Nothing Special   »   [go: up one dir, main page]

WO2018019026A1 - 空调器的控制方法及空调器 - Google Patents

空调器的控制方法及空调器 Download PDF

Info

Publication number
WO2018019026A1
WO2018019026A1 PCT/CN2017/086426 CN2017086426W WO2018019026A1 WO 2018019026 A1 WO2018019026 A1 WO 2018019026A1 CN 2017086426 W CN2017086426 W CN 2017086426W WO 2018019026 A1 WO2018019026 A1 WO 2018019026A1
Authority
WO
WIPO (PCT)
Prior art keywords
human body
air conditioner
temperature value
value
state
Prior art date
Application number
PCT/CN2017/086426
Other languages
English (en)
French (fr)
Inventor
屈金祥
赖想球
张天宇
段晓华
胡渊翔
邹丁山
Original Assignee
广东美的制冷设备有限公司
美的集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201610616689.XA external-priority patent/CN106196484A/zh
Priority claimed from CN201610624303.XA external-priority patent/CN106016636B/zh
Priority claimed from CN201610625679.2A external-priority patent/CN106288149B/zh
Priority claimed from CN201610625617.1A external-priority patent/CN106196490B/zh
Application filed by 广东美的制冷设备有限公司, 美的集团股份有限公司 filed Critical 广东美的制冷设备有限公司
Publication of WO2018019026A1 publication Critical patent/WO2018019026A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements

Definitions

  • the present invention relates to the field of air conditioning equipment, and more particularly to an air conditioner control method and an air conditioner.
  • the air conditioner performs cooling or heating operations according to the preset temperature or wind speed, and the user presets the parameters according to the user's own habits. Sometimes it is not really suitable for the user. Adjustment parameters. For example, some users set a relatively low temperature, such as 20 ° C, in a relatively hot environment. After a period of time, the room temperature will rapidly decrease, and the user will feel cold, so the air conditioner's set temperature will be increased. Causes user discomfort. Moreover, when the user is in different positions in the room, the cooling or heating effect of the air conditioner perceived by the user is different due to the difference in the position of the air outlet from the air conditioner. Therefore, if the air conditioners are operated according to the same adjustment parameter, it may cause excessive cooling or overheating, which may cause user discomfort, which may reduce the user experience of the air conditioner.
  • the main object of the present invention is to provide an air conditioner control method, which aims to solve the technical problem that the air conditioner operates according to an air conditioner adjustment parameter set by a user, causing excessive cooling or overheating to cause user discomfort.
  • an air conditioner control method provided by the present invention includes:
  • the method further includes:
  • the ambient temperature value is detected, and the thermal sensation state is corrected according to the ambient temperature value.
  • the method further includes:
  • the ambient temperature value and the air conditioner operating wind speed value are detected, and according to the temperature value and the running wind speed value, an air temperature value near the human body is obtained, and the cold temperature is corrected according to the air temperature value in the vicinity of the human body. Thermal state.
  • the higher the running wind speed value the smaller the difference between the air temperature value and the ambient temperature value in the vicinity of the human body, and the lower the running wind speed value is near the human body.
  • the difference between the air temperature value and the ambient temperature value is greater.
  • the controlling the operation of the air conditioner according to the thermal sensation state comprises: controlling one or more of a set temperature of the air conditioner, an operating wind speed, and a wind deflector parameter according to the thermal sensation state.
  • the present invention also provides an air conditioner, the air conditioner comprising:
  • a temperature detecting module for detecting a temperature of radiation in the room and a temperature value of the surface of the human body
  • a thermal sensation acquiring module configured to obtain a heat dissipation amount of the human body according to a temperature of the surface of the human body and a radiation temperature value in the room, and further obtain a thermal sensation state of the human body according to the heat dissipation amount;
  • the control module controls the operation of the air conditioner according to the state of the thermal sensation.
  • the temperature detecting module is an infrared array sensor.
  • the thermal sensation acquiring module further includes: after obtaining the thermal sensation state of the human body according to the amount of heat dissipation:
  • the air conditioner operates in the cooling mode, the ambient temperature value is detected, and the thermal sensation state is corrected according to the ambient temperature value.
  • the thermal sensation acquiring module obtains the cold and hot sensation of the human body according to the amount of heat dissipation After the state also includes:
  • the air conditioner operates in the heating mode, detecting the room ambient temperature value and the air conditioner operating wind speed value, obtaining an air temperature value near the human body according to the ambient temperature value and the running wind speed value, and correcting the cold according to the air temperature value in the vicinity of the human body Thermal state.
  • the thermal sensation acquiring module acquires the air temperature value in the vicinity of the human body according to the ambient temperature value and the running wind speed value
  • the higher the running wind speed value the smaller the difference between the air temperature value and the ambient temperature value in the vicinity of the human body, and the running wind speed value The lower the difference, the greater the difference between the air temperature value near the human body and the ambient temperature value.
  • an air conditioner control method provided by the present invention includes:
  • the air conditioner is controlled to operate according to the state of the thermal sensation.
  • the step of acquiring air temperature values in the vicinity of the human body comprises:
  • the air conditioner When the air conditioner is in the cooling mode, the position of the human body is detected, the wind speed value and the ambient temperature value of the air conditioner are detected, and the air temperature value near the human body is obtained according to the position of the human body, the wind speed value of the air conditioner, and the ambient temperature value.
  • the step of acquiring air temperature values in the vicinity of the human body comprises:
  • the air conditioner When the air conditioner operates in the heating mode, the wind speed value and the ambient temperature value of the air conditioner are detected, and the air temperature value near the human body is obtained according to the operating wind speed value and the ambient temperature value of the air conditioner.
  • the method further includes:
  • the ambient temperature value is detected, according to the ambient temperature The value corrects the thermal sensation state.
  • the step of controlling the operation of the air conditioner according to the state of the thermal sensation includes:
  • One or more of the set temperature, the operating wind speed, and the air guiding strip parameters of the air conditioner are controlled according to the state of the cold and hot feeling.
  • the present invention also provides an air conditioner, the air conditioner comprising:
  • a temperature detecting module for detecting a temperature of radiation in the room and a temperature value of the surface of the human body
  • An air temperature detecting module for detecting an air temperature value in the vicinity of the human body
  • the thermal sensation acquisition module is configured to obtain a first heat dissipation amount of the human body according to a difference between a body surface temperature value and a radiation temperature in the room, and obtain a second heat dissipation amount of the human body according to an air temperature value in the vicinity of the human body, according to the human body
  • a heat dissipation amount and a second heat dissipation amount obtain a heat dissipation amount of the human body, and obtain a cold and heat state of the human body according to the heat dissipation amount of the human body;
  • the control module controls the operation of the air conditioner according to the state of the thermal sensation.
  • an air conditioner control method provided by the present invention includes:
  • the acquiring the location of the human body specifically includes:
  • the position of the human body is determined by the position angle of the detecting person in the left-right direction by the infrared sensor mounted on the air conditioner and the position angle of the person detecting the person in the up-and-down direction with the infrared sensor.
  • the obtaining the operating wind speed value at the location where the human body is located comprises:
  • the running wind speed value of the position of the human body is determined according to the running wind speed of the air conditioner and the position of the human body.
  • the difference between the running wind speed of the position where the human body is located and the running wind speed of the air conditioner is smaller; when the position of the human body is farther away from the air conditioner When the position is directly opposite, the running wind speed of the position where the human body is located is different from the running wind speed of the air conditioner.
  • the controlling the operation of the air conditioner according to the thermal sensation state comprises: controlling one or more of a set temperature of the air conditioner, an operating wind speed, and a wind deflector parameter according to the thermal sensation state.
  • the present invention also provides an air conditioner, the air conditioner comprising:
  • a temperature detecting module for detecting a temperature of radiation in the room and a temperature value of the surface of the human body
  • a human body position detecting module for detecting the position of the human body
  • a wind speed obtaining module configured to obtain a wind speed value of the position where the human body is located
  • the thermal sensation acquisition module is configured to obtain the heat dissipation amount of the human body according to the difference between the surface temperature value of the human body and the radiation temperature in the room and the running wind speed value at the position of the human body, and further obtain the thermal sensation state of the human body according to the heat dissipation amount.
  • the control module controls the operation of the air conditioner according to the state of the thermal sensation.
  • the temperature detecting module is an infrared array sensor.
  • the air conditioner control method provided by the present invention comprises the steps of:
  • the air conditioner is controlled to operate according to the state of the thermal sensation.
  • the step of obtaining humidity in the room comprises:
  • the humidity in the room is determined according to the preset relationship between the area where the human body is located and the wind file and humidity.
  • the step of obtaining humidity in the room comprises:
  • the humidity in the room is determined according to the preset relationship between the windshield and the humidity.
  • the method further includes:
  • the ambient temperature value is detected, and the thermal sensation state is corrected according to the ambient temperature value.
  • the method further includes:
  • the ambient temperature value and the air conditioner operating wind speed value are detected;
  • the thermal sensation state is corrected according to the air temperature value in the vicinity of the human body.
  • the present invention also provides an air conditioner control apparatus, including:
  • a calculation module configured to calculate a first heat dissipation amount of the human body according to the temperature of the human body surface and the radiation temperature value, and is also used for
  • the control module controls the operation of the air conditioner according to the state of the thermal sensation.
  • the invention obtains the radiation temperature in the room and the temperature value of the human body surface, and obtains the heat dissipation amount of the human body through the difference between the surface temperature of the human body and the radiation temperature value in the room, and obtains the state of cold and heat of the human body through the heat dissipation amount of the human body, and finally Adjusting the set temperature, running wind speed and air guiding strip state of the air conditioner through the cold and hot state of the human body, the air conditioner automatically adjusts the parameters affecting the user's cold and hot feeling according to the cold and hot state of the human body, and solves the problem due to the user.
  • the problem of overcooling and overheating caused by setting the parameters of the air conditioner is improved, and the user's comfort is improved. Fitness.
  • FIG. 1 is a schematic flow chart of a first embodiment of a method for controlling an air conditioner according to the present invention
  • FIG. 2 is a schematic flow chart of a second embodiment of a method for controlling an air conditioner according to the present invention
  • FIG. 3 is a schematic flow chart of a third embodiment of a method for controlling an air conditioner of the present invention.
  • FIG. 4 is a functional block diagram of an embodiment of an air conditioner of the present invention.
  • FIG. 5 is a schematic diagram of a thermal image of an object scanned by an infrared array sensor according to the present invention.
  • FIG. 6 is a schematic flow chart of a fourth embodiment of a method for controlling an air conditioner according to the present invention.
  • Figure 7 is a schematic flow chart of a fifth embodiment of the air conditioner control method of the present invention.
  • FIG. 8 is a schematic view showing the position of the infrared array sensor detecting the human body in the up and down direction;
  • FIG. 9 is a schematic view showing the position of the human body in the left and right direction by the infrared array sensor of the present invention.
  • Figure 10 is a view showing the distribution of the position of the human body in the room in the present invention.
  • FIG. 11 is a functional block diagram of four embodiments of the air conditioner of the present invention.
  • FIG. 12 is a schematic flow chart of a seventh embodiment of a method for controlling an air conditioner according to the present invention.
  • Figure 13 is a functional block diagram of a seventh embodiment of the air conditioner of the present invention.
  • Figure 14 is a flow chart showing the eighth embodiment of the air conditioner control method of the present invention.
  • Figure 15 is a flow chart showing the process of obtaining humidity in a room in an embodiment of the air conditioner control method of the present invention.
  • Figure 16 is a regional distribution diagram of a human body position in a room in an embodiment of the present invention.
  • Figure 17 is a flow chart showing the ninth embodiment of the air conditioner control method of the present invention.
  • Figure 18 is a schematic flow chart of the tenth embodiment of the air conditioner control method of the present invention.
  • FIG. 19 is a functional block diagram of an eighth embodiment of the air conditioner of the present invention.
  • FIG. 20 is a schematic diagram of a refinement function module of an embodiment of the acquisition module of FIG. 19;
  • FIG. 21 is a schematic diagram of a refinement function module of an embodiment of the computing module of FIG. 19.
  • FIG. 21 is a schematic diagram of a refinement function module of an embodiment of the computing module of FIG. 19.
  • FIG. 1 is a flow chart showing a method of controlling an air conditioner according to an embodiment of the present invention.
  • the air conditioner control method of the embodiment of the present invention includes the following steps:
  • step S10 the radiation temperature value in the room and the temperature value on the surface of the human body are obtained.
  • the temperature of the surface of the human body is the temperature value of the body surface
  • the radiation temperature is the temperature at which the surface of the environment acts on the human body.
  • the radiant temperature is the temperature value of the surrounding environment in the room such as the surrounding wall, window, etc., which can be measured by the sensor with the function of measuring the thermal image.
  • the infrared sensor can obtain a thermal image when scanning the human body or the surrounding environment, as shown in FIG. 5, the thermal image can obtain the temperature of each small area, that is, one of the pixels, by array arrangement.
  • the color depth of each pixel indicates that the temperature value is different, and the specific temperature value of each pixel can be read.
  • the thermal infrared sensor scans the human body, it will also get a thermal image of a certain area. Because the temperature of each part of the human body surface is different, it is reflected that the corresponding thermal image is different. Therefore, when measuring the temperature of the human body surface, it can be measured.
  • the human body obtains the average of the temperature points of all the pixels of the thermal image, that is, the average temperature value of the human body surface represents the surface temperature value of the human body.
  • Measuring the radiation temperature in the room is to scan the thermal image formed by the surrounding area such as the wall, the ceiling and the window in the room by the infrared sensor, remove the thermal image portion of the human body, and read the temperature value of each pixel of the remaining part of the thermal image.
  • the average value of the radiant temperature in the room is obtained by averaging, that is, the average radiant temperature value in the room indicates the radiant temperature value in the room.
  • Step S20 obtaining a heat dissipation amount of the human body according to a difference between the surface temperature value of the human body and the radiation temperature value in the room.
  • the amount of heat generated by the human body is basically equal to the amount of heat consumed by the human body. Therefore, the heat dissipation of the human body can be obtained by measuring the heat consumed by the human body.
  • the heat consumed by the human body can be calculated by the following formula:
  • H is the heat dissipation of the human body
  • Tcl is the temperature value of the human body surface
  • Ta is the radiation temperature value
  • is the additional calculation coefficient.
  • These calculation coefficients are some general calculation coefficients in the field of human thermal comfort research, such as considering the surrounding environment effectively.
  • the coefficient ⁇ gives the heat dissipation amount H of the human body.
  • the temperature value Tcl and the temperature value Ta are previously valued, and the human body corresponding to the temperature value Tcl and the temperature value Ta is set.
  • the amount of heat dissipation forms a mapping table.
  • step S30 the state of cold and heat of the human body is obtained according to the amount of heat dissipated by the human body.
  • the cold and hot state of the human body can be reflected by specific different values, as shown in the following table:
  • the size of the thermal and thermal state value M is divided into eight sections, which respectively represent different thermal comfort feelings of the human body, wherein the interval 5 is a slightly cool comfort, and the interval 6 is a slightly warm comfort.
  • the heat consumed by the human body is equal to the amount of heat dissipated by the human body. Therefore, the amount of heat dissipated by the human body reflects the state of cold and heat of the human body.
  • the experience of the cold and hot feelings of different users is tested through the development process of the pre-air conditioner, and the different hot and cold calculations are calculated according to the time. The relationship between the two is obtained by fitting the formula.
  • the relationship between the thermal state value M and the heat dissipation H can be expressed as follows:
  • n is a positive value
  • the value is determined according to a specific fitting formula between the H and M data sets, such as N.
  • the value is 4.
  • the thermal sensitivity value M of the human body and the heat dissipation amount H in the above formula when the heat dissipation value H of the human body is calculated, the thermal and thermal state value M of the human body is obtained by substituting the above formula.
  • the above fitting formula is only used to indicate that there is a certain relationship between the thermal sensation value of the human body and the heat dissipation amount, and does not limit the scope of the present invention.
  • the H and M data sets can also be based on other fittings. Method fitting to obtain other fitting formulas.
  • Step S40 controlling the operation of the air conditioner according to the state of the thermal sensation.
  • the operating parameters of the air conditioner are controlled to change the state of the cold and hot state of the human body to a comfortable interval
  • the operating parameters of the air conditioner include one of a set temperature, a running wind speed, and a wind guiding strip state.
  • the current thermal and thermal state value of the human body is 2.5 in the interval 1, that is, the feeling of being hot
  • the current air conditioner setting temperature is lowered by the set temperature of the automatic air conditioner to make the environment in the room The temperature is lowered, so that the value of the person's cold and hot state is gradually reduced, and finally kept in the interval 4, so that the state of the human body is changed to a comfortable state.
  • the heat dissipation value of the human body is obtained by acquiring the temperature of the surface of the human body and the radiation temperature value in the room, and further obtaining the current thermal and thermal state value of the human body according to the heat dissipation amount of the human body.
  • the accuracy of the state of the cold and hot state obtained by the method is high, and further, after obtaining the state of the cold and heat state, the state of the cold and hot state is corrected according to the cooling or heating mode of the air conditioner operation, so that the state of the cold and hot state of the human body is more Accurately adapt to the current temperature environment of the air conditioner, and finally adjust the operating parameters of the air conditioner automatically through the current state of the cold and hot state of the human body, so that the human body is in a comfortable state, and the user's manual adjustment of the operating parameters of the air conditioner is solved. Too cold or overheated Uncomfortable.
  • FIG. 2 is a schematic flow chart of a method for controlling an air conditioner according to another embodiment of the present invention. Based on the first embodiment of the air conditioning control method of the present invention, in the embodiment, in the above step S30 It also includes:
  • Step S301 when the air conditioner is in the cooling mode, the ambient temperature value is detected, and the thermal sensation state value is corrected according to the temperature value.
  • the cooling and heat state value of the human body is calculated according to the heat dissipation amount, if the air conditioner operates the cooling mode, the state of the cold and heat state can be further corrected according to the detected ambient temperature value.
  • the M value of the thermal sensation state value may be modified differently according to different temperature intervals, such as:
  • the specific correction value can be as follows:
  • the value of the thermal and thermal state value M can define upper and lower limits, such as:
  • the ambient temperature value is detected, and the thermal sensation state value is corrected according to the ambient temperature value, thereby further ensuring the current thermal sensation of the user reflected by the thermal sensation state value.
  • the state is closer to the user's current hot and cold feeling, so that it is more accurate to control the air conditioner to adjust the operating parameters according to the state of the cold and hot state, thereby further improving the user's comfort experience.
  • FIG. 3 is a schematic flowchart diagram of a third embodiment of an air conditioning control method according to the present invention. Based on the first embodiment of the air conditioning control method of the present invention, in the embodiment, after the step S30, the method further includes:
  • the human body feels the hot air blown out by the air conditioner differently from the cold air in the cooling state.
  • the ambient temperature it is also related to the hot air wind speed blown by the air conditioner. It is necessary to combine the ambient temperature value, and it is also necessary to correct the thermal sensation state in combination with the operating wind speed value of the air conditioner, that is, it is necessary to first obtain the air temperature value near the human body according to the ambient temperature value and the operating wind speed value of the air conditioner, and then according to the vicinity of the human body.
  • the air temperature value corrects the value of the thermal sensation state.
  • the air temperature values near the human body are obtained as follows:
  • the near air temperature value needs to be calculated according to different wind speed intervals. For example, according to the operating wind speed value of the air conditioner, the wind speed is divided into 100 levels according to the wind speed, and the 100 levels are divided into 10 sections, and each section adopts different calculation rules:
  • Ta T1-c1 [11,30]
  • Ta T1-c2 [31,50]
  • Ta T1-c3 [51,70]
  • Ta T1-c4 [71,90]
  • Ta T1-c5 [91,100]
  • Ta T1-c6
  • Ta is the air temperature value near the human body
  • T1 is the ambient temperature value
  • c1, c2, c3, c4, c5, and c6 are positive values and are not equal to each other.
  • the value of the human body's cold and heat state M is corrected, and the space may be
  • the gas temperature value is divided into several different temperature intervals, and the thermal sensation state value M is corrected according to different temperature intervals.
  • the specific range value of the M value is defined by different temperature intervals to correct M:
  • c1 ⁇ c2 ⁇ c3, d1, d2, and d3 are different correction values, for example, the specific correction value may be as follows:
  • the value of the thermal and thermal state value M can define upper and lower limits, such as:
  • the air conditioner when the air conditioner operates in the heating mode, the room ambient temperature value and the air conditioner operating wind speed value are detected, according to the ambient temperature value and the running wind speed value. Obtaining the air temperature value near the human body, and finally correcting the cold and hot state value of the human body according to the air temperature value in the vicinity of the human body, so that the obtained cold and hot state value in the heating mode is closer to the human body's feeling of cold and hot feeling. Further, it is more accurate to control the air conditioner according to the state of the cold and heat sensation, thereby improving the user's comfortable experience.
  • the air conditioner includes:
  • the temperature detecting module 10 acquires a radiation temperature value in the room and a temperature value of the surface of the human body;
  • a thermal sensation acquiring module 20 for using the temperature of the human body surface and the room
  • the difference in the radiation temperature value obtains the heat dissipation amount of the human body and further obtains the state of the cold and heat state of the human body according to the heat dissipation amount;
  • the control module 30 controls the operation of the air conditioner according to the state of the thermal sensation.
  • the temperature of the surface of the human body is the temperature value of the body surface
  • the radiation temperature is the average temperature of the surface of the environment to the human body.
  • the radiation temperature is the surrounding environment in the room.
  • the color depth of each pixel indicates the temperature value thereof.
  • the height is different and the specific temperature value of each pixel can be read.
  • the thermal infrared sensor scans the human body, it will also get a thermal image of a certain area. Because the temperature of each part of the human body surface is different, it is reflected that the corresponding thermal image is different. Therefore, when measuring the temperature of the human body surface, it can be measured.
  • the human body obtains the average of the temperature points of all the pixels of the thermal image, and the average value represents the average temperature value of the human body, that is, the average temperature value of the human body surface represents the surface temperature value of the human body.
  • Measuring the radiation temperature in the room is to scan the thermal image formed by the surrounding area such as the wall, the ceiling and the window in the room by the infrared sensor, remove the thermal image portion of the human body, and read the temperature value of each pixel of the remaining part of the thermal image.
  • the average value of the radiant temperature in the room is obtained by averaging, that is, the average radiant temperature value in the room represents the radiant temperature value in the room.
  • the amount of heat generated by the human body is always equal to the amount of heat consumed by the human body. Therefore, the heat dissipation of the human body can be obtained by measuring the heat consumed by the human body.
  • the heat consumed by the human body can be calculated by the following formula:
  • H is the heat dissipation of the human body
  • Tcl is the temperature value of the human body surface
  • Ta is the radiation temperature value
  • is the additional calculation coefficient.
  • These calculation coefficients are some general calculation coefficients in the field of human thermal comfort research, such as considering the surrounding environment effectively.
  • the coefficient ⁇ gives the heat dissipation amount H of the human body.
  • the temperature value Tcl and the temperature value Ta are previously valued, and the human body corresponding to the temperature value Tcl and the temperature value Ta is set.
  • the amount of heat dissipation forms a mapping table.
  • step S30 the state of cold and heat of the human body is obtained according to the amount of heat dissipated by the human body.
  • the size of the thermal and thermal state value M is divided into eight sections, which respectively represent different thermal comfort feelings of the human body.
  • the amount of heat dissipated by the human body reflects the state of cold and heat of the human body, which is different through the development process of the pre-air conditioner.
  • the user's hot and cold feelings are tested for experience, and based on the calculated heat dissipation values under different cold and heat sensations, the relationship between the two can be obtained by fitting the formula, such as the thermal state value M and the heat dissipation amount H.
  • the relationship can be expressed as follows:
  • n is a positive value
  • the value is determined according to a specific fitting formula between the H and M data sets, such as N.
  • the value is 4.
  • the thermal sensitivity value M of the human body and the heat dissipation amount H in the above formula when the heat dissipation value H of the human body is calculated, the thermal and thermal state value M of the human body is obtained by substituting the above formula.
  • the above fitting formula is only used to indicate that there is a certain relationship between the thermal sensation value of the human body and the heat dissipation amount, and does not limit the scope of the present invention.
  • the H and M data sets can also be based on other fittings. Method fitting to obtain other fitting formulas.
  • the operating parameters of the air conditioner are controlled to change the state of the cold and hot state of the human body to a comfortable interval
  • the operating parameters of the air conditioner include one of a set temperature, a running wind speed, and a wind guiding strip state.
  • the current thermal and thermal state value of the human body is 2.5 in the interval 1, that is, the feeling of being hot
  • the current air conditioner setting temperature is lowered by the set temperature of the automatic air conditioner to make the environment in the room The temperature is lowered, so that the value of the person's cold and hot state is gradually reduced, and finally kept in the interval 4, so that the state of the human body is changed to a comfortable state.
  • the heat dissipation value of the human body is obtained by acquiring the temperature of the surface of the human body and the radiation temperature value in the room, and further obtaining the current state of the thermal state of the human body according to the heat dissipation amount of the human body.
  • the obtained cold and hot state value is highly accurate, and further corrects the cold and hot state according to the cooling or heating mode of the air conditioner operation after obtaining the state of the cold and heat state, so that the state of the cold and hot state of the human body is more accurate.
  • the temperature acquisition module 20 is used for:
  • the air conditioner After obtaining the thermal sensation state of the human body according to the amount of heat dissipated by the human body, if the air conditioner operates the cooling mode, the ambient temperature value is detected, and the thermal sensation state value is corrected according to the temperature value.
  • the value of the thermal sensation state can be further corrected based on the detected ambient temperature value.
  • the air conditioner detects the ambient temperature value T1, and corrects the thermal sensation state value M according to the value of the ambient temperature value T1. For example, it can be corrected by a formula, such as:
  • the M value of the thermal sensation state value may be modified differently according to different temperature intervals, such as:
  • the specific correction value can be as follows:
  • the value of the thermal and thermal state value M can define upper and lower limits, such as:
  • the ambient temperature value is detected, and the thermal sensation state is corrected according to the temperature value, thereby further ensuring that the current thermal sensation state of the user reflected by the thermal sensation state value is closer.
  • the current hot and cold feeling of the user makes the subsequent adjustment of the air conditioner according to the state of the cold and hot state more accurate, further enhancing the user's comfort experience.
  • the thermal and thermal sensation acquiring module 20 further includes :
  • the air conditioner operates in the heating mode, detecting the room ambient temperature value and the air conditioner operating wind speed value, obtaining an air temperature value near the human body according to the ambient temperature value and the running wind speed value, and correcting the cold according to the air temperature value in the vicinity of the human body Thermal state value.
  • the human body feels the hot air blown out by the air conditioner differently from the cold air in the cooling state.
  • the ambient temperature it is also related to the hot air wind speed blown by the air conditioner. It is necessary to combine the ambient temperature value, and it is also necessary to correct the thermal sensation state in combination with the operating wind speed value of the air conditioner, that is, it is necessary to first obtain the air temperature value near the human body according to the ambient temperature value and the operating wind speed value of the air conditioner, and then according to the vicinity of the human body.
  • the air temperature value corrects the value of the thermal sensation state.
  • the air temperature values near the human body are obtained as follows:
  • the ambient temperature value T1 detected by the air conditioner and divide it into different wind speed ranges according to the operating wind speed value of the air conditioner.
  • the hot air feeling is sensitive to the cold wind feeling in the cooling mode, and the difference between the hot air feelings of different sizes is obvious. Therefore, it is not suitable to adopt a fixed calculation rule to obtain the air temperature value near the human body according to the ambient temperature value T1.
  • the wind speed interval is used to distinguish the calculations. For example, according to the operating wind speed value of the air conditioner, the wind speed is divided into 100 levels according to the wind speed, and the 100 levels are divided into 10 sections, and each section adopts different calculation rules:
  • Ta is the air temperature value near the human body
  • T1 is the ambient temperature value
  • c1, c2, c3, c4, c5, and c6 are positive values and are not equal to each other.
  • the air conditioner when the air conditioner operates in the heating mode, the room ambient temperature value and the air conditioner operating wind speed value are detected, according to the ambient temperature value and the running wind speed value. Obtaining the air temperature value near the human body, and finally correcting the cold and hot state value of the human body according to the air temperature value in the vicinity of the human body, so that the obtained cold and hot state value in the heating mode is closer to the human body's feeling of cold and hot feeling. Further control is more accurate when the air conditioner is adjusted according to the state of the cold and heat state, and the user's comfort experience is improved.
  • Fig. 6 is a flow chart showing a method of controlling an air conditioner according to a fourth embodiment of the present invention. As shown in FIG. 6, the air conditioner control method of the embodiment of the present invention includes the following steps:
  • step S10 the radiation temperature value in the room and the temperature value on the surface of the human body are obtained.
  • the temperature of the surface of the human body is the temperature value of the body surface
  • the radiation temperature is the temperature at which the surface of the environment acts on the human body. Taking people in the room as an example, the radiant temperature is the room at this time.
  • the surrounding environment such as surrounding walls, windows, and other temperature values that affect the human body. These two temperature values can be read by sensors with the function of measuring thermal images, such as array infrared sensor modules, and infrared sensors.
  • a thermal image is obtained. As shown in FIG. 5, the thermal image can be obtained by array arrangement in which the temperature value of each of the small areas, that is, one of the pixels, as shown in FIG. It indicates the difference in temperature value and can read the specific temperature value of each pixel.
  • the thermal infrared sensor scans the human body, it will also get a thermal image of a certain area. Because the temperature of each part of the human body surface is different, it is reflected that the corresponding thermal image is different. Therefore, when measuring the temperature of the human body surface, it can be measured.
  • the human body obtains the average of the temperature points of all the pixels of the thermal image, that is, the average temperature value of the human body surface represents the surface temperature value of the human body.
  • Measuring the radiation temperature in the room is to scan the thermal image formed by the surrounding area such as the wall, the ceiling and the window in the room by the infrared sensor, remove the thermal image portion of the human body, and read the temperature value of each pixel of the remaining part of the thermal image.
  • the average value of the radiant temperature in the room is obtained by averaging, that is, the average radiant temperature value in the room indicates the radiant temperature value in the room.
  • step S20 an air temperature value near the human body is obtained.
  • the ambient temperature value can be detected by the air conditioner, which is generally detected by a temperature sensor installed on the air conditioner.
  • the air conditioner In order to obtain the air temperature value in the vicinity of the human body in the room according to the ambient temperature value detected by the air conditioner, it is necessary to combine the air conditioner.
  • the specific cooling and heating operation state is considered, because the wind speed of the cooling and heating air supply has different effects on the air temperature in the vicinity of the human body, and the air supply in the cooling mode is different to the human body in different positions in the room.
  • the air temperature has a great influence. When the air is supplied, the influence of the human body in the room is very small. In order to obtain the air temperature near the human body, it is necessary to specifically consider the different factors influencing the cooling and heating mode of the air conditioner.
  • the position of the human body is detected, the wind speed value and the ambient temperature value of the air conditioner are detected, and the air temperature value near the human body is obtained according to the position of the human body, the wind speed value of the air conditioner, and the ambient temperature value.
  • the position angle of the detecting person in the left and right direction by the infrared sensor mounted on the air conditioner, and the person and the infrared sensor are detected by the infrared sensor mounted on the air conditioner.
  • the position of the person is detected in the up and down direction to determine the position of the human body.
  • the position of the human body in the room can be obtained.
  • the position of the human body in the room based on the arrayed infrared sensor module can be determined by two parameters: one is based on the array type infrared sensor module to measure the positional parameters of the human body in the up and down direction; the other is based on the array type infrared sensor module
  • the positional parameters of the human body are measured in the left and right direction.
  • FIG. 8 is a schematic diagram of the positional parameter of the array type infrared sensor module for measuring the human body in the up and down direction.
  • 1 is an air conditioner
  • 2 is an array type infrared sensor module installed on the air conditioner
  • 3 is a position of the human body.
  • the array type infrared sensor module can detect the angle between the connection between the up and down direction and the human body position and the wall surface fixed by the air conditioner in which the array type infrared sensor module is installed, that is,
  • the angle ⁇ between the line L of the array type infrared sensor module and the human body position and the line H parallel to the wall surface of the fixed air conditioner is also a fixed value because the installation height of the air conditioner is the H in the figure.
  • the value can be obtained by the user inputting the height of the air conditioner after installation into the control interface of the air conditioner, or can be roughly estimated, so that the value of the angle ⁇ can be calculated by the trigonometric function formula.
  • Figure 9 is a schematic diagram showing the positional parameters of the human body in the left and right direction of the array type infrared sensor module.
  • 1 is an air conditioner
  • 2 is an array type infrared sensor module mounted on the air conditioner
  • 3 is a human body
  • 4 is The walls around the room
  • A1 and A2 are the different locations where the human body is located.
  • the maximum viewing angle of the array type infrared sensor module that can scan and detect the surrounding environment and objects in the left and right direction is fixed, as shown by the L1 and L4 lines in the figure.
  • the angle b3 is the maximum angle of view of the array type infrared sensor module in the left and right direction to detect the surrounding environment and objects.
  • the human body and the array type infrared sensor module are determined The size of the angle b1 between the connection line L2 and the L1 can be detected; when the human body is located at the A2 point position, the size of the angle b2 between the line L3 and the L1 determined by the human body and the array type infrared sensor module can be detected. In this way, the position of the human body in the left-right direction of the array type infrared sensor module can be determined by the angles of the angles b1 and b2.
  • the angle is not necessarily fixed, and the line formed by the human body and the array type infrared sensor module is formed by the left line L1 of the maximum angle of view.
  • the angle may also be the angle formed by the connection between the human body and the array type infrared sensor module and the continuous L4 on the right side of the maximum viewing angle, or the vertical line defined by the human body and the array type infrared sensor module and the vertical line of the air conditioner wall. angle.
  • the position of the human body in the room can be determined by measuring the positional parameters of the human body in the up and down direction and the positional parameters of the human body in the left and right direction by the above array type infrared sensor module.
  • the position of the human body in the room is determined, and according to the operating speed value of the air conditioner and the ambient temperature value, the air temperature value near the human body in the cooling mode can be determined.
  • the deviation between the air temperature value and the ambient temperature value near the human body is greater; when the position of the human body is farther away from the position where the air conditioner is located, the human body is nearby. The smaller the deviation between the air temperature value and the ambient temperature value.
  • the air speed value of the air conditioner is higher, the deviation between the air temperature value and the ambient temperature value near the human body is smaller; when the air speed value of the air conditioner is lower, the deviation between the air temperature value and the ambient temperature value near the human body is larger.
  • the space in the room may be divided into several areas according to the position of the human body in the room.
  • the area in the room is divided into five areas from A to E, wherein the C area is relatively close.
  • the operating wind speed value of the air conditioner is divided into several grades F from small to large, and each wind speed grade has a corresponding running wind speed value.
  • the air temperature value in the vicinity of the human body can be determined according to the relationship between the room division area and the level of the running wind speed and the air temperature value in the vicinity of the human body. E.g:
  • the air temperature value of the C area of the human body relatively close to the position of the air conditioner is different from the ambient temperature value.
  • the largest, while the other A, B, D, E area air temperature value and the ambient temperature value difference is the smallest.
  • the air temperature value near the human body can be obtained according to the relationship in the above table.
  • the air temperature in the heating mode determines the new influence on the air temperature in the vicinity of the human body.
  • the running wind speed value is sensitive to the hot air feeling in the heating mode than the cold air feeling in the cooling mode, and the difference in the hot air wind speed of different sizes is obvious, so it is not suitable to adopt a fixed calculation rule according to the ambient temperature value T1.
  • the wind speed is divided into 100 levels according to the wind speed, and the 100 levels are divided into 10 sections, and each section adopts different calculation rules:
  • Ta is the air temperature value near the human body
  • T1 is the ambient temperature value
  • c1, c2, c3, c4, c5, and c6 are positive values and are not equal to each other.
  • Step S30 obtaining a first heat dissipation amount of the human body according to a difference between the surface temperature value of the human body and a radiation temperature in the room, and obtaining a second heat dissipation amount of the human body according to the air temperature value near the human body, according to the first body of the human body
  • the heat dissipation amount and the second heat dissipation amount obtain the heat dissipation amount of the human body.
  • the amount of heat generated by the human body is basically equal to the amount of heat consumed by the human body. Therefore, the heat dissipation of the human body can be obtained by measuring the heat consumed by the human body.
  • the heat consumed by the human body can be calculated by the following formula:
  • H1 is the first heat dissipation of the human body, mainly related to Tcl and Tax
  • Tcl is the temperature value of the human body surface
  • Tax is the radiation temperature value
  • is the additional calculation coefficient.
  • the human metabolic rate Mh is related to the age of the human being, and different age groups such as the elderly and the youth are different.
  • A1 and A2 are the fixed calculation coefficients introduced, which can be obtained experimentally.
  • the total heat dissipation amount H of the human body is obtained by re-summation.
  • step S40 according to the heat dissipation amount of the human body, the state of cold and heat of the human body is obtained.
  • the cold and hot state of the human body can be reflected by specific different values, as shown in the following table:
  • the size of the thermal and thermal state value M is divided into eight intervals, which respectively represent The human body has different thermal comfort feelings, in which the interval 5 is a slightly cool comfort and the interval 6 is a slightly warmer comfort.
  • the amount of heat dissipated by the human body reflects the state of cold and heat of the human body, which is different through the development process of the pre-air conditioner.
  • the user's hot and cold feelings are tested for experience, and based on the calculated heat dissipation values under different cold and heat sensations, the relationship between the two can be obtained by fitting the formula, such as the thermal state value M and the heat dissipation amount H.
  • the relationship can be expressed as follows:
  • n is a positive value
  • the value is determined according to a specific fitting formula between the H and M data sets, such as N.
  • the value is 4.
  • the thermal sensitivity value M of the human body and the heat dissipation amount H in the above formula when the heat dissipation value H of the human body is calculated, the thermal and thermal state value M of the human body is obtained by substituting the above formula.
  • the above fitting formula is only used to indicate that there is a certain relationship between the thermal sensation value of the human body and the heat dissipation amount, and does not limit the scope of the present invention.
  • the H and M data sets can also be based on other fittings. Method fitting to obtain other fitting formulas.
  • Step S50 controlling the operation of the air conditioner according to the state of the thermal sensation.
  • the operating parameters of the air conditioner are controlled to change the state of the cold and hot state of the human body to a comfortable interval
  • the operating parameters of the air conditioner include one of a set temperature, a running wind speed, and a wind guiding strip state.
  • the current thermal and thermal state value of the human body is 2.5 in the interval 1, that is, the feeling of being hot
  • the current air conditioner setting temperature is lowered by the set temperature of the automatic air conditioner to make the environment in the room The temperature is lowered, so that the value of the person's cold and hot state is gradually reduced, and finally kept in the interval 4, so that the state of the human body is changed to a comfortable state.
  • the first heat dissipation amount of the human body is obtained by acquiring the temperature of the surface of the human body and the radiation temperature value in the room, and the second heat dissipation amount of the human body is obtained by detecting the air temperature value in the vicinity of the human body, according to the human body.
  • the first heat dissipation amount and the second heat dissipation amount of the human body obtain the heat dissipation value of the human body, and further obtain the current state of the cold and heat state of the human body according to the heat dissipation amount of the human body, and the state of the cold heat state obtained by the method is accurate.
  • FIG. 7 is a schematic flowchart diagram of a method for controlling an air conditioner according to a fifth embodiment of the present invention. Based on the fourth embodiment of the air conditioning control method of the present invention, in the embodiment, in the above step S40 It also includes:
  • step S401 when the air conditioner is in the cooling mode, the ambient temperature value is detected, and the thermal sensation state value is corrected according to the temperature value.
  • the cooling and heat state value of the human body is calculated according to the heat dissipation amount, if the air conditioner operates the cooling mode, the state of the cold and heat state can be further corrected according to the detected ambient temperature value.
  • the M value of the thermal sensation state value may be modified differently according to different temperature intervals, such as:
  • the specific correction value can be as follows:
  • the value of the thermal and thermal state value M can define upper and lower limits, such as:
  • the ambient temperature value is detected, and the thermal sensation state value is corrected according to the ambient temperature value, thereby further ensuring the current thermal sensation of the user reflected by the thermal sensation state value.
  • the state is closer to the user's current hot and cold feeling, so that it is more accurate to control the air conditioner to adjust the operating parameters according to the state of the cold and hot state, thereby further improving the user's comfort experience.
  • FIG 11 is a schematic diagram of functional modules of a fourth embodiment of an air conditioner of the present invention.
  • the air conditioner includes:
  • the temperature detecting module 10 acquires a radiation temperature value in the room and a temperature value of the surface of the human body;
  • the air temperature detecting module 20 is configured to detect an air temperature value in the vicinity of the human body
  • the thermal sensation acquiring module 30 is configured to obtain a first heat dissipation amount of the human body according to a difference between a surface temperature value of the human body and a radiation temperature in the room, and obtain a second heat dissipation amount of the human body according to an air temperature value in the vicinity of the human body, according to the first
  • the heat dissipation amount and the second heat dissipation amount obtain the heat dissipation amount of the human body, and the cold and heat state of the human body is obtained according to the heat dissipation amount of the human body;
  • the control module 40 controls the operation of the air conditioner according to the state of the thermal sensation.
  • the temperature of the surface of the human body is the temperature value of the body surface
  • the radiation temperature is the temperature at which the surface of the environment acts on the human body.
  • the radiant temperature is the temperature value of the surrounding environment in the room such as the surrounding wall, window, etc., which can be measured by the sensor with the function of measuring the thermal image.
  • the infrared sensor can obtain a thermal image when scanning the human body or the surrounding environment, as shown in FIG. 5, the thermal image can be obtained by array arrangement.
  • the small area is the temperature value of one of the pixels. As shown in Fig.
  • the color depth of each pixel indicates that the temperature value is different, and the specific temperature value of each pixel can be read.
  • the thermal infrared sensor scans the human body, it will also get a thermal image of a certain area. Because the temperature of each part of the human body surface is different, it is reflected that the corresponding thermal image is different. Therefore, when measuring the temperature of the human body surface, it can be measured.
  • the human body obtains the average of the temperature points of all the pixels of the thermal image, that is, the average temperature value of the human body surface represents the surface temperature value of the human body.
  • Measuring the radiation temperature in the room is to scan the thermal image formed by the surrounding area such as the wall, the ceiling and the window in the room by the infrared sensor, remove the thermal image portion of the human body, and read the temperature value of each pixel of the remaining part of the thermal image.
  • the average value of the radiant temperature in the room is obtained by averaging, that is, the average radiant temperature value in the room indicates the radiant temperature value in the room.
  • the ambient temperature value can be detected by the air conditioner, which is generally detected by a temperature sensor installed on the air conditioner.
  • the air conditioner In order to obtain the air temperature value in the vicinity of the human body in the room according to the ambient temperature value detected by the air conditioner, it is necessary to combine the air conditioner.
  • the specific cooling and heating operation state is considered, because the wind speed of the cooling and heating air supply has different effects on the air temperature in the vicinity of the human body, and the air supply in the cooling mode is different to the human body in different positions in the room.
  • the air temperature has a great influence. When the air is supplied, the influence of the human body in the room is very small. In order to obtain the air temperature near the human body, it is necessary to specifically consider the different factors influencing the cooling and heating mode of the air conditioner.
  • the position of the human body is detected, the wind speed value and the ambient temperature value of the air conditioner are detected, and the air temperature value near the human body is obtained according to the position of the human body, the wind speed value of the air conditioner, and the ambient temperature value.
  • the position of the detection person in the left and right direction by the infrared sensor mounted on the air conditioner and the position angle of the person and the infrared sensor in the up and down direction are used to determine the position of the human body. position.
  • the position of the human body in the room can be obtained.
  • the position of the human body in the room based on the measured value of the array type infrared sensor module can be determined by two parameters, one is based on the array type infrared sensor module measured in the up and down direction
  • the positional parameter of the human body is measured in the left and right direction based on the array type infrared sensor module.
  • FIG. 5 is a schematic diagram of the positional parameter of the array type infrared sensor module for measuring the human body in the up and down direction.
  • 1 is an air conditioner
  • 2 is an array type infrared sensor module installed on the air conditioner
  • 3 is a position of the human body.
  • the array type infrared sensor module can detect the angle between the connection between the up and down direction and the human body position and the wall surface fixed by the air conditioner in which the array type infrared sensor module is installed, that is,
  • the angle ⁇ between the line L of the array type infrared sensor module and the human body position and the line H parallel to the wall surface of the fixed air conditioner is also a fixed value because the installation height of the air conditioner is the H in the figure.
  • the value can be obtained by the user inputting the height of the air conditioner after installation into the control interface of the air conditioner, or can be roughly estimated, so that the value of the angle ⁇ can be calculated by the trigonometric function formula.
  • Figure 8 is a schematic diagram showing the positional parameters of the human body in the left and right direction of the array type infrared sensor module.
  • 1 is an air conditioner
  • 2 is an array type infrared sensor module mounted on the air conditioner
  • 3 is a human body
  • 4 is The walls around the room
  • A1 and A2 are the different locations where the human body is located.
  • the maximum viewing angle of the array type infrared sensor module that can scan and detect the surrounding environment and objects in the left and right direction is fixed, as shown by the L1 and L4 lines in the figure.
  • the angle b3 is the maximum angle of view of the array type infrared sensor module in the left and right direction to detect the surrounding environment and objects.
  • the array type infrared sensor module When people are in different positions in the room, as shown in the figure A1 and A2, they are at the maximum angle of view.
  • the position of the range in the left-right direction can be detected by the array type infrared sensor module. Since the L1 and L4 lines are fixed, the line between the human body and the array type infrared sensor module and the angle between the two sides can be detected.
  • the size of the angle b1 between the human body and the array type infrared sensor module and the connection angle L2 and L1 can be detected; When located at the A2 point position, the size of the angle b2 between the human body and the array type infrared sensor module and the connection angle L3 and L1 can be detected.
  • the position of the human body in the left and right direction of the array type infrared sensor module can be determined by the angles of the angles b1 and b2.
  • the angle is not necessarily fixed by the human body and the array type infrared sensor module.
  • the angle formed by the line L1 may also be the angle formed by the line defined by the human body and the array type infrared sensor module and the continuous L4 of the right view angle, or the line defined by the human body and the array type infrared sensor module and the wall of the air conditioner. The angle determined by the line.
  • the position of the human body in the room can be determined by measuring the positional parameters of the human body in the up and down direction and the positional parameters of the human body in the left and right direction by the above array type infrared sensor module.
  • the position of the human body in the room is determined, and according to the operating speed value of the air conditioner and the ambient temperature value, the air temperature value near the human body in the cooling mode can be determined.
  • the deviation between the air temperature value and the ambient temperature value near the human body is greater; when the position of the human body is farther away from the position where the air conditioner is located, the human body is nearby. The smaller the deviation between the air temperature value and the ambient temperature value.
  • the air speed value of the air conditioner is higher, the deviation between the air temperature value and the ambient temperature value near the human body is smaller; when the air speed value of the air conditioner is lower, the deviation between the air temperature value and the ambient temperature value near the human body is larger.
  • the space in the room may be divided into several areas according to the position of the human body in the room.
  • the area in the room is divided into five areas from A to E, wherein the C area is relatively close.
  • the operating wind speed value of the air conditioner is divided into several grades F from small to large, and each wind speed grade has a corresponding running wind speed value.
  • the air temperature value in the vicinity of the human body can be determined according to the relationship between the room division area and the level of the running wind speed and the air temperature value in the vicinity of the human body. E.g:
  • the air temperature value of the C area of the human body relatively close to the position of the air conditioner is different from the ambient temperature value.
  • the largest, while the other A, B, D, E area air temperature value and the ambient temperature value difference is the smallest.
  • the air temperature value near the human body can be obtained according to the relationship in the above table.
  • the air temperature in the heating mode determines the new influence on the air temperature in the vicinity of the human body.
  • the running wind speed value is sensitive to the hot air feeling in the heating mode than the cold air feeling in the cooling mode, and the difference in the hot air wind speed of different sizes is obvious, so it is not suitable to adopt a fixed calculation rule according to the ambient temperature value T1.
  • the wind speed is divided into 100 levels according to the wind speed, and the 100 levels are divided into 10 sections, and each section adopts different calculation rules:
  • Ta is the air temperature value near the human body
  • T1 is the ambient temperature value
  • c1, c2, c3, c4, c5, and c6 are positive values and are not equal to each other.
  • the amount of heat generated by the human body is basically equal to the amount of heat consumed by the human body. Therefore, the heat dissipation of the human body can be obtained by measuring the heat consumed by the human body.
  • the heat consumed by the human body can be calculated by the following formula:
  • H1 is the first heat dissipation of the human body, mainly related to Tcl and Tax
  • Tcl is the temperature value of the human body surface
  • Tax is the radiation temperature value
  • is the additional calculation coefficient.
  • the air temperature value Ta is related, wherein the human metabolic rate Mh is related to the age of the person, and different age groups such as the elderly and the young are different, and A1 and A2 are fixed calculation coefficients introduced, which can be obtained through experiments.
  • the total heat dissipation amount H of the human body is obtained by re-summation.
  • the cold and hot state of the human body can be reflected by specific different values, as shown in the following table:
  • the size of the thermal and thermal state value M is divided into eight sections, which respectively represent different thermal comfort feelings of the human body, wherein the interval 5 is a slightly cool comfort, and the interval 6 is a slightly warm comfort.
  • the amount of heat dissipated by the human body reflects the state of cold and heat of the human body, which is different through the development process of the pre-air conditioner.
  • the user's hot and cold feelings are tested for experience, and based on the calculated heat dissipation values under different cold and heat sensations, the relationship between the two can be obtained by fitting the formula, such as the thermal state value M and the heat dissipation amount H.
  • the relationship can be expressed as follows:
  • n is a positive value
  • the value is based on the formation of the specific H and M data sets.
  • the formula determines that N can take a value of 4.
  • the thermal sensitivity value M of the human body and the heat dissipation amount H in the above formula when the heat dissipation value H of the human body is calculated, the thermal and thermal state value M of the human body is obtained by substituting the above formula.
  • the above fitting formula is only used to indicate that there is a certain relationship between the thermal sensation value of the human body and the heat dissipation amount, and does not limit the scope of the present invention.
  • the H and M data sets can also be based on other fittings. Method fitting to obtain other fitting formulas.
  • the operating parameters of the air conditioner are controlled to change the state of the cold and hot state of the human body to a comfortable interval
  • the operating parameters of the air conditioner include one of a set temperature, a running wind speed, and a wind guiding strip state.
  • the current thermal and thermal state value of the human body is 2.5 in the interval 1, that is, the feeling of being hot
  • the current air conditioner setting temperature is lowered by the set temperature of the automatic air conditioner to make the environment in the room The temperature is lowered, so that the value of the person's cold and hot state is gradually reduced, and finally kept in the interval 4, so that the state of the human body is changed to a comfortable state.
  • the first heat dissipation amount of the human body is obtained by acquiring the temperature of the surface of the human body and the radiation temperature value in the room, and the second heat dissipation amount of the human body is obtained by detecting the air temperature value in the vicinity of the human body, according to the human body.
  • the first heat dissipation amount and the second heat dissipation amount of the human body obtain the heat dissipation value of the human body, and further obtain the current thermal and thermal state value of the human body according to the heat dissipation amount of the human body, and the accuracy of the state of the cold heat state obtained by the manner High, and further correct the state of cold and heat according to the cooling or heating mode of the air conditioner after obtaining the state of the cold and heat state, so that the state of the cold and hot state of the human body is more accurately adapted to the current temperature environment of the air conditioner.
  • the operating parameters of the air conditioner are automatically adjusted by the current state of the cold and hot state of the human body, so that the human body is in a comfortable state, and the uncomfortable feeling of supercooling or overheating caused by the user manually adjusting the operating parameters of the air conditioner is solved.
  • the temperature acquisition module 20 is used for:
  • the air conditioner After obtaining the thermal sensation state of the human body according to the amount of heat dissipated by the human body, if the air conditioner operates the cooling mode, the ambient temperature value is detected, and the thermal sensation state value is corrected according to the temperature value.
  • the value of the thermal sensation state can be further corrected based on the detected ambient temperature value.
  • the air conditioner detects the ambient temperature value T1, and corrects the thermal sensation state value M according to the value of the ambient temperature value T1. For example, it can be corrected by a formula, such as:
  • the M value of the thermal sensation state value may be modified differently according to different temperature intervals, such as:
  • the specific correction value can be as follows:
  • the value of the thermal and thermal state value M can define upper and lower limits, such as:
  • the ambient temperature value is detected, and the thermal sensation state is corrected according to the temperature value, thereby further ensuring that the current thermal sensation state of the user reflected by the thermal sensation state value is closer.
  • the current hot and cold feeling of the user makes the subsequent adjustment of the air conditioner according to the state of the cold and hot state more accurate, further enhancing the user's comfort experience.
  • the first heat dissipation amount of the human body is obtained by acquiring the difference between the temperature of the surface of the human body and the radiation temperature value in the room, and the second heat dissipation amount of the human body is obtained by the air temperature value near the human body, and passes through the human body.
  • the first heat dissipation amount and the second heat dissipation amount of the human body obtain the heat dissipation value of the human body, and further obtain the current state of the cold and heat state of the human body according to the heat dissipation amount of the human body, and the effect of the temperature value near the human body is considered,
  • the accuracy of the state of the cold and hot state obtained by the method is high, and the state of the cold and hot state is corrected according to the cooling mode of the air conditioner after the state of the cold and hot state is obtained, so that the state of the cold and hot state of the human body is more accurately adapted to
  • the current air conditioner operates in different temperature environments, and finally adjusts the operating parameters of the air conditioner automatically through the current state of the cold and hot state of the human body, so that the human body is in a comfortable state, and solves the problem of excessive cooling caused by the user manually adjusting the operating parameters of the air conditioner or Overheating discomfort.
  • Figure 12 is a flow chart showing a method of controlling an air conditioner according to a seventh embodiment of the present invention. As shown in FIG. 12, the air conditioner control method of the embodiment of the present invention includes the following steps:
  • step S10 the radiation temperature value in the room and the temperature value on the surface of the human body are obtained.
  • the temperature of the surface of the human body is the temperature value of the body surface
  • the radiation temperature is the temperature at which the surface of the environment acts on the human body.
  • the radiant temperature is the temperature value of the surrounding environment in the room such as the surrounding wall, window, etc., which can be measured by the sensor with the function of measuring the thermal image.
  • the infrared sensor can obtain a thermal image when scanning the human body or the surrounding environment, as shown in FIG. 5, the thermal image can obtain the temperature of each small area, that is, one of the pixels, by array arrangement. Value, the color depth of each pixel indicates the difference in temperature value, and can read the specific temperature value of each pixel.
  • the thermal infrared sensor scans the human body, it will also get a thermal image of a certain area. Because the temperature of each part of the human body surface is different, it is reflected that the corresponding thermal image is different. Therefore, when measuring the temperature of the human body surface, it can be measured.
  • the human body obtains the average of the temperature points of all the pixels of the thermal image, that is, the average temperature value of the human body surface represents the surface temperature value of the human body.
  • Measuring the radiation temperature in the room is to scan the thermal image formed by the surrounding area such as the wall, the ceiling and the window in the room by the infrared sensor, remove the thermal image portion of the human body, and read the temperature value of each pixel of the remaining part of the thermal image. Take the average to get the room
  • the value of the radiant temperature in the room that is, the average radiant temperature value in the room, represents the radiant temperature value in the room.
  • step S20 the position of the human body and the running wind speed value at the position are obtained.
  • the position of the human body in the room can be obtained.
  • the position of the human body in the room based on the arrayed infrared sensor module can be determined by two parameters: one is based on the array type infrared sensor module to measure the positional parameters of the human body in the up and down direction; the other is based on the array type infrared sensor module
  • the positional parameters of the human body are measured in the left and right direction.
  • FIG. 8 is a schematic diagram of the positional parameter of the array type infrared sensor module for measuring the human body in the up and down direction.
  • 1 is an air conditioner
  • 2 is an array type infrared sensor module installed on the air conditioner
  • 3 is a position of the human body.
  • the array type infrared sensor module can detect the angle between the connection between the up and down direction and the human body position and the wall surface fixed by the air conditioner in which the array type infrared sensor module is installed, that is,
  • the angle ⁇ between the line L of the array type infrared sensor module and the human body position and the line H parallel to the wall surface of the fixed air conditioner is also a fixed value because the installation height of the air conditioner is the H in the figure.
  • the value can be obtained by the user inputting the height of the air conditioner after installation into the control interface of the air conditioner, or can be roughly estimated, so that the value of the angle ⁇ can be calculated by the trigonometric function formula.
  • Figure 9 is a schematic diagram showing the positional parameters of the human body in the left and right direction of the array type infrared sensor module.
  • 1 is an air conditioner
  • 2 is an array type infrared sensor module mounted on the air conditioner
  • 3 is a human body
  • 4 is The walls around the room
  • A1 and A2 are the different locations where the human body is located.
  • the maximum viewing angle of the array type infrared sensor module that can scan and detect the surrounding environment and objects in the left and right direction is fixed, as shown by the L1 and L4 lines in the figure.
  • the angle b3 is the maximum angle of view of the array type infrared sensor module in the left and right direction to detect the surrounding environment and objects.
  • the position of the range in the left and right direction can be detected by the array type infrared sensor module, since the L1 and L4 lines are fixed, the human body and the array
  • the angle between the line determined by the column type infrared sensor module and the two sides can be detected.
  • the angle between the human body and the array type infrared sensor module is L1 and L1.
  • the size can be detected; when the human body is located at the A2 point position, the size of the angle b2 between the human body and the array type infrared sensor module L3 and L1 can be detected.
  • the position of the human body in the left-right direction of the array type infrared sensor module can be determined by the angles of the angles b1 and b2.
  • the angle is not necessarily fixed, and the line formed by the human body and the array type infrared sensor module is formed by the left line L1 of the maximum angle of view.
  • the angle may also be the angle formed by the connection between the human body and the array type infrared sensor module and the continuous L4 on the right side of the maximum viewing angle, or the vertical line defined by the human body and the array type infrared sensor module and the vertical line of the air conditioner wall. angle.
  • the position of the human body in the room can be determined by measuring the positional parameters of the human body in the up and down direction and the positional parameters of the human body in the left and right direction by the above array type infrared sensor module. Then, according to the position of the human body in the room and the running speed of the air conditioner, the running wind speed value of the position of the human body is determined.
  • the human body Since the person is in a different position from the air conditioner in the room, the air supply effect of the air conditioner is different. Therefore, by determining the area where the human body is located in the room and then obtaining the running wind speed value of the air conditioner, the human body can be finally determined. The operating wind speed value at the location. According to the experiment, when the position of the human body is closer to the position where the air conditioner is located, the difference between the running wind speed of the position of the human body and the running wind speed of the air conditioner is smaller; when the position of the human body is farther away from the air conditioner When facing the position, the difference between the running wind speed of the position where the human body is located and the operating wind speed of the air conditioner is greater.
  • determining the operating wind speed value of the location of the human body may include the following steps:
  • Step S1 dividing the air blowing area of the air conditioner into a plurality of sub-areas in advance;
  • the area in the room can be divided into 5 sub-areas from A to E, wherein the C area is an area relatively close to the position of the air conditioner.
  • Step S2 obtaining an operating wind speed of the air conditioner
  • the operating wind speed value of the air conditioner can be divided into several grades according to the wind speed gear position of the air conditioner. For example, the operating wind speed of the air conditioner is divided into 100 gears from small to large, 1 is the minimum gear, and 100 is the highest gear.
  • the bit value is the value of V2.
  • Step S3 acquiring a sub-area to which the human body is located
  • the human body is located in which sub-area the human body is located, that is, the sub-area to which the human body is located. For example, if the human body is in the right position of the air conditioner, the human body is located in the C area.
  • Step S4 determining an operating wind speed value of the position of the human body according to the running wind speed of the air conditioner and the sub-area to which the human body is located.
  • the running wind speed value V1 when the human body is located in different regions can be determined, for example, the running wind speed value of the air conditioner is the wind speed gear value V2.
  • the operating wind speed value of different regions obtained according to the location of the person is also the gear value of the wind speed, expressed by V1, and the specific relationship is as follows:
  • the C area is the area closest to the position of the air conditioner.
  • the running wind speed value is the largest, and the A, B, D, and E areas are far away from the air conditioner.
  • the running wind speed value is relatively reduced.
  • step S30 the heat dissipation amount of the human body is obtained according to the difference between the surface temperature value of the human body and the radiation temperature in the room and the running wind speed value at the position of the human body.
  • the amount of heat generated by the human body is basically equal to the amount of heat consumed by the human body. Therefore, by measuring the amount of heat consumed by the human body, the amount of heat dissipated by the human body can be obtained.
  • the heat can be calculated by the following formula:
  • H is the heat dissipation of the human body
  • Tcl is the temperature value of the human body surface
  • Ta is the radiation temperature value
  • is the additional calculation coefficient.
  • These calculation coefficients are some general calculation coefficients in the field of human thermal comfort research, such as considering the surrounding environment effectively.
  • the radiation area factor f_eff, the dressed human body area factor f_cl, ⁇ f_eff*f_cl
  • V is the wind speed value of the position of the human body
  • X is a calculation constant associated with the wind speed value V. This constant is determined experimentally and can be determined at this time.
  • the heat dissipation amount H of the human body is obtained by calculating the difference between the temperature value Tcl of the human body surface and the radiant temperature Ta and the wind speed value V at the position of the human body in combination with the calculation coefficient ⁇ .
  • Step S40 obtaining a thermal sensation state of the human body according to the heat dissipation amount of the human body.
  • the cold and hot state of the human body can be reflected by specific different values, as shown in the following table:
  • the size of the thermal and thermal state value M is divided into eight sections, which respectively represent different thermal comfort feelings of the human body.
  • the amount of heat dissipated by the human body reflects the hot and cold sensation of the human body.
  • the relationship between the two can be obtained by fitting the formula.
  • the relationship between the thermal sensation state value M and the heat dissipation amount H can be expressed as follows:
  • n is a positive value
  • the value is determined according to a specific fitting formula between the H and M data sets, such as N.
  • the value is 4.
  • the thermal sensitivity value M of the human body and the heat dissipation amount H in the above formula when the heat dissipation value H of the human body is calculated, the thermal and thermal state value M of the human body is obtained by substituting the above formula.
  • the above fitting formula is only used to indicate that there is a certain relationship between the thermal sensation value of the human body and the heat dissipation amount, and does not limit the scope of the present invention.
  • the H and M data sets can also be based on other fittings. Method fitting to obtain other fitting formulas.
  • Step S50 controlling the operation of the air conditioner according to the state of the thermal sensation.
  • the operating parameters of the air conditioner are controlled to change the state of the cold and hot state of the human body to a comfortable interval
  • the operating parameters of the air conditioner include one of a set temperature, a running wind speed, and a wind guiding strip state.
  • the current thermal and thermal state value of the human body is 2.5 in the interval 1, that is, the feeling of being hot
  • the current air conditioner setting temperature is lowered by the set temperature of the automatic air conditioner to make the environment in the room The temperature is lowered, so that the value of the person's cold and hot state is gradually reduced, and finally kept in the interval 4, so that the state of the human body is changed to a comfortable state.
  • the heat dissipation value of the human body is obtained by acquiring the temperature of the surface of the human body and the radiation temperature value in the room, and further obtaining the current thermal and thermal state value of the human body according to the heat dissipation amount of the human body.
  • the accuracy of the state of the cold and hot state obtained by the method is high, and further, after obtaining the state of the cold and heat state, the state of the cold and hot state is corrected according to the cooling or heating mode of the air conditioner operation, so that the state of the cold and hot state of the human body is more Accurately adapt to the current temperature environment of the air conditioner, and finally adjust the operating parameters of the air conditioner automatically through the current state of the cold and hot state of the human body, so that the human body is in a comfortable state, and the user's manual adjustment of the operating parameters of the air conditioner is solved. Too cold or overheated discomfort.
  • Figure 13 is a schematic diagram of the functional modules of the seventh embodiment of the air conditioner of the present invention.
  • the air conditioner includes:
  • the temperature detecting module 10 acquires a radiation temperature value in the room and a temperature value of the surface of the human body;
  • the human body position detecting module 20 is configured to detect a position of the human body
  • the wind speed obtaining module 30 is configured to acquire an operating wind speed value of the position where the human body is located;
  • the thermal sensation acquiring module 40 is configured to obtain the heat dissipation amount of the human body according to the difference between the surface temperature value of the human body and the radiation temperature in the room and the running wind speed value at the position of the human body, and further obtain the cold and hot feeling of the human body according to the heat dissipation amount. status;
  • the control module 50 controls the operation of the air conditioner according to the state of the thermal sensation.
  • the temperature of the surface of the human body is the temperature value of the body surface
  • the radiation temperature is the average temperature of the surface of the environment to the human body.
  • the radiation temperature is the surrounding environment in the room.
  • the color depth of each pixel indicates the temperature value thereof.
  • the height is different and the specific temperature value of each pixel can be read.
  • the thermal infrared sensor scans the human body, it will also get a thermal image of a certain area. Because the temperature of each part of the human body surface is different, it is reflected that the corresponding thermal image is different. Therefore, when measuring the temperature of the human body surface, it can be measured.
  • the human body obtains the average of the temperature points of all the pixels of the thermal image, and the average value represents the average temperature value of the human body, that is, the average temperature value of the human body surface represents the surface temperature value of the human body.
  • Measuring the radiation temperature in the room is to scan the thermal image formed by the surrounding area such as the wall, the ceiling and the window in the room by the infrared sensor, remove the thermal image portion of the human body, and read the temperature value of each pixel of the remaining part of the thermal image.
  • the radiance in the room is obtained by averaging, ie the average radiant temperature value in the room represents the radiant temperature value in the room.
  • the position of the human body in the room can be obtained.
  • the position of the human body in the room based on the arrayed infrared sensor module can be determined by two parameters: one is based on the array type infrared sensor module to measure the positional parameters of the human body in the up and down direction; the other is based on the array type infrared sensor module
  • the positional parameters of the human body are measured in the left and right direction.
  • FIG. 8 is a schematic diagram of the positional parameter of the array type infrared sensor module for measuring the human body in the up and down direction.
  • 1 is an air conditioner
  • 2 is an array type infrared sensor module installed on the air conditioner
  • 3 is a position of the human body.
  • the array type infrared sensor module can detect the angle between the connection between the up and down direction and the human body position and the wall surface fixed by the air conditioner in which the array type infrared sensor module is installed, that is,
  • the angle ⁇ between the line L of the array type infrared sensor module and the human body position and the line H parallel to the wall surface of the fixed air conditioner is also a fixed value because the installation height of the air conditioner is the H in the figure.
  • the value can be obtained by the user inputting the height of the air conditioner after installation into the control interface of the air conditioner, or can be roughly estimated, so that the value of the angle ⁇ can be calculated by the trigonometric function formula.
  • Figure 9 is a schematic diagram showing the positional parameters of the human body in the left and right direction of the array type infrared sensor module.
  • 1 is an air conditioner
  • 2 is an array type infrared sensor module mounted on the air conditioner
  • 3 is a human body
  • 4 is The walls around the room
  • A1 and A2 are the different locations where the human body is located.
  • the maximum viewing angle of the array type infrared sensor module that can scan and detect the surrounding environment and objects in the left and right direction is fixed, as shown by the L1 and L4 lines in the figure.
  • the angle b3 is the maximum angle of view of the array type infrared sensor module in the left and right direction to detect the surrounding environment and objects.
  • the array type infrared sensor module When people are in different positions in the room, as shown in the figure A1 and A2, they are at the maximum angle of view.
  • the position of the range in the left-right direction can be detected by the array type infrared sensor module. Since the L1 and L4 lines are fixed, the line between the human body and the array type infrared sensor module and the angle between the two sides can be detected.
  • the human body is located at the A1 point position, the size of the angle b1 between the human body and the array type infrared sensor module and the connection angle L2 and L1 can be detected; Located at A2 At the point position, the size of the angle b2 between the line L3 and L1 determined by the human body and the array type infrared sensor module can be detected.
  • the position of the human body in the left-right direction of the array type infrared sensor module can be determined by the angles of the angles b1 and b2.
  • the angle is not necessarily fixed, and the line formed by the human body and the array type infrared sensor module is formed by the left line L1 of the maximum angle of view.
  • the angle may also be the angle formed by the connection between the human body and the array type infrared sensor module and the continuous L4 on the right side of the maximum viewing angle, or the vertical line defined by the human body and the array type infrared sensor module and the vertical line of the air conditioner wall. angle.
  • the position of the human body in the room can be determined by measuring the positional parameters of the human body in the up and down direction and the positional parameters of the human body in the left and right direction by the above array type infrared sensor module. Then, according to the position of the human body in the room and the running speed of the air conditioner, the running wind speed value of the position of the human body is determined.
  • the human body Since the person is in a different position from the air conditioner in the room, the air supply effect of the air conditioner is different. Therefore, by determining the area where the human body is located in the room and then obtaining the running wind speed value of the air conditioner, the human body can be finally determined. The operating wind speed value at the location. According to the experiment, when the position of the human body is closer to the position where the air conditioner is located, the difference between the running wind speed of the position of the human body and the running wind speed of the air conditioner is smaller; when the position of the human body is farther away from the air conditioner When facing the position, the difference between the running wind speed of the position where the human body is located and the operating wind speed of the air conditioner is greater.
  • determining the operating wind speed value of the location of the human body may include the following steps:
  • Step S1 dividing the air blowing area of the air conditioner into a plurality of sub-areas in advance;
  • the area in the room can be divided into 5 sub-areas from A to E, wherein the C area is an area relatively close to the position of the air conditioner.
  • Step S2 obtaining an operating wind speed of the air conditioner
  • the operating wind speed value of the air conditioner can be divided into several grades according to the wind speed gear position of the air conditioner. For example, the operating wind speed of the air conditioner is divided into 100 gears from small to large, 1 is the minimum gear, and 100 is the highest gear.
  • the bit value is the value of V2.
  • Step S3 acquiring a sub-area to which the human body is located
  • the human body is located in which sub-area the human body is located, that is, the sub-area to which the human body is located. For example, if the human body is in the right position of the air conditioner, the human body is located in the C area.
  • Step S4 determining an operating wind speed value of the position of the human body according to the running wind speed of the air conditioner and the sub-area to which the human body is located.
  • the running wind speed value V1 when the human body is located in different regions can be determined, for example, the running wind speed value of the air conditioner is the wind speed gear value V2.
  • the operating wind speed value of different regions obtained according to the location of the person is also the gear value of the wind speed, expressed by V1, and the specific relationship is as follows:
  • the C area is the area closest to the position of the air conditioner.
  • the running wind speed value is the largest, and the A, B, D, and E areas are far away from the air conditioner.
  • the running wind speed value is relatively reduced.
  • the amount of heat generated by the human body is basically equal to the amount of heat consumed by the human body. Therefore, the heat dissipation of the human body can be obtained by measuring the heat consumed by the human body.
  • the heat consumed by the human body can be calculated by the following formula:
  • H is the heat dissipation of the human body
  • Tcl is the temperature value of the human body surface
  • Ta is the radiation temperature value
  • is the additional calculation coefficient.
  • These calculation coefficients are some general calculation coefficients in the field of human thermal comfort research, such as considering the surrounding environment effectively.
  • the radiation area factor f_eff, the dressed human body area factor f_cl, ⁇ f_eff*f_cl
  • V is the wind speed value of the position of the human body
  • X is a calculation constant associated with the wind speed value V. This constant is determined experimentally and can be determined at this time.
  • the heat dissipation amount H of the human body is obtained by calculating the difference between the temperature value Tcl of the human body surface and the radiant temperature Ta and the wind speed value V at the position of the human body in combination with the calculation coefficient ⁇ .
  • the cold and hot state of the human body can be reflected by specific different values, as shown in the following table:
  • the size of the thermal and thermal state value M is divided into eight sections, which respectively represent different thermal comfort feelings of the human body.
  • the amount of heat dissipated by the human body reflects the state of cold and heat of the human body, which is different through the development process of the pre-air conditioner.
  • the user's hot and cold feelings are tested for experience, and based on the calculated heat dissipation values under different cold and heat sensations, the relationship between the two can be obtained by fitting the formula, such as the thermal state value M and the heat dissipation amount H.
  • the relationship can be expressed as follows:
  • n is a positive value
  • the value is based on the formation of the specific H and M data sets.
  • the formula determines that N can take a value of 4.
  • the thermal sensitivity value M of the human body and the heat dissipation amount H in the above formula when the heat dissipation value H of the human body is calculated, the thermal and thermal state value M of the human body is obtained by substituting the above formula.
  • the above fitting formula is only used to indicate that there is a certain relationship between the thermal sensation value of the human body and the heat dissipation amount, and does not limit the scope of the present invention.
  • the H and M data sets can also be based on other fittings. Method fitting to obtain other fitting formulas.
  • the operating parameters of the air conditioner are controlled to change the state of the cold and hot state of the human body to a comfortable interval
  • the operating parameters of the air conditioner include one of a set temperature, a running wind speed, and a wind guiding strip state.
  • the current thermal and thermal state value of the human body is 2.5 in the interval 1, that is, the feeling of being hot
  • the current air conditioner setting temperature is lowered by the set temperature of the automatic air conditioner to make the environment in the room The temperature is lowered, so that the value of the person's cold and hot state is gradually reduced, and finally kept in the interval 4, so that the state of the human body is changed to a comfortable state.
  • the heat dissipation value of the human body is obtained by acquiring the temperature of the surface of the human body and the radiation temperature value in the room, and further obtaining the current state of the thermal state of the human body according to the heat dissipation amount of the human body.
  • the obtained cold and hot state value is highly accurate, and further corrects the cold and hot state according to the cooling or heating mode of the air conditioner operation after obtaining the state of the cold and heat state, so that the state of the cold and hot state of the human body is more accurate.
  • FIG. 14 is a flow chart showing a method of controlling an air conditioner according to an eighth embodiment of the present invention. As shown in FIG. 14, the air conditioner control method of the embodiment of the present invention includes the following steps:
  • step S10 the radiation temperature value, the humidity, and the temperature value of the human body surface are obtained.
  • the temperature of the surface of the human body is the temperature value of the body surface
  • the radiation temperature is the temperature of the surface of the environment to the radiation of the human body
  • the humidity is the humidity value of the air in the room.
  • the radiation temperature is the surrounding environment in the room, such as the surrounding walls, windows, etc.
  • Temperature values for human radiation which can be read by sensors with the function of measuring thermal images, such as array-type infrared sensor modules, which generate thermal images when the infrared sensor scans the human body or the surrounding environment.
  • the thermal image can obtain the temperature value of each of the small areas, that is, one of the pixels, by the array arrangement.
  • the color depth of each pixel indicates the temperature value thereof.
  • the height is different and the specific temperature value of each pixel can be read.
  • the thermal infrared sensor scans the human body, it will also get a thermal image of a certain area. Because the temperature of each part of the human body surface is different, it is reflected that the corresponding thermal image is different. Therefore, when measuring the temperature of the human body surface, it can be measured.
  • the human body obtains the average of the temperature points of all the pixels of the thermal image, that is, the average temperature value of the human body surface represents the surface temperature value of the human body.
  • Measuring the radiation temperature in the room is to scan the thermal image formed by the surrounding area such as the wall, the ceiling and the window in the room by the infrared sensor, remove the thermal image portion of the human body, and read the temperature value of each pixel of the remaining part of the thermal image.
  • the average value of the radiant temperature in the room is obtained by averaging, that is, the average radiant temperature value in the room indicates the radiant temperature value in the room, and is not limited to the average value, and the humidity in the room can be directly detected by the humidity sensor.
  • Step S20 Calculate a heat dissipation amount of the human body according to a difference between the surface temperature value of the human body and a radiation temperature value in the room, and calculate a second heat dissipation amount of the human body according to the humidity.
  • the amount of heat generated by the human body is basically equal to the amount of heat consumed by the human body. Therefore, the heat dissipation of the human body can be obtained by measuring the heat consumed by the human body.
  • the heat consumed by the human body can be calculated by the following formula:
  • H1 is the first heat dissipation amount of the human body
  • Tcl is the temperature value of the human body surface
  • Ta is the radiation temperature value
  • is the additional calculation coefficient.
  • These calculation coefficients are some general calculation coefficients in the field of human thermal comfort research, such as considering the surrounding environment.
  • the temperature value Tcl and the temperature value Ta are previously valued, and the temperature value Tcl and the temperature value Ta are set.
  • the first heat dissipation amount of the corresponding human body can be obtained by looking up the table.
  • the heat dissipation of the surface of the human body is related to the humidity, and is also related to the surface temperature of the human body, and is set in advance or a coefficient a is set according to the experiment, and the coefficient a corresponds to the humidity conversion.
  • the coefficient of heat dissipation, after calculating the humidity, is directly converted into the second heat dissipation amount H2 of the human body according to the coefficient a.
  • H2 a1*(a2*tcl-b-RHa*Pa), where a1 , a2 and b are set constants, Pa is saturated water vapor partial pressure, and RHa is humidity.
  • Step S30 calculating a thermal sensation state of the human body according to the first heat dissipation amount and the second heat dissipation amount of the human body.
  • the cold and hot state of the human body can be reflected by specific different values, as shown in the following table:
  • the size of the thermal and thermal state value M is divided into eight sections, which respectively represent different thermal comfort feelings of the human body, wherein the interval 5 is a slightly cool comfort, and the interval 6 is a slightly warm comfort.
  • the heat dissipation amount of the human body is the sum of the first heat dissipation amount and the second heat dissipation amount, or a weight is set for the first and second heat dissipation amounts, and the heat dissipation amount of the human body is calculated according to the corresponding weight. Since the state of cold and heat of the human body is related to the heat consumed by the human body, and the heat consumed by the human body is equal to the amount of heat dissipated by the human body, the amount of heat dissipated by the human body reflects the state of cold and heat of the human body, which is different through the development process of the pre-air conditioner.
  • n is a positive value
  • the value is determined according to a specific fitting formula between the H and M data sets, such as N.
  • the value is 4.
  • the thermal sensitivity value M of the human body and the heat dissipation amount H in the above formula when the heat dissipation value H of the human body is calculated, the thermal and thermal state value M of the human body is obtained by substituting the above formula.
  • the above fitting formula is only used to indicate that there is a certain relationship between the thermal sensation value of the human body and the heat dissipation amount, and does not limit the scope of the present invention.
  • the H and M data sets can also be based on other fittings. Method fitting to obtain other fitting formulas.
  • Step S40 controlling the operation of the air conditioner according to the state of the thermal sensation.
  • the operating parameters of the air conditioner are controlled to change the state of the cold and hot state of the human body to a comfortable interval
  • the operating parameters of the air conditioner include one of a set temperature, a running wind speed, and a wind guiding strip state.
  • the current thermal and thermal state value of the human body is 2.5 in the interval 1, that is, the feeling of being hot
  • the current air conditioner setting temperature is lowered by the set temperature of the automatic air conditioner to make the environment in the room The temperature is lowered, so that the value of the person's cold and hot state is gradually reduced, and finally kept in the interval 4, so that the state of the human body is changed to a comfortable state.
  • the heat dissipation value of the human body is obtained by acquiring the temperature of the surface of the human body and the radiation temperature value and humidity in the room, and further obtaining the current state of the thermal state of the human body according to the heat dissipation amount of the human body,
  • the value of the thermal sensation state obtained by this method is highly accurate. Effectively avoid the current air conditioning control process, can not provide accurate user hot and cold state, according to this accurate hot and cold state to control air conditioning operation. Accurately provide the user's sense of cold and heat, thereby improving the accuracy of air conditioning control and improving the comfort of the air conditioner.
  • Air conditioners include a variety of operating modes, such as cooling or heating. In winter, the weather is cold and will run in heating mode. In summer, the weather is hot and will run in heating mode. In the cooling and heating state, the humidity in the room will be different and will vary with the operating conditions of the air conditioner in cooling or heating mode. In the preferred embodiment of the present invention, in the cooling mode, the step of acquiring humidity in the room includes:
  • Step S11 acquiring an area where the human body is located and a current wind file of the indoor fan
  • step S12 the humidity in the room is determined according to the preset relationship between the area where the human body is located and the wind file and the humidity.
  • FIG. 8 is a schematic diagram of the positional parameter of the array type infrared sensor module for measuring the human body in the up and down direction.
  • 1 is an air conditioner
  • 2 is an array type infrared sensor module installed on the air conditioner
  • 3 is a position of the human body.
  • the array type infrared sensor module can detect the angle between the connection between the up and down direction and the human body position and the wall surface fixed by the air conditioner in which the array type infrared sensor module is installed, that is,
  • the angle ⁇ between the line L of the array type infrared sensor module and the human body position and the line H parallel to the wall surface of the fixed air conditioner is also a fixed value because the installation height of the air conditioner is the H in the figure.
  • the value can be obtained by the user inputting the height of the air conditioner after installation into the control interface of the air conditioner, or can be roughly estimated, so that the value of the angle ⁇ can be calculated by the trigonometric function formula.
  • Figure 9 is a schematic diagram showing the positional parameters of the human body in the left and right direction of the array type infrared sensor module.
  • 1 is an air conditioner
  • 2 is an array type infrared sensor module mounted on the air conditioner
  • 3 is a human body
  • 4 is The walls around the room
  • A1 and A2 are the different locations where the human body is located.
  • the maximum viewing angle of the array type infrared sensor module that can scan and detect the surrounding environment and objects in the left and right direction is fixed, as shown by the L1 and L4 lines in the figure.
  • the angle b3 is the maximum angle of view of the array type infrared sensor module in the left and right direction to detect the surrounding environment and objects.
  • the array type infrared sensor module When people are in different positions in the room, as shown in the figure A1 and A2, they are at the maximum angle of view.
  • the position of the range in the left-right direction can be detected by the array type infrared sensor module. Since L1 and L4 are fixed, the line between the human body and the array type infrared sensor module and the angle between the two sides can be detected. If the human body is located at the A1 point position, the size of the angle b1 between the connection line L2 and L1 determined by the human body and the array type infrared sensor module can be detected, and the human body position is the same. At the A2 point position, the angle between the human body and the array type infrared sensor module is L3 and L1. The size can be detected.
  • the position of the human body in the left-right direction of the array type infrared sensor module can be determined by the angles of the angles b1 and b2.
  • the angle is not necessarily fixed, and the line formed by the human body and the array type infrared sensor module is formed by the left line L1 of the maximum angle of view.
  • the angle may also be the angle formed by the line defined by the human body and the array type infrared sensor module and the right line L2.
  • the above-mentioned array type infrared sensor module measures the positional parameter of the human body in the up and down direction and the positional parameter of the human body in the left and right direction to determine the position of the human body in the room. Since the scanning distance and the angle are fixed, it can be calculated. The specific location of the human body in the room. After determining the position of the human body in the room, and then determining the running wind speed value of the position of the human body according to the position of the human body in the room and the running speed of the air conditioner.
  • determining the operating wind speed value of the location of the human body may include the following steps:
  • the area in the room can be divided into 5 sub-areas from A to E, wherein the C area is an area relatively close to the position of the air conditioner.
  • the operating wind speed value of the air conditioner can be divided into several levels, that is, the wind speed level V2 value, and each wind speed level V2 has a corresponding running wind speed value.
  • This level can be the operating windshield of the air conditioner, such as high, medium and low gear. According to the operating windshield of the air conditioner, the operating wind speed value of the air conditioner can be obtained.
  • the human body is located in which sub-area the human body is located, that is, the sub-area to which the human body is located. For example, if the human body is in the right position of the air conditioner, the human body is located in the C area.
  • the running wind speed value of the position of the human body is determined.
  • the relationship can determine the running wind speed value V1 when the human body is in different areas, for example:
  • the difference between the running wind speed of the position of the human body and the running wind speed of the air conditioner is smaller; when the position of the human body is farther away from the air conditioner When facing the position, the difference between the running wind speed of the position where the human body is located and the operating wind speed of the air conditioner is greater.
  • the C area is the area closest to the position of the air conditioner.
  • the running wind speed value is the largest, and the A, B, D, and E areas are far away from the air conditioner.
  • the running wind speed value is relatively reduced.
  • the humidity in the air is the mapping table of the wind file, the area where the person is located and the humidity in the cooling mode.
  • the RH1 in the table is the set value.
  • the humidity in the vicinity of the human body is obtained by combining the wind gear and the area where the person is located in the heating mode, so that the acquired humidity is more accurate, thereby improving the accuracy of the human body's cold and hot state and improving the comfort of the air conditioner.
  • the step of acquiring the humidity in the room includes:
  • Step S13 acquiring a current wind file of the indoor fan
  • step S14 the humidity in the room is determined according to the preset relationship between the windshield and the humidity.
  • the humidity in the air will be affected by the different wind speeds, because the cooling capacity corresponds to different degrees of wind diffusing in the room, so the windshield is smaller, the humidity is smaller, the windshield The smaller the humidity, the greater the humidity.
  • the humidity in the room is obtained by combining the windshield in the cooling mode, so that the acquired humidity is more accurate, thereby improving the accuracy of the human body's cold and hot state and improving the comfort of the air conditioner.
  • FIG. 17 is a schematic flowchart diagram of a method for controlling an air conditioner according to another embodiment of the present invention.
  • the first embodiment of the air conditioning control method according to the present invention in the embodiment, in the above step S30 It also includes:
  • step S50 when the air conditioner is in the cooling mode, the ambient temperature value is detected, and the thermal sensation state value is corrected according to the temperature value.
  • the cooling and heat state value of the human body is calculated according to the heat dissipation amount, if the air conditioner operates the cooling mode, the state of the cold and heat state can be further corrected according to the detected ambient temperature value.
  • the M value of the thermal sensation state value may be modified differently according to different temperature intervals, such as:
  • the specific correction value can be as follows:
  • the value of the thermal state value M can define upper and lower limits, such as:
  • the ambient temperature value is detected, and the thermal sensation state value is corrected according to the ambient temperature value, thereby further ensuring the current thermal sensation of the user reflected by the thermal sensation state value.
  • the state is closer to the user's current hot and cold feeling, so that it is more accurate to control the air conditioner to adjust the operating parameters according to the state of the cold and hot state, thereby further improving the user's comfort experience.
  • FIG. 18 is a schematic flowchart diagram of a tenth embodiment of an air conditioning control method according to the present invention.
  • the method further includes:
  • the human body feels the hot air blown out by the air conditioner.
  • the cold air in the cooling state feels different.
  • it is also related to the hot air speed blown by the air conditioner.
  • the ambient temperature value it is necessary to combine the operating wind speed value of the air conditioner with the cold and hot state. The correction is performed, that is, the air temperature value near the human body is first obtained according to the ambient temperature value and the operating wind speed value of the air conditioner, and then the cold and hot state value is corrected according to the air temperature value near the human body.
  • the air temperature values near the human body are obtained as follows:
  • the ambient temperature value T1 detected by the air conditioner and divide it into different wind speed ranges according to the operating wind speed value of the air conditioner.
  • the hot air feel is more sensitive than the cold air feel in the cooling mode, and the difference between the different wind speeds is obvious. Therefore, it is not suitable to adopt a fixed calculation method to obtain the air temperature value near the human body according to the ambient temperature value T1.
  • the calculation is differentiated according to different wind speed intervals. For example, according to the operating wind speed value of the air conditioner, the wind speed is divided into 100 levels according to the wind speed, and the 100 levels are divided into 10 sections, and each section adopts different calculation rules:
  • Ta T1-c1 [11,30]
  • Ta T1-c2 [31,50]
  • Ta T1-c3 [51,70]
  • Ta T1-c4 [71,90]
  • Ta T1-c5 [91,100]
  • Ta T1-c6
  • Ta is the air temperature value near the human body
  • T1 is the ambient temperature value
  • c1, c2, c3, c4, c5, and c6 are positive values and are not equal to each other.
  • the cold and hot state value M of the human body is corrected according to the air temperature value in the vicinity of the human body, it may be divided into several different temperature intervals according to the air temperature value in the vicinity of the human body.
  • the thermal sensation state value M is corrected according to different temperature intervals, for example, the specific range value of the M value is defined by different temperature intervals to correct M:
  • c1 ⁇ c2 ⁇ c3, d1, d2, and d3 are different correction values, for example, the specific correction value may be as follows:
  • the value of the thermal state value M can define upper and lower limits, such as:
  • the air conditioner when the air conditioner operates in the heating mode, the room ambient temperature value and the air conditioner operating wind speed value are detected, according to the ambient temperature value and the running wind speed value. Obtaining the air temperature value near the human body, and finally correcting the cold and hot state value of the human body according to the air temperature value in the vicinity of the human body, so that the obtained cold and hot state value in the heating mode is closer to the human body's feeling of cold and hot feeling. Further, it is more accurate to control the air conditioner according to the state of the cold and heat sensation, thereby improving the user's comfortable experience.
  • the air conditioner control device includes: an acquisition module 10, a calculation module 20, and a control module 30,
  • the obtaining module 10 is configured to acquire a temperature value of the radiation in the room, a humidity, and a temperature value of the surface of the human body.
  • the temperature of the surface of the human body is the temperature value of the body surface
  • the radiation temperature is the temperature of the surface of the environment to the radiation of the human body
  • the humidity is the humidity value of the air in the room.
  • the radiant temperature is the temperature value of the surrounding environment in the room such as the surrounding wall, window, etc., which can be measured by the sensor with the function of measuring the thermal image.
  • the thermal image can obtain the temperature value of each of the small areas, that is, one of the pixels, by the array arrangement. As shown in FIG.
  • the color depth of each pixel indicates the temperature value thereof.
  • the height is different and the specific temperature value of each pixel can be read.
  • the thermal infrared sensor scans the human body, it will also get a thermal image of a certain area. Because the temperature of each part of the human body surface is different, it is reflected that the corresponding thermal image is different. Therefore, when measuring the temperature of the human body surface, it can be measured.
  • the human body obtains the average of the temperature points of all the pixels of the thermal image, that is, the average temperature value of the human body surface represents the surface temperature value of the human body.
  • Measuring the radiation temperature in the room is to scan the thermal image formed by the surrounding area such as the wall, the ceiling and the window in the room by the infrared sensor, remove the thermal image portion of the human body, and read the temperature value of each pixel of the remaining part of the thermal image.
  • the average value of the radiant temperature in the room is obtained by averaging, that is, the average radiant temperature value in the room indicates the radiant temperature value in the room, and is not limited to the average value, and the humidity in the room can be directly detected by the humidity sensor.
  • the calculating module 20 is configured to calculate a heat dissipation amount of the human body according to a difference between the body surface temperature value and a room radiation temperature value, and calculate a second heat dissipation amount of the human body according to the humidity.
  • the amount of heat generated by the human body is basically equal to the heat consumed by the human body. Quantity, so the body's heat dissipation can be obtained by measuring the heat consumed by the human body.
  • the heat consumed by the human body can be calculated by the following formula:
  • H1 is the first heat dissipation amount of the human body
  • Tcl is the temperature value of the human body surface
  • Ta is the radiation temperature value
  • is the additional calculation coefficient.
  • These calculation coefficients are some general calculation coefficients in the field of human thermal comfort research, such as considering the surrounding environment.
  • the temperature value Tcl and the temperature value Ta are previously valued, and the temperature value Tcl and the temperature value Ta are set.
  • the first heat dissipation amount of the corresponding human body forms a mapping table.
  • the first heat dissipation amount of the corresponding human body can be obtained by looking up the table.
  • the heat dissipation of the surface of the human body is related to the humidity, and is also related to the surface temperature of the human body, and is set in advance or a coefficient a is set according to the experiment, and the coefficient a corresponds to the humidity conversion.
  • the coefficient of heat dissipation, after calculating the humidity, is directly converted into the second heat dissipation amount H2 of the human body according to the coefficient a.
  • H2 a1*(a2*tcl-b-RHa*Pa), where a1 , a2 and b are set constants, Pa is saturated water vapor partial pressure, and RHa is humidity.
  • the calculation module 20 is further configured to calculate a thermal sensation state of the human body according to the first heat dissipation amount and the second heat dissipation amount of the human body.
  • the cold and hot state of the human body can be reflected by specific different values, as shown in the following table:
  • the size of the thermal and thermal state value M is divided into eight sections, which respectively represent different thermal comfort feelings of the human body, wherein the interval 5 is a slightly cool comfort, and the interval 6 is a slightly warm comfort.
  • the heat dissipation amount of the human body is the sum of the first heat dissipation amount and the second heat dissipation amount, or a weight is set for the first and second heat dissipation amounts, and the heat dissipation amount of the human body is calculated according to the corresponding weight. Since the state of cold and heat of the human body is related to the heat consumed by the human body, and the heat consumed by the human body is equal to the amount of heat dissipated by the human body, the amount of heat dissipated by the human body reflects the state of cold and heat of the human body, which is different through the development process of the pre-air conditioner.
  • the user's hot and cold feelings are tested for experience, and based on the calculated heat dissipation values under different cold and heat sensations, the relationship between the two can be obtained by fitting the formula, such as the thermal state value M and the heat dissipation amount H.
  • the relationship can be expressed as follows:
  • n is a positive value
  • the value is determined according to a specific fitting formula between the H and M data sets, such as N.
  • the value is 4.
  • the thermal sensitivity value M of the human body and the heat dissipation amount H in the above formula when the heat dissipation value H of the human body is calculated, the thermal and thermal state value M of the human body is obtained by substituting the above formula.
  • the above fitting formula is only used to indicate that there is a certain relationship between the thermal sensation value of the human body and the heat dissipation amount, and does not limit the scope of the present invention.
  • the H and M data sets can also be based on other fittings. Method fitting to obtain other fitting formulas.
  • the control module 30 is configured to control the operation of the air conditioner according to the state of the thermal sensation.
  • the operating parameters of the air conditioner are controlled to change the state of the cold and hot state of the human body to a comfortable interval
  • the operating parameters of the air conditioner include one of a set temperature, a running wind speed, and a wind guiding strip state.
  • the current thermal and thermal state value of the human body is 2.5 in the interval 1, that is, the feeling of being hot
  • the current air conditioner setting temperature is lowered by the set temperature of the automatic air conditioner to make the environment in the room The temperature is lowered, so that the value of the person's cold and hot state is gradually reduced, and finally kept in the interval 4, so that the state of the human body is changed to a comfortable state.
  • the heat dissipation value of the human body is obtained by acquiring the temperature of the surface of the human body and the radiation temperature value and humidity in the room, and further obtaining the current state of the thermal state of the human body according to the heat dissipation amount of the human body,
  • the value of the thermal sensation state obtained by this method is highly accurate. Effectively avoid the current air conditioning control process, can not provide accurate user hot and cold state, according to this accurate hot and cold state to control air conditioning operation. Accurately provide the user's sense of cold and heat, thereby improving the accuracy of air conditioning control and improving the comfort of the air conditioner.
  • Air conditioners include a variety of operating modes, such as cooling or heating. In winter, the weather is cold and will run in heating mode. In summer, the weather is hot and will run in heating mode. In the cooling and heating state, the humidity in the room will be different and will vary with the operating conditions of the air conditioner in cooling or heating mode.
  • the obtaining module 10 includes an obtaining unit 11 and a determining unit 12,
  • the acquiring unit 11 is configured to acquire an area where the human body is located and a current wind file of the indoor fan;
  • the determining unit 12 is configured to determine the humidity in the room according to the preset relationship between the area where the human body is located and the wind file and the humidity.
  • FIG. 8 is a schematic diagram of the positional parameter of the array type infrared sensor module for measuring the human body in the up and down direction.
  • 1 is an air conditioner
  • 2 is an array type infrared sensor module installed on the air conditioner
  • 3 is a position of the human body.
  • the array type infrared sensor module can detect the angle between the connection between the up and down direction and the human body position and the wall surface fixed by the air conditioner in which the array type infrared sensor module is installed, that is,
  • the angle ⁇ between the line L of the array type infrared sensor module and the human body position and the line H parallel to the wall surface of the fixed air conditioner is also a fixed value because the installation height of the air conditioner is the H in the figure.
  • the value can be obtained by the user inputting the height of the air conditioner after installation into the control interface of the air conditioner, or can be roughly estimated, so that the value of the angle ⁇ can be calculated by the trigonometric function formula.
  • Figure 9 is a schematic diagram showing the positional parameters of the human body in the left and right direction of the array type infrared sensor module.
  • 1 is an air conditioner
  • 2 is an array type infrared sensor module mounted on the air conditioner
  • 3 is a human body
  • 4 is The walls around the room
  • A1 and A2 are the different locations where the human body is located.
  • the maximum viewing angle of the array type infrared sensor module that can scan and detect the surrounding environment and objects in the left and right direction is fixed, as shown by the L1 and L4 lines in the figure.
  • the angle b3 is the maximum angle of view of the array type infrared sensor module in the left and right direction to detect the surrounding environment and objects.
  • the points A1 and A2 in the figure are at the maximum.
  • the position of the viewing angle range in the left and right direction can be detected by the array type infrared sensor module. Since L1 and L4 are fixed, the angle between the human body and the array type infrared sensor module and the angle between the two sides can be detected. Obtained, if the human body is located at the A1 point position, the size of the angle b1 between the human body and the array type infrared sensor module and the connection angle L2 and L1 can be detected, the same human body When located at the A2 point position, the size of the angle b2 between the human body and the array type infrared sensor module and the connection angle L3 and L1 can be detected.
  • the position of the human body in the left-right direction of the array type infrared sensor module can be determined by the angles of the angles b1 and b2.
  • the angle is not necessarily fixed, and the line formed by the human body and the array type infrared sensor module is formed by the left line L1 of the maximum angle of view.
  • the angle may also be the angle formed by the connection between the human body and the array type infrared sensor module and the continuous L2 on the right side of the maximum viewing angle, or the line defined by the human body and the array type infrared sensor module and the horizontal line where the vertical air conditioner is located. Determine the angle.
  • the position of the human body can be determined by measuring the positional parameters of the human body in the up and down direction and the positional parameters of the human body in the left and right direction by the array type infrared sensor module, and the position of the human body in the room can be determined according to the position of the human body in the room.
  • the space is divided into several areas. As shown in FIG. 10, the area in the room is divided into five areas from A to E, wherein the area C is an area relatively close to the position of the air conditioner.
  • the human body can be finally determined.
  • the operating wind speed value at the location For example, obtaining the running wind speed of the air conditioner divides the wind speed into several levels, and the wind speed level can be determined according to the level value.
  • the V2 value, and the wind speed V1 determining the position of the human body according to different regions can be specifically determined as follows:
  • the difference between the running wind speed of the position of the human body and the running wind speed of the air conditioner is smaller; when the position of the human body is farther away from the air conditioner When facing the position, the difference between the running wind speed of the position where the human body is located and the operating wind speed of the air conditioner is greater.
  • the C area is the area closest to the position of the air conditioner.
  • the running wind speed value is the largest, and the A, B, D, and E areas are far away from the air conditioner.
  • the running wind speed value is relatively reduced.
  • the wind file will affect the humidity in the air.
  • the following table which is the mapping table of the wind file, the area where the person is located and the humidity in the cooling mode.
  • the humidity in the vicinity of the human body is obtained by combining the wind gear and the area where the person is located in the heating mode, so that the acquired humidity is more accurate, thereby improving the accuracy of the human body's cold and hot state and improving the comfort of the air conditioner.
  • the acquiring unit 11 is further configured to acquire a current wind file of the indoor fan
  • the determining unit 12 is further configured to determine the humidity in the room according to the preset relationship between the windshield and the humidity.
  • the wind speed will affect the wind speed
  • the humidity in the air is different depending on the amount of cooling corresponding to different windshields in the room. Therefore, the larger the windshield, the smaller the humidity, the smaller the windshield and the greater the humidity.
  • the humidity in the room is obtained by combining the windshield in the cooling mode, so that the acquired humidity is more accurate, thereby improving the accuracy of the human body's cold and hot state and improving the comfort of the air conditioner.
  • the calculation module 20 includes: a detecting unit 21 and a correcting unit 22,
  • the detecting unit 21 is configured to detect an ambient temperature value when the air conditioner operates the cooling mode
  • the correcting unit 22 is configured to correct the thermal sensation state value according to the temperature value.
  • the cooling and heat state value of the human body is calculated according to the heat dissipation amount, if the air conditioner operates the cooling mode, the state of the cold and heat state can be further corrected according to the detected ambient temperature value.
  • the M value of the thermal sensation state value may be modified differently according to different temperature intervals, such as:
  • the specific correction value can be as follows:
  • the value of the thermal and thermal state value M can define upper and lower limits, such as:
  • the ambient temperature value is detected, and the thermal sensation state value is corrected according to the ambient temperature value, thereby further ensuring the current thermal sensation of the user reflected by the thermal sensation state value.
  • the state is closer to the user's current hot and cold feeling, so that it is more accurate to control the air conditioner to adjust the operating parameters according to the state of the cold and hot state, thereby further improving the user's comfort experience.
  • the detecting unit 21 is further configured to detect an ambient temperature value and an air conditioner operating wind speed value when the air conditioner operates the heating mode;
  • the correction unit 22 is further configured to acquire an air temperature value in the vicinity of the human body according to the ambient temperature value and the running wind speed value, and correct the thermal sensation state value according to the air temperature value in the vicinity of the human body.
  • the human body feels the hot air blown out by the air conditioner differently from the cold air in the cooling state.
  • the ambient temperature it is also related to the hot air wind speed blown by the air conditioner. It is necessary to combine the ambient temperature value, and it is also necessary to modify the state of the cold and hot state in combination with the operating wind speed value of the air conditioner, that is, it is necessary to first obtain the air temperature value near the human body according to the ambient temperature value and the operating wind speed value of the air conditioner, and then according to The air temperature value near the human body corrects the value of the thermal sensation state.
  • the air temperature values near the human body are obtained as follows:
  • the ambient temperature value T1 detected by the air conditioner and divide it into different wind speed ranges according to the operating wind speed value of the air conditioner.
  • the hot air feel is more sensitive than the cold air feel in the cooling mode, and the difference between the different wind speeds is obvious. Therefore, it is not suitable to adopt a fixed calculation method to obtain the air temperature value near the human body according to the ambient temperature value T1.
  • the calculation is differentiated according to different wind speed intervals. For example, according to the operating wind speed value of the air conditioner, the wind speed is divided into 100 levels according to the wind speed, and the 100 levels are divided into 10 sections, and each section adopts different calculation rules:
  • Ta T1-c1 [11,30]
  • Ta T1-c2 [31,50]
  • Ta T1-c3 [51,70]
  • Ta T1-c4 [71,90]
  • Ta T1-c5 [91,100]
  • Ta T1-c6
  • Ta is the air temperature value near the human body
  • T1 is the ambient temperature value
  • c1, c2, c3, c4, c5, and c6 are positive values and are not equal to each other.
  • the air conditioner when the air conditioner operates in the heating mode, the room ambient temperature value and the air conditioner operating wind speed value are detected, according to the ambient temperature value and the running wind speed value. Obtaining the air temperature value near the human body, and finally correcting the cold and hot state value of the human body according to the air temperature value in the vicinity of the human body, so that the obtained cold and hot state value in the heating mode is closer to the human body's feeling of cold and hot feeling. Further, it is more accurate to control the air conditioner according to the state of the cold and heat sensation, thereby improving the user's comfortable experience.
  • the present invention also provides an air conditioner in which the above air conditioning control device is used.
  • the air conditioner includes necessary hardware such as an indoor unit, an outdoor unit, and a duct.
  • the air conditioner obtains the heat dissipation value of the human body by acquiring the temperature of the surface of the human body and the radiation temperature value and humidity in the room, and further obtains the current state of the cold and heat state of the human body according to the heat dissipation amount of the human body, and the cold and hot feeling obtained by the method.
  • the status value is highly accurate. Effectively avoid the current air conditioning control process, can not provide accurate user hot and cold state, according to this accurate hot and cold state to control air conditioning operation. Accurately provide the user's sense of cold and heat, thereby improving the accuracy of air conditioning control and improving the comfort of the air conditioner.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

一种空调器及其控制方法,控制方法包括以下步骤:获取房间内辐射温度以及人体表面温度值(S10)、根据人体表面温度值和辐射温度的差值获得人体的散热量(S20)、根据人体的散热量获得人体的冷热感状态(S30)、根据冷热感状态控制空调器运行(S40)。该方法通过人体当前的冷热感状态值自动调节空调器的运行参数,使得人体处于舒适的状态,解决了由于用户手动调节空调器的运行参数带来的过冷或过热导致的不舒适感问题。

Description

空调器的控制方法及空调器 技术领域
本发明涉及空调设备领域,尤其涉及一种空调器控制方法和空调器。
背景技术
通常空调器执行制冷或制热操作都是根据用户预先设定的温度或风速等参数值进行调节的,而用户预先设定的参数只是按照用户自己以往的习惯来设置,有时并不是真正适合用户的调节参数。例如,有些用户在比较热的环境下设定比较低的温度如20℃,经过一段时间后房间温度会迅速降低,用户会感觉比较冷,于是又将空调器的设定温度调高,如此将引起用户的不舒适感。并且,当用户处在房间内的不同位置时,由于距离空调器的出风口位置不同,用户感受到的空调器的制冷或制热效果也是不同的。因此,如果空调器都按照同一个调节参数去运行,会产生过冷或者过热现象,造成用户不舒适感,这样会降低空调器的用户使用体验效果。
发明内容
本发明的主要目的在于提供空调器控制方法,旨在解决上述空调按照用户设置的空调器调节参数运行,带来过冷或过热从而引起用户不舒适的技术问题。
为实现上述目的,本发明提供的空调器控制方法,所述空调器控制方法包括:
获取房间内辐射温度以及人体表面的温度值;
根据所述人体表面的温度值和房间内辐射温度的差值,获得人体的散热量;
根据所述人体的散热量,获得人体的冷热感状态;
根据所述冷热感状态,控制空调器运行;
优选地,所述根据人体的散热量获得人体的冷热感状态之后还包括:
当空调器运行制冷模式时,检测环境温度值,根据所述环境温度值修正冷热感状态。
优选地,所述根据人体的散热量获得人体的冷热感状态之后还包括:
当空调器运行制热模式时,检测环境温度值和空调器运行风速值,根据所述温度值和运行风速值,获取人体附近的空气温度值,根据所述人体附近的空气温度值,修正冷热感状态。
优选地,所述根据环境温度值和运行风速值获取人体附近的空气温度值时,运行风速值越高,人体附近的空气温度值与环境温度值相差越小,运行风速值越低,人体附近的空气温度值与环境温度值相差越大。
优选地,所述根据所述冷热感状态控制空调器运行的步骤包括:根据所述冷热感状态控制空调器的设定温度、运行风速以及导风条参数的一种或者多种。
为实现上述目的,本发明还提供一种空调器,所述空调器包括:
温度检测模块,用于检测房间内辐射温度以及人体表面的温度值;
冷热感获取模块,用于根据所述人体表面的温度以及房间内辐射温度值获得人体的散热量并进一步根据所述散热量获得人体的冷热感状态;
控制模块,根据所述的冷热感状态控制空调器运行。
优选地,所述温度检测模块为红外阵列式传感器。
优选地,所述冷热感获取模块在根据散热量获得人体的冷热感状态之后还包括:
若空调器运行制冷模式,则检测环境温度值,根据所述环境温度值修正冷热感状态。
优选地,所述冷热感获取模块在根据散热量获得人体的冷热感状 态之后还包括:
若空调器运行制热模式,则检测房间环境温度值和空调器运行风速值,根据所述环境温度值和运行风速值获取人体附近的空气温度值,根据所述人体附近的空气温度值修正冷热感状态。
优选地,所述冷热感获取模块根据环境温度值和运行风速值获取人体附近的空气温度值时,运行风速值越高,人体附近的空气温度值与环境温度值相差越小,运行风速值越低,人体附近的空气温度值与环境温度值相差越大。
为实现上述目的,本发明提供的空调器控制方法,所述空调器控制方法包括:
获取房间内辐射温度以及人体表面的温度值;
获取人体附近的空气温度值;
根据所述人体表面温度值和房间内辐射温度的差值获得人体的第一散热量,根据所述人体附近的空气温度值获得人体的第二散热量;
根据所述人体的第一散热量和人体的第二散热量,获得人体的冷热感状态;
根据所述冷热感状态,控制空调器运行。
优选地,所述获取人体附近的空气温度值步骤包括:
当空调器运行制冷模式时,检测人体所在的位置,检测空调器运行风速值和环境温度值,根据所述人体所在位置、空调器运行风速值和环境温度值获取人体附近的空气温度值。
优选地,所述获取人体附近的空气温度值步骤包括:
当空调器运行制热模式时,检测空调器运行风速值和环境温度值,根据所述空调器运行风速值和环境温度值获取人体附近的空气温度值。
优选地,所述根据人体的散热量获得人体的冷热感状态之后还包括:
当空调器运行制冷模式时,检测环境温度值,根据所述环境温度 值修正冷热感状态。
优选地,所述根据所述冷热感状态控制空调器运行的步骤包括:
根据所述冷热感状态,控制空调器的设定温度、运行风速以及导风条参数的一种或者多种。
为实现上述目的,本发明还提供一种空调器,所述空调器包括:
温度检测模块,用于检测房间内辐射温度以及人体表面的温度值;
空气温度检测模块,用于检测人体附近的空气温度值;
冷热感获取模块,用于根据人体表面温度值和房间内辐射温度的差值获得人体的第一散热量,根据人体附近的空气温度值获得人体的第二散热量,根据所述人体的第一散热量和第二散热量获得人体的散热量,根据所述人体的散热量,获得人体的冷热感状态;
控制模块,根据所述的冷热感状态控制空调器运行。
为实现上述目的,本发明提供的空调器控制方法,所述空调器控制方法包括:
获取房间内辐射温度以及人体表面的温度值;
获取人体所在位置,以及该位置处的运行风速值;
根据人体表面温度值和房间内辐射温度的差值以及人体所在位置处的运行风速值获得人体的散热量;
根据所述人体的散热量,获得人体的冷热感状态;
根据所述冷热感状态,控制空调器运行;
优选地,所述获取人体所在位置具体包括:
通过安装在空调器上的红外传感器在左右方向上的检测人的位置角度以及人与所述红外传感器的在上下方向上检测人的位置角度来确定人体所在位置。
优选地,所述获取人体所在位置处的运行风速值包括:
根据空调器的运行风速、所述人体所在位置确定人体所在位置的运行风速值。
优选地,所述当人体所在的位置越靠近空调器所在正对位置时,所述人体所在位置的运行风速与所述空调器的运行风速的相差越小;当人体所在的位置越远离空调器所在正对位置时,所述人体所在位置的运行风速与所述空调器的运行风速相差越大。
优选地,所述根据所述冷热感状态控制空调器运行的步骤包括:根据所述冷热感状态控制空调器的设定温度、运行风速以及导风条参数的一种或者多种。
为实现上述目的,本发明还提供一种空调器,所述空调器包括:
温度检测模块,用于检测房间内辐射温度以及人体表面的温度值;
人体位置检测模块,用于检测人体所在位置;
风速获取模块,用于获取所述人体所在位置的风速值;
冷热感获取模块,用于根据人体表面温度值和房间内辐射温度的差值以及人体所在位置处的运行风速值获得人体的散热量,并进一步根据所述散热量获得人体的冷热感状态;
控制模块,根据所述的冷热感状态控制空调器运行。
优选的,所述温度检测模块为红外阵列式传感器。
为实现上述目的,本发明提供的空调器控制方法,包括步骤:
获取房间内辐射温度值、湿度以及人体表面的温度值;
根据所述人体表面的温度值和房间内辐射温度值的差值,计算人体的第一散热量,并根据所述湿度计算人体的第二散热量;
根据所述人体的第一散热量和第二散热量,计算人体的冷热感状态;
根据所述冷热感状态,控制空调器运行。
优选地,在制冷模式下,所述获取房间内湿度的步骤包括:
获取人体所在的区域以及室内风机当前的风档;
根据预设的人体所在的所述区域和风档与湿度的映射关系,确定房间内湿度。
优选地,在制热模式下,所述获取房间内湿度的步骤包括:
获取室内风机当前的风档;
根据预设的风挡与湿度的关联关系,确定房间内湿度。
优选地,所述根据人体的散热量获得人体的冷热感状态之后还包括:
当空调器运行制冷模式时,检测环境温度值,根据所述环境温度值修正冷热感状态。
优选地,所述根据人体的散热量获得人体的冷热感状态之后还包括:
当空调器运行制热模式时,检测环境温度值和空调器运行风速值;
根据所述环境温度值和运行风速值,获取人体附近的空气温度值;
根据所述人体附近的空气温度值,修正冷热感状态。
为实现上述目的,本发明还提供一种空调器控制装置,包括:
获取模块,用于获取房间内辐射温度值、湿度以及人体表面的温度值;
计算模块,用于根据所述人体表面的温度以及辐射温度值计算人体的第一散热量,还用于
根据所述湿度计算人体的第二散热量,并根据所述人体的第一散热量和第二散热量,计算人体的冷热感状态;
控制模块,根据所述冷热感状态控制空调器运行。
本发明通过获取房间内辐射温度以及人体表面的温度值,并通过人体表面温度和房间内辐射温度值的差值获取人体的散热量,以及通过人体的散热量获取人体的冷热感状态,最后通过人体的冷热感状态调节空调器的设定温度、运行风速和导风条状态,实现了空调器根据人体的冷热感状态对影响用户冷热感受的参数进行自动调节,解决了由于用户自身设置空调器参数带来的过冷过热问题,提高了用户的舒 适性。
附图说明
图1为本发明空调器控制方法第一实施例的流程示意图;
图2为本发明空调器控制方法第二实施例的流程示意图;
图3本发明空调器控制方法第三实施例的流程示意图;
图4为本发明的空调器的一实施例的功能模块图;
图5为本发明中红外阵列传感器扫描物体的热图像示意图;
图6本发明空调器控制方法第四实施例的流程示意图;
图7本发明空调器控制方法第五实施例的流程示意图;
图8为本发明红外阵列传感器在上下方向检测人体位置示意图;
图9本本发明红外阵列传感器在左右方向检测人体位置示意图;
图10为本发明中人体位置在房间中的区域分布图;
图11为本发明的空调器的四实施例的功能模块图;
图12本发明空调器控制方法第七实施例的流程示意图;
图13为本发明的空调器的七实施例的功能模块图;
图14本发明空调器控制方法第八实施例的流程示意图;
图15本发明空调器控制方法一实施例中获取房间内湿度的流程示意图;
图16本发明一实施例中人体位置在房间中的区域分布图;
图17本发明空调器控制方法第九实施例的流程示意图;
图18本发明空调器控制方法第十实施例的流程示意图;
图19为本发明的空调器的八实施例的功能模块图;
图20为图19中获取模块一实施例的细化功能模块示意图;
图21为图19中计算模块一实施例的细化功能模块示意图。
本发明目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
应当理解,此处所描述的具体实施例仅用以解释本发明,并不用 于限定本发明。
下面参照附图描述根据本发明实施例提出的空调器控制方法和空调器。
首先对本发明实施例提出的空调器控制方法进行说明。图1为根据本发明的一个实施例的空调器控制方法的流程示意图。如图1所示,本发明实施例的空调器控制方法包括以下步骤:
步骤S10,获取房间内辐射温度值以及人体表面的温度值。
上述人体表面的温度是人体体表的温度值,辐射温度为环境四周表面对人体辐射作用的温度。以人在房间内为例,此时辐射温度为房间内的周围环境如四周的墙体、窗户等对人体辐射作用的温度值,这两个温度值可通过具有测量热图像功能的传感器测量读取得到,例如阵列式红外传感器模块,其红外传感器扫描人体或者周围环境时会得到热图像,如图5所示,热图像通过阵列排布方式可以获得其中每个小区域即其中一个像素的温度值,如图5所示每个像素的颜色深浅表示了其温度值的高低不同,并可读取每个像素的具体温度值。热红外传感器扫描人体时同样会得到一定面积区域的热图像,因为人体表面的各个地方的温度是不相同的,因此反映到对应的热图像也不相同,因此测量人体表面的温度时可以通过测量人体对应热图像所有像素的温度点取平均值的方式获取,即人体表面的平均温度值表示人体表面温度值。而测量房间内辐射温度是通过红外传感器扫描房间内的四周区域如墙壁、天花板、窗户形成的热图像后,去掉人体所在热图像部分,读取剩下部分的热图像的各个像素的温度值然后取平均值就获得了房间内的辐射温度值,即房间内的平均辐射温度值表示房间内的辐射温度值。
步骤S20,根据所述人体表面温度值和房间内辐射温度值的差值获得人体的散热量。
根据热力学第一定律,人体产生的散热量基本等于人体消耗的热量,因此通过测量人体消耗的热量即可得到人体的散热量,人体消耗的热量可通过以下公式计算:
H=Φ*(Tcl-Ta)
其中H为人体的散热量,Tcl为人体表面的温度值,Ta为辐射温度值,Φ为附加计算系数,这些计算系数为人体热舒适性研究领域的一些通用计算系数,如考虑周围环境的有效辐射面积系数f_eff、着装的人体面积系数f_cl,Φ=f_eff*f_cl,此时H=f_eff*f_cl*(Tcl-Ta),通过计算人体表面的温度值Tcl和辐射温度Ta的差值再结合计算系数Φ,得到人体的散热量H。
当然,也可以根据人体表面的温度值Tcl、辐射温度值Ta与人体散热量的映射关系,预先对温度值Tcl和温度值Ta进行取值,并设置与温度值Tcl和温度值Ta对应的人体散热量,形成映射表。当获取人体表面的温度值Tcl、辐射温度值Ta时,就可以查表获得相应的人体散热量。
步骤S30,根据所述人体的散热量获得人体的冷热感状态。
人体的冷热感状态可通过具体的不同值来体现,如下表:
冷热感状态值 冷热感区间 热舒适感
-3≤M<-2 区间8
-2<M≤-1 区间7 有点冷
-1<M≤0.5 区间6
-0.5≤M<0 区间5 舒适
0≤M≤0.5 区间4 舒适
0.5<M≤1 区间3
1<M≤2 区间2 有点热
2<M≤3 区间1
上表中通过冷热感状态值M的大小分为8个区间,分别代表了人体不同的热舒适感觉,其中区间5为稍微凉爽的舒适感,区间6为稍微暖和的舒适感。
由于人体的冷热感状态与人体消耗的热量相关,而人体消耗的热 量等于人体的散热量,因此人体的散热量的大小反映了人的冷热感状态,通过前期空调器研发过程中对不同用户的冷热感觉进行体验测试,并根据当时计算得到的不同冷热感觉下的散热量值,可通过拟合公式获得二者之间的关系式,例如冷热感状态值M和散热量H的关系式可以表示如下:
M=a0+a1H+a2H2+a3H3+.....+anHn
其中a0、a1、a2、a3、an为根据实验获得的不同的计算系数值,n为正数值,其取值大小依据具体的H和M数据组之间的形成拟合公式确定,如N可以取值为4。通过以上公式中人体的冷热感值M与散热量H之间的关系式,当计算得到人体的散热量值H后,代入以上公式就得到了人体的冷热感状态值M。需要说明的是,上述拟合公式仅仅用来说明人体冷热感值与散热量存在一定的关系,并不限定本发明的范围,根据前期实验过程中H和M数据组也可以根据其他拟合方法拟合,获得其他拟合公式。
步骤S40,根据所述冷热感状态控制空调器运行。
根据人体的冷热感状态值,控制空调器的运行参数,使人体的冷热感状态值往舒适的区间变化,空调器的运行参数包括设定温度、运行风速、导风条状态中的一种或者多种,例如当人体当前的冷热感状态值为2.5位于区间1即处于热的感觉,通过自动空调器的设定温度时的当前空调器的设定温度降低以使得房间内的环境温度降低,使得人的冷热感状态值逐渐减小,最后保持在区间4内,使得人体冷热感状态变化到舒适状态。
根据本发明所述的空调器控制方法,通过获取人体表面的温度以及房间内辐射温度值得到人体的散热量值,并进一步根据人体的散热量值获得人体的当前冷热感状态值,通过此种方式获取的冷热感状态值准确性高,并进一步在获取冷热感状态值以后根据空调器运行的制冷或者制热模式对冷热感状态进行修正,使得人体的冷热感状态值更加准确的适应于当前空调器运行不同温度环境,最后通过人体当前的冷热感状态值自动调整空调器的运行参数,使得人体处于舒适的状态,解决了由于用户手动调节空调器的运行参数带来的过冷或者过热 的不舒适感。
进一步的,参照图2,图2为根据本发明的另外一个实施例的空调器控制方法的流程示意图,基于上述本发明的空调控制方法第一实施例,在本实施例中,在上述步骤S30之后还包括:
步骤S301,当空调器运行制冷模式时,检测环境温度值,根据温度值修正冷热感状态值。
在根据散热量计算得到人体的冷热感状态值后,如果空调器运行制冷模式,此时可根据检测到的环境温度值,进一步对冷热感状态值进行修正。
具体的调整规则如下:
获取空调器检测到的环境温度值T1,根据环境温度值T1值的大小对冷热感状态值M进行修正,例如可以通过一个公式对其修正,如:
M=aT13+b T12+c T1+d
其中a、b、c、d为不同的计算系数值。
或者也可以根据环境温度值T1值分为不同的温度区间,根据不同的温度区间对冷热感状态值M值进行不同的修正,如:
T1≤a1时,M=M+b0
a1<T1≤a2时,M=M+b1
a2<T1≤a3时,M=M+b2
T1>a3时,M=M+b3
其中a1<a2<a3,b0、b1、b2、b3为不同的修正值,例如具体的修正值可以如下:
T1≤21℃时,M=M–2
18℃<T1≤21℃时,M=M–1
21℃<T1≤25℃时,M=M–0.5
T1>25℃时,M=M+1
从以上修正的计算式可以看出,当环境温度值T1处于偏冷状态(18℃<T1≤21℃)或者偏热状态时(T1>25℃),对冷热感状态值M 的修正大;当环境温度值T1处于比较舒适的状态(21℃<T1≤25℃)时,对冷热感状态值M的修正小。
进一步的,冷热感状态值M值可以限定上下限值,如:
M≤-3时,取M=-3
M≥3时,取M=3
本发明实施例中,通过当空调器运行制冷模式时,检测环境温度值,根据该环境温度值修正冷热感状态值,从而进一步保证了冷热感状态值所反映的用户当前的冷热感状态更加贴近用户当前的冷热感受,使得后续根据冷热感状态值控制空调器调整运行参数时更加准确,进一步提升用户的舒适性体验。
进一步的,参照图3,图3为本发明的空调控制方法第三实施例的流程示意图。基于上述本发明的空调控制方法第一实施例,在本实施例中,在上述步骤S30之后还包括:
S302,当空调器运行制热模式时,检测环境温度值和空调器运行风速值,根据所述环境温度值和运行风速值获取人体附近的空气温度值,根据所述人体附近的空气温度值修正冷热感状态值。
在空调器运行制热模式时,人体对空调器吹出来的热风的感受与制冷状态下的冷风感受不一样,除了与环境温度相关,还与空调器吹出来的热风风速有关系,此时除了需要结合环境温度值,还需要结合空调器的运行风速值对冷热感状态进行修正,即需要首先根据环境温度值和空调器的运行风速值获得人体附近的空气温度值,然后再根据人体附近的空气温度值对冷热感状态值进行修正。
根据环境温度值和空调器的运行风速值获得人体附近的空气温度值如下:
获取空调器检测到的环境温度值T1,根据空调器的运行风速值大小分为不同的风速区间,根据不同的风速区间对T1值进行计算得到人体附近的空气温度值,由于人体对制热模式下的热风感受比制冷模式下的冷风感受要敏感,且对不同大小的热风风速感受差别明显,因此不适合采取固定的计算法则来根据环境温度值T1来获取人体附 近的空气温度值,而需要根据不同的风速区间来区别计算。例如可以根据空调器的运行风速值按照风速从小到大分为100个等级,将这100个等级分为10个区间,每个区间采用不同的计算法则:
风速区间 计算法则
[1,10] Ta=T1-c1
[11,30] Ta=T1-c2
[31,50] Ta=T1-c3
[51,70] Ta=T1-c4
[71,90] Ta=T1-c5
[91,100] Ta=T1-c6
其中Ta为人体附近的空气温度值,T1为环境温度值,c1、c2、c3、c4、c5、c6为正数值且互不相等。
根据实验获知,当风速越高时,人体附近的空气温度与环境温度差别越小,风速越低时,人体附近的空气温度与环境温度差别越大,即上述c1、c2、c3、c4、c5、c6的大小关系为:c1>c2>c3>c4>c5>c6,例如上面的表格列举c1、c2、c3、c4、c5、c6的具体值时可以如下:
风速区间 计算法则
[1,10] Ta=T1-11
[11,30] Ta=T1-9.3
[31,50] Ta=T1-8.4
[51,70] Ta=T1-4.1
[71,90] Ta=T1-2.4
[91,100] Ta=T1-0.9
制热模式下获取人体附近的空气温度值后,根据人体附近的空气温度值对人体的冷热感状态值M进行修正时,可根据人体附近的空 气温度值分为若干个不同的温度区间,根据不同的温度区间对冷热感状态值M进行修正,如通过不同的温度区间限定M值的具体范围值对M进行修正:
T1≤c1时,M≤d1
c1<T1≤c2时,d1<M≤d2
c2<T1≤c3时,d2<M≤d3
T1>a3时,M>d3
其中c1<c2<c3,d1、d2、d3为不同的修正值,例如具体修正值可以如下:
T1≤17℃时,M≤-1
17℃<T1≤21℃时,-1<M≤-0.5
21℃<T1≤26时,-0.5<M≤1
T1>26时,M>1
进一步的,冷热感状态值M值可以限定上下限值,如:
M≤-3时,取M=-3
M≥3时,取M=3
本实施例中,在根据人体的散热量获取人体的冷热感状态值之后,在空调器运行制热模式时,检测房间环境温度值和空调器运行风速值,根据环境温度值和运行风速值获取人体附近的空气温度值,最后根据人体附近的空气温度值对人体的冷热感状态值进行修正,使得在制热模式下的获取的冷热感状态值更加贴近于人体的冷热感感受,进一步后续根据冷热感状态值对空调器进行控制时更加准确,提升用户的舒适体验。
下面参照附图描述根据本发明另外实施例提出的空调器。
参照图4,图4为本发明的空调器第一实施例的功能模块示意图。在本实施例中,所述空调器包括:
温度检测模块10,获取房间内辐射温度值以及人体表面的温度值;
冷热感获取模块20,用于根据所述人体表面的温度以及房间内 辐射温度值的差值获得人体的散热量并进一步根据所述散热量获得人体的冷热感状态值;
控制模块30,根据所述的冷热感状态控制空调器运行。
根据热力学常识,人体表面的温度是人体体表的温度值,辐射温度为环境四周表面对人体辐射作用的平均温度,以人在房间内为例,此时辐射温度为房间内的周围环境如四周的墙体、窗户等对人体辐射作用的平均温度值,这两个温度值可通过具有测量热图像功能的传感器如松下的阵列式红外传感器模块测量读取得到,其红外传感器扫描人体或者周围环境时会得到热图像,如图5所示,热图像通过阵列排布方式可以获得其中每个小区域即其中一个像素的温度值,如图5所示每个像素的颜色深浅表示了其温度值的高低不同,并可读取每个像素的具体温度值。热红外传感器扫描人体时同样会得到一定面积区域的热图像,因为人体表面的各个地方的温度是不相同的,因此反映到对应的热图像也不相同,因此测量人体表面的温度时可以通过测量人体对应热图像所有像素的温度点取平均值的方式获取,以此平均值代表了人体的平均温度值,即人体表面的平均温度值代表了人体表面温度值。而测量房间内辐射温度是通过红外传感器扫描房间内的四周区域如墙壁、天花板、窗户形成的热图像后,去掉人体所在热图像部分,读取剩下部分的热图像的各个像素的温度值然后取平均值就获得了房间内的辐射温度辐射温度值,即房间内的平均辐射温度值代表了房间内的辐射温度值。
根据热力学第一定律,人体产生的散热量始终等于人体消耗的热量,因此通过测量人体消耗的热量即可得到人体的散热量,人体消耗的热量可通过以下公式计算:
H=Φ*(Tcl-Ta)
其中H为人体的散热量,Tcl为人体表面的温度值,Ta为辐射温度值,Φ为附加计算系数,这些计算系数为人体热舒适性研究领域的一些通用计算系数,如考虑周围环境的有效辐射面积系数f_eff、着装的人体面积系数f_cl,Φ=f_eff*f_cl,此时H=f_eff*f_cl*(Tcl-Ta),通过计算人体表面的温度值Tcl和辐射温度值Ta的差值再结合计算 系数Φ,得到人体的散热量H。
当然,也可以根据人体表面的温度值Tcl、辐射温度值Ta与人体散热量的映射关系,预先对温度值Tcl和温度值Ta进行取值,并设置与温度值Tcl和温度值Ta对应的人体散热量,形成映射表。当获取人体表面的温度值Tcl、辐射温度值Ta时,就可以查表获得相应的人体散热量。
步骤S30,根据所述人体的散热量获得人体的冷热感状态。
人体的冷热感觉可通过具体的不同值来体现,如下表:
冷热感状态值 冷热感区间 热舒适感
-3≤M<-2 区间8
-2<M≤-1 区间7 有点冷
-1<M≤0.5 区间6
-0.5≤M<0 区间5 舒适
0≤M≤0.5 区间4 舒适
0.5<M≤1 区间3
1<M≤2 区间2 有点热
2<M≤3 区间1
上表中通过冷热感状态值M的大小分为8个区间,分别代表了人体不同的热舒适感觉。
由于人体的冷热感状态与人体消耗的热量相关,而人体消耗的热量等于人体的散热量,因此人体的散热量的大小反映了人的冷热感状态,通过前期空调器研发过程中对不同用户的冷热感觉进行体验测试,并根据当时计算得到的不同冷热感觉下的散热量值,可通过拟合公式获得二者之间的关系式,例如冷热感状态值M和散热量H的关系式可以表示如下:
M=a0+a1H+a2H2+a3H3+.....+anHn
其中a0、a1、a2、a3、an为根据实验获得的不同的计算系数值,n为正数值,其取值大小依据具体的H和M数据组之间的形成拟合公式确定,如N可以取值为4。通过以上公式中人体的冷热感值M与散热量H之间的关系式,当计算得到人体的散热量值H后,代入以上公式就得到了人体的冷热感状态值M。需要说明的是,上述拟合公式仅仅用来说明人体冷热感值与散热量存在一定的关系,并不限定本发明的范围,根据前期实验过程中H和M数据组也可以根据其他拟合方法拟合,获得其他拟合公式。
根据人体的冷热感状态值,控制空调器的运行参数,使人体的冷热感状态值往舒适的区间变化,空调器的运行参数包括设定温度、运行风速、导风条状态中的一种或者多种,例如当人体当前的冷热感状态值为2.5位于区间1即处于热的感觉,通过自动空调器的设定温度时的当前空调器的设定温度降低以使得房间内的环境温度降低,使得人的冷热感状态值逐渐减小,最后保持在区间4内,使得人体冷热感状态变化到舒适状态。
根据本发明所述的空调器,通过获取人体表面的温度以及房间内辐射温度值得到人体的散热量值,并进一步根据人体的散热量值获得人体的当前冷热感状态值,通过此种方式获取的冷热感状态值准确性高,并进一步在获取冷热感状态值以后根据空调器运行的制冷或者制热模式对冷热感状态进行修正,使得人体的冷热感状态值更加准确的适应于当前空调器运行不同温度环境,最后通过人体当前的冷热感状态值自动调整空调器的运行参数,使得人体处于舒适的状态,解决了由于用户手动调节空调器的运行参数带来的过冷或者过热的不舒适感。
进一步的,基于上述本发明的空调器第一实施例,本发明的空调器第二实施例中,在上述温度获取模块20用于:
在根据人体的散热量获得人体的冷热感状态之后,若空调器运行制冷模式,则检测环境温度值,根据温度值修正冷热感状态值。
在根据散热量计算得到人体的冷热感状态值后,如果空调器运行 制冷模式,此时可根据检测到的环境温度值,进一步对冷热感状态值进行修正。
具体的调整规则如下:
获取空调器检测到环境温度值T1,根据环境温度值T1值的大小对冷热感状态值M进行修正,例如可以通过一个公式对其修正,如:
M=aT13+b T12+c T1+d
其中a、b、c、d为不同的计算系数值。
或者也可以根据环境温度值T1值分为不同的温度区间,根据不同的温度区间对冷热感状态值M值进行不同的修正,如:
a1<T1≤a2时M=M+b1
a2<T1≤a3时M=M+b2
T1>a4时M=M+b3
其中a1<a2<a3,b1、b2、b3为不同的修正值,例如具体的修正值可以如下:
18℃<T1≤21℃时M=M–1
21℃<T1≤25℃时M=M–0.5
T1>25℃时M=M+1
从以上修正的计算式可以看出,当环境温度值T1处于偏冷状态(18℃<T1≤21℃)或者偏热状态时(T1>25℃),对冷热感状态值M的修正大;当环境温度值T1处于比较舒适的状态(21℃<T1≤25℃)时,对冷热感状态值M的修正小。
进一步的,冷热感状态值M值可以限定上下限值,如:
M≤-3时,取M=-3
M≥3时,取M=3
本发明实施例中,通过当空调器运行制冷模式时,检测环境温度值,根据温度值修正冷热感状态,从而进一步保证了冷热感状态值所反映的用户当前的冷热感状态更加贴近用户当前的冷热感受,使得后续根据冷热感状态进行空调器调整时更加准确,进一步提升用户的舒适性体验。
进一步的,基于上述本发明的空调器第一实施例,本发明的空调器第三实施例中,在上述冷热感获取模块20中根据人体的散热量获得人体的冷热感状态之后还包括:
若空调器运行制热模式,则检测房间环境温度值和空调器运行风速值,根据所述环境温度值和运行风速值获取人体附近的空气温度值,根据所述人体附近的空气温度值修正冷热感状态值。
在空调器运行制热模式时,人体对空调器吹出来的热风的感受与制冷状态下的冷风感受不一样,除了与环境温度相关,还与空调器吹出来的热风风速有关系,此时除了需要结合环境温度值,还需要结合空调器的运行风速值对冷热感状态进行修正,即需要首先根据环境温度值和空调器的运行风速值获得人体附近的空气温度值,然后再根据人体附近的空气温度值对冷热感状态值进行修正。
根据环境温度值和空调器的运行风速值获得人体附近的空气温度值如下:
获取空调器检测到的环境温度值T1,根据空调器的运行风速值大小分为不同的风速区间,根据不同的风速区间对T1值进行计算得到人体附近的空气温度值,由于人体对制热模式下的热风感受比制冷模式下的冷风感受要敏感,且对不同大小的热风感受差别明显,因此不适合采取固定的计算法则来根据环境温度值T1来获取人体附近的空气温度值,需要根据不同的风速区间来区别计算。例如可以根据空调器的运行风速值按照风速从小到大分为100个等级,将这100个等级分为10个区间,每个区间采用不同的计算法则:
Figure PCTCN2017086426-appb-000001
Figure PCTCN2017086426-appb-000002
其中Ta为人体附近的空气温度值,T1为环境温度值,c1、c2、c3、c4、c5、c6为正数值且互不相等。
根据实验获知,当风速越高时,人体附近的空气温度与环境温度差别越小,风速越低时,人体附件的空气温度与环境温度差别越大,即上述c1、c2、c3、c4、c5、c6的大小关系为:c1>c2>c3>c4>c5>c6,例如上面的表格列举c1、c2、c3、c4、c5、c6的具体值时可以如下:
风速区间 计算法则
[1,10] Ta=T1-11
[11,30] Ta=T1-9.3
[31,50] Ta=T1-8.4
[51,70] Ta=T1-4.1
[71,90] Ta=T1-2.4
[91,100] Ta=T1-0.9
本实施例中,在根据人体的散热量获取人体的冷热感状态值之后,在空调器运行制热模式时,检测房间环境温度值和空调器运行风速值,根据环境温度值和运行风速值获取人体附近的空气温度值,最后根据人体附近的空气温度值对人体的冷热感状态值进行修正,使得在制热模式下的获取的冷热感状态值更加贴近于人体的冷热感感受,后续进一步根据冷热感状态值对空调器进行调整时控制更加准确,提升用户的舒适体验。
图6为根据本发明的第四实施例的空调器控制方法的流程示意图。如图6所示,本发明实施例的空调器控制方法包括以下步骤:
步骤S10,获取房间内辐射温度值以及人体表面的温度值。
上述人体表面的温度是人体体表的温度值,辐射温度为环境四周表面对人体辐射作用的温度。以人在房间内为例,此时辐射温度为房 间内的周围环境如四周的墙体、窗户等对人体辐射作用的温度值,这两个温度值可通过具有测量热图像功能的传感器测量读取得到,例如阵列式红外传感器模块,其红外传感器扫描人体或者周围环境时会得到热图像,如图5所示,热图像通过阵列排布方式可以获得其中每个小区域即其中一个像素的温度值,如图5所示每个像素的颜色深浅表示了其温度值的高低不同,并可读取每个像素的具体温度值。热红外传感器扫描人体时同样会得到一定面积区域的热图像,因为人体表面的各个地方的温度是不相同的,因此反映到对应的热图像也不相同,因此测量人体表面的温度时可以通过测量人体对应热图像所有像素的温度点取平均值的方式获取,即人体表面的平均温度值表示人体表面温度值。而测量房间内辐射温度是通过红外传感器扫描房间内的四周区域如墙壁、天花板、窗户形成的热图像后,去掉人体所在热图像部分,读取剩下部分的热图像的各个像素的温度值然后取平均值就获得了房间内的辐射温度值,即房间内的平均辐射温度值表示房间内的辐射温度值。
步骤S20,获取人体附近的空气温度值。
在房间内可以通过空调器检测到环境温度值,一般通过安装在空调器上的温度传感器检测得到,为了根据空调器检测的环境温度值获得在房间内人体附近的空气温度值,需要结合空调器的具体制冷制热的运行状态来考虑,因为制冷和制热送风的风速时对人体附近的空气温度的影响不同,且制冷模式下送风时对人体处于房间内不同的位置也对人体附近的空气温度影响很大,制热送风时对人体处于房间内的位置影响很小,为了获得人体附近的空气温度,需要具体结合空调器的制冷制热模式考虑不同的影响因素。
具体获取人体附近的空气温度值的规则如下:
在制冷模式下,检测人体所在的位置,检测空调器运行风速值和环境温度值,根据所述人体所在位置、空调器运行风速值和环境温度值获取人体附近的空气温度值。
进一步的,检测人体所在的位置时,通过安装在空调器上的红外传感器在左右方向上的检测人的位置角度以及人与所述红外传感器 的在上下方向上检测人的位置角度来确定人体所在位置。
从阵列式红外传感器模块不仅可以读取到房间内辐射温度值以及人体表面的温度值,还可以通过其获得人体在房间内的所在位置。人体在房间内的位置基于阵列式红外传感器模块的测量值可通过两方面参数确定,一是基于阵列式红外传感器模块在其上下方向上测量人体的位置参数;另外是基于阵列式红外传感器模块在其左右方向上测量人体的位置参数。
图8所示为阵列式红外传感器模块在其上下方向上测量人体的位置参数的示意图,图中1为空调器,2是安装在空调器上的阵列式红外传感器模块,3为人体所在位置,4是房间四周的墙体,5是地面,阵列式红外传感器模块可检测到上下方向上与人体位置的连线与安装阵列式红外传感器模块的空调器所固定的墙面的夹角大小,即图中阵列式红外传感器模块与人体位置的连线L和与固定空调器墙面竖直平行的线H的夹角θ值,又因为空调器的安装高度为一固定值,即图中的H为固定值,其值可通过用户对空调器安装后的高度进行测量输入到空调器的控制界面中获得,或者可以粗略的估算得到,这样通过H和夹角θ的值通过三角函数公式可以计算得到W的大小:W=H*tanθ,即获得人体所在位置相对空调器在地面方向上的最短距离W值。
图9所示为阵列式红外传感器模块在其左右方向上测量人体的位置参数的示意图,图中1为空调器,2是安装在空调器上的阵列式红外传感器模块,3为人体,4是房间四周的墙体,A1和A2是人体所在的不同位置点,阵列式红外传感器模块在左右方向上能扫描检测周围环境和物体的范围的最大视角是固定的,如图中L1和L4线构成的夹角b3为阵列式红外传感器模块在左右方向上能检测到周围环境和物体的最大视角,当人处在房间中的不同位置时,如图中的A1和A2点,其在位于最大视角范围的在左右方向上的位置可以被阵列式红外传感器模块检测确定,由于L1和L4线是固定的,人体与阵列式红外传感器模块确定的连线与这两个边的夹角就可以被检测得到,如人体位于A1点位置时,人体与阵列式红外传感器模块确定的 连线L2与L1的夹角b1的大小可以被检测得到;同理人体位于A2点位置时,人体与阵列式红外传感器模块确定的连线L3与L1的夹角b2的大小可以被检测得到。这样通过夹角b1和b2的大小就可以确定人体在阵列式红外传感器模块左右方向上的位置,当然夹角不一定固定是人体与阵列式红外传感器模块确定的连线与最大视角左边线L1形成的角度,也可以是人体与阵列式红外传感器模块确定的连线与最大视角右边连续L4形成的角度,或者是人体与阵列式红外传感器模块确定的连线与空调所在墙面的垂直线确定的角度。
通过上述阵列式红外传感器模块在其上下方向上测量人体的位置参数和在其左右方向上测量人体的位置参数即可确定人体在房间中的位置。
根据人体在房间中的区域确定了人体所在的位置,再根据空调器运行风速值和环境温度值,就可以确定制冷模式下人体附近的空气温度值。根据实验可知,当人体所在的位置越靠近空调器所在正对位置时,人体附近的空气温度值与环境温度值偏差越大;当人体所在的位置越远离空调器所在正对位置时,人体附近的空气温度值与环境温度值偏差越小。当空调器运行风速值越高时,人体附近的空气温度值与环境温度值偏差越小;当空调器运行风速值越低时,人体附近的空气温度值与环境温度值偏差越大。
具体地,可根据人体在房间中的位置不同,将房间内的空间分为若干个区域,如图10所示,将房间内的区域分为A至E 5个区域,其中C区域为相对靠近空调器正对位置的区域。将空调器的运行风速值大小从小到大分为若干个等级F,每个风速等级具有相应的运行风速值。本实施例中,根据房间划分区域以及运行风速的等级与人体附近的空气温度值之间的关系,可以确定人体附近的空气温度值。例如:
Figure PCTCN2017086426-appb-000003
Figure PCTCN2017086426-appb-000004
Figure PCTCN2017086426-appb-000005
以上表格可以看出,如空调器运行某一个风速等级如60时,如果人体位于房间内的不同区域,可以看出人体相对靠近空调器正对位置的C区域的空气温度值与环境温度值相差最大,而其他A、B、D、E区域空气温度值与环境温度值相差最要小。如当人体都处在同一个区域如C区域时,空调器运行风速为100等级时要比运行风速为80等级对应的人体附近的空气温度值与环境温度值偏差值小。在获得当前人体所处的区域,以及空调当前的运行风速值后,即可根据上表中的关系,获得人体附近的空气温度值。
在制热模式下,检测人体附近的空气温度值时,由于与人体所在的位置关系很小,因此不需要考虑此参数,制热模式下对人体附近的空气温度其决定新影响的是空调器的运行风速值,由于人体对制热模式下的热风感受比制冷模式下的冷风感受要敏感,且对不同大小的热风风速感受差别明显,因此不适合采取固定的计算法则来根据环境温度值T1来获取人体附近的空气温度值,而需要根据不同的风速区间来区别计算。例如可以根据空调器的运行风速值按照风速从小到大分为100个等级,并将这100个等级分为10个区间,每个区间采用不同的计算法则:
Figure PCTCN2017086426-appb-000006
Figure PCTCN2017086426-appb-000007
其中Ta为人体附近的空气温度值,T1为环境温度值,c1、c2、c3、c4、c5、c6为正数值且互不相等。
根据实验获知,当风速越高时,人体附近的空气温度与环境温度差别越小,风速越低时,人体附近的空气温度与环境温度差别越大,即上述c1、c2、c3、c4、c5、c6的大小关系为:c1>c2>c3>c4>c5>c6,例如上面的表格列举c1、c2、c3、c4、c5、c6的具体值时可以如下:
风速区间 计算法则
[1,10] Ta=T1-11
[11,30] Ta=T1-9.3
[31,50] Ta=T1-8.4
[51,70] Ta=T1-4.1
[71,90] Ta=T1-2.4
[91,100] Ta=T1-0.9
步骤S30,根据所述人体表面温度值和房间内辐射温度的差值获得人体的第一散热量,根据所述人体附近的空气温度值获得人体的第二散热量,根据所述人体的第一散热量和第二散热量获得人体的散热量。
根据热力学第一定律,人体产生的散热量基本等于人体消耗的热量,因此通过测量人体消耗的热量即可得到人体的散热量,人体消耗的热量可通过以下公式计算:
H=H1+H2
其中H1=Φ*(Tcl-Tax)
H2=A1*Mh*(A2-Ta)
其中H1为人体的第一散热量,主要与Tcl和Tax相关,Tcl为人体表面的温度值,Tax为辐射温度值,Φ为附加计算系数,这些计算系数为人体热舒适性研究领域的一些通用计算系数,如考虑周围环境的有效辐射面积系数f_eff、着装的人体面积系数f_cl,Φ=f_eff*f_cl,此时H1=f_eff*f_cl*(Tcl-Ta),通过计算人体表面的温度值Tcl和辐射温度Ta的差值再结合计算系数Φ,得到人体的第一散热量H1。H2为人体的第二散热量,H2的计算主要与人体代谢率Mh和人体附近的空气温度值Ta相关,其中人体代谢率Mh于人的年龄相关,不同年龄阶段的人群如老人和青年不同,A1和A2为引入的固定计算系数,可通过实验获得。通过确定了第一散热量H1和第二散热量H2,再求和就得到了人体的总散热量H。
步骤S40,根据所述人体的散热量,获得人体的冷热感状态。
人体的冷热感状态可通过具体的不同值来体现,如下表:
冷热感状态值 冷热感区间 热舒适感
-3≤M<-2 区间8
-2<M≤-1 区间7 有点冷
-1<M≤0.5 区间6
-0.5≤M<0 区间5 舒适
0≤M≤0.5 区间4 舒适
0.5<M≤1 区间3
1<M≤2 区间2 有点热
2<M≤3 区间1
上表中通过冷热感状态值M的大小分为8个区间,分别代表了 人体不同的热舒适感觉,其中区间5为稍微凉爽的舒适感,区间6为稍微暖和的舒适感。
由于人体的冷热感状态与人体消耗的热量相关,而人体消耗的热量等于人体的散热量,因此人体的散热量的大小反映了人的冷热感状态,通过前期空调器研发过程中对不同用户的冷热感觉进行体验测试,并根据当时计算得到的不同冷热感觉下的散热量值,可通过拟合公式获得二者之间的关系式,例如冷热感状态值M和散热量H的关系式可以表示如下:
M=a0+a1H+a2H2+a3H3+.....+anHn
其中a0、a1、a2、a3、an为根据实验获得的不同的计算系数值,n为正数值,其取值大小依据具体的H和M数据组之间的形成拟合公式确定,如N可以取值为4。通过以上公式中人体的冷热感值M与散热量H之间的关系式,当计算得到人体的散热量值H后,代入以上公式就得到了人体的冷热感状态值M。需要说明的是,上述拟合公式仅仅用来说明人体冷热感值与散热量存在一定的关系,并不限定本发明的范围,根据前期实验过程中H和M数据组也可以根据其他拟合方法拟合,获得其他拟合公式。
步骤S50,根据所述冷热感状态控制空调器运行。
根据人体的冷热感状态值,控制空调器的运行参数,使人体的冷热感状态值往舒适的区间变化,空调器的运行参数包括设定温度、运行风速、导风条状态中的一种或者多种,例如当人体当前的冷热感状态值为2.5位于区间1即处于热的感觉,通过自动空调器的设定温度时的当前空调器的设定温度降低以使得房间内的环境温度降低,使得人的冷热感状态值逐渐减小,最后保持在区间4内,使得人体冷热感状态变化到舒适状态。
根据本发明所述的空调器控制方法,通过获取人体表面的温度以及房间内辐射温度值得到人体的第一散热量,并通过检测人体附近的空气温度值获得人体的第二散热量,根据人体的第一散热量和人体的第二散热量获得人体的散热量值,并进一步根据人体的散热量值获得人体的当前冷热感状态值,通过此种方式获取的冷热感状态值准确 性高,并进一步在获取冷热感状态值以后根据空调器运行的制冷或者制热模式对冷热感状态进行修正,使得人体的冷热感状态值更加准确的适应于当前空调器运行不同温度环境,最后通过人体当前的冷热感状态值自动调整空调器的运行参数,使得人体处于舒适的状态,解决了由于用户手动调节空调器的运行参数带来的过冷或者过热的不舒适感。
进一步的,参照图7,图7为根据本发明的第五实施例的空调器控制方法的流程示意图,基于上述本发明的空调控制方法第四实施例,在本实施例中,在上述步骤S40之后还包括:
步骤S401,当空调器运行制冷模式时,检测环境温度值,根据温度值修正冷热感状态值。
在根据散热量计算得到人体的冷热感状态值后,如果空调器运行制冷模式,此时可根据检测到的环境温度值,进一步对冷热感状态值进行修正。
具体的调整规则如下:
获取空调器检测到的环境温度值T1,根据环境温度值T1值的大小对冷热感状态值M进行修正,例如可以通过一个公式对其修正,如:
M=aT13+b T12+c T1+d
其中a、b、c、d为不同的计算系数值。
或者也可以根据环境温度值T1值分为不同的温度区间,根据不同的温度区间对冷热感状态值M值进行不同的修正,如:
a1<T1≤a2时,M=M+b1
a2<T1≤a3时,M=M+b2
T1>a4时,M=M+b3
其中a1<a2<a3,b1、b2、b3为不同的修正值,例如具体的修正值可以如下:
18℃<T1≤21℃时M=M–1
21℃<T1≤25℃时M=M–0.5
T1>25℃时M=M+1
从以上修正的计算式可以看出,当环境温度值T1处于偏冷状态(18℃<T1≤21℃)或者偏热状态时(T1>25℃),对冷热感状态值M的修正大;当环境温度值T1处于比较舒适的状态(21℃<T1≤25℃)时,对冷热感状态值M的修正小。
进一步的,冷热感状态值M值可以限定上下限值,如:
M≤-3时,取M=-3
M≥3时,取M=3
本发明实施例中,通过当空调器运行制冷模式时,检测环境温度值,根据该环境温度值修正冷热感状态值,从而进一步保证了冷热感状态值所反映的用户当前的冷热感状态更加贴近用户当前的冷热感受,使得后续根据冷热感状态值控制空调器调整运行参数时更加准确,进一步提升用户的舒适性体验。
参照图11,图11为本发明的空调器第四实施例的功能模块示意图。在本实施例中,所述空调器包括:
温度检测模块10,获取房间内辐射温度值以及人体表面的温度值;
空气温度检测模块20,用于检测人体附近的空气温度值;
冷热感获取模块30,用于根据人体表面温度值和房间内辐射温度的差值获得人体的第一散热量,根据人体附近的空气温度值获得人体的第二散热量,根据人体的第一散热量和第二散热量获得人体的散热量,根据所述人体的散热量,获得人体的冷热感状态;
控制模块40,根据所述的冷热感状态控制空调器运行。
上述人体表面的温度是人体体表的温度值,辐射温度为环境四周表面对人体辐射作用的温度。以人在房间内为例,此时辐射温度为房间内的周围环境如四周的墙体、窗户等对人体辐射作用的温度值,这两个温度值可通过具有测量热图像功能的传感器测量读取得到,例如阵列式红外传感器模块,其红外传感器扫描人体或者周围环境时会得到热图像,如图5所示,热图像通过阵列排布方式可以获得其中每 个小区域即其中一个像素的温度值,如图5所示每个像素的颜色深浅表示了其温度值的高低不同,并可读取每个像素的具体温度值。热红外传感器扫描人体时同样会得到一定面积区域的热图像,因为人体表面的各个地方的温度是不相同的,因此反映到对应的热图像也不相同,因此测量人体表面的温度时可以通过测量人体对应热图像所有像素的温度点取平均值的方式获取,即人体表面的平均温度值表示人体表面温度值。而测量房间内辐射温度是通过红外传感器扫描房间内的四周区域如墙壁、天花板、窗户形成的热图像后,去掉人体所在热图像部分,读取剩下部分的热图像的各个像素的温度值然后取平均值就获得了房间内的辐射温度值,即房间内的平均辐射温度值表示房间内的辐射温度值。
在房间内可以通过空调器检测到环境温度值,一般通过安装在空调器上的温度传感器检测得到,为了根据空调器检测的环境温度值获得在房间内人体附近的空气温度值,需要结合空调器的具体制冷制热的运行状态来考虑,因为制冷和制热送风的风速时对人体附近的空气温度的影响不同,且制冷模式下送风时对人体处于房间内不同的位置也对人体附近的空气温度影响很大,制热送风时对人体处于房间内的位置影响很小,为了获得人体附近的空气温度,需要具体结合空调器的制冷制热模式考虑不同的影响因素。
具体获取人体附近的空气温度值的规则如下:
在制冷模式下,检测人体所在的位置,检测空调器运行风速值和环境温度值,根据所述人体所在位置、空调器运行风速值和环境温度值获取人体附近的空气温度值。
进一步的,检测人体所在的位置时,通过安装在空调器上的红外传感器在左右方向上的检测人的位置角度以及人与所述红外传感器的在上下方向上检测人的位置角度来确定人体所在位置。
从阵列式红外传感器模块不仅可以读取到房间内辐射温度值以及人体表面的温度值,还可以通过其获得人体在房间内的所在位置。人体在房间内的位置基于阵列式红外传感器模块的测量值可通过两方面参数确定,一是基于阵列式红外传感器模块在其上下方向上测量 人体的位置参数;另外是基于阵列式红外传感器模块在其左右方向上测量人体的位置参数。
图5所示为阵列式红外传感器模块在其上下方向上测量人体的位置参数的示意图,图中1为空调器,2是安装在空调器上的阵列式红外传感器模块,3为人体所在位置,4是房间四周的墙体,5是地面,阵列式红外传感器模块可检测到上下方向上与人体位置的连线与安装阵列式红外传感器模块的空调器所固定的墙面的夹角大小,即图中阵列式红外传感器模块与人体位置的连线L和与固定空调器墙面竖直平行的线H的夹角θ值,又因为空调器的安装高度为一固定值,即图中的H为固定值,其值可通过用户对空调器安装后的高度进行测量输入到空调器的控制界面中获得,或者可以粗略的估算得到,这样通过H和夹角θ的值通过三角函数公式可以计算得到W的大小:W=H*tanθ,即获得人体所在位置相对空调器在地面方向上的最短距离W值。
图8所示为阵列式红外传感器模块在其左右方向上测量人体的位置参数的示意图,图中1为空调器,2是安装在空调器上的阵列式红外传感器模块,3为人体,4是房间四周的墙体,A1和A2是人体所在的不同位置点,阵列式红外传感器模块在左右方向上能扫描检测周围环境和物体的范围的最大视角是固定的,如图中L1和L4线构成的夹角b3为阵列式红外传感器模块在左右方向上能检测到周围环境和物体的最大视角,当人处在房间中的不同位置时,如图中的A1和A2点,其在位于最大视角范围的在左右方向上的位置可以被阵列式红外传感器模块检测确定,由于L1和L4线是固定的,人体与阵列式红外传感器模块确定的连线与这两个边的夹角就可以被检测得到,如人体位于A1点位置时,人体与阵列式红外传感器模块确定的连线L2与L1的夹角b1的大小可以被检测得到;同理人体位于A2点位置时,人体与阵列式红外传感器模块确定的连线L3与L1的夹角b2的大小可以被检测得到。这样通过夹角b1和b2的大小就可以确定人体在阵列式红外传感器模块左右方向上的位置,当然夹角不一定固定是人体与阵列式红外传感器模块确定的连线与最大视角左边 线L1形成的角度,也可以是人体与阵列式红外传感器模块确定的连线与最大视角右边连续L4形成的角度,或者是人体与阵列式红外传感器模块确定的连线与空调所在墙面的垂直线确定的角度。
通过上述阵列式红外传感器模块在其上下方向上测量人体的位置参数和在其左右方向上测量人体的位置参数即可确定人体在房间中的位置。
根据人体在房间中的区域确定了人体所在的位置,再根据空调器运行风速值和环境温度值,就可以确定制冷模式下人体附近的空气温度值。根据实验可知,当人体所在的位置越靠近空调器所在正对位置时,人体附近的空气温度值与环境温度值偏差越大;当人体所在的位置越远离空调器所在正对位置时,人体附近的空气温度值与环境温度值偏差越小。当空调器运行风速值越高时,人体附近的空气温度值与环境温度值偏差越小;当空调器运行风速值越低时,人体附近的空气温度值与环境温度值偏差越大。
具体地,可根据人体在房间中的位置不同,将房间内的空间分为若干个区域,如图10所示,将房间内的区域分为A至E 5个区域,其中C区域为相对靠近空调器正对位置的区域。将空调器的运行风速值大小从小到大分为若干个等级F,每个风速等级具有相应的运行风速值。本实施例中,根据房间划分区域以及运行风速的等级与人体附近的空气温度值之间的关系,可以确定人体附近的空气温度值。例如:
Figure PCTCN2017086426-appb-000008
Figure PCTCN2017086426-appb-000009
Figure PCTCN2017086426-appb-000010
以上表格可以看出,如空调器运行某一个风速等级如60时,如果人体位于房间内的不同区域,可以看出人体相对靠近空调器正对位置的C区域的空气温度值与环境温度值相差最大,而其他A、B、D、E区域空气温度值与环境温度值相差最要小。如当人体都处在同一个区域如C区域时,空调器运行风速为100等级时要比运行风速为80等级对应的人体附近的空气温度值与环境温度值偏差值小。在获得当前人体所处的区域,以及空调当前的运行风速值后,即可根据上表中的关系,获得人体附近的空气温度值。
在制热模式下,检测人体附近的空气温度值时,由于与人体所在的位置关系很小,因此不需要考虑此参数,制热模式下对人体附近的空气温度其决定新影响的是空调器的运行风速值,由于人体对制热模式下的热风感受比制冷模式下的冷风感受要敏感,且对不同大小的热风风速感受差别明显,因此不适合采取固定的计算法则来根据环境温度值T1来获取人体附近的空气温度值,而需要根据不同的风速区间来区别计算。例如可以根据空调器的运行风速值按照风速从小到大分为100个等级,并将这100个等级分为10个区间,每个区间采用不同的计算法则:
Figure PCTCN2017086426-appb-000011
Figure PCTCN2017086426-appb-000012
其中Ta为人体附近的空气温度值,T1为环境温度值,c1、c2、c3、c4、c5、c6为正数值且互不相等。
根据实验获知,当风速越高时,人体附近的空气温度与环境温度差别越小,风速越低时,人体附近的空气温度与环境温度差别越大,即上述c1、c2、c3、c4、c5、c6的大小关系为:c1>c2>c3>c4>c5>c6,例如上面的表格列举c1、c2、c3、c4、c5、c6的具体值时可以如下:
风速区间 计算法则
[1,10] Ta=T1-11
[11,30] Ta=T1-9.3
[31,50] Ta=T1-8.4
[51,70] Ta=T1-4.1
[71,90] Ta=T1-2.4
[91,100] Ta=T1-0.9
根据热力学第一定律,人体产生的散热量基本等于人体消耗的热量,因此通过测量人体消耗的热量即可得到人体的散热量,人体消耗的热量可通过以下公式计算:
H=H1+H2
其中H1=Φ*(Tcl-Tax)
H2=A1*Mh*(A2-Ta)
其中H1为人体的第一散热量,主要与Tcl和Tax相关,Tcl为人体表面的温度值,Tax为辐射温度值,Φ为附加计算系数,这些计算系数为人体热舒适性研究领域的一些通用计算系数,如考虑周围环境的有效辐射面积系数f_eff、着装的人体面积系数f_cl,Φ=f_eff*f_cl,此时H1=f_eff*f_cl*(Tcl-Ta),通过计算人体表面的温度值Tcl和辐射温度Ta的差值再结合计算系数Φ,得到人体的第一散热量H1。H2为人体的第二散热量,H2的计算主要与人体代谢率Mh和人体附近 的空气温度值Ta相关,其中人体代谢率Mh于人的年龄相关,不同年龄阶段的人群如老人和青年不同,A1和A2为引入的固定计算系数,可通过实验获得。通过确定了第一散热量H1和第二散热量H2,再求和就得到了人体的总散热量H。
人体的冷热感状态可通过具体的不同值来体现,如下表:
冷热感状态值 冷热感区间 热舒适感
-3≤M<-2 区间8
-2<M≤-1 区间7 有点冷
-1<M≤0.5 区间6
-0.5≤M<0 区间5 舒适
0≤M≤0.5 区间4 舒适
0.5<M≤1 区间3
1<M≤2 区间2 有点热
2<M≤3 区间1
上表中通过冷热感状态值M的大小分为8个区间,分别代表了人体不同的热舒适感觉,其中区间5为稍微凉爽的舒适感,区间6为稍微暖和的舒适感。
由于人体的冷热感状态与人体消耗的热量相关,而人体消耗的热量等于人体的散热量,因此人体的散热量的大小反映了人的冷热感状态,通过前期空调器研发过程中对不同用户的冷热感觉进行体验测试,并根据当时计算得到的不同冷热感觉下的散热量值,可通过拟合公式获得二者之间的关系式,例如冷热感状态值M和散热量H的关系式可以表示如下:
M=a0+a1H+a2H2+a3H3+.....+anHn
其中a0、a1、a2、a3、an为根据实验获得的不同的计算系数值,n为正数值,其取值大小依据具体的H和M数据组之间的形成拟合 公式确定,如N可以取值为4。通过以上公式中人体的冷热感值M与散热量H之间的关系式,当计算得到人体的散热量值H后,代入以上公式就得到了人体的冷热感状态值M。需要说明的是,上述拟合公式仅仅用来说明人体冷热感值与散热量存在一定的关系,并不限定本发明的范围,根据前期实验过程中H和M数据组也可以根据其他拟合方法拟合,获得其他拟合公式。
根据人体的冷热感状态值,控制空调器的运行参数,使人体的冷热感状态值往舒适的区间变化,空调器的运行参数包括设定温度、运行风速、导风条状态中的一种或者多种,例如当人体当前的冷热感状态值为2.5位于区间1即处于热的感觉,通过自动空调器的设定温度时的当前空调器的设定温度降低以使得房间内的环境温度降低,使得人的冷热感状态值逐渐减小,最后保持在区间4内,使得人体冷热感状态变化到舒适状态。
根据本发明所述的空调器控制方法,通过获取人体表面的温度以及房间内辐射温度值得到人体的第一散热量,并通过检测人体附近的空气温度值获得人体的第二散热量,根据人体的第一散热量和人体的第二散热量获得人体的散热量值,并进一步根据人体的散热量值获得人体的当前冷热感状态值,通过此种方式获取的冷热感状态值准确性高,并进一步在获取冷热感状态值以后根据空调器运行的制冷或者制热模式对冷热感状态进行修正,使得人体的冷热感状态值更加准确的适应于当前空调器运行不同温度环境,最后通过人体当前的冷热感状态值自动调整空调器的运行参数,使得人体处于舒适的状态,解决了由于用户手动调节空调器的运行参数带来的过冷或者过热的不舒适感。
进一步的,基于上述本发明的空调器第四实施例,本发明的空调器第五实施例中,在上述温度获取模块20用于:
在根据人体的散热量获得人体的冷热感状态之后,若空调器运行制冷模式,则检测环境温度值,根据温度值修正冷热感状态值。
在根据散热量计算得到人体的冷热感状态值后,如果空调器运行 制冷模式,此时可根据检测到的环境温度值,进一步对冷热感状态值进行修正。
具体的调整规则如下:
获取空调器检测到环境温度值T1,根据环境温度值T1值的大小对冷热感状态值M进行修正,例如可以通过一个公式对其修正,如:
M=aT13+b T12+c T1+d
其中a、b、c、d为不同的计算系数值。
或者也可以根据环境温度值T1值分为不同的温度区间,根据不同的温度区间对冷热感状态值M值进行不同的修正,如:
a1<T1≤a2时M=M+b1
a2<T1≤a3时M=M+b2
T1>a4时M=M+b3
其中a1<a2<a3,b1、b2、b3为不同的修正值,例如具体的修正值可以如下:
18℃<T1≤21℃时M=M–1
21℃<T1≤25℃时M=M–0.5
T1>25℃时M=M+1
从以上修正的计算式可以看出,当环境温度值T1处于偏冷状态(18℃<T1≤21℃)或者偏热状态时(T1>25℃),对冷热感状态值M的修正大;当环境温度值T1处于比较舒适的状态(21℃<T1≤25℃)时,对冷热感状态值M的修正小。
进一步的,冷热感状态值M值可以限定上下限值,如:
M≤-3时,取M=-3
M≥3时,取M=3
本发明实施例中,通过当空调器运行制冷模式时,检测环境温度值,根据温度值修正冷热感状态,从而进一步保证了冷热感状态值所反映的用户当前的冷热感状态更加贴近用户当前的冷热感受,使得后续根据冷热感状态进行空调器调整时更加准确,进一步提升用户的舒适性体验。
根据本发明所述的空调器,通过获取人体表面的温度以及房间内辐射温度值的差值获得人体的第一散热量,通过人体附近的空气温度值获得人体的第二散热量,并通过人体的第一散热量和人体的第二散热量得到人体的散热量值,并进一步根据人体的散热量值获得人体的当前冷热感状态值,由于考虑了人体附近温度值的影响,通过此种方式获取的冷热感状态值准确性高,并进一步在获取冷热感状态值以后根据空调器运行的制冷模式对冷热感状态进行修正,使得人体的冷热感状态值更加准确的适应于当前空调器运行不同温度环境,最后通过人体当前的冷热感状态值自动调整空调器的运行参数,使得人体处于舒适的状态,解决了由于用户手动调节空调器的运行参数带来的过冷或者过热的不舒适感。
图12为根据本发明的第七实施例的空调器控制方法的流程示意图。如图12所示,本发明实施例的空调器控制方法包括以下步骤:
步骤S10,获取房间内辐射温度值以及人体表面的温度值。
上述人体表面的温度是人体体表的温度值,辐射温度为环境四周表面对人体辐射作用的温度。以人在房间内为例,此时辐射温度为房间内的周围环境如四周的墙体、窗户等对人体辐射作用的温度值,这两个温度值可通过具有测量热图像功能的传感器测量读取得到,例如阵列式红外传感器模块,其红外传感器扫描人体或者周围环境时会得到热图像,如图5所示,热图像通过阵列排布方式可以获得其中每个小区域即其中一个像素的温度值,每个像素的颜色深浅表示了其温度值的高低不同,并可读取每个像素的具体温度值。热红外传感器扫描人体时同样会得到一定面积区域的热图像,因为人体表面的各个地方的温度是不相同的,因此反映到对应的热图像也不相同,因此测量人体表面的温度时可以通过测量人体对应热图像所有像素的温度点取平均值的方式获取,即人体表面的平均温度值表示人体表面温度值。而测量房间内辐射温度是通过红外传感器扫描房间内的四周区域如墙壁、天花板、窗户形成的热图像后,去掉人体所在热图像部分,读取剩下部分的热图像的各个像素的温度值然后取平均值就获得了房 间内的辐射温度值,即房间内的平均辐射温度值表示房间内的辐射温度值。
步骤S20,获取人体所在位置,以及该位置处的运行风速值。
从阵列式红外传感器模块不仅可以读取到房间内辐射温度值以及人体表面的温度值,还可以通过其获得人体在房间内的所在位置。人体在房间内的位置基于阵列式红外传感器模块的测量值可通过两方面参数确定,一是基于阵列式红外传感器模块在其上下方向上测量人体的位置参数;另外是基于阵列式红外传感器模块在其左右方向上测量人体的位置参数。
图8所示为阵列式红外传感器模块在其上下方向上测量人体的位置参数的示意图,图中1为空调器,2是安装在空调器上的阵列式红外传感器模块,3为人体所在位置,4是房间四周的墙体,5是地面,阵列式红外传感器模块可检测到上下方向上与人体位置的连线与安装阵列式红外传感器模块的空调器所固定的墙面的夹角大小,即图中阵列式红外传感器模块与人体位置的连线L和与固定空调器墙面竖直平行的线H的夹角θ值,又因为空调器的安装高度为一固定值,即图中的H为固定值,其值可通过用户对空调器安装后的高度进行测量输入到空调器的控制界面中获得,或者可以粗略的估算得到,这样通过H和夹角θ的值通过三角函数公式可以计算得到W的大小:W=H*tanθ,即获得人体所在位置相对空调器在地面方向上的最短距离W值。
图9所示为阵列式红外传感器模块在其左右方向上测量人体的位置参数的示意图,图中1为空调器,2是安装在空调器上的阵列式红外传感器模块,3为人体,4是房间四周的墙体,A1和A2是人体所在的不同位置点,阵列式红外传感器模块在左右方向上能扫描检测周围环境和物体的范围的最大视角是固定的,如图中L1和L4线构成的夹角b3为阵列式红外传感器模块在左右方向上能检测到周围环境和物体的最大视角,当人处在房间中的不同位置时,如图中的A1和A2点,其在位于最大视角范围的在左右方向上的位置可以被阵列式红外传感器模块检测确定,由于L1和L4线是固定的,人体与阵 列式红外传感器模块确定的连线与这两个边的夹角就可以被检测得到,如人体位于A1点位置时,人体与阵列式红外传感器模块确定的连线L2与L1的夹角b1的大小可以被检测得到;同理人体位于A2点位置时,人体与阵列式红外传感器模块确定的连线L3与L1的夹角b2的大小可以被检测得到。这样通过夹角b1和b2的大小就可以确定人体在阵列式红外传感器模块左右方向上的位置,当然夹角不一定固定是人体与阵列式红外传感器模块确定的连线与最大视角左边线L1形成的角度,也可以是人体与阵列式红外传感器模块确定的连线与最大视角右边连续L4形成的角度,或者是人体与阵列式红外传感器模块确定的连线与空调所在墙面的垂直线确定的角度。
通过上述阵列式红外传感器模块在其上下方向上测量人体的位置参数和在其左右方向上测量人体的位置参数即可确定人体在房间中的位置。然后再根据人体在房间中的位置以及空调运行风速,确定人体所在位置的运行风速值。
由于人处在房间中距离空调器不同位置时,感受到空调器的送风效果是不同的,因此通过确定人体所在位置位于房间中的区域,再获取空调器的运行风速值,可以最终确定人体所在位置的运行风速值。根据实验可知,当人体所在的位置越靠近空调器所在正对位置时,所述人体所在位置的运行风速与所述空调器的运行风速的相差越小;当人体所在的位置越远离空调器所在正对位置时,所述人体所在位置的运行风速与所述空调器的运行风速的相差越大。
具体地,确定人体所在位置的运行风速值可包括以下步骤:
步骤S1、预先将空调的吹风区域划分为多个子区域;
如图10所示,可将房间内的区域分为A至E 5个子区域,其中C区域为相对靠近空调器正对位置的区域。
步骤S2、获取空调的运行风速;
空调的运行风速值可以按照空调器的风速档位可分为若干个等级,如将空调器的运行风速从小到大分为100个档位,1为最小档,100为最高档,此时风速档位值为V2值。
步骤S3、获取人体所在位置所属的子区域;
通过红外阵列传感器模块所测量的位置参数,以及预先划分的子区域,可以获得人体位于哪个子区域中,即人体所在位置所属的子区域。例如,人体位于空调正对位置,则该人体位于C区域。
步骤S4、根据空调的运行风速,以及人体所在位置所属的子区域,确定人体所在位置的运行风速值。
本实施例中,根据人体所在位置的运行风速与空调运行风速之间的关系,可以确定人体位于不同区域时的运行风速值V1,例如空调器的运行风速值为风速档位值V2,此时根据人所在的位置得到的不同区域的运行风速值也是风速的档位值,以V1表示,具体关系如下:
Figure PCTCN2017086426-appb-000013
如从上述表格可以看出:C区域是最靠近空调器正对位置的区域,人体位于C区域时获得运行风速值是最大的,A、B、D、E区域比较远离靠近空调器正对位置的C区域,人体位于这两个区域时获得运行风速值相对减小。在确定人体所位于的子区域以及空调运行风速V2后,即可根据上表中的关系式,获得人体所在位置的运行风速值。
步骤S30,根据人体表面温度值和房间内辐射温度的差值以及人体所在位置处的运行风速值获得人体的散热量。
根据热力学第一定律,人体产生的散热量基本等于人体消耗的热量,因此通过测量人体消耗的热量即可得到人体的散热量,人体消耗 的热量可通过以下公式计算:
Figure PCTCN2017086426-appb-000014
其中H为人体的散热量,Tcl为人体表面的温度值,Ta为辐射温度值,Φ为附加计算系数,这些计算系数为人体热舒适性研究领域的一些通用计算系数,如考虑周围环境的有效辐射面积系数f_eff、着装的人体面积系数f_cl,Φ=f_eff*f_cl,V为人体所在位置的风速值,X为与风速值V关联的一个计算常数,此常数由实验确定,此时可以确定
Figure PCTCN2017086426-appb-000015
通过计算人体表面的温度值Tcl和辐射温度Ta的差值以及人体所在位置的风速值V再结合计算系数Φ,得到人体的散热量H。
步骤S40,根据所述人体的散热量获得人体的冷热感状态。
人体的冷热感状态可通过具体的不同值来体现,如下表:
冷热感状态值 冷热感区间 热舒适感
-3≤M<-2 区间8
-2<M≤-1 区间7 有点冷
-1<M≤0.5 区间6
-0.5≤M<0 区间5 舒适
0≤M≤0.5 区间4 舒适
0.5<M≤1 区间3
1<M≤2 区间2 有点热
2<M≤3 区间1
上表中通过冷热感状态值M的大小分为8个区间,分别代表了人体不同的热舒适感觉。
由于人体的冷热感状态与人体消耗的热量相关,而人体消耗的热量等于人体的散热量,因此人体的散热量的大小反映了人的冷热感状 态,通过前期空调器研发过程中对不同用户的冷热感觉进行体验测试,并根据当时计算得到的不同冷热感觉下的散热量值,可通过拟合公式获得二者之间的关系式,例如冷热感状态值M和散热量H的关系式可以表示如下:
M=a0+a1H+a2H2+a3H3+.....+anHn
其中a0、a1、a2、a3、an为根据实验获得的不同的计算系数值,n为正数值,其取值大小依据具体的H和M数据组之间的形成拟合公式确定,如N可以取值为4。通过以上公式中人体的冷热感值M与散热量H之间的关系式,当计算得到人体的散热量值H后,代入以上公式就得到了人体的冷热感状态值M。需要说明的是,上述拟合公式仅仅用来说明人体冷热感值与散热量存在一定的关系,并不限定本发明的范围,根据前期实验过程中H和M数据组也可以根据其他拟合方法拟合,获得其他拟合公式。
步骤S50,根据所述冷热感状态控制空调器运行。
根据人体的冷热感状态值,控制空调器的运行参数,使人体的冷热感状态值往舒适的区间变化,空调器的运行参数包括设定温度、运行风速、导风条状态中的一种或者多种,例如当人体当前的冷热感状态值为2.5位于区间1即处于热的感觉,通过自动空调器的设定温度时的当前空调器的设定温度降低以使得房间内的环境温度降低,使得人的冷热感状态值逐渐减小,最后保持在区间4内,使得人体冷热感状态变化到舒适状态。
根据本发明所述的空调器控制方法,通过获取人体表面的温度以及房间内辐射温度值得到人体的散热量值,并进一步根据人体的散热量值获得人体的当前冷热感状态值,通过此种方式获取的冷热感状态值准确性高,并进一步在获取冷热感状态值以后根据空调器运行的制冷或者制热模式对冷热感状态进行修正,使得人体的冷热感状态值更加准确的适应于当前空调器运行不同温度环境,最后通过人体当前的冷热感状态值自动调整空调器的运行参数,使得人体处于舒适的状态,解决了由于用户手动调节空调器的运行参数带来的过冷或者过热的不舒适感。
下面参照附图描述根据本发明另外实施例提出的空调器。
参照图13,图13为本发明的空调器第七实施例的功能模块示意图。在本实施例中,所述空调器包括:
温度检测模块10,获取房间内辐射温度值以及人体表面的温度值;
人体位置检测模块20,用于检测人体所在位置;
风速获取模块30,用于获取所述人体所在位置的运行风速值;
冷热感获取模块40,用于根据人体表面温度值和房间内辐射温度的差值以及人体所在位置处的运行风速值获得人体的散热量,并进一步根据所述散热量获得人体的冷热感状态;
控制模块50,根据所述的冷热感状态控制空调器运行。
根据热力学常识,人体表面的温度是人体体表的温度值,辐射温度为环境四周表面对人体辐射作用的平均温度,以人在房间内为例,此时辐射温度为房间内的周围环境如四周的墙体、窗户等对人体辐射作用的平均温度值,这两个温度值可通过具有测量热图像功能的传感器如松下的阵列式红外传感器模块测量读取得到,其红外传感器扫描人体或者周围环境时会得到热图像,如图5所示,热图像通过阵列排布方式可以获得其中每个小区域即其中一个像素的温度值,如图5所示每个像素的颜色深浅表示了其温度值的高低不同,并可读取每个像素的具体温度值。热红外传感器扫描人体时同样会得到一定面积区域的热图像,因为人体表面的各个地方的温度是不相同的,因此反映到对应的热图像也不相同,因此测量人体表面的温度时可以通过测量人体对应热图像所有像素的温度点取平均值的方式获取,以此平均值代表了人体的平均温度值,即人体表面的平均温度值代表了人体表面温度值。而测量房间内辐射温度是通过红外传感器扫描房间内的四周区域如墙壁、天花板、窗户形成的热图像后,去掉人体所在热图像部分,读取剩下部分的热图像的各个像素的温度值然后取平均值就获得了房间内的辐射温度,即房间内的平均辐射温度值代表了房间内的辐射温度值。
从阵列式红外传感器模块不仅可以读取到房间内辐射温度值以及人体表面的温度值,还可以通过其获得人体在房间内的所在位置。人体在房间内的位置基于阵列式红外传感器模块的测量值可通过两方面参数确定,一是基于阵列式红外传感器模块在其上下方向上测量人体的位置参数;另外是基于阵列式红外传感器模块在其左右方向上测量人体的位置参数。
图8所示为阵列式红外传感器模块在其上下方向上测量人体的位置参数的示意图,图中1为空调器,2是安装在空调器上的阵列式红外传感器模块,3为人体所在位置,4是房间四周的墙体,5是地面,阵列式红外传感器模块可检测到上下方向上与人体位置的连线与安装阵列式红外传感器模块的空调器所固定的墙面的夹角大小,即图中阵列式红外传感器模块与人体位置的连线L和与固定空调器墙面竖直平行的线H的夹角θ值,又因为空调器的安装高度为一固定值,即图中的H为固定值,其值可通过用户对空调器安装后的高度进行测量输入到空调器的控制界面中获得,或者可以粗略的估算得到,这样通过H和夹角θ的值通过三角函数公式可以计算得到W的大小:W=H*tanθ,即获得人体所在位置相对空调器在地面方向上的最短距离W值。
图9所示为阵列式红外传感器模块在其左右方向上测量人体的位置参数的示意图,图中1为空调器,2是安装在空调器上的阵列式红外传感器模块,3为人体,4是房间四周的墙体,A1和A2是人体所在的不同位置点,阵列式红外传感器模块在左右方向上能扫描检测周围环境和物体的范围的最大视角是固定的,如图中L1和L4线构成的夹角b3为阵列式红外传感器模块在左右方向上能检测到周围环境和物体的最大视角,当人处在房间中的不同位置时,如图中的A1和A2点,其在位于最大视角范围的在左右方向上的位置可以被阵列式红外传感器模块检测确定,由于L1和L4线是固定的,人体与阵列式红外传感器模块确定的连线与这两个边的夹角就可以被检测得到,如人体位于A1点位置时,人体与阵列式红外传感器模块确定的连线L2与L1的夹角b1的大小可以被检测得到;同理人体位于A2 点位置时,人体与阵列式红外传感器模块确定的连线L3与L1的夹角b2的大小可以被检测得到。这样通过夹角b1和b2的大小就可以确定人体在阵列式红外传感器模块左右方向上的位置,当然夹角不一定固定是人体与阵列式红外传感器模块确定的连线与最大视角左边线L1形成的角度,也可以是人体与阵列式红外传感器模块确定的连线与最大视角右边连续L4形成的角度,或者是人体与阵列式红外传感器模块确定的连线与空调所在墙面的垂直线确定的角度。
通过上述阵列式红外传感器模块在其上下方向上测量人体的位置参数和在其左右方向上测量人体的位置参数即可确定人体在房间中的位置。然后再根据人体在房间中的位置以及空调运行风速,确定人体所在位置的运行风速值。
由于人处在房间中距离空调器不同位置时,感受到空调器的送风效果是不同的,因此通过确定人体所在位置位于房间中的区域,再获取空调器的运行风速值,可以最终确定人体所在位置的运行风速值。根据实验可知,当人体所在的位置越靠近空调器所在正对位置时,所述人体所在位置的运行风速与所述空调器的运行风速的相差越小;当人体所在的位置越远离空调器所在正对位置时,所述人体所在位置的运行风速与所述空调器的运行风速的相差越大。
具体地,确定人体所在位置的运行风速值可包括以下步骤:
步骤S1、预先将空调的吹风区域划分为多个子区域;
如图10所示,可将房间内的区域分为A至E 5个子区域,其中C区域为相对靠近空调器正对位置的区域。
步骤S2、获取空调的运行风速;
空调的运行风速值可以按照空调器的风速档位可分为若干个等级,如将空调器的运行风速从小到大分为100个档位,1为最小档,100为最高档,此时风速档位值为V2值。
步骤S3、获取人体所在位置所属的子区域;
通过红外阵列传感器模块所测量的位置参数,以及预先划分的子区域,可以获得人体位于哪个子区域中,即人体所在位置所属的子区域。例如,人体位于空调正对位置,则该人体位于C区域。
步骤S4、根据空调的运行风速,以及人体所在位置所属的子区域,确定人体所在位置的运行风速值。
本实施例中,根据人体所在位置的运行风速与空调运行风速之间的关系,可以确定人体位于不同区域时的运行风速值V1,例如空调器的运行风速值为风速档位值V2,此时根据人所在的位置得到的不同区域的运行风速值也是风速的档位值,以V1表示,具体关系如下:
Figure PCTCN2017086426-appb-000016
如从上述表格可以看出:C区域是最靠近空调器正对位置的区域,人体位于C区域时获得运行风速值是最大的,A、B、D、E区域比较远离靠近空调器正对位置的C区域,人体位于这两个区域时获得运行风速值相对减小。在确定人体所位于的子区域以及空调运行风速V2后,即可根据上表中的关系式,获得人体所在位置的运行风速值。
根据热力学第一定律,人体产生的散热量基本等于人体消耗的热量,因此通过测量人体消耗的热量即可得到人体的散热量,人体消耗的热量可通过以下公式计算:
Figure PCTCN2017086426-appb-000017
其中H为人体的散热量,Tcl为人体表面的温度值,Ta为辐射温度值,Φ为附加计算系数,这些计算系数为人体热舒适性研究领域的一些通用计算系数,如考虑周围环境的有效辐射面积系数f_eff、着 装的人体面积系数f_cl,Φ=f_eff*f_cl,V为人体所在位置的风速值,X为与风速值V关联的一个计算常数,此常数由实验确定,此时可以确定
Figure PCTCN2017086426-appb-000018
通过计算人体表面的温度值Tcl和辐射温度Ta的差值以及人体所在位置的风速值V再结合计算系数Φ,得到人体的散热量H。
人体的冷热感状态可通过具体的不同值来体现,如下表:
冷热感状态值 冷热感区间 热舒适感
-3≤M<-2 区间8
-2<M≤-1 区间7 有点冷
-1<M≤0.5 区间6
-0.5≤M<0 区间5 舒适
0≤M≤0.5 区间4 舒适
0.5<M≤1 区间3
1<M≤2 区间2 有点热
2<M≤3 区间1
上表中通过冷热感状态值M的大小分为8个区间,分别代表了人体不同的热舒适感觉。
由于人体的冷热感状态与人体消耗的热量相关,而人体消耗的热量等于人体的散热量,因此人体的散热量的大小反映了人的冷热感状态,通过前期空调器研发过程中对不同用户的冷热感觉进行体验测试,并根据当时计算得到的不同冷热感觉下的散热量值,可通过拟合公式获得二者之间的关系式,例如冷热感状态值M和散热量H的关系式可以表示如下:
M=a0+a1H+a2H2+a3H3+.....+anHn
其中a0、a1、a2、a3、an为根据实验获得的不同的计算系数值,n为正数值,其取值大小依据具体的H和M数据组之间的形成拟合 公式确定,如N可以取值为4。通过以上公式中人体的冷热感值M与散热量H之间的关系式,当计算得到人体的散热量值H后,代入以上公式就得到了人体的冷热感状态值M。需要说明的是,上述拟合公式仅仅用来说明人体冷热感值与散热量存在一定的关系,并不限定本发明的范围,根据前期实验过程中H和M数据组也可以根据其他拟合方法拟合,获得其他拟合公式。
根据人体的冷热感状态值,控制空调器的运行参数,使人体的冷热感状态值往舒适的区间变化,空调器的运行参数包括设定温度、运行风速、导风条状态中的一种或者多种,例如当人体当前的冷热感状态值为2.5位于区间1即处于热的感觉,通过自动空调器的设定温度时的当前空调器的设定温度降低以使得房间内的环境温度降低,使得人的冷热感状态值逐渐减小,最后保持在区间4内,使得人体冷热感状态变化到舒适状态。
根据本发明所述的空调器,通过获取人体表面的温度以及房间内辐射温度值得到人体的散热量值,并进一步根据人体的散热量值获得人体的当前冷热感状态值,通过此种方式获取的冷热感状态值准确性高,并进一步在获取冷热感状态值以后根据空调器运行的制冷或者制热模式对冷热感状态进行修正,使得人体的冷热感状态值更加准确的适应于当前空调器运行不同温度环境,最后通过人体当前的冷热感状态值自动调整空调器的运行参数,使得人体处于舒适的状态,解决了由于用户手动调节空调器的运行参数带来的过冷或者过热的不舒适感。
图14为根据本发明的第八实施例的空调器控制方法的流程示意图。如图14所示,本发明实施例的空调器控制方法包括以下步骤:
步骤S10,获取房间内辐射温度值、湿度以及人体表面的温度值。
上述人体表面的温度是人体体表的温度值,辐射温度为环境四周表面对人体辐射作用的温度,湿度为房间内的空气湿度值。以人在房间内为例,此时辐射温度为房间内的周围环境如四周的墙体、窗户等 对人体辐射作用的温度值,这两个温度值可通过具有测量热图像功能的传感器测量读取得到,例如阵列式红外传感器模块,其红外传感器扫描人体或者周围环境时会得到热图像。在一实施例中,如图5所示,热图像通过阵列排布方式可以获得其中每个小区域即其中一个像素的温度值,如图5所示每个像素的颜色深浅表示了其温度值的高低不同,并可读取每个像素的具体温度值。热红外传感器扫描人体时同样会得到一定面积区域的热图像,因为人体表面的各个地方的温度是不相同的,因此反映到对应的热图像也不相同,因此测量人体表面的温度时可以通过测量人体对应热图像所有像素的温度点取平均值的方式获取,即人体表面的平均温度值表示人体表面温度值。而测量房间内辐射温度是通过红外传感器扫描房间内的四周区域如墙壁、天花板、窗户形成的热图像后,去掉人体所在热图像部分,读取剩下部分的热图像的各个像素的温度值然后取平均值就获得了房间内的辐射温度值,即房间内的平均辐射温度值表示房间内的辐射温度值,并不局限于平均值,所述房间内湿度可以通过湿度传感器直接检测得到。
步骤S20,根据所述人体表面温度值和房间内辐射温度值的差值计算人体的散热量,并根据所述湿度计算人体的第二散热量。
根据热力学第一定律,人体产生的散热量基本等于人体消耗的热量,因此通过测量人体消耗的热量即可得到人体的散热量,人体消耗的热量可通过以下公式计算:
H1=Φ*(Tcl-Ta)
其中H1为人体的第一散热量,Tcl为人体表面的温度值,Ta为辐射温度值,Φ为附加计算系数,这些计算系数为人体热舒适性研究领域的一些通用计算系数,如考虑周围环境的有效辐射面积系数f_eff、着装的人体面积系数f_cl,Φ=f_eff*f_cl,此时H=f_eff*f_cl*(Tcl-Ta),通过计算人体表面的温度值Tcl和辐射温度Ta的差值再结合计算系数Φ,得到人体的第一散热量H1。
当然,也可以根据人体表面的温度值Tcl、辐射温度值Ta与人体的第一散热量的映射关系,预先对温度值Tcl和温度值Ta进行取值,并设置与温度值Tcl和温度值Ta对应的人体的第一散热量,形成映 射表。当获取人体表面的温度值Tcl、辐射温度值Ta时,就可以查表获得相应的人体的第一散热量。根据所述湿度计算人体的第二散热量;例如,人体表面蒸发的散热与湿度有关,也与人体表面温度相关,提前设定或根据实验设定一个系数a,所述系数a对应为湿度换算成散热量的系数,在计算得到湿度后,直接根据系数a换算为人体的第二散热量H2,为了计算准确性,H2=a1*(a2*tcl-b-RHa*Pa),其中,a1、a2和b为设定的常数,Pa为饱和水蒸气分压力,RHa为湿度。
步骤S30,根据所述人体的第一散热量和第二散热量计算人体的冷热感状态。
人体的冷热感状态可通过具体的不同值来体现,如下表:
冷热感状态值 冷热感区间 热舒适感
-3≤M<-2 区间8
-2<M≤-1 区间7 有点冷
-1<M≤0.5 区间6
-0.5≤M<0 区间5 舒适
0≤M≤0.5 区间4 舒适
0.5<M≤1 区间3
1<M≤2 区间2 有点热
2<M≤3 区间1
上表中通过冷热感状态值M的大小分为8个区间,分别代表了人体不同的热舒适感觉,其中区间5为稍微凉爽的舒适感,区间6为稍微暖和的舒适感。
所述人体的散热量为第一散热量和第二散热量的和,或者给第一和第二散热量设定一权重,根据对应的权重计算出人体的散热量。由于人体的冷热感状态与人体消耗的热量相关,而人体消耗的热量等于人体的散热量,因此人体的散热量的大小反映了人的冷热感状态,通过前期空调器研发过程中对不同用户的冷热感觉进行体验测试,并根据当时计算得到的不同冷热感觉下的散热量值,可通过拟合公式获得二者之间的关系式,例如冷热感状态值M和散热量H的关系式可以 表示如下:
M=a0+a1H+a2H2+a3H3+.....+anHn
其中a0、a1、a2、a3、an为根据实验获得的不同的计算系数值,n为正数值,其取值大小依据具体的H和M数据组之间的形成拟合公式确定,如N可以取值为4。通过以上公式中人体的冷热感值M与散热量H之间的关系式,当计算得到人体的散热量值H后,代入以上公式就得到了人体的冷热感状态值M。需要说明的是,上述拟合公式仅仅用来说明人体冷热感值与散热量存在一定的关系,并不限定本发明的范围,根据前期实验过程中H和M数据组也可以根据其他拟合方法拟合,获得其他拟合公式。
步骤S40,根据所述冷热感状态控制空调器运行。
根据人体的冷热感状态值,控制空调器的运行参数,使人体的冷热感状态值往舒适的区间变化,空调器的运行参数包括设定温度、运行风速、导风条状态中的一种或者多种,例如当人体当前的冷热感状态值为2.5位于区间1即处于热的感觉,通过自动空调器的设定温度时的当前空调器的设定温度降低以使得房间内的环境温度降低,使得人的冷热感状态值逐渐减小,最后保持在区间4内,使得人体冷热感状态变化到舒适状态。
根据本发明所述的空调器控制方法,通过获取人体表面的温度以及房间内辐射温度值和湿度得到人体的散热量值,并进一步根据人体的散热量值获得人体的当前冷热感状态值,通过此种方式获取的冷热感状态值准确性高。有效避免目前空调控制过程中,无法提供准确的用户冷热状态,根据这个准确的冷热状态去控制空调运行。准确的提供用户的冷热感状态,进而,提高空调控制的准确性,提高空调的舒适度。
空调器包括多种运行模式,例如,有制冷或制热等,在冬天的时候,天气比较冷,会运行在制热模式;在夏天的时候,天气比较热,会运行在制热模式。而在制冷和制热状态下,房间内的湿度也会不同,且会随着空调在制冷或制热模式下的工况而不同。在本发明一较佳实 施例中,参考图15,在制冷模式下,所述获取房间内湿度的步骤包括:
步骤S11,获取人体所在的区域以及室内风机当前的风档;
步骤S12,根据预设的人体所在的所述区域和风档与湿度的映射关系,确定房间内湿度。
图8所示为阵列式红外传感器模块在其上下方向上测量人体的位置参数的示意图,图中1为空调器,2是安装在空调器上的阵列式红外传感器模块,3为人体所在位置,4是房间四周的墙体,5是地面,阵列式红外传感器模块可检测到上下方向上与人体位置的连线与安装阵列式红外传感器模块的空调器所固定的墙面的夹角大小,即图中阵列式红外传感器模块与人体位置的连线L和与固定空调器墙面竖直平行的线H的夹角θ值,又因为空调器的安装高度为一固定值,即图中的H为固定值,其值可通过用户对空调器安装后的高度进行测量输入到空调器的控制界面中获得,或者可以粗略的估算得到,这样通过H和夹角θ的值通过三角函数公式可以计算得到W的大小:W=H*tanθ,即获得人体所在位置相对空调器在地面方向上的最短距离W值。
图9所示为阵列式红外传感器模块在其左右方向上测量人体的位置参数的示意图,图中1为空调器,2是安装在空调器上的阵列式红外传感器模块,3为人体,4是房间四周的墙体,A1和A2是人体所在的不同位置点,阵列式红外传感器模块在左右方向上能扫描检测周围环境和物体的范围的最大视角是固定的,如图中L1和L4线构成的夹角b3为阵列式红外传感器模块在左右方向上能检测到周围环境和物体的最大视角,当人处在房间中的不同位置时,如图中的A1和A2点,其在位于最大视角范围的在左右方向上的位置可以被阵列式红外传感器模块检测确定,由于L1和L4是固定的,人体与阵列式红外传感器模块确定的连线与这两个边的夹角就可以被检测得到,如人体位于A1点位置时,人体与阵列式红外传感器模块确定的连线L2与L1的夹角b1的大小可以被检测得到,同理人体位于A2点位置时,人体与阵列式红外传感器模块确定的连线L3与L1的夹角b2 的大小可以被检测得到。这样通过夹角b1和b2的大小就可以确定人体在阵列式红外传感器模块左右方向上的位置,当然夹角不一定固定是人体与阵列式红外传感器模块确定的连线与最大视角左边线L1形成的角度,也可以是人体与阵列式红外传感器模块确定的连线与右边线L2形成的角度。
通过上述阵列式红外传感器模块在其上下方向上测量人体的位置参数和在其左右方向上测量人体的位置参数即可确定人体在房间中的位置,因扫描的距离和夹角固定,可以计算到人体在房间的具体位置。在确定人体在房间中的位置后,然后再根据人体在房间中的位置以及空调运行风速,确定人体所在位置的运行风速值。根据实验可知,当人体所在的位置越靠近空调器所在正对位置时,所述人体所在位置的运行风速与所述空调器的运行风速的相差越小;当人体所在的位置越远离空调器所在正对位置时,所述人体所在位置的运行风速与所述空调器的运行风速的相差越大。
具体地,确定人体所在位置的运行风速值可包括以下步骤:
预先将空调的吹风区域划分为多个子区域;
如图10所示,可将房间内的区域分为A至E 5个子区域,其中C区域为相对靠近空调器正对位置的区域。
获取空调的运行风速;
空调的运行风速值可分为若干个等级,即风速等级V2值,每个风速等级V2具有相应的运行风速值。该等级可以为空调的运行风挡,例如高、中、低档等等。根据空调的运行风挡,可以获得空调的运行风速值。
获取人体所在位置所属的子区域;
通过红外阵列传感器模块所测量的位置参数,以及预先划分的子区域,可以获得人体位于哪个子区域中,即人体所在位置所属的子区域。例如,人体位于空调正对位置,则该人体位于C区域。
根据空调的运行风速,以及人体所在位置所属的子区域,确定人体所在位置的运行风速值。
本实施例中,根据人体所在位置的运行风速与空调运行风速之间 的关系,可以确定人体位于不同区域时的运行风速值V1,例如:
Figure PCTCN2017086426-appb-000019
根据实验可知,当人体所在的位置越靠近空调器所在正对位置时,所述人体所在位置的运行风速与所述空调器的运行风速的相差越小;当人体所在的位置越远离空调器所在正对位置时,所述人体所在位置的运行风速与所述空调器的运行风速的相差越大。如从上述表格可以看出:C区域是最靠近空调器正对位置的区域,人体位于C区域时获得运行风速值是最大的,A、B、D、E区域比较远离靠近空调器正对位置的C区域,人体位于这两个区域时获得运行风速值相对减小。风档不同会影响到空气中的湿度,具体的,参考下表,为制冷模式下风档、人所在区域与湿度的映射表,表中的RH1为设定值。本实施例在制热模式下通过结合风档和人所在的区域来得到人体附近的湿度,使得获取的湿度更加准确,进而提高了人体冷热感状态的准确度,提高空调器的舒适度。
Figure PCTCN2017086426-appb-000020
Figure PCTCN2017086426-appb-000021
进一步地,参考图16,在制热模式下时,所述获取房间内湿度的步骤包括:
步骤S13,获取室内风机当前的风档;
步骤S14,根据预设的风挡与湿度的关联关系,确定房间内湿度。
按照制冷模式下风档和风速值的确定方式,因风档不同会影响到空气中的湿度,因制冷量对应不同风档在房间内扩散的程度不同,因而风档越大湿度越小,风档越小,湿度越大。具体的,参考下表,为制热模式下风档与湿度的映射表。本实施例在制冷模式下通过结合风档来得到房间内的湿度,使得获取的湿度更加准确,进而提高了人体冷热感状态的准确度,提高空调器的舒适度。
风挡 湿度关联模型
[1,10] RHa=RH1+14.53
[11,30] RHa=RH1+10
[31,50] RHa=RH1+6.16
[51,70] RHa=RH1+3.84
[71,90] RHa=RH1+2.71
[91,100] RHa=RH1+2.29
进一步的,参照图17,图17为根据本发明的另外一个实施例的空调器控制方法的流程示意图,基于上述本发明的空调控制方法第一实施例,在本实施例中,在上述步骤S30之后还包括:
步骤S50,当空调器运行制冷模式时,检测环境温度值,根据温度值修正冷热感状态值。
在根据散热量计算得到人体的冷热感状态值后,如果空调器运行制冷模式,此时可根据检测到的环境温度值,进一步对冷热感状态值进行修正。
具体的调整规则如下:
获取空调器检测到的环境温度值T1,根据环境温度值T1值的大小对冷热感状态值M进行修正,例如可以通过一个公式对其修正,如:
M=aT13+bT12+cT1+d
其中a、b、c、d为不同的计算系数值。
或者也可以根据环境温度值T1值分为不同的温度区间,根据不同的温度区间对冷热感状态值M值进行不同的修正,如:
T1≤a1时,M=M+b0
a1<T1≤a2时,M=M+b1
a2<T1≤a3时,M=M+b2
T1>a3时,M=M+b3
其中a1<a2<a3,b0、b1、b2、b3为不同的修正值,例如具体的修正值可以如下:
T1≤21℃时,M=M–2
18℃<T1≤21℃时,M=M–1
21℃<T1≤25℃时,M=M–0.5
T1>25℃时,M=M+1。
从以上修正的计算式可以看出,当环境温度值T1处于偏冷状态(18℃<T1≤21℃)或者偏热状态时(T1>25℃),对冷热感状态值M的修正大;当环境温度值T1处于比较舒适的状态(21℃<T1≤25℃)时,对冷热感状态值M的修正小。
进一步地,冷热感状态值M值可以限定上下限值,如:
M≤-3时,取M=-3
M≥3时,取M=3。
本发明实施例中,通过当空调器运行制冷模式时,检测环境温度值,根据该环境温度值修正冷热感状态值,从而进一步保证了冷热感状态值所反映的用户当前的冷热感状态更加贴近用户当前的冷热感受,使得后续根据冷热感状态值控制空调器调整运行参数时更加准确,进一步提升用户的舒适性体验。
进一步的,参照图18,图18为本发明的空调控制方法第十实施例的流程示意图。基于上述本发明的空调控制方法第八实施例,在本实施例中,在上述步骤S30之后还包括:
S60,当空调器运行制热模式时,检测环境温度值和空调器运行风速值,根据所述环境温度值和运行风速值获取人体附近的空气温度值,根据所述人体附近的空气温度值修正冷热感状态值。
在空调器运行制热模式时,人体对空调器吹出来的热风的感受与 制冷状态下的冷风感受不一样,除了与环境温度相关,还与空调器吹出来的热风风速有关系,此时除了需要结合环境温度值,还需要结合空调器的运行风速值对冷热感状态进行修正,即需要首先根据环境温度值和空调器的运行风速值获得人体附近的空气温度值,然后再根据人体附近的空气温度值对冷热感状态值进行修正。
根据环境温度值和空调器的运行风速值获得人体附近的空气温度值如下:
获取空调器检测到的环境温度值T1,根据空调器的运行风速值大小分为不同的风速区间,根据不同的风速区间对T1值进行计算得到人体附近的空气温度值,由于人体对制热模式下的热风感受比制冷模式下的冷风感受要敏感,且对不同大小的热风风速感受差别明显,因此不适合采取固定的计算法则来根据环境温度值T1来获取人体附近的空气温度值,而需要根据不同的风速区间来区别计算。例如可以根据空调器的运行风速值按照风速从小到大分为100个等级,将这100个等级分为10个区间,每个区间采用不同的计算法则:
风速区间 计算法则
[1,10] Ta=T1-c1
[11,30] Ta=T1-c2
[31,50] Ta=T1-c3
[51,70] Ta=T1-c4
[71,90] Ta=T1-c5
[91,100] Ta=T1-c6
其中Ta为人体附近的空气温度值,T1为环境温度值,c1、c2、c3、c4、c5、c6为正数值且互不相等。
根据实验获知,当风速越高时,人体附近的空气温度与环境温度差别越小,风速越低时,人体附近的空气温度与环境温度差别越大,即上述c1、c2、c3、c4、c5、c6的大小关系为:c1>c2>c3>c4>c5>c6,例如上面的表格列举c1、c2、c3、c4、c5、c6的具体值时可以如下:
Figure PCTCN2017086426-appb-000022
Figure PCTCN2017086426-appb-000023
制热模式下获取人体附近的空气温度值后,根据人体附近的空气温度值对人体的冷热感状态值M进行修正时,可根据人体附近的空气温度值分为若干个不同的温度区间,根据不同的温度区间对冷热感状态值M进行修正,如通过不同的温度区间限定M值的具体范围值对M进行修正:
T1≤c1时,M≤d1
c1<T1≤c2时,d1<M≤d2
c2<T1≤c3时,d2<M≤d3
T1>a3时,M>d3
其中c1<c2<c3,d1、d2、d3为不同的修正值,例如具体修正值可以如下:
T1≤17℃时,M≤-1
17℃<T1≤21℃时,-1<M≤-0.5
21℃<T1≤26时,-0.5<M≤1
T1>26时,M>1。
进一步地,冷热感状态值M值可以限定上下限值,如:
M≤-3时,取M=-3
M≥3时,取M=3。
本实施例中,在根据人体的散热量获取人体的冷热感状态值之后,在空调器运行制热模式时,检测房间环境温度值和空调器运行风速值,根据环境温度值和运行风速值获取人体附近的空气温度值,最后根据人体附近的空气温度值对人体的冷热感状态值进行修正,使得在制热模式下的获取的冷热感状态值更加贴近于人体的冷热感感受,进一步后续根据冷热感状态值对空调器进行控制时更加准确,提升用户的舒适体验。
下面参照附图描述根据本发明另外实施例提出的空调器控制装置。
参照图19,图19为本发明的空调器控制装置第八实施例的功能模块示意图。在本实施例中,所述空调器控制装置包括:获取模块10、计算模块20和控制模块30,
所述获取模块10,用于获取房间内辐射温度值、湿度以及人体表面的温度值。
上述人体表面的温度是人体体表的温度值,辐射温度为环境四周表面对人体辐射作用的温度,湿度为房间内的空气湿度值。以人在房间内为例,此时辐射温度为房间内的周围环境如四周的墙体、窗户等对人体辐射作用的温度值,这两个温度值可通过具有测量热图像功能的传感器测量读取得到,例如阵列式红外传感器模块,其红外传感器扫描人体或者周围环境时会得到热图像。在一实施例中,如图5所示,热图像通过阵列排布方式可以获得其中每个小区域即其中一个像素的温度值,如图5所示每个像素的颜色深浅表示了其温度值的高低不同,并可读取每个像素的具体温度值。热红外传感器扫描人体时同样会得到一定面积区域的热图像,因为人体表面的各个地方的温度是不相同的,因此反映到对应的热图像也不相同,因此测量人体表面的温度时可以通过测量人体对应热图像所有像素的温度点取平均值的方式获取,即人体表面的平均温度值表示人体表面温度值。而测量房间内辐射温度是通过红外传感器扫描房间内的四周区域如墙壁、天花板、窗户形成的热图像后,去掉人体所在热图像部分,读取剩下部分的热图像的各个像素的温度值然后取平均值就获得了房间内的辐射温度值,即房间内的平均辐射温度值表示房间内的辐射温度值,并不局限于平均值,所述房间内湿度可以通过湿度传感器直接检测得到。
所述计算模块20,用于根据所述人体表面温度值和房间内辐射温度值的差值计算人体的散热量,并根据所述湿度计算人体的第二散热量。
根据热力学第一定律,人体产生的散热量基本等于人体消耗的热 量,因此通过测量人体消耗的热量即可得到人体的散热量,人体消耗的热量可通过以下公式计算:
H1=Φ*(Tcl-Ta)
其中H1为人体的第一散热量,Tcl为人体表面的温度值,Ta为辐射温度值,Φ为附加计算系数,这些计算系数为人体热舒适性研究领域的一些通用计算系数,如考虑周围环境的有效辐射面积系数f_eff、着装的人体面积系数f_cl,Φ=f_eff*f_cl,此时H=f_eff*f_cl*(Tcl-Ta),通过计算人体表面的温度值Tcl和辐射温度Ta的差值再结合计算系数Φ,得到人体的第一散热量H1。
当然,也可以根据人体表面的温度值Tcl、辐射温度值Ta与人体的第一散热量的映射关系,预先对温度值Tcl和温度值Ta进行取值,并设置与温度值Tcl和温度值Ta对应的人体的第一散热量,形成映射表。当获取人体表面的温度值Tcl、辐射温度值Ta时,就可以查表获得相应的人体的第一散热量。根据所述湿度计算人体的第二散热量;例如,人体表面蒸发的散热与湿度有关,也与人体表面温度相关,提前设定或根据实验设定一个系数a,所述系数a对应为湿度换算成散热量的系数,在计算得到湿度后,直接根据系数a换算为人体的第二散热量H2,为了计算准确性,H2=a1*(a2*tcl-b-RHa*Pa),其中,a1、a2和b为设定的常数,Pa为饱和水蒸气分压力,RHa为湿度。
所述计算模块20,还用于根据所述人体的第一散热量和第二散热量计算人体的冷热感状态。
人体的冷热感状态可通过具体的不同值来体现,如下表:
Figure PCTCN2017086426-appb-000024
Figure PCTCN2017086426-appb-000025
上表中通过冷热感状态值M的大小分为8个区间,分别代表了人体不同的热舒适感觉,其中区间5为稍微凉爽的舒适感,区间6为稍微暖和的舒适感。
所述人体的散热量为第一散热量和第二散热量的和,或者给第一和第二散热量设定一权重,根据对应的权重计算出人体的散热量。由于人体的冷热感状态与人体消耗的热量相关,而人体消耗的热量等于人体的散热量,因此人体的散热量的大小反映了人的冷热感状态,通过前期空调器研发过程中对不同用户的冷热感觉进行体验测试,并根据当时计算得到的不同冷热感觉下的散热量值,可通过拟合公式获得二者之间的关系式,例如冷热感状态值M和散热量H的关系式可以表示如下:
M=a0+a1H+a2H2+a3H3+.....+anHn
其中a0、a1、a2、a3、an为根据实验获得的不同的计算系数值,n为正数值,其取值大小依据具体的H和M数据组之间的形成拟合公式确定,如N可以取值为4。通过以上公式中人体的冷热感值M与散热量H之间的关系式,当计算得到人体的散热量值H后,代入以上公式就得到了人体的冷热感状态值M。需要说明的是,上述拟合公式仅仅用来说明人体冷热感值与散热量存在一定的关系,并不限定本发明的范围,根据前期实验过程中H和M数据组也可以根据其他拟合方法拟合,获得其他拟合公式。
所述控制模块30,用于根据所述冷热感状态控制空调器运行。
根据人体的冷热感状态值,控制空调器的运行参数,使人体的冷热感状态值往舒适的区间变化,空调器的运行参数包括设定温度、运行风速、导风条状态中的一种或者多种,例如当人体当前的冷热感状态值为2.5位于区间1即处于热的感觉,通过自动空调器的设定温度时的当前空调器的设定温度降低以使得房间内的环境温度降低,使得人的冷热感状态值逐渐减小,最后保持在区间4内,使得人体冷热感状态变化到舒适状态。
根据本发明所述的空调器控制方法,通过获取人体表面的温度以及房间内辐射温度值和湿度得到人体的散热量值,并进一步根据人体的散热量值获得人体的当前冷热感状态值,通过此种方式获取的冷热感状态值准确性高。有效避免目前空调控制过程中,无法提供准确的用户冷热状态,根据这个准确的冷热状态去控制空调运行。准确的提供用户的冷热感状态,进而,提高空调控制的准确性,提高空调的舒适度。
空调器包括多种运行模式,例如,有制冷或制热等,在冬天的时候,天气比较冷,会运行在制热模式;在夏天的时候,天气比较热,会运行在制热模式。而在制冷和制热状态下,房间内的湿度也会不同,且会随着空调在制冷或制热模式下的工况而不同。在本发明一较佳实施例中,参考图20,所述获取模块10包括获取单元11和确定单元12,
所述获取单元11,用于获取人体所在的区域以及室内风机当前的风档;
所述确定单元12,用于根据预设的人体所在的所述区域和风档与湿度的映射关系,确定房间内湿度。
图8所示为阵列式红外传感器模块在其上下方向上测量人体的位置参数的示意图,图中1为空调器,2是安装在空调器上的阵列式红外传感器模块,3为人体所在位置,4是房间四周的墙体,5是地面,阵列式红外传感器模块可检测到上下方向上与人体位置的连线与安装阵列式红外传感器模块的空调器所固定的墙面的夹角大小,即图中阵列式红外传感器模块与人体位置的连线L和与固定空调器墙面竖直平行的线H的夹角θ值,又因为空调器的安装高度为一固定值,即图中的H为固定值,其值可通过用户对空调器安装后的高度进行测量输入到空调器的控制界面中获得,或者可以粗略的估算得到,这样通过H和夹角θ的值通过三角函数公式可以计算得到W的大小:W=H*tanθ,即获得人体所在位置相对空调器在地面方向上的最短距离W值。
图9所示为阵列式红外传感器模块在其左右方向上测量人体的位置参数的示意图,图中1为空调器,2是安装在空调器上的阵列式红外传感器模块,3为人体,4是房间四周的墙体,A1和A2是人体所在的不同位置点,阵列式红外传感器模块在左右方向上能扫描检测周围环境和物体的范围的最大视角是固定的,如图中L1和L4线构成的夹角b3为阵列式红外传感器模块在左右方向上能检测到周围环境和物体的最大视角,当人处在房间中的不同位置时,如图中中的A1和A2点,其在位于最大视角范围的在左右方向上的位置可以被阵列式红外传感器模块检测确定,由于L1和L4是固定的,人体与阵列式红外传感器模块确定的连线与这两个边的夹角就可以被检测得到,如人体位于A1点位置时,人体与阵列式红外传感器模块确定的连线L2与L1的夹角b1的大小可以被检测得到,同理人体位于A2点位置时,人体与阵列式红外传感器模块确定的连线L3与L1的夹角b2的大小可以被检测得到。这样通过夹角b1和b2的大小就可以确定人体在阵列式红外传感器模块左右方向上的位置,当然夹角不一定固定是人体与阵列式红外传感器模块确定的连线与最大视角左边线L1形成的角度,也可以是人体与阵列式红外传感器模块确定的连线与最大视角右边连续L2形成的角度,或者是人体与阵列式红外传感器模块确定的连线与其垂直空调器所在墙面所在的水平线确定的角度。
通过上述阵列式红外传感器模块在其上下方向上测量人体的位置参数和在其左右方向上测量人体的位置参数即可确定人体在房间中的位置,可根据人体在房间中的位置不同将房间内的空间分为若干个区域,如图10所示,将房间内的区域分为A至E 5个区域,其中C区域为相对靠近空调器正对位置的区域。获取室内风机当前的风档,所述风档也可以是室内风机风速或转速等。由于人处在房间中距离空调器不同位置时,感受到空调器的送风效果是不同的,因此通过确定人体所在位置位于房间中的区域,再获取空调器的运行风速值,可以最终确定人体所在位置的运行风速值。例如获取空调器的运行风速大小将风速大小分为若干个等级,根据此等级值可确定风速等级 V2值,以及根据不同区域确定人体所在位置的风速V1具体可以如下确定:
Figure PCTCN2017086426-appb-000026
根据实验可知,当人体所在的位置越靠近空调器所在正对位置时,所述人体所在位置的运行风速与所述空调器的运行风速的相差越小;当人体所在的位置越远离空调器所在正对位置时,所述人体所在位置的运行风速与所述空调器的运行风速的相差越大。如从上述表格可以看出:C区域是最靠近空调器正对位置的区域,人体位于C区域时获得运行风速值是最大的,A、B、D、E区域比较远离靠近空调器正对位置的C区域,人体位于这两个区域时获得运行风速值相对减小。风档不同会影响到空气中的湿度,具体的,参考下表,为制冷模式下风档、人所在区域与湿度的映射表。本实施例在制热模式下通过结合风档和人所在的区域来得到人体附近的湿度,使得获取的湿度更加准确,进而提高了人体冷热感状态的准确度,提高空调器的舒适度。
Figure PCTCN2017086426-appb-000027
Figure PCTCN2017086426-appb-000028
进一步地,在制热模式下,所述获取单元11,还用于获取室内风机当前的风档;
所述确定单元12,还用于根据预设的风挡与湿度的关联关系,确定房间内湿度。
按照制冷模式下风档和风速值的确定方式,因风档不同会影响到 空气中的湿度,因制冷量对应不同风档在房间内扩散的程度不同,因而风档越大湿度越小,风档越小,湿度越大。具体的,参考下表,为制热模式下风档与湿度的映射表。本实施例在制冷模式下通过结合风档来得到房间内的湿度,使得获取的湿度更加准确,进而提高了人体冷热感状态的准确度,提高空调器的舒适度。
风挡 湿度关联模型
[1,10] RHa=RH1+14.53
[11,30] RHa=RH1+10
[31,50] RHa=RH1+6.16
[51,70] RHa=RH2+3.84
[71,90] RHa=RH2+2.71
[91,100] RHa=RH2+2.29
进一步的,参照图21,所述计算模块20包括:检测单元21和修正单元22,
所述检测单元21,用于当空调器运行制冷模式时,检测环境温度值;
所述修正单元22,用于根据温度值修正冷热感状态值。
在根据散热量计算得到人体的冷热感状态值后,如果空调器运行制冷模式,此时可根据检测到的环境温度值,进一步对冷热感状态值进行修正。
具体的调整规则如下:
获取空调器检测到的环境温度值T1,根据环境温度值T1值的大小对冷热感状态值M进行修正,例如可以通过一个公式对其修正,如:
M=aT13+bT12+cT1+d
其中a、b、c、d为不同的计算系数值。
或者也可以根据环境温度值T1值分为不同的温度区间,根据不同的温度区间对冷热感状态值M值进行不同的修正,如:
a1<T1≤a2时,M=M+b1
a2<T1≤a3时,M=M+b2
T1>a4时,M=M+b3
其中a1<a2<a3,b1、b2、b3为不同的修正值,例如具体的修正值可以如下:
18℃<T1≤21℃时M=M–1
21℃<T1≤25℃时M=M–0.5
T1>25℃时M=M+1
从以上修正的计算式可以看出,当环境温度值T1处于偏冷状态(18℃<T1≤21℃)或者偏热状态时(T1>25℃),对冷热感状态值M的修正大;当环境温度值T1处于比较舒适的状态(21℃<T1≤25℃)时,对冷热感状态值M的修正小。
进一步的,冷热感状态值M值可以限定上下限值,如:
M≤-3时,取M=-3
M≥3时,取M=3
本发明实施例中,通过当空调器运行制冷模式时,检测环境温度值,根据该环境温度值修正冷热感状态值,从而进一步保证了冷热感状态值所反映的用户当前的冷热感状态更加贴近用户当前的冷热感受,使得后续根据冷热感状态值控制空调器调整运行参数时更加准确,进一步提升用户的舒适性体验。
进一步地,所述检测单元21,还用于当空调器运行制热模式时,检测环境温度值和空调器运行风速值;
所述修正单元22,还用于根据所述环境温度值和运行风速值获取人体附近的空气温度值,根据所述人体附近的空气温度值修正冷热感状态值。
在空调器运行制热模式时,人体对空调器吹出来的热风的感受与制冷状态下的冷风感受不一样,除了与环境温度相关,还与空调器吹出来的热风风速有关系,此时除了需要结合环境温度值,还需要结合空调器的运行风速值对冷热感状态进行修正,即需要首先根据环境温度值和空调器的运行风速值获得人体附近的空气温度值,然后再根据 人体附近的空气温度值对冷热感状态值进行修正。
根据环境温度值和空调器的运行风速值获得人体附近的空气温度值如下:
获取空调器检测到的环境温度值T1,根据空调器的运行风速值大小分为不同的风速区间,根据不同的风速区间对T1值进行计算得到人体附近的空气温度值,由于人体对制热模式下的热风感受比制冷模式下的冷风感受要敏感,且对不同大小的热风风速感受差别明显,因此不适合采取固定的计算法则来根据环境温度值T1来获取人体附近的空气温度值,而需要根据不同的风速区间来区别计算。例如可以根据空调器的运行风速值按照风速从小到大分为100个等级,将这100个等级分为10个区间,每个区间采用不同的计算法则:
风速区间 计算法则
[1,10] Ta=T1-c1
[11,30] Ta=T1-c2
[31,50] Ta=T1-c3
[51,70] Ta=T1-c4
[71,90] Ta=T1-c5
[91,100] Ta=T1-c6
其中Ta为人体附近的空气温度值,T1为环境温度值,c1、c2、c3、c4、c5、c6为正数值且互不相等。
根据实验获知,当风速越高时,人体附近的空气温度与环境温度差别越小,风速越低时,人体附近的空气温度与环境温度差别越大,即上述c1、c2、c3、c4、c5、c6的大小关系为:c1>c2>c3>c4>c5>c6,例如上面的表格列举c1、c2、c3、c4、c5、c6的具体值时可以如下:
Figure PCTCN2017086426-appb-000029
Figure PCTCN2017086426-appb-000030
本实施例中,在根据人体的散热量获取人体的冷热感状态值之后,在空调器运行制热模式时,检测房间环境温度值和空调器运行风速值,根据环境温度值和运行风速值获取人体附近的空气温度值,最后根据人体附近的空气温度值对人体的冷热感状态值进行修正,使得在制热模式下的获取的冷热感状态值更加贴近于人体的冷热感感受,进一步后续根据冷热感状态值对空调器进行控制时更加准确,提升用户的舒适体验。
本发明还提供一种空调,上述的空调控制装置用于该空调中。所述空调器包括室内机、室外机、风管等必备硬件。该空调通过获取人体表面的温度以及房间内辐射温度值和湿度得到人体的散热量值,并进一步根据人体的散热量值获得人体的当前冷热感状态值,通过此种方式获取的冷热感状态值准确性高。有效避免目前空调控制过程中,无法提供准确的用户冷热状态,根据这个准确的冷热状态去控制空调运行。准确的提供用户的冷热感状态,进而,提高空调控制的准确性,提高空调的舒适度。
以上仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (27)

  1. 一种空调器控制方法,其特征在于,所述空调器控制方法包括:
    获取房间内辐射温度以及人体表面的温度值;
    根据所述人体表面的温度值和房间内辐射温度值的差值,获得人体的散热量;
    根据所述人体的散热量,获得人体的冷热感状态;
    根据所述冷热感状态,控制空调器运行。
  2. 如权利要求1所述的空调器控制方法,其特征在于,所述根据人体的散热量获得人体的冷热感状态之后还包括:
    当空调器运行制冷模式时,检测环境温度值,根据所述环境温度值修正冷热感状态。
  3. 如权利要求1所述的空调器控制方法,其特征在于,所述根据人体的散热量获得人体的冷热感状态之后还包括:
    当空调器运行制热模式时,检测环境温度值和空调器运行风速值;
    根据所述环境温度值和运行风速值,获取人体附近的空气温度值;
    根据所述人体附近的空气温度值,修正冷热感状态。
  4. 如权利要求3所述的空调器控制方法,其特征在于,所述根据环境温度值和运行风速值获取人体附近的空气温度值时,运行风速值越高,人体附近的空气温度值与环境温度值相差越小,运行风速值越低,人体附近的空气温度值与环境温度值相差越大。
  5. 如权利要求1所述的空调器控制方法,其特征在于,所述根据所述冷热感状态控制空调器运行的步骤包括:
    根据所述冷热感状态,控制空调器的设定温度、运行风速以及导风条参数的一种或者多种。
  6. 一种空调器,其特征在于,包括:
    温度检测模块,用于检测房间内辐射温度以及人体表面的温度值;
    冷热感获取模块,用于根据所述人体表面的温度以及辐射温度值获得人体的散热量并进一步根据所述散热量获得人体的冷热感状态;
    控制模块,根据所述的冷热感状态控制空调器运行。
  7. 一种空调器控制方法,其特征在于,所述空调器控制方法包括步骤:
    获取房间内辐射温度值、人体表面的温度值;
    获取人体附近的空气温度值;
    根据所述人体表面温度值和房间内辐射温度的差值获得人体的第一散热量,根据所述人体附近的空气温度值获得人体的第二散热量,根据所述人体的第一散热量和第二散热量获得人体的散热量;
    根据所述人体的散热量,获得人体的冷热感状态;
    根据所述冷热感状态,控制空调器运行。
  8. 如权利要求7所述的空调器控制方法,其特征在于,所述获取人体附近的空气温度值步骤包括:
    当空调器运行制冷模式时,检测人体所在的位置,检测空调器运行风速值和环境温度值,根据所述人体所在位置、空调器运行风速值和环境温度值获取人体附近的空气温度值。
  9. 如权利要求7所述的空调器控制方法,其特征在于,所述获取人体附近的空气温度值步骤包括:
    当空调器运行制热模式时,检测空调器运行风速值和环境温度值,根据所述空调器运行风速值和环境温度值获取人体附近的空气温 度值。
  10. 如权利要求7所述的空调器控制方法,其特征在于,所述根据人体的散热量获得人体的冷热感状态之后还包括:
    当空调器运行制冷模式时,检测环境温度值,根据所述环境温度值修正冷热感状态。
  11. 如权利要求7的空调器控制方法,其特征在于,所述根据所述冷热感状态控制空调器运行的步骤包括:
    根据所述冷热感状态,控制空调器的设定温度、运行风速以及导风条参数的一种或者多种。
  12. 一种空调器,其特征在于,包括:
    温度检测模块,用于检测房间内辐射温度以及人体表面的温度值;
    空气温度检测模块,用于检测人体附近的空气温度值;
    冷热感获取模块,用于根据人体表面温度值和房间内辐射温度的差值获得人体的第一散热量,根据人体附近的空气温度值获得人体的第二散热量,根据所述人体的第一散热量和人体的第二散热量获得人体的散热量,根据所述人体的散热量,获得人体的冷热感状态;
    控制模块,用于根据所述的冷热感状态控制空调器运行。
  13. 一种空调器控制方法,其特征在于,所述空调器控制方法包括:
    获取房间内辐射温度以及人体表面的温度值;
    获取人体所在位置,以及该位置处的运行风速值;
    根据所述人体表面温度值和所述房间内辐射温度的差值以及所述人体所在位置处的运行风速值获得人体的散热量;
    根据所述人体的散热量,获得人体的冷热感状态;
    根据所述冷热感状态,控制空调器运行。
  14. 如权利要求13所述的空调器控制方法,其特征在于,所述获取人体所在位置具体包括:
    通过安装在空调器上的红外阵列式传感器在左右方向上的检测人的位置角度以及人与所述红外传感器的在上下方向上检测人的位置角度来确定人体所在位置。
  15. 如权利要求13所述的空调器控制方法,其特征在于,所述获取人体所在位置处的运行风速值包括:
    根据空调器的运行风速、所述人体所在位置确定所述人体所在位置的运行风速值。
  16. [根据细则26改正26.06.2017] 
    如权利要求13所述的空调器控制方法,其特征在于,所述当人体所在的位置越靠近空调器所在正对位置时,所述人体所在位置的运行风速与所述空调器的运行风速的相差越小;当人体所在的位置越远离空调器所在正对位置时,所述人体所在位置的运行风速与所述空调器的运行风速相差越大。
  17. 如权利要求13所述的空调器控制方法,其特征在于,所述根据所述冷热感状态控制空调器运行的步骤包括:
    根据所述冷热感状态,控制空调器的设定温度、运行风速以及导风条参数的一种或者多种。
  18. 一种空调器,其特征在于,包括:
    温度检测模块,用于检测房间内辐射温度以及人体表面的温度值;
    人体位置检测模块,用于检测人体所在位置;
    风速获取模块,用于获取所述人体所在位置的运行风速值;
    冷热感获取模块,用于根据所述人体表面温度值和所述房间内辐射温度的差值以及所述人体所在位置处的运行风速值获得人体的散 热量,并根据所述散热量获得人体的冷热感状态;
    控制模块,用于根据所述的冷热感状态控制空调器运行。
  19. 如权利要求18所述的空调器,其特征在于,所述温度检测模块为红外阵列式传感器。
  20. 一种空调器控制方法,其特征在于,包括步骤:
    获取房间内辐射温度值、湿度以及人体表面的温度值;
    根据所述人体表面的温度值和房间内辐射温度值的差值,计算人体的第一散热量,并根据所述湿度计算人体的第二散热量;
    根据所述人体的第一散热量和第二散热量,计算人体的冷热感状态;
    根据所述冷热感状态,控制空调器运行。
  21. 如权利要求20所述的空调器控制方法,其特征在于,在制冷模式下,所述获取房间内湿度的步骤包括:
    获取人体所在的区域以及室内风机当前的风档;
    根据预设的人体所在的所述区域和风档与湿度的映射关系,确定房间内湿度。
  22. 如权利要求20所述的空调器控制方法,其特征在于,在制热模式下,所述获取房间内湿度的步骤包括:
    获取室内风机当前的风档;
    根据预设的风挡与湿度的关联关系,确定房间内湿度。
  23. 如权利要求20所述的空调器控制方法,其特征在于,所述根据人体的散热量获得人体的冷热感状态之后还包括:
    当空调器运行制冷模式时,检测环境温度值,根据所述环境温度值修正冷热感状态。
  24. 如权利要求20所述的空调器控制方法,其特征在于,所述根据人体的散热量获得人体的冷热感状态之后还包括:
    当空调器运行制热模式时,检测环境温度值和空调器运行风速值;
    根据所述环境温度值和运行风速值,获取人体附近的空气温度值;
    根据所述人体附近的空气温度值,修正冷热感状态。
  25. 如权利要求21所述的空调器控制方法,其特征在于,所述根据人体的散热量获得人体的冷热感状态之后还包括:
    当空调器运行制热模式时,检测环境温度值和空调器运行风速值;
    根据所述环境温度值和运行风速值,获取人体附近的空气温度值;
    根据所述人体附近的空气温度值,修正冷热感状态。
  26. 如权利要求22所述的空调器控制方法,其特征在于,所述根据人体的散热量获得人体的冷热感状态之后还包括:
    当空调器运行制热模式时,检测环境温度值和空调器运行风速值;
    根据所述环境温度值和运行风速值,获取人体附近的空气温度值;
    根据所述人体附近的空气温度值,修正冷热感状态。
  27. 一种空调器控制装置,其特征在于,包括:
    获取模块,用于获取房间内辐射温度值、湿度以及人体表面的温度值;
    计算模块,用于根据所述人体表面的温度值以及辐射温度值计算人体的第一散热量,还用于
    根据所述湿度计算人体的第二散热量,并根据所述人体的第一散 热量和第二散热量,计算人体的冷热感状态;
    控制模块,根据所述冷热感状态控制空调器运行。
PCT/CN2017/086426 2016-07-29 2017-05-27 空调器的控制方法及空调器 WO2018019026A1 (zh)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
CN201610616689.XA CN106196484A (zh) 2016-07-29 2016-07-29 空调器的控制方法及空调器
CN201610624303.XA CN106016636B (zh) 2016-07-29 2016-07-29 空调器的控制方法及空调器
CN201610616689.X 2016-07-29
CN201610624303.X 2016-07-29
CN201610625679.2A CN106288149B (zh) 2016-07-29 2016-07-29 空调器控制方法及装置
CN201610625617.1 2016-07-29
CN201610625679.2 2016-07-29
CN201610625617.1A CN106196490B (zh) 2016-07-29 2016-07-29 空调器的控制方法及空调器

