北大学 一种Sierpinski分形微带阵列天线

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6545572B1 (en) * 2000-09-07 2003-04-08 Hitachi Chemical Co., Ltd. Multi-layer line interfacial connector using shielded patch elements
EP1296406A1 (en) * 2001-09-21 2003-03-26 Alcatel Second harmonic spurious mode suppression in half-wave resonators, with application to microwave filtering structures
EP1488537A2 (en) * 2002-03-18 2004-12-22 EMS Technologies, Inc. Passive intermodulation interference control circuits
JP3932962B2 (ja) * 2002-04-17 2007-06-20 株式会社村田製作所 バンドパスフィルタ及び通信機
ES2235623B1 (es) * 2003-09-25 2006-11-01 Universitat Autonoma De Barcelona Filtros y antenas de microondas y milimetricas basados en resonadores de anillos abiertos y en lineas de transmision planares.
JP4486035B2 (ja) * 2005-12-12 2010-06-23 パナソニック株式会社 アンテナ装置
TWI371133B (en) * 2007-06-28 2012-08-21 Richwave Technology Corp Micro-strip antenna with an l-shaped band-stop filter
CN101794926A (zh) * 2010-03-26 2010-08-04 华东交通大学 一种基于五边形闭环谐振器的带通滤波器
CN201812933U (zh) * 2010-07-19 2011-04-27 海宁胜百信息科技有限公司 一体化滤波天线
CN102082327B (zh) * 2010-11-25 2014-07-16 广东通宇通讯股份有限公司 一体化移相器馈电网络
JP5920868B2 (ja) * 2011-10-07 2016-05-18 国立大学法人電気通信大学 伝送線路共振器、帯域通過フィルタ及び分波器
CN103050753A (zh) * 2012-12-12 2013-04-17 青岛联盟电子仪器有限公司 多层巴伦
CN103915669B (zh) * 2014-03-07 2017-01-11 华南理工大学 具有双通带的滤波功分器
US9391370B2 (en) * 2014-06-30 2016-07-12 Samsung Electronics Co., Ltd. Antenna feed integrated on multi-layer PCB
CN104091991B (zh) * 2014-07-16 2016-11-02 东南大学 一种多路基片集成波导功分器
CN104332683B (zh) * 2014-11-19 2017-03-29 重庆大学 一种应用于PCS&WiMAX频段的双通带六边形滤波器
CN104882680B (zh) * 2015-04-29 2017-06-30 东南大学 一种小型化的多波束天线阵列及与其连接的网络合路
CN104900947B (zh) * 2015-05-20 2017-10-27 电子科技大学 具有良好频率选择特性的微带超宽带带通滤波器
WO2018027539A1 (zh) * 2016-08-09 2018-02-15 广东通宇通讯股份有限公司 馈电网络

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101621337A (zh) * 2008-06-30 2010-01-06 华为技术有限公司 一种时延调节装置与方法
CN201812911U (zh) * 2010-09-30 2011-04-27 佛山市健博通电讯实业有限公司 一种用于基站天线的内置微带合路器
US20120169561A1 (en) * 2010-12-30 2012-07-05 Telekom Malaysia Berhad 450 MHz DONOR ANTENNA
CN204732538U (zh) * 2015-03-27 2015-10-28 湖北大学 一种Sierpinski分形微带阵列天线

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111710968A (zh) * 2020-07-16 2020-09-25 北京邮电大学 基于耦合功分器馈电的毫米波差分滤波双贴片天线
CN117691351A (zh) * 2024-02-01 2024-03-12 西南科技大学 一种加载串行配置滤波条带的宽带滤波圆极化天线
CN117691351B (zh) * 2024-02-01 2024-05-14 西南科技大学 一种加载串行配置滤波条带的宽带滤波圆极化天线

Also Published As

Publication number Publication date
US10886634B2 (en) 2021-01-05
ES2913284T3 (es) 2022-06-01
HRP20220601T1 (hr) 2022-06-24
EP3439110A4 (en) 2019-12-11
CN106602280A (zh) 2017-04-26
EP3439110B1 (en) 2022-02-16
PT3439110T (pt) 2022-05-19
CN209183755U (zh) 2019-07-30
EP3439110A1 (en) 2019-02-06
US20190207325A1 (en) 2019-07-04
WO2018027539A1 (zh) 2018-02-15
PL3439110T3 (pl) 2022-10-10
CN209183756U (zh) 2019-07-30

Similar Documents

Publication Publication Date Title
WO2018028066A1 (zh) 滤波馈电网络及基站天线
WO2019223222A1 (zh) 一种双极化双工天线及其构成的双频基站天线阵列
CN110429374B (zh) 宽带双极化滤波基站天线单元、基站天线阵列及通信设备
US10680323B2 (en) Broadband dual-band base station antenna array with high out-of-band isolation
US10148017B2 (en) Enhanced phase shifter circuit to reduce RF cables
US9525212B2 (en) Feeding network, antenna, and dual-polarized antenna array feeding circuit
EP3573181B1 (en) Base station antenna
CN204130667U (zh) 一种半模基片集成波导双带滤波器
CN111147159A (zh) 校准电路、校准网络和智能天线
CN204271236U (zh) 一种宽频带小型化定向耦合器
CN104064867B (zh) 多频段辐射单元及移动通信天线
KR20150053487A (ko) 다중대역 안테나
CN102664295A (zh) 超宽带微带带通滤波器
CN210926308U (zh) 一种双极化双工振子和天线
WO2018120593A1 (zh) 双频宽带贴片圆极化天线
CN115764261A (zh) 振子馈电装置、通信天线和基站天线
CN212366156U (zh) 一种多频合路器
CN103730719B (zh) 一种基于印刷电路板的小尺寸高隔离三单元多输入多输出天线
CN102760971B (zh) 一种双频高增益载波速双极化天线
WO2018133022A1 (zh) 集成化滤波器系统、天线系统
CN102569955B (zh) 基于非对称支节加载谐振器的双频带通滤波器
CN106654581B (zh) 一种具有去耦网络的双频带mimo天线
CN204375893U (zh) 基于双模阶梯阻抗存根谐振器的超宽带双频带通滤波器
CN105789775A (zh) 基于双模阶梯阻抗存根谐振器的超宽带双频带通滤波器
CN204375892U (zh) 基于阶梯阻抗谐振器的紧凑双频带通超宽带滤波器

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2016912520

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016912520

Country of ref document: EP

Effective date: 20181031

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16912520

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE