Nothing Special   »   [go: up one dir, main page]

WO2018021561A1 - 眼科装置、およびiol度数決定プログラム - Google Patents

眼科装置、およびiol度数決定プログラム Download PDF

Info

Publication number
WO2018021561A1
WO2018021561A1 PCT/JP2017/027547 JP2017027547W WO2018021561A1 WO 2018021561 A1 WO2018021561 A1 WO 2018021561A1 JP 2017027547 W JP2017027547 W JP 2017027547W WO 2018021561 A1 WO2018021561 A1 WO 2018021561A1
Authority
WO
WIPO (PCT)
Prior art keywords
iol
eye
lens
mathematical model
control unit
Prior art date
Application number
PCT/JP2017/027547
Other languages
English (en)
French (fr)
Inventor
遠藤 雅和
昌明 羽根渕
美和子 花木
徹 有川
Original Assignee
株式会社ニデック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016150320A external-priority patent/JP6794700B2/ja
Priority claimed from JP2016171311A external-priority patent/JP2018033807A/ja
Priority claimed from JP2016194227A external-priority patent/JP6900647B2/ja
Application filed by 株式会社ニデック filed Critical 株式会社ニデック
Priority to EP17834563.3A priority Critical patent/EP3491996A4/en
Publication of WO2018021561A1 publication Critical patent/WO2018021561A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/0016Operational features thereof
    • A61B3/0025Operational features thereof characterised by electronic signal processing, e.g. eye models
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/117Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for examining the anterior chamber or the anterior chamber angle, e.g. gonioscopes

