WO2018026022A1 - Method of molding metal bellows tube provided with liquid quantity adjustment mechanism, and molding device for same - Google Patents
Method of molding metal bellows tube provided with liquid quantity adjustment mechanism, and molding device for same Download PDFInfo
- Publication number
- WO2018026022A1 WO2018026022A1 PCT/JP2017/028503 JP2017028503W WO2018026022A1 WO 2018026022 A1 WO2018026022 A1 WO 2018026022A1 JP 2017028503 W JP2017028503 W JP 2017028503W WO 2018026022 A1 WO2018026022 A1 WO 2018026022A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- bellows
- cored bar
- space
- adjusting mechanism
- mold
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D15/00—Corrugating tubes
- B21D15/04—Corrugating tubes transversely, e.g. helically
- B21D15/10—Corrugating tubes transversely, e.g. helically by applying fluid pressure
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D26/00—Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces
- B21D26/02—Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces by applying fluid pressure
- B21D26/033—Deforming tubular bodies
Definitions
- the present invention relates to a bellows molding method and a bellows molding apparatus that can be changed to a space portion and prevent an increase in size and complexity of the apparatus with a simple structure, and that can reduce the amount of water and power consumption.
- a metal bellows molding apparatus for bulge processing includes a mold body 1 having a pair of split molds 2 and 2 as a set, and a half hole 2a of both split molds 2 and 2. 2a, the outer circumference of the raw pipe P is clamped and restrained in the radial direction, and a plurality of divided molds 2, 2,... (B) and (c), both ends of the raw pipe P are sealed with end cap members 6 and 6, and the internal pressure of the raw pipe P is increased by a liquid inflow device (not shown).
- the U-shaped convex portions 2 b of the split holes 2 a and 2 a are fitted and moved in the axial direction to form a corrugated bellows (bellows portion).
- 3 ... is a support shaft hole opened at the four corners of the mold body 1, and a support shaft shaft 4 ... penetrating through the support shaft hole 3 ... and a clamp member 5 arranged at the upper part. This prevents the tube axis from collapsing in the axial direction.
- the split mold is constituted by the inner molds 6 and 6 and the outer molds 7 and 7, and the inner mold shafts 6 b and 6 b and the outer mold shaft holes through which the inner mold shaft holes 6 a and 6 a are inserted.
- 7a and 7a are supported by the outer mold shafts 7b and 7b, and the inner molds 6 and 6 and the outer molds 7 and 7 are combined to be slidable and rotatable.
- the inner mold 6 is rotated between the combined position where the split surfaces 6b and 6b of the inner molds 6 and 6 are aligned with the split surfaces 7b and 7b of the outer molds 7 and the molding position where they are not aligned. It is of the method. Thereby, the acting direction of the resultant force between the inner dies 6, 6 and the outer dies 7, 7 can prevent the separation of the inner dies 6, 6 by the rigidity of the outer dies 7, 7.
- Patent Document 2 proposes to provide an inexpensive tubular structure by manufacturing a large-diameter bellows tube by hydraulic forming without causing buckling or the like.
- Patent Document 3 when forming a bellows by hydraulic forming using a straight tubular element tube, the apparatus is made compact and the processing force required for forming is reduced, Bellows molding is provided that allows for a stable seal.
- Patent Document 3 an expansion / contraction core 10 composed of a piston 8 and a cylinder 9 is interposed in a raw tube P for bellows molding, and when the piston 8 operates, the hydraulic chamber 10a inside the expansion / contraction core 10 is located.
- the volume is reduced and the pressure acting on the inside is increased, the volume of the hydraulic chamber 10a formed between the element P and the volume is reduced, and the pressure acting on the inside of the element P is increased and the liquid is increased.
- the inside of the pressure chamber S is adjusted to be constant.
- Patent Document 2 is a technique of hydroforming a bellows tube, it is not formed by adjusting a space formed between a base tube and a cored bar.
- Patent Document 3 is a hydraulic pressure formed between a base tube and a device for compacting the apparatus, reducing a processing force necessary for molding, and enabling a stable seal.
- the applicant of the present application has conducted extensive research in view of such circumstances, and has completed the present invention in order to achieve a technique for preventing an increase in the size of the apparatus with a simple structure.
- An object of the present invention is to form a bellows by closely contacting a molding die on one side when the insertion of the cored bar is completed, and changing the space part formed by the cored bar and the raw tube into a space part with a small volume.
- the simple structure prevents the device from becoming large and complicated, and also enables the reduction of water volume and power consumption.
- both ends of a hollow shell are sealed with a fixed mold and a movable mold as described in claim 1,
- the hollow part is a space part, and a bellows forming mechanism in which a split mold for forming a bellows is formed on the outer periphery of the base tube, a cored bar supporting mold for supporting the cored bar, and the cored bar supporting mold can be moved back and forth.
- a liquid level adjusting mechanism including a cored bar pressing part that moves the cored bar, and a liquid level adjusting mechanism that includes the cored bar pressing part.
- the cored bar is inserted into the space part of the base tube so as to freely advance and retract, and the space part of the base pipe is a different space part before and after the insertion of the cored bar, For sealed small volume space after insertion is complete
- the bellows forming liquid is introduced through the liquid feeding hole of the cored bar, and is formed.
- the bellows forming mechanism is characterized in that the liquid amount adjusting mechanism is attached in a replaceable manner.
- the core metal of the bellows forming mechanism is characterized in that the outer diameter can be appropriately changed to a different outer diameter.
- both ends of a hollow base tube are sealed with a fixed mold and a movable mold as described in claim 4, and the hollow of the base tube is formed.
- a bellows forming mechanism in which a split mold for forming a bellows is formed on the outer periphery of the base tube, a core metal support mold for supporting the core metal, and a metal core support mold that can be moved forward and backward.
- a liquid level adjusting mechanism composed of a cored bar pressing part that moves the cored bar and a cored bar pressing part. The liquid level adjustment is performed on a movable mold on one side of the bellows molding mechanism.
- the cored bar is inserted into the space of the base tube so as to be movable back and forth, and the space of the base tube is a different space before and after the insertion of the cored bar.
- the core Liquid feed holes introduction of bellows molding fluid through characterized in that the made of.
- the space portion after the completion of the insertion of the cored bar is composed of an inner diameter surface of the base tube, an outer diameter surface of the cored bar, the fixed molds, and an inner wall surface of the movable mold. The space portion is formed and sealed, and has a small volume.
- the liquid amount adjusting mechanism is attached to the bellows forming mechanism in a replaceable manner.
- the liquid amount adjusting mechanism or the core bar of the liquid amount adjusting mechanism is exchanged manually.
- the space between the core metal and the raw tube can be changed to a space with a small volume by being in close contact with the molding die on one side. While preventing an increase in size and d complexity, it is possible to reduce the amount of water and power consumption.
- the liquid amount adjusting mechanism is replaceable with the bellows forming mechanism, the simple structure can prevent the apparatus from becoming large and complicated, and can reduce the amount of water and power consumption. . Therefore, as eco-energy, the amount of water at the time of bellows molding can be reduced, the molding time can be reduced, the power consumption can be reduced, and the total cost can be reduced.
- FIG. 2 is a cross-sectional view taken along line AA in FIG.
- FIG. 2 is a longitudinal explanatory view showing the completion of core metal insertion in FIG.
- FIG. 1 is a schematic configuration diagram showing a bellows forming mechanism 11 and a liquid amount adjusting mechanism 15 constituting the bellows forming apparatus.
- the bellows forming mechanism 11 is arranged on the outer periphery of the hollow tube P having a predetermined thickness, the fixed mold 12 and the movable mold 13 which are molding dies for sandwiching both sides of the raw tube P, and the pipe P. And a plurality of divided molds 14.
- the bellows molding is performed by the split molds 14...
- the split mold 14 is half-cut in a curved shape on both sides of the lower part, and the bellows molding is performed by the split holes.
- the hollow shell P has a predetermined outer diameter, a predetermined inner diameter, a predetermined thickness t, a predetermined length, and a fixed mold that is a molding die. Since both ends are disposed on the mold 12 and the movable mold 13, the hollow portion is a space portion S.
- the bellows molding liquid W is conducted to the space S. However, when the bellows molding liquid W is further introduced into the space S, the liquid pressure is increased and the bellows molding liquid W is disposed on the outer periphery of the raw tube P. The bellows is bulged and formed by the divided molds 14.
- Reference numeral 12 a denotes an air hole provided in the fixed mold 12.
- the movable mold 13 is provided with an opening 13a into which a small-diameter support mold body 16c of a core metal support mold 16 to be described later is inserted.
- the bellows forming mechanism 11 is integrated with the cored bar supporting die 16 by the small diameter supporting die main body 16c inserted into the opening hole 13a.
- the divided molds 14 are arranged in a row in the tube axis direction as in the prior art, and are moved in the tube axis direction by a driving device (not shown) and fitted into the U-shaped convex part of the half hole. To form a corrugated bellows.
- the liquid amount adjusting mechanism 15 includes a cored bar support die 16, a cored bar 17 that is inserted into the cored bar supporting mold 16 so as to be able to advance and retract, and a core that moves the cored bar 17 toward and away from the bellows forming mechanism 11. It is comprised by the gold
- FIG. The core metal support die 16 is disposed on the movable die 13 side of the bellows forming mechanism 11, and includes a support die main body 16a, a step portion 16b, and a small-diameter support die main body 16c via the step portion 16b.
- the small-diameter support mold main body 16c is inserted into the opening hole 13a of the movable mold 13, and the support mold main body 16c is fixed to the movable mold 13 through the step portion 16b.
- the cored bar support die 16 has a cored bar insertion hole 16d.
- the cored bar 12 has a hollow liquid feed path 17a having a predetermined length and having a predetermined thickness t.
- the cored bar 12 is inserted into the cored bar support mold 16 so as to be able to advance and retreat, and is bellows via the liquid feed path 17a.
- the molding liquid W is poured into the bellows molding hole 17b.
- the joint surface between the cored bar support die 16 and the cored bar 12 is slid through an O-ring 18 or an oilless bush (not shown), and can be slidable and liquid leakage prevented.
- the O-ring 18 and the oilless bush are appropriately used between the support die main body 16c and the opening hole 13a of the movable die 13, and are made watertight between each other. It can be suitably used as necessary.
- the watertightness between the fixed mold 12 and the movable mold 13 and the raw pipe P is the same, and conventionally known technical means can be appropriately used as necessary.
- the tip end side of the support die body 16c of the cored bar support die 16 is formed with a protruding portion or the like protruding toward the raw tube P side so as to ensure the fitting property with the raw tube P and ensure the water tightness.
- Well-known technical means can be appropriately used as necessary.
- 20 is a movable nozzle
- 21 is a fixed nozzle.
- the bellows forming mechanism 11 and the liquid amount adjusting mechanism 15 can be controlled by the control unit 100. That is, the bellows molding control unit 200 controls the operations of the fixed mold 12, the movable mold 13, the raw pipe P, the divided mold 14.
- the liquid amount adjusting unit 300 controls the operations of the cored bar support die 16, the cored bar 17, and the cored bar pushing part 18.
- the control nozzle 100 controls the fixed nozzle 21 and the movable nozzle 21 which are control valves, and finally the core 17 reaches the fixed mold 12 as shown in FIG.
- the space portion formed by the raw tube P is a narrow space portion which is the raw tube P after the core bar 17 enters from the “normal volume space portion S” which is the space portion S formed by the raw tube P. It is variable to S1, that is, the “small volume space portion S1”.
- FIG. 4 Disassembled state of bellows forming mechanism and liquid amount adjusting mechanism
- the bellows forming mechanism 11 is formed by assembling a fixed mold 12 and a movable mold 13 to a raw tube P to form a space S,
- the liquid amount adjusting mechanism 15 is disposed opposite to the other.
- FIG. 5 Set state of the bellows forming mechanism and the liquid amount adjusting mechanism When the liquid amount adjusting mechanism 15 is assembled to the bellows forming mechanism 11.
- FIG. 6 State of entry of the core bar into the space portion of the base tube
- the core bar 17 enters the space portion S of the base tube P from the state of FIG.
- the space S is gradually narrowed by the cored bar 17.
- FIG. 7 State when the core is completely inserted
- the core 12 is further advanced to complete the insertion, and when the insertion is completed, the tip of the core 12 is in close contact with the fixed mold 14 side.
- FIG. 3 shows a state where the mandrel insertion is completed in FIG. 1 (corresponding to FIG. 6).
- the tip of the metal core 12 is in close contact with the fixed mold 14 side, and the space S is set when the liquid amount adjusting mechanism 15 is assembled to the bellows forming mechanism 11 (
- the space portion S1 having a small volume is changed from the space portion S having a normal volume as shown in FIG.
- the initial space portion S sealed and formed by the raw tube P is a space portion obtained by subtracting the volume due to the insertion of the cored bar 12, that is, a space portion having a small volume. Therefore, the volume when the insertion is completed is V1.
- the bellows forming liquid W is introduced into the space part S1 having a small volume at the time of completion of the insertion in the core metal 12 through the liquid feeding path 12a of the raw pipe P by a command from the control unit 100. Thereafter, the liquid pressure for the bellows forming liquid W is increased in the space S1, and bellows forming is performed on the outer periphery of the raw tube P along with the axial compression of the split mold 14 disposed on the outer periphery of the raw tube P. It will be.
- the bellows molding pressure is the same as the conventional one, and even if the molding pressure is constant, the bellows molding pressing force (bellows molding power) can be reduced. That is, since the space portion P of the raw tube P can be easily changed by a simple structure in which the core metal is inserted, the apparatus can be prevented from becoming large and complicated, and the amount of water introduced into the space portion can be prevented. And the power consumption of the apparatus can be reduced.
- the space portion S1 is secured by the small-diameter support type main body 16c, and the formation of the space portion S1 is secured by the step portion. Moreover, it may be obtained by a ring-shaped ring or the like, and in any case, it is only necessary to secure a small volume bellows forming space S1 formed when insertion is completed.
- the bellows forming liquid is introduced into the space part for bellows forming with this small volume, and bellows forming is performed.
- the bellows molding pressure is the same as the conventional one, and even if it is constant, the bellows molding pressing force can be reduced.
- it since it has a simple structure that only inserts a mandrel, it can prevent the equipment from becoming large and complicated, and it can also reduce the amount of water and power consumption. can do.
- the second embodiment is substantially the same as the first embodiment, but is particularly effective in bellows molding of a large diameter pipe, for example, an oil plant, a nuclear power plant, or an aircraft / space development plant. That is, the first embodiment is suitable for automated bellows forming of a relatively general-purpose small-diameter pipe, but in the case of a large-diameter pipe, bellows molding suitable for a large plant is often required. . In addition, bellows molding suited to the field is often required rather than automated bellows molding.
- the liquid amount adjusting mechanism 11 needs to be replaceable, and the space S can be changed from a normal volume space of the large-diameter tube to a small volume space S1. Even if it is the same, the bellows molding pressing force (bellows molding power) can be reduced, and it is necessary to reduce the amount of water and power consumption.
- conventionally well-known technical means such as a manual operation and an automatic exchanger, about replacement
- small metal bellows suitable for automatic control in order to advance flexible pipes in the medical field, chemical field, aviation field, etc. can be set as the shaping
- the present invention can also be applied to a metal bellows forming method and a metal bellows forming apparatus as a large diameter pipe adapted to a large plant such as an oil plant, a nuclear power plant or an aircraft / space development plant. Further, the present invention can be applied to processing of any other raw material other than the raw pipe and the raw pipe.
Landscapes
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Shaping Metal By Deep-Drawing, Or The Like (AREA)
Abstract
[Problem]
In hydraulic forming of bellows, to prevent an increase in the size and complexity of a device using a simple construction, and to make it possible to reduce the quantity of water and reduce power consumption.
[Solution]
Two ends of a hollow starting material pipe (P) are hermetically sealed by means of a fixed die (12) and a movable die to form a space (S) in a hollow portion of the starting material pipe (P). A divided die (14) is disposed on the outer periphery of the starting material pipe (P) in order to mold the bellows, and a core (17) of a liquid quantity adjustment mechanism (15) is inserted into the space (S) in the starting material pipe (P) with freedom to move forward or backward, to form a space that is different after the core (17) has been inserted compared with the space before the core (17) has been inserted, and bellows molding liquid (W) is introduced via a liquid feed hole (17a) in the core (17) into the sealed space (S1) having the smaller volume after said insertion.
Description
この発明は、バルジ加工により素管外周にベローズを成形する際に、芯金の挿入完了時には一方側の成形金型に密着し、芯金と素管とによって形成される空間部を少ない体積の空間部に可変し、簡単な構造で装置の大型化と複雑化を防ぐと共に、水量の低減化や消費電力の低減化を可能とするベローズ成形方法とベローズ成形装置に関する。
In this invention, when a bellows is formed on the outer periphery of a base pipe by bulging, the space formed by the core metal and the base pipe is reduced in volume with a small volume by closely contacting the molding die on one side when the insertion of the core metal is completed. The present invention relates to a bellows molding method and a bellows molding apparatus that can be changed to a space portion and prevent an increase in size and complexity of the apparatus with a simple structure, and that can reduce the amount of water and power consumption.
従来、バルジ加工用の金属ベローズ成型装置は、図4に示すように、一対の分割金型2、2を一組とする金型本体1を、両分割金型2、2の半割穴2a、2aで素管P の外周を径方向に挟持して拘束し、この複数の分割金型2、2・・・を管体軸方向に多数列設させると共に、図示しない駆動装置によって管体軸方向に移動させ、同図(b)(c)に示すように、素管P の両端側を端キャップ部材6、6により密封し、図示しない液流入装置によって素管P の内圧を高め、半割穴 2 a、2 a の U字状凸部 2 b ・・・に嵌め合わせて軸方向に移動させ、波形のベローズ(蛇腹部)を形成するようにしている。
なお、3・・・は金型本体 1の四隅に開設された支持シャフト孔であり、この支持シャフト孔3・・・を貫通する支持シャフト軸4・・・と上部に配置されたクランプ部材5とにより管体軸方向の倒れを防止するようにしている。 Conventionally, as shown in FIG. 4, a metal bellows molding apparatus for bulge processing includes amold body 1 having a pair of split molds 2 and 2 as a set, and a half hole 2a of both split molds 2 and 2. 2a, the outer circumference of the raw pipe P is clamped and restrained in the radial direction, and a plurality of divided molds 2, 2,... (B) and (c), both ends of the raw pipe P are sealed with end cap members 6 and 6, and the internal pressure of the raw pipe P is increased by a liquid inflow device (not shown). The U-shaped convex portions 2 b of the split holes 2 a and 2 a are fitted and moved in the axial direction to form a corrugated bellows (bellows portion).
In addition, 3 ... is a support shaft hole opened at the four corners of themold body 1, and a support shaft shaft 4 ... penetrating through the support shaft hole 3 ... and a clamp member 5 arranged at the upper part. This prevents the tube axis from collapsing in the axial direction.
なお、3・・・は金型本体 1の四隅に開設された支持シャフト孔であり、この支持シャフト孔3・・・を貫通する支持シャフト軸4・・・と上部に配置されたクランプ部材5とにより管体軸方向の倒れを防止するようにしている。 Conventionally, as shown in FIG. 4, a metal bellows molding apparatus for bulge processing includes a
In addition, 3 ... is a support shaft hole opened at the four corners of the
また、上記のような分割金型の他に、内型と外型の組み合わせによる分割金型、例えば、図5に示すような特許文献1がある。
この分割金型2、2は、分割金型を内型6、6と外型7、7とによって構成し、内型シャフト孔6a、6aを挿通する内型シャフト6b、6bと外型シャフト孔7a、7aを挿通する外型シャフト7b、7bによってこれを支持すると共に、内型6、6と外型7、7とをそれぞれ摺動可能かつ回転可能に組み合わせ、内型6、6に一括して回転力を加え、内型6、6の割り面6b、6bが外型7、7の割り面7b、7bと整合する併せ位置また同じく整合しない成形位置との間にて回転させる内型回転方式のものである。
これにより、内型6、6と外型7、7との合力の作用方向が内型6、6の分離を外型7、7の剛性によって防ぐことができるというものである。 In addition to the above-described split mold, there is a split mold by a combination of an inner mold and an outer mold, for example,Patent Document 1 as shown in FIG.
In the split molds 2 and 2, the split mold is constituted by the inner molds 6 and 6 and the outer molds 7 and 7, and the inner mold shafts 6 b and 6 b and the outer mold shaft holes through which the inner mold shaft holes 6 a and 6 a are inserted. 7a and 7a are supported by the outer mold shafts 7b and 7b, and the inner molds 6 and 6 and the outer molds 7 and 7 are combined to be slidable and rotatable. The inner mold 6 is rotated between the combined position where the split surfaces 6b and 6b of the inner molds 6 and 6 are aligned with the split surfaces 7b and 7b of the outer molds 7 and the molding position where they are not aligned. It is of the method.
Thereby, the acting direction of the resultant force between the inner dies 6, 6 and the outer dies 7, 7 can prevent the separation of the inner dies 6, 6 by the rigidity of the outer dies 7, 7.
この分割金型2、2は、分割金型を内型6、6と外型7、7とによって構成し、内型シャフト孔6a、6aを挿通する内型シャフト6b、6bと外型シャフト孔7a、7aを挿通する外型シャフト7b、7bによってこれを支持すると共に、内型6、6と外型7、7とをそれぞれ摺動可能かつ回転可能に組み合わせ、内型6、6に一括して回転力を加え、内型6、6の割り面6b、6bが外型7、7の割り面7b、7bと整合する併せ位置また同じく整合しない成形位置との間にて回転させる内型回転方式のものである。
これにより、内型6、6と外型7、7との合力の作用方向が内型6、6の分離を外型7、7の剛性によって防ぐことができるというものである。 In addition to the above-described split mold, there is a split mold by a combination of an inner mold and an outer mold, for example,
In the
Thereby, the acting direction of the resultant force between the
ところで、金属製ベローズ管を成形する方法としては、(1)ロール成形方法、(2)液圧成形方法(バルジ成形方法)、(3)溶接による方法、(4)電着による方法等が知られているが、バルジ成形に際しては、金型本体の軸方向の倒れを防ぐことが必須の要件であり、その技術に基づきつつ使用される製品などの目的に応じて各種の技術手段が採用される。
したがって、特許文献2は、座屈等を発生させることなく良好な大口径のベローズ管を液圧成形によって製造し、安価な管状構造体の提供が提案されている。
また、図6に示すように特許文献3には、直管状の素管を用いて液圧成形によりベローズを成形する際に、装置をコンパクトにするとともに、成形に必要な加工力を低減させ、安定したシールを可能とするベローズの成形が提供されている。 By the way, as a method of forming a metal bellows tube, (1) roll forming method, (2) hydraulic forming method (bulge forming method), (3) welding method, (4) electrodeposition method, etc. are known. However, in bulge forming, it is an essential requirement to prevent the mold body from tilting in the axial direction, and various technical means are adopted depending on the purpose of the product used based on that technology. The
Therefore,Patent Document 2 proposes to provide an inexpensive tubular structure by manufacturing a large-diameter bellows tube by hydraulic forming without causing buckling or the like.
In addition, as shown in FIG. 6, inPatent Document 3, when forming a bellows by hydraulic forming using a straight tubular element tube, the apparatus is made compact and the processing force required for forming is reduced, Bellows molding is provided that allows for a stable seal.
したがって、特許文献2は、座屈等を発生させることなく良好な大口径のベローズ管を液圧成形によって製造し、安価な管状構造体の提供が提案されている。
また、図6に示すように特許文献3には、直管状の素管を用いて液圧成形によりベローズを成形する際に、装置をコンパクトにするとともに、成形に必要な加工力を低減させ、安定したシールを可能とするベローズの成形が提供されている。 By the way, as a method of forming a metal bellows tube, (1) roll forming method, (2) hydraulic forming method (bulge forming method), (3) welding method, (4) electrodeposition method, etc. are known. However, in bulge forming, it is an essential requirement to prevent the mold body from tilting in the axial direction, and various technical means are adopted depending on the purpose of the product used based on that technology. The
Therefore,
In addition, as shown in FIG. 6, in
そのため、特許文献3には、ベローズ成形を行う素管P中にピストン8とシリンダ9とよりなる伸縮中子10を介在させ、ピストン8が動作すると伸縮中子10の内部の液圧室10aの体積が小さくなり内部に作用している圧力が高くなり、素管Pとの間に形成される液圧室10aの体積が小さくなり素管Pの内部に作用している圧力が高くなり、液圧室Sの内部が一定になるように調整している。
For this reason, in Patent Document 3, an expansion / contraction core 10 composed of a piston 8 and a cylinder 9 is interposed in a raw tube P for bellows molding, and when the piston 8 operates, the hydraulic chamber 10a inside the expansion / contraction core 10 is located. The volume is reduced and the pressure acting on the inside is increased, the volume of the hydraulic chamber 10a formed between the element P and the volume is reduced, and the pressure acting on the inside of the element P is increased and the liquid is increased. The inside of the pressure chamber S is adjusted to be constant.
しかしながら、特許文献2に示すものは、ベローズ管を液圧成形による技術であるが、素管と芯金との間に形成される空間部を調整して成形するものではない。
また、特許文献3に示すものは、装置をコンパクトにするとともに、成形に必要な加工力を低減させ、安定したシールを可能とすることを目的とし、素管との間に形成される液圧室の体積が小さくする提案はされているもの、素管中にピストンとシリンダとよりなる伸縮中子を介在させるため、また、それ自体の構造なども複雑になり、コンパクトな装置ではならなかった。 However, although what is shown inPatent Document 2 is a technique of hydroforming a bellows tube, it is not formed by adjusting a space formed between a base tube and a cored bar.
In addition, what is shown inPatent Document 3 is a hydraulic pressure formed between a base tube and a device for compacting the apparatus, reducing a processing force necessary for molding, and enabling a stable seal. Although it has been proposed to reduce the volume of the chamber, the expansion and contraction core consisting of the piston and cylinder is interposed in the raw tube, and the structure itself has become complicated, so it has not been a compact device. .
また、特許文献3に示すものは、装置をコンパクトにするとともに、成形に必要な加工力を低減させ、安定したシールを可能とすることを目的とし、素管との間に形成される液圧室の体積が小さくする提案はされているもの、素管中にピストンとシリンダとよりなる伸縮中子を介在させるため、また、それ自体の構造なども複雑になり、コンパクトな装置ではならなかった。 However, although what is shown in
In addition, what is shown in
本願出願人は、このような事情に鑑みて鋭意研究を行い、簡単な構造によって装置の大型化などを防ぐ技術を達成すべく、本願発明の完成を見たものである。
The applicant of the present application has conducted extensive research in view of such circumstances, and has completed the present invention in order to achieve a technique for preventing an increase in the size of the apparatus with a simple structure.
この発明の目的は、ベローズを成形する際に、芯金の挿入完了時には一方側の成形金型に密着させ、芯金と素管とによって形成される空間部を少ない体積の空間部に可変し、簡単な構造で装置の大型化と複雑化を防ぐと共に、水量の低減化や消費電力の低減化を可能とする。
An object of the present invention is to form a bellows by closely contacting a molding die on one side when the insertion of the cored bar is completed, and changing the space part formed by the cored bar and the raw tube into a space part with a small volume. The simple structure prevents the device from becoming large and complicated, and also enables the reduction of water volume and power consumption.
この発明は、液量調整機構を備えた金属ベローズ管の成形方法として、請求項1記載のように、中空状の素管の両端を固定金型と可動金型とによって密封し、上記素管の中空状部を空間部とし、上記素管の外周にベローズを成形をする分割金型を配置したベローズ成形機構と、芯金を支持する芯金支持型と、上記芯金支持型に進退自在に挿入される芯金と、上記芯金を応動する芯金押し込み部と、芯金押し込み部とよりなる液量調整機構とによって構成され、上記ベローズ成形機構の一方側の可動金型に上記液量調整機構を配置すると共に、上記芯金を上記素管の空間部内に進退自在に挿入し、かつ上記素管の空間部は上記芯金の挿入前と挿入完了後において異なる空間部とされ、挿入完了後における密封された少ない体積の空間部に対し、上記芯金の送液孔を介してベローズ成形用液の導入がなされて形成されることを特徴とする。
また、請求項2記載のように、上記ベローズ成形機構は、上記液量調整機構が交換自在に取付けられることを特徴とする。
また、請求項3記載のように、上記ベローズ成形機構の芯金は、外径の寸法を適宜異なる外径に交換自在とすることを特徴とする。 According to the present invention, as a method for forming a metal bellows tube having a liquid amount adjusting mechanism, both ends of a hollow shell are sealed with a fixed mold and a movable mold as described inclaim 1, The hollow part is a space part, and a bellows forming mechanism in which a split mold for forming a bellows is formed on the outer periphery of the base tube, a cored bar supporting mold for supporting the cored bar, and the cored bar supporting mold can be moved back and forth. And a liquid level adjusting mechanism including a cored bar pressing part that moves the cored bar, and a liquid level adjusting mechanism that includes the cored bar pressing part. While arranging a quantity adjusting mechanism, the cored bar is inserted into the space part of the base tube so as to freely advance and retract, and the space part of the base pipe is a different space part before and after the insertion of the cored bar, For sealed small volume space after insertion is complete The bellows forming liquid is introduced through the liquid feeding hole of the cored bar, and is formed.
According to a second aspect of the present invention, the bellows forming mechanism is characterized in that the liquid amount adjusting mechanism is attached in a replaceable manner.
According to a third aspect of the present invention, the core metal of the bellows forming mechanism is characterized in that the outer diameter can be appropriately changed to a different outer diameter.
また、請求項2記載のように、上記ベローズ成形機構は、上記液量調整機構が交換自在に取付けられることを特徴とする。
また、請求項3記載のように、上記ベローズ成形機構の芯金は、外径の寸法を適宜異なる外径に交換自在とすることを特徴とする。 According to the present invention, as a method for forming a metal bellows tube having a liquid amount adjusting mechanism, both ends of a hollow shell are sealed with a fixed mold and a movable mold as described in
According to a second aspect of the present invention, the bellows forming mechanism is characterized in that the liquid amount adjusting mechanism is attached in a replaceable manner.
According to a third aspect of the present invention, the core metal of the bellows forming mechanism is characterized in that the outer diameter can be appropriately changed to a different outer diameter.
また、液量調整機構を備えた金属ベローズ管の成形装置として、請求項4記載のように、中空状の素管の両端を固定金型と可動金型とによって密封し、上記素管の中空状部を空間部とし、上記素管の外周にベローズを成形をする分割金型を配置したベローズ成形機構と、芯金を支持する芯金支持型と、上記芯金支持型に進退自在に挿入される芯金と、上記芯金を応動する芯金押し込み部と、芯金押し込み部とよりなる液量調整機構とによって構成され、上記ベローズ成形機構の一方側の可動金型に上記液量調整機構を配置すると共に、上記芯金を上記素管の空間部内に進退自在に挿入し、かつ上記素管の空間部は上記芯金の挿入前と挿入完了後において異なる空間部とされ、挿入完了後における密封された少ない体積の空間部に対し、上記芯金の送液孔を介してベローズ成形用液の導入がなされることを特徴とする。
また、請求項4記載のように、芯金挿入完了後の上記空間部は、上記素管の内径面と上記芯金の外径面と上記固定金型らおよび可動金型の内壁面とから形成され、密閉された少ない体積の空間部とされることを特徴とする。
また、請求項5記載のように、上記液量調整機構は、上記ベローズ成形機構に対して交換自在に取付けられることを特徴とする。
また、請求項6記載のように、上記液量調整機構または上記液量調整機構の芯金の交換は、手作業で行われることを特徴とする。 Further, as a metal bellows tube forming apparatus provided with a liquid amount adjusting mechanism, both ends of a hollow base tube are sealed with a fixed mold and a movable mold as described inclaim 4, and the hollow of the base tube is formed. A bellows forming mechanism in which a split mold for forming a bellows is formed on the outer periphery of the base tube, a core metal support mold for supporting the core metal, and a metal core support mold that can be moved forward and backward. And a liquid level adjusting mechanism composed of a cored bar pressing part that moves the cored bar and a cored bar pressing part. The liquid level adjustment is performed on a movable mold on one side of the bellows molding mechanism. In addition to the arrangement of the mechanism, the cored bar is inserted into the space of the base tube so as to be movable back and forth, and the space of the base tube is a different space before and after the insertion of the cored bar. Against the sealed small volume space at the back, the core Liquid feed holes introduction of bellows molding fluid through, characterized in that the made of.
According to a fourth aspect of the present invention, the space portion after the completion of the insertion of the cored bar is composed of an inner diameter surface of the base tube, an outer diameter surface of the cored bar, the fixed molds, and an inner wall surface of the movable mold. The space portion is formed and sealed, and has a small volume.
According to a fifth aspect of the present invention, the liquid amount adjusting mechanism is attached to the bellows forming mechanism in a replaceable manner.
According to a sixth aspect of the present invention, the liquid amount adjusting mechanism or the core bar of the liquid amount adjusting mechanism is exchanged manually.
また、請求項4記載のように、芯金挿入完了後の上記空間部は、上記素管の内径面と上記芯金の外径面と上記固定金型らおよび可動金型の内壁面とから形成され、密閉された少ない体積の空間部とされることを特徴とする。
また、請求項5記載のように、上記液量調整機構は、上記ベローズ成形機構に対して交換自在に取付けられることを特徴とする。
また、請求項6記載のように、上記液量調整機構または上記液量調整機構の芯金の交換は、手作業で行われることを特徴とする。 Further, as a metal bellows tube forming apparatus provided with a liquid amount adjusting mechanism, both ends of a hollow base tube are sealed with a fixed mold and a movable mold as described in
According to a fourth aspect of the present invention, the space portion after the completion of the insertion of the cored bar is composed of an inner diameter surface of the base tube, an outer diameter surface of the cored bar, the fixed molds, and an inner wall surface of the movable mold. The space portion is formed and sealed, and has a small volume.
According to a fifth aspect of the present invention, the liquid amount adjusting mechanism is attached to the bellows forming mechanism in a replaceable manner.
According to a sixth aspect of the present invention, the liquid amount adjusting mechanism or the core bar of the liquid amount adjusting mechanism is exchanged manually.
この発明によれば、素管の挿入完了時には一方側の成形金型に密着し芯金と素管との空間部を少ない体積の空間部に可変することができるので、簡単な構造によって装置の大型化とd複雑化を防ぐと共に、水量の低減化や消費電力の低減化を可能とすることができる。
また、液量調整機構は、ベローズ成形機構に対し交換自在とされるので、簡単な構造によって装置の大型化と複雑化を防ぐと共に、水量の低減化や消費電力の低減化を果たすことができる。
したがって、エコエネルギーとして、ベローズ成形時の水量を減らし、成形時間の減らし、消費電力の低減化も可能となり、トータルコストを下げることができることとなる。 According to the present invention, when the insertion of the raw tube is completed, the space between the core metal and the raw tube can be changed to a space with a small volume by being in close contact with the molding die on one side. While preventing an increase in size and d complexity, it is possible to reduce the amount of water and power consumption.
In addition, since the liquid amount adjusting mechanism is replaceable with the bellows forming mechanism, the simple structure can prevent the apparatus from becoming large and complicated, and can reduce the amount of water and power consumption. .
Therefore, as eco-energy, the amount of water at the time of bellows molding can be reduced, the molding time can be reduced, the power consumption can be reduced, and the total cost can be reduced.
また、液量調整機構は、ベローズ成形機構に対し交換自在とされるので、簡単な構造によって装置の大型化と複雑化を防ぐと共に、水量の低減化や消費電力の低減化を果たすことができる。
したがって、エコエネルギーとして、ベローズ成形時の水量を減らし、成形時間の減らし、消費電力の低減化も可能となり、トータルコストを下げることができることとなる。 According to the present invention, when the insertion of the raw tube is completed, the space between the core metal and the raw tube can be changed to a space with a small volume by being in close contact with the molding die on one side. While preventing an increase in size and d complexity, it is possible to reduce the amount of water and power consumption.
In addition, since the liquid amount adjusting mechanism is replaceable with the bellows forming mechanism, the simple structure can prevent the apparatus from becoming large and complicated, and can reduce the amount of water and power consumption. .
Therefore, as eco-energy, the amount of water at the time of bellows molding can be reduced, the molding time can be reduced, the power consumption can be reduced, and the total cost can be reduced.
以下、この発明の実施例を図面に基づき説明する。
図1は、ベローズ成形装置を構成するベローズ成形機構11と液量調整機構15とを示す概略構成図である。
ベローズ成形機構11は、所定厚さを有する中空状の素管Pと、素管Pの両側を挟持する成形金型である固定金型12および可動金型13と、素管Pの外周に配置される複数の分割金型14・・・とによって構成されている。なお、分割金型14・・・によってベローズ成形は行われるが、この分割金型14はその下部の両側を湾曲状に半割され、この半割穴によりベローズ成形は行われるが、図8にも示されるように従来周知であるので詳細な説明は省略する。
具体的には、中空状の素管Pは、所定の外径を有すると共に、所定内径を有し、所定の厚みtを有し、所定長の素管とされ、成形用金型である固定金型12と可動金型13に両端を配置されるため、中空状の部分は空間部Sとされる。
この空間部Sには、ベローズ成形用液Wが導通されるのであるが、空間部S内にベローズ成形用液Wがさらに導入されると液圧が高められ、素管Pの外周に配置された分割金型14・・・によってベローズが膨出成形される。12aは固定金型12に設けられた空気孔である。 Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a schematic configuration diagram showing a bellows forming mechanism 11 and a liquid amount adjustingmechanism 15 constituting the bellows forming apparatus.
The bellows forming mechanism 11 is arranged on the outer periphery of the hollow tube P having a predetermined thickness, the fixedmold 12 and the movable mold 13 which are molding dies for sandwiching both sides of the raw tube P, and the pipe P. And a plurality of divided molds 14. Although the bellows molding is performed by the split molds 14..., The split mold 14 is half-cut in a curved shape on both sides of the lower part, and the bellows molding is performed by the split holes. As is also shown, it is well known in the art and will not be described in detail.
Specifically, the hollow shell P has a predetermined outer diameter, a predetermined inner diameter, a predetermined thickness t, a predetermined length, and a fixed mold that is a molding die. Since both ends are disposed on themold 12 and the movable mold 13, the hollow portion is a space portion S.
The bellows molding liquid W is conducted to the space S. However, when the bellows molding liquid W is further introduced into the space S, the liquid pressure is increased and the bellows molding liquid W is disposed on the outer periphery of the raw tube P. The bellows is bulged and formed by the dividedmolds 14. Reference numeral 12 a denotes an air hole provided in the fixed mold 12.
図1は、ベローズ成形装置を構成するベローズ成形機構11と液量調整機構15とを示す概略構成図である。
ベローズ成形機構11は、所定厚さを有する中空状の素管Pと、素管Pの両側を挟持する成形金型である固定金型12および可動金型13と、素管Pの外周に配置される複数の分割金型14・・・とによって構成されている。なお、分割金型14・・・によってベローズ成形は行われるが、この分割金型14はその下部の両側を湾曲状に半割され、この半割穴によりベローズ成形は行われるが、図8にも示されるように従来周知であるので詳細な説明は省略する。
具体的には、中空状の素管Pは、所定の外径を有すると共に、所定内径を有し、所定の厚みtを有し、所定長の素管とされ、成形用金型である固定金型12と可動金型13に両端を配置されるため、中空状の部分は空間部Sとされる。
この空間部Sには、ベローズ成形用液Wが導通されるのであるが、空間部S内にベローズ成形用液Wがさらに導入されると液圧が高められ、素管Pの外周に配置された分割金型14・・・によってベローズが膨出成形される。12aは固定金型12に設けられた空気孔である。 Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a schematic configuration diagram showing a bellows forming mechanism 11 and a liquid amount adjusting
The bellows forming mechanism 11 is arranged on the outer periphery of the hollow tube P having a predetermined thickness, the fixed
Specifically, the hollow shell P has a predetermined outer diameter, a predetermined inner diameter, a predetermined thickness t, a predetermined length, and a fixed mold that is a molding die. Since both ends are disposed on the
The bellows molding liquid W is conducted to the space S. However, when the bellows molding liquid W is further introduced into the space S, the liquid pressure is increased and the bellows molding liquid W is disposed on the outer periphery of the raw tube P. The bellows is bulged and formed by the divided
また、可動金型13には、後述する芯金支持型16の小径支持型本体16cが挿嵌される開口孔13aが開設されている。この開口孔13aに挿嵌された小径支持型本体16cによって、ベローズ成形機構11は芯金支持型16と一体とされる。また、分割金型14・・・は、従来同様に管体軸方向に多数列設させると共に、図示しない駆動装置によって管体軸方向に移動され、半割穴のU字状凸部に嵌め合わされて波形のベローズを形成する。
The movable mold 13 is provided with an opening 13a into which a small-diameter support mold body 16c of a core metal support mold 16 to be described later is inserted. The bellows forming mechanism 11 is integrated with the cored bar supporting die 16 by the small diameter supporting die main body 16c inserted into the opening hole 13a. In addition, the divided molds 14 are arranged in a row in the tube axis direction as in the prior art, and are moved in the tube axis direction by a driving device (not shown) and fitted into the U-shaped convex part of the half hole. To form a corrugated bellows.
一方、液量調整機構15は、芯金支持型16と、この芯金支持型16に進退自在に挿入される芯金17と、芯金17をベローズ成形機構11側に進退自在に移動させる芯金押し込み部18とによって構成されている。芯金支持型16は、ベローズ成形機構11の可動金型13側に配置されるが、支持型本体16aと、段差部16bと、段差部16bを介した小径支持型本体16cとよりなる。この小径支持型本体16cは、可動金型13の開口孔13aに挿嵌され、段差部16bを介して支持型本体16cを可動金型13に止着する。なお、芯金支持型16は芯金挿通孔16dが開設されている。
On the other hand, the liquid amount adjusting mechanism 15 includes a cored bar support die 16, a cored bar 17 that is inserted into the cored bar supporting mold 16 so as to be able to advance and retract, and a core that moves the cored bar 17 toward and away from the bellows forming mechanism 11. It is comprised by the gold | metal pushing part 18. FIG. The core metal support die 16 is disposed on the movable die 13 side of the bellows forming mechanism 11, and includes a support die main body 16a, a step portion 16b, and a small-diameter support die main body 16c via the step portion 16b. The small-diameter support mold main body 16c is inserted into the opening hole 13a of the movable mold 13, and the support mold main body 16c is fixed to the movable mold 13 through the step portion 16b. The cored bar support die 16 has a cored bar insertion hole 16d.
また、芯金12は、所定厚みtを有する所定長の中空状の送液路17aを有するものであり、芯金支持型16に進退自在に挿入されると共に、送液路17aを介してベローズ成形用液Wをベローズ成形用孔17bに流し込む。
この芯金支持型16と芯金12との接合面には、Oリング18やオイルレスブッシュ(図示略)などを介して摺合され、互いに摺合可能および液漏れ防止可能とされている。このOリング18やオイルレスブッシュなどは支持型本体16cと可動金型13の開口孔13aなどの間に適宜用いられ、互いの間を水密的にとするものであるため従来周知の技術手段を必要に応じて適宜用いることができる。
また、固定金型12および可動金型13と素管Pと間の水密性も同様であり、従来周知の技術手段を必要に応じて適宜用いることができる。
さらに、芯金支持型16の支持型本体16c先端側は、素管P側に突き出す凸部などを形成し素管Pとの嵌め合い性を確保すると共に、水密性を確保するようにしてもよく、従来周知の技術手段を必要に応じて適宜用いることができる。
20は可動側ノズル、21は固定側ノズルである。 The coredbar 12 has a hollow liquid feed path 17a having a predetermined length and having a predetermined thickness t. The cored bar 12 is inserted into the cored bar support mold 16 so as to be able to advance and retreat, and is bellows via the liquid feed path 17a. The molding liquid W is poured into the bellows molding hole 17b.
The joint surface between the cored bar support die 16 and the coredbar 12 is slid through an O-ring 18 or an oilless bush (not shown), and can be slidable and liquid leakage prevented. The O-ring 18 and the oilless bush are appropriately used between the support die main body 16c and the opening hole 13a of the movable die 13, and are made watertight between each other. It can be suitably used as necessary.
In addition, the watertightness between the fixedmold 12 and the movable mold 13 and the raw pipe P is the same, and conventionally known technical means can be appropriately used as necessary.
Further, the tip end side of the support die body 16c of the cored bar support die 16 is formed with a protruding portion or the like protruding toward the raw tube P side so as to ensure the fitting property with the raw tube P and ensure the water tightness. Well-known technical means can be appropriately used as necessary.
20 is a movable nozzle, and 21 is a fixed nozzle.
この芯金支持型16と芯金12との接合面には、Oリング18やオイルレスブッシュ(図示略)などを介して摺合され、互いに摺合可能および液漏れ防止可能とされている。このOリング18やオイルレスブッシュなどは支持型本体16cと可動金型13の開口孔13aなどの間に適宜用いられ、互いの間を水密的にとするものであるため従来周知の技術手段を必要に応じて適宜用いることができる。
また、固定金型12および可動金型13と素管Pと間の水密性も同様であり、従来周知の技術手段を必要に応じて適宜用いることができる。
さらに、芯金支持型16の支持型本体16c先端側は、素管P側に突き出す凸部などを形成し素管Pとの嵌め合い性を確保すると共に、水密性を確保するようにしてもよく、従来周知の技術手段を必要に応じて適宜用いることができる。
20は可動側ノズル、21は固定側ノズルである。 The cored
The joint surface between the cored bar support die 16 and the cored
In addition, the watertightness between the fixed
Further, the tip end side of the support die body 16c of the cored bar support die 16 is formed with a protruding portion or the like protruding toward the raw tube P side so as to ensure the fitting property with the raw tube P and ensure the water tightness. Well-known technical means can be appropriately used as necessary.
20 is a movable nozzle, and 21 is a fixed nozzle.
ベローズ成形機構11と液量調整機構15は、制御部100によって制御することができる。すなわち、ベローズ成形制御部200は、固定金型12と可動金型13と素管Pと分割金型14・・・の動作を制御する。
液量調整部300は、芯金支持型16と芯金17と芯金押し込み部18の動作を制御する。
これらの各動作に伴って、制御弁である固定側ノズル21と可動側ノズル21は制御部100によって統括制御され、最終的には図3のように芯金17は固定金型12に到達し、素管Pによって形成される空間部は、素管Pによって形成される空間部Sである「通常体積の空間部S」から、芯金17の進入後の素管Pである狭まった空間部S1すなわち「少ない体積の空間部S1」に可変する。 The bellows forming mechanism 11 and the liquidamount adjusting mechanism 15 can be controlled by the control unit 100. That is, the bellows molding control unit 200 controls the operations of the fixed mold 12, the movable mold 13, the raw pipe P, the divided mold 14.
The liquidamount adjusting unit 300 controls the operations of the cored bar support die 16, the cored bar 17, and the cored bar pushing part 18.
Along with these operations, thecontrol nozzle 100 controls the fixed nozzle 21 and the movable nozzle 21 which are control valves, and finally the core 17 reaches the fixed mold 12 as shown in FIG. The space portion formed by the raw tube P is a narrow space portion which is the raw tube P after the core bar 17 enters from the “normal volume space portion S” which is the space portion S formed by the raw tube P. It is variable to S1, that is, the “small volume space portion S1”.
液量調整部300は、芯金支持型16と芯金17と芯金押し込み部18の動作を制御する。
これらの各動作に伴って、制御弁である固定側ノズル21と可動側ノズル21は制御部100によって統括制御され、最終的には図3のように芯金17は固定金型12に到達し、素管Pによって形成される空間部は、素管Pによって形成される空間部Sである「通常体積の空間部S」から、芯金17の進入後の素管Pである狭まった空間部S1すなわち「少ない体積の空間部S1」に可変する。 The bellows forming mechanism 11 and the liquid
The liquid
Along with these operations, the
次に、図4乃至図7の模式図に基づいてベローズ成形の動作を説明する。
(1)図4:ベローズ成形機構と液量調整機構の分解状態
ベローズ成形機構11は、素管Pに固定金型12と可動金型13が組み付けられて空間部Sが形成され、これに対して液量調整機構15が対向配置されている。
(2)図5:ベローズ成形機構と液量調整機構のセット状態
液量調整機構15がベローズ成形機構11に組み付けられたセット時である。
可動金型13の開口部13aに、芯金支持型16の小径支持型本体16cが挿嵌され、段差部16bを介して支持型本体16cを可動金型13に止着する。
(3)図6:素管の空間部に対し芯金の進入状態
図5の状態から芯金17が素管Pの空間部Sに対し進入状態する。空間部Sは芯金17によって徐々に狭められる。
(4)図7:芯金が挿入完了時の状態
芯金12がさらに前進し挿入完了し、挿入完了時には芯金12の先端部は固定金型14側に密着する。この際、空間部Sは芯金17と素管Pによって密封された少ない体積の空間部S1の体積とされる。
すなわち、挿入完了時においては、空間部はSからS>S1の関係とされ、空間部の体積はS=VからS1=V1の関係とされ、互いに異なる空間部(体積)の関係に可変する。 Next, the bellows molding operation will be described with reference to the schematic diagrams of FIGS.
(1) FIG. 4: Disassembled state of bellows forming mechanism and liquid amount adjusting mechanism The bellows forming mechanism 11 is formed by assembling a fixedmold 12 and a movable mold 13 to a raw tube P to form a space S, The liquid amount adjusting mechanism 15 is disposed opposite to the other.
(2) FIG. 5: Set state of the bellows forming mechanism and the liquid amount adjusting mechanism When the liquidamount adjusting mechanism 15 is assembled to the bellows forming mechanism 11.
The small-diameter support die main body 16c of the core metal support die 16 is inserted into the opening 13a of themovable die 13, and the support die main body 16c is fixed to the movable die 13 via the step portion 16b.
(3) FIG. 6: State of entry of the core bar into the space portion of the base tube Thecore bar 17 enters the space portion S of the base tube P from the state of FIG. The space S is gradually narrowed by the cored bar 17.
(4) FIG. 7: State when the core is completely inserted Thecore 12 is further advanced to complete the insertion, and when the insertion is completed, the tip of the core 12 is in close contact with the fixed mold 14 side. At this time, the space portion S is the volume of the space portion S1 having a small volume sealed by the cored bar 17 and the raw tube P.
That is, when the insertion is completed, the space portion has a relationship of S to S> S1, and the volume of the space portion has a relationship of S = V to S1 = V1, and varies to a relationship of different space portions (volumes). .
(1)図4:ベローズ成形機構と液量調整機構の分解状態
ベローズ成形機構11は、素管Pに固定金型12と可動金型13が組み付けられて空間部Sが形成され、これに対して液量調整機構15が対向配置されている。
(2)図5:ベローズ成形機構と液量調整機構のセット状態
液量調整機構15がベローズ成形機構11に組み付けられたセット時である。
可動金型13の開口部13aに、芯金支持型16の小径支持型本体16cが挿嵌され、段差部16bを介して支持型本体16cを可動金型13に止着する。
(3)図6:素管の空間部に対し芯金の進入状態
図5の状態から芯金17が素管Pの空間部Sに対し進入状態する。空間部Sは芯金17によって徐々に狭められる。
(4)図7:芯金が挿入完了時の状態
芯金12がさらに前進し挿入完了し、挿入完了時には芯金12の先端部は固定金型14側に密着する。この際、空間部Sは芯金17と素管Pによって密封された少ない体積の空間部S1の体積とされる。
すなわち、挿入完了時においては、空間部はSからS>S1の関係とされ、空間部の体積はS=VからS1=V1の関係とされ、互いに異なる空間部(体積)の関係に可変する。 Next, the bellows molding operation will be described with reference to the schematic diagrams of FIGS.
(1) FIG. 4: Disassembled state of bellows forming mechanism and liquid amount adjusting mechanism The bellows forming mechanism 11 is formed by assembling a fixed
(2) FIG. 5: Set state of the bellows forming mechanism and the liquid amount adjusting mechanism When the liquid
The small-diameter support die main body 16c of the core metal support die 16 is inserted into the opening 13a of the
(3) FIG. 6: State of entry of the core bar into the space portion of the base tube The
(4) FIG. 7: State when the core is completely inserted The
That is, when the insertion is completed, the space portion has a relationship of S to S> S1, and the volume of the space portion has a relationship of S = V to S1 = V1, and varies to a relationship of different space portions (volumes). .
図3は、図1における芯金挿入完了状態を示す(図6対応)。
このように、芯金12の挿入完了時には、芯金12の先端部は固定金型14側に密着し、空間部Sは、液量調整機構15がベローズ成形機構11に組み付けられたセット時(図3参照)の通常体積の空間部Sから、少ない体積の空間部S1とされる。
これは、挿入完了時において、素管Pによって密封され形成された当初の空間部Sが、芯金12の挿入による体積を差し引いた空間部とされるものであり、すなわち、少ない体積の空間部S1であり、したがって挿入完了時の体積はV1とされる。そして、芯金12における挿入完了時の少ない体積の空間部S1に対し、制御部100からの指令により素管Pの送液路12aを介してベローズ成形用液Wが導入され。その後、ベローズ成形用液Wは空間部S1内で液圧を高められ、素管P外周に配置されている分割金型14の軸方向圧縮に伴って、素管P外周にベローズ成形が行われることになる。 FIG. 3 shows a state where the mandrel insertion is completed in FIG. 1 (corresponding to FIG. 6).
Thus, when the insertion of themetal core 12 is completed, the tip of the metal core 12 is in close contact with the fixed mold 14 side, and the space S is set when the liquid amount adjusting mechanism 15 is assembled to the bellows forming mechanism 11 ( The space portion S1 having a small volume is changed from the space portion S having a normal volume as shown in FIG.
In this case, when the insertion is completed, the initial space portion S sealed and formed by the raw tube P is a space portion obtained by subtracting the volume due to the insertion of the coredbar 12, that is, a space portion having a small volume. Therefore, the volume when the insertion is completed is V1. Then, the bellows forming liquid W is introduced into the space part S1 having a small volume at the time of completion of the insertion in the core metal 12 through the liquid feeding path 12a of the raw pipe P by a command from the control unit 100. Thereafter, the liquid pressure for the bellows forming liquid W is increased in the space S1, and bellows forming is performed on the outer periphery of the raw tube P along with the axial compression of the split mold 14 disposed on the outer periphery of the raw tube P. It will be.
このように、芯金12の挿入完了時には、芯金12の先端部は固定金型14側に密着し、空間部Sは、液量調整機構15がベローズ成形機構11に組み付けられたセット時(図3参照)の通常体積の空間部Sから、少ない体積の空間部S1とされる。
これは、挿入完了時において、素管Pによって密封され形成された当初の空間部Sが、芯金12の挿入による体積を差し引いた空間部とされるものであり、すなわち、少ない体積の空間部S1であり、したがって挿入完了時の体積はV1とされる。そして、芯金12における挿入完了時の少ない体積の空間部S1に対し、制御部100からの指令により素管Pの送液路12aを介してベローズ成形用液Wが導入され。その後、ベローズ成形用液Wは空間部S1内で液圧を高められ、素管P外周に配置されている分割金型14の軸方向圧縮に伴って、素管P外周にベローズ成形が行われることになる。 FIG. 3 shows a state where the mandrel insertion is completed in FIG. 1 (corresponding to FIG. 6).
Thus, when the insertion of the
In this case, when the insertion is completed, the initial space portion S sealed and formed by the raw tube P is a space portion obtained by subtracting the volume due to the insertion of the cored
このため、ベローズ成形圧は、従来と同様であり一定の成形圧としても、ベローズ成形押し力(ベローズ成形パワー)が少なくて済むこととなる。すなわち、芯金を挿入するだけの簡単な構造によって、素管Pの空間部Pを容易に可変することができるので、装置の大型化や複雑化を防ぐができ、また、空間部に対する導入水量を少なくすることができ、装置に係るその消費電力も低減化することができる。
For this reason, the bellows molding pressure is the same as the conventional one, and even if the molding pressure is constant, the bellows molding pressing force (bellows molding power) can be reduced. That is, since the space portion P of the raw tube P can be easily changed by a simple structure in which the core metal is inserted, the apparatus can be prevented from becoming large and complicated, and the amount of water introduced into the space portion can be prevented. And the power consumption of the apparatus can be reduced.
なお、空間部S1は、小径支持型本体16cによって確保されるものであり、空間部S1の形成は段差部によって確保されているが、段差のみによらず多段の段差部であってもよく、また、リング状の環などによって得られるようにしてもよく、いづれにせよ、挿入完了時に形成される少ない体積のベローズ成形用空間部S1が確保されればよい。
The space portion S1 is secured by the small-diameter support type main body 16c, and the formation of the space portion S1 is secured by the step portion. Moreover, it may be obtained by a ring-shaped ring or the like, and in any case, it is only necessary to secure a small volume bellows forming space S1 formed when insertion is completed.
そして、芯金12における挿入完了時の少ない体積の空間部S1が確保されることにより、この少ない体積のベローズ成形用空間部にベローズ成形用液を導入してベローズ成形が行われる。このため、ベローズ成形圧は、従来と同様であり一定としてもベローズ成形押し力が少なくて済むこととなる。すなわち、芯金を挿入するだけの簡単な構造によるので、装置の大型化・複雑化を防ぐができ、また、その水量の低減化や消費電力も低減化を図ることができ、シンプルな構造とすることができる。
And by ensuring the space part S1 with a small volume at the time of completion of insertion in the core metal 12, the bellows forming liquid is introduced into the space part for bellows forming with this small volume, and bellows forming is performed. For this reason, the bellows molding pressure is the same as the conventional one, and even if it is constant, the bellows molding pressing force can be reduced. In other words, since it has a simple structure that only inserts a mandrel, it can prevent the equipment from becoming large and complicated, and it can also reduce the amount of water and power consumption. can do.
次に、第2の実施例を示す。
この第2の実施例は、第1の実施例とほぼ同様であるが、大径管のベローズ成形、例えば、石油プラントや原子力プラントあるいは航空機・宇宙開発プラントに際して特に有効である。すなわち、第1の実施例のものは、自動化された比較的汎用な小径管のベローズ成形に好適であるが、大径管の場合には大型プラントに合わせたベローズ成形が要求されることが多い。また、自動化されたベローズ成形よりも現場に合わせたベローズ成形が要求されることが多い。
このため、特に、液量調整機構11を交換可能とする必要があり、空間部Sを大径管の通常の体積の空間部から少ない体積の空間部S1に可変自在とし、ベローズ成形圧は従来と同様であり一定としても、ベローズ成形押し力(ベローズ成形パワー)が少なくて済むこととなり、水量と消費電力の低減化を図る必要がある。
なお、液量調整機構11及び芯金12などの交換については、手作業や自動交換機など従来周知の技術手段を適宜用いればよい。 Next, a second embodiment is shown.
The second embodiment is substantially the same as the first embodiment, but is particularly effective in bellows molding of a large diameter pipe, for example, an oil plant, a nuclear power plant, or an aircraft / space development plant. That is, the first embodiment is suitable for automated bellows forming of a relatively general-purpose small-diameter pipe, but in the case of a large-diameter pipe, bellows molding suitable for a large plant is often required. . In addition, bellows molding suited to the field is often required rather than automated bellows molding.
For this reason, in particular, the liquid amount adjusting mechanism 11 needs to be replaceable, and the space S can be changed from a normal volume space of the large-diameter tube to a small volume space S1. Even if it is the same, the bellows molding pressing force (bellows molding power) can be reduced, and it is necessary to reduce the amount of water and power consumption.
In addition, what is necessary is just to use conventionally well-known technical means, such as a manual operation and an automatic exchanger, about replacement | exchange of the liquid quantity adjustment mechanism 11, themetal core 12, etc. FIG.
この第2の実施例は、第1の実施例とほぼ同様であるが、大径管のベローズ成形、例えば、石油プラントや原子力プラントあるいは航空機・宇宙開発プラントに際して特に有効である。すなわち、第1の実施例のものは、自動化された比較的汎用な小径管のベローズ成形に好適であるが、大径管の場合には大型プラントに合わせたベローズ成形が要求されることが多い。また、自動化されたベローズ成形よりも現場に合わせたベローズ成形が要求されることが多い。
このため、特に、液量調整機構11を交換可能とする必要があり、空間部Sを大径管の通常の体積の空間部から少ない体積の空間部S1に可変自在とし、ベローズ成形圧は従来と同様であり一定としても、ベローズ成形押し力(ベローズ成形パワー)が少なくて済むこととなり、水量と消費電力の低減化を図る必要がある。
なお、液量調整機構11及び芯金12などの交換については、手作業や自動交換機など従来周知の技術手段を適宜用いればよい。 Next, a second embodiment is shown.
The second embodiment is substantially the same as the first embodiment, but is particularly effective in bellows molding of a large diameter pipe, for example, an oil plant, a nuclear power plant, or an aircraft / space development plant. That is, the first embodiment is suitable for automated bellows forming of a relatively general-purpose small-diameter pipe, but in the case of a large-diameter pipe, bellows molding suitable for a large plant is often required. . In addition, bellows molding suited to the field is often required rather than automated bellows molding.
For this reason, in particular, the liquid amount adjusting mechanism 11 needs to be replaceable, and the space S can be changed from a normal volume space of the large-diameter tube to a small volume space S1. Even if it is the same, the bellows molding pressing force (bellows molding power) can be reduced, and it is necessary to reduce the amount of water and power consumption.
In addition, what is necessary is just to use conventionally well-known technical means, such as a manual operation and an automatic exchanger, about replacement | exchange of the liquid quantity adjustment mechanism 11, the
地中などに埋設される水道管やガス管などの屈曲配管などの他に、医療分野・化学分野あるいは航空分野などへのフレキシブルパイプの進出を図る上で、自動制御に適した小型の金属ベローズ成形方法、及び、その金属ベローズ成形装置とすることができる。また、反対に石油プラントや原子力プラントあるいは航空機・宇宙開発プラントなど、大型プラントに合わせた大径管としての金属ベローズ成形方法、及び、その金属ベローズ成形装置としても適用することができる。また、その他の素管や素管以外のあらゆる加工素材の処理に適用できる。
In addition to bent pipes such as water pipes and gas pipes buried in the ground, etc., small metal bellows suitable for automatic control in order to advance flexible pipes in the medical field, chemical field, aviation field, etc. It can be set as the shaping | molding method and its metal bellows shaping | molding apparatus. Conversely, the present invention can also be applied to a metal bellows forming method and a metal bellows forming apparatus as a large diameter pipe adapted to a large plant such as an oil plant, a nuclear power plant or an aircraft / space development plant. Further, the present invention can be applied to processing of any other raw material other than the raw pipe and the raw pipe.
P 素管
S(v) 空間部
Sl(v1)少ない体積の空間部
W ベローズ成形液
11 ベローズ成形機構
12 固定金型
12a 空気孔
13 可動金型
13b 開口部
14 分割金型
15 液量調整機構
16 芯金支持型
16a 芯金支持本体
16b 挿入本体
16c 段差部
17 芯金
17a 送液路
17b 液挿通孔
18 芯金押し込み部
19 Oリング
20 固定側ノズル
21 可動側ノズル
100 制御部
200 ベローズ成形制御部
300 液量調整制御部
400 水量制御部
P Element tube S (v) Space portion Sl (v1) Small volume space W Bellows molding liquid 11Bellows molding mechanism 12 Fixed mold 12a Air hole 13 Movable mold 13b Opening section 14 Split mold 15 Liquid quantity adjusting mechanism 16 Metal core support die 16a Metal core support body 16b Insert body 16c Stepped portion 17 Metal core 17a Liquid feed path 17b Liquid insertion hole 18 Metal core pushing portion 19 O-ring 20 Fixed side nozzle 21 Movable side nozzle 100 Control unit 200 Bellows molding control unit 300 Liquid volume adjustment control unit 400 Water volume control unit
S(v) 空間部
Sl(v1)少ない体積の空間部
W ベローズ成形液
11 ベローズ成形機構
12 固定金型
12a 空気孔
13 可動金型
13b 開口部
14 分割金型
15 液量調整機構
16 芯金支持型
16a 芯金支持本体
16b 挿入本体
16c 段差部
17 芯金
17a 送液路
17b 液挿通孔
18 芯金押し込み部
19 Oリング
20 固定側ノズル
21 可動側ノズル
100 制御部
200 ベローズ成形制御部
300 液量調整制御部
400 水量制御部
P Element tube S (v) Space portion Sl (v1) Small volume space W Bellows molding liquid 11
Claims (7)
- 中空状の素管の両端を固定金型と可動金型とによって密封し、上記素管の中空状部を空間部とし、上記素管の外周にベローズを成形をする分割金型を配置したベローズ成形機構と、
芯金を支持する芯金支持型と、上記芯金支持型に進退自在に挿入される芯金と、上記芯金を応動する芯金押し込み部と、芯金押し込み部とよりなる液量調整機構とによって構成され、
上記ベローズ成形機構の一方側の可動金型に上記液量調整機構を配置すると共に、上記芯金を上記素管の空間部内に進退自在に挿入し、かつ上記素管の空間部は上記芯金の挿入前と挿入完了後において異なる空間部とされ、
挿入完了後における密封された少ない体積の空間部に対し、上記芯金の送液孔を介してベローズ成形用液の導入がなされて形成されることを特徴とする液量調整機構を備えた金属ベローズ管の成形方法。 A bellows in which both ends of a hollow shell are sealed with a fixed mold and a movable mold, a hollow portion of the blank is used as a space, and a split mold is formed on the outer periphery of the blank to form a bellows. A molding mechanism;
Liquid level adjusting mechanism comprising: a cored bar supporting mold for supporting the cored bar, a cored bar inserted into the cored bar supporting mold so as to be able to advance and retract, a cored bar pressing part for moving the cored bar, and a cored bar pressing part And consists of
The liquid amount adjusting mechanism is disposed in a movable mold on one side of the bellows forming mechanism, and the cored bar is inserted into the space of the base tube so as to freely advance and retract, and the space of the base tube is the cored bar. Different space before and after insertion,
Metal having a liquid amount adjusting mechanism formed by introducing a bellows forming liquid into the sealed small volume space after completion of insertion through the liquid feeding hole of the cored bar Bellows tube forming method. - 上記ベローズ成形機構は、上記液量調整機構が交換自在に取付けられることを特徴とする請求項1記載の液量調整機構を備えた金属ベローズ管の成形方法。 2. The method for forming a metal bellows tube having a liquid amount adjusting mechanism according to claim 1, wherein the bellows forming mechanism is attached to the liquid amount adjusting mechanism in a replaceable manner.
- 上記ベローズ成形機構の芯金は、外径の寸法を適宜異なる外径に交換自在とすることを特徴とする請求項1または2記載の液量調整機構を備えた金属ベローズ管の成形方法。 3. The method for forming a metal bellows tube with a liquid amount adjusting mechanism according to claim 1, wherein the core metal of the bellows forming mechanism can be exchanged with a different outer diameter as appropriate.