Publications (1)

Publication Number Publication Date
WO2018019026A1 true WO2018019026A1 (zh) 2018-02-01

Family

ID=61016773

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/086426 WO2018019026A1 (zh) 2016-07-29 2017-05-27 空调器的控制方法及空调器

Country Status (1)

Country Link
WO (1) WO2018019026A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110864431A (zh) * 2019-11-04 2020-03-06 佛山市云米电器科技有限公司 一种具有红外数据采集功能的出风设备
CN112115353A (zh) * 2020-09-01 2020-12-22 珠海格力电器股份有限公司 空调匹数推荐方法、装置、系统、计算机设备和存储介质
CN112762580A (zh) * 2020-12-31 2021-05-07 青岛海尔空调电子有限公司 空调系统的控制方法
CN113310187A (zh) * 2021-06-09 2021-08-27 海信(山东)空调有限公司 空调器的控制方法及装置、空调器和计算机可读存储介质
CN114017908A (zh) * 2021-10-20 2022-02-08 深圳达实智能股份有限公司 一种空调末端出风口冷量控制方法和系统
CN114440423A (zh) * 2022-02-28 2022-05-06 海信(广东)空调有限公司 空调器以及空调器的控制方法
CN115046254A (zh) * 2021-03-08 2022-09-13 广东美的制冷设备有限公司 空调器及其控制方法、控制装置和计算机可读存储介质
CN115654709A (zh) * 2022-09-08 2023-01-31 宁波奥克斯电气股份有限公司 一种空调器控制方法、空调、计算机可读存储介质

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06257821A (ja) * 1993-03-04 1994-09-16 Matsushita Electric Ind Co Ltd 空気調和機の制御装置
JPH06288598A (ja) * 1993-04-01 1994-10-11 Matsushita Electric Ind Co Ltd 空気調和機の制御装置
CN103982978A (zh) * 2014-04-25 2014-08-13 广东美的集团芜湖制冷设备有限公司 可穿戴设备、空调器控制装置、空调器控制方法和空调器
CN104990207A (zh) * 2015-06-10 2015-10-21 浙江大学 一种动态自适应空调控制系统
CN105339742A (zh) * 2014-02-17 2016-02-17 松下电器产业株式会社 空调机以及热图像传感器系统
CN105627508A (zh) * 2015-12-30 2016-06-01 美的集团武汉制冷设备有限公司 基于体表温度的空调控制方法及装置
CN106016636A (zh) * 2016-07-29 2016-10-12 广东美的制冷设备有限公司 空调器的控制方法及空调器
CN106196490A (zh) * 2016-07-29 2016-12-07 广东美的制冷设备有限公司 空调器的控制方法及空调器
CN106196484A (zh) * 2016-07-29 2016-12-07 广东美的制冷设备有限公司 空调器的控制方法及空调器
CN106288149A (zh) * 2016-07-29 2017-01-04 广东美的制冷设备有限公司 空调器控制方法及装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06257821A (ja) * 1993-03-04 1994-09-16 Matsushita Electric Ind Co Ltd 空気調和機の制御装置
JPH06288598A (ja) * 1993-04-01 1994-10-11 Matsushita Electric Ind Co Ltd 空気調和機の制御装置
CN105339742A (zh) * 2014-02-17 2016-02-17 松下电器产业株式会社 空调机以及热图像传感器系统
CN103982978A (zh) * 2014-04-25 2014-08-13 广东美的集团芜湖制冷设备有限公司 可穿戴设备、空调器控制装置、空调器控制方法和空调器
CN104990207A (zh) * 2015-06-10 2015-10-21 浙江大学 一种动态自适应空调控制系统
CN105627508A (zh) * 2015-12-30 2016-06-01 美的集团武汉制冷设备有限公司 基于体表温度的空调控制方法及装置
CN106016636A (zh) * 2016-07-29 2016-10-12 广东美的制冷设备有限公司 空调器的控制方法及空调器
CN106196490A (zh) * 2016-07-29 2016-12-07 广东美的制冷设备有限公司 空调器的控制方法及空调器
CN106196484A (zh) * 2016-07-29 2016-12-07 广东美的制冷设备有限公司 空调器的控制方法及空调器
CN106288149A (zh) * 2016-07-29 2017-01-04 广东美的制冷设备有限公司 空调器控制方法及装置

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110864431A (zh) * 2019-11-04 2020-03-06 佛山市云米电器科技有限公司 一种具有红外数据采集功能的出风设备
CN112115353A (zh) * 2020-09-01 2020-12-22 珠海格力电器股份有限公司 空调匹数推荐方法、装置、系统、计算机设备和存储介质
CN112762580A (zh) * 2020-12-31 2021-05-07 青岛海尔空调电子有限公司 空调系统的控制方法
CN115046254A (zh) * 2021-03-08 2022-09-13 广东美的制冷设备有限公司 空调器及其控制方法、控制装置和计算机可读存储介质
CN115046254B (zh) * 2021-03-08 2024-05-28 广东美的制冷设备有限公司 空调器及其控制方法、控制装置和计算机可读存储介质
CN113310187A (zh) * 2021-06-09 2021-08-27 海信(山东)空调有限公司 空调器的控制方法及装置、空调器和计算机可读存储介质
CN114017908A (zh) * 2021-10-20 2022-02-08 深圳达实智能股份有限公司 一种空调末端出风口冷量控制方法和系统
CN114440423A (zh) * 2022-02-28 2022-05-06 海信(广东)空调有限公司 空调器以及空调器的控制方法
CN114440423B (zh) * 2022-02-28 2023-10-27 海信(广东)空调有限公司 空调器以及空调器的控制方法
CN115654709A (zh) * 2022-09-08 2023-01-31 宁波奥克斯电气股份有限公司 一种空调器控制方法、空调、计算机可读存储介质

Similar Documents

Publication Publication Date Title
WO2018019026A1 (zh) 空调器的控制方法及空调器
CN106016636B (zh) 空调器的控制方法及空调器
CN106288149B (zh) 空调器控制方法及装置
CN106225161B (zh) 空调控制方法及装置
CN106705387B (zh) 空调器控制方法、装置及空调器
CN106196484A (zh) 空调器的控制方法及空调器
WO2018076743A1 (zh) 一种智能空调器温度控制方法、系统及智能空调
CN110887174B (zh) 空调器的控制方法及空调器
CN111247375A (zh) 空调控制装置
WO2018120626A1 (zh) 空调器的控制方法、装置及空调器
US20150025693A1 (en) System and method of temperature control
CN104676844B (zh) 空调控制方法和装置
CN106524402A (zh) 空调器及其冷热感修正方法
CN106196481B (zh) 基于冷热感值的导风条调节方法及装置
JP2017015288A (ja) 空気調和機及び空気調和機の制御方法
CN106949606A (zh) 空调器风速控制方法、装置及空调器
CN110887175A (zh) 空调器的控制方法及空调器
CN105020835A (zh) 空调器的舒适性控制方法及装置
CN106196490B (zh) 空调器的控制方法及空调器
CN106288145B (zh) 空调控制方法及装置
CN108195032A (zh) 空调器控制方法、装置及计算机可读存储介质
CN106642529A (zh) 空调器、空调器的控制方法及装置
WO2019024818A1 (zh) 空调装置的控制方法
CN106766011A (zh) 空调器控制方法及空调器
CN106288279B (zh) 基于冷热感值的导风条调节方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17833331

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17833331

Country of ref document: EP

Kind code of ref document: A1