Definitions

  • the present disclosure relates to an ophthalmologic apparatus for determining the frequency of an IOL to be inserted into an eye to be examined, and an IOL frequency determination program.
  • an ophthalmologic apparatus determines the power (hereinafter also referred to as power) of an intraocular lens (IOL) inserted into the eye of a subject's eye after removal of the crystalline lens parenchyma (Patent Document 1). reference).
  • IOL intraocular lens
  • Patent Document 1 an intraocular lens
  • the IOL power is calculated using, for example, a regression equation or a theoretical equation.
  • the estimated postoperative anterior chamber depth is estimated in order to determine the intraocular lens power.
  • Patent Document 2 an ophthalmologic apparatus that captures an anterior segment of an eye to be examined in order to determine the frequency of an IOL is known (see Patent Document 2).
  • an error in the IOL frequency may increase.
  • the intraocular lens when the intraocular lens is inserted into the lens capsule of the eye to be inspected, the intraocular lens may rotate around the optical axis after the operation.
  • the toric intraocular lens having an astigmatic component is sometimes used.
  • the axis angle changes, and astigmatism of the eye to be examined cannot be corrected well. Therefore, in order to investigate the cause of the rotation of the intraocular lens, it is necessary to investigate the relationship between the shape of the crystalline lens and the rotation of the intraocular lens, but the conventional ophthalmic device cannot easily obtain the crystalline shape. It was.
  • the first embodiment according to the present disclosure is characterized by having the following configuration.
  • An ophthalmologic apparatus for determining the frequency of an IOL to be inserted into an eye to be examined, comprising: parameter acquisition means for acquiring a plurality of eye shape parameters of the eye to be examined; and arithmetic control means for calculating the IOL frequency.
  • the arithmetic control unit outputs IOL related information from the mathematical model by inputting the plurality of eye shape parameters to the mathematical model trained by a machine learning algorithm.
  • An IOL frequency determination program that is executed in an ophthalmologic apparatus for determining the frequency of an IOL to be inserted into an eye to be examined, and that is executed by a processor of the ophthalmologic apparatus, whereby a plurality of eye shape parameters of the eye to be inspected
  • the second embodiment according to the present disclosure is characterized by having the following configuration.
  • An ophthalmologic apparatus for determining the power of the intraocular lens to be inserted into the eye to be examined, wherein the cross-sectional photographing means for photographing the anterior segment cross-sectional image of the eye to be examined, and the arithmetic control for calculating the power of the intraocular lens And the arithmetic control means obtains a capsular diameter of the crystalline lens of the eye to be examined by analyzing the anterior segment cross-sectional image, and uses the sac diameter to predict a preoperative postoperative period of the intraocular lens. The chamber depth is estimated, and the power of the intraocular lens is calculated based on the predicted postoperative anterior chamber depth.
  • An IOL power determination program that is executed in an ophthalmologic apparatus that determines the power of an intraocular lens to be inserted into the eye to be examined, and is executed by a processor of the ophthalmologic apparatus, so that the anterior segment of the eye to be examined
  • An estimation step for estimating the postoperative predicted anterior chamber depth of the intraocular lens using the capsule diameter acquired in step (b), and the intraocular lens based on the postoperative predicted anterior chamber depth estimated in the estimation step.
  • the ophthalmologic apparatus is caused to execute a calculation step for calculating a frequency.
  • the third embodiment according to the present disclosure is characterized by having the following configuration.
  • An ophthalmologic apparatus for photographing an anterior segment of an eye to be examined, wherein the tomographic means for photographing an anterior segment tomographic image of the subject eye, and the eye to be examined based on the anterior segment tomographic image And an arithmetic control means for calculating a position of at least one of the major axis and minor axis of the lens.
  • the ophthalmologic apparatus of 1st Embodiment determines the frequency of the intraocular lens (also referred to as IOL) to be inserted into the eye to be examined.
  • the apparatus mainly includes, for example, a parameter acquisition unit (for example, the OCT device 5 or the control unit 80 or the operation unit 84) and an arithmetic control unit (for example, the control unit 80).
  • the parameter acquisition unit acquires, for example, a plurality of eye shape parameters of the eye to be examined.
  • the eye shape parameter may be, for example, a corneal shape parameter such as anterior corneal curvature, corneal posterior curvature, corneal thickness, corneal width, corneal height, or anterior lens curvature, posterior lens curvature, lens thickness, lens diameter, It may be a lens shape parameter such as sac diameter, or may be an overall shape parameter such as axial length, anterior chamber depth, corner angle, corner distance, pupil diameter, or retinal shape such as retina thickness. It may be a parameter.
  • the curvature of the lens may be either during contraction or relaxation, or both curvatures may be used.
  • the parameter acquisition unit acquires an eye shape parameter based on, for example, a tomographic image captured by the OCT optical system.
  • the parameter acquisition unit may acquire the eye shape parameter of the subject from a server outside the apparatus via a communication network, or may acquire the eye shape parameter by input from the operation unit.
  • the lens shape parameter may be a parameter such as the position or size of the major axis or minor axis when the lens is an ellipsoid.
  • the calculation control unit calculates IOL related information using a machine learning algorithm.
  • the machine learning algorithm is, for example, a neural network, random forest, boosting, or the like.
  • Neural network is a technique that mimics the behavior of biological nerve cell networks.
  • Neural networks include, for example, feedforward (forward propagation) neural networks, RBF networks (radial basis functions), spiking neural networks, convolutional neural networks, recursive neural networks (recurrent neural networks, feedback neural networks, etc.), probabilistic Neural networks (Boltzmann machine, Basiyan network, etc.).
  • Boosting is a technique for generating a strong classifier by combining a plurality of weak classifiers.
  • a strong classifier is constructed by sequentially learning simple and weak classifiers.
  • Random forest is a method of generating a large number of decision trees by performing learning based on randomly sampled training data.
  • a random forest is used, a plurality of decision trees that have been learned in advance as classifiers are traced, and the results obtained from each decision tree are averaged (or majority voted).
  • the arithmetic control unit acquires IOL related information using a mathematical model (for example, mathematical model 800) trained by a machine learning algorithm.
  • the mathematical model refers to a data structure for predicting the relationship between input data and output data, for example.
  • the mathematical model is constructed by being trained using a training data set.
  • the training data set is a set of training data for input and training data for output.
  • the training data for input is sample data input to the mathematical model.
  • eye shape parameters measured in the past are used as input training data.
  • the training data for output is sample data of values predicted by a mathematical model.
  • the postoperative anterior chamber depth or IOL frequency is used as the training data for output.
  • the postoperative anterior chamber depth is the distance from the cornea to the IOL.
  • the mathematical model is trained such that when certain input training data is input, corresponding output training data is output. For example, correlation data (for example, weight) between each input and output is updated by training.
  • the arithmetic control unit calculates IOL related information based on the correlation data.
  • the arithmetic control unit may acquire the output of the expected postoperative anterior chamber depth as IOL related information from the mathematical model.
  • the trained mathematical model is a mathematical model that outputs an expected postoperative anterior chamber depth by inputting an eye shape parameter including at least one of anterior lens curvature, posterior lens curvature, lens thickness, and anterior chamber depth. Also good.
  • two of the front lens curvature and the back lens curvature may be used, or three of the front lens curvature, the back lens curvature, and the anterior chamber depth are used.
  • four of the front lens curvature, the rear lens curvature, the anterior chamber depth, and the lens thickness may be used.
  • an anterior ocular segment front shape parameter for example, front curvature
  • an anterior ocular segment rear surface shape parameter for example, posterior curvature
  • the offset distance from the lens front surface to the contact point between the chin band and the lens may be acquired as IOL related information.
  • the expected postoperative anterior chamber depth may be obtained by adding the acquired offset distance to the anterior chamber depth.
  • the lens thickness may be added as an input to the mathematical model.
  • the arithmetic control unit may calculate the IOL frequency based on the predicted postoperative anterior chamber depth output by the mathematical model. For example, the arithmetic control unit obtains the IOL frequency by substituting the predicted postoperative anterior chamber depth and other eye shape parameters into the IOL frequency calculation formula.
  • the arithmetic control unit is a prediction technique calculated by a mathematical model at a corresponding part of an existing IOL frequency calculation formula such as SRK / T formula, Binkhorst formula, Holladay formula, Holladay2 formula, HofferQ formula, Olsen formula, Haigis formula, etc.
  • the IOL frequency may be calculated by substituting the posterior anterior chamber depth. By using machine learning in this way, it is possible to calculate an appropriate IOL frequency for various shapes of the eye to be examined.
  • the arithmetic control unit may output the IOL frequency as IOL related information from the mathematical model by inputting a plurality of eye shape parameters to the mathematical model.
  • the trained mathematical model may be a mathematical model that outputs the IOL frequency by inputting corneal curvature, axial length, predicted postoperative anterior chamber depth, and the like.
  • the corneal curvature may be a corneal front curvature, a corneal posterior curvature, or both.
  • the arithmetic control unit calculates the predicted postoperative anterior chamber depth based on a plurality of eye shape parameters, and inputs the eye shape parameter and the predicted postoperative anterior chamber depth into the mathematical model, thereby calculating the IOL frequency from the mathematical model. It may be output. As described above, the arithmetic control unit can output the IOL frequency from the mathematical model by inputting the primary parameter that is the actual measurement value and the secondary parameter calculated based on the actual measurement value to the mathematical model. Good.
  • the arithmetic control unit may use two trained mathematical models.
  • the first mathematical model may be a mathematical model that outputs the predicted postoperative anterior chamber depth by inputting a plurality of eye shape parameters such as anterior lens curvature, posterior lens curvature, lens thickness, and anterior chamber depth.
  • the second mathematical model may be a mathematical model that outputs the IOL frequency by inputting eye shape parameters such as the predicted postoperative anterior chamber depth, corneal curvature, and axial length.
  • the arithmetic control unit inputs a plurality of eye shape parameters to the first mathematical model, thereby calculating the predicted postoperative anterior chamber depth output from the first mathematical model, the eye shape parameter, and the first mathematical model. May output the IOL frequency from the second mathematical model by inputting into a different second mathematical model. Thereby, the predicted postoperative anterior chamber depth and the IOL frequency can be accurately predicted.
  • the arithmetic control unit may input feature parameters into the mathematical model in addition to the eye shape parameters.
  • the trained mathematical model may be a mathematical model that outputs the predicted postoperative anterior chamber depth or the IOL frequency by inputting at least one of eye shape parameters and feature parameters.
  • the feature parameter may be, for example, a parameter relating to at least one of the race, sex, age, and operator (examiner) characteristics of the patient (examinee).
  • the characteristic parameter may be a refractive index such as a patient's corneal refractive index, crystalline lens refractive index, vitreous refractive index, aqueous humor refractive index, or the like.
  • the characteristic parameter may be a desired parameter (or required parameter) such as a postoperative refractive power, visual acuity, working distance, or IOL focal number desired by a patient or an operator.
  • the feature parameter may include a lens constant used in each IOL power calculation formula.
  • the lens constant is, for example, the characteristic parameter is an A constant in the SRK / T formula, a Surgeon factor (SF) in the Holladay formula, an IOL constant in the Haiigis formula, or the like.
  • the feature parameter may be a parameter related to the feature of the IOL model.
  • the characteristic parameter may be the total length of the IOL, the diameter, shape, material, or the like of the support portion.
  • the characteristic parameter may be a parameter obtained by a function of an equatorial dimension (for example, a diameter) of the lens capsule, for example.
  • the function of the diameter of the lens capsule may be a function of the longitudinal displacement of the IOL optical unit with respect to the length of the IOL loop (support unit) during intraocular fixation.
  • the mathematical model inputs a feature parameter related to the IOL model or the capsule diameter, corneal curvature, anterior chamber depth, and axial length. It may be a mathematical model that outputs ELP.
  • the feature parameter may be used not only for machine learning but also as a correction coefficient for correcting the predicted postoperative anterior chamber depth or IOL frequency obtained by machine learning.
  • the arithmetic control unit obtains a predicted position of ELP (for example, the distance from the cornea to the contact point of the lens capsule and the IOL loop) assumed not to depend on the IOL model by machine learning, and calculates the IOL model or the capsule diameter.
  • An effective ELP suitable for each IOL model may be obtained by correcting the tentative predicted ELP with a feature parameter related to ELP. This can reduce the complexity of acquiring the ELP prediction value using machine learning for each IOL model.
  • the calculation control unit is a selection for selecting an appropriate IOL frequency calculation formula among IOL frequency calculation formulas such as SRK / T formula, Binkhorst formula, Holladay formula, Holladay2 formula, HofferQ formula, Olsen formula, Haigis formula, etc.
  • Information may be output to a mathematical model.
  • the mathematical model may be a mathematical model that outputs selection information of an appropriate IOL calculation formula by inputting a feature amount necessary for selection of the calculation formula.
  • the selection information may be, for example, information of an appropriate formula among a plurality of IOL frequency calculation formulas, or a recommendation degree of each formula IOL frequency calculation formula.
  • the arithmetic control unit inputs feature quantities related to any of eye length, IOL model, surgeon, race, gender, and age to the mathematical model, so that the IOL frequency calculation formula selection information is input to the mathematical model. May be output.
  • the present apparatus may further include a presentation unit (for example, the monitor 70) that presents selection information output by the mathematical model to the user.
  • the apparatus may further include a warning unit (for example, the monitor 70) that warns when a user attempts to use an expression that is not appropriate in the selection information output by the mathematical model.
  • the arithmetic control unit may optimize the constants or coefficients used in the IOL frequency calculation formula by the mathematical model as described above. As a result, the IOL frequency can be calculated using a value more appropriate than an empirically obtained value as a constant or coefficient.
  • the arithmetic control unit may execute an IOL frequency determination program stored in a storage unit (for example, the memory 85) or the like.
  • the IOL frequency determination program includes, for example, a parameter acquisition step and a calculation step.
  • the parameter acquisition step is a step of acquiring a plurality of eye shape parameters of the eye to be examined.
  • the calculation step is a step of outputting IOL related information from the mathematical model by inputting a plurality of eye shape parameters to the mathematical model trained by the machine learning algorithm.
  • the ophthalmologic apparatus for example, ophthalmologic apparatus 10 of 2nd Embodiment is provided with a cross-sectional imaging
  • photography part for example, OCT device 5
  • the calculation control part for example, control part 80
  • the cross-sectional imaging unit captures, for example, an anterior segment cross-sectional image of the eye to be examined.
  • the cross-sectional imaging unit is, for example, an optical coherence tomography apparatus (OCT), an ultrasonic diagnostic apparatus, a Scheimpflug camera, or the like.
  • the calculation control unit calculates the frequency of the intraocular lens (also referred to as IOL) to be inserted into the eye to be examined.
  • the arithmetic control unit acquires the capsule diameter of the crystalline lens by analyzing the anterior segment cross-sectional image. For example, the arithmetic control unit obtains the equator position which is the maximum diameter part of the crystalline lens from the anterior segment cross-sectional image, and acquires the diameter (capsule diameter) at the equator position.
  • the arithmetic control unit may obtain two points where the approximate curves of the front surface of the crystalline lens and the rear surface of the crystalline lens intersect and obtain the distance between the two points as the capsule diameter. .
  • the calculation control unit estimates the expected postoperative anterior chamber depth of the intraocular lens using the acquired capsule diameter.
  • the predicted postoperative anterior chamber depth is a value obtained by predicting the distance from the cornea to the optical part of the IOL before the operation.
  • the expected postoperative anterior chamber depth is used to calculate the frequency of the IOL and affects the calculation result. Since the postoperative anterior chamber depth varies depending on the bending condition of the support portion (loop) of the IOL, the expected postoperative anterior chamber depth is estimated in consideration of the bending of the loop.
  • the bending of the loop changes depending on the sac diameter. For example, compared to a case where the sac diameter is large, when the sac diameter is small, the bend of the loop becomes large so that the IOL fits in the sac.
  • the calculation control unit corrects the shift in the expected postoperative anterior chamber depth due to the bending of the loop according to the size of the sac. For example, the calculation control unit increases the amount of correction to the posterior or anterior capsular depth of the expected postoperative anterior chamber depth when the capsular diameter is small compared to when the capsular diameter is large. To do.
  • the correction amount of the predicted postoperative anterior chamber depth that is empirically set according to the size of the capsule diameter is stored in the memory, and when calculating the predicted postoperative anterior chamber depth, the correction amount is calculated by the arithmetic control unit. You may make it read from memory.
  • the arithmetic control unit corrects the expected postoperative anterior chamber depth to 0.5 mm posterior capsule side, and when the sac diameter is 9 mm, the predicted postoperative anterior chamber depth is corrected to 1 mm posterior capsule side. It may be corrected.
  • the arithmetic control unit may estimate the expected postoperative anterior chamber depth using not only the sac diameter but also the characteristic parameters of the IOL.
  • the characteristic parameter (model information) of the IOL is a parameter determined by at least one of the total length, thickness, elastic modulus, optical part diameter, and loop angle of the IOL, for example. These parameters affect how the loop bends in the capsule.
  • the arithmetic control unit largely estimates the expected postoperative anterior chamber depth when it has characteristic parameters that tend to cause IOL. That is, the amount of movement of the IOL optical unit toward the posterior capsule due to the loop is greatly estimated.
  • the calculation control unit increases the correction amount to the posterior capsule side after the expected postoperative anterior chamber depth.
  • the arithmetic control unit reduces the correction amount to the posterior capsule side after the expected postoperative anterior chamber depth.
  • the arithmetic control unit may change the direction of correction of the predicted postoperative anterior chamber depth (anterior capsule side or posterior capsule side) according to the IOL model.
  • the arithmetic control unit may compare the sac diameter and the total length of the IOL. The arithmetic control unit may determine whether the IOL is suitable for the eye to be examined based on the comparison result. For example, the arithmetic control unit may determine that the IOL is suitable when the IOL total length is large with respect to the sac diameter, and may determine that the IOL is not suitable when the IOL total length is small with respect to the sac diameter. For example, if the IOL is suitable for the eye to be examined, the arithmetic control unit calculates the power of the intraocular lens, and if it is not suitable, informs the examiner that the IOL will be changed to an intraocular lens of another model. May be.
  • the arithmetic control unit may calculate a correction amount for the predicted postoperative anterior chamber depth using a mathematical model trained by a machine learning algorithm.
  • the arithmetic control unit may output the correction amount by inputting the sac diameter or the like into the mathematical model.
  • the ophthalmologic apparatus (for example, ophthalmologic apparatus 10) of the third embodiment images at least the anterior eye portion of the eye to be examined.
  • the ophthalmologic apparatus includes, for example, a tomography unit (for example, OCT device 5) and an arithmetic control unit (for example, control unit 80).
  • the tomography unit photographs an anterior segment tomographic image of the eye to be examined.
  • the anterior segment tomographic image is an image including at least a cross section of the crystalline lens, for example.
  • the calculation control unit calculates the position of the major axis or the minor axis when the crystalline lens of the eye to be examined is an ellipsoid based on the anterior segment tomographic image.
  • the positions of the major axis and the minor axis are, for example, a rotation angle when the left and right direction (horizontal direction) of the eye to be examined is 0 °, or coordinates with a part of the eye to be examined as the origin.
  • the arithmetic control unit may obtain the curvature radius of the front surface or the rear surface of the crystalline lens by analyzing the anterior segment tomographic image, and calculate the major axis or minor axis of the crystalline lens from the curvature radius.
  • this apparatus can calculate the position of the major axis or minor axis of the crystalline lens from the tomographic image of the eye to be examined, and can easily acquire the shape information of the crystalline lens.
  • the present apparatus can be used to determine the insertion position of an intraocular lens in cataract treatment.
  • the present apparatus may include a display control unit (for example, the control unit 80).
  • the display control unit may display the position of the major axis or minor axis of the crystalline lens on the display unit (for example, the monitor 70).
  • the display control unit may display the position of the major axis or the minor axis of the crystalline lens with a graphic such as a line or a point, and may display the angle or the distance with a numerical value.
  • This apparatus can provide the examiner with useful information about the insertion position of the intraocular lens in the treatment of cataract by displaying the position of the major axis or minor axis of the lens.
  • the display control unit may cause the display unit to display the position of the astigmatic axis (also referred to as toric axis) of the toric intraocular lens together with the position of the major axis or minor axis of the crystalline lens.
  • the display control unit may display the position of the major axis or minor axis of the crystalline lens and the position of the astigmatic axis of the toric intraocular lens on the front image of the anterior ocular segment with lines or the like.
  • this apparatus can provide information on the positional relationship between the major axis and minor axis of the crystalline lens and the astigmatic axis of the toric intraocular lens.
  • the toric axis may be displayed as a graphic such as a line or a point, or may be displayed as a numerical value. Based on the numerical display, the examiner may manually position the graphic, such as a line or a point.
  • the display control unit may display the position of the loop of the toric intraocular lens on the display unit together with the position of the major axis or minor axis of the crystalline lens.
  • a loop is a support part for supporting an intraocular lens in the capsule of a crystalline lens, for example.
  • the display control unit may display a figure of the intraocular lens, or may display the position of the loop with lines or dots.
  • the display control unit may display the position of the loop by a numerical value such as an angle or coordinates.
  • the present apparatus can provide information on the positional relationship between the major and minor diameters of the crystalline lens and the loop of the toric intraocular lens.
  • the arithmetic control unit may calculate the amount of deviation between the major axis or minor axis of the lens and the loop.
  • the apparatus can acquire information regarding the possibility of rotation of the intraocular lens.
  • the axis of the toric intraocular lens is arranged at an ideal axis angle (for example, an astigmatism axis angle based on the corneal shape) with respect to the astigmatism axis of the eye
  • the calculation control unit determines the position of the loop and the major axis of the lens The difference in angle with the (or minor axis) position may be calculated.
  • the arithmetic control unit determines whether the major axis or short diameter of the crystalline lens is based on the axial angle of the toric intraocular lens.
  • the amount of deviation between the position of the diameter and the position of the loop may be calculated.
  • the ideal axial angle of the toric intraocular lens may be an axial angle considering induced astigmatism. Induced astigmatism is, for example, astigmatism caused by a change in corneal shape due to a corneal incision during cataract surgery.
  • the axial angle when considering induced astigmatism is estimated based on the corneal shape measured before the operation and the incision position or incision amount of the cornea.
  • this apparatus may be provided with a notification unit.
  • the notification unit may be a display unit, a speaker, a lamp, or the like.