- 中空状の素管の両端を固定金型と可動金型とによって密封し、上記素管の中空状部を空間部とし、上記素管の外周にベローズを成形をする分割金型を配置したベローズ成形機構と、
芯金を支持する芯金支持型と、上記芯金支持型に進退自在に挿入される芯金と、上記芯金を応動する芯金押し込み部と、芯金押し込み部とよりなる液量調整機構とによって構成され、
上記ベローズ成形機構の一方側の可動金型に上記液量調整機構を配置すると共に、上記芯金を上記素管の空間部内に進退自在に挿入し、かつ上記素管の空間部は上記芯金の挿入前と挿入完了後において異なる空間部とされ、
挿入完了後における密封された少ない体積の空間部に対し、上記芯金の送液孔を介してベローズ成形用液の導入がなされることを特徴とする液量調整機構を備えた金属ベローズ管の成形装置。 A bellows in which both ends of a hollow shell are sealed with a fixed mold and a movable mold, a hollow portion of the blank is used as a space, and a split mold is formed on the outer periphery of the blank to form a bellows. A molding mechanism;
Liquid level adjusting mechanism comprising: a cored bar supporting mold for supporting the cored bar, a cored bar inserted into the cored bar supporting mold so as to be able to advance and retract, a cored bar pressing part for moving the cored bar, and a cored bar pressing part And consists of
The liquid amount adjusting mechanism is disposed in a movable mold on one side of the bellows forming mechanism, and the cored bar is inserted into the space of the base tube so as to freely advance and retract, and the space of the base tube is the cored bar. Different space before and after insertion,
A metal bellows pipe provided with a liquid amount adjusting mechanism, wherein a bellows forming liquid is introduced into a sealed small volume space after completion of insertion through the liquid feed hole of the cored bar. Molding equipment. - 芯金挿入完了後の上記空間部は、上記素管の内径面と上記芯金の外径面と上記固定金型らおよび可動金型の内壁面とから形成され、密閉された少ない体積の空間部とされることを特徴とする請求項1記載の液量調整機構を備えた金属ベローズ管の成形装置。 The space portion after the completion of the insertion of the cored bar is formed of an inner diameter surface of the core tube, an outer diameter surface of the cored bar, the fixed molds and the inner wall surface of the movable mold, and is a sealed small volume space. The apparatus for forming a metal bellows pipe provided with the liquid amount adjusting mechanism according to claim 1,
- 上記液量調整機構は、上記ベローズ成形機構に対して交換自在に取付けられることを特徴とする請求項4記載の液量調整機構を備えた金属ベローズ管の成形装置。 5. The metal bellows tube forming apparatus having a liquid amount adjusting mechanism according to claim 4, wherein the liquid amount adjusting mechanism is attached to the bellows forming mechanism in a replaceable manner.
- 上記液量調整機構または上記液量調整機構の芯金の交換は、手作業で行われることを特徴とする請求項5記載の液量調整機構を備えた金属ベローズ管の成形装置。
6. The metal bellows tube forming apparatus having a liquid amount adjusting mechanism according to claim 5, wherein the liquid amount adjusting mechanism or the metal bar of the liquid amount adjusting mechanism is exchanged manually.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-155076 | 2016-08-05 | ||
JP2016155076 | 2016-08-05 | ||
JP2017150269A JP6473198B2 (en) | 2016-08-05 | 2017-08-02 | Metal bellows tube forming method provided with liquid amount adjusting mechanism and forming apparatus therefor |
JP2017-150269 | 2017-08-02 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018026022A1 true WO2018026022A1 (en) | 2018-02-08 |
Family
ID=61073018
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/028503 WO2018026022A1 (en) | 2016-08-05 | 2017-08-04 | Method of molding metal bellows tube provided with liquid quantity adjustment mechanism, and molding device for same |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2018026022A1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110052525A (en) * | 2019-06-05 | 2019-07-26 | 哈尔滨奔马液压成型零部件有限公司 | A kind of the one-mold multiple-member monolithic molding mold and its method of spatial axis thin-wall tube |
CN110976587A (en) * | 2019-11-01 | 2020-04-10 | 哈尔滨工业大学 | Forming method and device for continuous multi-wave pipe fitting with ultra-large section difference |
CN111001700A (en) * | 2019-12-30 | 2020-04-14 | 北京航空航天大学 | 3D hydraulic forming method for special-shaped sealing ring of aero-engine |
CN113319185A (en) * | 2021-06-08 | 2021-08-31 | 哈尔滨工业大学 | Fluid pressure forming device and method for large-diameter thin-wall cylindrical part |
CN113732156A (en) * | 2021-09-13 | 2021-12-03 | 哈尔滨奔马液压成型零部件有限公司 | Large-expansion-ratio reducing thin-walled tube forming die with self-locking mechanism and method thereof |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3704983A (en) * | 1970-12-04 | 1972-12-05 | Establissements Butin Gillet | Method of and apparatus for the formation of tubular articles |
JPS5568131A (en) * | 1978-11-16 | 1980-05-22 | Toshiba Corp | Forming method of bellows |
JPH09239453A (en) * | 1996-03-06 | 1997-09-16 | Hitachi Ltd | Formation of bellows and device therefor |
JPH1080729A (en) * | 1996-09-06 | 1998-03-31 | Yamamoto Suiatsu Kogyosho:Kk | Production device for flexible tube |
JPH10277660A (en) * | 1997-04-11 | 1998-10-20 | Hitachi Ltd | Method and device for hydrostatic forming, manufacture of bellows, and tubular structure |
JP2004330255A (en) * | 2003-05-08 | 2004-11-25 | Yamamoto Suiatsu Kogyosho:Kk | Hydroforming apparatus |
WO2017098857A1 (en) * | 2015-12-08 | 2017-06-15 | 株式会社昭和螺旋管製作所 | Bulge processing-use metal bellows molding method, and molding device therefor |
-
2017
- 2017-08-04 WO PCT/JP2017/028503 patent/WO2018026022A1/en active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3704983A (en) * | 1970-12-04 | 1972-12-05 | Establissements Butin Gillet | Method of and apparatus for the formation of tubular articles |
JPS5568131A (en) * | 1978-11-16 | 1980-05-22 | Toshiba Corp | Forming method of bellows |
JPH09239453A (en) * | 1996-03-06 | 1997-09-16 | Hitachi Ltd | Formation of bellows and device therefor |
JPH1080729A (en) * | 1996-09-06 | 1998-03-31 | Yamamoto Suiatsu Kogyosho:Kk | Production device for flexible tube |
JPH10277660A (en) * | 1997-04-11 | 1998-10-20 | Hitachi Ltd | Method and device for hydrostatic forming, manufacture of bellows, and tubular structure |
JP2004330255A (en) * | 2003-05-08 | 2004-11-25 | Yamamoto Suiatsu Kogyosho:Kk | Hydroforming apparatus |
WO2017098857A1 (en) * | 2015-12-08 | 2017-06-15 | 株式会社昭和螺旋管製作所 | Bulge processing-use metal bellows molding method, and molding device therefor |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110052525A (en) * | 2019-06-05 | 2019-07-26 | 哈尔滨奔马液压成型零部件有限公司 | A kind of the one-mold multiple-member monolithic molding mold and its method of spatial axis thin-wall tube |
CN110976587A (en) * | 2019-11-01 | 2020-04-10 | 哈尔滨工业大学 | Forming method and device for continuous multi-wave pipe fitting with ultra-large section difference |
CN110976587B (en) * | 2019-11-01 | 2020-11-24 | 哈尔滨工业大学 | Forming method and device for continuous multi-wave pipe fitting with ultra-large section difference |
CN111001700A (en) * | 2019-12-30 | 2020-04-14 | 北京航空航天大学 | 3D hydraulic forming method for special-shaped sealing ring of aero-engine |
CN111001700B (en) * | 2019-12-30 | 2021-01-15 | 北京航空航天大学 | 3D hydraulic forming method for special-shaped sealing ring of aero-engine |
CN113319185A (en) * | 2021-06-08 | 2021-08-31 | 哈尔滨工业大学 | Fluid pressure forming device and method for large-diameter thin-wall cylindrical part |
CN113732156A (en) * | 2021-09-13 | 2021-12-03 | 哈尔滨奔马液压成型零部件有限公司 | Large-expansion-ratio reducing thin-walled tube forming die with self-locking mechanism and method thereof |
CN113732156B (en) * | 2021-09-13 | 2024-04-05 | 哈尔滨奔马液压成型零部件有限公司 | Forming die and method for large expansion ratio variable diameter thin-wall pipe with self-locking mechanism |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018026022A1 (en) | Method of molding metal bellows tube provided with liquid quantity adjustment mechanism, and molding device for same | |
JP6473198B2 (en) | Metal bellows tube forming method provided with liquid amount adjusting mechanism and forming apparatus therefor | |
US5475911A (en) | Multi-stage dual wall hydroforming | |
CN101537447B (en) | Pipe liquid filled shear bending and forming method | |
CN102962308B (en) | Special internal high pressure shaping method for thin-wall welded shell | |
JPH0148091B2 (en) | ||
US4457157A (en) | Pipe end expanding or contracting device utilizing ironing | |
JP2004337898A (en) | Hydraulic forming method and hydraulic forming device for tubular member | |
JPH07151230A (en) | Manufacture of metal bellows | |
US6401509B1 (en) | Method for producing a hollow body made of metal | |
US8910500B2 (en) | Low friction end feeding in tube hydroforming | |
JP6373907B2 (en) | Metal bellows molding method and processing apparatus for bulge processing | |
WO2017098857A1 (en) | Bulge processing-use metal bellows molding method, and molding device therefor | |
JPH10156429A (en) | Method for forming tube having complicated special cross section tube | |
US1823532A (en) | Method of forming bellows folds | |
KR20210118907A (en) | Metal tube and metal tube manufacturing method | |
US3442106A (en) | Method and apparatus for making wrought metal branch fittings | |
CN111014417A (en) | Flanging type pipe liquid filling forming sealing device and method | |
JP4459834B2 (en) | Hydroforming apparatus and method | |
KR20200035914A (en) | Pipe end processing device | |
CN213256517U (en) | Large-diameter thin-walled pipe liquid-filling bending forming device | |
JP5057865B2 (en) | Piping and pipe end machining method | |
CN104550370B (en) | The manufacturing process of the macrobending angle small-bend radius of thick-wall and large-diameter pipeline | |
JP2007260762A (en) | Hydroforming device, and forming method using the device | |
KR102064040B1 (en) | The manufacturing method of benzoic rear axle housing appying to hydroforming |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17837123 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17837123 Country of ref document: EP Kind code of ref document: A1 |