  • the calculation control unit may control the notification unit according to the amount of deviation between the position of the major axis or the minor axis of the crystalline lens and the position of the loop.
  • the calculation control unit may notify the notification unit that the toric intraocular lens may rotate when the amount of positional deviation between the major axis of the lens and the loop exceeds a predetermined amount.
  • the calculation control unit may notify the notification unit that the toric intraocular lens may be rotated when the position of the tip of the loop is at the position of the minor axis of the crystalline lens.
  • the present apparatus can prompt the examiner to adjust the axial angle of the toric intraocular lens.
  • the arithmetic control unit may notify the direction in which the toric intraocular lens rotates.
  • the arithmetic control unit may notify the direction in which the loop goes from the minor axis to the major axis of the crystalline lens. As a result, the direction of rotation of the toric intraocular lens can be predicted.
  • the present apparatus may further include a front photographing unit that photographs a front image of the eye to be examined.
  • the display control unit may display the position of the major axis or minor axis of the crystalline lens on the front image.
  • the present apparatus can provide information about the positional relationship between the characteristic part (such as a scleral blood vessel) of the eye to be examined and the major axis or minor axis of the lens.
  • the front image is an image when the eye to be examined is photographed from the front.
  • the front imaging unit may be shared by a tomography unit such as an OCT optical system.
  • the front image may be a front image generated from a set of tomographic image data photographed by the tomography unit.
  • the arithmetic control unit may calculate the amount of rotation of the toric intraocular lens using a mathematical model trained by a machine learning algorithm.
  • the arithmetic control unit may output the amount of rotation of the toric intraocular lens by inputting the position of the major axis or minor axis of the crystalline lens and the position of the support unit of the toric intraocular lens into the mathematical model. Good.
  • FIG. 1 is a schematic configuration diagram illustrating the measurement unit 200 of the ophthalmologic apparatus 10 according to the present embodiment.
  • the following optical system is built in a housing (not shown). Further, the casing is three-dimensionally moved with respect to the eye E through an operation member (for example, a touch panel, a joystick, etc.) by driving a known alignment moving mechanism.
  • the optical axis direction of the eye to be examined is described as the Z direction, the horizontal direction as the X direction, and the vertical direction as the Y direction.
  • the surface direction of the fundus may be considered as the XY direction.
  • an ophthalmologic apparatus 10 including an optical coherence tomography device (OCT device) 5 and a corneal shape measurement device 300 will be described as an example.
  • the OCT device 5 is used as an anterior segment imaging device for capturing a cross-sectional image of the eye E.
  • the OCT device 5 is used as an axial length measuring device for measuring the axial length of the eye E.
  • the corneal shape measuring device 300 is used for measuring the corneal shape.
  • the OCT device 5 includes an interference optical system (OCT optical system) 100.
  • the OCT optical system 100 irradiates the eye E with measurement light.
  • the OCT optical system 100 detects the interference state between the measurement light reflected from each part (for example, cornea, crystalline lens, fundus, etc.) of the eye to be examined and the reference light by the light receiving element (detector 120).
  • the OCT optical system 100 includes a scanning unit (for example, an optical scanner) 108 that scans measurement light on the eye to be examined in order to change the imaging position on the eye to be examined.
  • the control unit 80 controls the operation of the scanning unit 108 based on the set imaging position information, and acquires a cross-sectional image based on the light reception signal from the detector 120.
  • the OCT optical system 100 has a so-called ophthalmic optical tomography (OCT) apparatus configuration.
  • the OCT optical system 100 splits the light emitted from the measurement light source 102 into measurement light (sample light) and reference light by a coupler (light splitter) 104.
  • the OCT optical system 100 guides the measurement light to the eye to be examined by the measurement optical system 106 and guides the reference light to the reference optical system 110.
  • the detector (light receiving element) 120 receives the interference light obtained by combining the measurement light reflected by each part of the eye to be examined and the reference light.
  • the light emitted from the light source 102 is divided into a measurement light beam and a reference light beam by the coupler 104. Then, the measurement light flux passes through the optical fiber and is then emitted into the air.
  • the light beam is condensed on the eye to be examined through the scanning unit 108 and other optical members of the measurement optical system 106. Then, the light reflected by each part of the eye to be examined is returned to the optical fiber through the same optical path.
  • the scanning unit 108 scans the measurement light on the eye E in the XY direction (transverse direction).
  • the scanning unit 108 is, for example, two galvanometer mirrors, and the reflection angle thereof is arbitrarily adjusted by the drive mechanism 109.
  • the scanning unit 108 may be configured to deflect light.
  • a reflective mirror galvano mirror, polygon mirror, resonant scanner
  • AOM acousto-optic device
  • the reference optical system 110 generates reference light that is combined with reflected light acquired by reflection of measurement light by the eye E.
  • the reference optical system 110 may be a Michelson type or a Mach-Zehnder type.
  • the reference optical system 110 is formed by, for example, a reflection optical system (for example, a reference mirror), and reflects light from the coupler 104 back to the coupler 104 by being reflected by the reflection optical system and guides it to the detector 120.
  • the reference optical system 110 is formed by a transmission optical system (for example, an optical fiber), and guides the light from the coupler 104 to the detector 120 by transmitting the light without returning.
  • the reference optical system 110 has a configuration that changes the optical path length difference between the measurement light and the reference light by moving an optical member in the reference light path. For example, the reference mirror is moved in the optical axis direction.
  • the configuration for changing the optical path length difference may be arranged in the measurement optical path of the measurement optical system 106.
  • the detector 120 detects an interference state between the measurement light and the reference light.
  • the spectral intensity of the interference light is detected by the detector 120, and a depth profile (A scan signal) in a predetermined range is obtained by Fourier transform on the spectral intensity data.
  • the control unit 80 can acquire a cross-sectional image by scanning the measurement light with each unit of the eye to be examined in a predetermined transverse direction by the scanning unit 108. For example, an anterior segment cross-sectional image of the eye to be examined is captured.
  • a cross-sectional image on the XZ plane or the YZ plane of the eye to be examined can be acquired (in this embodiment, the measurement light is thus one-dimensionally applied to the anterior segment.
  • a method of scanning and obtaining a tomographic image is referred to as a B-scan).
  • the acquired cross-sectional image is stored in the memory 85 connected to the control unit 80.
  • Fourier domain OCT examples include Spectral-domain OCT (SD-OCT) and Swept-source OCT (SS-OCT). Alternatively, Time-domain OCT (TD-OCT) may be used.
  • SD-OCT Spectral-domain OCT
  • SS-OCT Swept-source OCT
  • TD-OCT Time-domain OCT
  • a low-coherent light source (broadband light source) is used as the light source 102, and the detector 120 is provided with a spectroscopic optical system (spectrum meter) that separates interference light into each frequency component (each wavelength component).
  • the spectrum meter includes, for example, a diffraction grating and a line sensor.
  • a wavelength scanning type light source that changes the emission wavelength at a high speed in time is used as the light source 102, and a single light receiving element is provided as the detector 120, for example.
  • the light source 102 includes, for example, a light source, a fiber ring resonator, and a wavelength selection filter.
  • the wavelength selection filter include a combination of a diffraction grating and a polygon mirror, and a filter using a Fabry-Perot etalon.
  • the cornea shape measuring device 300 is roughly classified into a kerato projection optical system 50, an alignment projection optical system 40, and an anterior ocular segment front imaging optical system 30.
  • the kerato projection optical system 50 has a ring-shaped light source 51 arranged around the measurement optical axis L1, and measures a corneal shape (curvature, astigmatic axis angle, etc.) by projecting a ring index on the eye cornea to be examined.
  • a corneal shape curvature, astigmatic axis angle, etc.
  • the light source 51 for example, an LED that emits infrared light or visible light is used.
  • at least 3 or more point light sources should just be arrange
  • the projection optical system 50 is an optical system that projects a ring index on the eye cornea Ec to be examined, and the ring index also serves as a Mayer ring.
  • the light source 41 of the projection optical system 40 also serves as anterior segment illumination that illuminates the anterior segment with infrared light from an oblique direction.
  • the projection optical system 40 may further include an optical system that projects parallel light on the cornea Ec, and the front-rear alignment may be performed by a combination with the finite light by the projection optical system 40.
  • the observation optical system 30 is used to capture (acquire) a front image of the anterior segment.
  • the observation optical system 30 includes a dichroic mirror 33, an objective lens 47, a dichroic mirror 62, a filter 34, an imaging lens 37, and a two-dimensional imaging device 35, and is used to capture an anterior ocular segment front image of the eye to be examined.
  • the two-dimensional imaging device 35 is disposed at a position substantially conjugate with the anterior eye portion to be examined.
  • the anterior ocular segment light reflected by the projection optical system 40 and the projection optical system 50 is imaged on the two-dimensional imaging device 35 via the dichroic mirror 33, the objective lens 47, the dichroic mirror 62, the filter 34, and the imaging lens 37.
  • the light source 1 is a fixation lamp.
  • a part of the anterior segment reflected light acquired by the reflection of light emitted from the light source 1 at the anterior segment is reflected by the dichroic mirror 33 and imaged by the anterior segment front imaging optical system 30. Is done.
  • the control unit 80 controls the entire apparatus and calculates measurement results.
  • the control unit 80 is connected to each member of the OCT device 5, each member of the corneal shape measuring device 300, the monitor 70, the operation unit 84, the memory 85, and the like.
  • the memory 85 stores various control programs, an IOL frequency calculation program, which will be described later, and the like.
  • the IOL frequency calculation program of this embodiment uses a mathematical model trained by a machine learning algorithm.
  • the mathematical model in this neural network generally consists of an input layer for inputting data, an output layer for generating data to be predicted, and one or more hidden layers between the input layer and the output layer.
  • a plurality of nodes (also referred to as units) are arranged in each layer. The node receives multiple inputs and calculates one output. For example, data input to each node in each layer is output to each node in the adjacent layer. At this time, a different weight is added to each path.
  • an output value transmitted from one node to the next node is increased or attenuated by a weight for each path.
  • a function such as an activation function is applied and output to each node in the next layer. This input / output is repeated between adjacent layers, and finally prediction data is output from the output layer.
  • the total input uj received by the second layer node is given by the following equation (1 ), All inputs obtained by multiplying each input xi of the first layer by different weights wji are added to one value bi called a bias.
  • the output zi of the second layer node is an output of a function f such as an activation function for the total input ui as shown in the following equation (2).
  • a function f such as an activation function for the total input ui as shown in the following equation (2).
  • the activation function include a logistic sigmoid function, a hyperbolic tangent function, a normalized linear function, and a max-out function.
  • Mathematical models in the neural network as described above can be predicted using new training data by training using a training data set.
  • the training data set is, for example, a set of input training data and output training data.
  • the weight and bias of each node in each layer are adjusted.
  • Multiple training data sets are prepared, and weights and biases with versatility can be obtained for various data by adjusting repetition weights and biases, and prediction can be made for unknown data. Become.
  • the training of the mathematical model is continued until, for example, an error between the output of the input training data and the corresponding output training data falls within an allowable range.
  • back propagation error back propagation method or the like is used.
  • the adjusted weight represents the correlation between input and output. Based on this relationship, the mathematical model outputs a predicted value for the input of new data different from the training data. For example, each weight is applied as a coefficient to the output of each node. Thereby, the correlation obtained by the training is reflected in the output of the mathematical model.
  • This mathematical model 800 uses a plurality of training data sets in which a subject's front lens curvature, back lens curvature, lens thickness and anterior chamber depth, and postoperative anterior chamber depth (ELP) are one set. Have been trained. That is, in the mathematical model 800 of this embodiment, when four eye shape parameters such as a lens front curvature, a lens rear curvature, a lens thickness, and an anterior chamber depth are input to the input layer M1, an expected preoperative postoperative period is output from the output layer M3. It is generated so that the tuft depth (predicted value of the post-operative anterior chamber depth) is output.
  • the mathematical model 800 is implemented using an arbitrary computer language or the like so as to be executed on the processor of the control unit 80.
  • FIG. 3 is a diagram simply showing a control operation in the case of determining the intraocular lens power using the present apparatus in a flowchart.
  • the control unit 80 performs alignment of the measurement unit 200 with respect to the eye to be examined.
  • the control unit 80 turns on the light source 1, the light source 41, and the light source 51.
  • a front image of the eye to be examined photographed by the two-dimensional image sensor 35 is displayed on the monitor 70.
  • an electronically displayed reticle LC and a ring index Q1 and a ring index Q2 formed by the light source 41 and the light source 51 are shown.
  • the examiner operates the operation unit such as a touch panel so that the reticle LC and the ring index Q1 are concentric when the examinee fixes the fixation lamp.
  • the control unit 80 moves the measurement unit up, down, left, and right according to the operation received by the operation unit. Thereby, alignment is made in the XY directions so that the optical axis L1 of the present apparatus passes through the corneal apex of the eye to be examined.
  • the examiner operates the operation unit so that the ring index Q1 is in focus.
  • the control unit 80 moves the measurement unit in the front-rear direction according to the operation received by the operation unit.
  • the control unit 80 captures a front image of the anterior segment of the eye to be examined by the observation optical system 30 (step S2). Further, the control unit 80 captures a cross-sectional image 500 of the eye to be examined as shown in FIG. 5 by the OCT optical system 100 based on a preset scanning pattern (step 3).
  • the acquired anterior ocular segment image and cross-sectional image are stored in the memory 85 or the like.
  • the control unit 80 acquires an eye shape parameter.
  • the control unit 80 calculates the corneal shape of the eye to be examined based on the ring index images Q1 and Q2 in the anterior segment image 400 stored in the memory 85.
  • the corneal shape is, for example, the corneal curvature radius of the front surface of the cornea in the strong main meridian direction and the weak main meridian direction, the astigmatic axis angle of the cornea, and the like.
  • the control unit 80 analyzes a cross-sectional image photographed using the OCT device 5.
  • control unit 80 detects the position of the cornea, the lens, and the like by detecting the edge of the cross-sectional image, and measures the corneal thickness, the anterior chamber depth, and the lens thickness based on the positions. Further, the control unit 80 circularly approximates (or ellipse approximation, conic curve approximation, etc.) the detected cornea and front surface or back surface of the lens, and based on this approximate curve, the curvature radius of the back surface of the cornea, the front surface curvature of the lens, the back surface of the lens Measure curvature etc. Further, when the retina can be imaged by the OCT optical system, the axial length is measured.
  • the acquired eye shape parameter is stored in the memory 85 or the like, for example.
  • step S5 the control unit 80 reads the lens front surface curvature, lens rear surface curvature, lens thickness, and anterior chamber depth acquired by the measurement unit 200 from the memory 85, and inputs them to each node of the input layer M1. And the control part 80 performs calculation according to the rule of the mathematical model 800, and outputs the value of the predicted postoperative anterior chamber depth from the output layer M3 (step S6). The control unit 80 stores the output predicted postoperative anterior chamber depth in the memory 85.
  • the control unit 80 calculates the intraocular lens power by partially using the known SRK / T formula, Binkhorst formula, and the like. For example, in step S7, the control unit 80 acquires the IOL frequency by substituting the above parameters into the SRK / T equation, the Binkhorst equation, or the like (step S8).
  • the SRK / T equation (the following equation (3)) is used, the intraocular lens power is calculated using the corneal curvature radius, the axial length, the expected postoperative anterior chamber depth, and the like.
  • the predicted postoperative anterior chamber depth is output by a mathematical model, but the present invention is not limited to this.
  • the IOL frequency may be output.
  • a mathematical model is trained using a plurality of eye shape parameters such as corneal curvature, axial length, and anterior chamber depth as input training data, and using IOL frequency as output training data. Accordingly, when the eye shape parameter measured by the measurement unit 200 is input, the control unit 80 generates a mathematical model that outputs the IOL frequency. By using this mathematical model, the IOL frequency can be directly calculated from the measured eye shape parameters.
  • control unit 80 may acquire the toric IOL frequency using a mathematical model.
  • a mathematical model is trained using a plurality of eye shape parameters as input training data and using a toric IOL frequency as output training data.
  • the eye shape parameters are, for example, anterior corneal astigmatism frequency, anterior corneal astigmatic axis, posterior corneal astigmatism frequency, corneal astigmatic axis, corneal thickness (CT), anterior chamber depth ACD, and postoperative anterior chamber depth.
  • the incision position, incision width, and incision angle are the position, width, and angle (incision direction) of an incision that is made on the cornea, limbus, or sclera of the eye to be examined when the IOL is inserted.
  • the auxiliary port is, for example, an incision (or wound) for inserting an auxiliary tool during insertion of the IOL into the eye.
  • the astigmatism power of the toric IOL to be inserted into the eye to be examined is calculated based on, for example, information on lens front astigmatism and lens rear surface astigmatism.
  • toric IOL related information such as toric angle and postoperative IOL rotation possibility may be acquired.
  • the diameter of the lens capsule, the short and long diameters of the lens capsule, the total length of the IOL, and the like may be used as input data to the mathematical model.
  • the calculation control unit inputs the characteristic parameters related to at least one of the incision position, incision width, incision angle, auxiliary port position, number of auxiliary ports, auxiliary port width, and operator to the mathematical model, thereby performing an operation from the mathematical model.
  • Post-induced astigmatism may be output.
  • Postoperatively induced astigmatism is astigmatism caused by incision during cataract surgery. Therefore, postoperatively induced astigmatism may be affected by the characteristics of the surgeon's surgery. For this reason, in order to output postoperative-induced astigmatism, feature parameters relating to at least one of the incision position, incision width, incision angle, auxiliary port position, number of auxiliary ports, auxiliary port width, and surgeon are used as input of the mathematical model. .
  • the IOL frequency is calculated by substituting the expected postoperative anterior chamber depth calculated by the mathematical model into the substitution position of the IOL frequency calculation formula, but the IOL frequency is calculated again by another mathematical model. May be.
  • the IOL frequency may be obtained using a mathematical model trained to output the IOL frequency. Good.
  • the number of outputs of the neural network is one, but a plurality of nodes may be provided in the output layer to output a plurality of values.
  • eye shape parameters such as corneal curvature, axial length, anterior chamber depth, lens front curvature, and posterior lens curvature
  • two parameters such as predicted postoperative anterior chamber depth and IOL frequency may be calculated.
  • a mathematical model may be trained using a plurality of eye shape parameters as input training data and using postoperative anterior chamber depth and IOL frequency as output training data.
  • the output layer not only the output layer but also the input layer and the hidden layer may have any number of nodes.
  • the hidden layer handles one neural network, but a deep neural network having two or more hidden layers may be used.
  • a plurality of eye shape parameters are similarly input to each node of the input layer, and finally the predicted postoperative anterior chamber depth or IOL frequency is output from the output layer through a plurality of hidden layers.
  • IOL frequency information that more closely reflects the correlation between the eye shape parameters can be acquired.
  • the predicted postoperative anterior chamber depth is calculated by regression using a neutral network, but IOL related information may be acquired by classification using machine learning.
  • the control unit 80 may select an appropriate IOL frequency calculation formula from a plurality of IOL frequency calculation formulas using a mathematical model.
  • the control unit 80 obtains an appropriate IOL frequency calculation formula by inputting eye shape parameters to a mathematical model.
  • the IOL frequency can be calculated by the IOL frequency calculation formula suitable for the shape of the eye to be examined.
  • characteristic parameters related to the IOL model, operator, race, sex, age, etc. may be input to the mathematical model.
  • the IOL frequency is calculated by the neural network, but the present invention is not limited to this.
  • other machine learning algorithms such as random forest and boosting may be used.
  • the IOL frequency is obtained by several decision trees, and the IOL frequency is obtained by averaging the IOL frequency values obtained from each decision tree.
  • An accurate IOL frequency can be calculated by using not only a neural network but also a machine learning algorithm.
  • the eye shape parameter input to the mathematical model is measured by the measuring unit 200, but the eye shape parameter may be acquired from a server or the like.
  • a plurality of measurement results captured by a large number of models may be stored in a server through a network, and each device may be able to acquire data measured by other devices from the server.
  • the control unit 80 may acquire eye shape parameters from an electronic medical record system in which registration information of the subject, measurement image data, and the like are managed.
  • the IOL frequency was obtained by applying the predicted postoperative anterior chamber depth calculated by the trained mathematical model to the IOL frequency calculation formula.
  • the IOL frequency may be output by inputting the depth and other eye shape parameters into the mathematical model. A method for calculating the expected postoperative anterior chamber depth will be described below.
  • the expected postoperative anterior chamber depth is calculated by adding the offset amount X and the correction amount ⁇ (for example, a function of the A constant) to the corneal height (the height from the front surface of the cornea to the front surface of the lens). .
  • the corneal height is calculated by adding the corneal thickness CCT and the anterior chamber depth ACD.
  • the offset amount X indicates the distance from the lens front surface position to the equator position (the maximum diameter portion of the lens). Note that the offset amount X is excluded without considering the amount of movement of the IOL toward the posterior lens capsule (the correction amount ⁇ shown above) that occurs when the IOL receives pressure from the lens capsule. Will be described later).
  • the position of the tip of the IOL support (loop) is approximately the same as the equator position.
  • the equator position may be a position where the lens front surface and the lens rear surface intersect.
  • the control unit 80 calculates the equator position using the lens front surface curvature radius R3, the lens rear surface curvature radius R4, and the lens thickness LT, and sets the equator position as the position of the post-operative loop tip. Since the position of the loop tip after the operation is roughly the same as the position of the optical part of the IOL, the offset amount X is calculated with the position of the loop tip as the position of the optical part.
  • the distance h indicates the distance from the optical axis L1 to the intersection of the approximate circle on the front surface of the lens and the approximate circle on the rear surface of the lens.
  • a distance X1 indicates a distance from the lens front surface curvature center O4 to the lens rear surface on the optical axis L1.
  • the distance X1 ′ indicates the distance from the intersection of the approximate circle on the front surface of the lens and the approximate circle on the back surface of the lens to the back surface of the lens.
  • the distance X2 indicates the distance from the lens back surface curvature center O3 to the lens front surface in the optical axis L1.
  • the distance X indicates the distance from the intersection of the approximate circle on the front surface of the crystalline lens and the approximate circle on the rear surface of the crystalline lens to the front surface of the crystalline lens, and is an offset amount.
  • the control unit 80 calculates the expected postoperative anterior chamber depth based on the offset amount X calculated by the equation (5), the anterior chamber depth ACD, the corneal thickness CCT, and the correction amount ⁇ .
  • the correction amount ⁇ is a parameter for correcting the amount of movement of the IOL when the IOL is pushed down to the posterior capsule side by the pressure of the lens capsule after insertion of the IOL.
  • the correction amount ⁇ differs depending on the IOL model, and is calculated using, for example, an A constant set for each model based on clinical data.
  • the expected postoperative anterior chamber depth ELP can be obtained by the following equation (6).
  • the predicted post-operative anterior chamber depth may be defined from the back of the cornea, but here it is the distance from the front of the cornea to the front of the IOL.
  • the control unit 80 may directly calculate the IOL frequency by inputting the predicted postoperative anterior chamber depth calculated by Expression (6) and each eye shape parameter acquired by the measurement unit 200 into a mathematical model.
  • the eye shape parameter that is an actually measured value (primary parameter) and the predicted postoperative anterior chamber depth that is a calculated value (secondary parameter) based on the primary parameter are used as inputs of the mathematical model. Also good.
  • the control unit 80 can calculate the IOL frequency reflecting the correlation between the primary parameter and the secondary parameter.
  • control unit 80 inputs an eye shape parameter to a mathematical model, thereby causing the progress of opacity of an intermediate translucent body such as a cornea or a lens, keratoconus, post-LASIK corneal dilatation, perosidic limbic degeneration, etc.
  • the degree of progression of corneal degeneration, postoperative disease incidence, etc. may be output.
  • the degree of progression of corneal degeneration, corneal curvature, corneal thickness, etc. are used as input to the mathematical model.
  • the luminance value of the intermediate translucent body that is shown in the anterior segment cross-sectional image is used as an input of the mathematical model.
  • the mathematical model may include a plurality of nodes in the output layer, and output the disease information as described above in addition to the IOL related information. Thereby, while calculating
  • the IOL fixed in the sac is described, but the present invention is not limited to this.
  • a mathematical model trained by machine learning is used. IOL related information can be acquired.
  • information regarding an IOL that has already been inserted into the eye to be examined may also be used as one of the characteristic parameters for inputting a mathematical model.
  • the present disclosure also applies to an optical coherence tomography device for photographing an anterior segment tomogram (cross-sectional image) even when a three-dimensional shape image is obtained by obtaining an anterior segment tomogram at a plurality of scanning positions.
  • the OCT device 5 is an anterior segment imaging device that acquires a three-dimensional sectional image (three-dimensional anterior segment data) of the anterior segment
  • the control unit 80 is a three-dimensional section acquired by the anterior segment imaging device. Based on the image, an offset distance from the front of the lens to the contact point between the chin band and the lens is determined three-dimensionally.
  • the average of the lens front curvature and the lens rear curvature for each meridian direction in the three-dimensional anterior segment data is calculated, and ELP is calculated based on this. And by acquiring a measured value from a three-dimensional shape image, the accuracy of the acquired measured value improves.
  • an optical coherence tomography device for photographing an anterior ocular segment tomographic image is taken as an example of the anterior ocular segment imaging device that captures an anterior ocular segment image, but is not limited thereto.
  • a light projecting optical system that projects light emitted from a light source toward the anterior eye portion of the eye to be examined and forms a light cutting surface on the anterior eye portion, and before being acquired by scattering at the anterior eye portion of the light cutting surface.
  • a light receiving optical system having a detector that receives light including scattered light of the eye part, and any structure that forms an anterior ocular segment image based on a detection signal from the detector may be used. That is, the present invention can be applied to an apparatus or the like that projects slit light on the anterior segment of the optometer and obtains a cross-sectional image of the anterior segment by a Shine peak camera.
  • the present invention can also be applied to an apparatus that acquires a three-dimensional shape image of the anterior segment by rotating the Shine peak camera or moving it horizontally or vertically.
  • an apparatus that acquires a three-dimensional shape image of the anterior segment by rotating the Shine peak camera or moving it horizontally or vertically.
  • it is possible to acquire the three-dimensional shape image of the anterior segment with high accuracy by performing the deviation correction for each predetermined rotation angle, and the accuracy of the measurement value acquired from the three-dimensional shape image is improved.
  • a positional deviation in a direction perpendicular to the imaging surface (slit cross section) is detected, and a deviation correction process is performed based on the detection result.
  • the anterior segment cross-sectional image is optically acquired, but the present invention is not limited to this.
  • what is necessary is just a structure which acquires the anterior ocular segment cross-section image by detecting the reflection information from an anterior ocular segment using the ultrasonic probe for B scan.
  • the IOL frequency can also be calculated by a ray tracing method that uses light rays to geometrically follow light reflection and refraction and simulate the behavior of light.
  • the IOL power is calculated by the ray tracing method using the predicted postoperative anterior chamber depth ELP, the corneal thickness CCT, the axial length measurement result AL, the corneal curvature radius of the anterior cornea, and the corneal curvature radius of the posterior cornea. Since the ray tracing method calculates the IOL frequency by simulation of light reflection and refraction, the IOL frequency can be calculated with high accuracy by the IOL frequency calculation formula which is a theoretical formula.
  • the corneal curvature measuring device 300 is used to calculate the corneal curvature radius on the front surface of the cornea
  • the OCT device 5 is used to calculate the corneal curvature radius on the rear surface of the cornea. It is not limited.
  • the OCT device 5 may calculate the corneal curvature radius on the front and back surfaces of the cornea.
  • you may handle the corneal curvature radius of the cornea front-back surface with the same measured value. That is, the corneal curvature radius in the front surface of the cornea calculated by the corneal shape measuring device 300 is used as the corneal curvature radius in the front and back surfaces of the cornea.
  • corneal topography can be used as the corneal shape measuring device 300.
  • the curvature radius of the front surface of the cornea is calculated from the entire shape of the cornea, so that the curvature radius of the front surface of the cornea is calculated with high accuracy. For this reason, when calculating the IOL frequency, the accuracy of the IOL frequency calculation is improved.
  • an IOL frequency calculation program that performs the functions of the above embodiments is supplied to a system or apparatus via a network or various storage media.
  • a computer of the system or apparatus for example, a CPU
  • the second embodiment will be described below.
  • the ophthalmologic apparatus 10 according to the second embodiment calculates the correction amount ⁇ in Expression (6) using the sac diameter. Note that the configuration of the apparatus is the same as that of the first embodiment, and a description thereof will be omitted.
  • the correction amount ⁇ may be calculated using an A constant set for each model based on clinical data.
  • the loop bend may change depending on the size of the sac.
  • FIG. 8A shows the case of the sac diameter ⁇ 1
  • FIG. 8B shows the case of the sac diameter ⁇ 2 smaller than the sac diameter ⁇ 1.
  • the pressure applied from the sac to the loop is larger than in the case of the sac diameter ⁇ 1, so the loop becomes larger toward the posterior capsule and the correction amount ⁇ becomes larger.
  • the correction amount ⁇ is calculated in consideration of the sac diameter of the eye to be examined.
  • the control unit 80 measures the capsule diameter of the crystalline lens from the anterior segment cross-sectional image photographed by the OCT device 5. For example, in the anterior segment cross-sectional image, the control unit 80 approximates the front and rear surfaces of the crystalline lens with a circle or an ellipse, and sets the distance between these two intersections as the capsule diameter. Note that since the sac diameter is twice the distance h in FIG. 7, the control unit 80 may calculate the sac diameter using Expression (4).
  • the control unit 80 calculates the correction amount ⁇ using the sac diameter. For example, the control unit 80 calculates the correction amount ⁇ using Expression (7).
  • correction amount
  • L IOL full length
  • sac diameter
  • B characteristic parameters for each IOL.
  • the correction amount ⁇ increases as the sac diameter decreases.
  • the expected postoperative anterior chamber depth calculated by Equation (6) also increases. That is, the control unit 80 calculates the expected postoperative anterior chamber depth large when the sac diameter is small, and calculates the predicted postoperative anterior chamber depth small when the sac diameter is large. In this way, the control unit 80 corrects the shift in the expected postoperative anterior chamber depth due to the bending condition of the loop by changing the correction amount ⁇ according to the sac diameter.
  • control unit 80 may calculate the correction amount ⁇ using not only the sac diameter of the eye to be examined but also the characteristic parameter of the IOL.
  • the characteristic parameters of the IOL include, for example, the total length L, the optical part diameter U, the loop angle ⁇ , etc., as shown in FIG.
  • the characteristic parameter may be a parameter determined based on the IOL thickness, optical member quality, loop material, loop shape, and the like. These characteristic parameters affect the bending of the IOL loop as well as the capsule diameter.
  • the control unit 80 calculates the correction amount ⁇ large when the IOL total length is large. In this way, the control unit 80 calculates the correction amount ⁇ to be larger as the IOL loop is more likely to be broken. For example, the smaller the rigidity of the IOL and the elastic modulus of the material, the more likely the loop will be bent, so the correction amount ⁇ is calculated to be large. Note that these feature parameters may be measured for each model and stored in a memory. Of course, numerical values described in a catalog may be used.
  • the predicted postoperative anterior chamber depth estimated as described above is substituted, for example, in AD ′ of Equation (3), and the intraocular lens power is calculated.
  • the ophthalmologic apparatus can calculate the predicted postoperative anterior chamber depth with high accuracy in consideration of the change in the bending of the IOL depending on the sac diameter. Thereby, the frequency of the IOL can be accurately calculated even for a characteristic eyeball that is not a standard eyeball shape.
  • control unit 80 may compare the total length of the IOL and the sac diameter, and switch the control operation of the device according to the comparison result. For example, the control unit 80 may switch the control operation of the device in three cases where the sac diameter is smaller than the full length of the IOL, the same case, or the larger case.
  • the control unit 80 may notify that the IOL model is not suitable for the eye to be examined. For example, the control unit 80 can notify that the IOL has a larger overall length, notify that the difference between the refraction value measured after surgery and the predicted refraction value may increase, or perform IOL rotation. You may notify that there exists property.
  • control unit 80 may notify that there is a possibility that the load applied to the chin band may increase at the time of insertion, and may predict the necessity of inserting a capsular tension ring (CTR). .
  • CTR capsular tension ring
  • control unit 80 may display that effect on the monitor 70 or may output a sound.
  • the control unit 80 calculates the expected postoperative anterior chamber depth using the correction amount ⁇ calculated by the above equation (7) in consideration of the bending of the IOL loop.
  • an appropriate predicted postoperative anterior chamber depth can be estimated by switching the control operation according to the comparison result of the total length of the IOL and the capsule diameter.
  • the correction amount ⁇ may be set clinically (experimentally) instead of the above calculation formula.
  • the correction amount ⁇ may be set based on the relationship between the sac diameter measured before surgery, the amount of deviation between the anterior chamber depth measured after surgery and the expected postoperative anterior chamber depth.
  • the entire circumference of the capsular sac (the length that goes around from the anterior sac through the posterior sac) may be used.
  • the total perimeter may be the total arc length cut by the approximate circle on the front surface of the lens and the approximate circle on the rear surface of the lens.
  • design values are used as characteristic parameters of the IOL.
  • numerical values measured in vivo in vivo
  • numerical values measured in vitro in vitro
  • numerical values measured in air may be used.
  • the measurement is performed using an ultrasonic measurement device or the like.
  • the control unit 80 may measure the sac diameter at a position where the IOL loop contacts the sac. For example, when the IOL loop is inserted into the lens so as to be in the direction of 90 °, the control unit 80 controls the OCT optical system to perform scanning in the Y direction (90 ° direction), and is thus acquired.
  • the sac diameter may be measured by analyzing a tomographic image in the vertical direction.
  • the position where the loop of the IOL contacts may be input by an examiner, or when the major axis or minor axis of the lens is known from three-dimensional tomographic image data acquired by the OCT optical system 100 or the like, the major axis or minor axis
  • the control unit 80 may set the position based on the position.
  • the third embodiment will be described below.
  • the ophthalmologic apparatus 10 of the third embodiment can calculate the position of the major axis or the minor axis of the crystalline lens from the tomographic image of the eye to be examined, and can easily acquire the shape information of the crystalline lens.
  • the present apparatus can be used to determine the insertion position of an intraocular lens in cataract treatment. Note that the configuration of the apparatus is the same as that of the first embodiment, and a description thereof will be omitted.
  • control unit 80 images the anterior segment of the eye to be examined by the anterior segment front imaging optical system 30.
  • the photographed anterior segment image is stored in the memory 85 or the like.
  • the control unit 80 takes a tomographic image of a plurality of cross sections of the eye to be examined by the OCT optical system 100 based on a preset scanning pattern. For example, as illustrated in FIG. 10, the control unit 80 scans radially at an arbitrary angle with the alignment center as the rotation axis, and performs imaging of at least three cross sections.
  • the horizontal direction of the eye to be examined is 0 °, and scanning is performed radially at angles of 0 °, 60 °, and 120 °.
  • the acquired tomographic image is stored in the memory 85 or the like.
  • the alignment reference may be adjusted in order to scan through the center of the crystalline lens.
  • the optical axis of the crystalline lens may be aligned with the optical axis L1 of the apparatus by tilting the eye to be examined while changing the position of the fixation lamp 1.
  • the control unit 80 may control the driving (not shown) to move the fixation lamp 1.
  • the control unit 80 obtains the curvature radius of the front surface or the rear surface of the crystalline lens from the tomographic images of a plurality of cross sections. For example, the control unit 80 obtains the shape of the front surface or the rear surface of the crystalline lens by image processing of the tomographic image, and calculates the curvature radius thereof. For example, as shown in FIG. 5, the radius of curvature may be calculated from the contour curve of the front surface or the rear surface of the crystalline lens detected by the edge detection of the tomographic image.
  • the control unit 80 calculates the radius of curvature at each scan angle, and for example, estimates the position of the major axis and the minor axis of the lens from the relationship between the scan angle and the radius of curvature.
  • the control unit 80 plots the curvature radius of the front surface or the rear surface of the crystalline lens with respect to each scan angle of the three cross sections, and interpolates the curvature radii corresponding to other angles.
  • Lagrange interpolation, spline interpolation, or the like is used.
  • function approximation may be performed by a least square method or the like.
  • the control unit 80 obtains the maximum value and the minimum value of the radius of curvature r based on the interpolated value or the approximate curve F obtained by function approximation, and sets the position (angle ⁇ ) where the maximum value is obtained as the major axis of the lens and the minimum value.
  • the position where the value is taken is the position of the minor axis of the crystalline lens.
  • the control unit 80 may calculate one angle of the major axis and the minor axis and add 90 ° to the other angle to obtain the other angle. Further, when the curvature radii of the respective scan angles are the same, the control unit 80 may determine that the crystalline lens is circular.
  • the control unit 80 illustrates the positions of the major axis and the minor axis (angle with respect to the rotation axis) on the monitor 70.
  • the control unit 80 causes the eyeball model 610 to display the major axis and the minor axis.
  • the position of the long diameter is displayed on the eyeball model 610 by a long dotted line 620
  • the position of the short diameter is displayed by a dotted line shorter than the dotted line 630 indicating the long diameter.
  • the examiner can confirm the inclination of the crystalline lens.
  • the dotted line 620 and the dotted line 630 may be displayed so that the ratio of their lengths is the same as the ellipticity of the crystalline lens. As a result, the examiner can image the oval shape of the crystalline lens from the display on the monitor 70.
  • control unit 80 may display a cross-sectional view of the eyeball model at the position of the major axis and the minor axis.
  • a cross-sectional view 640 at the position of the long diameter is displayed on the side of the eyeball model 61 viewed from the front, and a cross-sectional view 650 at the position of the short diameter is displayed below.
  • the curvature radius of the lens front surface and the lens rear surface may be displayed.
  • the shape of the crystalline lens may be easily visualized by indicating the radius of curvature with a numerical value. Note that an actual image of the eye to be examined may be displayed instead of the eyeball model as described above.
  • the control unit 80 may cause the monitor 70 to display the position of the toric axis of the intraocular lens.
  • the control unit 80 displays the position of the toric shaft 710, the position of the loop tip 755 of the intraocular lens 750, and the positions of the lens major axis 720 and minor axis 730 on the front image of the anterior eye portion of the eye to be examined.
  • the position of the toric shaft 710 may be acquired from another device, or may be calculated based on measurement results of the OCT device 5 and the corneal shape measuring device 300 or the like.
  • the astigmatic axis angle of the cornea acquired by the corneal shape measuring device 300 is the toric axis.
  • the position of the loop tip 755 is determined by the type of intraocular lens, and is obtained from the position of the toric axis. Therefore, the control unit 80 may store the type and shape of the intraocular lens inserted into the eye to be examined in the memory 85 in advance.
  • the intraocular lens loop supports the intraocular lens to the lens capsule by the elastic force when it spreads outward to return to its original shape, but the resistance from the lens capsule is small, that is, the minor axis of the lens
  • the intraocular lens rotates toward the major axis. Therefore, when the loop tip 755 is positioned at the lens minor axis 730, the control unit 80 may display a warning 770 on the monitor 70 that the intraocular lens may be rotated. For example, the control unit 80 may display a warning 770 when the loop tip 755 is within a range of ⁇ 5 ° from the lens minor axis 730. By this warning display, the examiner may adjust the axial angle of the intraocular lens when inserting the intraocular lens.
  • control unit 80 calculates the difference in angle between the position of the loop and the position of the major axis of the crystalline lens when the toric axis of the intraocular lens is arranged at an ideal axis angle with respect to the astigmatic axis of the eye. Also good. When this angle is equal to or larger than a predetermined angle (for example, 10 ° or larger), the control unit 80 may display a warning 770 on the monitor 70.
  • a predetermined angle for example, 10 ° or larger
  • the control unit 80 may display a warning 770 that the intraocular lens is inserted in a direction opposite to the rotation direction in advance. For example, when the position of the loop tip 755 is closer to the lens minor axis 730 than to the lens major axis 720, the control unit 80 inserts the toric shaft in the eye by shifting the toric axis by about 5 ° in the direction away from the major axis. An instruction to prompt the user may be displayed on the monitor 70.
  • the control unit 80 may display a warning 770 that a toric intraocular lens having a stronger astigmatism correction effect is inserted.
  • a warning 770 that a toric intraocular lens having a stronger astigmatism correction effect is inserted.
  • an instruction for prompting the user to reselect the power of the toric intraocular lens may be displayed on the monitor 70. Accordingly, it is possible to select an intraocular lens having a frequency in consideration of the effect of the toric axis shift caused by the rotation of the intraocular lens.
  • the present apparatus can easily acquire information on the shape of the crystalline lens, such as the presence or absence of the major axis and minor axis, the position of the major axis and minor axis and the ratio thereof.
  • the examiner can determine the axial angle of the intraocular lens in consideration of the influence of the rotation of the intraocular lens due to the shape of the crystalline lens.
  • the control unit 80 stores in the memory 85 the result of calculating the amount of deviation between the position of the lens major axis or minor axis and the position of the toric axis or loop before surgery and the amount of rotation of the intraocular lens after surgery. May be. In this case, the control unit 80 determines another eye to be examined (right eye or left eye, or another patient's eye) based on the relationship between the amount of deviation before surgery stored in the memory 85 and the actual amount of rotation after surgery. The amount of rotation of the intraocular lens of the eye) may be estimated.
  • control unit 80 stores in the memory 85 the amount of deviation between the position of the loop scheduled before the operation and the position of the lens major axis.
  • control unit 80 stores the actual amount of rotation measured after the operation in the memory 85.
  • the actual amount of rotation is obtained, for example, by calculating the amount of deviation (the amount of rotation) between the position of the loop planned before the operation and the position of the loop measured after the operation.
  • the actual position of the loop after the operation can be obtained by specifying the shape of the intraocular lens by, for example, image analysis of the front image of the anterior segment.
  • the control unit 80 determines the rotation amount of the intraocular lens of the next patient based on the tendency of the rotation amount of the postoperative intraocular lens with respect to the deviation amount of the preoperative loop and the lens major axis accumulated in the memory 85. It may be predicted. For example, if the amount of rotation tends to increase as the amount of deviation increases, the control unit 80 may predict the amount of rotation larger as the amount of deviation increases. Further, when the amount of rotation tends to decrease as the amount of deviation increases, the control unit 80 may predict the amount of rotation as the amount of deviation increases. Thus, the control unit 80 may estimate a more appropriate amount of rotation by using past operation data.
  • the control unit 80 may predict the amount of rotation for each intraocular lens model. Since the tendency of rotation differs depending on the model of the intraocular lens, the control unit 80 may calculate the amount of rotation corresponding to the tendency of each model based on the past rotation amount data. In addition, since the tendency of the rotation of the intraocular lens varies depending on the surgeon's method of surgery or scissors, the amount of rotation corresponding to the tendency of each operator may be calculated.
  • the scanning direction of the OCT optical system 5 is radial, but it may be a concentric circle scan or a radial scan (see FIGS. 14A and 14B).
  • the control unit 80 may calculate the major axis and the minor axis of the crystalline lens based on the three-dimensional shape data of the crystalline lens obtained by circle scanning or radial scanning.
  • the method for calculating the position of the major axis and the minor axis of the lens is not limited to the method of the above-described embodiment, but includes a method of estimating the equator position of the lens.
  • the equator of the crystalline lens is, for example, the maximum diameter portion of the crystalline lens.
  • the control unit estimates the shape of the equator based on the shape of the central part where the crystalline lens is photographed.
  • the control unit 80 estimates a point where a curve along the lens front surface (for example, an approximate circle) and a curve along the lens rear surface (for example, an approximate circle) intersect as an equator position. This equator position is calculated at each scan angle, and an ellipse passing through these equator positions is obtained. Then, the control unit 80 sets the major axis and minor axis of the obtained ellipse as the major axis and minor axis of the crystalline lens.
  • control unit 80 may cause the display unit to display the calculated values of the major axis and minor axis sizes of the ellipse, or to set the length of a graphic such as a line representing the major axis or minor axis to the size. They may be displayed together.
  • control unit 80 may use only one of the curvature of the front surface of the crystalline lens or the curvature of the rear surface of the crystalline lens, or both. Since the position of the major axis and the minor axis are almost the same regardless of the curvature of the front surface or the rear surface of the crystalline lens, the control unit 80 may compare the respective calculation results to confirm the validity of the calculation results. For example, when the difference between the respective calculation results is a predetermined amount or more (for example, 5 ° or more), the control unit 80 may determine that the calculation results are not appropriate and may take a cross section of the eye to be examined again. .
  • the major axis and minor axis of the crystalline lens are displayed as lines, but an estimated ellipse figure may be displayed. Even in this case, the examiner can confirm the elliptical shape of the crystalline lens and the inclination of the major axis and the minor axis.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Ophthalmology & Optometry (AREA)
  • Biomedical Technology (AREA)
  • Veterinary Medicine (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Signal Processing (AREA)
  • Eye Examination Apparatus (AREA)
  • Prostheses (AREA)

Abstract

適正な眼内レンズ度数を算出する眼科装置、およびIOL度数決定プログラムを提供することを技術課題とする。被検眼に挿入するIOLの度数を決定するための眼科装置であって、被検眼の複数の眼形状パラメータを取得するパラメータ取得手段と、IOL度数を演算する演算制御手段と、を備え、前記演算制御手段は、機械学習アルゴリズムによって訓練された数学モデルに前記複数の眼形状パラメータを入力することによって、前記数学モデルからIOL関連情報を出力させることを特徴とする。

Description

眼科装置、およびIOL度数決定プログラム
 本開示は、被検眼に挿入するIOLの度数を決定するための眼科装置、およびIOL度数決定プログラムに関する。
 白内障手術において、水晶体実質の除去後に被検眼の眼内に挿入される眼内レンズ(Intraocular lens:IOL)のパワー(以下、度数ともいう)を決定する眼科装置が知られている(特許文献1参照)。このような装置では、眼内レンズ度数を決定するために、例えば、回帰式または理論式などを用いてIOL度数を算出していた。
 また、特許文献1のような装置では、眼内レンズ度数を決定するために予想術後前房深度(眼内レンズの位置)の推定が行われていた。
 また、IOLの度数を決定するために、被検眼の前眼部を撮影する眼科装置が知られている(特許文献2参照)。
特開2011-206368号公報 特開2013-094410号公報
 第1の問題として、従来の計算式では必ずしも適正なIOL度数が得られるとは言えなかった。例えば、平均的な形状ではない眼において、IOL度数の誤差が大きくなる場合があった。
 第2の問題として、従来の予想術後前房深度の推定において、眼内レンズのループのしなり具合の差については考慮されていなかった。
 第3の問題として、眼内レンズを被検眼の水晶体嚢内に挿入した場合、術後に眼内レンズが光軸回りに回旋することがあるが、この場合、乱視成分を持つトーリック眼内レンズの軸角度が変わってしまい、被検眼の乱視を上手く矯正できない。そこで、眼内レンズの回旋の原因を調べるため、水晶体の形状と眼内レンズの回旋の関係性について調査が必要であるが、従来の眼科装置では水晶体の形状を容易に取得することができなかった。
 本開示は、上記問題点を鑑み、従来技術の問題点を少なくとも1つ解決する眼科装置、およびIOL度数決定プログラムを提供することを技術課題とする。
 上記第1の問題を解決するために、本開示に係る第1実施形態は以下のような構成を備えることを特徴とする。
 (1) 被検眼に挿入するIOLの度数を決定するための眼科装置であって、被検眼の複数の眼形状パラメータを取得するパラメータ取得手段と、IOL度数を演算する演算制御手段と、を備え、前記演算制御手段は、機械学習アルゴリズムによって訓練された数学モデルに前記複数の眼形状パラメータを入力することによって、前記数学モデルからIOL関連情報を出力させることを特徴とする。
 (2) 被検眼に挿入するIOLの度数を決定するための眼科装置において実行されるIOL度数決定プログラムであって、前記眼科装置のプロセッサによって実行されることで、被検眼の複数の眼形状パラメータを取得するパラメータ取得ステップと、機械学習アルゴリズムによって訓練された数学モデルに前記複数の眼形状パラメータを入力することによって、前記数学モデルからIOL関連情報を出力させる演算ステップと、を前記眼科装置に実行させることを特徴とする。
 上記第2の問題を解決するために、本開示に係る第2実施形態は以下のような構成を備えることを特徴とする。
 (3) 被検眼に挿入する眼内レンズの度数を決定する眼科装置であって、前記被検眼の前眼部断面画像を撮影する断面撮影手段と、前記眼内レンズの度数を算出する演算制御手段と、を備え、前記演算制御手段は、前記前眼部断面画像を解析することによって前記被検眼の水晶体の嚢径を取得し、前記嚢径を用いて前記眼内レンズの予想術後前房深度を推定し、前記予想術後前房深度に基づいて前記眼内レンズの度数を算出することを特徴とする。
 (4) 被検眼に挿入する眼内レンズの度数を決定する眼科装置において実行されるIOL度数決定プログラムであって、前記眼科装置のプロセッサによって実行されることで、前記被検眼の前眼部断面画像を撮影する断面撮影ステップと、前記断面撮影ステップにおいて撮影された前記前眼部断面画像を解析することによって前記被検眼の水晶体の嚢径を取得する嚢径取得ステップと、前記嚢径取得ステップにおいて取得された前記嚢径を用いて前記眼内レンズの術後予測前房深度を推定する推定ステップと、前記推定ステップにおいて推定された前記術後予測前房深度に基づいて前記眼内レンズの度数を算出する算出ステップを前記眼科装置に実行させることを特徴とする。
 上記第3の問題を解決するために、本開示に係る第3実施形態は以下のような構成を備えることを特徴とする。
 (5) 被検眼の前眼部を撮影するための眼科装置であって、前記被検眼の前眼部断層画像を撮影する断層撮影手段と、前記前眼部断層画像に基づいて、前記被検眼の水晶体の長径および短径の少なくともいずれかの位置を算出する演算制御手段と、を備えることを特徴とする。
本実施例に係る眼科装置の構成について説明する概略構成図である。 数学モデルの一例を示す図である。 制御動作のフローチャートを示す図である。 撮像された前眼部像が表示された前眼部観察画面を示す図である。 前眼部断面画像の一例を示す図である。 予想ELPの算出について説明するための図である。 予想ELPの算出について説明するための図である。 補正量について説明する図である。 補正量について説明する図である。 IOLのパラメータについて説明するための図である。 OCT光学系のスキャン方向を示す図である。 水晶体の軸角度と曲率半径の関係を示す図である。 眼球モデルの表示画面を示す図である。 トーリック軸の表示画面を示す図である。 OCT光学系のスキャン方向を示す図である。 OCT光学系のスキャン方向を示す図である。
<第1実施形態>
 第1実施形態の眼科装置について説明する。眼科装置(例えば、眼科装置10)は、被検眼に挿入する眼内レンズ(IOLともいう)の度数を決定する。本装置は、例えば、パラメータ取得部(例えば、OCTデバイス5または制御部80または操作部84など)と、演算制御部(例えば、制御部80)を主に備える。パラメータ取得部は、例えば、被検眼の複数の眼形状パラメータを取得する。眼形状パラメータは、例えば、角膜前面曲率、角膜後面曲率、角膜厚、角膜幅、角膜高さ等の角膜形状パラメータであってもよいし、水晶体前面曲率、水晶体後面曲率、水晶体厚、水晶体直径、嚢径等の水晶体形状パラメータであってもよいし、眼軸長、前房深度、隅角、隅角距離、瞳孔径等の全体形状パラメータであってもよいし、網膜の厚み等の網膜形状パラメータであってもよい。水晶体の曲率は、収縮時および弛緩時のいずれかであってもよいし、両方の曲率を用いてもよい。パラメータ取得部は、例えば、OCT光学系によって撮影された断層画像に基づいて眼形状パラメータを取得する。なお、パラメータ取得部は、通信ネットワークを介して装置外部のサーバーなどから被検者の眼形状パラメータを取得してもよいし、操作部からの入力によって眼形状パラメータを取得してもよい。
 なお、水晶体形状パラメータは、水晶体を楕円球としたときの長径または短径の位置または大きさ等のパラメータであってもよい。
 演算制御部は、機械学習アルゴリズムを用いてIOL関連情報を算出する。機械学習アルゴリズムは、例えば、機械学習アルゴリズムは、例えば、ニューラルネットワーク、ランダムフォレスト、ブースティング等である。
 ニューラルネットワークは、生物の神経細胞ネットワークの挙動を模倣する手法である。ニューラルネットワークは、例えば、フィードフォワード(順伝播型)ニューラルネットワーク、RBFネットワーク(放射基底関数)、スパイキングニューラルネットワーク、畳み込みニューラルネットワーク、再帰型ニューラルネットワーク(リカレントニューラルネット、フィードバックニューラルネットなど)、確率的ニューラルネット(ボルツマンマシン、ベイシアンネットワークなど)等である。
 ブースティングは、複数の弱識別器を組み合わせることで強識別器を生成する手法である。単純で弱い識別器を逐次的に学習することで、強識別器を構築する。
 ランダムフォレストは、ランダムサンプリングされた訓練データに基づいて、学習を行って多数の決定木を生成する方法である。ランダムフォレストを用いる場合、予め識別器として学習しておいた複数の決定木の分岐をたどり、各決定木から得られる結果を平均(あるいは多数決)する。
 例えば、演算制御部は、機械学習アルゴリズムによって訓練された数学モデル(例えば、数学モデル800)を用いてIOL関連情報を取得する。数学モデルは、例えば、入力データと出力データとの関係を予測するためのデータ構造を指す。数学モデルは、訓練データセットを用いて訓練されることで構築される。訓練データセットは、入力用訓練データと出力用訓練データのセットである。入力用訓練データは、数学モデルに入力されるサンプルデータである。例えば、入力訓練データには、過去に測定された眼形状パラメータが用いられる。出力用訓練データは、数学モデルによって予測する値のサンプルデータである。例えば、出力用訓練データには、術後前房深度またはIOL度数などが用いられる。術後前房深度は、角膜からIOLまでの距離である。数学モデルは、ある入力訓練データが入力されたときに、それに対応する出力訓練データが出力されるように訓練される。例えば、訓練によって各入力と出力との相関データ(例えば、重み)が更新される。演算制御部は、相関データに基づいてIOL関連情報を算出する。
 例えば、演算制御部は、数学モデルからIOL関連情報として予想術後前房深度の出力を取得してもよい。この場合、訓練された数学モデルは、水晶体前面曲率、水晶体後面曲率、水晶体厚、前房深度の少なくともいずれかを含む眼形状パラメータの入力によって予想術後前房深度を出力する数学モデルであってもよい。例えば、予想術後前房深度を出力する数学モデルへの入力として、水晶体前面曲率と水晶体後面曲率の2つが用いられてもよいし、水晶体前面曲率と水晶体後面曲率と前房深度の3つが用いられてもよいし、水晶体前面曲率と水晶体後面曲率と前房深度と水晶体厚の4つが用いられてもよい。また、数学モデルへの入力として、前眼部断面像デバイスによって取得された前眼部前面形状パラメータ(例えば、前面曲率)と前眼部後面形状パラメータ(例えな、後面曲率)の少なくとも2つが用いられ、数学モデルの出力として、水晶体前面からチン小帯と水晶体の接点までのオフセット距離がIOL関連情報として取得されてもよい。取得されたオフセット距離を前房深度に加えることによって予想術後前房深度が取得されてもよい。この場合、数学モデルへの入力として、水晶体厚が追加されてもよい。
 例えば、演算制御部は、数学モデルによって出力された予想術後前房深度に基づいてIOL度数を算出してもよい。例えば、演算制御部は、予想術後前房深度と、その他の眼形状パラメータをIOL度数計算式に代入してIOL度数を求める。例えば、演算制御部は、SRK/T式、Binkhorst式、Holladay式、Holladay2式、HofferQ式、Olsen式、Haigis式等の既存のIOL度数計算式の該当箇所に、数学モデルによって算出された予想術後前房深度を代入することによってIOL度数を算出してもよい。このように機械学習を用いることによって、様々な形状の被検眼に対して適正なIOL度数を算出できる。
 なお、演算制御部は、数学モデルに複数の眼形状パラメータを入力することによって、数学モデルからIOL関連情報としてIOL度数を出力させてもよい。この場合、訓練された数学モデルは、角膜曲率、眼軸長、予想術後前房深度等の入力によってIOL度数を出力する数学モデルであってもよい。例えば、IOL度数を出力する数学モデルへの入力として、角膜曲率と眼軸長の2つが用いられてもよいし、角膜曲率と予想術後前房深度の2つが用いられてもよいし、眼軸長と予想術後前房深度の2つが用いられてもよいし、角膜曲率と眼軸長と予想術後前房深度の3つが用いられてもよい。ここで、角膜曲率は、角膜前面曲率であってもよいし、角膜後面曲率であってもよいし、その両方であってもよい。
 例えば、演算制御部は、複数の眼形状パラメータに基づいて予想術後前房深度を算出し、眼形状パラメータと予想術後前房深度を数学モデルに入力することによって、数学モデルからIOL度数を出力させてもよい。このように、演算制御部は、実測値である1次パラメータと、実測値に基づいて算出された2次パラメータと、を数学モデルに入力することによって、数学モデルからIOL度数を出力させてもよい。
 なお、演算制御部は、訓練された数学モデルを2つ用いてもよい。例えば、第1数学モデルは、水晶体前面曲率、水晶体後面曲率、水晶体厚、前房深度等の複数の眼形状パラメータの入力によって予想術後前房深度を出力する数学モデルであってもよい。また、第2数学モデルは、予想術後前房深度、角膜曲率、眼軸長等の眼形状パラメータの入力によってIOL度数を出力する数学モデルであってもよい。この場合、演算制御部は、複数の眼形状パラメータを第1数学モデルに入力することによって、第1数学モデルから出力された予想術後前房深度と、眼形状パラメータを、第1数学モデルとは異なる第2数学モデルに入力することによって、第2数学モデルからIOL度数を出力させてもよい。これによって、予想術後前房深度とIOL度数を精度よく予測することができる。
 演算制御部は、眼形状パラメータの他に、特徴パラメータを数学モデルに入力してもよい。この場合、訓練された数学モデルは、眼形状パラメータおよび特徴パラメータの少なくともいずれかの入力によって予想術後前房深度またはIOL度数等を出力する数学モデルであってもよい。数学モデルの入力に特徴パラメータを含ませることによって、眼形状以外の影響も考慮されたELPまたはIOL度数等を出力させることができる。
 特徴パラメータは、例えば、患者(被検者)の人種、性別、年齢、術者(検者)の少なくともいずれかの特徴に関するパラメータであってもよい。また、特徴パラメータは、患者の角膜屈折率、水晶体屈折率、硝子体屈折率、房水屈折率などの屈折率であってもよい。また、特徴パラメータは、患者または術者が希望する術後の屈折度数、視力、作業距離、IOLの焦点数などの希望パラメータ(または要求パラメータ)であってもよい。また、特徴パラメータは、各IOL度数計算式で用いられるレンズ定数を含んでもよい。レンズ定数は、例えば、特徴パラメータは、SRK/T式でのA定数、Holladay式でのサージャンファクター(SF)、Haigis式でのIOL定数等である。
 また、特徴パラメータは、IOLモデルの特徴に関するパラメータであってもよい。例えば、特徴パラメータは、IOL全長、支持部の径、形状、材質などであってもよい。また、特徴パラメータは、例えば、水晶体嚢の赤道方向寸法(例えば、直径)の関数によって求められるパラメータであってもよい。例えば、水晶体嚢の直径の関数は、眼内固定時のIOLのループ(支持部)の長さに対するIOL光学部の前後変位量の関数であってもよい。
 例えば、特徴パラメータとして、IOLモデルまたは嚢径等のELPに関係する特徴パラメータを用いる場合、数学モデルは、IOLモデルまたは嚢径に関する特徴パラメータ、角膜曲率、前房深度、眼軸長、を入力することによってELPを出力する数学モデルであってもよい。
 なお、IOLモデル等に関する特徴パラメータを数学モデルに入力する代わりに、眼形状パラメータの入力によってELPを出力する数学モデルをIOLモデル毎に用意してもよい。
 なお、特徴パラメータは、機械学習に用いるだけでなく、機械学習で得られた予想術後前房深度またはIOL度数等を補正する補正係数として用いられてもよい。例えば、演算制御部は、IOLモデルに依存しないように仮定されたELP(例えば、角膜から水晶体嚢とIOLループの接点までの距離)の予測位置を機械学習によって求めておき、IOLモデルまたは嚢径等のELPに関係する特徴パラメータによって、仮の予測ELPを補正することによって、各IOLモデルに適した実効的なELPを求めてもよい。これによって、IOLモデルごとに機械学習を用いてELP予測値を取得するという煩雑さを低減できる。
 なお、演算制御部は、SRK/T式、Binkhorst式、Holladay式、Holladay2式、HofferQ式、Olsen式、Haigis式等のIOL度数計算式のうち、適切なIOL度数計算式を選択するための選択情報を数学モデルに出力させてもよい。この場合、数学モデルは、計算式の選択に必要な特徴量の入力によって、適切なIOL計算式の選択情報を出力する数学モデルであってもよい。ここで、選択情報とは、例えば、複数のIOL度数計算式のうち適切な式の情報であってもよいし、各式IOL度数計算式のおすすめ度合等であってもよい。例えば、演算制御部は、眼軸長、IOLモデル、術者、人種、性別、年齢のいずれかに関連する特徴量を数学モデルに入力することによって、数学モデルにIOL度数計算式の選択情報を出力させてもよい。
 なお、本装置は、数学モデルによって出力された選択情報をユーザーに提示する提示部(例えば、モニタ70)をさらに備えてもよい。また、本装置は、数学モデルによって出力された選択情報において適切でない式をユーザーが使用しようとした場合に警告する警告部(例えば、モニタ70)をさらに備えてもよい。
 なお、演算制御部は、上記のような数学モデルによって、IOL度数計算式に用いられる定数または係数を最適化してもよい。これによって、経験的に求められた値よりも適正な値を定数または係数に用いてIOL度数の計算を行うことができる。
 なお、演算制御部は、記憶部(例えば、メモリ85)等に保存されたIOL度数決定プログラムを実行してもよい。IOL度数決定プログラムは、例えば、パラメータ取得ステップと、演算ステップを含む。パラメータ取得ステップは、被検眼の複数の眼形状パラメータを取得するステップである。演算ステップは、機械学習アルゴリズムによって訓練された数学モデルに複数の眼形状パラメータを入力することによって、数学モデルからIOL関連情報を出力させるステップである。
<第2実施形態>
 以下、本開示に係る第2実施形態について説明する。第2実施形態の眼科装置(例えば、眼科装置10)は、例えば、断面撮影部(例えば、OCTデバイス5)と、演算制御部(例えば、制御部80)を備える。断面撮影部は、例えば、被検眼の前眼部断面画像を撮影する。断面撮影部は、例えば、光コヒーレンストモグラフィ装置(OCT)、超音波診断装置、シャインプルーフカメラ等である。
 演算制御部は、被検眼に挿入する眼内レンズ(IOLともいう)の度数を算出する。まず、演算制御部は、前眼部断面画像を解析することによって水晶体の嚢径を取得する。例えば、演算制御部は、前眼部断面画像から水晶体の最大径部である赤道位置を求め、その赤道位置における径(嚢径)を取得する。なお、水晶体の赤道が虹彩に隠れて撮影できない場合、演算制御部は、水晶体前面と水晶体後面の各近似曲線が交差する2点を求め、その2点の距離を嚢径として取得してもよい。
 次いで、演算制御部は、取得された嚢径を用いて眼内レンズの予想術後前房深度を推定する。予想術後前房深度とは、角膜からIOLの光学部までの距離を術前に予測した値である。予想術後前房深度は、IOLの度数算出に用いられ、その算出結果に影響を及ぼす。術後前房深度は、IOLの支持部(ループ)のしなり具合によって変化するため、予想術後前房深度はループのしなりを考慮して推定される。ループのしなりは、嚢径によって変化する。例えば、嚢径が大きい場合に比べ、嚢径が小さい場合は嚢内にIOLが納まるようにループのしなりが大きくなる。したがって、演算制御部は、ループのしなりによる予想術後前房深度のずれを嚢径の大きさに応じて補正する。例えば、演算制御部は、嚢径が大きい場合に比べ、嚢径が小さい場合はループのしなりが大きくなるため、予想術後前房深度の後嚢側または前嚢側への補正量を大きくする。例えば、嚢径の大きさに応じて経験的に設定された予想術後前房深度の補正量がメモリに記憶され、予想術後前房深度を算出する際に、演算制御部によって補正量がメモリから読み出されるようにしてもよい。例えば、演算制御部は、嚢径が10mmのときは予想術後前房深度を0.5mm後嚢側に補正し、嚢径が9mmのときは予想術後前房深度を1mm後嚢側に補正してもよい。
 なお、演算制御部は、嚢径だけでなく、IOLの特徴パラメータを用いて予想術後前房深度を推定してもよい。IOLの特徴パラメータ(モデル情報)は、例えば、IOLの全長、厚さ、弾性率、光学部径、ループ角度の少なくともいずれかによって決定されるパラメータである。これらのパラメータは、嚢内でのループのしなり具合に影響を与える。演算制御部は、IOLがしなりやすい傾向の特徴パラメータを持つ場合は、予想術後前房深度を大きく推定する。つまり、ループがしなることによって、IOLの光学部が後嚢側に移動する量を大きく推定する。例えば、IOLの全長が大きい場合は、水晶体嚢に収まるためにループが大きくしなる必要があるため、演算制御部は、予想術後前房深度の後嚢側への補正量を大きくする。また、IOLの厚さ、弾性率等が大きく、IOLの剛性が高い場合は、ループがしなりにくいため、演算制御部は、予想術後前房深度の後嚢側への補正量を小さくする。なお、IOLデザインによっては前方にしなるモデルもあるため、この場合は予想術後前房深度を前嚢側へ補正する。つまり、演算制御部は、IOLのモデルに応じて予想術後前房深度の補正の方向(前嚢側または後嚢側)を変更してもよい。
 なお、演算制御部は、嚢径とIOL全長を比較してもよい。演算制御部は、この比較結果に基づいて、IOLが被検眼に適しているか否かを判定してもよい。例えば演算制御部は、嚢径に対してIOL全長が大きい場合、IOLが適していると判定し、嚢径に対してIOL全長が小さい場合、IOLが適していないと判定してもよい。例えば、演算制御部は、IOLが被検眼に適している場合は、眼内レンズの度数を計算し、適していない場合は、他のモデルの眼内レンズに変更する旨を検者に報知してもよい。
 なお、演算制御部は、機械学習アルゴリズムによって訓練された数学モデルを用いて予想術後前房深度の補正量を算出してもよい。この場合、例えば、演算制御部は、嚢径等を数学モデルに入力することによって補正量を出力させてもよい。
<第3実施形態>
 以下、本開示に係る第3実施形態について説明する。第3実施形態の眼科装置(例えば、眼科装置10)は、少なくとも被検眼の前眼部を撮影する。眼科装置は、例えば、断層撮影部(例えば、OCTデバイス5)と、演算制御部(例えば、制御部80)を備える。断層撮影部は、被検眼の前眼部断層画像を撮影する。前眼部断層画像は、例えば、少なくとも水晶体の断面が含まれる画像である。
 演算制御部は、前眼部断層画像に基づいて、被検眼の水晶体を楕円球としたときの長径または短径の位置を算出する。長径および短径の位置とは、例えば、被検眼の左右方向(水平方向)を0°としたときの回転角度、または被検眼の一部を原点とする座標などである。例えば、演算制御部は、前眼部断層画像を解析することによって水晶体の前面または後面の曲率半径を求め、その曲率半径から水晶体の長径または短径を計算してもよい。
 このように、本装置は、被検眼の断層画像から水晶体の長径または短径の位置を算出でき、水晶体の形状情報を容易に取得できる。例えば、本装置は、白内障治療における眼内レンズの挿入位置の決定に利用できる。
 また、本装置は、表示制御部(例えば、制御部80)を備えてもよい。表示制御部は、水晶体の長径または短径の位置を表示部(例えば、モニタ70)に表示してもよい。例えば、表示制御部は、水晶体の長径または短径の位置を線、点等のグラフィックで表示してもよいし、その角度または距離を数値で表示してもよい。本装置は、水晶体の長径または短径の位置を表示させることによって、白内障治療における眼内レンズの挿入位置についての有益な情報を検者に提供できる。
 なお、表示制御部は、水晶体の長径または短径の位置とともに、トーリック眼内レンズの乱視軸(トーリック軸ともいう)の位置を表示部に表示させてもよい。例えば、表示制御部は、水晶体の長径または短径の位置と、トーリック眼内レンズの乱視軸の位置を、線などで前眼部の正面画像上に表示してもよい。このように、本装置は、水晶体の長径および短径と、トーリック眼内レンズの乱視軸との位置関係についての情報を提供できる。なお、トーリック軸は、例えば、線または点などのグラフィックで表示されてもよいし、数値で表示されてもよい。数値の表示に基づいて、検者が手動で線または点などのグラフィックの位置を決めてもよい。
 また、表示制御部は、水晶体の長径または短径の位置とともに、トーリック眼内レンズのループの位置を表示部に表示させてもよい。ループは、例えば、眼内レンズを水晶体の嚢内に支持するための支持部である。例えば、表示制御部は、眼内レンズの図形を表示させてもよいし、ループの位置を線または点などで表示させてもよい。また、表示制御部は、ループの位置を角度または座標等の数値によって表示させてもよい。このように、本装置は、水晶体の長径および短径と、トーリック眼内レンズのループとの位置関係についての情報を提供できる。
 なお、演算制御部は、水晶体の長径または短径と、ループとのずれ量を算出してもよい。これによって、本装置は、眼内レンズの回旋の可能性に関する情報を取得できる。例えば、演算制御部は、眼の乱視軸に対してトーリック眼内レンズの軸を理想的な軸角度(例えば、角膜形状に基づく乱視軸角度)で配置した場合において、ループの位置と水晶体の長径(または短径)の位置との角度の差を計算してもよい。なお、トーリック眼内レンズの軸角度とループの先端の位置との関係は眼内レンズごとに決まっているため、演算制御部は、トーリック眼内レンズの軸角度に基づいて、水晶体の長径または短径の位置とループの位置とのずれ量を算出してもよい。なお、トーリック眼内レンズの理想的な軸角度としては、誘発乱視を考慮した軸角度であってもよい。誘発乱視とは、例えば、白内障手術時の角膜切開によって角膜形状が変化することで生じる乱視である。例えば、誘発乱視を考慮したときの軸角度は、術前に測定された角膜形状と、角膜の切開位置または切開量に基づいて推定される。
 なお、本装置は、報知部を備えてもよい。例えば、報知部は、表示部、スピーカー、ランプ等であってもよい。報知部を備える場合、演算制御部は、水晶体の長径または短径の位置と、ループの位置とのずれ量に応じて、報知部を制御してもよい。例えば、演算制御部は、水晶体の長径とループとの位置ずれ量が所定量を超えたときに、トーリック眼内レンズが回旋する可能性があることを報知部によって報知させてもよい。また、例えば、演算制御部は、ループの先端の位置が水晶体の短径の位置にあるときに、トーリック眼内レンズが回旋する可能性があることを報知部によって報知させてもよい。これによって、本装置は、トーリック眼内レンズの軸角度を調整することを検者に促すことができる。また、例えば、演算制御部は、トーリック眼内レンズが回旋する方向を報知してもよい。例えば、演算制御部は、ループが水晶体の短径から長径に向かう方向を報知してもよい。これによって、トーリック眼内レンズの回旋方向を予測することができる。
 なお、本装置は、被検眼の正面画像を撮影する正面撮影部をさらに備えてもよい。この場合、表示制御部は、水晶体の長径または短径の位置を正面画像に重ねて表示させてもよい。これによって、本装置は、被検眼の特徴部(強膜の血管など)と水晶体の長径または短径の位置関係についての情報を提供できる。なお、正面画像とは、被検眼を正面から撮影したときの画像である。正面撮影部は、OCT光学系等の断層撮影部によって兼用されてもよい。この場合、正面画像は、断層撮影部によって撮影された断層画像データの集合から生成された正面画像であってもよい。
 なお、演算制御部は、機械学習アルゴリズムによって訓練された数学モデルを用いてトーリック眼内レンズの回旋量を算出してもよい。この場合、例えば、演算制御部は、水晶体の長径または短径の位置と、トーリック眼内レンズの支持部の位置等を数学モデルに入力することによってトーリック眼内レンズの回旋量を出力させてもよい。
<第1実施例>
 以下、本開示に係る眼科装置10を図面に基づいて説明する。図1は本実施例に係る眼科装置10の測定部200について示す概略構成図である。なお、以下の光学系は、図示無き筐体に内蔵されている。また、その筐体は、周知のアライメント移動機構の駆動によって、操作部材(例えば、タッチパネル、ジョイスティックなど)を介して被検眼Eに対して3次元的に移動される。なお、以下の説明においては、被検眼(眼E)の光軸方向をZ方向、水平方向をX方向、鉛直方向をY方向として説明する。眼底の表面方向をXY方向として考えても良い。
 以下の説明においては、光コヒーレンストモグラフィーデバイス(OCTデバイス)5と、角膜形状測定デバイス300と、を備えた眼科装置10を例に挙げて説明する。OCTデバイス5は、被検眼Eの断面画像を撮影するための前眼部撮像デバイスとして用いられる。また、OCTデバイス5は、眼Eの眼軸長を測定するための眼軸長測定デバイスとして用いられる。角膜形状測定デバイス300は、角膜形状を測定するために用いられる。
 OCTデバイス5は、干渉光学系(OCT光学系)100を備えている。OCT光学系100は、眼Eに測定光を照射する。OCT光学系100は、被検眼の各部(例えば、角膜、水晶体、眼底など)から反射された測定光と,参照光との干渉状態を受光素子(検出器120)によって検出する。OCT光学系100は、被検眼上の撮像位置を変更するため、被検眼上における測定光を走査する走査部(例えば、光スキャナ)108を備える。制御部80は、設定された撮像位置情報に基づいて走査部108の動作を制御し、検出器120からの受光信号に基づいて断面画像を取得する。
 OCT光学系100は、いわゆる眼科用光断層干渉計(OCT:Optical coherence tomography)の装置構成を持つ。OCT光学系100は、測定光源102から出射された光をカップラー(光分割器)104によって測定光(試料光)と参照光に分割する。そして、OCT光学系100は、測定光学系106によって測定光を被検眼に導き,また、参照光を参照光学系110に導く。その後、被検眼の各部によって反射された測定光と,参照光との合成による干渉光を検出器(受光素子)120に受光させる。
 光源102から出射された光は、カップラー104によって測定光束と参照光束に分割される。そして、測定光束は、光ファイバーを通過した後、空気中へ出射される。その光束は、走査部108、及び測定光学系106の他の光学部材を介して被検眼に集光される。そして、被検眼の各部で反射された光は、同様の光路を経て光ファイバーに戻される。
 走査部108は、眼E上でXY方向(横断方向)に測定光を走査させる。走査部108は、例えば、2つのガルバノミラーであり、その反射角度が駆動機構109によって任意に調整される。
 これによって、光源102から出射された光束はその反射(進行)方向が変化され、眼E上で任意の方向に走査される。これによって、被検眼上における撮像位置が変更される。走査部108としては、光を偏向させる構成であればよい。例えば、反射ミラー(ガルバノミラー、ポリゴンミラー、レゾナントスキャナ)の他、光の進行(偏向)方向を変化させる音響光学素子(AOM)等が用いられる。
 参照光学系110は、眼Eでの測定光の反射によって取得される反射光と合成される参照光を生成する。参照光学系110は、マイケルソンタイプであってもよいし、マッハツェンダタイプであっても良い。参照光学系110は、例えば、反射光学系(例えば、参照ミラー)によって形成され、カップラー104からの光を反射光学系により反射することにより再度カップラー104に戻し、検出器120に導く。他の例としては、参照光学系110は、透過光学系(例えば、光ファイバー)によって形成され、カップラー104からの光を戻さず透過させることにより検出器120へと導く。
 参照光学系110は、参照光路中の光学部材を移動させることにより、測定光と参照光との光路長差を変更する構成を有する。例えば、参照ミラーが光軸方向に移動される。光路長差を変更するための構成は、測定光学系106の測定光路中に配置されてもよい。
 検出器120は、測定光と参照光との干渉状態を検出する。フーリエドメインOCTの場合では、干渉光のスペクトル強度が検出器120によって検出され、スペクトル強度データに対するフーリエ変換によって所定範囲における深さプロファイル(Aスキャン信号)が取得される。ここで、制御部80は、走査部108によって測定光を被検眼の各部で所定の横断方向に走査することによって断面画像を取得できる。例えば、被検眼の前眼部断面画像を撮像する。例えば、X方向もしくはY方向に走査することにより、被検眼のXZ面もしくはYZ面における断面画像を取得できる(なお、本実施形態においては、このように測定光を前眼部に対して一次元走査し、断層像を得る方式をBスキャンとする)。なお、取得された断面画像は、制御部80に接続されたメモリ85に記憶される。さらに、測定光をXY方向に二次元的に走査することにより、被検眼の三次元画像を取得することも可能である。
 例えば、フーリエドメインOCTとしては、Spectral-domain OCT(SD-OCT)、Swept-source OCT(SS-OCT)が挙げられる。また、Time-domain OCT(TD-OCT)であってもよい。
 SD-OCTの場合、光源102として低コヒーレント光源(広帯域光源)が用いられ、検出器120には、干渉光を各周波数成分(各波長成分)に分光する分光光学系(スペクトルメータ)が設けられる。スペクトルメータは、例えば、回折格子とラインセンサからなる。
 SS-OCTの場合、光源102として出射波長を時間的に高速で変化させる波長走査型光源(波長可変光源)が用いられ、検出器120として、例えば、単一の受光素子が設けられる。光源102は、例えば、光源、ファイバーリング共振器、及び波長選択フィルタによって構成される。そして、波長選択フィルタとして、例えば、回折格子とポリゴンミラーの組み合わせ、ファブリー・ペローエタロンを用いたものが挙げられる。
 角膜形状測定デバイス300は、ケラト投影光学系50、アライメント投影光学系40、前眼部正面撮像光学系30、に大別される。
 ケラト投影光学系50は、測定光軸L1を中心に配置されたリング状の光源51を有し、被検眼角膜にリング指標を投影して角膜形状(曲率、乱視軸角度、等)を測定するために用いられる。なお、光源51には、例えば、赤外光または可視光を発するLEDが使用される。なお、投影光学系50について、光軸L1を中心とする同一円周上に少なくとも3つ以上の点光源が配置されていればよく、間欠的なリング光源であってもよい。さらに、複数のリング指標を投影するプラチド指標投影光学系であってもよい。
 アライメント投影光学系40は、光源51の内側に配置され、赤外光を発する投影光源41(例えば、λ=970nm)を有し、被検眼角膜Ecにアライメント指標を投影するために用いられる。そして、角膜Ecに投影されたアライメント指標は、被検眼に対する位置合わせ(例えば、自動アライメント、アライメント検出、手動アライメント、等)に用いられる。本実施形態において、投影光学系50は、被検眼角膜Ecに対してリング指標を投影する光学系であって、リング指標は、マイヤーリングも兼用する。また、投影光学系40の光源41は、前眼部を斜め方向から赤外光にて照明する前眼部照明を兼用する。なお、投影光学系40において、さらに、角膜Ecに平行光を投影する光学系を設け、投影光学系40による有限光との組合せにより前後のアライメントを行うようにしてもよい。
 観察光学系30は、前眼部正面像を撮像(取得)するために用いられる。観察光学系30は、ダイクロイックミラー33、対物レンズ47、ダイクロイックミラー62、フィルタ34、撮像レンズ37、二次元撮像素子35、を含み、被検眼の前眼部正面像を撮像するために用いられる。二次元撮像素子35は、被検眼前眼部と略共役な位置に配置されている。
 前述の投影光学系40、投影光学系50による前眼部反射光は、ダイクロイックミラー33、対物レンズ47、ダイクロイックミラー62、フィルタ34、及び撮像レンズ37を介して二次元撮像素子35に結像される。
 光源1は、固視灯である。また、例えば、光源1から発せられた光の前眼部での反射により取得される前眼部反射光の一部は、ダイクロイックミラー33で反射され、前眼部正面撮像光学系30で結像される。
 次に、制御系について説明する。制御部80は、装置全体の制御及び測定結果の算出を行う。制御部80は、OCTデバイス5の各部材、角膜形状測定デバイス300の各部材、モニタ70、操作部84、メモリ85、等と接続されている。なお、メモリ85には、各種制御プログラムの他、後述するIOL度数算出プログラム等が記憶されている。
 続いて、本実施例において用いられるIOL度数算出プログラムについて説明する。本実施例のIOL度数算出プログラムは、機械学習アルゴリズムによって訓練された数学モデルが利用される。以下の説明では、順伝播型のニューラルネットワークが用いられる場合を例に説明する。このニューラルネットワークにおける数学モデルは、一般的に、データを入力するための入力層と、予測したいデータを生成するための出力層と、入力層と出力層の間の1つ以上の隠れ層とで構成され、各層には複数のノード(ユニットとも呼ばれる)が配置される。ノードは、複数の入力を受け取り、1つの出力を計算する。例えば、各層の各ノードに入力されたデータは、隣接する層の各ノードに出力される。このとき、径路毎に異なる重みが付加される。例えば、あるノードから次のノードに伝達される出力値は、経路毎の重みによって増強あるいは減衰される。重みが付加されたデータは、ノードに入力されると、活性化関数等の関数が適用され、次の層の各ノードに出力される。この入出力が隣接する各層の間で繰り返され、最終的に出力層から予測データが出力される。
 例えば、第1層のノードをi=1,…,I、第2層のノードをj=1,…,J、で表すと、第2層のノードが受け取る総入力ujは、次式(1)のように、第1層の各入力xiにそれぞれ異なる重みwjiを掛けたものをすべて加算し、これにバイアスと呼ばれる1つの値biを足したものになる。
Figure JPOXMLDOC01-appb-M000001
 また、第2層のノードの出力ziは、次式(2)のように、総入力uiに対する活性化関数等の関数fの出力となる。活性化関数としては、例えば、ロジスティックジグモイド関数、双曲線正接関数、正規化線形関数、マックスアウト等の関数が挙げられる。
Figure JPOXMLDOC01-appb-M000002
 上記のようなニューラルネットワークにおける数学モデルは、訓練データセットを用いて訓練されることで、新しいデータに関する予測を行うことができる。訓練データセットは、例えば、入力用訓練データと出力用訓練データのセットであり、入力用訓練データが入力層に入力された場合に、出力層から出力用訓練データに近い値が出力されるように各層の各ノードの重みとバイアスが調整される。訓練データセットは複数用意されており、繰り返し重みとバイアスが調整されることで、様々なデータに対して汎用性がある重みおよびバイアスを得ることができ、未知のデータに対しても予測可能となる。数学モデルの訓練は、例えば、入力用訓練データの入力に対する出力と、対応する出力用訓練データとの誤差が許容される範囲に入るまで続けられる。重みの調整には、バックプロパゲーション(誤差逆伝播法)等が用いられる。
 訓練された数学モデルにおいて、調整された重みは、入力と出力との相関関係を表す。この関係に基づいて、数学モデルは、訓練データとは異なる新たなデータの入力に対する予測値を出力する。例えば、各ノードの出力に対してそれぞれの重みが係数として適用される。これによって、訓練によって得られた相関が数学モデルの出力に反映される。
 本実施例の数学モデル800は、図2に示すように、入力層M1に4つのノードN11~N14、中間層M2に3つのノードN21~N23、出力層M3に1つのノードN31が配置される。この数学モデル800は、ある被検者の水晶体前面曲率、水晶体後面曲率、水晶体厚および前房深度と、術後前房深度(ELP)とを1セットとする複数セットの訓練データセットを用いて訓練されている。つまり、本実施例の数学モデル800は、入力層M1に水晶体前面曲率、水晶体後面曲率、水晶体厚、前房深度等の4つの眼形状パラメータが入力されると、出力層M3から予想術後前房深度(術後前房深度の予測値)が出力されるように生成される。なお、数学モデル800は、制御部80のプロセッサ上で実行されるように任意のコンピュータ言語等を用いて実装される。
 <制御動作>
 以下、本装置の制御動作について説明する。図3は、本装置を用いて眼内レンズ度数を決定する場合の制御動作をフローチャートで簡単に示した図である。まず、ステップS1において、制御部80は、被検眼に対する測定部200のアライメントを行う。アライメントの際、制御部80は、光源1、光源41及び光源51を点灯する。このとき、モニタ70には、図4に示すように、二次元撮像素子35によって撮影された被検眼の正面画像が表示される。正面画像には、例えば、電子的に表示されたレチクルLCと、光源41及び光源51によって形成されるリング指標Q1とリング指標Q2が写る。
 検者は、被検者に固視灯を固視させると、レチクルLCとリング指標Q1が同心円状になるように、タッチパネル等の操作部を操作する。制御部80は、操作部によって受け付けた操作に応じて測定部を上下左右に移動させる。これによって、被検眼の角膜頂点に本装置の光軸L1が通るようにXY方向にアライメントされる。また、検者は、リング指標Q1のピントが合うように、操作部を操作する。制御部80は、操作部によって受け付けた操作に応じて測定部を前後方向に移動させる。
 前眼部に対するアライメントが完了されると、制御部80は、観察光学系30によって被検眼の前眼部の正面画像を撮影する(ステップS2)。また、制御部80は、予め設定された走査パターンに基づき、OCT光学系100によって図5に示すような被検眼の断面画像500を撮影する(ステップ3)。取得された前眼部画像および断面画像は、メモリ85等に記憶される。
 続いて、ステップ4において、制御部80は、眼形状パラメータを取得する。例えば、制御部80は、メモリ85に記憶された前眼部画像400におけるリング指標像Q1及びQ2に基づいて被検眼の角膜形状をそれぞれ算出する。角膜形状とは、例えば、強主経線方向及び弱主経線方向における角膜前面の角膜曲率半径、角膜の乱視軸角度等である。また、制御部80は、OCTデバイス5を用いて撮影された断面画像を解析する。例えば、制御部80は、断面画像のエッジ検出によって角膜、水晶体などの位置を検出し、その位置に基づいて角膜厚、前房深度、水晶体厚を測定する。また、制御部80は、検出された角膜および水晶体の前面または後面を円近似(または楕円近似、コニック曲線近似等)し、この近似曲線に基づいて角膜後面の曲率半径、水晶体前面曲率、水晶体後面曲率等を測定する。さらにOCT光学系によって網膜まで撮影することができる場合は、眼軸長を測定する。取得された眼形状パラメータは、例えば、メモリ85等に記憶される。
 ステップS5において、制御部80は、測定部200によって取得された水晶体前面曲率、水晶体後面曲率、水晶体厚、前房深度をメモリ85から読み出し、入力層M1の各ノードに入力する。そして、制御部80は、数学モデル800の規則に従って計算を行い、予想術後前房深度の値を出力層M3から出力する(ステップS6)。制御部80は、出力された予想術後前房深度をメモリ85に記憶させる。
 各パラメータの取得が完了すると、制御部80は、既知であるSRK/T式、Binkhorst式等を一部流用して眼内レンズ度数を算出する。例えば、制御部80は、ステップS7において、SRK/T式、Binkhorst式等に上記のパラメータを代入することによって、IOL度数を取得する(ステップS8)。SRK/T式(下記の式(3))を用いる場合、角膜曲率半径、眼軸長、予想術後前房深度等を用いて眼内レンズ度数が計算される。
Figure JPOXMLDOC01-appb-M000003

ここで、R:角膜曲率半径[mm](R=(nk-1.000)×1000/K)、nk:検者によって選択された屈折率、LO:AL+RT[mm]、RT:網膜の厚み[mm](RT=0.65696-0.02029×AL)、AL:眼軸長[mm]、AD’:予想術後前房深度の補正値[mm](AD’=H+OF,OF=AD-3.336)、AD:予想術後前房深度[mm](AD=0.62467×A-68.747)、A:A定数、H:角膜高さ[mm](H=R-(R×R-((Cw×Cw)/4))1/2)(ただし、(R×R-((Cw×Cw)/4))<0の場合、H=R)、Cw:角膜幅[mm]、Cw=-5.41+0.58412×LC+0.098×K、LC:眼軸長の補正値[mm](AL≦24.2の場合LC=AL、AL>24.2の場合LC=-3.446+1.716×AL-0.0237×AL2)、DR:術後希望する矯正用レンズの屈折力[D]、LP:移植するIOLの度数[D]、V:頂点距離、na:房水および硝子体の屈折率(=1.336)、nc:角膜の屈折率(=1.333)、ncml: nc-1(=0.333)である。
 従来では、ELPの予測に回帰式もしくは理論式を使っており、一定の規則に当てはまる眼球であればある程度予測精度が得られていた。しかしながら、形状が特徴的な眼球(例えば、眼軸長だが前房深度が浅い眼、短眼軸だが前房深度が深い眼など)に対応できず、突発的な度数ズレを引き起こしていた。以上のように、機械学習によって訓練された数学モデルを用いて、複数の眼形状パラメータの相関を考慮した術後前房深度の予測を行うことがで、平均的な形状から外れた特徴的な眼球であっても、より高い確率で適切なIOL度数を算出できる。
 なお、上記の実施例では、数学モデルによって予想術後前房深度を出力させたが、これに限らない。例えば、IOL度数を出力させてもよい。この場合、入力用訓練データとして、角膜曲率、眼軸長、前房深度等の複数の眼形状パラメータを用い、出力用訓練データとしてIOL度数を用いて数学モデルを訓練する。これによって、制御部80は、測定部200で測定された眼形状パラメータが入力されると、IOL度数を出力する数学モデルが生成される。この数学モデルを用いることによって、測定された眼形状パラメータから直接IOL度数を算出することができる。
 なお、制御部80は、数学モデルによってトーリックIOL度数を取得してもよい。この場合、入力用訓練データとして複数の眼形状パラメータを用い、出力用訓練データとしてトーリックIOL度数を用いて数学モデルが訓練される。トーリックIOL度数を求める場合、眼形状パラメータは、例えば、角膜前面乱視度数、角膜前面乱視軸、角膜後面乱視度数、角膜後面乱視軸、角膜厚(CT)、前房深度ACD、術後前房深度(ELP)、術後惹起乱視(SIA)、瞳孔径(PS)、水晶体前面乱視度数、水晶体前面乱視軸、水晶体後面乱視度数、水晶体後面乱視軸、切開位置、切開幅、切開角度、補助ポート位置、補助ポート数、補助ポート幅の少なくともいずれかを含む。切開位置、切開幅、切開角度は、IOLを挿入する際に被検眼の角膜、角膜縁または強膜に施される切開の位置、幅、角度(切開の方向)である。補助ポートとは、例えば、IOL挿入時の補助具を眼内に挿入するための切開口(または創)である。なお、被検眼に挿入すべきトーリックIOLの乱視度数は、例えば、水晶体前面乱視、水晶体後面乱視の情報に基づいて算出される。また、トーリックIOL度数の他にトーリック角度、術後のIOLの回転可能性等のトーリックIOL関連情報を取得してもよい。IOLの回転可能性を取得する場合は、水晶体嚢の直径、水晶体嚢の短径と長径、IOL全長等を数学モデルへの入力データとして用いてもよい。
 なお、演算制御部は、切開位置、切開幅、切開角度、補助ポート位置、補助ポート数、補助ポート幅、術者の少なくともいずれかに関する特徴パラメータを数学モデルに入力することによって、数学モデルから術後惹起乱視を出力させてもよい。術後惹起乱視は、白内障手術時の切開によって生じる乱視である。したがって、術後惹起乱視は、術者の手術の特徴等の影響を受ける場合がある。このため、術後惹起乱視を出力させるために、数学モデルの入力に切開位置、切開幅、切開角度、補助ポート位置、補助ポート数、補助ポート幅、術者の少なくともいずれかに関する特徴パラメータを用いる。
 なお、上記の実施例では、数学モデルによって計算された予想術後前房深度をIOL度数計算式の代入箇所に代入することによってIOL度数を求めたが、再度別の数学モデルによってIOL度数を算出してもよい。例えば、数学モデルによって計算された予想術後前房深度と、他の眼形状パラメータを入力することによって、IOL度数が出力されるように訓練された数学モデルを用いてIOL度数を取得してもよい。
 なお、上記の実施例において、ニューラルネットワークの出力は1つとしたが、出力層に複数のノードを設け、複数の値を出力させてもよい。例えば、角膜曲率、眼軸長、前房深度、水晶体前面曲率、水晶体後面曲率、等の眼形状パラメータを入力すると、予想術後前房深度とIOL度数の2つのパラメータが算出されてもよい。この場合、入力用訓練データとして複数の眼形状パラメータを用い、出力用訓練データとして術後前房深度とIOL度数を用いて数学モデルを訓練すればよい。もちろん、出力層だけでなく、入力層、隠れ層についてもノードの数はいくつでもよい。
 上記の実施例において、隠れ層が1つのニューラルネットワークを扱ったが、隠れ層が2以上のディープニューラルネットワークが用いられてもよい。この場合も、同様に、入力層の各ノードに複数の眼形状パラメータが入力され、複数の隠れ層を経て、最終的に出力層から予想術後前房深度またはIOL度数が出力される。ディープニューラルネットワークを用いることによって、各眼形状パラメータの相関をより細かく反映したIOL度数情報を取得できる。
 なお、上記の実施例では、ニュートラルネットワークを用いた回帰によって予想術後前房深度を算出したが、機械学習を用いた分類によってIOL関連情報を取得してもよい。例えば、制御部80は、数学モデルを用いて、複数のIOL度数計算式の中から適切なIOL度数計算式を選定してもよい。例えば、制御部80は、数学モデルに眼形状パラメータを入力することによって、適切なIOL度数計算式を得る。これによって、被検眼の形状に適したIOL度数計算式でIOL度数を算出できる。なお、IOL度数計算式を選定する場合、眼形状パラメータの他に、IOLモデル、術者、人種、性別、年齢等に関する特徴パラメータを数学モデルに入力してもよい。
 なお、上記の実施例では、ニューラルネットワークによってIOL度数を算出したが、これに限らない。例えば、ランダムフォレスト、ブースティング等の他の機械学習アルゴリズムを用いてもよい。例えば、ランダムフォレストを用いる場合、いくつかの決定木によってそれぞれIOL度数が求められ、各決定木から得られるIOL度数の値を平均することでIOL度数が取得される。また、ブースティングによって得られた識別器によって、被検眼がどのIOL度数計算式に適しているかを分類してもよい。ニューラルネットワークに限らず、機械学習アルゴリズムを用いることによって、正確なIOL度数を算出することができる。
 なお、以上の実施例において、数学モデルに入力する眼形状パラメータは、測定部200によって測定したが、サーバー等から眼形状パラメータを取得してもよい。例えば、多数の機種で撮影された複数の測定結果がネットワークを通してサーバーに記憶され、各装置は、サーバーから他の装置で測定されたデータを取得できてもよい。例えば、制御部80は、被検者の登録情報および測定画像データ等が管理される電子カルテシステムから眼形状パラメータを取得してもよい。
 なお、上記の実施例では、訓練された数学モデルによって算出した予想術後前房深度をIOL度数計算式に適用することによって、IOL度数を取得したが、理論式によって算出した予想術後前房深度と、その他の眼形状パラメータとを数学モデルに入力することによってIOL度数を出力させてもよい。予想術後前房深度の算出方法は、以下に説明する。
 予想術後前房深度の理論式による算出について、図6を用いて説明する。予想術後前房深度は、角膜高さ(角膜前面から水晶体前面までの高さ)に対し、オフセット量Xと補正量α(例えば、A定数の関数)とが足し合わせられることによって算出される。なお、角膜高さは、角膜厚CCTと前房深度ACDを足し合わせることによって算出される。
 オフセット量Xは、水晶体前面の位置から赤道位置(水晶体の最大径部分)までの距離を示している。なお、オフセット量Xは、IOLが水晶体嚢から圧力を受けることによって生じる水晶体後嚢側へのIOLの移動量(上記で示す補正量α)が考慮されておらず、除かれている(詳細は後述する)。IOLの支持部(ループ)の先端の位置は、赤道位置とおおよそ同様となる。なお、赤道位置は、水晶体前面と水晶体後面とが交差する位置とされてもよい。
 以下、オフセット量Xを算出する方法について説明する。例えば、制御部80は、水晶体前面曲率半径R3、水晶体後面曲率半径R4、水晶体厚LTを用いて赤道位置を算出し、この赤道位置を術後のループ先端の位置とする。術後のループ先端の位置は、おおよそIOLの光学部の位置と同様と扱われるため、ループ先端の位置を光学部の位置としてオフセット量Xを算出する。
 また、図7において、距離hは、光軸L1から水晶体前面の近似円と水晶体後面の近似円との交点までの距離を示している。距離X1は、光軸L1における水晶体前面曲率中心O4から水晶体後面までの距離を示している。距離X1'は、水晶体前面の近似円と水晶体後面の近似円との交点から水晶体後面までの距離を示している。距離X2は、光軸L1における水晶体後面曲率中心O3から水晶体前面までの距離を示している。距離Xは、水晶体前面の近似円と水晶体後面の近似円との交点から水晶体前面までの距離を示しており、オフセット量である。ピタゴラスの定理により以下の式が成り立つ。
Figure JPOXMLDOC01-appb-M000004

そして、上記の式(4)において、距離hが同様であるため、これらの式をオフセット量Xについて解くと以下の式が成り立つ。
Figure JPOXMLDOC01-appb-M000005
 制御部80は、式(5)によって算出したオフセット量Xと、前房深度ACD、角膜厚CCT、補正量αに基づいて予想術後前房深度を算出する。補正量αは、IOL挿入後に水晶体の嚢の圧力によって、IOLが後嚢側に押し下げられた際に、IOLが移動した量を補正するためのパラメータである。補正量αは、IOLのモデルによって異なり、例えば、臨床データに基づいてモデル毎に設定されたA定数を用いて算出される。予想術後前房深度ELPは、以下の式(6)で求めることができる。
Figure JPOXMLDOC01-appb-M000006

予想術後前房深度としては、角膜裏面から定義される場合もあるが、ここでは、角膜前面からIOL前面までの距離とした。
 制御部80は、式(6)によって算出された予想術後前房深度と、測定部200によって取得された各眼形状パラメータを数学モデルに入力することによって、直接IOL度数を算出してもよい。このように、実測値(1次パラメータ)である眼形状パラメータと、1次パラメータに基づいて算出された計算値(2次パラメータ)である予想術後前房深度を数学モデルの入力として用いてもよい。これによって、制御部80は、1次パラメータと2次パラメータの相関を反映したIOL度数を算出できる。
 なお、機械学習によって訓練された数学モデルを用いて眼疾患等の予測を行ってもよい。例えば、制御部80は、数学モデルに眼形状パラメータを入力することによって、角膜または水晶体等の中間透光体混濁の進行度、円錐角膜、LASIK術後角膜拡張症、ペルーシド角膜辺縁変性症などの角膜変性症の進行度、術後の病気発生率等を出力させてもよい。角膜変性症進行度を得る場合は、角膜曲率、角膜厚等が数学モデルへの入力として用いられる。中間透光体混濁の進行度を得る場合、前眼部断面画像に写る中間透光体の輝度値等が数学モデルの入力として用いられる。数学モデルは、出力層に複数ノードを備え、IOL関連情報の他に上記のような疾病情報を出力してもよい。これによって、IOL度数を求めるとともに、被検眼の状態に関する情報を取得できる。
 なお、以上の実施例では、嚢内に固定するIOLについて説明したが、これに限らない。例えば、有水晶体眼用IOLを挿入する場合、またはピギーバック(IOL挿入眼に2枚目のIOLを挿入)を行う場合、IOL交換を行う場合などにおいても、機械学習によって訓練された数学モデルを用いてIOL関連情報を取得できる。ピギーバックまたはIOL交換の場合は、既に被検眼に挿入されているIOLに関する情報も特徴パラメータの1つとして数学モデルの入力に用いてもよい。
 なお、本開示は、前眼部断層像(断面像)撮影用の光コヒーレンストモグラフィーデバイスにおいて、複数の走査位置にて前眼部断層像を取得することにより3次元形状画像を取得する場合においても適用可能である。OCTデバイス5は、前眼部の3次元断面像(3次元前眼部データ)を取得する前眼部撮像デバイスであって、制御部80は、前眼部撮像デバイスによって取得された3次元断面像に基づいて水晶体前面からチン小帯と水晶体の接点までのオフセット距離を3次元的に求める。この場合、3次元前眼部データにおける経線方向毎の水晶体前面曲率と水晶体後面曲率の平均を算出し、これに基づいてELPを算出する。そして、3次元形状画像より測定値を取得することによって、取得される測定値の精度が良くなる。
 なお、本実施例においては、前眼部断面像を撮像する前眼部撮像デバイスとして、前眼部断層像(断面像)撮影用の光コヒーレンストモグラフィーデバイスを例に挙げたがこれに限定されない。光源からの出射光を被検眼前眼部に向けて投光し、前眼部上に光切断面を形成させる投光光学系と、光切断面の前眼部での散乱により取得される前眼部散乱光を含む光を受光する検出器を有する受光光学系と、を有し、検出器からの検出信号に基づいて前眼部断面画像を形成する構成であればよい。すなわち、検眼の前眼部にスリット光を投影し、シャインプルークカメラにより前眼部断面画像を得る装置等にも適用可能である。
 さらに、シャインプルークカメラを回転させたり、水平または垂直方向に移動させたりすることにより前眼部の3次元形状画像を取得する装置にも適用可能である。この場合、所定の回転角度毎にずれ補正を行うことによって、精度よく前眼部の3次元形状画像を取得することが可能となり、3次元形状画像より取得される測定値の精度が良くなる。この場合、撮像面(スリット断面)に対して垂直な方向の位置ずれが検出され、その検出結果に基づいてずれ補正処理が行われる。
 また、上記構成においては、光学的に前眼部断面像を取得したが、これに限定されない。例えば、Bスキャン用の超音波プローブを用いて前眼部からの反射情報を検出することによって前眼部断面像を取得する構成であればよい。
 なお、本実施例においては、IOL度数の算出方法として、既知であるSRK/T式、Binkhors式等の回帰式または理論式であるIOL度数計算式を用いたがこれに限定されない。例えば、光線を用いて、光の反射や屈折の様子を幾何学的に追いかけて、光の振る舞いをシミュレーションする光線追跡法によって、IOL度数を算出することもできる。この場合、予想術後前房深度ELP、角膜厚CCT、眼軸長測定結果AL、角膜前面の角膜曲率半径、角膜後面の角膜曲率半径、を用いて光線追跡法によって、IOL度数を算出する。光線追跡法は、光の反射や屈折をシミュレーションによってIOL度数を算出したものであるため、理論式であるIOL度数計算式によりも精度良くIOL度数を算出することができる。
 なお、本実施例においては、角膜形状測定デバイス300を用いて、角膜前面における角膜曲率半径が算出され、OCTデバイス5を用いて、角膜後面における角膜曲率半径が算出される構成としたがこれに限定されない。OCTデバイス5によって、角膜前後面における角膜曲率半径を算出してもよい。また、角膜前後面の角膜曲率半径を同様の測定値で扱ってもよい。すなわち、角膜形状測定デバイス300で算出した角膜前面における角膜曲率半径が角膜前後面における角膜曲率半径として用いられる。
 なお、本実施例において、角膜形状測定デバイス300として、角膜トポグラフィーを用いることもできる。この場合、角膜前面の曲率半径を算出する際に、角膜の全体の形状から角膜前面の曲率半径が算出されるため、角膜前面の曲率半径が精度良く算出される。このため、IOL度数を算出する際に、IOL度数算出の精度向上に繋がる。
 なお、本実施例においては、本実施形態に記載した装置に限定されない。例えば、上記実施例の機能を行うIOL度数計算プログラムをネットワークや各種記憶媒体を介して、システムあるいは装置に供給する。そして、システムあるいは装置のコンピュータ(例えば、CPU等)がプログラムを読み出し、実行することも可能である。
<第2実施例>
 以下、第2実施例について説明する。第2実施例の眼科装置10は、嚢径を用いて式(6)の補正量αを算出する。なお、装置の構成については、第1実施例と同様であるため説明を省略する。
 補正量αは、IOLのモデルによって移動量が異なるため、臨床データに基づいてモデル毎に設定されたA定数を用いて算出されることがある。しかしながら、嚢の大きさによってもループのしなり具合が変化する場合がある。例えば、図8Aは嚢径φ1の場合を示し、図8Bは嚢径φ1よりも小さい嚢径φ2の場合を示す。嚢径φ2の場合は、嚢径φ1の場合に比べ、嚢からループへ加わる圧力が大きいため、ループが後嚢側に大きくしなり、補正量αは大きくなる。このように、このように、嚢径の大小によってループのしなり具合が異なるため、本実施例では被検眼の嚢径を考慮して補正量αを算出する。
<補正量の算出>
 以下、補正量αの算出について説明する。まず、制御部80は、OCTデバイス5によって撮影された前眼部断面画像から水晶体の嚢径を測定する。例えば、制御部80は、前眼部断面画像において、水晶体の前面および後面を円または楕円で近似し、これらの2つの交点の距離を嚢径とする。なお、嚢径は、図7における距離hを2倍したものであるため、制御部80は、式(4)によって嚢径を算出してもよい。
 嚢径を測定すると、制御部80は、嚢径を用いて補正量αを計算する。例えば、制御部80は、式(7)によって補正量αを計算する。
Figure JPOXMLDOC01-appb-M000007

ここで、α:補正量、L:IOL全長、Φ:嚢径、B,C:IOL毎の特徴パラメータである。
 例えば、式(7)では、嚢径が小さくなるにつれて補正量αが大きくなる。補正量αが大きくなると、式(6)で算出される予想術後前房深度も大きくなる。つまり、制御部80は、嚢径が小さい場合に予想術後前房深度を大きく算出し、嚢径が大きい場合に予想術後前房深度を小さく算出する。このように、制御部80は、嚢径に応じて補正量αを変化させることによって、ループのしなり具合による予想術後前房深度のずれを補正する。
 また、制御部80は、被検眼の嚢径だけでなく、IOLの特徴パラメータを用いて補正量αを計算してもよい。IOLの特徴パラメータは、例えば、図9に示すように、全長L、光学部径U、ループ角度θなどが挙げられる。また、特徴パラメータは、IOLの厚さ、光学部材質、ループ材質、ループ形状等に基づいて決定されるパラメータであってもよい。これらの特徴パラメータは、嚢径と同様にIOLのループのしなり具合に影響する。
 例えば、IOL全長が大きいほどループはしなりやすい。したがって、制御部80は、IOL全長が大きい場合、補正量αを大きく算出する。このように、制御部80は、IOLのループがしなりやすいほど補正量αを大きく算出する。例えば、IOLの剛性、材料の弾性率が小さいほどループはしなりやすいため、補正量αは大きく算出される。なお、これらの特徴パラメータはモデル毎に測定され、メモリに記憶されてもよい。もちろん、カタログに記載された数値が用いられてもよい。
 上記のようにして推定された予想術後前房深度は、例えば、式(3)のAD'に代入され、眼内レンズ度数が計算される。
 以上のように、第2実施例の眼科装置は、嚢径によるIOLのしなりの変化を考慮して精度よく予想術後前房深度を算出できる。これによって、標準的な眼球形状ではない特徴的な眼球に対しても精度よくIOLの度数を算出することができる。
 なお、制御部80は、IOL全長と嚢径とを比較し、その比較結果に応じて装置の制御動作を切り換えてもよい。例えば、制御部80は、嚢径がIOL全長よりも小さい場合、同じ場合、大きい場合の3つの場合で装置の制御動作を切り換えてもよい。
 例えば、IOL全長よりも嚢径が大きい場合、IOLは嚢の中で回旋し、IOLの位置は安定しない。この場合、予想術後前房深度にIOLが位置しない可能性があり、眼内レンズ度数の算出結果の誤差が大きくなる恐れがある。したがって、制御部80は、IOL全長よりも嚢径が大きいと判定した場合、IOLのモデルが被検眼に適していない旨の報知を行ってもよい。例えば、制御部80は、より全長の大きいIOLに変更する旨の報知、術後に測定した屈折値と予測術後屈折値の乖離が大きくなる可能性がある旨の報知、またはIOL回旋の可能性がある旨の報知を行ってもよい。また、制御部80は、挿入時にチン小帯にかかる負荷が大きくなる可能性がある旨の報知を行い、水晶体嚢拡張リング(capsular tension ring:CTR)を挿入する必要性を予測してもよい。例えば、制御部80は、その旨をモニタ70に表示させてもよいし、音声を出力してもよい。
 IOL全長と嚢径が同じ場合、嚢はIOLを保持し、IOLの位置は安定する。この場合、予想術後前房深度にIOLが位置する。したがって、制御部80は、ループがほとんどしならないと仮定し、α=0のままで予想術後前房深度を計算してもよい。
 IOL全長より嚢径が小さい場合、IOLは嚢によって保持され、IOLの位置は安定する。ループはしなり、光学部は予測された位置よりも後嚢または前嚢に近い位置で安定する。したがって、制御部80は、IOLループのしなりを考慮して、上記の式(7)によって算出した補正量αを用いて予想術後前房深度を算出する。
 このように、IOL全長と嚢径の比較結果に応じて制御動作を切り換えることによって、適切な予想術後前房深度を推定することができる。
 なお、補正量αは、上記のような計算式ではなく臨床的(実験的)に設定されてもよい。例えば、術前に測定された嚢径と、術後に測定された前房深度と予想術後前房深度のずれ量との関係に基づいて、補正量αが設定されてもよい。
 なお、水晶体嚢径の代わりに、水晶体嚢の全周長(前嚢から後嚢を通って一周する長さ)を用いてもよい。全周長は、水晶体前面の近似円と水晶体後面の近似円が互いに切り取る弧長の合計が用いられてもよい。この全周長を予想術後前房深度の算出に用いることによって、水晶体の大きさを考慮した予想術後前房深度を推定できる。
 なお、上記の実施例においては、IOLの特徴パラメータは設計値を用いたが、invivo(生体内)で測定された数値を用いてもよいし、invitoro(試験管内)で測定された数値を用いてもよいし、空気中で測定された数値を用いてもよい。生体内で測定する場合は、超音波測定装置等を使用して測定する。
 なお、断層画像から嚢径を取得する場合、制御部80は、IOLのループが嚢内に接触する位置で嚢径を計測してもよい。例えば、IOLのループが90°の方向になるように水晶体に挿入される場合、制御部80は、OCT光学系を制御してY方向(90°方向)のスキャンを行い、これによって取得された上下方向の断層画像を解析することによって、嚢径を測定してもよい。IOLのループが接触する位置は、検者によって入力されてもよいし、OCT光学系100等によって取得された3次元の断層画像データから水晶体の長径または短径が分かる場合は、長径または短径の位置に基づいて制御部80が設定してもよい。
<第3実施例>
 以下、第3実施例について説明する。第3実施例の眼科装置10は、被検眼の断層画像から水晶体の長径または短径の位置を算出でき、水晶体の形状情報を容易に取得できる。例えば、本装置は、白内障治療における眼内レンズの挿入位置の決定に利用できる。なお、装置の構成については、第1実施例と同様であるため説明を省略する。
<制御動作>
 前眼部に対するアライメントが完了されると、制御部80は、前眼部正面撮像光学系30によって被検眼の前眼部を撮影する。撮影された前眼部画像はメモリ85等に記憶させる。
 続いて、制御部80は、予め設定された走査パターンに基づき、OCT光学系100によって被検眼の複数断面の断層画像を撮影する。例えば、図10に示すように、制御部80は、アライメント中心を回転軸として、任意の角度で放射状にスキャンし、少なくとも3断面以上の撮影を行う。本実施例では、被検眼の水平方向を0°として、0°,60°,120°の角度で放射状にスキャンする。放射状にスキャンすることで、水晶体形状の推定に用いるデータを少ないスキャン回数で取得できる。取得された断層画像は、メモリ85等に記憶される。
 なお、一般的に眼球光軸(水晶体光軸)は視軸に対して傾いているため、水晶体の中心を通るようにスキャンするために、アライメント基準を調整してもよい。例えば、固視灯1の位置を変化させて被検眼を傾けることで、水晶体の光軸を装置の光軸L1に合わせるようにしてもよい。例えば、固視灯を鼻側に4°、上側に1°傾けることで、水晶体の光軸と装置の光軸L1がほぼ一致する。この場合、制御部80は、図示無き駆動を制御して、固視灯1を移動させてもよい。
 制御部80は、撮影された複数断面の断層画像から水晶体の前面または後面の曲率半径を求める。例えば、制御部80は、断層画像の画像処理によって水晶体の前面または後面の形状を求め、その曲率半径を計算する。例えば、図5に示すように、断層画像のエッジ検出によって検出された水晶体の前面または後面の輪郭のカーブから曲率半径を算出してもよい。
 制御部80は、各スキャン角度における曲率半径を求めると、例えば、スキャン角度と曲率半径との関係から水晶体の長径と短径の位置を推定する。
 例えば、水晶体が真円形でない場合、曲率半径が大きい部分が水晶体の長径に位置し、曲率半径が小さい部分が水晶体の短径に位置すると考えられる。したがって、制御部80は、図11に示すように、3断面の各スキャン角度に対する水晶体前面または後面の曲率半径をプロットし、他の角度に対応する曲率半径を補間する。例えば、ラグランジュ補間、スプライン補間などが用いられる。もちろん、最小二乗法などによって関数近似が行われてもよい。制御部80は、補間された値、または関数近似によって得られた近似曲線Fに基づいて曲率半径rの最大値および最小値を求め、最大値をとる位置(角度θ)を水晶体の長径、最小値をとる位置を水晶体の短径の位置とする。なお、制御部80は、長径および短径の一方の角度を算出し、それに90°加えることで他方の角度としてもよい。また、各スキャン角度の曲率半径が同じだった場合、制御部80は、水晶体が円形であると判定してもよい。
<眼球モデル表示>
 制御部80は、例えば、長径と短径の位置(回転軸に対する角度)をモニタ70に図示する。制御部80は、図12に示すように、眼球モデル610に長径と短径を表示させる。図12の例では、眼球モデル610の上に、長い点線620で長径の位置が表示され、長径を示す点線630よりも短い点線で短径の位置が表示される。これによって、検者は、水晶体の傾きを確認することができる。なお、点線620および点線630は、それらの長さの比が水晶体の楕円率と同じになるように表示されてもよい。これによって、検者は、モニタ70の表示から水晶体の楕円形状をイメージすることができる。
 また、制御部80は、長径と短径の位置における眼球モデルの断面図を表示させてもよい。図12の例では、正面から見た眼球モデル61の側方に長径の位置における断面図640が表示され、下方に短径の位置における断面図650が表示される。例えば、各断面図には、水晶体前面および水晶体後面の曲率半径を表示させてもよい。図12には、長径の位置における水晶体前面の曲率半径r1および水晶体後面の曲率半径r2、ならびに短径の位置における水晶体前面の曲率半径r3および水晶体後面の曲率半径r4が表示される。このように、曲率半径を数値で示すことによって、水晶体の形状をイメージさせ易くしてもよい。なお、上記のような眼球モデルではなく、実際の被検眼の画像を表示させてもよい。
<トーリック軸表示>
 なお、制御部80は、眼内レンズのトーリック軸の位置をモニタ70に表示させてもよい。図13の例では、制御部80は被検眼の前眼部正面画像に、トーリック軸710の位置、眼内レンズ750のループ先端755の位置、ならびに水晶体長径720および短径730の位置を表示させている。なお、トーリック軸710の位置は、他の装置から取得してもよいし、OCTデバイス5および角膜形状測定デバイス300等の測定結果に基づいて算出してもよい。本実施例においては、角膜形状測定デバイス300によって取得された角膜の乱視軸角度がトーリック軸とされる。ループ先端755の位置は、眼内レンズの種類によって決まっており、トーリック軸の位置から求められる。したがって、制御部80は、被検眼に挿入される眼内レンズの種類とその形状を予めメモリ85に記憶させるとよい。
 なお、眼内レンズのループが元の形状に戻ろうとして外側に広がるときの弾性力によって水晶体の嚢に眼内レンズを支持するが、水晶体嚢からの抵抗が小さい方向、つまり、水晶体の短径から長径に向かって眼内レンズが回転する。したがって、制御部80は、ループ先端755が水晶体短径730に位置する場合、眼内レンズが回旋する可能性がある旨の警告770をモニタ70に表示させてもよい。例えば、制御部80は、ループ先端755が水晶体短径730から±5°の範囲内であった場合に警告770を表示してもよい。この警告表示によって、検者は、眼内レンズを挿入する際に眼内レンズの軸角度を調整してもよい。
 また、制御部80は、眼の乱視軸に対して眼内レンズのトーリック軸を理想的な軸角度で配置した場合において、ループの位置と水晶体の長径の位置との角度の差を計算してもよい。この角度が所定以上(例えば、10°以上)の場合、制御部80は、モニタ70に警告770を表示させてもよい。
 なお、制御部80は、眼内レンズが回旋する可能性があると判定した場合、眼内レンズを予め回旋方向とは逆方向にずらして挿入することを警告770として表示してもよい。例えば、制御部80は、ループ先端755の位置が水晶体長径720よりも水晶体短径730に近い場合、ループ先端755が長径から遠ざかる方向に、トーリック軸を5°程度ずらして眼内に挿入するように促す指示をモニタ70に表示させてもよい。また、制御部80は、眼内レンズが回旋する可能性があると判定した場合、乱視矯正効果がより強いトーリック眼内レンズを挿入することを警告770として表示してもよい。例えば、前述例において、5°の軸ずれを生じると判定した場合、トーリック眼内レンズの度数を再選定するように促す指示をモニタ70に表示させてもよい。これによって、眼内レンズの回旋によるトーリック軸のずれの影響を考慮した度数の眼内レンズを選択できる。
 以上のように、本装置は、水晶体の長径および短径の有無、長径および短径の位置とその比率等の形状に関する情報を容易に取得できる。これによって、検者は、水晶体の形状による眼内レンズの回旋の影響を考慮して眼内レンズの軸角度を決定できる。
 なお、制御部80は、水晶体長径または短径の位置とトーリック軸またはループの位置とのずれ量を術前に算出した結果と、術後の眼内レンズの回旋量とをメモリ85に記憶させてもよい。この場合、制御部80は、メモリ85に記憶された術前のずれ量と、術後の実際の回旋量の関係に基づいて、別の被検眼(右眼または左眼、もしくは別の患者の眼)の眼内レンズの回旋量を推定してもよい。
 例えば、制御部80は、術前に予定されたループの位置と水晶体長径の位置とのずれ量をメモリ85に記憶させる。また、制御部80は、術後に測定した実際の回旋量をメモリ85に記憶させる。実際の回旋量は、例えば、術前に予定されたループの位置と、術後に測定したループの位置とのずれ量(回旋量)を算出することで求める。なお、術後の実際のループの位置は、例えば、前眼部正面画像の画像解析等によって眼内レンズの形状を特定することで得られる。例えば、制御部80は、メモリ85に蓄積された術前のループと水晶体長径のずれ量に対する術後の眼内レンズの回旋量の傾向に基づいて、次の患者の眼内レンズの回旋量を予測してもよい。例えば、制御部80は、ずれ量が増加すると回旋量も増加する傾向にある場合、ずれ量が大きいほど回旋量を大きく予測してもよい。また、制御部80は、ずれ量が増加すると回旋量が減少する傾向にある場合、ずれ量が大きくなるほど回旋量を小さく予測してもよい。このように、制御部80は、過去の手術データを用いることで、より適正な回旋量を推定してもよい。
 なお、制御部80は、眼内レンズモデル毎に回旋量の予測を行ってもよい。眼内レンズのモデルによって回旋の傾向が異なるため、制御部80は、過去の回旋量のデータに基づいて、モデル毎の傾向に応じた回旋量を算出してもよい。また、術者の手術のやり方または癖等によって眼内レンズの回旋の傾向が異なるため、術者毎の傾向に応じた回旋量を算出してもよい。
 なお、上記の説明において、OCT光学系5のスキャン方向は放射状であったが、同心円状のサークルスキャンでもよいし、ラジアルスキャンであってもよい(図14A,図14B参照)。この場合、制御部80は、サークルスキャンまたはラジアルスキャンによって得られた水晶体の3次元形状データに基づいて、水晶体の長径および短径の算出を行ってもよい。
 なお、水晶体の長径および短径の位置を計算する方法としては、上記の実施例の方法に限らず、水晶体の赤道位置を推定する方法などがある。水晶体の赤道とは、例えば、水晶体の最大径部である。本実施例のようにOCT光学系100を用いて取得された前眼部断層画像500は、虹彩によって測定光が遮られるため、水晶体の赤道は撮影されない。したがって、制御部は、水晶体が撮影される中央部の形状に基づいて、赤道部の形状を推定する。例えば、制御部80は、水晶体前面に沿う曲線(例えば、近似円)と、水晶体後面に沿う曲線(例えば、近似円)とが交わる点を赤道位置として推定する。この赤道位置を各スキャン角度で算出し、これらの赤道位置を通る楕円を求める。そして、制御部80は、求めた楕円の長径と短径を水晶体の長径と短径とする。この場合、制御部80は、求めた楕円の長径と短径の大きさの数値を表示部に表示させてもよいし、長径または短径を表す線等のグラフィックの長さをその大きさに合わせて表示させてもよい。
 なお、制御部80は、長径および短径を計算する際、水晶体前面の曲率または水晶体後面の曲率の一方のみを用いてもよいし、両方を用いてもよい。水晶体前面と後面のどちらの曲率を用いても長径および短径の位置はほぼ同じになるため、制御部80にそれぞれの計算結果を比較させ、計算結果の妥当性を確認させてもよい。例えば、制御部80は、それぞれの計算結果の差が所定量以上(例えば、5°以上)である場合は、計算結果が妥当ではないと判定し、再度被検眼の断面を撮影してもよい。
 なお、図12または図13において、水晶体の長径と短径が線で表示されているが、推定された楕円の図形を表示してもよい。この場合でも、検者は水晶体の楕円形状と長径および短径の傾き具合を確認することができる。
 5 光コヒーレンストモグラフィーデバイス
 10 眼科装置
 30 前眼部正面撮像光学系
 40 アライメント投影光学系
 50 ケラト投影光学系
 70 モニタ
 80 制御部
 85 メモリ
 84 操作部
 

Claims (45)

  1.  被検眼に挿入するIOLの度数を決定するための眼科装置であって、
     被検眼の複数の眼形状パラメータを取得するパラメータ取得手段と、
     IOL度数を演算する演算制御手段と、を備え、
     前記演算制御手段は、機械学習アルゴリズムによって訓練された数学モデルに前記複数の眼形状パラメータを入力することによって、前記数学モデルからIOL関連情報を出力させることを特徴とする眼科装置。
  2.  前記演算制御手段は、前記数学モデルから前記IOL関連情報として出力された予想術後前房深度に基づいてIOL度数を算出することを特徴とする請求項1の眼科装置。
  3.  前記数学モデルは、複数の眼形状パラメータを入力用訓練データとし、術後前房深度を出力用訓練データとする複数の訓練データセットを用いて訓練されることを特徴とする請求項1または2の眼科装置。
  4.  前記眼形状パラメータは、水晶体形状パラメータを含むことを特徴とする請求項1~3のいずれかの眼科装置。
  5.  前記演算制御手段は、前記数学モデルによって出力された前記予想術後前房深度をIOL度数計算式に代入することによってIOL度数を算出することを特徴とする請求項2~4の眼科装置。
  6.  前記演算制御手段は、複数のIOL度数計算式のうち適切な式を選択するための選択情報を前記数学モデルに出力させることを特徴とする請求項1の眼科装置。
  7.  前記数学モデルによって出力された前記選択情報をユーザーに提示する提示手段をさらに備えることを特徴とする請求項5の眼科装置。
  8.  前記数学モデルによって出力された前記選択情報において適切でない式をユーザーが使用しようとした場合に警告する警告手段をさらに備えることを特徴とする請求項5の眼科装置。
  9.  前記演算制御手段は、前記数学モデルに前記複数の眼形状パラメータを入力することによって、前記数学モデルから前記IOL関連情報としてIOL度数を出力させることを特徴とする請求項1の眼科装置。
  10.  前記演算制御手段は、前記複数の眼形状パラメータに基づいて予想術後前房深度を算出し、前記眼形状パラメータと前記予想術後前房深度を前記数学モデルに入力することによって、前記数学モデルからIOL度数を出力させることを特徴とする請求項9の眼科装置。
  11.  前記演算制御手段は、前記複数の眼形状パラメータを第1数学モデルに入力することによって、前記第1数学モデルから出力された予想術後前房深度を、前記第1数学モデルとは異なる第2数学モデルに入力することによって、前記第2数学モデルからIOL度数を出力させることを特徴とする請求項9の眼科装置。
  12.  前記演算制御部は、前記眼形状パラメータの他に、患者の人種、性別、年齢、IOLモデル、術者の少なくともいずれかの特徴に関する特徴パラメータを前記数学モデルに入力することを特徴とする請求項1~11のいずれかの眼科装置。
  13.  前記特徴パラメータは、各IOL度数計算式で用いられるレンズ定数を含むことを特徴とする請求項12の眼科装置。
  14.  前記演算制御手段は、前記数学モデルからトーリックIOL度数を出力させることを特徴とする請求項1~13のいずれかの眼科装置。
  15.  前記眼形状パラメータは、角膜前面乱視/軸、角膜後面乱視/軸、角膜厚、前房深度、術後前房深度、術後惹起乱視、瞳孔径、水晶体前面乱視/軸、水晶体後面乱視/軸、切開位置、切開幅、切開角度、補助ポート位置、補助ポート数、補助ポート幅の少なくともいずれかを含むことを特徴とする請求項14の眼科装置。
  16.  前記演算制御手段は、前記水晶体前面乱視および前記水晶体後面乱視に基づいて、トーリックIOLの乱視度数を算出することを特徴とする請求項15の眼科装置。
  17.  前記演算制御手段は、切開位置、切開幅、切開角度、補助ポート位置、補助ポート数、補助ポート幅、術者、の少なくともいずれかに関する特徴パラメータを前記数学モデルに入力することによって、前記数学モデルから術後惹起乱視を出力させることを特徴とする請求項1~16のいずれかの眼科装置。
  18.  前記演算制御手段は、前記数学モデルに前記複数の眼形状パラメータを入力することによって、前記数学モデルからIOL度数および予想術後前房深度の少なくともいずれかを含む複数の前記IOL関連情報を出力させることを特徴とする請求項1の眼科装置。
  19.  前記演算制御手段は、中間透光体混濁の進行度、角膜変性症の進行度の少なくともいずれかを前記数学モデルからさらに出力させることを特徴とする請求項1~18のいずれかの眼科装置。
  20.  前記眼形状パラメータは、通信ネットワークを介して接続されたサーバシステムから取得されることを特徴とする請求項1~19のいずれかの眼科装置。
  21.  前記被検眼の眼形状パラメータを測定する測定手段をさらに備えることを特徴とする請求項1~20のいずれかの眼科装置。
  22.  被検眼に挿入するIOLの度数を決定するための眼科装置において実行されるIOL度数決定プログラムであって、前記眼科装置のプロセッサによって実行されることで、
     被検眼の複数の眼形状パラメータを取得するパラメータ取得ステップと、
     機械学習アルゴリズムによって訓練された数学モデルに前記複数の眼形状パラメータを入力することによって、前記数学モデルからIOL関連情報を出力させる演算ステップと、を前記眼科装置に実行させることを特徴とするIOL度数決定プログラム。
  23.  被検眼に挿入する眼内レンズの度数を決定するための眼科装置であって、
     前記被検眼の前眼部断面画像を撮影する断面撮影手段と、
     前記眼内レンズの度数を算出する演算制御手段と、を備え、
     前記演算制御手段は、前記前眼部断面画像を解析することによって前記被検眼の水晶体の嚢径を取得し、前記嚢径を用いて前記眼内レンズの予想術後前房深度を推定し、前記予想術後前房深度に基づいて前記眼内レンズの度数を算出することを特徴とする眼科装置。
  24.  前記演算制御手段は、前記嚢径と前記眼内レンズの特徴パラメータに基づいて、前記予想術後前房深度を推定することを特徴とする請求項23の眼科装置。
  25.  前記特徴パラメータは、少なくとも前記眼内レンズの全長を含むことを特徴とする請求項24の眼科装置。
  26.  前記特徴パラメータは、前記眼内レンズの全長、光学部の厚さ、光学部の弾性率、光学部径、ループの角度、ループの厚さ、ループの弾性率の少なくともいずれかを含むことを特徴とする請求項24の眼科装置。
  27.  前記演算制御手段は、前記全長よりも前記嚢径が小さいほど、前記予想術後前房深度の予測値をより後嚢側に補正することを特徴とする請求項23~26のいずれかの眼科装置。
  28.  前記演算制御手段は、前記嚢径と前記特徴パラメータに基づいて算出された補正量を前記予測値の算出に用いることを特徴とする請求項27の眼科装置。
  29.  前記演算制御手段は、前記全長と前記嚢径の大きさを比較し、比較結果に基づいて前記眼内レンズが前記被検眼に適しているか否か判定することを特徴とする請求項23~28のいずれかの眼科装置。
  30.  前記演算制御手段は、被検眼の前房深度と、水晶体前面から水晶体赤道までのオフセット距離と、前記嚢径を用いて算出される補正量と、に基づいて、前記予想術後前房深度を推定することを特徴とする請求項23~29の眼科装置。
  31.  前記演算制御手段は、前記前眼部断面画像から水晶体前面に沿う曲線と水晶体後面に沿う曲線の交点を赤道位置と仮定して、前記水晶体の嚢径を算出することを特徴とする請求項23~30のいずれかの眼科装置。
  32.  被検眼に挿入する眼内レンズの度数を決定する眼科装置において実行されるIOL度数決定プログラムであって、前記眼科装置のプロセッサによって実行されることで、
     前記被検眼の前眼部断面画像を撮影する断面撮影ステップと、
     前記断面撮影ステップにおいて撮影された前記前眼部断面画像を解析することによって前記被検眼の水晶体の嚢径を取得する嚢径取得ステップと、
     前記嚢径取得ステップにおいて取得された前記嚢径を用いて前記眼内レンズの術後予測前房深度を推定する推定ステップと、
     前記推定ステップにおいて推定された前記術後予測前房深度に基づいて前記眼内レンズの度数を算出する算出ステップを前記眼科装置に実行させることを特徴とするIOL度数決定プログラム。
  33.  被検眼の前眼部を撮影するための眼科装置であって、
     前記被検眼の前眼部断層画像を撮影する断層撮影手段と、
     前記前眼部断層画像に基づいて、前記被検眼の水晶体の長径および短径の少なくともいずれかの位置を算出する演算制御手段と、
    を備えることを特徴とする眼科装置。
  34.  前記水晶体の長径および短径の少なくともいずれかの位置を表示手段に表示させる表示制御手段をさらに備えることを特徴とする請求項33の眼科装置。
  35.  前記表示制御手段は、前記水晶体の長径および短径の少なくともいずれかの位置と、トーリック眼内レンズの乱視軸の位置と、を前記表示手段に表示させることを特徴とする請求項34の眼科装置。
  36.  前記表示制御手段は、前記水晶体の長径および短径の少なくともいずれかの位置と、前記トーリック眼内レンズのループの位置を前記表示手段に表示させることを特徴とする請求項34または35の眼科装置。
  37.  前記演算制御手段は、前記水晶体の長径および短径の少なくともいずれかの位置と、前記乱視軸および前記ループの少なくともいずれかの位置とのずれ量を算出することを特徴とする請求項33~36のいずれかの眼科装置。
  38.  報知手段をさらに備え、
     前記演算制御手段は、前記長径の位置と前記ループの位置とのずれ量が所定量を超えたときに、前記トーリック眼内レンズが回旋する可能性があることを前記報知手段に報知させることを特徴とする請求項33~37のいずれかの眼科装置。
  39.  報知手段をさらに備え、
     前記演算制御手段は、前記トーリック眼内レンズのループの先端が前記短径の位置にある場合、前記トーリック眼内レンズが回旋する可能性があることを前記報知手段に報知させることを特徴とする請求項33~37のいずれかの眼科装置。
  40.  前記演算制御手段は、前記トーリック眼内レンズが回旋する方向を前記報知手段に報知させることを特徴とする請求項38または39の眼科装置。
  41.  前記演算制御手段は、眼内レンズの挿入において前記ループの先端を回旋方向とは逆方向にずらす旨の指示を前記報知手段に報知させることを特徴とする請求項38~40のいずれかの眼科装置。
  42.  前記被検眼の正面画像を撮影する正面撮影手段をさらに備え、
     前記表示制御手段は、前記水晶体の長径および短径の少なくともいずれかの位置を前記正面画像に重ねて表示させることを特徴とする請求項34~41のいずれかの眼科装置。
  43.  前記演算制御手段は、術前に算出した前記ずれ量と、前記眼内レンズの術後の回旋量を記憶手段に記憶することを特徴とする請求項37の眼科装置。
  44.  前記演算制御手段は、前記記憶手段に記憶された前記ずれ量と前記術後の回旋量に基づいて、別の被検眼における眼内レンズの回旋量を予測することを特徴とする請求項43の眼科装置。
  45.  前記演算制御手段は、眼内レンズモデルおよび術者の一方、またはその両方毎に予測を行うことを特徴とする請求項44の眼科装置。
PCT/JP2017/027547 2016-07-29 2017-07-28 眼科装置、およびiol度数決定プログラム WO2018021561A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP17834563.3A EP3491996A4 (en) 2016-07-29 2017-07-28 OPHTHALMOLOGICAL DEVICE AND PROGRAM FOR DETERMINING THE POWER OF AN ARTIFICIAL CRYSTALLINE

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2016-150320 2016-07-29
JP2016150320A JP6794700B2 (ja) 2016-07-29 2016-07-29 前眼部撮影装置、および前眼部解析プログラム
JP2016171311A JP2018033807A (ja) 2016-09-01 2016-09-01 眼内レンズ度数決定装置、および眼内レンズ度数決定プログラム
JP2016-171311 2016-09-01
JP2016194227A JP6900647B2 (ja) 2016-09-30 2016-09-30 眼科装置、およびiol度数決定プログラム
JP2016-194227 2016-09-30

Publications (1)

Publication Number Publication Date
WO2018021561A1 true WO2018021561A1 (ja) 2018-02-01

Family

ID=61016182

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/027547 WO2018021561A1 (ja) 2016-07-29 2017-07-28 眼科装置、およびiol度数決定プログラム

Country Status (2)

Country Link
EP (1) EP3491996A4 (ja)
WO (1) WO2018021561A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200229870A1 (en) * 2019-01-22 2020-07-23 Alcon Inc. Systems and methods for intraocular lens selection using emmetropia zone prediction
CN112949197A (zh) * 2021-03-08 2021-06-11 北京理工大学 一种基于深度学习的平凸透镜曲率半径在线测量方法
CN113382673A (zh) * 2018-12-06 2021-09-10 先进欧氏解决方案有限责任公司 用于使用术后测量值的人工晶状体选择的装置和方法
EP3808250A4 (en) * 2018-06-13 2022-03-02 Topcon Corporation SLIT LAMP MICROSCOPE AND OPHTHALMIC SYSTEM
JP2022533285A (ja) * 2019-08-27 2022-07-22 ビジュウォクス レンズ決定方法およびこれを利用する装置

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11426065B2 (en) * 2019-01-24 2022-08-30 6 Over 6 Vision Ltd. Apparatus, system and method of determining one or more parameters of a refractive error of a tested eye
DE102020101761A1 (de) * 2020-01-24 2021-07-29 Carl Zeiss Meditec Ag Machine-learning basierte iol-positionsbestimmung
DE102020101764A1 (de) 2020-01-24 2021-07-29 Carl Zeiss Meditec Ag MACHINE-LEARNING BASIERTE BRECHKRAFTBESTIMMUNG FÜR MAßNAHMEN ZUR KORREKTUR DER SEHFÄHIGKEIT VON OCT BILDERN
DE102020101763A1 (de) 2020-01-24 2021-07-29 Carl Zeiss Meditec Ag Machine-learning gestützte pipeline zur dimensionierung einer intraokularlinse
DE102020101762A1 (de) 2020-01-24 2021-07-29 Carl Zeiss Meditec Ag Physikalisch motiviertes machine-learning-system für optimierte intraokularlinsen-kalkulation
CN115697247A (zh) * 2020-05-29 2023-02-03 爱尔康公司 基于预测的主观结果分数选择人工晶状体
DE102021102142A1 (de) * 2021-01-29 2022-08-04 Carl Zeiss Meditec Ag Theorie-motivierte Domänenkontrolle für ophthalmologische Machine-Learning-basierte Vorhersagemethode
WO2024057162A1 (en) * 2022-09-13 2024-03-21 Alcon Inc. Toric intraocular lens alignment guide

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003075785A (ja) * 2001-06-20 2003-03-12 Vision Megane:Kk 眼鏡・コンタクトレンズ度数決定システムおよびその方法
JP2005288176A (ja) * 2004-03-31 2005-10-20 Nidek Co Ltd 角膜形状解析システム
JP2007531559A (ja) * 2004-02-20 2007-11-08 オフソニックス,インク 波面収差を解析するシステムおよび方法
JP2011188983A (ja) * 2010-03-15 2011-09-29 Nidek Co Ltd 眼科装置
JP2011206368A (ja) * 2010-03-30 2011-10-20 Nidek Co Ltd 眼科装置
JP2013503020A (ja) * 2009-08-31 2013-01-31 パワーヴィジョン・インコーポレーテッド 水晶体嚢サイズ推定方法
JP2013094410A (ja) * 2011-10-31 2013-05-20 Nidek Co Ltd 眼内レンズ度数決定装置及びプログラム
WO2013187361A1 (ja) * 2012-06-14 2013-12-19 学校法人北里研究所 術後の眼内レンズ位置を推定する方法、及びシステム
WO2015020731A2 (en) * 2013-08-07 2015-02-12 Novartis Ag Surgical guidance and planning software for astigmatism treatment
JP2016029968A (ja) * 2014-07-25 2016-03-07 キヤノン株式会社 画像処理装置、画像処理方法、プログラムおよびトーリック眼内レンズ

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010091420A1 (en) * 2009-02-09 2010-08-12 Whitsett Jeffrey C Exchangeable intraocular lens device and method of use
BRPI1016052A2 (pt) * 2009-03-26 2020-07-28 National Digital Research Centre Limited métodos para modelar uma lente de um olho, e para determinar uma posição ótima para uma lente intraocular, aparelhos para modelar uma lente de um olho, e para determinar uma posição ótima para uma lente intraocular, e, meio de armazenamento legível por computador
DE102011106714A1 (de) * 2011-07-06 2013-01-10 Carl Zeiss Meditec Ag "Verfahren zur optimierten Vorhersage der postoperativen, anatomischen Position einer in ein pseudophakes Auge implantierten Intraokularlinse"

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003075785A (ja) * 2001-06-20 2003-03-12 Vision Megane:Kk 眼鏡・コンタクトレンズ度数決定システムおよびその方法
JP2007531559A (ja) * 2004-02-20 2007-11-08 オフソニックス,インク 波面収差を解析するシステムおよび方法
JP2005288176A (ja) * 2004-03-31 2005-10-20 Nidek Co Ltd 角膜形状解析システム
JP2013503020A (ja) * 2009-08-31 2013-01-31 パワーヴィジョン・インコーポレーテッド 水晶体嚢サイズ推定方法
JP2011188983A (ja) * 2010-03-15 2011-09-29 Nidek Co Ltd 眼科装置
JP2011206368A (ja) * 2010-03-30 2011-10-20 Nidek Co Ltd 眼科装置
JP2013094410A (ja) * 2011-10-31 2013-05-20 Nidek Co Ltd 眼内レンズ度数決定装置及びプログラム
WO2013187361A1 (ja) * 2012-06-14 2013-12-19 学校法人北里研究所 術後の眼内レンズ位置を推定する方法、及びシステム
WO2015020731A2 (en) * 2013-08-07 2015-02-12 Novartis Ag Surgical guidance and planning software for astigmatism treatment
JP2016029968A (ja) * 2014-07-25 2016-03-07 キヤノン株式会社 画像処理装置、画像処理方法、プログラムおよびトーリック眼内レンズ

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
FINDL OLIVER ET AL.: "Analysis of nonlinear systems to estimate intraocular lens position after cataract surgey", JOURNAL OF CATARACT & REFRACTIVE SURGERY, vol. 30, no. 4, 30 April 2004 (2004-04-30), pages 863 - 866, XP055457913, DOI: doi:10.1016/j.jcrs.2003.08.027 *
See also references of EP3491996A4 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3808250A4 (en) * 2018-06-13 2022-03-02 Topcon Corporation SLIT LAMP MICROSCOPE AND OPHTHALMIC SYSTEM
US12011225B2 (en) 2018-06-13 2024-06-18 Topcon Corporation Slit lamp microscope and ophthalmic system
CN113382673A (zh) * 2018-12-06 2021-09-10 先进欧氏解决方案有限责任公司 用于使用术后测量值的人工晶状体选择的装置和方法
US20200229870A1 (en) * 2019-01-22 2020-07-23 Alcon Inc. Systems and methods for intraocular lens selection using emmetropia zone prediction
CN113330522A (zh) * 2019-01-22 2021-08-31 爱尔康公司 使用正视区预测来选择人工晶状体的系统和方法
JP2022517312A (ja) * 2019-01-22 2022-03-08 アルコン インコーポレイティド 正視域予測を使用した眼内レンズ選択のためのシステム及び方法
CN113330522B (zh) * 2019-01-22 2024-06-18 爱尔康公司 使用正视区预测来选择人工晶状体的系统和方法
JP7534301B2 (ja) 2019-01-22 2024-08-14 アルコン インコーポレイティド 正視域予測を使用した眼内レンズ選択のためのシステム及び方法
JP2022533285A (ja) * 2019-08-27 2022-07-22 ビジュウォクス レンズ決定方法およびこれを利用する装置
JP7248347B2 (ja) 2019-08-27 2023-03-29 ビジュウォクス レンズ決定方法およびこれを利用する装置
CN112949197A (zh) * 2021-03-08 2021-06-11 北京理工大学 一种基于深度学习的平凸透镜曲率半径在线测量方法

Also Published As

Publication number Publication date
EP3491996A4 (en) 2020-03-25
EP3491996A1 (en) 2019-06-05

Similar Documents

Publication Publication Date Title
WO2018021561A1 (ja) 眼科装置、およびiol度数決定プログラム
JP6900647B2 (ja) 眼科装置、およびiol度数決定プログラム
US11185221B2 (en) Ophthalmologic information processing apparatus, ophthalmologic apparatus, and ophthalmologic information processing method
US10105052B2 (en) Ophthalmic imaging apparatus and ophthalmic information processing apparatus
JP6349701B2 (ja) 眼科測定装置
JP2018149449A (ja) 眼科撮影装置および眼科情報処理装置
JP7343331B2 (ja) 眼科装置、その制御方法、プログラム、及び、記録媒体
JP7359675B2 (ja) 眼科情報処理装置、眼科装置、眼科情報処理方法、及びプログラム
JP2013135837A (ja) 眼科装置及び眼科プログラム
JP7286422B2 (ja) 眼科情報処理装置、眼科装置、眼科情報処理方法、及びプログラム
US12133687B2 (en) Ophthalmic apparatus
WO2019026862A1 (ja) 眼内レンズ度数決定装置、および眼内レンズ度数決定プログラム
JP6772412B2 (ja) 眼科装置
JP2018033807A (ja) 眼内レンズ度数決定装置、および眼内レンズ度数決定プログラム
JP2019013392A (ja) 眼科装置、および眼科装置制御プログラム
EP3127472A1 (en) Method and program for positioning an mage of an object on a tomogram and an optical coherence tomography apparatus therefor
US11219363B2 (en) Ophthalmic apparatus and ophthalmic optical coherence tomography method
US9622659B2 (en) Method for determining the total refractive power of the cornea of an eye
JP7236927B2 (ja) 眼科装置、その制御方法、眼科情報処理装置、その制御方法、プログラム、及び記録媒体
JP2022060588A (ja) 眼科装置、及び眼科装置の制御方法
JP6794700B2 (ja) 前眼部撮影装置、および前眼部解析プログラム
JP7024228B2 (ja) 眼科装置、および眼科装置制御プログラム
JP2020049128A (ja) 眼内レンズ選択装置、および眼内レンズ選択プログラム
JP6662412B2 (ja) 眼科測定装置
JP7480553B2 (ja) 眼科装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17834563

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017834563

Country of ref document: EP

Effective date: 20190228